1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sysfs.h> 31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 32 33 #include "base.h" 34 #include "power/power.h" 35 36 #ifdef CONFIG_SYSFS_DEPRECATED 37 #ifdef CONFIG_SYSFS_DEPRECATED_V2 38 long sysfs_deprecated = 1; 39 #else 40 long sysfs_deprecated = 0; 41 #endif 42 static int __init sysfs_deprecated_setup(char *arg) 43 { 44 return kstrtol(arg, 10, &sysfs_deprecated); 45 } 46 early_param("sysfs.deprecated", sysfs_deprecated_setup); 47 #endif 48 49 /* Device links support. */ 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static DEFINE_MUTEX(fwnode_link_lock); 53 static bool fw_devlink_is_permissive(void); 54 static bool fw_devlink_drv_reg_done; 55 56 /** 57 * fwnode_link_add - Create a link between two fwnode_handles. 58 * @con: Consumer end of the link. 59 * @sup: Supplier end of the link. 60 * 61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 62 * represents the detail that the firmware lists @sup fwnode as supplying a 63 * resource to @con. 64 * 65 * The driver core will use the fwnode link to create a device link between the 66 * two device objects corresponding to @con and @sup when they are created. The 67 * driver core will automatically delete the fwnode link between @con and @sup 68 * after doing that. 69 * 70 * Attempts to create duplicate links between the same pair of fwnode handles 71 * are ignored and there is no reference counting. 72 */ 73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 74 { 75 struct fwnode_link *link; 76 int ret = 0; 77 78 mutex_lock(&fwnode_link_lock); 79 80 list_for_each_entry(link, &sup->consumers, s_hook) 81 if (link->consumer == con) 82 goto out; 83 84 link = kzalloc(sizeof(*link), GFP_KERNEL); 85 if (!link) { 86 ret = -ENOMEM; 87 goto out; 88 } 89 90 link->supplier = sup; 91 INIT_LIST_HEAD(&link->s_hook); 92 link->consumer = con; 93 INIT_LIST_HEAD(&link->c_hook); 94 95 list_add(&link->s_hook, &sup->consumers); 96 list_add(&link->c_hook, &con->suppliers); 97 out: 98 mutex_unlock(&fwnode_link_lock); 99 100 return ret; 101 } 102 103 /** 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 105 * @fwnode: fwnode whose supplier links need to be deleted 106 * 107 * Deletes all supplier links connecting directly to @fwnode. 108 */ 109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 110 { 111 struct fwnode_link *link, *tmp; 112 113 mutex_lock(&fwnode_link_lock); 114 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 mutex_unlock(&fwnode_link_lock); 120 } 121 122 /** 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 124 * @fwnode: fwnode whose consumer links need to be deleted 125 * 126 * Deletes all consumer links connecting directly to @fwnode. 127 */ 128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 129 { 130 struct fwnode_link *link, *tmp; 131 132 mutex_lock(&fwnode_link_lock); 133 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 134 list_del(&link->s_hook); 135 list_del(&link->c_hook); 136 kfree(link); 137 } 138 mutex_unlock(&fwnode_link_lock); 139 } 140 141 /** 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 143 * @fwnode: fwnode whose links needs to be deleted 144 * 145 * Deletes all links connecting directly to a fwnode. 146 */ 147 void fwnode_links_purge(struct fwnode_handle *fwnode) 148 { 149 fwnode_links_purge_suppliers(fwnode); 150 fwnode_links_purge_consumers(fwnode); 151 } 152 153 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 154 { 155 struct fwnode_handle *child; 156 157 /* Don't purge consumer links of an added child */ 158 if (fwnode->dev) 159 return; 160 161 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 162 fwnode_links_purge_consumers(fwnode); 163 164 fwnode_for_each_available_child_node(fwnode, child) 165 fw_devlink_purge_absent_suppliers(child); 166 } 167 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 168 169 #ifdef CONFIG_SRCU 170 static DEFINE_MUTEX(device_links_lock); 171 DEFINE_STATIC_SRCU(device_links_srcu); 172 173 static inline void device_links_write_lock(void) 174 { 175 mutex_lock(&device_links_lock); 176 } 177 178 static inline void device_links_write_unlock(void) 179 { 180 mutex_unlock(&device_links_lock); 181 } 182 183 int device_links_read_lock(void) __acquires(&device_links_srcu) 184 { 185 return srcu_read_lock(&device_links_srcu); 186 } 187 188 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 189 { 190 srcu_read_unlock(&device_links_srcu, idx); 191 } 192 193 int device_links_read_lock_held(void) 194 { 195 return srcu_read_lock_held(&device_links_srcu); 196 } 197 198 static void device_link_synchronize_removal(void) 199 { 200 synchronize_srcu(&device_links_srcu); 201 } 202 203 static void device_link_remove_from_lists(struct device_link *link) 204 { 205 list_del_rcu(&link->s_node); 206 list_del_rcu(&link->c_node); 207 } 208 #else /* !CONFIG_SRCU */ 209 static DECLARE_RWSEM(device_links_lock); 210 211 static inline void device_links_write_lock(void) 212 { 213 down_write(&device_links_lock); 214 } 215 216 static inline void device_links_write_unlock(void) 217 { 218 up_write(&device_links_lock); 219 } 220 221 int device_links_read_lock(void) 222 { 223 down_read(&device_links_lock); 224 return 0; 225 } 226 227 void device_links_read_unlock(int not_used) 228 { 229 up_read(&device_links_lock); 230 } 231 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 233 int device_links_read_lock_held(void) 234 { 235 return lockdep_is_held(&device_links_lock); 236 } 237 #endif 238 239 static inline void device_link_synchronize_removal(void) 240 { 241 } 242 243 static void device_link_remove_from_lists(struct device_link *link) 244 { 245 list_del(&link->s_node); 246 list_del(&link->c_node); 247 } 248 #endif /* !CONFIG_SRCU */ 249 250 static bool device_is_ancestor(struct device *dev, struct device *target) 251 { 252 while (target->parent) { 253 target = target->parent; 254 if (dev == target) 255 return true; 256 } 257 return false; 258 } 259 260 /** 261 * device_is_dependent - Check if one device depends on another one 262 * @dev: Device to check dependencies for. 263 * @target: Device to check against. 264 * 265 * Check if @target depends on @dev or any device dependent on it (its child or 266 * its consumer etc). Return 1 if that is the case or 0 otherwise. 267 */ 268 int device_is_dependent(struct device *dev, void *target) 269 { 270 struct device_link *link; 271 int ret; 272 273 /* 274 * The "ancestors" check is needed to catch the case when the target 275 * device has not been completely initialized yet and it is still 276 * missing from the list of children of its parent device. 277 */ 278 if (dev == target || device_is_ancestor(dev, target)) 279 return 1; 280 281 ret = device_for_each_child(dev, target, device_is_dependent); 282 if (ret) 283 return ret; 284 285 list_for_each_entry(link, &dev->links.consumers, s_node) { 286 if ((link->flags & ~DL_FLAG_INFERRED) == 287 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 288 continue; 289 290 if (link->consumer == target) 291 return 1; 292 293 ret = device_is_dependent(link->consumer, target); 294 if (ret) 295 break; 296 } 297 return ret; 298 } 299 300 static void device_link_init_status(struct device_link *link, 301 struct device *consumer, 302 struct device *supplier) 303 { 304 switch (supplier->links.status) { 305 case DL_DEV_PROBING: 306 switch (consumer->links.status) { 307 case DL_DEV_PROBING: 308 /* 309 * A consumer driver can create a link to a supplier 310 * that has not completed its probing yet as long as it 311 * knows that the supplier is already functional (for 312 * example, it has just acquired some resources from the 313 * supplier). 314 */ 315 link->status = DL_STATE_CONSUMER_PROBE; 316 break; 317 default: 318 link->status = DL_STATE_DORMANT; 319 break; 320 } 321 break; 322 case DL_DEV_DRIVER_BOUND: 323 switch (consumer->links.status) { 324 case DL_DEV_PROBING: 325 link->status = DL_STATE_CONSUMER_PROBE; 326 break; 327 case DL_DEV_DRIVER_BOUND: 328 link->status = DL_STATE_ACTIVE; 329 break; 330 default: 331 link->status = DL_STATE_AVAILABLE; 332 break; 333 } 334 break; 335 case DL_DEV_UNBINDING: 336 link->status = DL_STATE_SUPPLIER_UNBIND; 337 break; 338 default: 339 link->status = DL_STATE_DORMANT; 340 break; 341 } 342 } 343 344 static int device_reorder_to_tail(struct device *dev, void *not_used) 345 { 346 struct device_link *link; 347 348 /* 349 * Devices that have not been registered yet will be put to the ends 350 * of the lists during the registration, so skip them here. 351 */ 352 if (device_is_registered(dev)) 353 devices_kset_move_last(dev); 354 355 if (device_pm_initialized(dev)) 356 device_pm_move_last(dev); 357 358 device_for_each_child(dev, NULL, device_reorder_to_tail); 359 list_for_each_entry(link, &dev->links.consumers, s_node) { 360 if ((link->flags & ~DL_FLAG_INFERRED) == 361 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 362 continue; 363 device_reorder_to_tail(link->consumer, NULL); 364 } 365 366 return 0; 367 } 368 369 /** 370 * device_pm_move_to_tail - Move set of devices to the end of device lists 371 * @dev: Device to move 372 * 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 374 * 375 * It moves the @dev along with all of its children and all of its consumers 376 * to the ends of the device_kset and dpm_list, recursively. 377 */ 378 void device_pm_move_to_tail(struct device *dev) 379 { 380 int idx; 381 382 idx = device_links_read_lock(); 383 device_pm_lock(); 384 device_reorder_to_tail(dev, NULL); 385 device_pm_unlock(); 386 device_links_read_unlock(idx); 387 } 388 389 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 390 391 static ssize_t status_show(struct device *dev, 392 struct device_attribute *attr, char *buf) 393 { 394 const char *output; 395 396 switch (to_devlink(dev)->status) { 397 case DL_STATE_NONE: 398 output = "not tracked"; 399 break; 400 case DL_STATE_DORMANT: 401 output = "dormant"; 402 break; 403 case DL_STATE_AVAILABLE: 404 output = "available"; 405 break; 406 case DL_STATE_CONSUMER_PROBE: 407 output = "consumer probing"; 408 break; 409 case DL_STATE_ACTIVE: 410 output = "active"; 411 break; 412 case DL_STATE_SUPPLIER_UNBIND: 413 output = "supplier unbinding"; 414 break; 415 default: 416 output = "unknown"; 417 break; 418 } 419 420 return sysfs_emit(buf, "%s\n", output); 421 } 422 static DEVICE_ATTR_RO(status); 423 424 static ssize_t auto_remove_on_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct device_link *link = to_devlink(dev); 428 const char *output; 429 430 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 431 output = "supplier unbind"; 432 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 433 output = "consumer unbind"; 434 else 435 output = "never"; 436 437 return sysfs_emit(buf, "%s\n", output); 438 } 439 static DEVICE_ATTR_RO(auto_remove_on); 440 441 static ssize_t runtime_pm_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 struct device_link *link = to_devlink(dev); 445 446 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 447 } 448 static DEVICE_ATTR_RO(runtime_pm); 449 450 static ssize_t sync_state_only_show(struct device *dev, 451 struct device_attribute *attr, char *buf) 452 { 453 struct device_link *link = to_devlink(dev); 454 455 return sysfs_emit(buf, "%d\n", 456 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 457 } 458 static DEVICE_ATTR_RO(sync_state_only); 459 460 static struct attribute *devlink_attrs[] = { 461 &dev_attr_status.attr, 462 &dev_attr_auto_remove_on.attr, 463 &dev_attr_runtime_pm.attr, 464 &dev_attr_sync_state_only.attr, 465 NULL, 466 }; 467 ATTRIBUTE_GROUPS(devlink); 468 469 static void device_link_release_fn(struct work_struct *work) 470 { 471 struct device_link *link = container_of(work, struct device_link, rm_work); 472 473 /* Ensure that all references to the link object have been dropped. */ 474 device_link_synchronize_removal(); 475 476 while (refcount_dec_not_one(&link->rpm_active)) 477 pm_runtime_put(link->supplier); 478 479 put_device(link->consumer); 480 put_device(link->supplier); 481 kfree(link); 482 } 483 484 static void devlink_dev_release(struct device *dev) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 INIT_WORK(&link->rm_work, device_link_release_fn); 489 /* 490 * It may take a while to complete this work because of the SRCU 491 * synchronization in device_link_release_fn() and if the consumer or 492 * supplier devices get deleted when it runs, so put it into the "long" 493 * workqueue. 494 */ 495 queue_work(system_long_wq, &link->rm_work); 496 } 497 498 static struct class devlink_class = { 499 .name = "devlink", 500 .owner = THIS_MODULE, 501 .dev_groups = devlink_groups, 502 .dev_release = devlink_dev_release, 503 }; 504 505 static int devlink_add_symlinks(struct device *dev, 506 struct class_interface *class_intf) 507 { 508 int ret; 509 size_t len; 510 struct device_link *link = to_devlink(dev); 511 struct device *sup = link->supplier; 512 struct device *con = link->consumer; 513 char *buf; 514 515 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 516 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 517 len += strlen(":"); 518 len += strlen("supplier:") + 1; 519 buf = kzalloc(len, GFP_KERNEL); 520 if (!buf) 521 return -ENOMEM; 522 523 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 524 if (ret) 525 goto out; 526 527 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 528 if (ret) 529 goto err_con; 530 531 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 532 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 533 if (ret) 534 goto err_con_dev; 535 536 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 537 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 538 if (ret) 539 goto err_sup_dev; 540 541 goto out; 542 543 err_sup_dev: 544 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 545 sysfs_remove_link(&sup->kobj, buf); 546 err_con_dev: 547 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 548 err_con: 549 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 550 out: 551 kfree(buf); 552 return ret; 553 } 554 555 static void devlink_remove_symlinks(struct device *dev, 556 struct class_interface *class_intf) 557 { 558 struct device_link *link = to_devlink(dev); 559 size_t len; 560 struct device *sup = link->supplier; 561 struct device *con = link->consumer; 562 char *buf; 563 564 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 565 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 566 567 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 568 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 569 len += strlen(":"); 570 len += strlen("supplier:") + 1; 571 buf = kzalloc(len, GFP_KERNEL); 572 if (!buf) { 573 WARN(1, "Unable to properly free device link symlinks!\n"); 574 return; 575 } 576 577 if (device_is_registered(con)) { 578 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 579 sysfs_remove_link(&con->kobj, buf); 580 } 581 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 582 sysfs_remove_link(&sup->kobj, buf); 583 kfree(buf); 584 } 585 586 static struct class_interface devlink_class_intf = { 587 .class = &devlink_class, 588 .add_dev = devlink_add_symlinks, 589 .remove_dev = devlink_remove_symlinks, 590 }; 591 592 static int __init devlink_class_init(void) 593 { 594 int ret; 595 596 ret = class_register(&devlink_class); 597 if (ret) 598 return ret; 599 600 ret = class_interface_register(&devlink_class_intf); 601 if (ret) 602 class_unregister(&devlink_class); 603 604 return ret; 605 } 606 postcore_initcall(devlink_class_init); 607 608 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 609 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 610 DL_FLAG_AUTOPROBE_CONSUMER | \ 611 DL_FLAG_SYNC_STATE_ONLY | \ 612 DL_FLAG_INFERRED) 613 614 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 615 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 616 617 /** 618 * device_link_add - Create a link between two devices. 619 * @consumer: Consumer end of the link. 620 * @supplier: Supplier end of the link. 621 * @flags: Link flags. 622 * 623 * The caller is responsible for the proper synchronization of the link creation 624 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 625 * runtime PM framework to take the link into account. Second, if the 626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 627 * be forced into the active meta state and reference-counted upon the creation 628 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 629 * ignored. 630 * 631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 632 * expected to release the link returned by it directly with the help of either 633 * device_link_del() or device_link_remove(). 634 * 635 * If that flag is not set, however, the caller of this function is handing the 636 * management of the link over to the driver core entirely and its return value 637 * can only be used to check whether or not the link is present. In that case, 638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 639 * flags can be used to indicate to the driver core when the link can be safely 640 * deleted. Namely, setting one of them in @flags indicates to the driver core 641 * that the link is not going to be used (by the given caller of this function) 642 * after unbinding the consumer or supplier driver, respectively, from its 643 * device, so the link can be deleted at that point. If none of them is set, 644 * the link will be maintained until one of the devices pointed to by it (either 645 * the consumer or the supplier) is unregistered. 646 * 647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 650 * be used to request the driver core to automatically probe for a consumer 651 * driver after successfully binding a driver to the supplier device. 652 * 653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 655 * the same time is invalid and will cause NULL to be returned upfront. 