1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/rcupdate.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/string_helpers.h> 32 #include <linux/swiotlb.h> 33 #include <linux/sysfs.h> 34 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 35 36 #include "base.h" 37 #include "physical_location.h" 38 #include "power/power.h" 39 40 /* Device links support. */ 41 static LIST_HEAD(deferred_sync); 42 static unsigned int defer_sync_state_count = 1; 43 static DEFINE_MUTEX(fwnode_link_lock); 44 static bool fw_devlink_is_permissive(void); 45 static void __fw_devlink_link_to_consumers(struct device *dev); 46 static bool fw_devlink_drv_reg_done; 47 static bool fw_devlink_best_effort; 48 static struct workqueue_struct *device_link_wq; 49 50 /** 51 * __fwnode_link_add - Create a link between two fwnode_handles. 52 * @con: Consumer end of the link. 53 * @sup: Supplier end of the link. 54 * @flags: Link flags. 55 * 56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 57 * represents the detail that the firmware lists @sup fwnode as supplying a 58 * resource to @con. 59 * 60 * The driver core will use the fwnode link to create a device link between the 61 * two device objects corresponding to @con and @sup when they are created. The 62 * driver core will automatically delete the fwnode link between @con and @sup 63 * after doing that. 64 * 65 * Attempts to create duplicate links between the same pair of fwnode handles 66 * are ignored and there is no reference counting. 67 */ 68 static int __fwnode_link_add(struct fwnode_handle *con, 69 struct fwnode_handle *sup, u8 flags) 70 { 71 struct fwnode_link *link; 72 73 list_for_each_entry(link, &sup->consumers, s_hook) 74 if (link->consumer == con) { 75 link->flags |= flags; 76 return 0; 77 } 78 79 link = kzalloc(sizeof(*link), GFP_KERNEL); 80 if (!link) 81 return -ENOMEM; 82 83 link->supplier = sup; 84 INIT_LIST_HEAD(&link->s_hook); 85 link->consumer = con; 86 INIT_LIST_HEAD(&link->c_hook); 87 link->flags = flags; 88 89 list_add(&link->s_hook, &sup->consumers); 90 list_add(&link->c_hook, &con->suppliers); 91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 92 con, sup); 93 94 return 0; 95 } 96 97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 98 u8 flags) 99 { 100 int ret; 101 102 mutex_lock(&fwnode_link_lock); 103 ret = __fwnode_link_add(con, sup, flags); 104 mutex_unlock(&fwnode_link_lock); 105 return ret; 106 } 107 108 /** 109 * __fwnode_link_del - Delete a link between two fwnode_handles. 110 * @link: the fwnode_link to be deleted 111 * 112 * The fwnode_link_lock needs to be held when this function is called. 113 */ 114 static void __fwnode_link_del(struct fwnode_link *link) 115 { 116 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 117 link->consumer, link->supplier); 118 list_del(&link->s_hook); 119 list_del(&link->c_hook); 120 kfree(link); 121 } 122 123 /** 124 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 125 * @link: the fwnode_link to be marked 126 * 127 * The fwnode_link_lock needs to be held when this function is called. 128 */ 129 static void __fwnode_link_cycle(struct fwnode_link *link) 130 { 131 pr_debug("%pfwf: cycle: depends on %pfwf\n", 132 link->consumer, link->supplier); 133 link->flags |= FWLINK_FLAG_CYCLE; 134 } 135 136 /** 137 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 138 * @fwnode: fwnode whose supplier links need to be deleted 139 * 140 * Deletes all supplier links connecting directly to @fwnode. 141 */ 142 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 143 { 144 struct fwnode_link *link, *tmp; 145 146 mutex_lock(&fwnode_link_lock); 147 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 148 __fwnode_link_del(link); 149 mutex_unlock(&fwnode_link_lock); 150 } 151 152 /** 153 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 154 * @fwnode: fwnode whose consumer links need to be deleted 155 * 156 * Deletes all consumer links connecting directly to @fwnode. 157 */ 158 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 159 { 160 struct fwnode_link *link, *tmp; 161 162 mutex_lock(&fwnode_link_lock); 163 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 164 __fwnode_link_del(link); 165 mutex_unlock(&fwnode_link_lock); 166 } 167 168 /** 169 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 170 * @fwnode: fwnode whose links needs to be deleted 171 * 172 * Deletes all links connecting directly to a fwnode. 173 */ 174 void fwnode_links_purge(struct fwnode_handle *fwnode) 175 { 176 fwnode_links_purge_suppliers(fwnode); 177 fwnode_links_purge_consumers(fwnode); 178 } 179 180 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 181 { 182 struct fwnode_handle *child; 183 184 /* Don't purge consumer links of an added child */ 185 if (fwnode->dev) 186 return; 187 188 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 189 fwnode_links_purge_consumers(fwnode); 190 191 fwnode_for_each_available_child_node(fwnode, child) 192 fw_devlink_purge_absent_suppliers(child); 193 } 194 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 195 196 /** 197 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 198 * @from: move consumers away from this fwnode 199 * @to: move consumers to this fwnode 200 * 201 * Move all consumer links from @from fwnode to @to fwnode. 202 */ 203 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 204 struct fwnode_handle *to) 205 { 206 struct fwnode_link *link, *tmp; 207 208 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 209 __fwnode_link_add(link->consumer, to, link->flags); 210 __fwnode_link_del(link); 211 } 212 } 213 214 /** 215 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 216 * @fwnode: fwnode from which to pick up dangling consumers 217 * @new_sup: fwnode of new supplier 218 * 219 * If the @fwnode has a corresponding struct device and the device supports 220 * probing (that is, added to a bus), then we want to let fw_devlink create 221 * MANAGED device links to this device, so leave @fwnode and its descendant's 222 * fwnode links alone. 223 * 224 * Otherwise, move its consumers to the new supplier @new_sup. 225 */ 226 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 227 struct fwnode_handle *new_sup) 228 { 229 struct fwnode_handle *child; 230 231 if (fwnode->dev && fwnode->dev->bus) 232 return; 233 234 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 235 __fwnode_links_move_consumers(fwnode, new_sup); 236 237 fwnode_for_each_available_child_node(fwnode, child) 238 __fw_devlink_pickup_dangling_consumers(child, new_sup); 239 } 240 241 static DEFINE_MUTEX(device_links_lock); 242 DEFINE_STATIC_SRCU(device_links_srcu); 243 244 static inline void device_links_write_lock(void) 245 { 246 mutex_lock(&device_links_lock); 247 } 248 249 static inline void device_links_write_unlock(void) 250 { 251 mutex_unlock(&device_links_lock); 252 } 253 254 int device_links_read_lock(void) __acquires(&device_links_srcu) 255 { 256 return srcu_read_lock(&device_links_srcu); 257 } 258 259 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 260 { 261 srcu_read_unlock(&device_links_srcu, idx); 262 } 263 264 int device_links_read_lock_held(void) 265 { 266 return srcu_read_lock_held(&device_links_srcu); 267 } 268 269 static void device_link_synchronize_removal(void) 270 { 271 synchronize_srcu(&device_links_srcu); 272 } 273 274 static void device_link_remove_from_lists(struct device_link *link) 275 { 276 list_del_rcu(&link->s_node); 277 list_del_rcu(&link->c_node); 278 } 279 280 static bool device_is_ancestor(struct device *dev, struct device *target) 281 { 282 while (target->parent) { 283 target = target->parent; 284 if (dev == target) 285 return true; 286 } 287 return false; 288 } 289 290 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 291 DL_FLAG_CYCLE | \ 292 DL_FLAG_MANAGED) 293 static inline bool device_link_flag_is_sync_state_only(u32 flags) 294 { 295 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 296 } 297 298 /** 299 * device_is_dependent - Check if one device depends on another one 300 * @dev: Device to check dependencies for. 301 * @target: Device to check against. 302 * 303 * Check if @target depends on @dev or any device dependent on it (its child or 304 * its consumer etc). Return 1 if that is the case or 0 otherwise. 305 */ 306 static int device_is_dependent(struct device *dev, void *target) 307 { 308 struct device_link *link; 309 int ret; 310 311 /* 312 * The "ancestors" check is needed to catch the case when the target 313 * device has not been completely initialized yet and it is still 314 * missing from the list of children of its parent device. 315 */ 316 if (dev == target || device_is_ancestor(dev, target)) 317 return 1; 318 319 ret = device_for_each_child(dev, target, device_is_dependent); 320 if (ret) 321 return ret; 322 323 list_for_each_entry(link, &dev->links.consumers, s_node) { 324 if (device_link_flag_is_sync_state_only(link->flags)) 325 continue; 326 327 if (link->consumer == target) 328 return 1; 329 330 ret = device_is_dependent(link->consumer, target); 331 if (ret) 332 break; 333 } 334 return ret; 335 } 336 337 static void device_link_init_status(struct device_link *link, 338 struct device *consumer, 339 struct device *supplier) 340 { 341 switch (supplier->links.status) { 342 case DL_DEV_PROBING: 343 switch (consumer->links.status) { 344 case DL_DEV_PROBING: 345 /* 346 * A consumer driver can create a link to a supplier 347 * that has not completed its probing yet as long as it 348 * knows that the supplier is already functional (for 349 * example, it has just acquired some resources from the 350 * supplier). 351 */ 352 link->status = DL_STATE_CONSUMER_PROBE; 353 break; 354 default: 355 link->status = DL_STATE_DORMANT; 356 break; 357 } 358 break; 359 case DL_DEV_DRIVER_BOUND: 360 switch (consumer->links.status) { 361 case DL_DEV_PROBING: 362 link->status = DL_STATE_CONSUMER_PROBE; 363 break; 364 case DL_DEV_DRIVER_BOUND: 365 link->status = DL_STATE_ACTIVE; 366 break; 367 default: 368 link->status = DL_STATE_AVAILABLE; 369 break; 370 } 371 break; 372 case DL_DEV_UNBINDING: 373 link->status = DL_STATE_SUPPLIER_UNBIND; 374 break; 375 default: 376 link->status = DL_STATE_DORMANT; 377 break; 378 } 379 } 380 381 static int device_reorder_to_tail(struct device *dev, void *not_used) 382 { 383 struct device_link *link; 384 385 /* 386 * Devices that have not been registered yet will be put to the ends 387 * of the lists during the registration, so skip them here. 388 */ 389 if (device_is_registered(dev)) 390 devices_kset_move_last(dev); 391 392 if (device_pm_initialized(dev)) 393 device_pm_move_last(dev); 394 395 device_for_each_child(dev, NULL, device_reorder_to_tail); 396 list_for_each_entry(link, &dev->links.consumers, s_node) { 397 if (device_link_flag_is_sync_state_only(link->flags)) 398 continue; 399 device_reorder_to_tail(link->consumer, NULL); 400 } 401 402 return 0; 403 } 404 405 /** 406 * device_pm_move_to_tail - Move set of devices to the end of device lists 407 * @dev: Device to move 408 * 409 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 410 * 411 * It moves the @dev along with all of its children and all of its consumers 412 * to the ends of the device_kset and dpm_list, recursively. 413 */ 414 void device_pm_move_to_tail(struct device *dev) 415 { 416 int idx; 417 418 idx = device_links_read_lock(); 419 device_pm_lock(); 420 device_reorder_to_tail(dev, NULL); 421 device_pm_unlock(); 422 device_links_read_unlock(idx); 423 } 424 425 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 426 427 static ssize_t status_show(struct device *dev, 428 struct device_attribute *attr, char *buf) 429 { 430 const char *output; 431 432 switch (to_devlink(dev)->status) { 433 case DL_STATE_NONE: 434 output = "not tracked"; 435 break; 436 case DL_STATE_DORMANT: 437 output = "dormant"; 438 break; 439 case DL_STATE_AVAILABLE: 440 output = "available"; 441 break; 442 case DL_STATE_CONSUMER_PROBE: 443 output = "consumer probing"; 444 break; 445 case DL_STATE_ACTIVE: 446 output = "active"; 447 break; 448 case DL_STATE_SUPPLIER_UNBIND: 449 output = "supplier unbinding"; 450 break; 451 default: 452 output = "unknown"; 453 break; 454 } 455 456 return sysfs_emit(buf, "%s\n", output); 457 } 458 static DEVICE_ATTR_RO(status); 459 460 static ssize_t auto_remove_on_show(struct device *dev, 461 struct device_attribute *attr, char *buf) 462 { 463 struct device_link *link = to_devlink(dev); 464 const char *output; 465 466 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 467 output = "supplier unbind"; 468 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 469 output = "consumer unbind"; 470 else 471 output = "never"; 472 473 return sysfs_emit(buf, "%s\n", output); 474 } 475 static DEVICE_ATTR_RO(auto_remove_on); 476 477 static ssize_t runtime_pm_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct device_link *link = to_devlink(dev); 481 482 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 483 } 484 static DEVICE_ATTR_RO(runtime_pm); 485 486 static ssize_t sync_state_only_show(struct device *dev, 487 struct device_attribute *attr, char *buf) 488 { 489 struct device_link *link = to_devlink(dev); 490 491 return sysfs_emit(buf, "%d\n", 492 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 493 } 494 static DEVICE_ATTR_RO(sync_state_only); 495 496 static struct attribute *devlink_attrs[] = { 497 &dev_attr_status.attr, 498 &dev_attr_auto_remove_on.attr, 499 &dev_attr_runtime_pm.attr, 500 &dev_attr_sync_state_only.attr, 501 NULL, 502 }; 503 ATTRIBUTE_GROUPS(devlink); 504 505 static void device_link_release_fn(struct work_struct *work) 506 { 507 struct device_link *link = container_of(work, struct device_link, rm_work); 508 509 /* Ensure that all references to the link object have been dropped. */ 510 device_link_synchronize_removal(); 511 512 pm_runtime_release_supplier(link); 513 /* 514 * If supplier_preactivated is set, the link has been dropped between 515 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 516 * in __driver_probe_device(). In that case, drop the supplier's 517 * PM-runtime usage counter to remove the reference taken by 518 * pm_runtime_get_suppliers(). 519 */ 520 if (link->supplier_preactivated) 521 pm_runtime_put_noidle(link->supplier); 522 523 pm_request_idle(link->supplier); 524 525 put_device(link->consumer); 526 put_device(link->supplier); 527 kfree(link); 528 } 529 530 static void devlink_dev_release(struct device *dev) 531 { 532 struct device_link *link = to_devlink(dev); 533 534 INIT_WORK(&link->rm_work, device_link_release_fn); 535 /* 536 * It may take a while to complete this work because of the SRCU 537 * synchronization in device_link_release_fn() and if the consumer or 538 * supplier devices get deleted when it runs, so put it into the 539 * dedicated workqueue. 540 */ 541 queue_work(device_link_wq, &link->rm_work); 542 } 543 544 /** 545 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 546 */ 547 void device_link_wait_removal(void) 548 { 549 /* 550 * devlink removal jobs are queued in the dedicated work queue. 551 * To be sure that all removal jobs are terminated, ensure that any 552 * scheduled work has run to completion. 553 */ 554 flush_workqueue(device_link_wq); 555 } 556 EXPORT_SYMBOL_GPL(device_link_wait_removal); 557 558 static struct class devlink_class = { 559 .name = "devlink", 560 .dev_groups = devlink_groups, 561 .dev_release = devlink_dev_release, 562 }; 563 564 static int devlink_add_symlinks(struct device *dev) 565 { 566 int ret; 567 size_t len; 568 struct device_link *link = to_devlink(dev); 569 struct device *sup = link->supplier; 570 struct device *con = link->consumer; 571 char *buf; 572 573 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 574 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 575 len += strlen(":"); 576 len += strlen("supplier:") + 1; 577 buf = kzalloc(len, GFP_KERNEL); 578 if (!buf) 579 return -ENOMEM; 580 581 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 582 if (ret) 583 goto out; 584 585 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 586 if (ret) 587 goto err_con; 588 589 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 590 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 591 if (ret) 592 goto err_con_dev; 593 594 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 595 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 596 if (ret) 597 goto err_sup_dev; 598 599 goto out; 600 601 err_sup_dev: 602 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 603 sysfs_remove_link(&sup->kobj, buf); 604 err_con_dev: 605 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 606 err_con: 607 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 608 out: 609 kfree(buf); 610 return ret; 611 } 612 613 static void devlink_remove_symlinks(struct device *dev) 614 { 615 struct device_link *link = to_devlink(dev); 616 size_t len; 617 struct device *sup = link->supplier; 618 struct device *con = link->consumer; 619 char *buf; 620 621 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 622 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 623 624 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 625 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 626 len += strlen(":"); 627 len += strlen("supplier:") + 1; 628 buf = kzalloc(len, GFP_KERNEL); 629 if (!buf) { 630 WARN(1, "Unable to properly free device link symlinks!\n"); 631 return; 632 } 633 634 if (device_is_registered(con)) { 635 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 636 sysfs_remove_link(&con->kobj, buf); 637 } 638 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 639 sysfs_remove_link(&sup->kobj, buf); 640 kfree(buf); 641 } 642 643 static struct class_interface devlink_class_intf = { 644 .class = &devlink_class, 645 .add_dev = devlink_add_symlinks, 646 .remove_dev = devlink_remove_symlinks, 647 }; 648 649 static int __init devlink_class_init(void) 650 { 651 int ret; 652 653 ret = class_register(&devlink_class); 654 if (ret) 655 return ret; 656 657 ret = class_interface_register(&devlink_class_intf); 658 if (ret) 659 class_unregister(&devlink_class); 660 661 return ret; 662 } 663 postcore_initcall(devlink_class_init); 664 665 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 666 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 667 DL_FLAG_AUTOPROBE_CONSUMER | \ 668 DL_FLAG_SYNC_STATE_ONLY | \ 669 DL_FLAG_INFERRED | \ 670 DL_FLAG_CYCLE) 671 672 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 673 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 674 675 /** 676 * device_link_add - Create a link between two devices. 677 * @consumer: Consumer end of the link. 678 * @supplier: Supplier end of the link. 679 * @flags: Link flags. 680 * 681 * The caller is responsible for the proper synchronization of the link creation 682 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 683 * runtime PM framework to take the link into account. Second, if the 684 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 685 * be forced into the active meta state and reference-counted upon the creation 686 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 687 * ignored. 688 * 689 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 690 * expected to release the link returned by it directly with the help of either 691 * device_link_del() or device_link_remove(). 