1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/blkdev.h> 13 #include <linux/cleanup.h> 14 #include <linux/cpufreq.h> 15 #include <linux/device.h> 16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 17 #include <linux/err.h> 18 #include <linux/fwnode.h> 19 #include <linux/init.h> 20 #include <linux/kdev_t.h> 21 #include <linux/kstrtox.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/netdevice.h> 25 #include <linux/notifier.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sched/signal.h> 31 #include <linux/slab.h> 32 #include <linux/string_helpers.h> 33 #include <linux/swiotlb.h> 34 #include <linux/sysfs.h> 35 36 #include "base.h" 37 #include "physical_location.h" 38 #include "power/power.h" 39 40 /* Device links support. */ 41 static LIST_HEAD(deferred_sync); 42 static unsigned int defer_sync_state_count = 1; 43 static DEFINE_MUTEX(fwnode_link_lock); 44 static bool fw_devlink_is_permissive(void); 45 static void __fw_devlink_link_to_consumers(struct device *dev); 46 static bool fw_devlink_drv_reg_done; 47 static bool fw_devlink_best_effort; 48 static struct workqueue_struct *device_link_wq; 49 50 /** 51 * __fwnode_link_add - Create a link between two fwnode_handles. 52 * @con: Consumer end of the link. 53 * @sup: Supplier end of the link. 54 * @flags: Link flags. 55 * 56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 57 * represents the detail that the firmware lists @sup fwnode as supplying a 58 * resource to @con. 59 * 60 * The driver core will use the fwnode link to create a device link between the 61 * two device objects corresponding to @con and @sup when they are created. The 62 * driver core will automatically delete the fwnode link between @con and @sup 63 * after doing that. 64 * 65 * Attempts to create duplicate links between the same pair of fwnode handles 66 * are ignored and there is no reference counting. 67 */ 68 static int __fwnode_link_add(struct fwnode_handle *con, 69 struct fwnode_handle *sup, u8 flags) 70 { 71 struct fwnode_link *link; 72 73 list_for_each_entry(link, &sup->consumers, s_hook) 74 if (link->consumer == con) { 75 link->flags |= flags; 76 return 0; 77 } 78 79 link = kzalloc(sizeof(*link), GFP_KERNEL); 80 if (!link) 81 return -ENOMEM; 82 83 link->supplier = sup; 84 INIT_LIST_HEAD(&link->s_hook); 85 link->consumer = con; 86 INIT_LIST_HEAD(&link->c_hook); 87 link->flags = flags; 88 89 list_add(&link->s_hook, &sup->consumers); 90 list_add(&link->c_hook, &con->suppliers); 91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 92 con, sup); 93 94 return 0; 95 } 96 97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 98 u8 flags) 99 { 100 guard(mutex)(&fwnode_link_lock); 101 102 return __fwnode_link_add(con, sup, flags); 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 guard(mutex)(&fwnode_link_lock); 144 145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 146 __fwnode_link_del(link); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 guard(mutex)(&fwnode_link_lock); 160 161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 162 __fwnode_link_del(link); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 static int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 464 output = "supplier unbind"; 465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", 489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 490 } 491 static DEVICE_ATTR_RO(sync_state_only); 492 493 static struct attribute *devlink_attrs[] = { 494 &dev_attr_status.attr, 495 &dev_attr_auto_remove_on.attr, 496 &dev_attr_runtime_pm.attr, 497 &dev_attr_sync_state_only.attr, 498 NULL, 499 }; 500 ATTRIBUTE_GROUPS(devlink); 501 502 static void device_link_release_fn(struct work_struct *work) 503 { 504 struct device_link *link = container_of(work, struct device_link, rm_work); 505 506 /* Ensure that all references to the link object have been dropped. */ 507 device_link_synchronize_removal(); 508 509 pm_runtime_release_supplier(link); 510 /* 511 * If supplier_preactivated is set, the link has been dropped between 512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 513 * in __driver_probe_device(). In that case, drop the supplier's 514 * PM-runtime usage counter to remove the reference taken by 515 * pm_runtime_get_suppliers(). 516 */ 517 if (link->supplier_preactivated) 518 pm_runtime_put_noidle(link->supplier); 519 520 pm_request_idle(link->supplier); 521 522 put_device(link->consumer); 523 put_device(link->supplier); 524 kfree(link); 525 } 526 527 static void devlink_dev_release(struct device *dev) 528 { 529 struct device_link *link = to_devlink(dev); 530 531 INIT_WORK(&link->rm_work, device_link_release_fn); 532 /* 533 * It may take a while to complete this work because of the SRCU 534 * synchronization in device_link_release_fn() and if the consumer or 535 * supplier devices get deleted when it runs, so put it into the 536 * dedicated workqueue. 537 */ 538 queue_work(device_link_wq, &link->rm_work); 539 } 540 541 /** 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 543 */ 544 void device_link_wait_removal(void) 545 { 546 /* 547 * devlink removal jobs are queued in the dedicated work queue. 548 * To be sure that all removal jobs are terminated, ensure that any 549 * scheduled work has run to completion. 