656 * However, if a device link between the given @consumer and @supplier pair 657 * exists already when this function is called for them, the existing link will 658 * be returned regardless of its current type and status (the link's flags may 659 * be modified then). The caller of this function is then expected to treat 660 * the link as though it has just been created, so (in particular) if 661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 662 * explicitly when not needed any more (as stated above). 663 * 664 * A side effect of the link creation is re-ordering of dpm_list and the 665 * devices_kset list by moving the consumer device and all devices depending 666 * on it to the ends of these lists (that does not happen to devices that have 667 * not been registered when this function is called). 668 * 669 * The supplier device is required to be registered when this function is called 670 * and NULL will be returned if that is not the case. The consumer device need 671 * not be registered, however. 672 */ 673 struct device_link *device_link_add(struct device *consumer, 674 struct device *supplier, u32 flags) 675 { 676 struct device_link *link; 677 678 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 679 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 680 (flags & DL_FLAG_SYNC_STATE_ONLY && 681 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 682 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 683 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 684 DL_FLAG_AUTOREMOVE_SUPPLIER))) 685 return NULL; 686 687 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 688 if (pm_runtime_get_sync(supplier) < 0) { 689 pm_runtime_put_noidle(supplier); 690 return NULL; 691 } 692 } 693 694 if (!(flags & DL_FLAG_STATELESS)) 695 flags |= DL_FLAG_MANAGED; 696 697 device_links_write_lock(); 698 device_pm_lock(); 699 700 /* 701 * If the supplier has not been fully registered yet or there is a 702 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 703 * the supplier already in the graph, return NULL. If the link is a 704 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 705 * because it only affects sync_state() callbacks. 706 */ 707 if (!device_pm_initialized(supplier) 708 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 709 device_is_dependent(consumer, supplier))) { 710 link = NULL; 711 goto out; 712 } 713 714 /* 715 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 716 * So, only create it if the consumer hasn't probed yet. 717 */ 718 if (flags & DL_FLAG_SYNC_STATE_ONLY && 719 consumer->links.status != DL_DEV_NO_DRIVER && 720 consumer->links.status != DL_DEV_PROBING) { 721 link = NULL; 722 goto out; 723 } 724 725 /* 726 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 727 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 728 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 729 */ 730 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 731 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 732 733 list_for_each_entry(link, &supplier->links.consumers, s_node) { 734 if (link->consumer != consumer) 735 continue; 736 737 if (link->flags & DL_FLAG_INFERRED && 738 !(flags & DL_FLAG_INFERRED)) 739 link->flags &= ~DL_FLAG_INFERRED; 740 741 if (flags & DL_FLAG_PM_RUNTIME) { 742 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 743 pm_runtime_new_link(consumer); 744 link->flags |= DL_FLAG_PM_RUNTIME; 745 } 746 if (flags & DL_FLAG_RPM_ACTIVE) 747 refcount_inc(&link->rpm_active); 748 } 749 750 if (flags & DL_FLAG_STATELESS) { 751 kref_get(&link->kref); 752 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 753 !(link->flags & DL_FLAG_STATELESS)) { 754 link->flags |= DL_FLAG_STATELESS; 755 goto reorder; 756 } else { 757 link->flags |= DL_FLAG_STATELESS; 758 goto out; 759 } 760 } 761 762 /* 763 * If the life time of the link following from the new flags is 764 * longer than indicated by the flags of the existing link, 765 * update the existing link to stay around longer. 766 */ 767 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 768 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 769 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 770 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 771 } 772 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 773 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 774 DL_FLAG_AUTOREMOVE_SUPPLIER); 775 } 776 if (!(link->flags & DL_FLAG_MANAGED)) { 777 kref_get(&link->kref); 778 link->flags |= DL_FLAG_MANAGED; 779 device_link_init_status(link, consumer, supplier); 780 } 781 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 782 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 783 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 784 goto reorder; 785 } 786 787 goto out; 788 } 789 790 link = kzalloc(sizeof(*link), GFP_KERNEL); 791 if (!link) 792 goto out; 793 794 refcount_set(&link->rpm_active, 1); 795 796 get_device(supplier); 797 link->supplier = supplier; 798 INIT_LIST_HEAD(&link->s_node); 799 get_device(consumer); 800 link->consumer = consumer; 801 INIT_LIST_HEAD(&link->c_node); 802 link->flags = flags; 803 kref_init(&link->kref); 804 805 link->link_dev.class = &devlink_class; 806 device_set_pm_not_required(&link->link_dev); 807 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 808 dev_bus_name(supplier), dev_name(supplier), 809 dev_bus_name(consumer), dev_name(consumer)); 810 if (device_register(&link->link_dev)) { 811 put_device(consumer); 812 put_device(supplier); 813 kfree(link); 814 link = NULL; 815 goto out; 816 } 817 818 if (flags & DL_FLAG_PM_RUNTIME) { 819 if (flags & DL_FLAG_RPM_ACTIVE) 820 refcount_inc(&link->rpm_active); 821 822 pm_runtime_new_link(consumer); 823 } 824 825 /* Determine the initial link state. */ 826 if (flags & DL_FLAG_STATELESS) 827 link->status = DL_STATE_NONE; 828 else 829 device_link_init_status(link, consumer, supplier); 830 831 /* 832 * Some callers expect the link creation during consumer driver probe to 833 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 834 */ 835 if (link->status == DL_STATE_CONSUMER_PROBE && 836 flags & DL_FLAG_PM_RUNTIME) 837 pm_runtime_resume(supplier); 838 839 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 840 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 841 842 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 843 dev_dbg(consumer, 844 "Linked as a sync state only consumer to %s\n", 845 dev_name(supplier)); 846 goto out; 847 } 848 849 reorder: 850 /* 851 * Move the consumer and all of the devices depending on it to the end 852 * of dpm_list and the devices_kset list. 853 * 854 * It is necessary to hold dpm_list locked throughout all that or else 855 * we may end up suspending with a wrong ordering of it. 856 */ 857 device_reorder_to_tail(consumer, NULL); 858 859 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 860 861 out: 862 device_pm_unlock(); 863 device_links_write_unlock(); 864 865 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 866 pm_runtime_put(supplier); 867 868 return link; 869 } 870 EXPORT_SYMBOL_GPL(device_link_add); 871 872 static void __device_link_del(struct kref *kref) 873 { 874 struct device_link *link = container_of(kref, struct device_link, kref); 875 876 dev_dbg(link->consumer, "Dropping the link to %s\n", 877 dev_name(link->supplier)); 878 879 pm_runtime_drop_link(link); 880 881 device_link_remove_from_lists(link); 882 device_unregister(&link->link_dev); 883 } 884 885 static void device_link_put_kref(struct device_link *link) 886 { 887 if (link->flags & DL_FLAG_STATELESS) 888 kref_put(&link->kref, __device_link_del); 889 else 890 WARN(1, "Unable to drop a managed device link reference\n"); 891 } 892 893 /** 894 * device_link_del - Delete a stateless link between two devices. 895 * @link: Device link to delete. 896 * 897 * The caller must ensure proper synchronization of this function with runtime 898 * PM. If the link was added multiple times, it needs to be deleted as often. 899 * Care is required for hotplugged devices: Their links are purged on removal 900 * and calling device_link_del() is then no longer allowed. 901 */ 902 void device_link_del(struct device_link *link) 903 { 904 device_links_write_lock(); 905 device_link_put_kref(link); 906 device_links_write_unlock(); 907 } 908 EXPORT_SYMBOL_GPL(device_link_del); 909 910 /** 911 * device_link_remove - Delete a stateless link between two devices. 912 * @consumer: Consumer end of the link. 913 * @supplier: Supplier end of the link. 914 * 915 * The caller must ensure proper synchronization of this function with runtime 916 * PM. 917 */ 918 void device_link_remove(void *consumer, struct device *supplier) 919 { 920 struct device_link *link; 921 922 if (WARN_ON(consumer == supplier)) 923 return; 924 925 device_links_write_lock(); 926 927 list_for_each_entry(link, &supplier->links.consumers, s_node) { 928 if (link->consumer == consumer) { 929 device_link_put_kref(link); 930 break; 931 } 932 } 933 934 device_links_write_unlock(); 935 } 936 EXPORT_SYMBOL_GPL(device_link_remove); 937 938 static void device_links_missing_supplier(struct device *dev) 939 { 940 struct device_link *link; 941 942 list_for_each_entry(link, &dev->links.suppliers, c_node) { 943 if (link->status != DL_STATE_CONSUMER_PROBE) 944 continue; 945 946 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 947 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 948 } else { 949 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 950 WRITE_ONCE(link->status, DL_STATE_DORMANT); 951 } 952 } 953 } 954 955 /** 956 * device_links_check_suppliers - Check presence of supplier drivers. 957 * @dev: Consumer device. 958 * 959 * Check links from this device to any suppliers. Walk the list of the device's 960 * links to suppliers and see if all of them are available. If not, simply 961 * return -EPROBE_DEFER. 962 * 963 * We need to guarantee that the supplier will not go away after the check has 964 * been positive here. It only can go away in __device_release_driver() and 965 * that function checks the device's links to consumers. This means we need to 966 * mark the link as "consumer probe in progress" to make the supplier removal 967 * wait for us to complete (or bad things may happen). 968 * 969 * Links without the DL_FLAG_MANAGED flag set are ignored. 970 */ 971 int device_links_check_suppliers(struct device *dev) 972 { 973 struct device_link *link; 974 int ret = 0; 975 976 /* 977 * Device waiting for supplier to become available is not allowed to 978 * probe. 979 */ 980 mutex_lock(&fwnode_link_lock); 981 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 982 !fw_devlink_is_permissive()) { 983 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n", 984 list_first_entry(&dev->fwnode->suppliers, 985 struct fwnode_link, 986 c_hook)->supplier); 987 mutex_unlock(&fwnode_link_lock); 988 return -EPROBE_DEFER; 989 } 990 mutex_unlock(&fwnode_link_lock); 991 992 device_links_write_lock(); 993 994 list_for_each_entry(link, &dev->links.suppliers, c_node) { 995 if (!(link->flags & DL_FLAG_MANAGED)) 996 continue; 997 998 if (link->status != DL_STATE_AVAILABLE && 999 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1000 device_links_missing_supplier(dev); 1001 dev_dbg(dev, "probe deferral - supplier %s not ready\n", 1002 dev_name(link->supplier)); 1003 ret = -EPROBE_DEFER; 1004 break; 1005 } 1006 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1007 } 1008 dev->links.status = DL_DEV_PROBING; 1009 1010 device_links_write_unlock(); 1011 return ret; 1012 } 1013 1014 /** 1015 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1016 * @dev: Device to call sync_state() on 1017 * @list: List head to queue the @dev on 1018 * 1019 * Queues a device for a sync_state() callback when the device links write lock 1020 * isn't held. This allows the sync_state() execution flow to use device links 1021 * APIs. The caller must ensure this function is called with 1022 * device_links_write_lock() held. 1023 * 1024 * This function does a get_device() to make sure the device is not freed while 1025 * on this list. 1026 * 1027 * So the caller must also ensure that device_links_flush_sync_list() is called 1028 * as soon as the caller releases device_links_write_lock(). This is necessary 1029 * to make sure the sync_state() is called in a timely fashion and the 1030 * put_device() is called on this device. 1031 */ 1032 static void __device_links_queue_sync_state(struct device *dev, 1033 struct list_head *list) 1034 { 1035 struct device_link *link; 1036 1037 if (!dev_has_sync_state(dev)) 1038 return; 1039 if (dev->state_synced) 1040 return; 1041 1042 list_for_each_entry(link, &dev->links.consumers, s_node) { 1043 if (!(link->flags & DL_FLAG_MANAGED)) 1044 continue; 1045 if (link->status != DL_STATE_ACTIVE) 1046 return; 1047 } 1048 1049 /* 1050 * Set the flag here to avoid adding the same device to a list more 1051 * than once. This can happen if new consumers get added to the device 1052 * and probed before the list is flushed. 1053 */ 1054 dev->state_synced = true; 1055 1056 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1057 return; 1058 1059 get_device(dev); 1060 list_add_tail(&dev->links.defer_sync, list); 1061 } 1062 1063 /** 1064 * device_links_flush_sync_list - Call sync_state() on a list of devices 1065 * @list: List of devices to call sync_state() on 1066 * @dont_lock_dev: Device for which lock is already held by the caller 1067 * 1068 * Calls sync_state() on all the devices that have been queued for it. This 1069 * function is used in conjunction with __device_links_queue_sync_state(). The 1070 * @dont_lock_dev parameter is useful when this function is called from a 1071 * context where a device lock is already held. 1072 */ 1073 static void device_links_flush_sync_list(struct list_head *list, 1074 struct device *dont_lock_dev) 1075 { 1076 struct device *dev, *tmp; 1077 1078 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1079 list_del_init(&dev->links.defer_sync); 1080 1081 if (dev != dont_lock_dev) 1082 device_lock(dev); 1083 1084 if (dev->bus->sync_state) 1085 dev->bus->sync_state(dev); 1086 else if (dev->driver && dev->driver->sync_state) 1087 dev->driver->sync_state(dev); 1088 1089 if (dev != dont_lock_dev) 1090 device_unlock(dev); 1091 1092 put_device(dev); 1093 } 1094 } 1095 1096 void device_links_supplier_sync_state_pause(void) 1097 { 1098 device_links_write_lock(); 1099 defer_sync_state_count++; 1100 device_links_write_unlock(); 1101 } 1102 1103 void device_links_supplier_sync_state_resume(void) 1104 { 1105 struct device *dev, *tmp; 1106 LIST_HEAD(sync_list); 1107 1108 device_links_write_lock(); 1109 if (!defer_sync_state_count) { 1110 WARN(true, "Unmatched sync_state pause/resume!"); 1111 goto out; 1112 } 1113 defer_sync_state_count--; 1114 if (defer_sync_state_count) 1115 goto out; 1116 1117 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1118 /* 1119 * Delete from deferred_sync list before queuing it to 1120 * sync_list because defer_sync is used for both lists. 1121 */ 1122 list_del_init(&dev->links.defer_sync); 1123 __device_links_queue_sync_state(dev, &sync_list); 1124 } 1125 out: 1126 device_links_write_unlock(); 1127 1128 device_links_flush_sync_list(&sync_list, NULL); 1129 } 1130 1131 static int sync_state_resume_initcall(void) 1132 { 1133 device_links_supplier_sync_state_resume(); 1134 return 0; 1135 } 1136 late_initcall(sync_state_resume_initcall); 1137 1138 static void __device_links_supplier_defer_sync(struct device *sup) 1139 { 1140 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1141 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1142 } 1143 1144 static void device_link_drop_managed(struct device_link *link) 1145 { 1146 link->flags &= ~DL_FLAG_MANAGED; 1147 WRITE_ONCE(link->status, DL_STATE_NONE); 1148 kref_put(&link->kref, __device_link_del); 1149 } 1150 1151 static ssize_t waiting_for_supplier_show(struct device *dev, 1152 struct device_attribute *attr, 1153 char *buf) 1154 { 1155 bool val; 1156 1157 device_lock(dev); 1158 val = !list_empty(&dev->fwnode->suppliers); 1159 device_unlock(dev); 1160 return sysfs_emit(buf, "%u\n", val); 1161 } 1162 static DEVICE_ATTR_RO(waiting_for_supplier); 1163 1164 /** 1165 * device_links_force_bind - Prepares device to be force bound 1166 * @dev: Consumer device. 1167 * 1168 * device_bind_driver() force binds a device to a driver without calling any 1169 * driver probe functions. So the consumer really isn't going to wait for any 1170 * supplier before it's bound to the driver. We still want the device link 1171 * states to be sensible when this happens. 1172 * 1173 * In preparation for device_bind_driver(), this function goes through each 1174 * supplier device links and checks if the supplier is bound. If it is, then 1175 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1176 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1177 */ 1178 void device_links_force_bind(struct device *dev) 1179 { 1180 struct device_link *link, *ln; 1181 1182 device_links_write_lock(); 1183 1184 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1185 if (!(link->flags & DL_FLAG_MANAGED)) 1186 continue; 1187 1188 if (link->status != DL_STATE_AVAILABLE) { 1189 device_link_drop_managed(link); 1190 continue; 1191 } 1192 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1193 } 1194 dev->links.status = DL_DEV_PROBING; 1195 1196 device_links_write_unlock(); 1197 } 1198 1199 /** 1200 * device_links_driver_bound - Update device links after probing its driver. 1201 * @dev: Device to update the links for. 1202 * 1203 * The probe has been successful, so update links from this device to any 1204 * consumers by changing their status to "available". 1205 * 1206 * Also change the status of @dev's links to suppliers to "active". 1207 * 1208 * Links without the DL_FLAG_MANAGED flag set are ignored. 1209 */ 1210 void device_links_driver_bound(struct device *dev) 1211 { 1212 struct device_link *link, *ln; 1213 LIST_HEAD(sync_list); 1214 1215 /* 1216 * If a device binds successfully, it's expected to have created all 1217 * the device links it needs to or make new device links as it needs 1218 * them. So, fw_devlink no longer needs to create device links to any 1219 * of the device's suppliers. 