692 * 693 * If that flag is not set, however, the caller of this function is handing the 694 * management of the link over to the driver core entirely and its return value 695 * can only be used to check whether or not the link is present. In that case, 696 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 697 * flags can be used to indicate to the driver core when the link can be safely 698 * deleted. Namely, setting one of them in @flags indicates to the driver core 699 * that the link is not going to be used (by the given caller of this function) 700 * after unbinding the consumer or supplier driver, respectively, from its 701 * device, so the link can be deleted at that point. If none of them is set, 702 * the link will be maintained until one of the devices pointed to by it (either 703 * the consumer or the supplier) is unregistered. 704 * 705 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 706 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 707 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 708 * be used to request the driver core to automatically probe for a consumer 709 * driver after successfully binding a driver to the supplier device. 710 * 711 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 712 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 713 * the same time is invalid and will cause NULL to be returned upfront. 714 * However, if a device link between the given @consumer and @supplier pair 715 * exists already when this function is called for them, the existing link will 716 * be returned regardless of its current type and status (the link's flags may 717 * be modified then). The caller of this function is then expected to treat 718 * the link as though it has just been created, so (in particular) if 719 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 720 * explicitly when not needed any more (as stated above). 721 * 722 * A side effect of the link creation is re-ordering of dpm_list and the 723 * devices_kset list by moving the consumer device and all devices depending 724 * on it to the ends of these lists (that does not happen to devices that have 725 * not been registered when this function is called). 726 * 727 * The supplier device is required to be registered when this function is called 728 * and NULL will be returned if that is not the case. The consumer device need 729 * not be registered, however. 730 */ 731 struct device_link *device_link_add(struct device *consumer, 732 struct device *supplier, u32 flags) 733 { 734 struct device_link *link; 735 736 if (!consumer || !supplier || consumer == supplier || 737 flags & ~DL_ADD_VALID_FLAGS || 738 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 739 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 740 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 741 DL_FLAG_AUTOREMOVE_SUPPLIER))) 742 return NULL; 743 744 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 745 if (pm_runtime_get_sync(supplier) < 0) { 746 pm_runtime_put_noidle(supplier); 747 return NULL; 748 } 749 } 750 751 if (!(flags & DL_FLAG_STATELESS)) 752 flags |= DL_FLAG_MANAGED; 753 754 if (flags & DL_FLAG_SYNC_STATE_ONLY && 755 !device_link_flag_is_sync_state_only(flags)) 756 return NULL; 757 758 device_links_write_lock(); 759 device_pm_lock(); 760 761 /* 762 * If the supplier has not been fully registered yet or there is a 763 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 764 * the supplier already in the graph, return NULL. If the link is a 765 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 766 * because it only affects sync_state() callbacks. 767 */ 768 if (!device_pm_initialized(supplier) 769 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 770 device_is_dependent(consumer, supplier))) { 771 link = NULL; 772 goto out; 773 } 774 775 /* 776 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 777 * So, only create it if the consumer hasn't probed yet. 778 */ 779 if (flags & DL_FLAG_SYNC_STATE_ONLY && 780 consumer->links.status != DL_DEV_NO_DRIVER && 781 consumer->links.status != DL_DEV_PROBING) { 782 link = NULL; 783 goto out; 784 } 785 786 /* 787 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 788 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 789 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 790 */ 791 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 792 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 793 794 list_for_each_entry(link, &supplier->links.consumers, s_node) { 795 if (link->consumer != consumer) 796 continue; 797 798 if (link->flags & DL_FLAG_INFERRED && 799 !(flags & DL_FLAG_INFERRED)) 800 link->flags &= ~DL_FLAG_INFERRED; 801 802 if (flags & DL_FLAG_PM_RUNTIME) { 803 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 804 pm_runtime_new_link(consumer); 805 link->flags |= DL_FLAG_PM_RUNTIME; 806 } 807 if (flags & DL_FLAG_RPM_ACTIVE) 808 refcount_inc(&link->rpm_active); 809 } 810 811 if (flags & DL_FLAG_STATELESS) { 812 kref_get(&link->kref); 813 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 814 !(link->flags & DL_FLAG_STATELESS)) { 815 link->flags |= DL_FLAG_STATELESS; 816 goto reorder; 817 } else { 818 link->flags |= DL_FLAG_STATELESS; 819 goto out; 820 } 821 } 822 823 /* 824 * If the life time of the link following from the new flags is 825 * longer than indicated by the flags of the existing link, 826 * update the existing link to stay around longer. 827 */ 828 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 829 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 830 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 831 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 832 } 833 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 834 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 835 DL_FLAG_AUTOREMOVE_SUPPLIER); 836 } 837 if (!(link->flags & DL_FLAG_MANAGED)) { 838 kref_get(&link->kref); 839 link->flags |= DL_FLAG_MANAGED; 840 device_link_init_status(link, consumer, supplier); 841 } 842 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 843 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 844 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 845 goto reorder; 846 } 847 848 goto out; 849 } 850 851 link = kzalloc(sizeof(*link), GFP_KERNEL); 852 if (!link) 853 goto out; 854 855 refcount_set(&link->rpm_active, 1); 856 857 get_device(supplier); 858 link->supplier = supplier; 859 INIT_LIST_HEAD(&link->s_node); 860 get_device(consumer); 861 link->consumer = consumer; 862 INIT_LIST_HEAD(&link->c_node); 863 link->flags = flags; 864 kref_init(&link->kref); 865 866 link->link_dev.class = &devlink_class; 867 device_set_pm_not_required(&link->link_dev); 868 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 869 dev_bus_name(supplier), dev_name(supplier), 870 dev_bus_name(consumer), dev_name(consumer)); 871 if (device_register(&link->link_dev)) { 872 put_device(&link->link_dev); 873 link = NULL; 874 goto out; 875 } 876 877 if (flags & DL_FLAG_PM_RUNTIME) { 878 if (flags & DL_FLAG_RPM_ACTIVE) 879 refcount_inc(&link->rpm_active); 880 881 pm_runtime_new_link(consumer); 882 } 883 884 /* Determine the initial link state. */ 885 if (flags & DL_FLAG_STATELESS) 886 link->status = DL_STATE_NONE; 887 else 888 device_link_init_status(link, consumer, supplier); 889 890 /* 891 * Some callers expect the link creation during consumer driver probe to 892 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 893 */ 894 if (link->status == DL_STATE_CONSUMER_PROBE && 895 flags & DL_FLAG_PM_RUNTIME) 896 pm_runtime_resume(supplier); 897 898 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 899 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 900 901 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 902 dev_dbg(consumer, 903 "Linked as a sync state only consumer to %s\n", 904 dev_name(supplier)); 905 goto out; 906 } 907 908 reorder: 909 /* 910 * Move the consumer and all of the devices depending on it to the end 911 * of dpm_list and the devices_kset list. 912 * 913 * It is necessary to hold dpm_list locked throughout all that or else 914 * we may end up suspending with a wrong ordering of it. 915 */ 916 device_reorder_to_tail(consumer, NULL); 917 918 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 919 920 out: 921 device_pm_unlock(); 922 device_links_write_unlock(); 923 924 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 925 pm_runtime_put(supplier); 926 927 return link; 928 } 929 EXPORT_SYMBOL_GPL(device_link_add); 930 931 static void __device_link_del(struct kref *kref) 932 { 933 struct device_link *link = container_of(kref, struct device_link, kref); 934 935 dev_dbg(link->consumer, "Dropping the link to %s\n", 936 dev_name(link->supplier)); 937 938 pm_runtime_drop_link(link); 939 940 device_link_remove_from_lists(link); 941 device_unregister(&link->link_dev); 942 } 943 944 static void device_link_put_kref(struct device_link *link) 945 { 946 if (link->flags & DL_FLAG_STATELESS) 947 kref_put(&link->kref, __device_link_del); 948 else if (!device_is_registered(link->consumer)) 949 __device_link_del(&link->kref); 950 else 951 WARN(1, "Unable to drop a managed device link reference\n"); 952 } 953 954 /** 955 * device_link_del - Delete a stateless link between two devices. 956 * @link: Device link to delete. 957 * 958 * The caller must ensure proper synchronization of this function with runtime 959 * PM. If the link was added multiple times, it needs to be deleted as often. 960 * Care is required for hotplugged devices: Their links are purged on removal 961 * and calling device_link_del() is then no longer allowed. 962 */ 963 void device_link_del(struct device_link *link) 964 { 965 device_links_write_lock(); 966 device_link_put_kref(link); 967 device_links_write_unlock(); 968 } 969 EXPORT_SYMBOL_GPL(device_link_del); 970 971 /** 972 * device_link_remove - Delete a stateless link between two devices. 973 * @consumer: Consumer end of the link. 974 * @supplier: Supplier end of the link. 975 * 976 * The caller must ensure proper synchronization of this function with runtime 977 * PM. 978 */ 979 void device_link_remove(void *consumer, struct device *supplier) 980 { 981 struct device_link *link; 982 983 if (WARN_ON(consumer == supplier)) 984 return; 985 986 device_links_write_lock(); 987 988 list_for_each_entry(link, &supplier->links.consumers, s_node) { 989 if (link->consumer == consumer) { 990 device_link_put_kref(link); 991 break; 992 } 993 } 994 995 device_links_write_unlock(); 996 } 997 EXPORT_SYMBOL_GPL(device_link_remove); 998 999 static void device_links_missing_supplier(struct device *dev) 1000 { 1001 struct device_link *link; 1002 1003 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1004 if (link->status != DL_STATE_CONSUMER_PROBE) 1005 continue; 1006 1007 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1008 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1009 } else { 1010 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1011 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1012 } 1013 } 1014 } 1015 1016 static bool dev_is_best_effort(struct device *dev) 1017 { 1018 return (fw_devlink_best_effort && dev->can_match) || 1019 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1020 } 1021 1022 static struct fwnode_handle *fwnode_links_check_suppliers( 1023 struct fwnode_handle *fwnode) 1024 { 1025 struct fwnode_link *link; 1026 1027 if (!fwnode || fw_devlink_is_permissive()) 1028 return NULL; 1029 1030 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1031 if (!(link->flags & 1032 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1033 return link->supplier; 1034 1035 return NULL; 1036 } 1037 1038 /** 1039 * device_links_check_suppliers - Check presence of supplier drivers. 1040 * @dev: Consumer device. 1041 * 1042 * Check links from this device to any suppliers. Walk the list of the device's 1043 * links to suppliers and see if all of them are available. If not, simply 1044 * return -EPROBE_DEFER. 1045 * 1046 * We need to guarantee that the supplier will not go away after the check has 1047 * been positive here. It only can go away in __device_release_driver() and 1048 * that function checks the device's links to consumers. This means we need to 1049 * mark the link as "consumer probe in progress" to make the supplier removal 1050 * wait for us to complete (or bad things may happen). 1051 * 1052 * Links without the DL_FLAG_MANAGED flag set are ignored. 1053 */ 1054 int device_links_check_suppliers(struct device *dev) 1055 { 1056 struct device_link *link; 1057 int ret = 0, fwnode_ret = 0; 1058 struct fwnode_handle *sup_fw; 1059 1060 /* 1061 * Device waiting for supplier to become available is not allowed to 1062 * probe. 1063 */ 1064 mutex_lock(&fwnode_link_lock); 1065 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1066 if (sup_fw) { 1067 if (!dev_is_best_effort(dev)) { 1068 fwnode_ret = -EPROBE_DEFER; 1069 dev_err_probe(dev, -EPROBE_DEFER, 1070 "wait for supplier %pfwf\n", sup_fw); 1071 } else { 1072 fwnode_ret = -EAGAIN; 1073 } 1074 } 1075 mutex_unlock(&fwnode_link_lock); 1076 if (fwnode_ret == -EPROBE_DEFER) 1077 return fwnode_ret; 1078 1079 device_links_write_lock(); 1080 1081 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1082 if (!(link->flags & DL_FLAG_MANAGED)) 1083 continue; 1084 1085 if (link->status != DL_STATE_AVAILABLE && 1086 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1087 1088 if (dev_is_best_effort(dev) && 1089 link->flags & DL_FLAG_INFERRED && 1090 !link->supplier->can_match) { 1091 ret = -EAGAIN; 1092 continue; 1093 } 1094 1095 device_links_missing_supplier(dev); 1096 dev_err_probe(dev, -EPROBE_DEFER, 1097 "supplier %s not ready\n", 1098 dev_name(link->supplier)); 1099 ret = -EPROBE_DEFER; 1100 break; 1101 } 1102 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1103 } 1104 dev->links.status = DL_DEV_PROBING; 1105 1106 device_links_write_unlock(); 1107 1108 return ret ? ret : fwnode_ret; 1109 } 1110 1111 /** 1112 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1113 * @dev: Device to call sync_state() on 1114 * @list: List head to queue the @dev on 1115 * 1116 * Queues a device for a sync_state() callback when the device links write lock 1117 * isn't held. This allows the sync_state() execution flow to use device links 1118 * APIs. The caller must ensure this function is called with 1119 * device_links_write_lock() held. 1120 * 1121 * This function does a get_device() to make sure the device is not freed while 1122 * on this list. 1123 * 1124 * So the caller must also ensure that device_links_flush_sync_list() is called 1125 * as soon as the caller releases device_links_write_lock(). This is necessary 1126 * to make sure the sync_state() is called in a timely fashion and the 1127 * put_device() is called on this device. 1128 */ 1129 static void __device_links_queue_sync_state(struct device *dev, 1130 struct list_head *list) 1131 { 1132 struct device_link *link; 1133 1134 if (!dev_has_sync_state(dev)) 1135 return; 1136 if (dev->state_synced) 1137 return; 1138 1139 list_for_each_entry(link, &dev->links.consumers, s_node) { 1140 if (!(link->flags & DL_FLAG_MANAGED)) 1141 continue; 1142 if (link->status != DL_STATE_ACTIVE) 1143 return; 1144 } 1145 1146 /* 1147 * Set the flag here to avoid adding the same device to a list more 1148 * than once. This can happen if new consumers get added to the device 1149 * and probed before the list is flushed. 1150 */ 1151 dev->state_synced = true; 1152 1153 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1154 return; 1155 1156 get_device(dev); 1157 list_add_tail(&dev->links.defer_sync, list); 1158 } 1159 1160 /** 1161 * device_links_flush_sync_list - Call sync_state() on a list of devices 1162 * @list: List of devices to call sync_state() on 1163 * @dont_lock_dev: Device for which lock is already held by the caller 1164 * 1165 * Calls sync_state() on all the devices that have been queued for it. This 1166 * function is used in conjunction with __device_links_queue_sync_state(). The 1167 * @dont_lock_dev parameter is useful when this function is called from a 1168 * context where a device lock is already held. 1169 */ 1170 static void device_links_flush_sync_list(struct list_head *list, 1171 struct device *dont_lock_dev) 1172 { 1173 struct device *dev, *tmp; 1174 1175 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1176 list_del_init(&dev->links.defer_sync); 1177 1178 if (dev != dont_lock_dev) 1179 device_lock(dev); 1180 1181 dev_sync_state(dev); 1182 1183 if (dev != dont_lock_dev) 1184 device_unlock(dev); 1185 1186 put_device(dev); 1187 } 1188 } 1189 1190 void device_links_supplier_sync_state_pause(void) 1191 { 1192 device_links_write_lock(); 1193 defer_sync_state_count++; 1194 device_links_write_unlock(); 1195 } 1196 1197 void device_links_supplier_sync_state_resume(void) 1198 { 1199 struct device *dev, *tmp; 1200 LIST_HEAD(sync_list); 1201 1202 device_links_write_lock(); 1203 if (!defer_sync_state_count) { 1204 WARN(true, "Unmatched sync_state pause/resume!"); 1205 goto out; 1206 } 1207 defer_sync_state_count--; 1208 if (defer_sync_state_count) 1209 goto out; 1210 1211 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1212 /* 1213 * Delete from deferred_sync list before queuing it to 1214 * sync_list because defer_sync is used for both lists. 1215 */ 1216 list_del_init(&dev->links.defer_sync); 1217 __device_links_queue_sync_state(dev, &sync_list); 1218 } 1219 out: 1220 device_links_write_unlock(); 1221 1222 device_links_flush_sync_list(&sync_list, NULL); 1223 } 1224 1225 static int sync_state_resume_initcall(void) 1226 { 1227 device_links_supplier_sync_state_resume(); 1228 return 0; 1229 } 1230 late_initcall(sync_state_resume_initcall); 1231 1232 static void __device_links_supplier_defer_sync(struct device *sup) 1233 { 1234 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1235 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1236 } 1237 1238 static void device_link_drop_managed(struct device_link *link) 1239 { 1240 link->flags &= ~DL_FLAG_MANAGED; 1241 WRITE_ONCE(link->status, DL_STATE_NONE); 1242 kref_put(&link->kref, __device_link_del); 1243 } 1244 1245 static ssize_t waiting_for_supplier_show(struct device *dev, 1246 struct device_attribute *attr, 1247 char *buf) 1248 { 1249 bool val; 1250 1251 device_lock(dev); 1252 mutex_lock(&fwnode_link_lock); 1253 val = !!fwnode_links_check_suppliers(dev->fwnode); 1254 mutex_unlock(&fwnode_link_lock); 1255 device_unlock(dev); 1256 return sysfs_emit(buf, "%u\n", val); 1257 } 1258 static DEVICE_ATTR_RO(waiting_for_supplier); 1259 1260 /** 1261 * device_links_force_bind - Prepares device to be force bound 1262 * @dev: Consumer device. 1263 * 1264 * device_bind_driver() force binds a device to a driver without calling any 1265 * driver probe functions. So the consumer really isn't going to wait for any 1266 * supplier before it's bound to the driver. We still want the device link 1267 * states to be sensible when this happens. 1268 * 1269 * In preparation for device_bind_driver(), this function goes through each 1270 * supplier device links and checks if the supplier is bound. If it is, then 1271 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1272 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1273 */ 1274 void device_links_force_bind(struct device *dev) 1275 { 1276 struct device_link *link, *ln; 1277 1278 device_links_write_lock(); 1279 1280 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1281 if (!(link->flags & DL_FLAG_MANAGED)) 1282 continue; 1283 1284 if (link->status != DL_STATE_AVAILABLE) { 1285 device_link_drop_managed(link); 1286 continue; 1287 } 1288 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1289 } 1290 dev->links.status = DL_DEV_PROBING; 1291 1292 device_links_write_unlock(); 1293 } 1294 1295 /** 1296 * device_links_driver_bound - Update device links after probing its driver. 