550 */ 551 flush_workqueue(device_link_wq); 552 } 553 EXPORT_SYMBOL_GPL(device_link_wait_removal); 554 555 static struct class devlink_class = { 556 .name = "devlink", 557 .dev_groups = devlink_groups, 558 .dev_release = devlink_dev_release, 559 }; 560 561 static int devlink_add_symlinks(struct device *dev) 562 { 563 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 564 int ret; 565 struct device_link *link = to_devlink(dev); 566 struct device *sup = link->supplier; 567 struct device *con = link->consumer; 568 569 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 570 if (ret) 571 goto out; 572 573 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 574 if (ret) 575 goto err_con; 576 577 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 578 if (!buf_con) { 579 ret = -ENOMEM; 580 goto err_con_dev; 581 } 582 583 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con); 584 if (ret) 585 goto err_con_dev; 586 587 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 588 if (!buf_sup) { 589 ret = -ENOMEM; 590 goto err_sup_dev; 591 } 592 593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup); 594 if (ret) 595 goto err_sup_dev; 596 597 goto out; 598 599 err_sup_dev: 600 sysfs_remove_link(&sup->kobj, buf_con); 601 err_con_dev: 602 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 603 err_con: 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 out: 606 return ret; 607 } 608 609 static void devlink_remove_symlinks(struct device *dev) 610 { 611 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 612 struct device_link *link = to_devlink(dev); 613 struct device *sup = link->supplier; 614 struct device *con = link->consumer; 615 616 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 617 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 618 619 if (device_is_registered(con)) { 620 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 621 if (!buf_sup) 622 goto out; 623 sysfs_remove_link(&con->kobj, buf_sup); 624 } 625 626 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 627 if (!buf_con) 628 goto out; 629 sysfs_remove_link(&sup->kobj, buf_con); 630 631 return; 632 633 out: 634 WARN(1, "Unable to properly free device link symlinks!\n"); 635 } 636 637 static struct class_interface devlink_class_intf = { 638 .class = &devlink_class, 639 .add_dev = devlink_add_symlinks, 640 .remove_dev = devlink_remove_symlinks, 641 }; 642 643 static int __init devlink_class_init(void) 644 { 645 int ret; 646 647 ret = class_register(&devlink_class); 648 if (ret) 649 return ret; 650 651 ret = class_interface_register(&devlink_class_intf); 652 if (ret) 653 class_unregister(&devlink_class); 654 655 return ret; 656 } 657 postcore_initcall(devlink_class_init); 658 659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 660 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 661 DL_FLAG_AUTOPROBE_CONSUMER | \ 662 DL_FLAG_SYNC_STATE_ONLY | \ 663 DL_FLAG_INFERRED | \ 664 DL_FLAG_CYCLE) 665 666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 667 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 668 669 /** 670 * device_link_add - Create a link between two devices. 671 * @consumer: Consumer end of the link. 672 * @supplier: Supplier end of the link. 673 * @flags: Link flags. 674 * 675 * Return: On success, a device_link struct will be returned. 676 * On error or invalid flag settings, NULL will be returned. 677 * 678 * The caller is responsible for the proper synchronization of the link creation 679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 680 * runtime PM framework to take the link into account. Second, if the 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 682 * be forced into the active meta state and reference-counted upon the creation 683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 684 * ignored. 685 * 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 687 * expected to release the link returned by it directly with the help of either 688 * device_link_del() or device_link_remove(). 689 * 690 * If that flag is not set, however, the caller of this function is handing the 691 * management of the link over to the driver core entirely and its return value 692 * can only be used to check whether or not the link is present. In that case, 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 694 * flags can be used to indicate to the driver core when the link can be safely 695 * deleted. Namely, setting one of them in @flags indicates to the driver core 696 * that the link is not going to be used (by the given caller of this function) 697 * after unbinding the consumer or supplier driver, respectively, from its 698 * device, so the link can be deleted at that point. If none of them is set, 699 * the link will be maintained until one of the devices pointed to by it (either 700 * the consumer or the supplier) is unregistered. 701 * 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 705 * be used to request the driver core to automatically probe for a consumer 706 * driver after successfully binding a driver to the supplier device. 707 * 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 710 * the same time is invalid and will cause NULL to be returned upfront. 