1220 * 1221 * Also, if a child firmware node of this bound device is not added as 1222 * a device by now, assume it is never going to be added and make sure 1223 * other devices don't defer probe indefinitely by waiting for such a 1224 * child device. 1225 */ 1226 if (dev->fwnode && dev->fwnode->dev == dev) { 1227 struct fwnode_handle *child; 1228 fwnode_links_purge_suppliers(dev->fwnode); 1229 fwnode_for_each_available_child_node(dev->fwnode, child) 1230 fw_devlink_purge_absent_suppliers(child); 1231 } 1232 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1233 1234 device_links_write_lock(); 1235 1236 list_for_each_entry(link, &dev->links.consumers, s_node) { 1237 if (!(link->flags & DL_FLAG_MANAGED)) 1238 continue; 1239 1240 /* 1241 * Links created during consumer probe may be in the "consumer 1242 * probe" state to start with if the supplier is still probing 1243 * when they are created and they may become "active" if the 1244 * consumer probe returns first. Skip them here. 1245 */ 1246 if (link->status == DL_STATE_CONSUMER_PROBE || 1247 link->status == DL_STATE_ACTIVE) 1248 continue; 1249 1250 WARN_ON(link->status != DL_STATE_DORMANT); 1251 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1252 1253 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1254 driver_deferred_probe_add(link->consumer); 1255 } 1256 1257 if (defer_sync_state_count) 1258 __device_links_supplier_defer_sync(dev); 1259 else 1260 __device_links_queue_sync_state(dev, &sync_list); 1261 1262 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1263 struct device *supplier; 1264 1265 if (!(link->flags & DL_FLAG_MANAGED)) 1266 continue; 1267 1268 supplier = link->supplier; 1269 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1270 /* 1271 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1272 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1273 * save to drop the managed link completely. 1274 */ 1275 device_link_drop_managed(link); 1276 } else { 1277 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1278 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1279 } 1280 1281 /* 1282 * This needs to be done even for the deleted 1283 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1284 * device link that was preventing the supplier from getting a 1285 * sync_state() call. 1286 */ 1287 if (defer_sync_state_count) 1288 __device_links_supplier_defer_sync(supplier); 1289 else 1290 __device_links_queue_sync_state(supplier, &sync_list); 1291 } 1292 1293 dev->links.status = DL_DEV_DRIVER_BOUND; 1294 1295 device_links_write_unlock(); 1296 1297 device_links_flush_sync_list(&sync_list, dev); 1298 } 1299 1300 /** 1301 * __device_links_no_driver - Update links of a device without a driver. 1302 * @dev: Device without a drvier. 1303 * 1304 * Delete all non-persistent links from this device to any suppliers. 1305 * 1306 * Persistent links stay around, but their status is changed to "available", 1307 * unless they already are in the "supplier unbind in progress" state in which 1308 * case they need not be updated. 1309 * 1310 * Links without the DL_FLAG_MANAGED flag set are ignored. 1311 */ 1312 static void __device_links_no_driver(struct device *dev) 1313 { 1314 struct device_link *link, *ln; 1315 1316 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1317 if (!(link->flags & DL_FLAG_MANAGED)) 1318 continue; 1319 1320 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1321 device_link_drop_managed(link); 1322 continue; 1323 } 1324 1325 if (link->status != DL_STATE_CONSUMER_PROBE && 1326 link->status != DL_STATE_ACTIVE) 1327 continue; 1328 1329 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1330 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1331 } else { 1332 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1333 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1334 } 1335 } 1336 1337 dev->links.status = DL_DEV_NO_DRIVER; 1338 } 1339 1340 /** 1341 * device_links_no_driver - Update links after failing driver probe. 1342 * @dev: Device whose driver has just failed to probe. 1343 * 1344 * Clean up leftover links to consumers for @dev and invoke 1345 * %__device_links_no_driver() to update links to suppliers for it as 1346 * appropriate. 1347 * 1348 * Links without the DL_FLAG_MANAGED flag set are ignored. 1349 */ 1350 void device_links_no_driver(struct device *dev) 1351 { 1352 struct device_link *link; 1353 1354 device_links_write_lock(); 1355 1356 list_for_each_entry(link, &dev->links.consumers, s_node) { 1357 if (!(link->flags & DL_FLAG_MANAGED)) 1358 continue; 1359 1360 /* 1361 * The probe has failed, so if the status of the link is 1362 * "consumer probe" or "active", it must have been added by 1363 * a probing consumer while this device was still probing. 1364 * Change its state to "dormant", as it represents a valid 1365 * relationship, but it is not functionally meaningful. 1366 */ 1367 if (link->status == DL_STATE_CONSUMER_PROBE || 1368 link->status == DL_STATE_ACTIVE) 1369 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1370 } 1371 1372 __device_links_no_driver(dev); 1373 1374 device_links_write_unlock(); 1375 } 1376 1377 /** 1378 * device_links_driver_cleanup - Update links after driver removal. 1379 * @dev: Device whose driver has just gone away. 1380 * 1381 * Update links to consumers for @dev by changing their status to "dormant" and 1382 * invoke %__device_links_no_driver() to update links to suppliers for it as 1383 * appropriate. 1384 * 1385 * Links without the DL_FLAG_MANAGED flag set are ignored. 1386 */ 1387 void device_links_driver_cleanup(struct device *dev) 1388 { 1389 struct device_link *link, *ln; 1390 1391 device_links_write_lock(); 1392 1393 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1394 if (!(link->flags & DL_FLAG_MANAGED)) 1395 continue; 1396 1397 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1398 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1399 1400 /* 1401 * autoremove the links between this @dev and its consumer 1402 * devices that are not active, i.e. where the link state 1403 * has moved to DL_STATE_SUPPLIER_UNBIND. 1404 */ 1405 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1406 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1407 device_link_drop_managed(link); 1408 1409 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1410 } 1411 1412 list_del_init(&dev->links.defer_sync); 1413 __device_links_no_driver(dev); 1414 1415 device_links_write_unlock(); 1416 } 1417 1418 /** 1419 * device_links_busy - Check if there are any busy links to consumers. 1420 * @dev: Device to check. 1421 * 1422 * Check each consumer of the device and return 'true' if its link's status 1423 * is one of "consumer probe" or "active" (meaning that the given consumer is 1424 * probing right now or its driver is present). Otherwise, change the link 1425 * state to "supplier unbind" to prevent the consumer from being probed 1426 * successfully going forward. 1427 * 1428 * Return 'false' if there are no probing or active consumers. 1429 * 1430 * Links without the DL_FLAG_MANAGED flag set are ignored. 1431 */ 1432 bool device_links_busy(struct device *dev) 1433 { 1434 struct device_link *link; 1435 bool ret = false; 1436 1437 device_links_write_lock(); 1438 1439 list_for_each_entry(link, &dev->links.consumers, s_node) { 1440 if (!(link->flags & DL_FLAG_MANAGED)) 1441 continue; 1442 1443 if (link->status == DL_STATE_CONSUMER_PROBE 1444 || link->status == DL_STATE_ACTIVE) { 1445 ret = true; 1446 break; 1447 } 1448 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1449 } 1450 1451 dev->links.status = DL_DEV_UNBINDING; 1452 1453 device_links_write_unlock(); 1454 return ret; 1455 } 1456 1457 /** 1458 * device_links_unbind_consumers - Force unbind consumers of the given device. 1459 * @dev: Device to unbind the consumers of. 1460 * 1461 * Walk the list of links to consumers for @dev and if any of them is in the 1462 * "consumer probe" state, wait for all device probes in progress to complete 1463 * and start over. 1464 * 1465 * If that's not the case, change the status of the link to "supplier unbind" 1466 * and check if the link was in the "active" state. If so, force the consumer 1467 * driver to unbind and start over (the consumer will not re-probe as we have 1468 * changed the state of the link already). 1469 * 1470 * Links without the DL_FLAG_MANAGED flag set are ignored. 1471 */ 1472 void device_links_unbind_consumers(struct device *dev) 1473 { 1474 struct device_link *link; 1475 1476 start: 1477 device_links_write_lock(); 1478 1479 list_for_each_entry(link, &dev->links.consumers, s_node) { 1480 enum device_link_state status; 1481 1482 if (!(link->flags & DL_FLAG_MANAGED) || 1483 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1484 continue; 1485 1486 status = link->status; 1487 if (status == DL_STATE_CONSUMER_PROBE) { 1488 device_links_write_unlock(); 1489 1490 wait_for_device_probe(); 1491 goto start; 1492 } 1493 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1494 if (status == DL_STATE_ACTIVE) { 1495 struct device *consumer = link->consumer; 1496 1497 get_device(consumer); 1498 1499 device_links_write_unlock(); 1500 1501 device_release_driver_internal(consumer, NULL, 1502 consumer->parent); 1503 put_device(consumer); 1504 goto start; 1505 } 1506 } 1507 1508 device_links_write_unlock(); 1509 } 1510 1511 /** 1512 * device_links_purge - Delete existing links to other devices. 1513 * @dev: Target device. 1514 */ 1515 static void device_links_purge(struct device *dev) 1516 { 1517 struct device_link *link, *ln; 1518 1519 if (dev->class == &devlink_class) 1520 return; 1521 1522 /* 1523 * Delete all of the remaining links from this device to any other 1524 * devices (either consumers or suppliers). 1525 */ 1526 device_links_write_lock(); 1527 1528 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1529 WARN_ON(link->status == DL_STATE_ACTIVE); 1530 __device_link_del(&link->kref); 1531 } 1532 1533 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1534 WARN_ON(link->status != DL_STATE_DORMANT && 1535 link->status != DL_STATE_NONE); 1536 __device_link_del(&link->kref); 1537 } 1538 1539 device_links_write_unlock(); 1540 } 1541 1542 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1543 DL_FLAG_SYNC_STATE_ONLY) 1544 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1545 DL_FLAG_AUTOPROBE_CONSUMER) 1546 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1547 DL_FLAG_PM_RUNTIME) 1548 1549 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1550 static int __init fw_devlink_setup(char *arg) 1551 { 1552 if (!arg) 1553 return -EINVAL; 1554 1555 if (strcmp(arg, "off") == 0) { 1556 fw_devlink_flags = 0; 1557 } else if (strcmp(arg, "permissive") == 0) { 1558 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1559 } else if (strcmp(arg, "on") == 0) { 1560 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1561 } else if (strcmp(arg, "rpm") == 0) { 1562 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1563 } 1564 return 0; 1565 } 1566 early_param("fw_devlink", fw_devlink_setup); 1567 1568 static bool fw_devlink_strict; 1569 static int __init fw_devlink_strict_setup(char *arg) 1570 { 1571 return strtobool(arg, &fw_devlink_strict); 1572 } 1573 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1574 1575 u32 fw_devlink_get_flags(void) 1576 { 1577 return fw_devlink_flags; 1578 } 1579 1580 static bool fw_devlink_is_permissive(void) 1581 { 1582 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1583 } 1584 1585 bool fw_devlink_is_strict(void) 1586 { 1587 return fw_devlink_strict && !fw_devlink_is_permissive(); 1588 } 1589 1590 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1591 { 1592 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1593 return; 1594 1595 fwnode_call_int_op(fwnode, add_links); 1596 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1597 } 1598 1599 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1600 { 1601 struct fwnode_handle *child = NULL; 1602 1603 fw_devlink_parse_fwnode(fwnode); 1604 1605 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1606 fw_devlink_parse_fwtree(child); 1607 } 1608 1609 static void fw_devlink_relax_link(struct device_link *link) 1610 { 1611 if (!(link->flags & DL_FLAG_INFERRED)) 1612 return; 1613 1614 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1615 return; 1616 1617 pm_runtime_drop_link(link); 1618 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1619 dev_dbg(link->consumer, "Relaxing link with %s\n", 1620 dev_name(link->supplier)); 1621 } 1622 1623 static int fw_devlink_no_driver(struct device *dev, void *data) 1624 { 1625 struct device_link *link = to_devlink(dev); 1626 1627 if (!link->supplier->can_match) 1628 fw_devlink_relax_link(link); 1629 1630 return 0; 1631 } 1632 1633 void fw_devlink_drivers_done(void) 1634 { 1635 fw_devlink_drv_reg_done = true; 1636 device_links_write_lock(); 1637 class_for_each_device(&devlink_class, NULL, NULL, 1638 fw_devlink_no_driver); 1639 device_links_write_unlock(); 1640 } 1641 1642 static void fw_devlink_unblock_consumers(struct device *dev) 1643 { 1644 struct device_link *link; 1645 1646 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1647 return; 1648 1649 device_links_write_lock(); 1650 list_for_each_entry(link, &dev->links.consumers, s_node) 1651 fw_devlink_relax_link(link); 1652 device_links_write_unlock(); 1653 } 1654 1655 /** 1656 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1657 * @con: Device to check dependencies for. 1658 * @sup: Device to check against. 1659 * 1660 * Check if @sup depends on @con or any device dependent on it (its child or 1661 * its consumer etc). When such a cyclic dependency is found, convert all 1662 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1663 * This is the equivalent of doing fw_devlink=permissive just between the 1664 * devices in the cycle. We need to do this because, at this point, fw_devlink 1665 * can't tell which of these dependencies is not a real dependency. 1666 * 1667 * Return 1 if a cycle is found. Otherwise, return 0. 1668 */ 1669 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1670 { 1671 struct device_link *link; 1672 int ret; 1673 1674 if (con == sup) 1675 return 1; 1676 1677 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1678 if (ret) 1679 return ret; 1680 1681 list_for_each_entry(link, &con->links.consumers, s_node) { 1682 if ((link->flags & ~DL_FLAG_INFERRED) == 1683 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1684 continue; 1685 1686 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1687 continue; 1688 1689 ret = 1; 1690 1691 fw_devlink_relax_link(link); 1692 } 1693 return ret; 1694 } 1695 1696 /** 1697 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1698 * @con: consumer device for the device link 1699 * @sup_handle: fwnode handle of supplier 1700 * @flags: devlink flags 1701 * 1702 * This function will try to create a device link between the consumer device 1703 * @con and the supplier device represented by @sup_handle. 1704 * 1705 * The supplier has to be provided as a fwnode because incorrect cycles in 1706 * fwnode links can sometimes cause the supplier device to never be created. 1707 * This function detects such cases and returns an error if it cannot create a 1708 * device link from the consumer to a missing supplier. 1709 * 1710 * Returns, 1711 * 0 on successfully creating a device link 1712 * -EINVAL if the device link cannot be created as expected 1713 * -EAGAIN if the device link cannot be created right now, but it may be 1714 * possible to do that in the future 1715 */ 1716 static int fw_devlink_create_devlink(struct device *con, 1717 struct fwnode_handle *sup_handle, u32 flags) 1718 { 1719 struct device *sup_dev; 1720 int ret = 0; 1721 1722 sup_dev = get_dev_from_fwnode(sup_handle); 1723 if (sup_dev) { 1724 /* 1725 * If it's one of those drivers that don't actually bind to 1726 * their device using driver core, then don't wait on this 1727 * supplier device indefinitely. 1728 */ 1729 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1730 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1731 ret = -EINVAL; 1732 goto out; 1733 } 1734 1735 /* 1736 * If this fails, it is due to cycles in device links. Just 1737 * give up on this link and treat it as invalid. 1738 */ 1739 if (!device_link_add(con, sup_dev, flags) && 1740 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1741 dev_info(con, "Fixing up cyclic dependency with %s\n", 1742 dev_name(sup_dev)); 1743 device_links_write_lock(); 1744 fw_devlink_relax_cycle(con, sup_dev); 1745 device_links_write_unlock(); 1746 device_link_add(con, sup_dev, 1747 FW_DEVLINK_FLAGS_PERMISSIVE); 1748 ret = -EINVAL; 1749 } 1750 1751 goto out; 1752 } 1753 1754 /* Supplier that's already initialized without a struct device. */ 1755 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1756 return -EINVAL; 1757 1758 /* 1759 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1760 * cycles. So cycle detection isn't necessary and shouldn't be 1761 * done. 1762 */ 1763 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1764 return -EAGAIN; 1765 1766 /* 1767 * If we can't find the supplier device from its fwnode, it might be 1768 * due to a cyclic dependency between fwnodes. Some of these cycles can 1769 * be broken by applying logic. Check for these types of cycles and 1770 * break them so that devices in the cycle probe properly. 1771 * 1772 * If the supplier's parent is dependent on the consumer, then 1773 * the consumer-supplier dependency is a false dependency. So, 1774 * treat it as an invalid link. 1775 */ 1776 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1777 if (sup_dev && device_is_dependent(con, sup_dev)) { 1778 dev_dbg(con, "Not linking to %pfwP - False link\n", 1779 sup_handle); 1780 ret = -EINVAL; 1781 } else { 1782 /* 1783 * Can't check for cycles or no cycles. So let's try 1784 * again later. 