1297 * @dev: Device to update the links for. 1298 * 1299 * The probe has been successful, so update links from this device to any 1300 * consumers by changing their status to "available". 1301 * 1302 * Also change the status of @dev's links to suppliers to "active". 1303 * 1304 * Links without the DL_FLAG_MANAGED flag set are ignored. 1305 */ 1306 void device_links_driver_bound(struct device *dev) 1307 { 1308 struct device_link *link, *ln; 1309 LIST_HEAD(sync_list); 1310 1311 /* 1312 * If a device binds successfully, it's expected to have created all 1313 * the device links it needs to or make new device links as it needs 1314 * them. So, fw_devlink no longer needs to create device links to any 1315 * of the device's suppliers. 1316 * 1317 * Also, if a child firmware node of this bound device is not added as a 1318 * device by now, assume it is never going to be added. Make this bound 1319 * device the fallback supplier to the dangling consumers of the child 1320 * firmware node because this bound device is probably implementing the 1321 * child firmware node functionality and we don't want the dangling 1322 * consumers to defer probe indefinitely waiting for a device for the 1323 * child firmware node. 1324 */ 1325 if (dev->fwnode && dev->fwnode->dev == dev) { 1326 struct fwnode_handle *child; 1327 fwnode_links_purge_suppliers(dev->fwnode); 1328 mutex_lock(&fwnode_link_lock); 1329 fwnode_for_each_available_child_node(dev->fwnode, child) 1330 __fw_devlink_pickup_dangling_consumers(child, 1331 dev->fwnode); 1332 __fw_devlink_link_to_consumers(dev); 1333 mutex_unlock(&fwnode_link_lock); 1334 } 1335 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1336 1337 device_links_write_lock(); 1338 1339 list_for_each_entry(link, &dev->links.consumers, s_node) { 1340 if (!(link->flags & DL_FLAG_MANAGED)) 1341 continue; 1342 1343 /* 1344 * Links created during consumer probe may be in the "consumer 1345 * probe" state to start with if the supplier is still probing 1346 * when they are created and they may become "active" if the 1347 * consumer probe returns first. Skip them here. 1348 */ 1349 if (link->status == DL_STATE_CONSUMER_PROBE || 1350 link->status == DL_STATE_ACTIVE) 1351 continue; 1352 1353 WARN_ON(link->status != DL_STATE_DORMANT); 1354 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1355 1356 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1357 driver_deferred_probe_add(link->consumer); 1358 } 1359 1360 if (defer_sync_state_count) 1361 __device_links_supplier_defer_sync(dev); 1362 else 1363 __device_links_queue_sync_state(dev, &sync_list); 1364 1365 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1366 struct device *supplier; 1367 1368 if (!(link->flags & DL_FLAG_MANAGED)) 1369 continue; 1370 1371 supplier = link->supplier; 1372 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1373 /* 1374 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1375 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1376 * save to drop the managed link completely. 1377 */ 1378 device_link_drop_managed(link); 1379 } else if (dev_is_best_effort(dev) && 1380 link->flags & DL_FLAG_INFERRED && 1381 link->status != DL_STATE_CONSUMER_PROBE && 1382 !link->supplier->can_match) { 1383 /* 1384 * When dev_is_best_effort() is true, we ignore device 1385 * links to suppliers that don't have a driver. If the 1386 * consumer device still managed to probe, there's no 1387 * point in maintaining a device link in a weird state 1388 * (consumer probed before supplier). So delete it. 1389 */ 1390 device_link_drop_managed(link); 1391 } else { 1392 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1393 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1394 } 1395 1396 /* 1397 * This needs to be done even for the deleted 1398 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1399 * device link that was preventing the supplier from getting a 1400 * sync_state() call. 1401 */ 1402 if (defer_sync_state_count) 1403 __device_links_supplier_defer_sync(supplier); 1404 else 1405 __device_links_queue_sync_state(supplier, &sync_list); 1406 } 1407 1408 dev->links.status = DL_DEV_DRIVER_BOUND; 1409 1410 device_links_write_unlock(); 1411 1412 device_links_flush_sync_list(&sync_list, dev); 1413 } 1414 1415 /** 1416 * __device_links_no_driver - Update links of a device without a driver. 1417 * @dev: Device without a drvier. 1418 * 1419 * Delete all non-persistent links from this device to any suppliers. 1420 * 1421 * Persistent links stay around, but their status is changed to "available", 1422 * unless they already are in the "supplier unbind in progress" state in which 1423 * case they need not be updated. 1424 * 1425 * Links without the DL_FLAG_MANAGED flag set are ignored. 1426 */ 1427 static void __device_links_no_driver(struct device *dev) 1428 { 1429 struct device_link *link, *ln; 1430 1431 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1432 if (!(link->flags & DL_FLAG_MANAGED)) 1433 continue; 1434 1435 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1436 device_link_drop_managed(link); 1437 continue; 1438 } 1439 1440 if (link->status != DL_STATE_CONSUMER_PROBE && 1441 link->status != DL_STATE_ACTIVE) 1442 continue; 1443 1444 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1445 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1446 } else { 1447 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1448 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1449 } 1450 } 1451 1452 dev->links.status = DL_DEV_NO_DRIVER; 1453 } 1454 1455 /** 1456 * device_links_no_driver - Update links after failing driver probe. 1457 * @dev: Device whose driver has just failed to probe. 1458 * 1459 * Clean up leftover links to consumers for @dev and invoke 1460 * %__device_links_no_driver() to update links to suppliers for it as 1461 * appropriate. 1462 * 1463 * Links without the DL_FLAG_MANAGED flag set are ignored. 1464 */ 1465 void device_links_no_driver(struct device *dev) 1466 { 1467 struct device_link *link; 1468 1469 device_links_write_lock(); 1470 1471 list_for_each_entry(link, &dev->links.consumers, s_node) { 1472 if (!(link->flags & DL_FLAG_MANAGED)) 1473 continue; 1474 1475 /* 1476 * The probe has failed, so if the status of the link is 1477 * "consumer probe" or "active", it must have been added by 1478 * a probing consumer while this device was still probing. 1479 * Change its state to "dormant", as it represents a valid 1480 * relationship, but it is not functionally meaningful. 1481 */ 1482 if (link->status == DL_STATE_CONSUMER_PROBE || 1483 link->status == DL_STATE_ACTIVE) 1484 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1485 } 1486 1487 __device_links_no_driver(dev); 1488 1489 device_links_write_unlock(); 1490 } 1491 1492 /** 1493 * device_links_driver_cleanup - Update links after driver removal. 1494 * @dev: Device whose driver has just gone away. 1495 * 1496 * Update links to consumers for @dev by changing their status to "dormant" and 1497 * invoke %__device_links_no_driver() to update links to suppliers for it as 1498 * appropriate. 1499 * 1500 * Links without the DL_FLAG_MANAGED flag set are ignored. 1501 */ 1502 void device_links_driver_cleanup(struct device *dev) 1503 { 1504 struct device_link *link, *ln; 1505 1506 device_links_write_lock(); 1507 1508 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1509 if (!(link->flags & DL_FLAG_MANAGED)) 1510 continue; 1511 1512 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1513 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1514 1515 /* 1516 * autoremove the links between this @dev and its consumer 1517 * devices that are not active, i.e. where the link state 1518 * has moved to DL_STATE_SUPPLIER_UNBIND. 1519 */ 1520 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1521 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1522 device_link_drop_managed(link); 1523 1524 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1525 } 1526 1527 list_del_init(&dev->links.defer_sync); 1528 __device_links_no_driver(dev); 1529 1530 device_links_write_unlock(); 1531 } 1532 1533 /** 1534 * device_links_busy - Check if there are any busy links to consumers. 1535 * @dev: Device to check. 1536 * 1537 * Check each consumer of the device and return 'true' if its link's status 1538 * is one of "consumer probe" or "active" (meaning that the given consumer is 1539 * probing right now or its driver is present). Otherwise, change the link 1540 * state to "supplier unbind" to prevent the consumer from being probed 1541 * successfully going forward. 1542 * 1543 * Return 'false' if there are no probing or active consumers. 1544 * 1545 * Links without the DL_FLAG_MANAGED flag set are ignored. 1546 */ 1547 bool device_links_busy(struct device *dev) 1548 { 1549 struct device_link *link; 1550 bool ret = false; 1551 1552 device_links_write_lock(); 1553 1554 list_for_each_entry(link, &dev->links.consumers, s_node) { 1555 if (!(link->flags & DL_FLAG_MANAGED)) 1556 continue; 1557 1558 if (link->status == DL_STATE_CONSUMER_PROBE 1559 || link->status == DL_STATE_ACTIVE) { 1560 ret = true; 1561 break; 1562 } 1563 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1564 } 1565 1566 dev->links.status = DL_DEV_UNBINDING; 1567 1568 device_links_write_unlock(); 1569 return ret; 1570 } 1571 1572 /** 1573 * device_links_unbind_consumers - Force unbind consumers of the given device. 1574 * @dev: Device to unbind the consumers of. 1575 * 1576 * Walk the list of links to consumers for @dev and if any of them is in the 1577 * "consumer probe" state, wait for all device probes in progress to complete 1578 * and start over. 1579 * 1580 * If that's not the case, change the status of the link to "supplier unbind" 1581 * and check if the link was in the "active" state. If so, force the consumer 1582 * driver to unbind and start over (the consumer will not re-probe as we have 1583 * changed the state of the link already). 1584 * 1585 * Links without the DL_FLAG_MANAGED flag set are ignored. 1586 */ 1587 void device_links_unbind_consumers(struct device *dev) 1588 { 1589 struct device_link *link; 1590 1591 start: 1592 device_links_write_lock(); 1593 1594 list_for_each_entry(link, &dev->links.consumers, s_node) { 1595 enum device_link_state status; 1596 1597 if (!(link->flags & DL_FLAG_MANAGED) || 1598 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1599 continue; 1600 1601 status = link->status; 1602 if (status == DL_STATE_CONSUMER_PROBE) { 1603 device_links_write_unlock(); 1604 1605 wait_for_device_probe(); 1606 goto start; 1607 } 1608 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1609 if (status == DL_STATE_ACTIVE) { 1610 struct device *consumer = link->consumer; 1611 1612 get_device(consumer); 1613 1614 device_links_write_unlock(); 1615 1616 device_release_driver_internal(consumer, NULL, 1617 consumer->parent); 1618 put_device(consumer); 1619 goto start; 1620 } 1621 } 1622 1623 device_links_write_unlock(); 1624 } 1625 1626 /** 1627 * device_links_purge - Delete existing links to other devices. 1628 * @dev: Target device. 1629 */ 1630 static void device_links_purge(struct device *dev) 1631 { 1632 struct device_link *link, *ln; 1633 1634 if (dev->class == &devlink_class) 1635 return; 1636 1637 /* 1638 * Delete all of the remaining links from this device to any other 1639 * devices (either consumers or suppliers). 1640 */ 1641 device_links_write_lock(); 1642 1643 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1644 WARN_ON(link->status == DL_STATE_ACTIVE); 1645 __device_link_del(&link->kref); 1646 } 1647 1648 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1649 WARN_ON(link->status != DL_STATE_DORMANT && 1650 link->status != DL_STATE_NONE); 1651 __device_link_del(&link->kref); 1652 } 1653 1654 device_links_write_unlock(); 1655 } 1656 1657 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1658 DL_FLAG_SYNC_STATE_ONLY) 1659 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1660 DL_FLAG_AUTOPROBE_CONSUMER) 1661 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1662 DL_FLAG_PM_RUNTIME) 1663 1664 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1665 static int __init fw_devlink_setup(char *arg) 1666 { 1667 if (!arg) 1668 return -EINVAL; 1669 1670 if (strcmp(arg, "off") == 0) { 1671 fw_devlink_flags = 0; 1672 } else if (strcmp(arg, "permissive") == 0) { 1673 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1674 } else if (strcmp(arg, "on") == 0) { 1675 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1676 } else if (strcmp(arg, "rpm") == 0) { 1677 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1678 } 1679 return 0; 1680 } 1681 early_param("fw_devlink", fw_devlink_setup); 1682 1683 static bool fw_devlink_strict; 1684 static int __init fw_devlink_strict_setup(char *arg) 1685 { 1686 return kstrtobool(arg, &fw_devlink_strict); 1687 } 1688 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1689 1690 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1691 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1692 1693 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1694 static int fw_devlink_sync_state; 1695 #else 1696 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1697 #endif 1698 1699 static int __init fw_devlink_sync_state_setup(char *arg) 1700 { 1701 if (!arg) 1702 return -EINVAL; 1703 1704 if (strcmp(arg, "strict") == 0) { 1705 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1706 return 0; 1707 } else if (strcmp(arg, "timeout") == 0) { 1708 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1709 return 0; 1710 } 1711 return -EINVAL; 1712 } 1713 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1714 1715 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1716 { 1717 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1718 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1719 1720 return fw_devlink_flags; 1721 } 1722 1723 static bool fw_devlink_is_permissive(void) 1724 { 1725 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1726 } 1727 1728 bool fw_devlink_is_strict(void) 1729 { 1730 return fw_devlink_strict && !fw_devlink_is_permissive(); 1731 } 1732 1733 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1734 { 1735 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1736 return; 1737 1738 fwnode_call_int_op(fwnode, add_links); 1739 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1740 } 1741 1742 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1743 { 1744 struct fwnode_handle *child = NULL; 1745 1746 fw_devlink_parse_fwnode(fwnode); 1747 1748 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1749 fw_devlink_parse_fwtree(child); 1750 } 1751 1752 static void fw_devlink_relax_link(struct device_link *link) 1753 { 1754 if (!(link->flags & DL_FLAG_INFERRED)) 1755 return; 1756 1757 if (device_link_flag_is_sync_state_only(link->flags)) 1758 return; 1759 1760 pm_runtime_drop_link(link); 1761 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1762 dev_dbg(link->consumer, "Relaxing link with %s\n", 1763 dev_name(link->supplier)); 1764 } 1765 1766 static int fw_devlink_no_driver(struct device *dev, void *data) 1767 { 1768 struct device_link *link = to_devlink(dev); 1769 1770 if (!link->supplier->can_match) 1771 fw_devlink_relax_link(link); 1772 1773 return 0; 1774 } 1775 1776 void fw_devlink_drivers_done(void) 1777 { 1778 fw_devlink_drv_reg_done = true; 1779 device_links_write_lock(); 1780 class_for_each_device(&devlink_class, NULL, NULL, 1781 fw_devlink_no_driver); 1782 device_links_write_unlock(); 1783 } 1784 1785 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1786 { 1787 struct device_link *link = to_devlink(dev); 1788 struct device *sup = link->supplier; 1789 1790 if (!(link->flags & DL_FLAG_MANAGED) || 1791 link->status == DL_STATE_ACTIVE || sup->state_synced || 1792 !dev_has_sync_state(sup)) 1793 return 0; 1794 1795 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1796 dev_warn(sup, "sync_state() pending due to %s\n", 1797 dev_name(link->consumer)); 1798 return 0; 1799 } 1800 1801 if (!list_empty(&sup->links.defer_sync)) 1802 return 0; 1803 1804 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1805 sup->state_synced = true; 1806 get_device(sup); 1807 list_add_tail(&sup->links.defer_sync, data); 1808 1809 return 0; 1810 } 1811 1812 void fw_devlink_probing_done(void) 1813 { 1814 LIST_HEAD(sync_list); 1815 1816 device_links_write_lock(); 1817 class_for_each_device(&devlink_class, NULL, &sync_list, 1818 fw_devlink_dev_sync_state); 1819 device_links_write_unlock(); 1820 device_links_flush_sync_list(&sync_list, NULL); 1821 } 1822 1823 /** 1824 * wait_for_init_devices_probe - Try to probe any device needed for init 1825 * 1826 * Some devices might need to be probed and bound successfully before the kernel 1827 * boot sequence can finish and move on to init/userspace. For example, a 1828 * network interface might need to be bound to be able to mount a NFS rootfs. 1829 * 1830 * With fw_devlink=on by default, some of these devices might be blocked from 1831 * probing because they are waiting on a optional supplier that doesn't have a 1832 * driver. While fw_devlink will eventually identify such devices and unblock 1833 * the probing automatically, it might be too late by the time it unblocks the 1834 * probing of devices. For example, the IP4 autoconfig might timeout before 1835 * fw_devlink unblocks probing of the network interface. 1836 * 1837 * This function is available to temporarily try and probe all devices that have 1838 * a driver even if some of their suppliers haven't been added or don't have 1839 * drivers. 1840 * 1841 * The drivers can then decide which of the suppliers are optional vs mandatory 1842 * and probe the device if possible. By the time this function returns, all such 1843 * "best effort" probes are guaranteed to be completed. If a device successfully 1844 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1845 * device where the supplier hasn't yet probed successfully because they have to 1846 * be optional dependencies. 1847 * 1848 * Any devices that didn't successfully probe go back to being treated as if 1849 * this function was never called. 1850 * 1851 * This also means that some devices that aren't needed for init and could have 1852 * waited for their optional supplier to probe (when the supplier's module is 1853 * loaded later on) would end up probing prematurely with limited functionality. 1854 * So call this function only when boot would fail without it. 1855 */ 1856 void __init wait_for_init_devices_probe(void) 1857 { 1858 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1859 return; 1860 1861 /* 1862 * Wait for all ongoing probes to finish so that the "best effort" is 1863 * only applied to devices that can't probe otherwise. 1864 */ 1865 wait_for_device_probe(); 1866 1867 pr_info("Trying to probe devices needed for running init ...\n"); 1868 fw_devlink_best_effort = true; 1869 driver_deferred_probe_trigger(); 1870 1871 /* 1872 * Wait for all "best effort" probes to finish before going back to 1873 * normal enforcement. 1874 */ 1875 wait_for_device_probe(); 1876 fw_devlink_best_effort = false; 1877 } 1878 1879 static void fw_devlink_unblock_consumers(struct device *dev) 1880 { 1881 struct device_link *link; 1882 1883 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1884 return; 1885 1886 device_links_write_lock(); 1887 list_for_each_entry(link, &dev->links.consumers, s_node) 1888 fw_devlink_relax_link(link); 1889 device_links_write_unlock(); 1890 } 1891 1892 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1893 1894 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1895 { 1896 struct device *dev; 1897 bool ret; 1898 1899 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1900 return false; 1901 1902 dev = get_dev_from_fwnode(fwnode); 1903 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1904 put_device(dev); 1905 1906 return ret; 1907 } 1908 1909 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1910 { 1911 struct fwnode_handle *parent; 1912 1913 fwnode_for_each_parent_node(fwnode, parent) { 1914 if (fwnode_init_without_drv(parent)) { 1915 fwnode_handle_put(parent); 1916 return true; 1917 } 1918 } 1919 1920 return false; 1921 } 1922 1923 /** 1924 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1925 * @ancestor: Firmware which is tested for being an ancestor 1926 * @child: Firmware which is tested for being the child 1927 * 1928 * A node is considered an ancestor of itself too. 1929 * 1930 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1931 */ 1932 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1933 const struct fwnode_handle *child) 1934 { 1935 struct fwnode_handle *parent; 1936 1937 if (IS_ERR_OR_NULL(ancestor)) 1938 return false; 1939 1940 if (child == ancestor) 1941 return true; 1942 1943 fwnode_for_each_parent_node(child, parent) { 1944 if (parent == ancestor) { 1945 fwnode_handle_put(parent); 1946 return true; 1947 } 1948 } 1949 return false; 1950 } 1951 1952 /** 1953 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1954 * @fwnode: firmware node 1955 * 1956 * Given a firmware node (@fwnode), this function finds its closest ancestor 1957 * firmware node that has a corresponding struct device and returns that struct 1958 * device. 1959 * 1960 * The caller is responsible for calling put_device() on the returned device 1961 * pointer. 1962 * 1963 * Return: a pointer to the device of the @fwnode's closest ancestor. 1964 */ 1965 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1966 { 1967 struct fwnode_handle *parent; 1968 struct device *dev; 1969 1970 fwnode_for_each_parent_node(fwnode, parent) { 1971 dev = get_dev_from_fwnode(parent); 1972 if (dev) { 1973 fwnode_handle_put(parent); 1974 return dev; 1975 } 1976 } 1977 return NULL; 1978 } 1979 1980 /** 1981 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1982 * @con: Potential consumer device. 1983 * @sup_handle: Potential supplier's fwnode. 1984 * 1985 * Needs to be called with fwnode_lock and device link lock held. 1986 * 1987 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1988 * depend on @con. This function can detect multiple cyles between @sup_handle 1989 * and @con. When such dependency cycles are found, convert all device links 1990 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1991 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1992 * converted into a device link in the future, they are created as 1993 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1994 * fw_devlink=permissive just between the devices in the cycle. We need to do 1995 * this because, at this point, fw_devlink can't tell which of these 1996 * dependencies is not a real dependency. 1997 * 1998 * Return true if one or more cycles were found. Otherwise, return false. 1999 */ 2000 static bool __fw_devlink_relax_cycles(struct device *con, 2001 struct fwnode_handle *sup_handle) 2002 { 2003 struct device *sup_dev = NULL, *par_dev = NULL; 2004 struct fwnode_link *link; 2005 struct device_link *dev_link; 2006 bool ret = false; 2007 2008 if (!sup_handle) 2009 return false; 2010 2011 /* 2012 * We aren't trying to find all cycles. Just a cycle between con and 2013 * sup_handle. 2014 */ 2015 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2016 return false; 2017 2018 sup_handle->flags |= FWNODE_FLAG_VISITED; 2019 2020 sup_dev = get_dev_from_fwnode(sup_handle); 2021 2022 /* Termination condition. */ 2023 if (sup_dev == con) { 2024 pr_debug("----- cycle: start -----\n"); 2025 ret = true; 2026 goto out; 2027 } 2028 2029 /* 2030 * If sup_dev is bound to a driver and @con hasn't started binding to a 2031 * driver, sup_dev can't be a consumer of @con. So, no need to check 2032 * further. 2033 */ 2034 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2035 con->links.status == DL_DEV_NO_DRIVER) { 2036 ret = false; 2037 goto out; 2038 } 2039 2040 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2041 if (link->flags & FWLINK_FLAG_IGNORE) 2042 continue; 2043 2044 if (__fw_devlink_relax_cycles(con, link->supplier)) { 2045 __fwnode_link_cycle(link); 2046 ret = true; 2047 } 2048 } 2049 2050 /* 2051 * Give priority to device parent over fwnode parent to account for any 2052 * quirks in how fwnodes are converted to devices. 2053 */ 2054 if (sup_dev) 2055 par_dev = get_device(sup_dev->parent); 2056 else 2057 par_dev = fwnode_get_next_parent_dev(sup_handle); 2058 2059 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) { 2060 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2061 par_dev->fwnode); 2062 ret = true; 2063 } 2064 2065 if (!sup_dev) 2066 goto out; 2067 2068 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2069 /* 2070 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2071 * such due to a cycle. 2072 */ 2073 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2074 !(dev_link->flags & DL_FLAG_CYCLE)) 2075 continue; 2076 2077 if (__fw_devlink_relax_cycles(con, 2078 dev_link->supplier->fwnode)) { 2079 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2080 dev_link->supplier->fwnode); 2081 fw_devlink_relax_link(dev_link); 2082 dev_link->flags |= DL_FLAG_CYCLE; 2083 ret = true; 2084 } 2085 } 2086 2087 out: 2088 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2089 put_device(sup_dev); 2090 put_device(par_dev); 2091 return ret; 2092 } 2093 2094 /** 2095 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2096 * @con: consumer device for the device link 2097 * @sup_handle: fwnode handle of supplier 2098 * @link: fwnode link that's being converted to a device link 2099 * 2100 * This function will try to create a device link between the consumer device 2101 * @con and the supplier device represented by @sup_handle. 2102 * 2103 * The supplier has to be provided as a fwnode because incorrect cycles in 2104 * fwnode links can sometimes cause the supplier device to never be created. 2105 * This function detects such cases and returns an error if it cannot create a 2106 * device link from the consumer to a missing supplier. 2107 * 2108 * Returns, 2109 * 0 on successfully creating a device link 2110 * -EINVAL if the device link cannot be created as expected 2111 * -EAGAIN if the device link cannot be created right now, but it may be 2112 * possible to do that in the future 2113 */ 2114 static int fw_devlink_create_devlink(struct device *con, 2115 struct fwnode_handle *sup_handle, 2116 struct fwnode_link *link) 2117 { 2118 struct device *sup_dev; 2119 int ret = 0; 2120 u32 flags; 2121 2122 if (link->flags & FWLINK_FLAG_IGNORE) 2123 return 0; 2124 2125 if (con->fwnode == link->consumer) 2126 flags = fw_devlink_get_flags(link->flags); 2127 else 2128 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2129 2130 /* 2131 * In some cases, a device P might also be a supplier to its child node 2132 * C. However, this would defer the probe of C until the probe of P 2133 * completes successfully. This is perfectly fine in the device driver 2134 * model. device_add() doesn't guarantee probe completion of the device 2135 * by the time it returns. 2136 * 2137 * However, there are a few drivers that assume C will finish probing 2138 * as soon as it's added and before P finishes probing. So, we provide 2139 * a flag to let fw_devlink know not to delay the probe of C until the 2140 * probe of P completes successfully. 2141 * 2142 * When such a flag is set, we can't create device links where P is the 2143 * supplier of C as that would delay the probe of C. 2144 */ 2145 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2146 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2147 return -EINVAL; 2148 2149 /* 2150 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2151 * So, one might expect that cycle detection isn't necessary for them. 2152 * However, if the device link was marked as SYNC_STATE_ONLY because 2153 * it's part of a cycle, then we still need to do cycle detection. This 2154 * is because the consumer and supplier might be part of multiple cycles 2155 * and we need to detect all those cycles. 2156 */ 2157 if (!device_link_flag_is_sync_state_only(flags) || 2158 flags & DL_FLAG_CYCLE) { 2159 device_links_write_lock(); 2160 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2161 __fwnode_link_cycle(link); 2162 flags = fw_devlink_get_flags(link->flags); 2163 pr_debug("----- cycle: end -----\n"); 2164 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2165 sup_handle); 2166 } 2167 device_links_write_unlock(); 2168 } 2169 2170 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2171 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2172 else 2173 sup_dev = get_dev_from_fwnode(sup_handle); 2174 2175 if (sup_dev) { 2176 /* 2177 * If it's one of those drivers that don't actually bind to 2178 * their device using driver core, then don't wait on this 2179 * supplier device indefinitely. 2180 */ 2181 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2182 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2183 dev_dbg(con, 2184 "Not linking %pfwf - dev might never probe\n", 2185 sup_handle); 2186 ret = -EINVAL; 2187 goto out; 2188 } 2189 2190 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2191 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2192 flags, dev_name(sup_dev)); 2193 ret = -EINVAL; 2194 } 2195 2196 goto out; 2197 } 2198 2199 /* 2200 * Supplier or supplier's ancestor already initialized without a struct 2201 * device or being probed by a driver. 2202 */ 2203 if (fwnode_init_without_drv(sup_handle) || 2204 fwnode_ancestor_init_without_drv(sup_handle)) { 2205 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2206 sup_handle); 2207 return -EINVAL; 2208 } 2209 2210 ret = -EAGAIN; 2211 out: 2212 put_device(sup_dev); 2213 return ret; 2214 } 2215 2216 /** 2217 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2218 * @dev: Device that needs to be linked to its consumers 2219 * 2220 * This function looks at all the consumer fwnodes of @dev and creates device 2221 * links between the consumer device and @dev (supplier). 2222 * 2223 * If the consumer device has not been added yet, then this function creates a 2224 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2225 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2226 * sync_state() callback before the real consumer device gets to be added and 2227 * then probed. 2228 * 2229 * Once device links are created from the real consumer to @dev (supplier), the 2230 * fwnode links are deleted. 2231 */ 2232 static void __fw_devlink_link_to_consumers(struct device *dev) 2233 { 2234 struct fwnode_handle *fwnode = dev->fwnode; 2235 struct fwnode_link *link, *tmp; 2236 2237 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2238 struct device *con_dev; 2239 bool own_link = true; 2240 int ret; 2241 2242 con_dev = get_dev_from_fwnode(link->consumer); 2243 /* 2244 * If consumer device is not available yet, make a "proxy" 2245 * SYNC_STATE_ONLY link from the consumer's parent device to 2246 * the supplier device. This is necessary to make sure the 2247 * supplier doesn't get a sync_state() callback before the real 2248 * consumer can create a device link to the supplier. 2249 * 2250 * This proxy link step is needed to handle the case where the 2251 * consumer's parent device is added before the supplier. 2252 */ 2253 if (!con_dev) { 2254 con_dev = fwnode_get_next_parent_dev(link->consumer); 2255 /* 2256 * However, if the consumer's parent device is also the 2257 * parent of the supplier, don't create a 2258 * consumer-supplier link from the parent to its child 2259 * device. Such a dependency is impossible. 2260 */ 2261 if (con_dev && 2262 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2263 put_device(con_dev); 2264 con_dev = NULL; 2265 } else { 2266 own_link = false; 2267 } 2268 } 2269 2270 if (!con_dev) 2271 continue; 2272 2273 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2274 put_device(con_dev); 2275 if (!own_link || ret == -EAGAIN) 2276 continue; 2277 2278 __fwnode_link_del(link); 2279 } 2280 } 2281 2282 /** 2283 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2284 * @dev: The consumer device that needs to be linked to its suppliers 2285 * @fwnode: Root of the fwnode tree that is used to create device links 2286 * 2287 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2288 * @fwnode and creates device links between @dev (consumer) and all the 2289 * supplier devices of the entire fwnode tree at @fwnode. 2290 * 2291 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2292 * and the real suppliers of @dev. Once these device links are created, the 2293 * fwnode links are deleted. 2294 * 2295 * In addition, it also looks at all the suppliers of the entire fwnode tree 2296 * because some of the child devices of @dev that have not been added yet 2297 * (because @dev hasn't probed) might already have their suppliers added to 2298 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2299 * @dev (consumer) and these suppliers to make sure they don't execute their 2300 * sync_state() callbacks before these child devices have a chance to create 2301 * their device links. The fwnode links that correspond to the child devices 2302 * aren't delete because they are needed later to create the device links 2303 * between the real consumer and supplier devices. 2304 */ 2305 static void __fw_devlink_link_to_suppliers(struct device *dev, 2306 struct fwnode_handle *fwnode) 2307 { 2308 bool own_link = (dev->fwnode == fwnode); 2309 struct fwnode_link *link, *tmp; 2310 struct fwnode_handle *child = NULL; 2311 2312 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2313 int ret; 2314 struct fwnode_handle *sup = link->supplier; 2315 2316 ret = fw_devlink_create_devlink(dev, sup, link); 2317 if (!own_link || ret == -EAGAIN) 2318 continue; 2319 2320 __fwnode_link_del(link); 2321 } 2322 2323 /* 2324 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2325 * all the descendants. This proxy link step is needed to handle the 2326 * case where the supplier is added before the consumer's parent device 2327 * (@dev). 2328 */ 2329 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2330 __fw_devlink_link_to_suppliers(dev, child); 2331 } 2332 2333 static void fw_devlink_link_device(struct device *dev) 2334 { 2335 struct fwnode_handle *fwnode = dev->fwnode; 2336 2337 if (!fw_devlink_flags) 2338 return; 2339 2340 fw_devlink_parse_fwtree(fwnode); 2341 2342 mutex_lock(&fwnode_link_lock); 2343 __fw_devlink_link_to_consumers(dev); 2344 __fw_devlink_link_to_suppliers(dev, fwnode); 2345 mutex_unlock(&fwnode_link_lock); 2346 } 2347 2348 /* Device links support end. */ 2349 2350 static struct kobject *dev_kobj; 2351 2352 /* /sys/dev/char */ 2353 static struct kobject *sysfs_dev_char_kobj; 2354 2355 /* /sys/dev/block */ 2356 static struct kobject *sysfs_dev_block_kobj; 2357 2358 static DEFINE_MUTEX(device_hotplug_lock); 2359 2360 void lock_device_hotplug(void) 2361 { 2362 mutex_lock(&device_hotplug_lock); 2363 } 2364 2365 void unlock_device_hotplug(void) 2366 { 2367 mutex_unlock(&device_hotplug_lock); 2368 } 2369 2370 int lock_device_hotplug_sysfs(void) 2371 { 2372 if (mutex_trylock(&device_hotplug_lock)) 2373 return 0; 2374 2375 /* Avoid busy looping (5 ms of sleep should do). */ 2376 msleep(5); 2377 return restart_syscall(); 2378 } 2379 2380 #ifdef CONFIG_BLOCK 2381 static inline int device_is_not_partition(struct device *dev) 2382 { 2383 return !(dev->type == &part_type); 2384 } 2385 #else 2386 static inline int device_is_not_partition(struct device *dev) 2387 { 2388 return 1; 2389 } 2390 #endif 2391 2392 static void device_platform_notify(struct device *dev) 2393 { 2394 acpi_device_notify(dev); 2395 2396 software_node_notify(dev); 2397 } 2398 2399 static void device_platform_notify_remove(struct device *dev) 2400 { 2401 software_node_notify_remove(dev); 2402 2403 acpi_device_notify_remove(dev); 2404 } 2405 2406 /** 2407 * dev_driver_string - Return a device's driver name, if at all possible 2408 * @dev: struct device to get the name of 2409 * 2410 * Will return the device's driver's name if it is bound to a device. If 2411 * the device is not bound to a driver, it will return the name of the bus 2412 * it is attached to. If it is not attached to a bus either, an empty 2413 * string will be returned. 2414 */ 2415 const char *dev_driver_string(const struct device *dev) 2416 { 2417 struct device_driver *drv; 2418 2419 /* dev->driver can change to NULL underneath us because of unbinding, 2420 * so be careful about accessing it. dev->bus and dev->class should 2421 * never change once they are set, so they don't need special care. 2422 */ 2423 drv = READ_ONCE(dev->driver); 2424 return drv ? drv->name : dev_bus_name(dev); 2425 } 2426 EXPORT_SYMBOL(dev_driver_string); 2427 2428 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2429 2430 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2431 char *buf) 2432 { 2433 struct device_attribute *dev_attr = to_dev_attr(attr); 2434 struct device *dev = kobj_to_dev(kobj); 2435 ssize_t ret = -EIO; 2436 2437 if (dev_attr->show) 2438 ret = dev_attr->show(dev, dev_attr, buf); 2439 if (ret >= (ssize_t)PAGE_SIZE) { 2440 printk("dev_attr_show: %pS returned bad count\n", 2441 dev_attr->show); 2442 } 2443 return ret; 2444 } 2445 2446 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2447 const char *buf, size_t count) 2448 { 2449 struct device_attribute *dev_attr = to_dev_attr(attr); 2450 struct device *dev = kobj_to_dev(kobj); 2451 ssize_t ret = -EIO; 2452 2453 if (dev_attr->store) 2454 ret = dev_attr->store(dev, dev_attr, buf, count); 2455 return ret; 2456 } 2457 2458 static const struct sysfs_ops dev_sysfs_ops = { 2459 .show = dev_attr_show, 2460 .store = dev_attr_store, 2461 }; 2462 2463 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2464 2465 ssize_t device_store_ulong(struct device *dev, 2466 struct device_attribute *attr, 2467 const char *buf, size_t size) 2468 { 2469 struct dev_ext_attribute *ea = to_ext_attr(attr); 2470 int ret; 2471 unsigned long new; 2472 2473 ret = kstrtoul(buf, 0, &new); 2474 if (ret) 2475 return ret; 2476 *(unsigned long *)(ea->var) = new; 2477 /* Always return full write size even if we didn't consume all */ 2478 return size; 2479 } 2480 EXPORT_SYMBOL_GPL(device_store_ulong); 2481 2482 ssize_t device_show_ulong(struct device *dev, 2483 struct device_attribute *attr, 2484 char *buf) 2485 { 2486 struct dev_ext_attribute *ea = to_ext_attr(attr); 2487 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2488 } 2489 EXPORT_SYMBOL_GPL(device_show_ulong); 2490 2491 ssize_t device_store_int(struct device *dev, 2492 struct device_attribute *attr, 2493 const char *buf, size_t size) 2494 { 2495 struct dev_ext_attribute *ea = to_ext_attr(attr); 2496 int ret; 2497 long new; 2498 2499 ret = kstrtol(buf, 0, &new); 2500 if (ret) 2501 return ret; 2502 2503 if (new > INT_MAX || new < INT_MIN) 2504 return -EINVAL; 2505 *(int *)(ea->var) = new; 2506 /* Always return full write size even if we didn't consume all */ 2507 return size; 2508 } 2509 EXPORT_SYMBOL_GPL(device_store_int); 2510 2511 ssize_t device_show_int(struct device *dev, 2512 struct device_attribute *attr, 2513 char *buf) 2514 { 2515 struct dev_ext_attribute *ea = to_ext_attr(attr); 2516 2517 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2518 } 2519 EXPORT_SYMBOL_GPL(device_show_int); 2520 2521 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2522 const char *buf, size_t size) 2523 { 2524 struct dev_ext_attribute *ea = to_ext_attr(attr); 2525 2526 if (kstrtobool(buf, ea->var) < 0) 2527 return -EINVAL; 2528 2529 return size; 2530 } 2531 EXPORT_SYMBOL_GPL(device_store_bool); 2532 2533 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2534 char *buf) 2535 { 2536 struct dev_ext_attribute *ea = to_ext_attr(attr); 2537 2538 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2539 } 2540 EXPORT_SYMBOL_GPL(device_show_bool); 2541 2542 ssize_t device_show_string(struct device *dev, 2543 struct device_attribute *attr, char *buf) 2544 { 2545 struct dev_ext_attribute *ea = to_ext_attr(attr); 2546 2547 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2548 } 2549 EXPORT_SYMBOL_GPL(device_show_string); 2550 2551 /** 2552 * device_release - free device structure. 