1785 */ 1786 ret = -EAGAIN; 1787 } 1788 1789 out: 1790 put_device(sup_dev); 1791 return ret; 1792 } 1793 1794 /** 1795 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1796 * @dev: Device that needs to be linked to its consumers 1797 * 1798 * This function looks at all the consumer fwnodes of @dev and creates device 1799 * links between the consumer device and @dev (supplier). 1800 * 1801 * If the consumer device has not been added yet, then this function creates a 1802 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1803 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1804 * sync_state() callback before the real consumer device gets to be added and 1805 * then probed. 1806 * 1807 * Once device links are created from the real consumer to @dev (supplier), the 1808 * fwnode links are deleted. 1809 */ 1810 static void __fw_devlink_link_to_consumers(struct device *dev) 1811 { 1812 struct fwnode_handle *fwnode = dev->fwnode; 1813 struct fwnode_link *link, *tmp; 1814 1815 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1816 u32 dl_flags = fw_devlink_get_flags(); 1817 struct device *con_dev; 1818 bool own_link = true; 1819 int ret; 1820 1821 con_dev = get_dev_from_fwnode(link->consumer); 1822 /* 1823 * If consumer device is not available yet, make a "proxy" 1824 * SYNC_STATE_ONLY link from the consumer's parent device to 1825 * the supplier device. This is necessary to make sure the 1826 * supplier doesn't get a sync_state() callback before the real 1827 * consumer can create a device link to the supplier. 1828 * 1829 * This proxy link step is needed to handle the case where the 1830 * consumer's parent device is added before the supplier. 1831 */ 1832 if (!con_dev) { 1833 con_dev = fwnode_get_next_parent_dev(link->consumer); 1834 /* 1835 * However, if the consumer's parent device is also the 1836 * parent of the supplier, don't create a 1837 * consumer-supplier link from the parent to its child 1838 * device. Such a dependency is impossible. 1839 */ 1840 if (con_dev && 1841 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1842 put_device(con_dev); 1843 con_dev = NULL; 1844 } else { 1845 own_link = false; 1846 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1847 } 1848 } 1849 1850 if (!con_dev) 1851 continue; 1852 1853 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1854 put_device(con_dev); 1855 if (!own_link || ret == -EAGAIN) 1856 continue; 1857 1858 list_del(&link->s_hook); 1859 list_del(&link->c_hook); 1860 kfree(link); 1861 } 1862 } 1863 1864 /** 1865 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1866 * @dev: The consumer device that needs to be linked to its suppliers 1867 * @fwnode: Root of the fwnode tree that is used to create device links 1868 * 1869 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1870 * @fwnode and creates device links between @dev (consumer) and all the 1871 * supplier devices of the entire fwnode tree at @fwnode. 1872 * 1873 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1874 * and the real suppliers of @dev. Once these device links are created, the 1875 * fwnode links are deleted. When such device links are successfully created, 1876 * this function is called recursively on those supplier devices. This is 1877 * needed to detect and break some invalid cycles in fwnode links. See 1878 * fw_devlink_create_devlink() for more details. 1879 * 1880 * In addition, it also looks at all the suppliers of the entire fwnode tree 1881 * because some of the child devices of @dev that have not been added yet 1882 * (because @dev hasn't probed) might already have their suppliers added to 1883 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1884 * @dev (consumer) and these suppliers to make sure they don't execute their 1885 * sync_state() callbacks before these child devices have a chance to create 1886 * their device links. The fwnode links that correspond to the child devices 1887 * aren't delete because they are needed later to create the device links 1888 * between the real consumer and supplier devices. 1889 */ 1890 static void __fw_devlink_link_to_suppliers(struct device *dev, 1891 struct fwnode_handle *fwnode) 1892 { 1893 bool own_link = (dev->fwnode == fwnode); 1894 struct fwnode_link *link, *tmp; 1895 struct fwnode_handle *child = NULL; 1896 u32 dl_flags; 1897 1898 if (own_link) 1899 dl_flags = fw_devlink_get_flags(); 1900 else 1901 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1902 1903 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1904 int ret; 1905 struct device *sup_dev; 1906 struct fwnode_handle *sup = link->supplier; 1907 1908 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1909 if (!own_link || ret == -EAGAIN) 1910 continue; 1911 1912 list_del(&link->s_hook); 1913 list_del(&link->c_hook); 1914 kfree(link); 1915 1916 /* If no device link was created, nothing more to do. */ 1917 if (ret) 1918 continue; 1919 1920 /* 1921 * If a device link was successfully created to a supplier, we 1922 * now need to try and link the supplier to all its suppliers. 1923 * 1924 * This is needed to detect and delete false dependencies in 1925 * fwnode links that haven't been converted to a device link 1926 * yet. See comments in fw_devlink_create_devlink() for more 1927 * details on the false dependency. 1928 * 1929 * Without deleting these false dependencies, some devices will 1930 * never probe because they'll keep waiting for their false 1931 * dependency fwnode links to be converted to device links. 1932 */ 1933 sup_dev = get_dev_from_fwnode(sup); 1934 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1935 put_device(sup_dev); 1936 } 1937 1938 /* 1939 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1940 * all the descendants. This proxy link step is needed to handle the 1941 * case where the supplier is added before the consumer's parent device 1942 * (@dev). 1943 */ 1944 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1945 __fw_devlink_link_to_suppliers(dev, child); 1946 } 1947 1948 static void fw_devlink_link_device(struct device *dev) 1949 { 1950 struct fwnode_handle *fwnode = dev->fwnode; 1951 1952 if (!fw_devlink_flags) 1953 return; 1954 1955 fw_devlink_parse_fwtree(fwnode); 1956 1957 mutex_lock(&fwnode_link_lock); 1958 __fw_devlink_link_to_consumers(dev); 1959 __fw_devlink_link_to_suppliers(dev, fwnode); 1960 mutex_unlock(&fwnode_link_lock); 1961 } 1962 1963 /* Device links support end. */ 1964 1965 int (*platform_notify)(struct device *dev) = NULL; 1966 int (*platform_notify_remove)(struct device *dev) = NULL; 1967 static struct kobject *dev_kobj; 1968 struct kobject *sysfs_dev_char_kobj; 1969 struct kobject *sysfs_dev_block_kobj; 1970 1971 static DEFINE_MUTEX(device_hotplug_lock); 1972 1973 void lock_device_hotplug(void) 1974 { 1975 mutex_lock(&device_hotplug_lock); 1976 } 1977 1978 void unlock_device_hotplug(void) 1979 { 1980 mutex_unlock(&device_hotplug_lock); 1981 } 1982 1983 int lock_device_hotplug_sysfs(void) 1984 { 1985 if (mutex_trylock(&device_hotplug_lock)) 1986 return 0; 1987 1988 /* Avoid busy looping (5 ms of sleep should do). */ 1989 msleep(5); 1990 return restart_syscall(); 1991 } 1992 1993 #ifdef CONFIG_BLOCK 1994 static inline int device_is_not_partition(struct device *dev) 1995 { 1996 return !(dev->type == &part_type); 1997 } 1998 #else 1999 static inline int device_is_not_partition(struct device *dev) 2000 { 2001 return 1; 2002 } 2003 #endif 2004 2005 static void device_platform_notify(struct device *dev) 2006 { 2007 acpi_device_notify(dev); 2008 2009 software_node_notify(dev); 2010 2011 if (platform_notify) 2012 platform_notify(dev); 2013 } 2014 2015 static void device_platform_notify_remove(struct device *dev) 2016 { 2017 acpi_device_notify_remove(dev); 2018 2019 software_node_notify_remove(dev); 2020 2021 if (platform_notify_remove) 2022 platform_notify_remove(dev); 2023 } 2024 2025 /** 2026 * dev_driver_string - Return a device's driver name, if at all possible 2027 * @dev: struct device to get the name of 2028 * 2029 * Will return the device's driver's name if it is bound to a device. If 2030 * the device is not bound to a driver, it will return the name of the bus 2031 * it is attached to. If it is not attached to a bus either, an empty 2032 * string will be returned. 2033 */ 2034 const char *dev_driver_string(const struct device *dev) 2035 { 2036 struct device_driver *drv; 2037 2038 /* dev->driver can change to NULL underneath us because of unbinding, 2039 * so be careful about accessing it. dev->bus and dev->class should 2040 * never change once they are set, so they don't need special care. 2041 */ 2042 drv = READ_ONCE(dev->driver); 2043 return drv ? drv->name : dev_bus_name(dev); 2044 } 2045 EXPORT_SYMBOL(dev_driver_string); 2046 2047 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2048 2049 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2050 char *buf) 2051 { 2052 struct device_attribute *dev_attr = to_dev_attr(attr); 2053 struct device *dev = kobj_to_dev(kobj); 2054 ssize_t ret = -EIO; 2055 2056 if (dev_attr->show) 2057 ret = dev_attr->show(dev, dev_attr, buf); 2058 if (ret >= (ssize_t)PAGE_SIZE) { 2059 printk("dev_attr_show: %pS returned bad count\n", 2060 dev_attr->show); 2061 } 2062 return ret; 2063 } 2064 2065 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2066 const char *buf, size_t count) 2067 { 2068 struct device_attribute *dev_attr = to_dev_attr(attr); 2069 struct device *dev = kobj_to_dev(kobj); 2070 ssize_t ret = -EIO; 2071 2072 if (dev_attr->store) 2073 ret = dev_attr->store(dev, dev_attr, buf, count); 2074 return ret; 2075 } 2076 2077 static const struct sysfs_ops dev_sysfs_ops = { 2078 .show = dev_attr_show, 2079 .store = dev_attr_store, 2080 }; 2081 2082 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2083 2084 ssize_t device_store_ulong(struct device *dev, 2085 struct device_attribute *attr, 2086 const char *buf, size_t size) 2087 { 2088 struct dev_ext_attribute *ea = to_ext_attr(attr); 2089 int ret; 2090 unsigned long new; 2091 2092 ret = kstrtoul(buf, 0, &new); 2093 if (ret) 2094 return ret; 2095 *(unsigned long *)(ea->var) = new; 2096 /* Always return full write size even if we didn't consume all */ 2097 return size; 2098 } 2099 EXPORT_SYMBOL_GPL(device_store_ulong); 2100 2101 ssize_t device_show_ulong(struct device *dev, 2102 struct device_attribute *attr, 2103 char *buf) 2104 { 2105 struct dev_ext_attribute *ea = to_ext_attr(attr); 2106 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2107 } 2108 EXPORT_SYMBOL_GPL(device_show_ulong); 2109 2110 ssize_t device_store_int(struct device *dev, 2111 struct device_attribute *attr, 2112 const char *buf, size_t size) 2113 { 2114 struct dev_ext_attribute *ea = to_ext_attr(attr); 2115 int ret; 2116 long new; 2117 2118 ret = kstrtol(buf, 0, &new); 2119 if (ret) 2120 return ret; 2121 2122 if (new > INT_MAX || new < INT_MIN) 2123 return -EINVAL; 2124 *(int *)(ea->var) = new; 2125 /* Always return full write size even if we didn't consume all */ 2126 return size; 2127 } 2128 EXPORT_SYMBOL_GPL(device_store_int); 2129 2130 ssize_t device_show_int(struct device *dev, 2131 struct device_attribute *attr, 2132 char *buf) 2133 { 2134 struct dev_ext_attribute *ea = to_ext_attr(attr); 2135 2136 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2137 } 2138 EXPORT_SYMBOL_GPL(device_show_int); 2139 2140 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2141 const char *buf, size_t size) 2142 { 2143 struct dev_ext_attribute *ea = to_ext_attr(attr); 2144 2145 if (strtobool(buf, ea->var) < 0) 2146 return -EINVAL; 2147 2148 return size; 2149 } 2150 EXPORT_SYMBOL_GPL(device_store_bool); 2151 2152 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2153 char *buf) 2154 { 2155 struct dev_ext_attribute *ea = to_ext_attr(attr); 2156 2157 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2158 } 2159 EXPORT_SYMBOL_GPL(device_show_bool); 2160 2161 /** 2162 * device_release - free device structure. 2163 * @kobj: device's kobject. 2164 * 2165 * This is called once the reference count for the object 2166 * reaches 0. We forward the call to the device's release 2167 * method, which should handle actually freeing the structure. 2168 */ 2169 static void device_release(struct kobject *kobj) 2170 { 2171 struct device *dev = kobj_to_dev(kobj); 2172 struct device_private *p = dev->p; 2173 2174 /* 2175 * Some platform devices are driven without driver attached 2176 * and managed resources may have been acquired. Make sure 2177 * all resources are released. 2178 * 2179 * Drivers still can add resources into device after device 2180 * is deleted but alive, so release devres here to avoid 2181 * possible memory leak. 2182 */ 2183 devres_release_all(dev); 2184 2185 kfree(dev->dma_range_map); 2186 2187 if (dev->release) 2188 dev->release(dev); 2189 else if (dev->type && dev->type->release) 2190 dev->type->release(dev); 2191 else if (dev->class && dev->class->dev_release) 2192 dev->class->dev_release(dev); 2193 else 2194 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2195 dev_name(dev)); 2196 kfree(p); 2197 } 2198 2199 static const void *device_namespace(struct kobject *kobj) 2200 { 2201 struct device *dev = kobj_to_dev(kobj); 2202 const void *ns = NULL; 2203 2204 if (dev->class && dev->class->ns_type) 2205 ns = dev->class->namespace(dev); 2206 2207 return ns; 2208 } 2209 2210 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2211 { 2212 struct device *dev = kobj_to_dev(kobj); 2213 2214 if (dev->class && dev->class->get_ownership) 2215 dev->class->get_ownership(dev, uid, gid); 2216 } 2217 2218 static struct kobj_type device_ktype = { 2219 .release = device_release, 2220 .sysfs_ops = &dev_sysfs_ops, 2221 .namespace = device_namespace, 2222 .get_ownership = device_get_ownership, 2223 }; 2224 2225 2226 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2227 { 2228 struct kobj_type *ktype = get_ktype(kobj); 2229 2230 if (ktype == &device_ktype) { 2231 struct device *dev = kobj_to_dev(kobj); 2232 if (dev->bus) 2233 return 1; 2234 if (dev->class) 2235 return 1; 2236 } 2237 return 0; 2238 } 2239 2240 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2241 { 2242 struct device *dev = kobj_to_dev(kobj); 2243 2244 if (dev->bus) 2245 return dev->bus->name; 2246 if (dev->class) 2247 return dev->class->name; 2248 return NULL; 2249 } 2250 2251 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2252 struct kobj_uevent_env *env) 2253 { 2254 struct device *dev = kobj_to_dev(kobj); 2255 int retval = 0; 2256 2257 /* add device node properties if present */ 2258 if (MAJOR(dev->devt)) { 2259 const char *tmp; 2260 const char *name; 2261 umode_t mode = 0; 2262 kuid_t uid = GLOBAL_ROOT_UID; 2263 kgid_t gid = GLOBAL_ROOT_GID; 2264 2265 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2266 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2267 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2268 if (name) { 2269 add_uevent_var(env, "DEVNAME=%s", name); 2270 if (mode) 2271 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2272 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2273 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2274 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2275 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2276 kfree(tmp); 2277 } 2278 } 2279 2280 if (dev->type && dev->type->name) 2281 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2282 2283 if (dev->driver) 2284 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2285 2286 /* Add common DT information about the device */ 2287 of_device_uevent(dev, env); 2288 2289 /* have the bus specific function add its stuff */ 2290 if (dev->bus && dev->bus->uevent) { 2291 retval = dev->bus->uevent(dev, env); 2292 if (retval) 2293 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2294 dev_name(dev), __func__, retval); 2295 } 2296 2297 /* have the class specific function add its stuff */ 2298 if (dev->class && dev->class->dev_uevent) { 2299 retval = dev->class->dev_uevent(dev, env); 2300 if (retval) 2301 pr_debug("device: '%s': %s: class uevent() " 2302 "returned %d\n", dev_name(dev), 2303 __func__, retval); 2304 } 2305 2306 /* have the device type specific function add its stuff */ 2307 if (dev->type && dev->type->uevent) { 2308 retval = dev->type->uevent(dev, env); 2309 if (retval) 2310 pr_debug("device: '%s': %s: dev_type uevent() " 2311 "returned %d\n", dev_name(dev), 2312 __func__, retval); 2313 } 2314 2315 return retval; 2316 } 2317 2318 static const struct kset_uevent_ops device_uevent_ops = { 2319 .filter = dev_uevent_filter, 2320 .name = dev_uevent_name, 2321 .uevent = dev_uevent, 2322 }; 2323 2324 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2325 char *buf) 2326 { 2327 struct kobject *top_kobj; 2328 struct kset *kset; 2329 struct kobj_uevent_env *env = NULL; 2330 int i; 2331 int len = 0; 2332 int retval; 2333 2334 /* search the kset, the device belongs to */ 2335 top_kobj = &dev->kobj; 2336 while (!top_kobj->kset && top_kobj->parent) 2337 top_kobj = top_kobj->parent; 2338 if (!top_kobj->kset) 2339 goto out; 2340 2341 kset = top_kobj->kset; 2342 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2343 goto out; 2344 2345 /* respect filter */ 2346 if (kset->uevent_ops && kset->uevent_ops->filter) 2347 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2348 goto out; 2349 2350 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2351 if (!env) 2352 return -ENOMEM; 2353 2354 /* let the kset specific function add its keys */ 2355 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2356 if (retval) 2357 goto out; 2358 2359 /* copy keys to file */ 2360 for (i = 0; i < env->envp_idx; i++) 2361 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2362 out: 2363 kfree(env); 2364 return len; 2365 } 2366 2367 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2368 const char *buf, size_t count) 2369 { 2370 int rc; 2371 2372 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2373 2374 if (rc) { 2375 