2553 * @kobj: device's kobject. 2554 * 2555 * This is called once the reference count for the object 2556 * reaches 0. We forward the call to the device's release 2557 * method, which should handle actually freeing the structure. 2558 */ 2559 static void device_release(struct kobject *kobj) 2560 { 2561 struct device *dev = kobj_to_dev(kobj); 2562 struct device_private *p = dev->p; 2563 2564 /* 2565 * Some platform devices are driven without driver attached 2566 * and managed resources may have been acquired. Make sure 2567 * all resources are released. 2568 * 2569 * Drivers still can add resources into device after device 2570 * is deleted but alive, so release devres here to avoid 2571 * possible memory leak. 2572 */ 2573 devres_release_all(dev); 2574 2575 kfree(dev->dma_range_map); 2576 2577 if (dev->release) 2578 dev->release(dev); 2579 else if (dev->type && dev->type->release) 2580 dev->type->release(dev); 2581 else if (dev->class && dev->class->dev_release) 2582 dev->class->dev_release(dev); 2583 else 2584 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2585 dev_name(dev)); 2586 kfree(p); 2587 } 2588 2589 static const void *device_namespace(const struct kobject *kobj) 2590 { 2591 const struct device *dev = kobj_to_dev(kobj); 2592 const void *ns = NULL; 2593 2594 if (dev->class && dev->class->ns_type) 2595 ns = dev->class->namespace(dev); 2596 2597 return ns; 2598 } 2599 2600 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2601 { 2602 const struct device *dev = kobj_to_dev(kobj); 2603 2604 if (dev->class && dev->class->get_ownership) 2605 dev->class->get_ownership(dev, uid, gid); 2606 } 2607 2608 static const struct kobj_type device_ktype = { 2609 .release = device_release, 2610 .sysfs_ops = &dev_sysfs_ops, 2611 .namespace = device_namespace, 2612 .get_ownership = device_get_ownership, 2613 }; 2614 2615 2616 static int dev_uevent_filter(const struct kobject *kobj) 2617 { 2618 const struct kobj_type *ktype = get_ktype(kobj); 2619 2620 if (ktype == &device_ktype) { 2621 const struct device *dev = kobj_to_dev(kobj); 2622 if (dev->bus) 2623 return 1; 2624 if (dev->class) 2625 return 1; 2626 } 2627 return 0; 2628 } 2629 2630 static const char *dev_uevent_name(const struct kobject *kobj) 2631 { 2632 const struct device *dev = kobj_to_dev(kobj); 2633 2634 if (dev->bus) 2635 return dev->bus->name; 2636 if (dev->class) 2637 return dev->class->name; 2638 return NULL; 2639 } 2640 2641 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2642 { 2643 const struct device *dev = kobj_to_dev(kobj); 2644 struct device_driver *driver; 2645 int retval = 0; 2646 2647 /* add device node properties if present */ 2648 if (MAJOR(dev->devt)) { 2649 const char *tmp; 2650 const char *name; 2651 umode_t mode = 0; 2652 kuid_t uid = GLOBAL_ROOT_UID; 2653 kgid_t gid = GLOBAL_ROOT_GID; 2654 2655 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2656 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2657 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2658 if (name) { 2659 add_uevent_var(env, "DEVNAME=%s", name); 2660 if (mode) 2661 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2662 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2663 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2664 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2665 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2666 kfree(tmp); 2667 } 2668 } 2669 2670 if (dev->type && dev->type->name) 2671 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2672 2673 /* Synchronize with module_remove_driver() */ 2674 rcu_read_lock(); 2675 driver = READ_ONCE(dev->driver); 2676 if (driver) 2677 add_uevent_var(env, "DRIVER=%s", driver->name); 2678 rcu_read_unlock(); 2679 2680 /* Add common DT information about the device */ 2681 of_device_uevent(dev, env); 2682 2683 /* have the bus specific function add its stuff */ 2684 if (dev->bus && dev->bus->uevent) { 2685 retval = dev->bus->uevent(dev, env); 2686 if (retval) 2687 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2688 dev_name(dev), __func__, retval); 2689 } 2690 2691 /* have the class specific function add its stuff */ 2692 if (dev->class && dev->class->dev_uevent) { 2693 retval = dev->class->dev_uevent(dev, env); 2694 if (retval) 2695 pr_debug("device: '%s': %s: class uevent() " 2696 "returned %d\n", dev_name(dev), 2697 __func__, retval); 2698 } 2699 2700 /* have the device type specific function add its stuff */ 2701 if (dev->type && dev->type->uevent) { 2702 retval = dev->type->uevent(dev, env); 2703 if (retval) 2704 pr_debug("device: '%s': %s: dev_type uevent() " 2705 "returned %d\n", dev_name(dev), 2706 __func__, retval); 2707 } 2708 2709 return retval; 2710 } 2711 2712 static const struct kset_uevent_ops device_uevent_ops = { 2713 .filter = dev_uevent_filter, 2714 .name = dev_uevent_name, 2715 .uevent = dev_uevent, 2716 }; 2717 2718 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2719 char *buf) 2720 { 2721 struct kobject *top_kobj; 2722 struct kset *kset; 2723 struct kobj_uevent_env *env = NULL; 2724 int i; 2725 int len = 0; 2726 int retval; 2727 2728 /* search the kset, the device belongs to */ 2729 top_kobj = &dev->kobj; 2730 while (!top_kobj->kset && top_kobj->parent) 2731 top_kobj = top_kobj->parent; 2732 if (!top_kobj->kset) 2733 goto out; 2734 2735 kset = top_kobj->kset; 2736 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2737 goto out; 2738 2739 /* respect filter */ 2740 if (kset->uevent_ops && kset->uevent_ops->filter) 2741 if (!kset->uevent_ops->filter(&dev->kobj)) 2742 goto out; 2743 2744 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2745 if (!env) 2746 return -ENOMEM; 2747 2748 /* let the kset specific function add its keys */ 2749 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2750 if (retval) 2751 goto out; 2752 2753 /* copy keys to file */ 2754 for (i = 0; i < env->envp_idx; i++) 2755 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2756 out: 2757 kfree(env); 2758 return len; 2759 } 2760 2761 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2762 const char *buf, size_t count) 2763 { 2764 int rc; 2765 2766 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2767 2768 if (rc) { 2769 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2770 return rc; 2771 } 2772 2773 return count; 2774 } 2775 static DEVICE_ATTR_RW(uevent); 2776 2777 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2778 char *buf) 2779 { 2780 bool val; 2781 2782 device_lock(dev); 2783 val = !dev->offline; 2784 device_unlock(dev); 2785 return sysfs_emit(buf, "%u\n", val); 2786 } 2787 2788 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2789 const char *buf, size_t count) 2790 { 2791 bool val; 2792 int ret; 2793 2794 ret = kstrtobool(buf, &val); 2795 if (ret < 0) 2796 return ret; 2797 2798 ret = lock_device_hotplug_sysfs(); 2799 if (ret) 2800 return ret; 2801 2802 ret = val ? device_online(dev) : device_offline(dev); 2803 unlock_device_hotplug(); 2804 return ret < 0 ? ret : count; 2805 } 2806 static DEVICE_ATTR_RW(online); 2807 2808 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2809 char *buf) 2810 { 2811 const char *loc; 2812 2813 switch (dev->removable) { 2814 case DEVICE_REMOVABLE: 2815 loc = "removable"; 2816 break; 2817 case DEVICE_FIXED: 2818 loc = "fixed"; 2819 break; 2820 default: 2821 loc = "unknown"; 2822 } 2823 return sysfs_emit(buf, "%s\n", loc); 2824 } 2825 static DEVICE_ATTR_RO(removable); 2826 2827 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2828 { 2829 return sysfs_create_groups(&dev->kobj, groups); 2830 } 2831 EXPORT_SYMBOL_GPL(device_add_groups); 2832 2833 void device_remove_groups(struct device *dev, 2834 const struct attribute_group **groups) 2835 { 2836 sysfs_remove_groups(&dev->kobj, groups); 2837 } 2838 EXPORT_SYMBOL_GPL(device_remove_groups); 2839 2840 union device_attr_group_devres { 2841 const struct attribute_group *group; 2842 const struct attribute_group **groups; 2843 }; 2844 2845 static void devm_attr_group_remove(struct device *dev, void *res) 2846 { 2847 union device_attr_group_devres *devres = res; 2848 const struct attribute_group *group = devres->group; 2849 2850 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2851 sysfs_remove_group(&dev->kobj, group); 2852 } 2853 2854 /** 2855 * devm_device_add_group - given a device, create a managed attribute group 2856 * @dev: The device to create the group for 2857 * @grp: The attribute group to create 2858 * 2859 * This function creates a group for the first time. It will explicitly 2860 * warn and error if any of the attribute files being created already exist. 2861 * 2862 * Returns 0 on success or error code on failure. 2863 */ 2864 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2865 { 2866 union device_attr_group_devres *devres; 2867 int error; 2868 2869 devres = devres_alloc(devm_attr_group_remove, 2870 sizeof(*devres), GFP_KERNEL); 2871 if (!devres) 2872 return -ENOMEM; 2873 2874 error = sysfs_create_group(&dev->kobj, grp); 2875 if (error) { 2876 devres_free(devres); 2877 return error; 2878 } 2879 2880 devres->group = grp; 2881 devres_add(dev, devres); 2882 return 0; 2883 } 2884 EXPORT_SYMBOL_GPL(devm_device_add_group); 2885 2886 static int device_add_attrs(struct device *dev) 2887 { 2888 const struct class *class = dev->class; 2889 const struct device_type *type = dev->type; 2890 int error; 2891 2892 if (class) { 2893 error = device_add_groups(dev, class->dev_groups); 2894 if (error) 2895 return error; 2896 } 2897 2898 if (type) { 2899 error = device_add_groups(dev, type->groups); 2900 if (error) 2901 goto err_remove_class_groups; 2902 } 2903 2904 error = device_add_groups(dev, dev->groups); 2905 if (error) 2906 goto err_remove_type_groups; 2907 2908 if (device_supports_offline(dev) && !dev->offline_disabled) { 2909 error = device_create_file(dev, &dev_attr_online); 2910 if (error) 2911 goto err_remove_dev_groups; 2912 } 2913 2914 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2915 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2916 if (error) 2917 goto err_remove_dev_online; 2918 } 2919 2920 if (dev_removable_is_valid(dev)) { 2921 error = device_create_file(dev, &dev_attr_removable); 2922 if (error) 2923 goto err_remove_dev_waiting_for_supplier; 2924 } 2925 2926 if (dev_add_physical_location(dev)) { 2927 error = device_add_group(dev, 2928 &dev_attr_physical_location_group); 2929 if (error) 2930 goto err_remove_dev_removable; 2931 } 2932 2933 return 0; 2934 2935 err_remove_dev_removable: 2936 device_remove_file(dev, &dev_attr_removable); 2937 err_remove_dev_waiting_for_supplier: 2938 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2939 err_remove_dev_online: 2940 device_remove_file(dev, &dev_attr_online); 2941 err_remove_dev_groups: 2942 device_remove_groups(dev, dev->groups); 2943 err_remove_type_groups: 2944 if (type) 2945 device_remove_groups(dev, type->groups); 2946 err_remove_class_groups: 2947 if (class) 2948 device_remove_groups(dev, class->dev_groups); 2949 2950 return error; 2951 } 2952 2953 static void device_remove_attrs(struct device *dev) 2954 { 2955 const struct class *class = dev->class; 2956 const struct device_type *type = dev->type; 2957 2958 if (dev->physical_location) { 2959 device_remove_group(dev, &dev_attr_physical_location_group); 2960 kfree(dev->physical_location); 2961 } 2962 2963 device_remove_file(dev, &dev_attr_removable); 2964 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2965 device_remove_file(dev, &dev_attr_online); 2966 device_remove_groups(dev, dev->groups); 2967 2968 if (type) 2969 device_remove_groups(dev, type->groups); 2970 2971 if (class) 2972 device_remove_groups(dev, class->dev_groups); 2973 } 2974 2975 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2976 char *buf) 2977 { 2978 return print_dev_t(buf, dev->devt); 2979 } 2980 static DEVICE_ATTR_RO(dev); 2981 2982 /* /sys/devices/ */ 2983 struct kset *devices_kset; 2984 2985 /** 2986 * devices_kset_move_before - Move device in the devices_kset's list. 2987 * @deva: Device to move. 2988 * @devb: Device @deva should come before. 2989 */ 2990 static void devices_kset_move_before(struct device *deva, struct device *devb) 2991 { 2992 if (!devices_kset) 2993 return; 2994 pr_debug("devices_kset: Moving %s before %s\n", 2995 dev_name(deva), dev_name(devb)); 2996 spin_lock(&devices_kset->list_lock); 2997 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2998 spin_unlock(&devices_kset->list_lock); 2999 } 3000 3001 /** 3002 * devices_kset_move_after - Move device in the devices_kset's list. 3003 * @deva: Device to move 3004 * @devb: Device @deva should come after. 3005 */ 3006 static void devices_kset_move_after(struct device *deva, struct device *devb) 3007 { 3008 if (!devices_kset) 3009 return; 3010 pr_debug("devices_kset: Moving %s after %s\n", 3011 dev_name(deva), dev_name(devb)); 3012 spin_lock(&devices_kset->list_lock); 3013 list_move(&deva->kobj.entry, &devb->kobj.entry); 3014 spin_unlock(&devices_kset->list_lock); 3015 } 3016 3017 /** 3018 * devices_kset_move_last - move the device to the end of devices_kset's list. 3019 * @dev: device to move 3020 */ 3021 void devices_kset_move_last(struct device *dev) 3022 { 3023 if (!devices_kset) 3024 return; 3025 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3026 spin_lock(&devices_kset->list_lock); 3027 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3028 spin_unlock(&devices_kset->list_lock); 3029 } 3030 3031 /** 3032 * device_create_file - create sysfs attribute file for device. 3033 * @dev: device. 3034 * @attr: device attribute descriptor. 3035 */ 3036 int device_create_file(struct device *dev, 3037 const struct device_attribute *attr) 3038 { 3039 int error = 0; 3040 3041 if (dev) { 3042 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3043 "Attribute %s: write permission without 'store'\n", 3044 attr->attr.name); 3045 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3046 "Attribute %s: read permission without 'show'\n", 3047 attr->attr.name); 3048 error = sysfs_create_file(&dev->kobj, &attr->attr); 3049 } 3050 3051 return error; 3052 } 3053 EXPORT_SYMBOL_GPL(device_create_file); 3054 3055 /** 3056 * device_remove_file - remove sysfs attribute file. 3057 * @dev: device. 3058 * @attr: device attribute descriptor. 3059 */ 3060 void device_remove_file(struct device *dev, 3061 const struct device_attribute *attr) 3062 { 3063 if (dev) 3064 sysfs_remove_file(&dev->kobj, &attr->attr); 3065 } 3066 EXPORT_SYMBOL_GPL(device_remove_file); 3067 3068 /** 3069 * device_remove_file_self - remove sysfs attribute file from its own method. 3070 * @dev: device. 3071 * @attr: device attribute descriptor. 3072 * 3073 * See kernfs_remove_self() for details. 3074 */ 3075 bool device_remove_file_self(struct device *dev, 3076 const struct device_attribute *attr) 3077 { 3078 if (dev) 3079 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3080 else 3081 return false; 3082 } 3083 EXPORT_SYMBOL_GPL(device_remove_file_self); 3084 3085 /** 3086 * device_create_bin_file - create sysfs binary attribute file for device. 3087 * @dev: device. 3088 * @attr: device binary attribute descriptor. 3089 */ 3090 int device_create_bin_file(struct device *dev, 3091 const struct bin_attribute *attr) 3092 { 3093 int error = -EINVAL; 3094 if (dev) 3095 error = sysfs_create_bin_file(&dev->kobj, attr); 3096 return error; 3097 } 3098 EXPORT_SYMBOL_GPL(device_create_bin_file); 3099 3100 /** 3101 * device_remove_bin_file - remove sysfs binary attribute file 3102 * @dev: device. 3103 * @attr: device binary attribute descriptor. 3104 */ 3105 void device_remove_bin_file(struct device *dev, 3106 const struct bin_attribute *attr) 3107 { 3108 if (dev) 3109 sysfs_remove_bin_file(&dev->kobj, attr); 3110 } 3111 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3112 3113 static void klist_children_get(struct klist_node *n) 3114 { 3115 struct device_private *p = to_device_private_parent(n); 3116 struct device *dev = p->device; 3117 3118 get_device(dev); 3119 } 3120 3121 static void klist_children_put(struct klist_node *n) 3122 { 3123 struct device_private *p = to_device_private_parent(n); 3124 struct device *dev = p->device; 3125 3126 put_device(dev); 3127 } 3128 3129 /** 3130 * device_initialize - init device structure. 3131 * @dev: device. 3132 * 3133 * This prepares the device for use by other layers by initializing 3134 * its fields. 3135 * It is the first half of device_register(), if called by 3136 * that function, though it can also be called separately, so one 3137 * may use @dev's fields. In particular, get_device()/put_device() 3138 * may be used for reference counting of @dev after calling this 3139 * function. 3140 * 3141 * All fields in @dev must be initialized by the caller to 0, except 3142 * for those explicitly set to some other value. The simplest 3143 * approach is to use kzalloc() to allocate the structure containing 3144 * @dev. 3145 * 3146 * NOTE: Use put_device() to give up your reference instead of freeing 3147 * @dev directly once you have called this function. 3148 */ 3149 void device_initialize(struct device *dev) 3150 { 3151 dev->kobj.kset = devices_kset; 3152 kobject_init(&dev->kobj, &device_ktype); 3153 INIT_LIST_HEAD(&dev->dma_pools); 3154 mutex_init(&dev->mutex); 3155 lockdep_set_novalidate_class(&dev->mutex); 3156 spin_lock_init(&dev->devres_lock); 3157 INIT_LIST_HEAD(&dev->devres_head); 3158 device_pm_init(dev); 3159 set_dev_node(dev, NUMA_NO_NODE); 3160 INIT_LIST_HEAD(&dev->links.consumers); 3161 INIT_LIST_HEAD(&dev->links.suppliers); 3162 INIT_LIST_HEAD(&dev->links.defer_sync); 3163 dev->links.status = DL_DEV_NO_DRIVER; 3164 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3165 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3166 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3167 dev->dma_coherent = dma_default_coherent; 3168 #endif 3169 swiotlb_dev_init(dev); 3170 } 3171 EXPORT_SYMBOL_GPL(device_initialize); 3172 3173 struct kobject *virtual_device_parent(struct device *dev) 3174 { 3175 static struct kobject *virtual_dir = NULL; 3176 3177 if (!virtual_dir) 3178 virtual_dir = kobject_create_and_add("virtual", 3179 &devices_kset->kobj); 3180 3181 return virtual_dir; 3182 } 3183 3184 struct class_dir { 3185 struct kobject kobj; 3186 const struct class *class; 3187 }; 3188 3189 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3190 3191 static void class_dir_release(struct kobject *kobj) 3192 { 3193 struct class_dir *dir = to_class_dir(kobj); 3194 kfree(dir); 3195 } 3196 3197 static const 3198 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3199 { 3200 const struct class_dir *dir = to_class_dir(kobj); 3201 return dir->class->ns_type; 3202 } 3203 3204 static const struct kobj_type class_dir_ktype = { 3205 .release = class_dir_release, 3206 .sysfs_ops = &kobj_sysfs_ops, 3207 .child_ns_type = class_dir_child_ns_type 3208 }; 3209 3210 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3211 struct kobject *parent_kobj) 3212 { 3213 struct class_dir *dir; 3214 int retval; 3215 3216 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3217 if (!dir) 3218 return ERR_PTR(-ENOMEM); 3219 3220 dir->class = sp->class; 3221 kobject_init(&dir->kobj, &class_dir_ktype); 3222 3223 dir->kobj.kset = &sp->glue_dirs; 3224 3225 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3226 if (retval < 0) { 3227 kobject_put(&dir->kobj); 3228 return ERR_PTR(retval); 3229 } 3230 return &dir->kobj; 3231 } 3232 3233 static DEFINE_MUTEX(gdp_mutex); 3234 3235 static struct kobject *get_device_parent(struct device *dev, 3236 struct device *parent) 3237 { 3238 struct subsys_private *sp = class_to_subsys(dev->class); 3239 struct kobject *kobj = NULL; 3240 3241 if (sp) { 3242 struct kobject *parent_kobj; 3243 struct kobject *k; 3244 3245 /* 3246 * If we have no parent, we live in "virtual". 3247 * Class-devices with a non class-device as parent, live 3248 * in a "glue" directory to prevent namespace collisions. 3249 */ 3250 if (parent == NULL) 3251 parent_kobj = virtual_device_parent(dev); 3252 else if (parent->class && !dev->class->ns_type) { 3253 subsys_put(sp); 3254 return &parent->kobj; 3255 } else { 3256 parent_kobj = &parent->kobj; 3257 } 3258 3259 mutex_lock(&gdp_mutex); 3260 3261 /* find our class-directory at the parent and reference it */ 3262 spin_lock(&sp->glue_dirs.list_lock); 3263 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3264 if (k->parent == parent_kobj) { 3265 kobj = kobject_get(k); 3266 break; 3267 } 3268 spin_unlock(&sp->glue_dirs.list_lock); 3269 if (kobj) { 3270 mutex_unlock(&gdp_mutex); 3271 subsys_put(sp); 3272 return kobj; 3273 } 3274 3275 /* or create a new class-directory at the parent device */ 3276 k = class_dir_create_and_add(sp, parent_kobj); 3277 /* do not emit an uevent for this simple "glue" directory */ 3278 mutex_unlock(&gdp_mutex); 3279 subsys_put(sp); 3280 return k; 3281 } 3282 3283 /* subsystems can specify a default root directory for their devices */ 3284 if (!parent && dev->bus) { 3285 struct device *dev_root = bus_get_dev_root(dev->bus); 3286 3287 if (dev_root) { 3288 kobj = &dev_root->kobj; 3289 put_device(dev_root); 3290 return kobj; 3291 } 3292 } 3293 3294 if (parent) 3295 return &parent->kobj; 3296 return NULL; 3297 } 3298 3299 static inline bool live_in_glue_dir(struct kobject *kobj, 3300 struct device *dev) 3301 { 3302 struct subsys_private *sp; 3303 bool retval; 3304 3305 if (!kobj || !dev->class) 3306 return false; 3307 3308 sp = class_to_subsys(dev->class); 3309 if (!sp) 3310 return false; 3311 3312 if (kobj->kset == &sp->glue_dirs) 3313 retval = true; 3314 else 3315 retval = false; 3316 3317 subsys_put(sp); 3318 return retval; 3319 } 3320 3321 static inline struct kobject *get_glue_dir(struct device *dev) 3322 { 3323 return dev->kobj.parent; 3324 } 3325 3326 /** 3327 * kobject_has_children - Returns whether a kobject has children. 3328 * @kobj: the object to test 3329 * 3330 * This will return whether a kobject has other kobjects as children. 3331 * 3332 * It does NOT account for the presence of attribute files, only sub 3333 * directories. It also assumes there is no concurrent addition or 3334 * removal of such children, and thus relies on external locking. 3335 */ 3336 static inline bool kobject_has_children(struct kobject *kobj) 3337 { 3338 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3339 3340 return kobj->sd && kobj->sd->dir.subdirs; 3341 } 3342 3343 /* 3344 * make sure cleaning up dir as the last step, we need to make 3345 * sure .release handler of kobject is run with holding the 3346 * global lock 3347 */ 3348 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3349 { 3350 unsigned int ref; 3351 3352 /* see if we live in a "glue" directory */ 3353 if (!live_in_glue_dir(glue_dir, dev)) 3354 return; 3355 3356 mutex_lock(&gdp_mutex); 3357 /** 3358 * There is a race condition between removing glue directory 3359 * and adding a new device under the glue directory. 3360 * 3361 * CPU1: CPU2: 3362 * 3363 * device_add() 3364 * get_device_parent() 3365 * class_dir_create_and_add() 3366 * kobject_add_internal() 3367 * create_dir() // create glue_dir 3368 * 3369 * device_add() 3370 * get_device_parent() 3371 * kobject_get() // get glue_dir 3372 * 3373 * device_del() 3374 * cleanup_glue_dir() 3375 * kobject_del(glue_dir) 3376 * 3377 * kobject_add() 3378 * kobject_add_internal() 3379 * create_dir() // in glue_dir 3380 * sysfs_create_dir_ns() 3381 * kernfs_create_dir_ns(sd) 3382 * 3383 * sysfs_remove_dir() // glue_dir->sd=NULL 3384 * sysfs_put() // free glue_dir->sd 3385 * 3386 * // sd is freed 3387 * kernfs_new_node(sd) 3388 * kernfs_get(glue_dir) 3389 * kernfs_add_one() 3390 * kernfs_put() 3391 * 3392 * Before CPU1 remove last child device under glue dir, if CPU2 add 3393 * a new device under glue dir, the glue_dir kobject reference count 3394 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3395 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3396 * and sysfs_put(). This result in glue_dir->sd is freed. 3397 * 3398 * Then the CPU2 will see a stale "empty" but still potentially used 3399 * glue dir around in kernfs_new_node(). 3400 * 3401 * In order to avoid this happening, we also should make sure that 3402 * kernfs_node for glue_dir is released in CPU1 only when refcount 3403 * for glue_dir kobj is 1. 3404 */ 3405 ref = kref_read(&glue_dir->kref); 3406 if (!kobject_has_children(glue_dir) && !--ref) 3407 kobject_del(glue_dir); 3408 kobject_put(glue_dir); 3409 mutex_unlock(&gdp_mutex); 3410 } 3411 3412 static int device_add_class_symlinks(struct device *dev) 3413 { 3414 struct device_node *of_node = dev_of_node(dev); 3415 struct subsys_private *sp; 3416 int error; 3417 3418 if (of_node) { 3419 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3420 if (error) 3421 dev_warn(dev, "Error %d creating of_node link\n",error); 3422 /* An error here doesn't warrant bringing down the device */ 3423 } 3424 3425 sp = class_to_subsys(dev->class); 3426 if (!sp) 3427 return 0; 3428 3429 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3430 if (error) 3431 goto out_devnode; 3432 3433 if (dev->parent && device_is_not_partition(dev)) { 3434 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3435 "device"); 3436 if (error) 3437 goto out_subsys; 3438 } 3439 3440 /* link in the class directory pointing to the device */ 3441 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3442 if (error) 3443 goto out_device; 3444 goto exit; 3445 3446 out_device: 3447 sysfs_remove_link(&dev->kobj, "device"); 3448 out_subsys: 3449 sysfs_remove_link(&dev->kobj, "subsystem"); 3450 out_devnode: 3451 sysfs_remove_link(&dev->kobj, "of_node"); 3452 exit: 3453 subsys_put(sp); 3454 return error; 3455 } 3456 3457 static void device_remove_class_symlinks(struct device *dev) 3458 { 3459 struct subsys_private *sp = class_to_subsys(dev->class); 3460 3461 if (dev_of_node(dev)) 3462 sysfs_remove_link(&dev->kobj, "of_node"); 3463 3464 if (!sp) 3465 return; 3466 3467 if (dev->parent && device_is_not_partition(dev)) 3468 sysfs_remove_link(&dev->kobj, "device"); 3469 sysfs_remove_link(&dev->kobj, "subsystem"); 3470 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3471 subsys_put(sp); 3472 } 3473 3474 /** 3475 * dev_set_name - set a device name 3476 * @dev: device 3477 * @fmt: format string for the device's name 3478 */ 3479 int dev_set_name(struct device *dev, const char *fmt, ...) 3480 { 3481 va_list vargs; 3482 int err; 3483 3484 va_start(vargs, fmt); 3485 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3486 va_end(vargs); 3487 return err; 3488 } 3489 EXPORT_SYMBOL_GPL(dev_set_name); 3490 3491 /* select a /sys/dev/ directory for the device */ 3492 static struct kobject *device_to_dev_kobj(struct device *dev) 3493 { 3494 if (is_blockdev(dev)) 3495 return sysfs_dev_block_kobj; 3496 else 3497 return sysfs_dev_char_kobj; 3498 } 3499 3500 static int device_create_sys_dev_entry(struct device *dev) 3501 { 3502 struct kobject *kobj = device_to_dev_kobj(dev); 3503 int error = 0; 3504 char devt_str[15]; 3505 3506 if (kobj) { 3507 format_dev_t(devt_str, dev->devt); 3508 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3509 } 3510 3511 return error; 3512 } 3513 3514 static void device_remove_sys_dev_entry(struct device *dev) 3515 { 3516 struct kobject *kobj = device_to_dev_kobj(dev); 3517 char devt_str[15]; 3518 3519 if (kobj) { 3520 format_dev_t(devt_str, dev->devt); 3521 sysfs_remove_link(kobj, devt_str); 3522 } 3523 } 3524 3525 static int device_private_init(struct device *dev) 3526 { 3527 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3528 if (!dev->p) 3529 return -ENOMEM; 3530 dev->p->device = dev; 3531 klist_init(&dev->p->klist_children, klist_children_get, 3532 klist_children_put); 3533 INIT_LIST_HEAD(&dev->p->deferred_probe); 3534 return 0; 3535 } 3536 3537 /** 3538 * device_add - add device to device hierarchy. 3539 * @dev: device. 3540 * 3541 * This is part 2 of device_register(), though may be called 3542 * separately _iff_ device_initialize() has been called separately. 3543 * 3544 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3545 * to the global and sibling lists for the device, then 3546 * adds it to the other relevant subsystems of the driver model. 3547 * 3548 * Do not call this routine or device_register() more than once for 3549 * any device structure. The driver model core is not designed to work 3550 * with devices that get unregistered and then spring back to life. 3551 * (Among other things, it's very hard to guarantee that all references 3552 * to the previous incarnation of @dev have been dropped.) Allocate 3553 * and register a fresh new struct device instead. 3554 * 3555 * NOTE: _Never_ directly free @dev after calling this function, even 3556 * if it returned an error! Always use put_device() to give up your 3557 * reference instead. 3558 * 3559 * Rule of thumb is: if device_add() succeeds, you should call 3560 * device_del() when you want to get rid of it. If device_add() has 3561 * *not* succeeded, use *only* put_device() to drop the reference 3562 * count. 3563 */ 3564 int device_add(struct device *dev) 3565 { 3566 struct subsys_private *sp; 3567 struct device *parent; 3568 struct kobject *kobj; 3569 struct class_interface *class_intf; 3570 int error = -EINVAL; 3571 struct kobject *glue_dir = NULL; 3572 3573 dev = get_device(dev); 3574 if (!dev) 3575 goto done; 3576 3577 if (!dev->p) { 3578 error = device_private_init(dev); 3579 if (error) 3580 goto done; 3581 } 3582 3583 /* 3584 * for statically allocated devices, which should all be converted 3585 * some day, we need to initialize the name. We prevent reading back 3586 * the name, and force the use of dev_name() 3587 */ 3588 if (dev->init_name) { 3589 error = dev_set_name(dev, "%s", dev->init_name); 3590 dev->init_name = NULL; 3591 } 3592 3593 if (dev_name(dev)) 3594 error = 0; 3595 /* subsystems can specify simple device enumeration */ 3596 else if (dev->bus && dev->bus->dev_name) 3597 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3598 else 3599 error = -EINVAL; 3600 if (error) 3601 goto name_error; 3602 3603 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3604 3605 parent = get_device(dev->parent); 3606 kobj = get_device_parent(dev, parent); 3607 if (IS_ERR(kobj)) { 3608 error = PTR_ERR(kobj); 3609 goto parent_error; 3610 } 3611 if (kobj) 3612 dev->kobj.parent = kobj; 3613 3614 /* use parent numa_node */ 3615 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3616 set_dev_node(dev, dev_to_node(parent)); 3617 3618 /* first, register with generic layer. */ 3619 /* we require the name to be set before, and pass NULL */ 3620 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3621 if (error) { 3622 glue_dir = kobj; 3623 goto Error; 3624 } 3625 3626 /* notify platform of device entry */ 3627 device_platform_notify(dev); 3628 3629 error = device_create_file(dev, &dev_attr_uevent); 3630 if (error) 3631 goto attrError; 3632 3633 error = device_add_class_symlinks(dev); 3634 if (error) 3635 goto SymlinkError; 3636 error = device_add_attrs(dev); 3637 if (error) 3638 goto AttrsError; 3639 error = bus_add_device(dev); 3640 if (error) 3641 goto BusError; 3642 error = dpm_sysfs_add(dev); 3643 if (error) 3644 goto DPMError; 3645 device_pm_add(dev); 3646 3647 if (MAJOR(dev->devt)) { 3648 error = device_create_file(dev, &dev_attr_dev); 3649 if (error) 3650 goto DevAttrError; 3651 3652 error = device_create_sys_dev_entry(dev); 3653 if (error) 3654 goto SysEntryError; 3655 3656 devtmpfs_create_node(dev); 3657 } 3658 3659 /* Notify clients of device addition. This call must come 3660 * after dpm_sysfs_add() and before kobject_uevent(). 3661 */ 3662 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3663 kobject_uevent(&dev->kobj, KOBJ_ADD); 3664 3665 /* 3666 * Check if any of the other devices (consumers) have been waiting for 3667 * this device (supplier) to be added so that they can create a device 3668 * link to it. 3669 * 3670 * This needs to happen after device_pm_add() because device_link_add() 3671 * requires the supplier be registered before it's called. 3672 * 3673 * But this also needs to happen before bus_probe_device() to make sure 3674 * waiting consumers can link to it before the driver is bound to the 3675 * device and the driver sync_state callback is called for this device. 3676 */ 3677 if (dev->fwnode && !dev->fwnode->dev) { 3678 dev->fwnode->dev = dev; 3679 fw_devlink_link_device(dev); 3680 } 3681 3682 bus_probe_device(dev); 3683 3684 /* 3685 * If all driver registration is done and a newly added device doesn't 3686 * match with any driver, don't block its consumers from probing in 3687 * case the consumer device is able to operate without this supplier. 3688 */ 3689 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3690 fw_devlink_unblock_consumers(dev); 3691 3692 if (parent) 3693 klist_add_tail(&dev->p->knode_parent, 3694 &parent->p->klist_children); 3695 3696 sp = class_to_subsys(dev->class); 3697 if (sp) { 3698 mutex_lock(&sp->mutex); 3699 /* tie the class to the device */ 3700 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3701 3702 /* notify any interfaces that the device is here */ 3703 list_for_each_entry(class_intf, &sp->interfaces, node) 3704 if (class_intf->add_dev) 3705 class_intf->add_dev(dev); 3706 mutex_unlock(&sp->mutex); 3707 subsys_put(sp); 3708 } 3709 done: 3710 put_device(dev); 3711 return error; 3712 SysEntryError: 3713 if (MAJOR(dev->devt)) 3714 device_remove_file(dev, &dev_attr_dev); 3715 DevAttrError: 3716 device_pm_remove(dev); 3717 dpm_sysfs_remove(dev); 3718 DPMError: 3719 dev->driver = NULL; 3720 bus_remove_device(dev); 3721 BusError: 3722 device_remove_attrs(dev); 3723 AttrsError: 3724 device_remove_class_symlinks(dev); 3725 SymlinkError: 3726 device_remove_file(dev, &dev_attr_uevent); 3727 attrError: 3728 device_platform_notify_remove(dev); 3729 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3730 glue_dir = get_glue_dir(dev); 3731 kobject_del(&dev->kobj); 3732 Error: 3733 cleanup_glue_dir(dev, glue_dir); 3734 parent_error: 3735 put_device(parent); 3736 name_error: 3737 kfree(dev->p); 3738 dev->p = NULL; 3739 goto done; 3740 } 3741 EXPORT_SYMBOL_GPL(device_add); 3742 3743 /** 3744 * device_register - register a device with the system. 3745 * @dev: pointer to the device structure 3746 * 3747 * This happens in two clean steps - initialize the device 3748 * and add it to the system. The two steps can be called 3749 * separately, but this is the easiest and most common. 3750 * I.e. you should only call the two helpers separately if 3751 * have a clearly defined need to use and refcount the device 3752 * before it is added to the hierarchy. 3753 * 3754 * For more information, see the kerneldoc for device_initialize() 3755 * and device_add(). 3756 * 3757 * NOTE: _Never_ directly free @dev after calling this function, even 3758 * if it returned an error! Always use put_device() to give up the 3759 * reference initialized in this function instead. 3760 */ 3761 int device_register(struct device *dev) 3762 { 3763 device_initialize(dev); 3764 return device_add(dev); 3765 } 3766 EXPORT_SYMBOL_GPL(device_register); 3767 3768 /** 3769 * get_device - increment reference count for device. 3770 * @dev: device. 3771 * 3772 * This simply forwards the call to kobject_get(), though 3773 * we do take care to provide for the case that we get a NULL 3774 * pointer passed in. 3775 */ 3776 struct device *get_device(struct device *dev) 3777 { 3778 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3779 } 3780 EXPORT_SYMBOL_GPL(get_device); 3781 3782 /** 3783 * put_device - decrement reference count. 3784 * @dev: device in question. 3785 */ 3786 void put_device(struct device *dev) 3787 { 3788 /* might_sleep(); */ 3789 if (dev) 3790 kobject_put(&dev->kobj); 3791 } 3792 EXPORT_SYMBOL_GPL(put_device); 3793 3794 bool kill_device(struct device *dev) 3795 { 3796 /* 3797 * Require the device lock and set the "dead" flag to guarantee that 3798 * the update behavior is consistent with the other bitfields near 3799 * it and that we cannot have an asynchronous probe routine trying 3800 * to run while we are tearing out the bus/class/sysfs from 3801 * underneath the device. 3802 */ 3803 device_lock_assert(dev); 3804 3805 if (dev->p->dead) 3806 return false; 3807 dev->p->dead = true; 3808 return true; 3809 } 3810 EXPORT_SYMBOL_GPL(kill_device); 3811 3812 /** 3813 * device_del - delete device from system. 3814 * @dev: device. 3815 * 3816 * This is the first part of the device unregistration 3817 * sequence. This removes the device from the lists we control 3818 * from here, has it removed from the other driver model 3819 * subsystems it was added to in device_add(), and removes it 3820 * from the kobject hierarchy. 3821 * 3822 * NOTE: this should be called manually _iff_ device_add() was 3823 * also called manually. 3824 */ 3825 void device_del(struct device *dev) 3826 { 3827 struct subsys_private *sp; 3828 struct device *parent = dev->parent; 3829 struct kobject *glue_dir = NULL; 3830 struct class_interface *class_intf; 3831 unsigned int noio_flag; 3832 3833 device_lock(dev); 3834 kill_device(dev); 3835 device_unlock(dev); 3836 3837 if (dev->fwnode && dev->fwnode->dev == dev) 3838 dev->fwnode->dev = NULL; 3839 3840 /* Notify clients of device removal. This call must come 3841 * before dpm_sysfs_remove(). 