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2376 return rc; 2377 } 2378 2379 return count; 2380 } 2381 static DEVICE_ATTR_RW(uevent); 2382 2383 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2384 char *buf) 2385 { 2386 bool val; 2387 2388 device_lock(dev); 2389 val = !dev->offline; 2390 device_unlock(dev); 2391 return sysfs_emit(buf, "%u\n", val); 2392 } 2393 2394 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2395 const char *buf, size_t count) 2396 { 2397 bool val; 2398 int ret; 2399 2400 ret = strtobool(buf, &val); 2401 if (ret < 0) 2402 return ret; 2403 2404 ret = lock_device_hotplug_sysfs(); 2405 if (ret) 2406 return ret; 2407 2408 ret = val ? device_online(dev) : device_offline(dev); 2409 unlock_device_hotplug(); 2410 return ret < 0 ? ret : count; 2411 } 2412 static DEVICE_ATTR_RW(online); 2413 2414 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2415 char *buf) 2416 { 2417 const char *loc; 2418 2419 switch (dev->removable) { 2420 case DEVICE_REMOVABLE: 2421 loc = "removable"; 2422 break; 2423 case DEVICE_FIXED: 2424 loc = "fixed"; 2425 break; 2426 default: 2427 loc = "unknown"; 2428 } 2429 return sysfs_emit(buf, "%s\n", loc); 2430 } 2431 static DEVICE_ATTR_RO(removable); 2432 2433 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2434 { 2435 return sysfs_create_groups(&dev->kobj, groups); 2436 } 2437 EXPORT_SYMBOL_GPL(device_add_groups); 2438 2439 void device_remove_groups(struct device *dev, 2440 const struct attribute_group **groups) 2441 { 2442 sysfs_remove_groups(&dev->kobj, groups); 2443 } 2444 EXPORT_SYMBOL_GPL(device_remove_groups); 2445 2446 union device_attr_group_devres { 2447 const struct attribute_group *group; 2448 const struct attribute_group **groups; 2449 }; 2450 2451 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2452 { 2453 return ((union device_attr_group_devres *)res)->group == data; 2454 } 2455 2456 static void devm_attr_group_remove(struct device *dev, void *res) 2457 { 2458 union device_attr_group_devres *devres = res; 2459 const struct attribute_group *group = devres->group; 2460 2461 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2462 sysfs_remove_group(&dev->kobj, group); 2463 } 2464 2465 static void devm_attr_groups_remove(struct device *dev, void *res) 2466 { 2467 union device_attr_group_devres *devres = res; 2468 const struct attribute_group **groups = devres->groups; 2469 2470 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2471 sysfs_remove_groups(&dev->kobj, groups); 2472 } 2473 2474 /** 2475 * devm_device_add_group - given a device, create a managed attribute group 2476 * @dev: The device to create the group for 2477 * @grp: The attribute group to create 2478 * 2479 * This function creates a group for the first time. It will explicitly 2480 * warn and error if any of the attribute files being created already exist. 2481 * 2482 * Returns 0 on success or error code on failure. 2483 */ 2484 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2485 { 2486 union device_attr_group_devres *devres; 2487 int error; 2488 2489 devres = devres_alloc(devm_attr_group_remove, 2490 sizeof(*devres), GFP_KERNEL); 2491 if (!devres) 2492 return -ENOMEM; 2493 2494 error = sysfs_create_group(&dev->kobj, grp); 2495 if (error) { 2496 devres_free(devres); 2497 return error; 2498 } 2499 2500 devres->group = grp; 2501 devres_add(dev, devres); 2502 return 0; 2503 } 2504 EXPORT_SYMBOL_GPL(devm_device_add_group); 2505 2506 /** 2507 * devm_device_remove_group: remove a managed group from a device 2508 * @dev: device to remove the group from 2509 * @grp: group to remove 2510 * 2511 * This function removes a group of attributes from a device. The attributes 2512 * previously have to have been created for this group, otherwise it will fail. 2513 */ 2514 void devm_device_remove_group(struct device *dev, 2515 const struct attribute_group *grp) 2516 { 2517 WARN_ON(devres_release(dev, devm_attr_group_remove, 2518 devm_attr_group_match, 2519 /* cast away const */ (void *)grp)); 2520 } 2521 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2522 2523 /** 2524 * devm_device_add_groups - create a bunch of managed attribute groups 2525 * @dev: The device to create the group for 2526 * @groups: The attribute groups to create, NULL terminated 2527 * 2528 * This function creates a bunch of managed attribute groups. If an error 2529 * occurs when creating a group, all previously created groups will be 2530 * removed, unwinding everything back to the original state when this 2531 * function was called. It will explicitly warn and error if any of the 2532 * attribute files being created already exist. 2533 * 2534 * Returns 0 on success or error code from sysfs_create_group on failure. 2535 */ 2536 int devm_device_add_groups(struct device *dev, 2537 const struct attribute_group **groups) 2538 { 2539 union device_attr_group_devres *devres; 2540 int error; 2541 2542 devres = devres_alloc(devm_attr_groups_remove, 2543 sizeof(*devres), GFP_KERNEL); 2544 if (!devres) 2545 return -ENOMEM; 2546 2547 error = sysfs_create_groups(&dev->kobj, groups); 2548 if (error) { 2549 devres_free(devres); 2550 return error; 2551 } 2552 2553 devres->groups = groups; 2554 devres_add(dev, devres); 2555 return 0; 2556 } 2557 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2558 2559 /** 2560 * devm_device_remove_groups - remove a list of managed groups 2561 * 2562 * @dev: The device for the groups to be removed from 2563 * @groups: NULL terminated list of groups to be removed 2564 * 2565 * If groups is not NULL, remove the specified groups from the device. 2566 */ 2567 void devm_device_remove_groups(struct device *dev, 2568 const struct attribute_group **groups) 2569 { 2570 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2571 devm_attr_group_match, 2572 /* cast away const */ (void *)groups)); 2573 } 2574 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2575 2576 static int device_add_attrs(struct device *dev) 2577 { 2578 struct class *class = dev->class; 2579 const struct device_type *type = dev->type; 2580 int error; 2581 2582 if (class) { 2583 error = device_add_groups(dev, class->dev_groups); 2584 if (error) 2585 return error; 2586 } 2587 2588 if (type) { 2589 error = device_add_groups(dev, type->groups); 2590 if (error) 2591 goto err_remove_class_groups; 2592 } 2593 2594 error = device_add_groups(dev, dev->groups); 2595 if (error) 2596 goto err_remove_type_groups; 2597 2598 if (device_supports_offline(dev) && !dev->offline_disabled) { 2599 error = device_create_file(dev, &dev_attr_online); 2600 if (error) 2601 goto err_remove_dev_groups; 2602 } 2603 2604 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2605 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2606 if (error) 2607 goto err_remove_dev_online; 2608 } 2609 2610 if (dev_removable_is_valid(dev)) { 2611 error = device_create_file(dev, &dev_attr_removable); 2612 if (error) 2613 goto err_remove_dev_waiting_for_supplier; 2614 } 2615 2616 return 0; 2617 2618 err_remove_dev_waiting_for_supplier: 2619 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2620 err_remove_dev_online: 2621 device_remove_file(dev, &dev_attr_online); 2622 err_remove_dev_groups: 2623 device_remove_groups(dev, dev->groups); 2624 err_remove_type_groups: 2625 if (type) 2626 device_remove_groups(dev, type->groups); 2627 err_remove_class_groups: 2628 if (class) 2629 device_remove_groups(dev, class->dev_groups); 2630 2631 return error; 2632 } 2633 2634 static void device_remove_attrs(struct device *dev) 2635 { 2636 struct class *class = dev->class; 2637 const struct device_type *type = dev->type; 2638 2639 device_remove_file(dev, &dev_attr_removable); 2640 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2641 device_remove_file(dev, &dev_attr_online); 2642 device_remove_groups(dev, dev->groups); 2643 2644 if (type) 2645 device_remove_groups(dev, type->groups); 2646 2647 if (class) 2648 device_remove_groups(dev, class->dev_groups); 2649 } 2650 2651 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2652 char *buf) 2653 { 2654 return print_dev_t(buf, dev->devt); 2655 } 2656 static DEVICE_ATTR_RO(dev); 2657 2658 /* /sys/devices/ */ 2659 struct kset *devices_kset; 2660 2661 /** 2662 * devices_kset_move_before - Move device in the devices_kset's list. 2663 * @deva: Device to move. 2664 * @devb: Device @deva should come before. 2665 */ 2666 static void devices_kset_move_before(struct device *deva, struct device *devb) 2667 { 2668 if (!devices_kset) 2669 return; 2670 pr_debug("devices_kset: Moving %s before %s\n", 2671 dev_name(deva), dev_name(devb)); 2672 spin_lock(&devices_kset->list_lock); 2673 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2674 spin_unlock(&devices_kset->list_lock); 2675 } 2676 2677 /** 2678 * devices_kset_move_after - Move device in the devices_kset's list. 2679 * @deva: Device to move 2680 * @devb: Device @deva should come after. 2681 */ 2682 static void devices_kset_move_after(struct device *deva, struct device *devb) 2683 { 2684 if (!devices_kset) 2685 return; 2686 pr_debug("devices_kset: Moving %s after %s\n", 2687 dev_name(deva), dev_name(devb)); 2688 spin_lock(&devices_kset->list_lock); 2689 list_move(&deva->kobj.entry, &devb->kobj.entry); 2690 spin_unlock(&devices_kset->list_lock); 2691 } 2692 2693 /** 2694 * devices_kset_move_last - move the device to the end of devices_kset's list. 2695 * @dev: device to move 2696 */ 2697 void devices_kset_move_last(struct device *dev) 2698 { 2699 if (!devices_kset) 2700 return; 2701 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2702 spin_lock(&devices_kset->list_lock); 2703 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2704 spin_unlock(&devices_kset->list_lock); 2705 } 2706 2707 /** 2708 * device_create_file - create sysfs attribute file for device. 2709 * @dev: device. 2710 * @attr: device attribute descriptor. 2711 */ 2712 int device_create_file(struct device *dev, 2713 const struct device_attribute *attr) 2714 { 2715 int error = 0; 2716 2717 if (dev) { 2718 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2719 "Attribute %s: write permission without 'store'\n", 2720 attr->attr.name); 2721 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2722 "Attribute %s: read permission without 'show'\n", 2723 attr->attr.name); 2724 error = sysfs_create_file(&dev->kobj, &attr->attr); 2725 } 2726 2727 return error; 2728 } 2729 EXPORT_SYMBOL_GPL(device_create_file); 2730 2731 /** 2732 * device_remove_file - remove sysfs attribute file. 2733 * @dev: device. 2734 * @attr: device attribute descriptor. 2735 */ 2736 void device_remove_file(struct device *dev, 2737 const struct device_attribute *attr) 2738 { 2739 if (dev) 2740 sysfs_remove_file(&dev->kobj, &attr->attr); 2741 } 2742 EXPORT_SYMBOL_GPL(device_remove_file); 2743 2744 /** 2745 * device_remove_file_self - remove sysfs attribute file from its own method. 2746 * @dev: device. 2747 * @attr: device attribute descriptor. 2748 * 2749 * See kernfs_remove_self() for details. 2750 */ 2751 bool device_remove_file_self(struct device *dev, 2752 const struct device_attribute *attr) 2753 { 2754 if (dev) 2755 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2756 else 2757 return false; 2758 } 2759 EXPORT_SYMBOL_GPL(device_remove_file_self); 2760 2761 /** 2762 * device_create_bin_file - create sysfs binary attribute file for device. 2763 * @dev: device. 2764 * @attr: device binary attribute descriptor. 2765 */ 2766 int device_create_bin_file(struct device *dev, 2767 const struct bin_attribute *attr) 2768 { 2769 int error = -EINVAL; 2770 if (dev) 2771 error = sysfs_create_bin_file(&dev->kobj, attr); 2772 return error; 2773 } 2774 EXPORT_SYMBOL_GPL(device_create_bin_file); 2775 2776 /** 2777 * device_remove_bin_file - remove sysfs binary attribute file 2778 * @dev: device. 2779 * @attr: device binary attribute descriptor. 2780 */ 2781 void device_remove_bin_file(struct device *dev, 2782 const struct bin_attribute *attr) 2783 { 2784 if (dev) 2785 sysfs_remove_bin_file(&dev->kobj, attr); 2786 } 2787 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2788 2789 static void klist_children_get(struct klist_node *n) 2790 { 2791 struct device_private *p = to_device_private_parent(n); 2792 struct device *dev = p->device; 2793 2794 get_device(dev); 2795 } 2796 2797 static void klist_children_put(struct klist_node *n) 2798 { 2799 struct device_private *p = to_device_private_parent(n); 2800 struct device *dev = p->device; 2801 2802 put_device(dev); 2803 } 2804 2805 /** 2806 * device_initialize - init device structure. 2807 * @dev: device. 2808 * 2809 * This prepares the device for use by other layers by initializing 2810 * its fields. 2811 * It is the first half of device_register(), if called by 2812 * that function, though it can also be called separately, so one 2813 * may use @dev's fields. In particular, get_device()/put_device() 2814 * may be used for reference counting of @dev after calling this 2815 * function. 2816 * 2817 * All fields in @dev must be initialized by the caller to 0, except 2818 * for those explicitly set to some other value. The simplest 2819 * approach is to use kzalloc() to allocate the structure containing 2820 * @dev. 2821 * 2822 * NOTE: Use put_device() to give up your reference instead of freeing 2823 * @dev directly once you have called this function. 2824 */ 2825 void device_initialize(struct device *dev) 2826 { 2827 dev->kobj.kset = devices_kset; 2828 kobject_init(&dev->kobj, &device_ktype); 2829 INIT_LIST_HEAD(&dev->dma_pools); 2830 mutex_init(&dev->mutex); 2831 #ifdef CONFIG_PROVE_LOCKING 2832 mutex_init(&dev->lockdep_mutex); 2833 #endif 2834 lockdep_set_novalidate_class(&dev->mutex); 2835 spin_lock_init(&dev->devres_lock); 2836 INIT_LIST_HEAD(&dev->devres_head); 2837 device_pm_init(dev); 2838 set_dev_node(dev, -1); 2839 #ifdef CONFIG_GENERIC_MSI_IRQ 2840 raw_spin_lock_init(&dev->msi_lock); 2841 INIT_LIST_HEAD(&dev->msi_list); 2842 #endif 2843 INIT_LIST_HEAD(&dev->links.consumers); 2844 INIT_LIST_HEAD(&dev->links.suppliers); 2845 INIT_LIST_HEAD(&dev->links.defer_sync); 2846 dev->links.status = DL_DEV_NO_DRIVER; 2847 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2848 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2849 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2850 dev->dma_coherent = dma_default_coherent; 2851 #endif 2852 } 2853 EXPORT_SYMBOL_GPL(device_initialize); 2854 2855 struct kobject *virtual_device_parent(struct device *dev) 2856 { 2857 static struct kobject *virtual_dir = NULL; 2858 2859 if (!virtual_dir) 2860 virtual_dir = kobject_create_and_add("virtual", 2861 &devices_kset->kobj); 2862 2863 return virtual_dir; 2864 } 2865 2866 struct class_dir { 2867 struct kobject kobj; 2868 struct class *class; 2869 }; 2870 2871 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2872 2873 static void class_dir_release(struct kobject *kobj) 2874 { 2875 struct class_dir *dir = to_class_dir(kobj); 2876 kfree(dir); 2877 } 2878 2879 static const 2880 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2881 { 2882 struct class_dir *dir = to_class_dir(kobj); 2883 return dir->class->ns_type; 2884 } 2885 2886 static struct kobj_type class_dir_ktype = { 2887 .release = class_dir_release, 2888 .sysfs_ops = &kobj_sysfs_ops, 2889 .child_ns_type = class_dir_child_ns_type 2890 }; 2891 2892 static struct kobject * 2893 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2894 { 2895 struct class_dir *dir; 2896 int retval; 2897 2898 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2899 if (!dir) 2900 return ERR_PTR(-ENOMEM); 2901 2902 dir->class = class; 2903 kobject_init(&dir->kobj, &class_dir_ktype); 2904 2905 dir->kobj.kset = &class->p->glue_dirs; 2906 2907 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2908 if (retval < 0) { 2909 kobject_put(&dir->kobj); 2910 return ERR_PTR(retval); 2911 } 2912 return &dir->kobj; 2913 } 2914 2915 static DEFINE_MUTEX(gdp_mutex); 2916 2917 static struct kobject *get_device_parent(struct device *dev, 2918 struct device *parent) 2919 { 2920 if (dev->class) { 2921 struct kobject *kobj = NULL; 2922 struct kobject *parent_kobj; 2923 struct kobject *k; 2924 2925 #ifdef CONFIG_BLOCK 2926 /* block disks show up in /sys/block */ 2927 if (sysfs_deprecated && dev->class == &block_class) { 2928 if (parent && parent->class == &block_class) 2929 return &parent->kobj; 2930 return &block_class.p->subsys.kobj; 2931 } 2932 #endif 2933 2934 /* 2935 * If we have no parent, we live in "virtual". 2936 * Class-devices with a non class-device as parent, live 2937 * in a "glue" directory to prevent namespace collisions. 2938 */ 2939 if (parent == NULL) 2940 parent_kobj = virtual_device_parent(dev); 2941 else if (parent->class && !dev->class->ns_type) 2942 return &parent->kobj; 2943 else 2944 parent_kobj = &parent->kobj; 2945 2946 mutex_lock(&gdp_mutex); 2947 2948 /* find our class-directory at the parent and reference it */ 2949 spin_lock(&dev->class->p->glue_dirs.list_lock); 2950 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2951 if (k->parent == parent_kobj) { 2952 kobj = kobject_get(k); 2953 break; 2954 } 2955 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2956 if (kobj) { 2957 mutex_unlock(&gdp_mutex); 2958 return kobj; 2959 } 2960 2961 /* or create a new class-directory at the parent device */ 2962 k = class_dir_create_and_add(dev->class, parent_kobj); 2963 /* do not emit an uevent for this simple "glue" directory */ 2964 mutex_unlock(&gdp_mutex); 2965 return k; 2966 } 2967 2968 /* subsystems can specify a default root directory for their devices */ 2969 if (!parent && dev->bus && dev->bus->dev_root) 2970 return &dev->bus->dev_root->kobj; 2971 2972 if (parent) 2973 return &parent->kobj; 2974 return NULL; 2975 } 2976 2977 static inline bool live_in_glue_dir(struct kobject *kobj, 2978 struct device *dev) 2979 { 2980 if (!kobj || !dev->class || 2981 kobj->kset != &dev->class->p->glue_dirs) 2982 return false; 2983 return true; 2984 } 2985 2986 static inline struct kobject *get_glue_dir(struct device *dev) 2987 { 2988 return dev->kobj.parent; 2989 } 2990 2991 /* 2992 * make sure cleaning up dir as the last step, we need to make 2993 * sure .release handler of kobject is run with holding the 2994 * global lock 2995 */ 2996 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2997 { 2998 unsigned int ref; 2999 3000 /* see if we live in a "glue" directory */ 3001 if (!live_in_glue_dir(glue_dir, dev)) 3002 return; 3003 3004 mutex_lock(&gdp_mutex); 3005 /** 3006 * There is a race condition between removing glue directory 3007 * and adding a new device under the glue directory. 