3842 */ 3843 noio_flag = memalloc_noio_save(); 3844 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3845 3846 dpm_sysfs_remove(dev); 3847 if (parent) 3848 klist_del(&dev->p->knode_parent); 3849 if (MAJOR(dev->devt)) { 3850 devtmpfs_delete_node(dev); 3851 device_remove_sys_dev_entry(dev); 3852 device_remove_file(dev, &dev_attr_dev); 3853 } 3854 3855 sp = class_to_subsys(dev->class); 3856 if (sp) { 3857 device_remove_class_symlinks(dev); 3858 3859 mutex_lock(&sp->mutex); 3860 /* notify any interfaces that the device is now gone */ 3861 list_for_each_entry(class_intf, &sp->interfaces, node) 3862 if (class_intf->remove_dev) 3863 class_intf->remove_dev(dev); 3864 /* remove the device from the class list */ 3865 klist_del(&dev->p->knode_class); 3866 mutex_unlock(&sp->mutex); 3867 subsys_put(sp); 3868 } 3869 device_remove_file(dev, &dev_attr_uevent); 3870 device_remove_attrs(dev); 3871 bus_remove_device(dev); 3872 device_pm_remove(dev); 3873 driver_deferred_probe_del(dev); 3874 device_platform_notify_remove(dev); 3875 device_links_purge(dev); 3876 3877 /* 3878 * If a device does not have a driver attached, we need to clean 3879 * up any managed resources. We do this in device_release(), but 3880 * it's never called (and we leak the device) if a managed 3881 * resource holds a reference to the device. So release all 3882 * managed resources here, like we do in driver_detach(). We 3883 * still need to do so again in device_release() in case someone 3884 * adds a new resource after this point, though. 3885 */ 3886 devres_release_all(dev); 3887 3888 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3889 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3890 glue_dir = get_glue_dir(dev); 3891 kobject_del(&dev->kobj); 3892 cleanup_glue_dir(dev, glue_dir); 3893 memalloc_noio_restore(noio_flag); 3894 put_device(parent); 3895 } 3896 EXPORT_SYMBOL_GPL(device_del); 3897 3898 /** 3899 * device_unregister - unregister device from system. 3900 * @dev: device going away. 3901 * 3902 * We do this in two parts, like we do device_register(). First, 3903 * we remove it from all the subsystems with device_del(), then 3904 * we decrement the reference count via put_device(). If that 3905 * is the final reference count, the device will be cleaned up 3906 * via device_release() above. Otherwise, the structure will 3907 * stick around until the final reference to the device is dropped. 3908 */ 3909 void device_unregister(struct device *dev) 3910 { 3911 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3912 device_del(dev); 3913 put_device(dev); 3914 } 3915 EXPORT_SYMBOL_GPL(device_unregister); 3916 3917 static struct device *prev_device(struct klist_iter *i) 3918 { 3919 struct klist_node *n = klist_prev(i); 3920 struct device *dev = NULL; 3921 struct device_private *p; 3922 3923 if (n) { 3924 p = to_device_private_parent(n); 3925 dev = p->device; 3926 } 3927 return dev; 3928 } 3929 3930 static struct device *next_device(struct klist_iter *i) 3931 { 3932 struct klist_node *n = klist_next(i); 3933 struct device *dev = NULL; 3934 struct device_private *p; 3935 3936 if (n) { 3937 p = to_device_private_parent(n); 3938 dev = p->device; 3939 } 3940 return dev; 3941 } 3942 3943 /** 3944 * device_get_devnode - path of device node file 3945 * @dev: device 3946 * @mode: returned file access mode 3947 * @uid: returned file owner 3948 * @gid: returned file group 3949 * @tmp: possibly allocated string 3950 * 3951 * Return the relative path of a possible device node. 3952 * Non-default names may need to allocate a memory to compose 3953 * a name. This memory is returned in tmp and needs to be 3954 * freed by the caller. 3955 */ 3956 const char *device_get_devnode(const struct device *dev, 3957 umode_t *mode, kuid_t *uid, kgid_t *gid, 3958 const char **tmp) 3959 { 3960 char *s; 3961 3962 *tmp = NULL; 3963 3964 /* the device type may provide a specific name */ 3965 if (dev->type && dev->type->devnode) 3966 *tmp = dev->type->devnode(dev, mode, uid, gid); 3967 if (*tmp) 3968 return *tmp; 3969 3970 /* the class may provide a specific name */ 3971 if (dev->class && dev->class->devnode) 3972 *tmp = dev->class->devnode(dev, mode); 3973 if (*tmp) 3974 return *tmp; 3975 3976 /* return name without allocation, tmp == NULL */ 3977 if (strchr(dev_name(dev), '!') == NULL) 3978 return dev_name(dev); 3979 3980 /* replace '!' in the name with '/' */ 3981 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3982 if (!s) 3983 return NULL; 3984 return *tmp = s; 3985 } 3986 3987 /** 3988 * device_for_each_child - device child iterator. 3989 * @parent: parent struct device. 3990 * @fn: function to be called for each device. 3991 * @data: data for the callback. 3992 * 3993 * Iterate over @parent's child devices, and call @fn for each, 3994 * passing it @data. 3995 * 3996 * We check the return of @fn each time. If it returns anything 3997 * other than 0, we break out and return that value. 3998 */ 3999 int device_for_each_child(struct device *parent, void *data, 4000 int (*fn)(struct device *dev, void *data)) 4001 { 4002 struct klist_iter i; 4003 struct device *child; 4004 int error = 0; 4005 4006 if (!parent->p) 4007 return 0; 4008 4009 klist_iter_init(&parent->p->klist_children, &i); 4010 while (!error && (child = next_device(&i))) 4011 error = fn(child, data); 4012 klist_iter_exit(&i); 4013 return error; 4014 } 4015 EXPORT_SYMBOL_GPL(device_for_each_child); 4016 4017 /** 4018 * device_for_each_child_reverse - device child iterator in reversed order. 4019 * @parent: parent struct device. 4020 * @fn: function to be called for each device. 4021 * @data: data for the callback. 4022 * 4023 * Iterate over @parent's child devices, and call @fn for each, 4024 * passing it @data. 4025 * 4026 * We check the return of @fn each time. If it returns anything 4027 * other than 0, we break out and return that value. 4028 */ 4029 int device_for_each_child_reverse(struct device *parent, void *data, 4030 int (*fn)(struct device *dev, void *data)) 4031 { 4032 struct klist_iter i; 4033 struct device *child; 4034 int error = 0; 4035 4036 if (!parent->p) 4037 return 0; 4038 4039 klist_iter_init(&parent->p->klist_children, &i); 4040 while ((child = prev_device(&i)) && !error) 4041 error = fn(child, data); 4042 klist_iter_exit(&i); 4043 return error; 4044 } 4045 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4046 4047 /** 4048 * device_find_child - device iterator for locating a particular device. 4049 * @parent: parent struct device 4050 * @match: Callback function to check device 4051 * @data: Data to pass to match function 4052 * 4053 * This is similar to the device_for_each_child() function above, but it 4054 * returns a reference to a device that is 'found' for later use, as 4055 * determined by the @match callback. 4056 * 4057 * The callback should return 0 if the device doesn't match and non-zero 4058 * if it does. If the callback returns non-zero and a reference to the 4059 * current device can be obtained, this function will return to the caller 4060 * and not iterate over any more devices. 4061 * 4062 * NOTE: you will need to drop the reference with put_device() after use. 4063 */ 4064 struct device *device_find_child(struct device *parent, void *data, 4065 int (*match)(struct device *dev, void *data)) 4066 { 4067 struct klist_iter i; 4068 struct device *child; 4069 4070 if (!parent) 4071 return NULL; 4072 4073 klist_iter_init(&parent->p->klist_children, &i); 4074 while ((child = next_device(&i))) 4075 if (match(child, data) && get_device(child)) 4076 break; 4077 klist_iter_exit(&i); 4078 return child; 4079 } 4080 EXPORT_SYMBOL_GPL(device_find_child); 4081 4082 /** 4083 * device_find_child_by_name - device iterator for locating a child device. 4084 * @parent: parent struct device 4085 * @name: name of the child device 4086 * 4087 * This is similar to the device_find_child() function above, but it 4088 * returns a reference to a device that has the name @name. 4089 * 4090 * NOTE: you will need to drop the reference with put_device() after use. 4091 */ 4092 struct device *device_find_child_by_name(struct device *parent, 4093 const char *name) 4094 { 4095 struct klist_iter i; 4096 struct device *child; 4097 4098 if (!parent) 4099 return NULL; 4100 4101 klist_iter_init(&parent->p->klist_children, &i); 4102 while ((child = next_device(&i))) 4103 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4104 break; 4105 klist_iter_exit(&i); 4106 return child; 4107 } 4108 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4109 4110 static int match_any(struct device *dev, void *unused) 4111 { 4112 return 1; 4113 } 4114 4115 /** 4116 * device_find_any_child - device iterator for locating a child device, if any. 4117 * @parent: parent struct device 4118 * 4119 * This is similar to the device_find_child() function above, but it 4120 * returns a reference to a child device, if any. 4121 * 4122 * NOTE: you will need to drop the reference with put_device() after use. 4123 */ 4124 struct device *device_find_any_child(struct device *parent) 4125 { 4126 return device_find_child(parent, NULL, match_any); 4127 } 4128 EXPORT_SYMBOL_GPL(device_find_any_child); 4129 4130 int __init devices_init(void) 4131 { 4132 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4133 if (!devices_kset) 4134 return -ENOMEM; 4135 dev_kobj = kobject_create_and_add("dev", NULL); 4136 if (!dev_kobj) 4137 goto dev_kobj_err; 4138 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4139 if (!sysfs_dev_block_kobj) 4140 goto block_kobj_err; 4141 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4142 if (!sysfs_dev_char_kobj) 4143 goto char_kobj_err; 4144 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4145 if (!device_link_wq) 4146 goto wq_err; 4147 4148 return 0; 4149 4150 wq_err: 4151 kobject_put(sysfs_dev_char_kobj); 4152 char_kobj_err: 4153 kobject_put(sysfs_dev_block_kobj); 4154 block_kobj_err: 4155 kobject_put(dev_kobj); 4156 dev_kobj_err: 4157 kset_unregister(devices_kset); 4158 return -ENOMEM; 4159 } 4160 4161 static int device_check_offline(struct device *dev, void *not_used) 4162 { 4163 int ret; 4164 4165 ret = device_for_each_child(dev, NULL, device_check_offline); 4166 if (ret) 4167 return ret; 4168 4169 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4170 } 4171 4172 /** 4173 * device_offline - Prepare the device for hot-removal. 4174 * @dev: Device to be put offline. 4175 * 4176 * Execute the device bus type's .offline() callback, if present, to prepare 4177 * the device for a subsequent hot-removal. If that succeeds, the device must 4178 * not be used until either it is removed or its bus type's .online() callback 4179 * is executed. 4180 * 4181 * Call under device_hotplug_lock. 4182 */ 4183 int device_offline(struct device *dev) 4184 { 4185 int ret; 4186 4187 if (dev->offline_disabled) 4188 return -EPERM; 4189 4190 ret = device_for_each_child(dev, NULL, device_check_offline); 4191 if (ret) 4192 return ret; 4193 4194 device_lock(dev); 4195 if (device_supports_offline(dev)) { 4196 if (dev->offline) { 4197 ret = 1; 4198 } else { 4199 ret = dev->bus->offline(dev); 4200 if (!ret) { 4201 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4202 dev->offline = true; 4203 } 4204 } 4205 } 4206 device_unlock(dev); 4207 4208 return ret; 4209 } 4210 4211 /** 4212 * device_online - Put the device back online after successful device_offline(). 4213 * @dev: Device to be put back online. 4214 * 4215 * If device_offline() has been successfully executed for @dev, but the device 4216 * has not been removed subsequently, execute its bus type's .online() callback 4217 * to indicate that the device can be used again. 4218 * 4219 * Call under device_hotplug_lock. 4220 */ 4221 int device_online(struct device *dev) 4222 { 4223 int ret = 0; 4224 4225 device_lock(dev); 4226 if (device_supports_offline(dev)) { 4227 if (dev->offline) { 4228 ret = dev->bus->online(dev); 4229 if (!ret) { 4230 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4231 dev->offline = false; 4232 } 4233 } else { 4234 ret = 1; 4235 } 4236 } 4237 device_unlock(dev); 4238 4239 return ret; 4240 } 4241 4242 struct root_device { 4243 struct device dev; 4244 struct module *owner; 4245 }; 4246 4247 static inline struct root_device *to_root_device(struct device *d) 4248 { 4249 return container_of(d, struct root_device, dev); 4250 } 4251 4252 static void root_device_release(struct device *dev) 4253 { 4254 kfree(to_root_device(dev)); 4255 } 4256 4257 /** 4258 * __root_device_register - allocate and register a root device 4259 * @name: root device name 4260 * @owner: owner module of the root device, usually THIS_MODULE 4261 * 4262 * This function allocates a root device and registers it 4263 * using device_register(). In order to free the returned 4264 * device, use root_device_unregister(). 4265 * 4266 * Root devices are dummy devices which allow other devices 4267 * to be grouped under /sys/devices. Use this function to 4268 * allocate a root device and then use it as the parent of 4269 * any device which should appear under /sys/devices/{name} 4270 * 4271 * The /sys/devices/{name} directory will also contain a 4272 * 'module' symlink which points to the @owner directory 4273 * in sysfs. 4274 * 4275 * Returns &struct device pointer on success, or ERR_PTR() on error. 4276 * 4277 * Note: You probably want to use root_device_register(). 4278 */ 4279 struct device *__root_device_register(const char *name, struct module *owner) 4280 { 4281 struct root_device *root; 4282 int err = -ENOMEM; 4283 4284 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4285 if (!root) 4286 return ERR_PTR(err); 4287 4288 err = dev_set_name(&root->dev, "%s", name); 4289 if (err) { 4290 kfree(root); 4291 return ERR_PTR(err); 4292 } 4293 4294 root->dev.release = root_device_release; 4295 4296 err = device_register(&root->dev); 4297 if (err) { 4298 put_device(&root->dev); 4299 return ERR_PTR(err); 4300 } 4301 4302 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4303 if (owner) { 4304 struct module_kobject *mk = &owner->mkobj; 4305 4306 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4307 if (err) { 4308 device_unregister(&root->dev); 4309 return ERR_PTR(err); 4310 } 4311 root->owner = owner; 4312 } 4313 #endif 4314 4315 return &root->dev; 4316 } 4317 EXPORT_SYMBOL_GPL(__root_device_register); 4318 4319 /** 4320 * root_device_unregister - unregister and free a root device 4321 * @dev: device going away 4322 * 4323 * This function unregisters and cleans up a device that was created by 4324 * root_device_register(). 4325 */ 4326 void root_device_unregister(struct device *dev) 4327 { 4328 struct root_device *root = to_root_device(dev); 4329 4330 if (root->owner) 4331 sysfs_remove_link(&root->dev.kobj, "module"); 4332 4333 device_unregister(dev); 4334 } 4335 EXPORT_SYMBOL_GPL(root_device_unregister); 4336 4337 4338 static void device_create_release(struct device *dev) 4339 { 4340 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4341 kfree(dev); 4342 } 4343 4344 static __printf(6, 0) struct device * 4345 device_create_groups_vargs(const struct class *class, struct device *parent, 4346 dev_t devt, void *drvdata, 4347 const struct attribute_group **groups, 4348 const char *fmt, va_list args) 4349 { 4350 struct device *dev = NULL; 4351 int retval = -ENODEV; 4352 4353 if (IS_ERR_OR_NULL(class)) 4354 goto error; 4355 4356 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4357 if (!dev) { 4358 retval = -ENOMEM; 4359 goto error; 4360 } 4361 4362 device_initialize(dev); 4363 dev->devt = devt; 4364 dev->class = class; 4365 dev->parent = parent; 4366 dev->groups = groups; 4367 dev->release = device_create_release; 4368 dev_set_drvdata(dev, drvdata); 4369 4370 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4371 if (retval) 4372 goto error; 4373 4374 retval = device_add(dev); 4375 if (retval) 4376 goto error; 4377 4378 return dev; 4379 4380 error: 4381 put_device(dev); 4382 return ERR_PTR(retval); 4383 } 4384 4385 /** 4386 * device_create - creates a device and registers it with sysfs 4387 * @class: pointer to the struct class that this device should be registered to 4388 * @parent: pointer to the parent struct device of this new device, if any 4389 * @devt: the dev_t for the char device to be added 4390 * @drvdata: the data to be added to the device for callbacks 4391 * @fmt: string for the device's name 4392 * 4393 * This function can be used by char device classes. A struct device 4394 * will be created in sysfs, registered to the specified class. 4395 * 4396 * A "dev" file will be created, showing the dev_t for the device, if 4397 * the dev_t is not 0,0. 4398 * If a pointer to a parent struct device is passed in, the newly created 4399 * struct device will be a child of that device in sysfs. 4400 * The pointer to the struct device will be returned from the call. 4401 * Any further sysfs files that might be required can be created using this 4402 * pointer. 4403 * 4404 * Returns &struct device pointer on success, or ERR_PTR() on error. 4405 */ 4406 struct device *device_create(const struct class *class, struct device *parent, 4407 dev_t devt, void *drvdata, const char *fmt, ...) 4408 { 4409 va_list vargs; 4410 struct device *dev; 4411 4412 va_start(vargs, fmt); 4413 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4414 fmt, vargs); 4415 va_end(vargs); 4416 return dev; 4417 } 4418 EXPORT_SYMBOL_GPL(device_create); 4419 4420 /** 4421 * device_create_with_groups - creates a device and registers it with sysfs 4422 * @class: pointer to the struct class that this device should be registered to 4423 * @parent: pointer to the parent struct device of this new device, if any 4424 * @devt: the dev_t for the char device to be added 4425 * @drvdata: the data to be added to the device for callbacks 4426 * @groups: NULL-terminated list of attribute groups to be created 4427 * @fmt: string for the device's name 4428 * 4429 * This function can be used by char device classes. A struct device 4430 * will be created in sysfs, registered to the specified class. 4431 * Additional attributes specified in the groups parameter will also 4432 * be created automatically. 4433 * 4434 * A "dev" file will be created, showing the dev_t for the device, if 4435 * the dev_t is not 0,0. 4436 * If a pointer to a parent struct device is passed in, the newly created 4437 * struct device will be a child of that device in sysfs. 4438 * The pointer to the struct device will be returned from the call. 4439 * Any further sysfs files that might be required can be created using this 4440 * pointer. 4441 * 4442 * Returns &struct device pointer on success, or ERR_PTR() on error. 4443 */ 4444 struct device *device_create_with_groups(const struct class *class, 4445 struct device *parent, dev_t devt, 4446 void *drvdata, 4447 const struct attribute_group **groups, 4448 const char *fmt, ...) 4449 { 4450 va_list vargs; 4451 struct device *dev; 4452 4453 va_start(vargs, fmt); 4454 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4455 fmt, vargs); 4456 va_end(vargs); 4457 return dev; 4458 } 4459 EXPORT_SYMBOL_GPL(device_create_with_groups); 4460 4461 /** 4462 * device_destroy - removes a device that was created with device_create() 4463 * @class: pointer to the struct class that this device was registered with 4464 * @devt: the dev_t of the device that was previously registered 4465 * 4466 * This call unregisters and cleans up a device that was created with a 4467 * call to device_create(). 4468 */ 4469 void device_destroy(const struct class *class, dev_t devt) 4470 { 4471 struct device *dev; 4472 4473 dev = class_find_device_by_devt(class, devt); 4474 if (dev) { 4475 put_device(dev); 4476 device_unregister(dev); 4477 } 4478 } 4479 EXPORT_SYMBOL_GPL(device_destroy); 4480 4481 /** 4482 * device_rename - renames a device 4483 * @dev: the pointer to the struct device to be renamed 4484 * @new_name: the new name of the device 4485 * 4486 * It is the responsibility of the caller to provide mutual 4487 * exclusion between two different calls of device_rename 4488 * on the same device to ensure that new_name is valid and 4489 * won't conflict with other devices. 4490 * 4491 * Note: given that some subsystems (networking and infiniband) use this 4492 * function, with no immediate plans for this to change, we cannot assume or 4493 * require that this function not be called at all. 4494 * 4495 * However, if you're writing new code, do not call this function. The following 4496 * text from Kay Sievers offers some insight: 4497 * 4498 * Renaming devices is racy at many levels, symlinks and other stuff are not 4499 * replaced atomically, and you get a "move" uevent, but it's not easy to 4500 * connect the event to the old and new device. Device nodes are not renamed at 4501 * all, there isn't even support for that in the kernel now. 4502 * 4503 * In the meantime, during renaming, your target name might be taken by another 4504 * driver, creating conflicts. Or the old name is taken directly after you 4505 * renamed it -- then you get events for the same DEVPATH, before you even see 4506 * the "move" event. It's just a mess, and nothing new should ever rely on 4507 * kernel device renaming. Besides that, it's not even implemented now for 4508 * other things than (driver-core wise very simple) network devices. 4509 * 4510 * Make up a "real" name in the driver before you register anything, or add 4511 * some other attributes for userspace to find the device, or use udev to add 4512 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4513 * don't even want to get into that and try to implement the missing pieces in 4514 * the core. We really have other pieces to fix in the driver core mess. :) 4515 */ 4516 int device_rename(struct device *dev, const char *new_name) 4517 { 4518 struct kobject *kobj = &dev->kobj; 4519 char *old_device_name = NULL; 4520 int error; 4521 4522 dev = get_device(dev); 4523 if (!dev) 4524 return -EINVAL; 4525 4526 dev_dbg(dev, "renaming to %s\n", new_name); 4527 4528 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4529 if (!old_device_name) { 4530 error = -ENOMEM; 4531 goto out; 4532 } 4533 4534 if (dev->class) { 4535 struct subsys_private *sp = class_to_subsys(dev->class); 4536 4537 if (!sp) { 4538 error = -EINVAL; 4539 goto out; 4540 } 4541 4542 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4543 new_name, kobject_namespace(kobj)); 4544 subsys_put(sp); 4545 if (error) 4546 goto out; 4547 } 4548 4549 error = kobject_rename(kobj, new_name); 4550 if (error) 4551 goto out; 4552 4553 out: 4554 put_device(dev); 4555 4556 kfree(old_device_name); 4557 4558 return error; 4559 } 4560 EXPORT_SYMBOL_GPL(device_rename); 4561 4562 static int device_move_class_links(struct device *dev, 4563 struct device *old_parent, 4564 struct device *new_parent) 4565 { 4566 int error = 0; 4567 4568 if (old_parent) 4569 sysfs_remove_link(&dev->kobj, "device"); 4570 if (new_parent) 4571 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4572 "device"); 4573 return error; 4574 } 4575 4576 /** 4577 * device_move - moves a device to a new parent 4578 * @dev: the pointer to the struct device to be moved 4579 * @new_parent: the new parent of the device (can be NULL) 4580 * @dpm_order: how to reorder the dpm_list 4581 */ 4582 int device_move(struct device *dev, struct device *new_parent, 4583 enum dpm_order dpm_order) 4584 { 4585 int error; 4586 struct device *old_parent; 4587 struct kobject *new_parent_kobj; 4588 4589 dev = get_device(dev); 4590 if (!dev) 4591 return -EINVAL; 4592 4593 device_pm_lock(); 4594 new_parent = get_device(new_parent); 4595 new_parent_kobj = get_device_parent(dev, new_parent); 4596 if (IS_ERR(new_parent_kobj)) { 4597 error = PTR_ERR(new_parent_kobj); 4598 put_device(new_parent); 4599 goto out; 4600 } 4601 4602 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4603 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4604 error = kobject_move(&dev->kobj, new_parent_kobj); 4605 if (error) { 4606 cleanup_glue_dir(dev, new_parent_kobj); 4607 put_device(new_parent); 4608 goto out; 4609 } 4610 old_parent = dev->parent; 4611 dev->parent = new_parent; 4612 if (old_parent) 4613 klist_remove(&dev->p->knode_parent); 4614 if (new_parent) { 4615 klist_add_tail(&dev->p->knode_parent, 4616 &new_parent->p->klist_children); 4617 set_dev_node(dev, dev_to_node(new_parent)); 4618 } 4619 4620 if (dev->class) { 4621 error = device_move_class_links(dev, old_parent, new_parent); 4622 if (error) { 4623 /* We ignore errors on cleanup since we're hosed anyway... */ 4624 device_move_class_links(dev, new_parent, old_parent); 4625 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4626 if (new_parent) 4627 klist_remove(&dev->p->knode_parent); 4628 dev->parent = old_parent; 4629 if (old_parent) { 4630 klist_add_tail(&dev->p->knode_parent, 4631 &old_parent->p->klist_children); 4632 set_dev_node(dev, dev_to_node(old_parent)); 4633 } 4634 } 4635 cleanup_glue_dir(dev, new_parent_kobj); 4636 put_device(new_parent); 4637 goto out; 4638 } 4639 } 4640 switch (dpm_order) { 4641 case DPM_ORDER_NONE: 4642 break; 4643 case DPM_ORDER_DEV_AFTER_PARENT: 4644 device_pm_move_after(dev, new_parent); 4645 devices_kset_move_after(dev, new_parent); 4646 break; 4647 case DPM_ORDER_PARENT_BEFORE_DEV: 4648 device_pm_move_before(new_parent, dev); 4649 devices_kset_move_before(new_parent, dev); 4650 break; 4651 case DPM_ORDER_DEV_LAST: 4652 device_pm_move_last(dev); 4653 devices_kset_move_last(dev); 4654 break; 4655 } 4656 4657 put_device(old_parent); 4658 out: 4659 device_pm_unlock(); 4660 put_device(dev); 4661 return error; 4662 } 4663 EXPORT_SYMBOL_GPL(device_move); 4664 4665 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4666 kgid_t kgid) 4667 { 4668 struct kobject *kobj = &dev->kobj; 4669 const struct class *class = dev->class; 4670 const struct device_type *type = dev->type; 4671 int error; 4672 4673 if (class) { 4674 /* 4675 * Change the device groups of the device class for @dev to 4676 * @kuid/@kgid. 4677 */ 4678 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4679 kgid); 4680 if (error) 4681 return error; 4682 } 4683 4684 if (type) { 4685 /* 4686 * Change the device groups of the device type for @dev to 4687 * @kuid/@kgid. 4688 */ 4689 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4690 kgid); 4691 if (error) 4692 return error; 4693 } 4694 4695 /* Change the device groups of @dev to @kuid/@kgid. */ 4696 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4697 if (error) 4698 return error; 4699 4700 if (device_supports_offline(dev) && !dev->offline_disabled) { 4701 /* Change online device attributes of @dev to @kuid/@kgid. */ 4702 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4703 kuid, kgid); 4704 if (error) 4705 return error; 4706 } 4707 4708 return 0; 4709 } 4710 4711 /** 4712 * device_change_owner - change the owner of an existing device. 4713 * @dev: device. 4714 * @kuid: new owner's kuid 4715 * @kgid: new owner's kgid 4716 * 4717 * This changes the owner of @dev and its corresponding sysfs entries to 4718 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4719 * core. 4720 * 4721 * Returns 0 on success or error code on failure. 4722 */ 4723 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4724 { 4725 int error; 4726 struct kobject *kobj = &dev->kobj; 4727 struct subsys_private *sp; 4728 4729 dev = get_device(dev); 4730 if (!dev) 4731 return -EINVAL; 4732 4733 /* 4734 * Change the kobject and the default attributes and groups of the 4735 * ktype associated with it to @kuid/@kgid. 4736 */ 4737 error = sysfs_change_owner(kobj, kuid, kgid); 4738 if (error) 4739 goto out; 4740 4741 /* 4742 * Change the uevent file for @dev to the new owner. The uevent file 4743 * was created in a separate step when @dev got added and we mirror 4744 * that step here. 4745 */ 4746 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4747 kgid); 4748 if (error) 4749 goto out; 4750 4751 /* 4752 * Change the device groups, the device groups associated with the 4753 * device class, and the groups associated with the device type of @dev 4754 * to @kuid/@kgid. 4755 */ 4756 error = device_attrs_change_owner(dev, kuid, kgid); 4757 if (error) 4758 goto out; 4759 4760 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4761 if (error) 4762 goto out; 4763 4764 /* 4765 * Change the owner of the symlink located in the class directory of 4766 * the device class associated with @dev which points to the actual 4767 * directory entry for @dev to @kuid/@kgid. This ensures that the 4768 * symlink shows the same permissions as its target. 4769 */ 4770 sp = class_to_subsys(dev->class); 4771 if (!sp) { 4772 error = -EINVAL; 4773 goto out; 4774 } 4775 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4776 subsys_put(sp); 4777 4778 out: 4779 put_device(dev); 4780 return error; 4781 } 4782 EXPORT_SYMBOL_GPL(device_change_owner); 4783 4784 /** 4785 * device_shutdown - call ->shutdown() on each device to shutdown. 4786 */ 4787 void device_shutdown(void) 4788 { 4789 struct device *dev, *parent; 4790 4791 wait_for_device_probe(); 4792 device_block_probing(); 4793 4794 cpufreq_suspend(); 4795 4796 spin_lock(&devices_kset->list_lock); 4797 /* 4798 * Walk the devices list backward, shutting down each in turn. 4799 * Beware that device unplug events may also start pulling 4800 * devices offline, even as the system is shutting down. 4801 */ 4802 while (!list_empty(&devices_kset->list)) { 4803 dev = list_entry(devices_kset->list.prev, struct device, 4804 kobj.entry); 4805 4806 /* 4807 * hold reference count of device's parent to 4808 * prevent it from being freed because parent's 4809 * lock is to be held 4810 */ 4811 parent = get_device(dev->parent); 4812 get_device(dev); 4813 /* 4814 * Make sure the device is off the kset list, in the 4815 * event that dev->*->shutdown() doesn't remove it. 4816 */ 4817 list_del_init(&dev->kobj.entry); 4818 spin_unlock(&devices_kset->list_lock); 4819 4820 /* hold lock to avoid race with probe/release */ 4821 if (parent) 4822 device_lock(parent); 4823 device_lock(dev); 4824 4825 /* Don't allow any more runtime suspends */ 4826 pm_runtime_get_noresume(dev); 4827 pm_runtime_barrier(dev); 4828 4829 if (dev->class && dev->class->shutdown_pre) { 4830 if (initcall_debug) 4831 dev_info(dev, "shutdown_pre\n"); 4832 dev->class->shutdown_pre(dev); 4833 } 4834 if (dev->bus && dev->bus->shutdown) { 4835 if (initcall_debug) 4836 dev_info(dev, "shutdown\n"); 4837 dev->bus->shutdown(dev); 4838 } else if (dev->driver && dev->driver->shutdown) { 4839 if (initcall_debug) 4840 dev_info(dev, "shutdown\n"); 4841 dev->driver->shutdown(dev); 4842 } 4843 4844 device_unlock(dev); 4845 if (parent) 4846 device_unlock(parent); 4847 4848 put_device(dev); 4849 put_device(parent); 4850 4851 spin_lock(&devices_kset->list_lock); 4852 } 4853 spin_unlock(&devices_kset->list_lock); 4854 } 4855 4856 /* 4857 * Device logging functions 4858 */ 4859 4860 #ifdef CONFIG_PRINTK 4861 static void 4862 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4863 { 4864 const char *subsys; 4865 4866 memset(dev_info, 0, sizeof(*dev_info)); 4867 4868 if (dev->class) 4869 subsys = dev->class->name; 4870 else if (dev->bus) 4871 subsys = dev->bus->name; 4872 else 4873 return; 4874 4875 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4876 4877 /* 4878 * Add device identifier DEVICE=: 4879 * b12:8 block dev_t 4880 * c127:3 char dev_t 4881 * n8 netdev ifindex 4882 * +sound:card0 subsystem:devname 4883 */ 4884 if (MAJOR(dev->devt)) { 4885 char c; 4886 4887 if (strcmp(subsys, "block") == 0) 4888 c = 'b'; 4889 else 4890 c = 'c'; 4891 4892 snprintf(dev_info->device, sizeof(dev_info->device), 4893 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4894 } else if (strcmp(subsys, "net") == 0) { 4895 struct net_device *net = to_net_dev(dev); 4896 4897 snprintf(dev_info->device, sizeof(dev_info->device), 4898 "n%u", net->ifindex); 4899 } else { 4900 snprintf(dev_info->device, sizeof(dev_info->device), 4901 "+%s:%s", subsys, dev_name(dev)); 4902 } 4903 } 4904 4905 int dev_vprintk_emit(int level, const struct device *dev, 4906 const char *fmt, va_list args) 4907 { 4908 struct dev_printk_info dev_info; 4909 4910 set_dev_info(dev, &dev_info); 4911 4912 return vprintk_emit(0, level, &dev_info, fmt, args); 4913 } 4914 EXPORT_SYMBOL(dev_vprintk_emit); 4915 4916 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4917 { 4918 va_list args; 4919 int r; 4920 4921 va_start(args, fmt); 4922 4923 r = dev_vprintk_emit(level, dev, fmt, args); 4924 4925 va_end(args); 4926 4927 return r; 4928 } 4929 EXPORT_SYMBOL(dev_printk_emit); 4930 4931 static void __dev_printk(const char *level, const struct device *dev, 4932 struct va_format *vaf) 4933 { 4934 if (dev) 4935 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4936 dev_driver_string(dev), dev_name(dev), vaf); 4937 else 4938 printk("%s(NULL device *): %pV", level, vaf); 4939 } 4940 4941 void _dev_printk(const char *level, const struct device *dev, 4942 const char *fmt, ...) 4943 { 4944 struct va_format vaf; 4945 va_list args; 4946 4947 va_start(args, fmt); 4948 4949 vaf.fmt = fmt; 4950 vaf.va = &args; 4951 4952 __dev_printk(level, dev, &vaf); 4953 4954 va_end(args); 4955 } 4956 EXPORT_SYMBOL(_dev_printk); 4957 4958 #define define_dev_printk_level(func, kern_level) \ 4959 void func(const struct device *dev, const char *fmt, ...) \ 4960 { \ 4961 struct va_format vaf; \ 4962 va_list args; \ 4963 \ 4964 va_start(args, fmt); \ 4965 \ 4966 vaf.fmt = fmt; \ 4967 vaf.va = &args; \ 4968 \ 4969 __dev_printk(kern_level, dev, &vaf); \ 4970 \ 4971 va_end(args); \ 4972 } \ 4973 EXPORT_SYMBOL(func); 4974 4975 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4976 define_dev_printk_level(_dev_alert, KERN_ALERT); 4977 define_dev_printk_level(_dev_crit, KERN_CRIT); 4978 define_dev_printk_level(_dev_err, KERN_ERR); 4979 define_dev_printk_level(_dev_warn, KERN_WARNING); 4980 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4981 define_dev_printk_level(_dev_info, KERN_INFO); 4982 4983 #endif 4984 4985 /** 4986 * dev_err_probe - probe error check and log helper 4987 * @dev: the pointer to the struct device 4988 * @err: error value to test 4989 * @fmt: printf-style format string 4990 * @...: arguments as specified in the format string 4991 * 4992 * This helper implements common pattern present in probe functions for error 4993 * checking: print debug or error message depending if the error value is 4994 * -EPROBE_DEFER and propagate error upwards. 4995 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4996 * checked later by reading devices_deferred debugfs attribute. 4997 * It replaces code sequence:: 4998 * 4999 * if (err != -EPROBE_DEFER) 5000 * dev_err(dev, ...); 5001 * else 5002 * dev_dbg(dev, ...); 5003 * return err; 5004 * 5005 * with:: 5006 * 5007 * return dev_err_probe(dev, err, ...); 5008 * 5009 * Using this helper in your probe function is totally fine even if @err is 5010 * known to never be -EPROBE_DEFER. 5011 * The benefit compared to a normal dev_err() is the standardized format 5012 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN" 5013 * instead of "-35") and the fact that the error code is returned which allows 5014 * more compact error paths. 5015 * 5016 * Returns @err. 5017 */ 5018 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5019 { 5020 struct va_format vaf; 5021 va_list args; 5022 5023 va_start(args, fmt); 5024 vaf.fmt = fmt; 5025 vaf.va = &args; 5026 5027 switch (err) { 5028 case -EPROBE_DEFER: 5029 device_set_deferred_probe_reason(dev, &vaf); 5030 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5031 break; 5032 5033 case -ENOMEM: 5034 /* 5035 * We don't print anything on -ENOMEM, there is already enough 5036 * output. 5037 */ 5038 break; 5039 5040 default: 5041 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5042 break; 5043 } 5044 5045 va_end(args); 5046 5047 return err; 5048 } 5049 EXPORT_SYMBOL_GPL(dev_err_probe); 5050 5051 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5052 { 5053 return fwnode && !IS_ERR(fwnode->secondary); 5054 } 5055 5056 /** 5057 * set_primary_fwnode - Change the primary firmware node of a given device. 5058 * @dev: Device to handle. 5059 * @fwnode: New primary firmware node of the device. 5060 * 5061 * Set the device's firmware node pointer to @fwnode, but if a secondary 5062 * firmware node of the device is present, preserve it. 5063 * 5064 * Valid fwnode cases are: 5065 * - primary --> secondary --> -ENODEV 5066 * - primary --> NULL 5067 * - secondary --> -ENODEV 5068 * - NULL 5069 */ 5070 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5071 { 5072 struct device *parent = dev->parent; 5073 struct fwnode_handle *fn = dev->fwnode; 5074 5075 if (fwnode) { 5076 if (fwnode_is_primary(fn)) 5077 fn = fn->secondary; 5078 5079 if (fn) { 5080 WARN_ON(fwnode->secondary); 5081 fwnode->secondary = fn; 5082 } 5083 dev->fwnode = fwnode; 5084 } else { 5085 if (fwnode_is_primary(fn)) { 5086 dev->fwnode = fn->secondary; 5087 5088 /* Skip nullifying fn->secondary if the primary is shared */ 5089 if (parent && fn == parent->fwnode) 5090 return; 5091 5092 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5093 fn->secondary = NULL; 5094 } else { 5095 dev->fwnode = NULL; 5096 } 5097 } 5098 } 5099 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5100 5101 /** 5102 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5103 * @dev: Device to handle. 5104 * @fwnode: New secondary firmware node of the device. 5105 * 5106 * If a primary firmware node of the device is present, set its secondary 5107 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5108 * @fwnode. 5109 */ 5110 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5111 { 5112 if (fwnode) 5113 fwnode->secondary = ERR_PTR(-ENODEV); 5114 5115 if (fwnode_is_primary(dev->fwnode)) 5116 dev->fwnode->secondary = fwnode; 5117 else 5118 dev->fwnode = fwnode; 5119 } 5120 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5121 5122 /** 5123 * device_set_of_node_from_dev - reuse device-tree node of another device 5124 * @dev: device whose device-tree node is being set 5125 * @dev2: device whose device-tree node is being reused 5126 * 5127 * Takes another reference to the new device-tree node after first dropping 5128 * any reference held to the old node. 5129 */ 5130 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5131 { 5132 of_node_put(dev->of_node); 5133 dev->of_node = of_node_get(dev2->of_node); 5134 dev->of_node_reused = true; 5135 } 5136 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5137 5138 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5139 { 5140 dev->fwnode = fwnode; 5141 dev->of_node = to_of_node(fwnode); 5142 } 5143 EXPORT_SYMBOL_GPL(device_set_node); 5144 5145 int device_match_name(struct device *dev, const void *name) 5146 { 5147 return sysfs_streq(dev_name(dev), name); 5148 } 5149 EXPORT_SYMBOL_GPL(device_match_name); 5150 5151 int device_match_of_node(struct device *dev, const void *np) 5152 { 5153 return dev->of_node == np; 5154 } 5155 EXPORT_SYMBOL_GPL(device_match_of_node); 5156 5157 int device_match_fwnode(struct device *dev, const void *fwnode) 5158 { 5159 return dev_fwnode(dev) == fwnode; 5160 } 5161 EXPORT_SYMBOL_GPL(device_match_fwnode); 5162 5163 int device_match_devt(struct device *dev, const void *pdevt) 5164 { 5165 return dev->devt == *(dev_t *)pdevt; 5166 } 5167 EXPORT_SYMBOL_GPL(device_match_devt); 5168 5169 int device_match_acpi_dev(struct device *dev, const void *adev) 5170 { 5171 return ACPI_COMPANION(dev) == adev; 5172 } 5173 EXPORT_SYMBOL(device_match_acpi_dev); 5174 5175 int device_match_acpi_handle(struct device *dev, const void *handle) 5176 { 5177 return ACPI_HANDLE(dev) == handle; 5178 } 5179 EXPORT_SYMBOL(device_match_acpi_handle); 5180 5181 int device_match_any(struct device *dev, const void *unused) 5182 { 5183 return 1; 5184 } 5185 EXPORT_SYMBOL_GPL(device_match_any); 5186