3008 * 3009 * CPU1: CPU2: 3010 * 3011 * device_add() 3012 * get_device_parent() 3013 * class_dir_create_and_add() 3014 * kobject_add_internal() 3015 * create_dir() // create glue_dir 3016 * 3017 * device_add() 3018 * get_device_parent() 3019 * kobject_get() // get glue_dir 3020 * 3021 * device_del() 3022 * cleanup_glue_dir() 3023 * kobject_del(glue_dir) 3024 * 3025 * kobject_add() 3026 * kobject_add_internal() 3027 * create_dir() // in glue_dir 3028 * sysfs_create_dir_ns() 3029 * kernfs_create_dir_ns(sd) 3030 * 3031 * sysfs_remove_dir() // glue_dir->sd=NULL 3032 * sysfs_put() // free glue_dir->sd 3033 * 3034 * // sd is freed 3035 * kernfs_new_node(sd) 3036 * kernfs_get(glue_dir) 3037 * kernfs_add_one() 3038 * kernfs_put() 3039 * 3040 * Before CPU1 remove last child device under glue dir, if CPU2 add 3041 * a new device under glue dir, the glue_dir kobject reference count 3042 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3043 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3044 * and sysfs_put(). This result in glue_dir->sd is freed. 3045 * 3046 * Then the CPU2 will see a stale "empty" but still potentially used 3047 * glue dir around in kernfs_new_node(). 3048 * 3049 * In order to avoid this happening, we also should make sure that 3050 * kernfs_node for glue_dir is released in CPU1 only when refcount 3051 * for glue_dir kobj is 1. 3052 */ 3053 ref = kref_read(&glue_dir->kref); 3054 if (!kobject_has_children(glue_dir) && !--ref) 3055 kobject_del(glue_dir); 3056 kobject_put(glue_dir); 3057 mutex_unlock(&gdp_mutex); 3058 } 3059 3060 static int device_add_class_symlinks(struct device *dev) 3061 { 3062 struct device_node *of_node = dev_of_node(dev); 3063 int error; 3064 3065 if (of_node) { 3066 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3067 if (error) 3068 dev_warn(dev, "Error %d creating of_node link\n",error); 3069 /* An error here doesn't warrant bringing down the device */ 3070 } 3071 3072 if (!dev->class) 3073 return 0; 3074 3075 error = sysfs_create_link(&dev->kobj, 3076 &dev->class->p->subsys.kobj, 3077 "subsystem"); 3078 if (error) 3079 goto out_devnode; 3080 3081 if (dev->parent && device_is_not_partition(dev)) { 3082 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3083 "device"); 3084 if (error) 3085 goto out_subsys; 3086 } 3087 3088 #ifdef CONFIG_BLOCK 3089 /* /sys/block has directories and does not need symlinks */ 3090 if (sysfs_deprecated && dev->class == &block_class) 3091 return 0; 3092 #endif 3093 3094 /* link in the class directory pointing to the device */ 3095 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3096 &dev->kobj, dev_name(dev)); 3097 if (error) 3098 goto out_device; 3099 3100 return 0; 3101 3102 out_device: 3103 sysfs_remove_link(&dev->kobj, "device"); 3104 3105 out_subsys: 3106 sysfs_remove_link(&dev->kobj, "subsystem"); 3107 out_devnode: 3108 sysfs_remove_link(&dev->kobj, "of_node"); 3109 return error; 3110 } 3111 3112 static void device_remove_class_symlinks(struct device *dev) 3113 { 3114 if (dev_of_node(dev)) 3115 sysfs_remove_link(&dev->kobj, "of_node"); 3116 3117 if (!dev->class) 3118 return; 3119 3120 if (dev->parent && device_is_not_partition(dev)) 3121 sysfs_remove_link(&dev->kobj, "device"); 3122 sysfs_remove_link(&dev->kobj, "subsystem"); 3123 #ifdef CONFIG_BLOCK 3124 if (sysfs_deprecated && dev->class == &block_class) 3125 return; 3126 #endif 3127 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3128 } 3129 3130 /** 3131 * dev_set_name - set a device name 3132 * @dev: device 3133 * @fmt: format string for the device's name 3134 */ 3135 int dev_set_name(struct device *dev, const char *fmt, ...) 3136 { 3137 va_list vargs; 3138 int err; 3139 3140 va_start(vargs, fmt); 3141 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3142 va_end(vargs); 3143 return err; 3144 } 3145 EXPORT_SYMBOL_GPL(dev_set_name); 3146 3147 /** 3148 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3149 * @dev: device 3150 * 3151 * By default we select char/ for new entries. Setting class->dev_obj 3152 * to NULL prevents an entry from being created. class->dev_kobj must 3153 * be set (or cleared) before any devices are registered to the class 3154 * otherwise device_create_sys_dev_entry() and 3155 * device_remove_sys_dev_entry() will disagree about the presence of 3156 * the link. 3157 */ 3158 static struct kobject *device_to_dev_kobj(struct device *dev) 3159 { 3160 struct kobject *kobj; 3161 3162 if (dev->class) 3163 kobj = dev->class->dev_kobj; 3164 else 3165 kobj = sysfs_dev_char_kobj; 3166 3167 return kobj; 3168 } 3169 3170 static int device_create_sys_dev_entry(struct device *dev) 3171 { 3172 struct kobject *kobj = device_to_dev_kobj(dev); 3173 int error = 0; 3174 char devt_str[15]; 3175 3176 if (kobj) { 3177 format_dev_t(devt_str, dev->devt); 3178 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3179 } 3180 3181 return error; 3182 } 3183 3184 static void device_remove_sys_dev_entry(struct device *dev) 3185 { 3186 struct kobject *kobj = device_to_dev_kobj(dev); 3187 char devt_str[15]; 3188 3189 if (kobj) { 3190 format_dev_t(devt_str, dev->devt); 3191 sysfs_remove_link(kobj, devt_str); 3192 } 3193 } 3194 3195 static int device_private_init(struct device *dev) 3196 { 3197 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3198 if (!dev->p) 3199 return -ENOMEM; 3200 dev->p->device = dev; 3201 klist_init(&dev->p->klist_children, klist_children_get, 3202 klist_children_put); 3203 INIT_LIST_HEAD(&dev->p->deferred_probe); 3204 return 0; 3205 } 3206 3207 /** 3208 * device_add - add device to device hierarchy. 3209 * @dev: device. 3210 * 3211 * This is part 2 of device_register(), though may be called 3212 * separately _iff_ device_initialize() has been called separately. 3213 * 3214 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3215 * to the global and sibling lists for the device, then 3216 * adds it to the other relevant subsystems of the driver model. 3217 * 3218 * Do not call this routine or device_register() more than once for 3219 * any device structure. The driver model core is not designed to work 3220 * with devices that get unregistered and then spring back to life. 3221 * (Among other things, it's very hard to guarantee that all references 3222 * to the previous incarnation of @dev have been dropped.) Allocate 3223 * and register a fresh new struct device instead. 3224 * 3225 * NOTE: _Never_ directly free @dev after calling this function, even 3226 * if it returned an error! Always use put_device() to give up your 3227 * reference instead. 3228 * 3229 * Rule of thumb is: if device_add() succeeds, you should call 3230 * device_del() when you want to get rid of it. If device_add() has 3231 * *not* succeeded, use *only* put_device() to drop the reference 3232 * count. 3233 */ 3234 int device_add(struct device *dev) 3235 { 3236 struct device *parent; 3237 struct kobject *kobj; 3238 struct class_interface *class_intf; 3239 int error = -EINVAL; 3240 struct kobject *glue_dir = NULL; 3241 3242 dev = get_device(dev); 3243 if (!dev) 3244 goto done; 3245 3246 if (!dev->p) { 3247 error = device_private_init(dev); 3248 if (error) 3249 goto done; 3250 } 3251 3252 /* 3253 * for statically allocated devices, which should all be converted 3254 * some day, we need to initialize the name. We prevent reading back 3255 * the name, and force the use of dev_name() 3256 */ 3257 if (dev->init_name) { 3258 dev_set_name(dev, "%s", dev->init_name); 3259 dev->init_name = NULL; 3260 } 3261 3262 /* subsystems can specify simple device enumeration */ 3263 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3264 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3265 3266 if (!dev_name(dev)) { 3267 error = -EINVAL; 3268 goto name_error; 3269 } 3270 3271 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3272 3273 parent = get_device(dev->parent); 3274 kobj = get_device_parent(dev, parent); 3275 if (IS_ERR(kobj)) { 3276 error = PTR_ERR(kobj); 3277 goto parent_error; 3278 } 3279 if (kobj) 3280 dev->kobj.parent = kobj; 3281 3282 /* use parent numa_node */ 3283 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3284 set_dev_node(dev, dev_to_node(parent)); 3285 3286 /* first, register with generic layer. */ 3287 /* we require the name to be set before, and pass NULL */ 3288 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3289 if (error) { 3290 glue_dir = get_glue_dir(dev); 3291 goto Error; 3292 } 3293 3294 /* notify platform of device entry */ 3295 device_platform_notify(dev); 3296 3297 error = device_create_file(dev, &dev_attr_uevent); 3298 if (error) 3299 goto attrError; 3300 3301 error = device_add_class_symlinks(dev); 3302 if (error) 3303 goto SymlinkError; 3304 error = device_add_attrs(dev); 3305 if (error) 3306 goto AttrsError; 3307 error = bus_add_device(dev); 3308 if (error) 3309 goto BusError; 3310 error = dpm_sysfs_add(dev); 3311 if (error) 3312 goto DPMError; 3313 device_pm_add(dev); 3314 3315 if (MAJOR(dev->devt)) { 3316 error = device_create_file(dev, &dev_attr_dev); 3317 if (error) 3318 goto DevAttrError; 3319 3320 error = device_create_sys_dev_entry(dev); 3321 if (error) 3322 goto SysEntryError; 3323 3324 devtmpfs_create_node(dev); 3325 } 3326 3327 /* Notify clients of device addition. This call must come 3328 * after dpm_sysfs_add() and before kobject_uevent(). 3329 */ 3330 if (dev->bus) 3331 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3332 BUS_NOTIFY_ADD_DEVICE, dev); 3333 3334 kobject_uevent(&dev->kobj, KOBJ_ADD); 3335 3336 /* 3337 * Check if any of the other devices (consumers) have been waiting for 3338 * this device (supplier) to be added so that they can create a device 3339 * link to it. 3340 * 3341 * This needs to happen after device_pm_add() because device_link_add() 3342 * requires the supplier be registered before it's called. 3343 * 3344 * But this also needs to happen before bus_probe_device() to make sure 3345 * waiting consumers can link to it before the driver is bound to the 3346 * device and the driver sync_state callback is called for this device. 3347 */ 3348 if (dev->fwnode && !dev->fwnode->dev) { 3349 dev->fwnode->dev = dev; 3350 fw_devlink_link_device(dev); 3351 } 3352 3353 bus_probe_device(dev); 3354 3355 /* 3356 * If all driver registration is done and a newly added device doesn't 3357 * match with any driver, don't block its consumers from probing in 3358 * case the consumer device is able to operate without this supplier. 3359 */ 3360 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3361 fw_devlink_unblock_consumers(dev); 3362 3363 if (parent) 3364 klist_add_tail(&dev->p->knode_parent, 3365 &parent->p->klist_children); 3366 3367 if (dev->class) { 3368 mutex_lock(&dev->class->p->mutex); 3369 /* tie the class to the device */ 3370 klist_add_tail(&dev->p->knode_class, 3371 &dev->class->p->klist_devices); 3372 3373 /* notify any interfaces that the device is here */ 3374 list_for_each_entry(class_intf, 3375 &dev->class->p->interfaces, node) 3376 if (class_intf->add_dev) 3377 class_intf->add_dev(dev, class_intf); 3378 mutex_unlock(&dev->class->p->mutex); 3379 } 3380 done: 3381 put_device(dev); 3382 return error; 3383 SysEntryError: 3384 if (MAJOR(dev->devt)) 3385 device_remove_file(dev, &dev_attr_dev); 3386 DevAttrError: 3387 device_pm_remove(dev); 3388 dpm_sysfs_remove(dev); 3389 DPMError: 3390 bus_remove_device(dev); 3391 BusError: 3392 device_remove_attrs(dev); 3393 AttrsError: 3394 device_remove_class_symlinks(dev); 3395 SymlinkError: 3396 device_remove_file(dev, &dev_attr_uevent); 3397 attrError: 3398 device_platform_notify_remove(dev); 3399 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3400 glue_dir = get_glue_dir(dev); 3401 kobject_del(&dev->kobj); 3402 Error: 3403 cleanup_glue_dir(dev, glue_dir); 3404 parent_error: 3405 put_device(parent); 3406 name_error: 3407 kfree(dev->p); 3408 dev->p = NULL; 3409 goto done; 3410 } 3411 EXPORT_SYMBOL_GPL(device_add); 3412 3413 /** 3414 * device_register - register a device with the system. 3415 * @dev: pointer to the device structure 3416 * 3417 * This happens in two clean steps - initialize the device 3418 * and add it to the system. The two steps can be called 3419 * separately, but this is the easiest and most common. 3420 * I.e. you should only call the two helpers separately if 3421 * have a clearly defined need to use and refcount the device 3422 * before it is added to the hierarchy. 3423 * 3424 * For more information, see the kerneldoc for device_initialize() 3425 * and device_add(). 3426 * 3427 * NOTE: _Never_ directly free @dev after calling this function, even 3428 * if it returned an error! Always use put_device() to give up the 3429 * reference initialized in this function instead. 3430 */ 3431 int device_register(struct device *dev) 3432 { 3433 device_initialize(dev); 3434 return device_add(dev); 3435 } 3436 EXPORT_SYMBOL_GPL(device_register); 3437 3438 /** 3439 * get_device - increment reference count for device. 3440 * @dev: device. 3441 * 3442 * This simply forwards the call to kobject_get(), though 3443 * we do take care to provide for the case that we get a NULL 3444 * pointer passed in. 3445 */ 3446 struct device *get_device(struct device *dev) 3447 { 3448 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3449 } 3450 EXPORT_SYMBOL_GPL(get_device); 3451 3452 /** 3453 * put_device - decrement reference count. 3454 * @dev: device in question. 3455 */ 3456 void put_device(struct device *dev) 3457 { 3458 /* might_sleep(); */ 3459 if (dev) 3460 kobject_put(&dev->kobj); 3461 } 3462 EXPORT_SYMBOL_GPL(put_device); 3463 3464 bool kill_device(struct device *dev) 3465 { 3466 /* 3467 * Require the device lock and set the "dead" flag to guarantee that 3468 * the update behavior is consistent with the other bitfields near 3469 * it and that we cannot have an asynchronous probe routine trying 3470 * to run while we are tearing out the bus/class/sysfs from 3471 * underneath the device. 3472 */ 3473 device_lock_assert(dev); 3474 3475 if (dev->p->dead) 3476 return false; 3477 dev->p->dead = true; 3478 return true; 3479 } 3480 EXPORT_SYMBOL_GPL(kill_device); 3481 3482 /** 3483 * device_del - delete device from system. 3484 * @dev: device. 3485 * 3486 * This is the first part of the device unregistration 3487 * sequence. This removes the device from the lists we control 3488 * from here, has it removed from the other driver model 3489 * subsystems it was added to in device_add(), and removes it 3490 * from the kobject hierarchy. 3491 * 3492 * NOTE: this should be called manually _iff_ device_add() was 3493 * also called manually. 3494 */ 3495 void device_del(struct device *dev) 3496 { 3497 struct device *parent = dev->parent; 3498 struct kobject *glue_dir = NULL; 3499 struct class_interface *class_intf; 3500 unsigned int noio_flag; 3501 3502 device_lock(dev); 3503 kill_device(dev); 3504 device_unlock(dev); 3505 3506 if (dev->fwnode && dev->fwnode->dev == dev) 3507 dev->fwnode->dev = NULL; 3508 3509 /* Notify clients of device removal. This call must come 3510 * before dpm_sysfs_remove(). 3511 */ 3512 noio_flag = memalloc_noio_save(); 3513 if (dev->bus) 3514 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3515 BUS_NOTIFY_DEL_DEVICE, dev); 3516 3517 dpm_sysfs_remove(dev); 3518 if (parent) 3519 klist_del(&dev->p->knode_parent); 3520 if (MAJOR(dev->devt)) { 3521 devtmpfs_delete_node(dev); 3522 device_remove_sys_dev_entry(dev); 3523 device_remove_file(dev, &dev_attr_dev); 3524 } 3525 if (dev->class) { 3526 device_remove_class_symlinks(dev); 3527 3528 mutex_lock(&dev->class->p->mutex); 3529 /* notify any interfaces that the device is now gone */ 3530 list_for_each_entry(class_intf, 3531 &dev->class->p->interfaces, node) 3532 if (class_intf->remove_dev) 3533 class_intf->remove_dev(dev, class_intf); 3534 /* remove the device from the class list */ 3535 klist_del(&dev->p->knode_class); 3536 mutex_unlock(&dev->class->p->mutex); 3537 } 3538 device_remove_file(dev, &dev_attr_uevent); 3539 device_remove_attrs(dev); 3540 bus_remove_device(dev); 3541 device_pm_remove(dev); 3542 driver_deferred_probe_del(dev); 3543 device_platform_notify_remove(dev); 3544 device_remove_properties(dev); 3545 device_links_purge(dev); 3546 3547 if (dev->bus) 3548 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3549 BUS_NOTIFY_REMOVED_DEVICE, dev); 3550 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3551 glue_dir = get_glue_dir(dev); 3552 kobject_del(&dev->kobj); 3553 cleanup_glue_dir(dev, glue_dir); 3554 memalloc_noio_restore(noio_flag); 3555 put_device(parent); 3556 } 3557 EXPORT_SYMBOL_GPL(device_del); 3558 3559 /** 3560 * device_unregister - unregister device from system. 3561 * @dev: device going away. 3562 * 3563 * We do this in two parts, like we do device_register(). First, 3564 * we remove it from all the subsystems with device_del(), then 3565 * we decrement the reference count via put_device(). If that 3566 * is the final reference count, the device will be cleaned up 3567 * via device_release() above. Otherwise, the structure will 3568 * stick around until the final reference to the device is dropped. 3569 */ 3570 void device_unregister(struct device *dev) 3571 { 3572 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3573 device_del(dev); 3574 put_device(dev); 3575 } 3576 EXPORT_SYMBOL_GPL(device_unregister); 3577 3578 static struct device *prev_device(struct klist_iter *i) 3579 { 3580 struct klist_node *n = klist_prev(i); 3581 struct device *dev = NULL; 3582 struct device_private *p; 3583 3584 if (n) { 3585 p = to_device_private_parent(n); 3586 dev = p->device; 3587 } 3588 return dev; 3589 } 3590 3591 static struct device *next_device(struct klist_iter *i) 3592 { 3593 struct klist_node *n = klist_next(i); 3594 struct device *dev = NULL; 3595 struct device_private *p; 3596 3597 if (n) { 3598 p = to_device_private_parent(n); 3599 dev = p->device; 3600 } 3601 return dev; 3602 } 3603 3604 /** 3605 * device_get_devnode - path of device node file 3606 * @dev: device 3607 * @mode: returned file access mode 3608 * @uid: returned file owner 3609 * @gid: returned file group 3610 * @tmp: possibly allocated string 3611 * 3612 * Return the relative path of a possible device node. 3613 * Non-default names may need to allocate a memory to compose 3614 * a name. This memory is returned in tmp and needs to be 3615 * freed by the caller. 3616 */ 3617 const char *device_get_devnode(struct device *dev, 3618 umode_t *mode, kuid_t *uid, kgid_t *gid, 3619 const char **tmp) 3620 { 3621 char *s; 3622 3623 *tmp = NULL; 3624 3625 /* the device type may provide a specific name */ 3626 if (dev->type && dev->type->devnode) 3627 *tmp = dev->type->devnode(dev, mode, uid, gid); 3628 if (*tmp) 3629 return *tmp; 3630 3631 /* the class may provide a specific name */ 3632 if (dev->class && dev->class->devnode) 3633 *tmp = dev->class->devnode(dev, mode); 3634 if (*tmp) 3635 return *tmp; 3636 3637 /* return name without allocation, tmp == NULL */ 3638 if (strchr(dev_name(dev), '!') == NULL) 3639 return dev_name(dev); 3640 3641 /* replace '!' in the name with '/' */ 3642 s = kstrdup(dev_name(dev), GFP_KERNEL); 3643 if (!s) 3644 return NULL; 3645 strreplace(s, '!', '/'); 3646 return *tmp = s; 3647 } 3648 3649 /** 3650 * device_for_each_child - device child iterator. 3651 * @parent: parent struct device. 3652 * @fn: function to be called for each device. 3653 * @data: data for the callback. 3654 * 3655 * Iterate over @parent's child devices, and call @fn for each, 3656 * passing it @data. 3657 * 3658 * We check the return of @fn each time. If it returns anything 3659 * other than 0, we break out and return that value. 3660 */ 3661 int device_for_each_child(struct device *parent, void *data, 3662 int (*fn)(struct device *dev, void *data)) 3663 { 3664 struct klist_iter i; 3665 struct device *child; 3666 int error = 0; 3667 3668 if (!parent->p) 3669 return 0; 3670 3671 klist_iter_init(&parent->p->klist_children, &i); 3672 while (!error && (child = next_device(&i))) 3673 error = fn(child, data); 3674 klist_iter_exit(&i); 3675 return error; 3676 } 3677 EXPORT_SYMBOL_GPL(device_for_each_child); 3678 3679 /** 3680 * device_for_each_child_reverse - device child iterator in reversed order. 3681 * @parent: parent struct device. 3682 * @fn: function to be called for each device. 3683 * @data: data for the callback. 3684 * 3685 * Iterate over @parent's child devices, and call @fn for each, 3686 * passing it @data. 3687 * 3688 * We check the return of @fn each time. If it returns anything 3689 * other than 0, we break out and return that value. 3690 */ 3691 int device_for_each_child_reverse(struct device *parent, void *data, 3692 int (*fn)(struct device *dev, void *data)) 3693 { 3694 struct klist_iter i; 3695 struct device *child; 3696 int error = 0; 3697 3698 if (!parent->p) 3699 return 0; 3700 3701 klist_iter_init(&parent->p->klist_children, &i); 3702 while ((child = prev_device(&i)) && !error) 3703 error = fn(child, data); 3704 klist_iter_exit(&i); 3705 return error; 3706 } 3707 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3708 3709 /** 3710 * device_find_child - device iterator for locating a particular device. 3711 * @parent: parent struct device 3712 * @match: Callback function to check device 3713 * @data: Data to pass to match function 3714 * 3715 * This is similar to the device_for_each_child() function above, but it 3716 * returns a reference to a device that is 'found' for later use, as 3717 * determined by the @match callback. 3718 * 3719 * The callback should return 0 if the device doesn't match and non-zero 3720 * if it does. If the callback returns non-zero and a reference to the 3721 * current device can be obtained, this function will return to the caller 3722 * and not iterate over any more devices. 3723 * 3724 * NOTE: you will need to drop the reference with put_device() after use. 3725 */ 3726 struct device *device_find_child(struct device *parent, void *data, 3727 int (*match)(struct device *dev, void *data)) 3728 { 3729 struct klist_iter i; 3730 struct device *child; 3731 3732 if (!parent) 3733 return NULL; 3734 3735 klist_iter_init(&parent->p->klist_children, &i); 3736 while ((child = next_device(&i))) 3737 if (match(child, data) && get_device(child)) 3738 break; 3739 klist_iter_exit(&i); 3740 return child; 3741 } 3742 EXPORT_SYMBOL_GPL(device_find_child); 3743 3744 /** 3745 * device_find_child_by_name - device iterator for locating a child device. 3746 * @parent: parent struct device 3747 * @name: name of the child device 3748 * 3749 * This is similar to the device_find_child() function above, but it 3750 * returns a reference to a device that has the name @name. 3751 * 3752 * NOTE: you will need to drop the reference with put_device() after use. 3753 */ 3754 struct device *device_find_child_by_name(struct device *parent, 3755 const char *name) 3756 { 3757 struct klist_iter i; 3758 struct device *child; 3759 3760 if (!parent) 3761 return NULL; 3762 3763 klist_iter_init(&parent->p->klist_children, &i); 3764 while ((child = next_device(&i))) 3765 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3766 break; 3767 klist_iter_exit(&i); 3768 return child; 3769 } 3770 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3771 3772 int __init devices_init(void) 3773 { 3774 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3775 if (!devices_kset) 3776 return -ENOMEM; 3777 dev_kobj = kobject_create_and_add("dev", NULL); 3778 if (!dev_kobj) 3779 goto dev_kobj_err; 3780 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3781 if (!sysfs_dev_block_kobj) 3782 goto block_kobj_err; 3783 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3784 if (!sysfs_dev_char_kobj) 3785 goto char_kobj_err; 3786 3787 return 0; 3788 3789 char_kobj_err: 3790 kobject_put(sysfs_dev_block_kobj); 3791 block_kobj_err: 3792 kobject_put(dev_kobj); 3793 dev_kobj_err: 3794 kset_unregister(devices_kset); 3795 return -ENOMEM; 3796 } 3797 3798 static int device_check_offline(struct device *dev, void *not_used) 3799 { 3800 int ret; 3801 3802 ret = device_for_each_child(dev, NULL, device_check_offline); 3803 if (ret) 3804 return ret; 3805 3806 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3807 } 3808 3809 /** 3810 * device_offline - Prepare the device for hot-removal. 3811 * @dev: Device to be put offline. 3812 * 3813 * Execute the device bus type's .offline() callback, if present, to prepare 3814 * the device for a subsequent hot-removal. If that succeeds, the device must 3815 * not be used until either it is removed or its bus type's .online() callback 3816 * is executed. 3817 * 3818 * Call under device_hotplug_lock. 3819 */ 3820 int device_offline(struct device *dev) 3821 { 3822 int ret; 3823 3824 if (dev->offline_disabled) 3825 return -EPERM; 3826 3827 ret = device_for_each_child(dev, NULL, device_check_offline); 3828 if (ret) 3829 return ret; 3830 3831 device_lock(dev); 3832 if (device_supports_offline(dev)) { 3833 if (dev->offline) { 3834 ret = 1; 3835 } else { 3836 ret = dev->bus->offline(dev); 3837 if (!ret) { 3838 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3839 dev->offline = true; 3840 } 3841 } 3842 } 3843 device_unlock(dev); 3844 3845 return ret; 3846 } 3847 3848 /** 3849 * device_online - Put the device back online after successful device_offline(). 3850 * @dev: Device to be put back online. 3851 * 3852 * If device_offline() has been successfully executed for @dev, but the device 3853 * has not been removed subsequently, execute its bus type's .online() callback 3854 * to indicate that the device can be used again. 3855 * 3856 * Call under device_hotplug_lock. 3857 */ 3858 int device_online(struct device *dev) 3859 { 3860 int ret = 0; 3861 3862 device_lock(dev); 3863 if (device_supports_offline(dev)) { 3864 if (dev->offline) { 3865 ret = dev->bus->online(dev); 3866 if (!ret) { 3867 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3868 dev->offline = false; 3869 } 3870 } else { 3871 ret = 1; 3872 } 3873 } 3874 device_unlock(dev); 3875 3876 return ret; 3877 } 3878 3879 struct root_device { 3880 struct device dev; 3881 struct module *owner; 3882 }; 3883 3884 static inline struct root_device *to_root_device(struct device *d) 3885 { 3886 return container_of(d, struct root_device, dev); 3887 } 3888 3889 static void root_device_release(struct device *dev) 3890 { 3891 kfree(to_root_device(dev)); 3892 } 3893 3894 /** 3895 * __root_device_register - allocate and register a root device 3896 * @name: root device name 3897 * @owner: owner module of the root device, usually THIS_MODULE 3898 * 3899 * This function allocates a root device and registers it 3900 * using device_register(). In order to free the returned 3901 * device, use root_device_unregister(). 3902 * 3903 * Root devices are dummy devices which allow other devices 3904 * to be grouped under /sys/devices. Use this function to 3905 * allocate a root device and then use it as the parent of 3906 * any device which should appear under /sys/devices/{name} 3907 * 3908 * The /sys/devices/{name} directory will also contain a 3909 * 'module' symlink which points to the @owner directory 3910 * in sysfs. 3911 * 3912 * Returns &struct device pointer on success, or ERR_PTR() on error. 3913 * 3914 * Note: You probably want to use root_device_register(). 3915 */ 3916 struct device *__root_device_register(const char *name, struct module *owner) 3917 { 3918 struct root_device *root; 3919 int err = -ENOMEM; 3920 3921 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3922 if (!root) 3923 return ERR_PTR(err); 3924 3925 err = dev_set_name(&root->dev, "%s", name); 3926 if (err) { 3927 kfree(root); 3928 return ERR_PTR(err); 3929 } 3930 3931 root->dev.release = root_device_release; 3932 3933 err = device_register(&root->dev); 3934 if (err) { 3935 put_device(&root->dev); 3936 return ERR_PTR(err); 3937 } 3938 3939 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3940 if (owner) { 3941 struct module_kobject *mk = &owner->mkobj; 3942 3943 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3944 if (err) { 3945 device_unregister(&root->dev); 3946 return ERR_PTR(err); 3947 } 3948 root->owner = owner; 3949 } 3950 #endif 3951 3952 return &root->dev; 3953 } 3954 EXPORT_SYMBOL_GPL(__root_device_register); 3955 3956 /** 3957 * root_device_unregister - unregister and free a root device 3958 * @dev: device going away 3959 * 3960 * This function unregisters and cleans up a device that was created by 3961 * root_device_register(). 3962 */ 3963 void root_device_unregister(struct device *dev) 3964 { 3965 struct root_device *root = to_root_device(dev); 3966 3967 if (root->owner) 3968 sysfs_remove_link(&root->dev.kobj, "module"); 3969 3970 device_unregister(dev); 3971 } 3972 EXPORT_SYMBOL_GPL(root_device_unregister); 3973 3974 3975 static void device_create_release(struct device *dev) 3976 { 3977 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3978 kfree(dev); 3979 } 3980 3981 static __printf(6, 0) struct device * 3982 device_create_groups_vargs(struct class *class, struct device *parent, 3983 dev_t devt, void *drvdata, 3984 const struct attribute_group **groups, 3985 const char *fmt, va_list args) 3986 { 3987 struct device *dev = NULL; 3988 int retval = -ENODEV; 3989 3990 if (class == NULL || IS_ERR(class)) 3991 goto error; 3992 3993 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3994 if (!dev) { 3995 retval = -ENOMEM; 3996 goto error; 3997 } 3998 3999 device_initialize(dev); 4000 dev->devt = devt; 4001 dev->class = class; 4002 dev->parent = parent; 4003 dev->groups = groups; 4004 dev->release = device_create_release; 4005 dev_set_drvdata(dev, drvdata); 4006 4007 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4008 if (retval) 4009 goto error; 4010 4011 retval = device_add(dev); 4012 if (retval) 4013 goto error; 4014 4015 return dev; 4016 4017 error: 4018 put_device(dev); 4019 return ERR_PTR(retval); 4020 } 4021 4022 /** 4023 * device_create - creates a device and registers it with sysfs 4024 * @class: pointer to the struct class that this device should be registered to 4025 * @parent: pointer to the parent struct device of this new device, if any 4026 * @devt: the dev_t for the char device to be added 4027 * @drvdata: the data to be added to the device for callbacks 4028 * @fmt: string for the device's name 4029 * 4030 * This function can be used by char device classes. A struct device 4031 * will be created in sysfs, registered to the specified class. 4032 * 4033 * A "dev" file will be created, showing the dev_t for the device, if 4034 * the dev_t is not 0,0. 4035 * If a pointer to a parent struct device is passed in, the newly created 4036 * struct device will be a child of that device in sysfs. 4037 * The pointer to the struct device will be returned from the call. 4038 * Any further sysfs files that might be required can be created using this 4039 * pointer. 4040 * 4041 * Returns &struct device pointer on success, or ERR_PTR() on error. 4042 * 4043 * Note: the struct class passed to this function must have previously 4044 * been created with a call to class_create(). 4045 */ 4046 struct device *device_create(struct class *class, struct device *parent, 4047 dev_t devt, void *drvdata, const char *fmt, ...) 4048 { 4049 va_list vargs; 4050 struct device *dev; 4051 4052 va_start(vargs, fmt); 4053 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4054 fmt, vargs); 4055 va_end(vargs); 4056 return dev; 4057 } 4058 EXPORT_SYMBOL_GPL(device_create); 4059 4060 /** 4061 * device_create_with_groups - creates a device and registers it with sysfs 4062 * @class: pointer to the struct class that this device should be registered to 4063 * @parent: pointer to the parent struct device of this new device, if any 4064 * @devt: the dev_t for the char device to be added 4065 * @drvdata: the data to be added to the device for callbacks 4066 * @groups: NULL-terminated list of attribute groups to be created 4067 * @fmt: string for the device's name 4068 * 4069 * This function can be used by char device classes. A struct device 4070 * will be created in sysfs, registered to the specified class. 4071 * Additional attributes specified in the groups parameter will also 4072 * be created automatically. 4073 * 4074 * A "dev" file will be created, showing the dev_t for the device, if 4075 * the dev_t is not 0,0. 4076 * If a pointer to a parent struct device is passed in, the newly created 4077 * struct device will be a child of that device in sysfs. 4078 * The pointer to the struct device will be returned from the call. 4079 * Any further sysfs files that might be required can be created using this 4080 * pointer. 4081 * 4082 * Returns &struct device pointer on success, or ERR_PTR() on error. 4083 * 4084 * Note: the struct class passed to this function must have previously 4085 * been created with a call to class_create(). 4086 */ 4087 struct device *device_create_with_groups(struct class *class, 4088 struct device *parent, dev_t devt, 4089 void *drvdata, 4090 const struct attribute_group **groups, 4091 const char *fmt, ...) 4092 { 4093 va_list vargs; 4094 struct device *dev; 4095 4096 va_start(vargs, fmt); 4097 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4098 fmt, vargs); 4099 va_end(vargs); 4100 return dev; 4101 } 4102 EXPORT_SYMBOL_GPL(device_create_with_groups); 4103 4104 /** 4105 * device_destroy - removes a device that was created with device_create() 4106 * @class: pointer to the struct class that this device was registered with 4107 * @devt: the dev_t of the device that was previously registered 4108 * 4109 * This call unregisters and cleans up a device that was created with a 4110 * call to device_create(). 4111 */ 4112 void device_destroy(struct class *class, dev_t devt) 4113 { 4114 struct device *dev; 4115 4116 dev = class_find_device_by_devt(class, devt); 4117 if (dev) { 4118 put_device(dev); 4119 device_unregister(dev); 4120 } 4121 } 4122 EXPORT_SYMBOL_GPL(device_destroy); 4123 4124 /** 4125 * device_rename - renames a device 4126 * @dev: the pointer to the struct device to be renamed 4127 * @new_name: the new name of the device 4128 * 4129 * It is the responsibility of the caller to provide mutual 4130 * exclusion between two different calls of device_rename 4131 * on the same device to ensure that new_name is valid and 4132 * won't conflict with other devices. 4133 * 4134 * Note: Don't call this function. Currently, the networking layer calls this 4135 * function, but that will change. The following text from Kay Sievers offers 4136 * some insight: 4137 * 4138 * Renaming devices is racy at many levels, symlinks and other stuff are not 4139 * replaced atomically, and you get a "move" uevent, but it's not easy to 4140 * connect the event to the old and new device. Device nodes are not renamed at 4141 * all, there isn't even support for that in the kernel now. 4142 * 4143 * In the meantime, during renaming, your target name might be taken by another 4144 * driver, creating conflicts. Or the old name is taken directly after you 4145 * renamed it -- then you get events for the same DEVPATH, before you even see 4146 * the "move" event. It's just a mess, and nothing new should ever rely on 4147 * kernel device renaming. Besides that, it's not even implemented now for 4148 * other things than (driver-core wise very simple) network devices. 4149 * 4150 * We are currently about to change network renaming in udev to completely 4151 * disallow renaming of devices in the same namespace as the kernel uses, 4152 * because we can't solve the problems properly, that arise with swapping names 4153 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4154 * be allowed to some other name than eth[0-9]*, for the aforementioned 4155 * reasons. 4156 * 4157 * Make up a "real" name in the driver before you register anything, or add 4158 * some other attributes for userspace to find the device, or use udev to add 4159 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4160 * don't even want to get into that and try to implement the missing pieces in 4161 * the core. We really have other pieces to fix in the driver core mess. :) 4162 */ 4163 int device_rename(struct device *dev, const char *new_name) 4164 { 4165 struct kobject *kobj = &dev->kobj; 4166 char *old_device_name = NULL; 4167 int error; 4168 4169 dev = get_device(dev); 4170 if (!dev) 4171 return -EINVAL; 4172 4173 dev_dbg(dev, "renaming to %s\n", new_name); 4174 4175 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4176 if (!old_device_name) { 4177 error = -ENOMEM; 4178 goto out; 4179 } 4180 4181 if (dev->class) { 4182 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4183 kobj, old_device_name, 4184 new_name, kobject_namespace(kobj)); 4185 if (error) 4186 goto out; 4187 } 4188 4189 error = kobject_rename(kobj, new_name); 4190 if (error) 4191 goto out; 4192 4193 out: 4194 put_device(dev); 4195 4196 kfree(old_device_name); 4197 4198 return error; 4199 } 4200 EXPORT_SYMBOL_GPL(device_rename); 4201 4202 static int device_move_class_links(struct device *dev, 4203 struct device *old_parent, 4204 struct device *new_parent) 4205 { 4206 int error = 0; 4207 4208 if (old_parent) 4209 sysfs_remove_link(&dev->kobj, "device"); 4210 if (new_parent) 4211 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4212 "device"); 4213 return error; 4214 } 4215 4216 /** 4217 * device_move - moves a device to a new parent 4218 * @dev: the pointer to the struct device to be moved 4219 * @new_parent: the new parent of the device (can be NULL) 4220 * @dpm_order: how to reorder the dpm_list 4221 */ 4222 int device_move(struct device *dev, struct device *new_parent, 4223 enum dpm_order dpm_order) 4224 { 4225 int error; 4226 struct device *old_parent; 4227 struct kobject *new_parent_kobj; 4228 4229 dev = get_device(dev); 4230 if (!dev) 4231 return -EINVAL; 4232 4233 device_pm_lock(); 4234 new_parent = get_device(new_parent); 4235 new_parent_kobj = get_device_parent(dev, new_parent); 4236 if (IS_ERR(new_parent_kobj)) { 4237 error = PTR_ERR(new_parent_kobj); 4238 put_device(new_parent); 4239 goto out; 4240 } 4241 4242 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4243 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4244 error = kobject_move(&dev->kobj, new_parent_kobj); 4245 if (error) { 4246 cleanup_glue_dir(dev, new_parent_kobj); 4247 put_device(new_parent); 4248 goto out; 4249 } 4250 old_parent = dev->parent; 4251 dev->parent = new_parent; 4252 if (old_parent) 4253 klist_remove(&dev->p->knode_parent); 4254 if (new_parent) { 4255 klist_add_tail(&dev->p->knode_parent, 4256 &new_parent->p->klist_children); 4257 set_dev_node(dev, dev_to_node(new_parent)); 4258 } 4259 4260 if (dev->class) { 4261 error = device_move_class_links(dev, old_parent, new_parent); 4262 if (error) { 4263 /* We ignore errors on cleanup since we're hosed anyway... */ 4264 device_move_class_links(dev, new_parent, old_parent); 4265 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4266 if (new_parent) 4267 klist_remove(&dev->p->knode_parent); 4268 dev->parent = old_parent; 4269 if (old_parent) { 4270 klist_add_tail(&dev->p->knode_parent, 4271 &old_parent->p->klist_children); 4272 set_dev_node(dev, dev_to_node(old_parent)); 4273 } 4274 } 4275 cleanup_glue_dir(dev, new_parent_kobj); 4276 put_device(new_parent); 4277 goto out; 4278 } 4279 } 4280 switch (dpm_order) { 4281 case DPM_ORDER_NONE: 4282 break; 4283 case DPM_ORDER_DEV_AFTER_PARENT: 4284 device_pm_move_after(dev, new_parent); 4285 devices_kset_move_after(dev, new_parent); 4286 break; 4287 case DPM_ORDER_PARENT_BEFORE_DEV: 4288 device_pm_move_before(new_parent, dev); 4289 devices_kset_move_before(new_parent, dev); 4290 break; 4291 case DPM_ORDER_DEV_LAST: 4292 device_pm_move_last(dev); 4293 devices_kset_move_last(dev); 4294 break; 4295 } 4296 4297 put_device(old_parent); 4298 out: 4299 device_pm_unlock(); 4300 put_device(dev); 4301 return error; 4302 } 4303 EXPORT_SYMBOL_GPL(device_move); 4304 4305 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4306 kgid_t kgid) 4307 { 4308 struct kobject *kobj = &dev->kobj; 4309 struct class *class = dev->class; 4310 const struct device_type *type = dev->type; 4311 int error; 4312 4313 if (class) { 4314 /* 4315 * Change the device groups of the device class for @dev to 4316 * @kuid/@kgid. 4317 */ 4318 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4319 kgid); 4320 if (error) 4321 return error; 4322 } 4323 4324 if (type) { 4325 /* 4326 * Change the device groups of the device type for @dev to 4327 * @kuid/@kgid. 4328 */ 4329 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4330 kgid); 4331 if (error) 4332 return error; 4333 } 4334 4335 /* Change the device groups of @dev to @kuid/@kgid. */ 4336 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4337 if (error) 4338 return error; 4339 4340 if (device_supports_offline(dev) && !dev->offline_disabled) { 4341 /* Change online device attributes of @dev to @kuid/@kgid. */ 4342 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4343 kuid, kgid); 4344 if (error) 4345 return error; 4346 } 4347 4348 return 0; 4349 } 4350 4351 /** 4352 * device_change_owner - change the owner of an existing device. 4353 * @dev: device. 4354 * @kuid: new owner's kuid 4355 * @kgid: new owner's kgid 4356 * 4357 * This changes the owner of @dev and its corresponding sysfs entries to 4358 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4359 * core. 4360 * 4361 * Returns 0 on success or error code on failure. 4362 */ 4363 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4364 { 4365 int error; 4366 struct kobject *kobj = &dev->kobj; 4367 4368 dev = get_device(dev); 4369 if (!dev) 4370 return -EINVAL; 4371 4372 /* 4373 * Change the kobject and the default attributes and groups of the 4374 * ktype associated with it to @kuid/@kgid. 4375 */ 4376 error = sysfs_change_owner(kobj, kuid, kgid); 4377 if (error) 4378 goto out; 4379 4380 /* 4381 * Change the uevent file for @dev to the new owner. The uevent file 4382 * was created in a separate step when @dev got added and we mirror 4383 * that step here. 4384 */ 4385 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4386 kgid); 4387 if (error) 4388 goto out; 4389 4390 /* 4391 * Change the device groups, the device groups associated with the 4392 * device class, and the groups associated with the device type of @dev 4393 * to @kuid/@kgid. 4394 */ 4395 error = device_attrs_change_owner(dev, kuid, kgid); 4396 if (error) 4397 goto out; 4398 4399 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4400 if (error) 4401 goto out; 4402 4403 #ifdef CONFIG_BLOCK 4404 if (sysfs_deprecated && dev->class == &block_class) 4405 goto out; 4406 #endif 4407 4408 /* 4409 * Change the owner of the symlink located in the class directory of 4410 * the device class associated with @dev which points to the actual 4411 * directory entry for @dev to @kuid/@kgid. This ensures that the 4412 * symlink shows the same permissions as its target. 4413 */ 4414 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4415 dev_name(dev), kuid, kgid); 4416 if (error) 4417 goto out; 4418 4419 out: 4420 put_device(dev); 4421 return error; 4422 } 4423 EXPORT_SYMBOL_GPL(device_change_owner); 4424 4425 /** 4426 * device_shutdown - call ->shutdown() on each device to shutdown. 4427 */ 4428 void device_shutdown(void) 4429 { 4430 struct device *dev, *parent; 4431 4432 wait_for_device_probe(); 4433 device_block_probing(); 4434 4435 cpufreq_suspend(); 4436 4437 spin_lock(&devices_kset->list_lock); 4438 /* 4439 * Walk the devices list backward, shutting down each in turn. 4440 * Beware that device unplug events may also start pulling 4441 * devices offline, even as the system is shutting down. 4442 */ 4443 while (!list_empty(&devices_kset->list)) { 4444 dev = list_entry(devices_kset->list.prev, struct device, 4445 kobj.entry); 4446 4447 /* 4448 * hold reference count of device's parent to 4449 * prevent it from being freed because parent's 4450 * lock is to be held 4451 */ 4452 parent = get_device(dev->parent); 4453 get_device(dev); 4454 /* 4455 * Make sure the device is off the kset list, in the 4456 * event that dev->*->shutdown() doesn't remove it. 4457 */ 4458 list_del_init(&dev->kobj.entry); 4459 spin_unlock(&devices_kset->list_lock); 4460 4461 /* hold lock to avoid race with probe/release */ 4462 if (parent) 4463 device_lock(parent); 4464 device_lock(dev); 4465 4466 /* Don't allow any more runtime suspends */ 4467 pm_runtime_get_noresume(dev); 4468 pm_runtime_barrier(dev); 4469 4470 if (dev->class && dev->class->shutdown_pre) { 4471 if (initcall_debug) 4472 dev_info(dev, "shutdown_pre\n"); 4473 dev->class->shutdown_pre(dev); 4474 } 4475 if (dev->bus && dev->bus->shutdown) { 4476 if (initcall_debug) 4477 dev_info(dev, "shutdown\n"); 4478 dev->bus->shutdown(dev); 4479 } else if (dev->driver && dev->driver->shutdown) { 4480 if (initcall_debug) 4481 dev_info(dev, "shutdown\n"); 4482 dev->driver->shutdown(dev); 4483 } 4484 4485 device_unlock(dev); 4486 if (parent) 4487 device_unlock(parent); 4488 4489 put_device(dev); 4490 put_device(parent); 4491 4492 spin_lock(&devices_kset->list_lock); 4493 } 4494 spin_unlock(&devices_kset->list_lock); 4495 } 4496 4497 /* 4498 * Device logging functions 4499 */ 4500 4501 #ifdef CONFIG_PRINTK 4502 static void 4503 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4504 { 4505 const char *subsys; 4506 4507 memset(dev_info, 0, sizeof(*dev_info)); 4508 4509 if (dev->class) 4510 subsys = dev->class->name; 4511 else if (dev->bus) 4512 subsys = dev->bus->name; 4513 else 4514 return; 4515 4516 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4517 4518 /* 4519 * Add device identifier DEVICE=: 4520 * b12:8 block dev_t 4521 * c127:3 char dev_t 4522 * n8 netdev ifindex 4523 * +sound:card0 subsystem:devname 4524 */ 4525 if (MAJOR(dev->devt)) { 4526 char c; 4527 4528 if (strcmp(subsys, "block") == 0) 4529 c = 'b'; 4530 else 4531 c = 'c'; 4532 4533 snprintf(dev_info->device, sizeof(dev_info->device), 4534 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4535 } else if (strcmp(subsys, "net") == 0) { 4536 struct net_device *net = to_net_dev(dev); 4537 4538 snprintf(dev_info->device, sizeof(dev_info->device), 4539 "n%u", net->ifindex); 4540 } else { 4541 snprintf(dev_info->device, sizeof(dev_info->device), 4542 "+%s:%s", subsys, dev_name(dev)); 4543 } 4544 } 4545 4546 int dev_vprintk_emit(int level, const struct device *dev, 4547 const char *fmt, va_list args) 4548 { 4549 struct dev_printk_info dev_info; 4550 4551 set_dev_info(dev, &dev_info); 4552 4553 return vprintk_emit(0, level, &dev_info, fmt, args); 4554 } 4555 EXPORT_SYMBOL(dev_vprintk_emit); 4556 4557 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4558 { 4559 va_list args; 4560 int r; 4561 4562 va_start(args, fmt); 4563 4564 r = dev_vprintk_emit(level, dev, fmt, args); 4565 4566 va_end(args); 4567 4568 return r; 4569 } 4570 EXPORT_SYMBOL(dev_printk_emit); 4571 4572 static void __dev_printk(const char *level, const struct device *dev, 4573 struct va_format *vaf) 4574 { 4575 if (dev) 4576 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4577 dev_driver_string(dev), dev_name(dev), vaf); 4578 else 4579 printk("%s(NULL device *): %pV", level, vaf); 4580 } 4581 4582 void dev_printk(const char *level, const struct device *dev, 4583 const char *fmt, ...) 4584 { 4585 struct va_format vaf; 4586 va_list args; 4587 4588 va_start(args, fmt); 4589 4590 vaf.fmt = fmt; 4591 vaf.va = &args; 4592 4593 __dev_printk(level, dev, &vaf); 4594 4595 va_end(args); 4596 } 4597 EXPORT_SYMBOL(dev_printk); 4598 4599 #define define_dev_printk_level(func, kern_level) \ 4600 void func(const struct device *dev, const char *fmt, ...) \ 4601 { \ 4602 struct va_format vaf; \ 4603 va_list args; \ 4604 \ 4605 va_start(args, fmt); \ 4606 \ 4607 vaf.fmt = fmt; \ 4608 vaf.va = &args; \ 4609 \ 4610 __dev_printk(kern_level, dev, &vaf); \ 4611 \ 4612 va_end(args); \ 4613 } \ 4614 EXPORT_SYMBOL(func); 4615 4616 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4617 define_dev_printk_level(_dev_alert, KERN_ALERT); 4618 define_dev_printk_level(_dev_crit, KERN_CRIT); 4619 define_dev_printk_level(_dev_err, KERN_ERR); 4620 define_dev_printk_level(_dev_warn, KERN_WARNING); 4621 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4622 define_dev_printk_level(_dev_info, KERN_INFO); 4623 4624 #endif 4625 4626 /** 4627 * dev_err_probe - probe error check and log helper 4628 * @dev: the pointer to the struct device 4629 * @err: error value to test 4630 * @fmt: printf-style format string 4631 * @...: arguments as specified in the format string 4632 * 4633 * This helper implements common pattern present in probe functions for error 4634 * checking: print debug or error message depending if the error value is 4635 * -EPROBE_DEFER and propagate error upwards. 4636 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4637 * checked later by reading devices_deferred debugfs attribute. 4638 * It replaces code sequence:: 4639 * 4640 * if (err != -EPROBE_DEFER) 4641 * dev_err(dev, ...); 4642 * else 4643 * dev_dbg(dev, ...); 4644 * return err; 4645 * 4646 * with:: 4647 * 4648 * return dev_err_probe(dev, err, ...); 4649 * 4650 * Returns @err. 4651 * 4652 */ 4653 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4654 { 4655 struct va_format vaf; 4656 va_list args; 4657 4658 va_start(args, fmt); 4659 vaf.fmt = fmt; 4660 vaf.va = &args; 4661 4662 if (err != -EPROBE_DEFER) { 4663 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4664 } else { 4665 device_set_deferred_probe_reason(dev, &vaf); 4666 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4667 } 4668 4669 va_end(args); 4670 4671 return err; 4672 } 4673 EXPORT_SYMBOL_GPL(dev_err_probe); 4674 4675 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4676 { 4677 return fwnode && !IS_ERR(fwnode->secondary); 4678 } 4679 4680 /** 4681 * set_primary_fwnode - Change the primary firmware node of a given device. 4682 * @dev: Device to handle. 4683 * @fwnode: New primary firmware node of the device. 4684 * 4685 * Set the device's firmware node pointer to @fwnode, but if a secondary 4686 * firmware node of the device is present, preserve it. 4687 * 4688 * Valid fwnode cases are: 4689 * - primary --> secondary --> -ENODEV 4690 * - primary --> NULL 4691 * - secondary --> -ENODEV 4692 * - NULL 4693 */ 4694 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4695 { 4696 struct device *parent = dev->parent; 4697 struct fwnode_handle *fn = dev->fwnode; 4698 4699 if (fwnode) { 4700 if (fwnode_is_primary(fn)) 4701 fn = fn->secondary; 4702 4703 if (fn) { 4704 WARN_ON(fwnode->secondary); 4705 fwnode->secondary = fn; 4706 } 4707 dev->fwnode = fwnode; 4708 } else { 4709 if (fwnode_is_primary(fn)) { 4710 dev->fwnode = fn->secondary; 4711 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4712 if (!(parent && fn == parent->fwnode)) 4713 fn->secondary = NULL; 4714 } else { 4715 dev->fwnode = NULL; 4716 } 4717 } 4718 } 4719 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4720 4721 /** 4722 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4723 * @dev: Device to handle. 4724 * @fwnode: New secondary firmware node of the device. 4725 * 4726 * If a primary firmware node of the device is present, set its secondary 4727 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4728 * @fwnode. 4729 */ 4730 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4731 { 4732 if (fwnode) 4733 fwnode->secondary = ERR_PTR(-ENODEV); 4734 4735 if (fwnode_is_primary(dev->fwnode)) 4736 dev->fwnode->secondary = fwnode; 4737 else 4738 dev->fwnode = fwnode; 4739 } 4740 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4741 4742 /** 4743 * device_set_of_node_from_dev - reuse device-tree node of another device 4744 * @dev: device whose device-tree node is being set 4745 * @dev2: device whose device-tree node is being reused 4746 * 4747 * Takes another reference to the new device-tree node after first dropping 4748 * any reference held to the old node. 4749 */ 4750 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4751 { 4752 of_node_put(dev->of_node); 4753 dev->of_node = of_node_get(dev2->of_node); 4754 dev->of_node_reused = true; 4755 } 4756 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4757 4758 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4759 { 4760 dev->fwnode = fwnode; 4761 dev->of_node = to_of_node(fwnode); 4762 } 4763 EXPORT_SYMBOL_GPL(device_set_node); 4764 4765 int device_match_name(struct device *dev, const void *name) 4766 { 4767 return sysfs_streq(dev_name(dev), name); 4768 } 4769 EXPORT_SYMBOL_GPL(device_match_name); 4770 4771 int device_match_of_node(struct device *dev, const void *np) 4772 { 4773 return dev->of_node == np; 4774 } 4775 EXPORT_SYMBOL_GPL(device_match_of_node); 4776 4777 int device_match_fwnode(struct device *dev, const void *fwnode) 4778 { 4779 return dev_fwnode(dev) == fwnode; 4780 } 4781 EXPORT_SYMBOL_GPL(device_match_fwnode); 4782 4783 int device_match_devt(struct device *dev, const void *pdevt) 4784 { 4785 return dev->devt == *(dev_t *)pdevt; 4786 } 4787 EXPORT_SYMBOL_GPL(device_match_devt); 4788 4789 int device_match_acpi_dev(struct device *dev, const void *adev) 4790 { 4791 return ACPI_COMPANION(dev) == adev; 4792 } 4793 EXPORT_SYMBOL(device_match_acpi_dev); 4794 4795 int device_match_any(struct device *dev, const void *unused) 4796 { 4797 return 1; 4798 } 4799 EXPORT_SYMBOL_GPL(device_match_any); 4800