711 * However, if a device link between the given @consumer and @supplier pair 712 * exists already when this function is called for them, the existing link will 713 * be returned regardless of its current type and status (the link's flags may 714 * be modified then). The caller of this function is then expected to treat 715 * the link as though it has just been created, so (in particular) if 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 717 * explicitly when not needed any more (as stated above). 718 * 719 * A side effect of the link creation is re-ordering of dpm_list and the 720 * devices_kset list by moving the consumer device and all devices depending 721 * on it to the ends of these lists (that does not happen to devices that have 722 * not been registered when this function is called). 723 * 724 * The supplier device is required to be registered when this function is called 725 * and NULL will be returned if that is not the case. The consumer device need 726 * not be registered, however. 727 */ 728 struct device_link *device_link_add(struct device *consumer, 729 struct device *supplier, u32 flags) 730 { 731 struct device_link *link; 732 733 if (!consumer || !supplier || consumer == supplier || 734 flags & ~DL_ADD_VALID_FLAGS || 735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 736 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 738 DL_FLAG_AUTOREMOVE_SUPPLIER))) 739 return NULL; 740 741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 742 if (pm_runtime_get_sync(supplier) < 0) { 743 pm_runtime_put_noidle(supplier); 744 return NULL; 745 } 746 } 747 748 if (!(flags & DL_FLAG_STATELESS)) 749 flags |= DL_FLAG_MANAGED; 750 751 if (flags & DL_FLAG_SYNC_STATE_ONLY && 752 !device_link_flag_is_sync_state_only(flags)) 753 return NULL; 754 755 device_links_write_lock(); 756 device_pm_lock(); 757 758 /* 759 * If the supplier has not been fully registered yet or there is a 760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 761 * the supplier already in the graph, return NULL. If the link is a 762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 763 * because it only affects sync_state() callbacks. 764 */ 765 if (!device_pm_initialized(supplier) 766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 767 device_is_dependent(consumer, supplier))) { 768 link = NULL; 769 goto out; 770 } 771 772 /* 773 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 774 * So, only create it if the consumer hasn't probed yet. 775 */ 776 if (flags & DL_FLAG_SYNC_STATE_ONLY && 777 consumer->links.status != DL_DEV_NO_DRIVER && 778 consumer->links.status != DL_DEV_PROBING) { 779 link = NULL; 780 goto out; 781 } 782 783 /* 784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 787 */ 788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 790 791 list_for_each_entry(link, &supplier->links.consumers, s_node) { 792 if (link->consumer != consumer) 793 continue; 794 795 if (link->flags & DL_FLAG_INFERRED && 796 !(flags & DL_FLAG_INFERRED)) 797 link->flags &= ~DL_FLAG_INFERRED; 798 799 if (flags & DL_FLAG_PM_RUNTIME) { 800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 801 pm_runtime_new_link(consumer); 802 link->flags |= DL_FLAG_PM_RUNTIME; 803 } 804 if (flags & DL_FLAG_RPM_ACTIVE) 805 refcount_inc(&link->rpm_active); 806 } 807 808 if (flags & DL_FLAG_STATELESS) { 809 kref_get(&link->kref); 810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 811 !(link->flags & DL_FLAG_STATELESS)) { 812 link->flags |= DL_FLAG_STATELESS; 813 goto reorder; 814 } else { 815 link->flags |= DL_FLAG_STATELESS; 816 goto out; 817 } 818 } 819 820 /* 821 * If the life time of the link following from the new flags is 822 * longer than indicated by the flags of the existing link, 823 * update the existing link to stay around longer. 824 */ 825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 829 } 830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 832 DL_FLAG_AUTOREMOVE_SUPPLIER); 833 } 834 if (!(link->flags & DL_FLAG_MANAGED)) { 835 kref_get(&link->kref); 836 link->flags |= DL_FLAG_MANAGED; 837 device_link_init_status(link, consumer, supplier); 838 } 839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 842 goto reorder; 843 } 844 845 goto out; 846 } 847 848 link = kzalloc(sizeof(*link), GFP_KERNEL); 849 if (!link) 850 goto out; 851 852 refcount_set(&link->rpm_active, 1); 853 854 get_device(supplier); 855 link->supplier = supplier; 856 INIT_LIST_HEAD(&link->s_node); 857 get_device(consumer); 858 link->consumer = consumer; 859 INIT_LIST_HEAD(&link->c_node); 860 link->flags = flags; 861 kref_init(&link->kref); 862 863 link->link_dev.class = &devlink_class; 864 device_set_pm_not_required(&link->link_dev); 865 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 866 dev_bus_name(supplier), dev_name(supplier), 867 dev_bus_name(consumer), dev_name(consumer)); 868 if (device_register(&link->link_dev)) { 869 put_device(&link->link_dev); 870 link = NULL; 871 goto out; 872 } 873 874 if (flags & DL_FLAG_PM_RUNTIME) { 875 if (flags & DL_FLAG_RPM_ACTIVE) 876 refcount_inc(&link->rpm_active); 877 878 pm_runtime_new_link(consumer); 879 } 880 881 /* Determine the initial link state. */ 882 if (flags & DL_FLAG_STATELESS) 883 link->status = DL_STATE_NONE; 884 else 885 device_link_init_status(link, consumer, supplier); 886 887 /* 888 * Some callers expect the link creation during consumer driver probe to 889 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 890 */ 891 if (link->status == DL_STATE_CONSUMER_PROBE && 892 flags & DL_FLAG_PM_RUNTIME) 893 pm_runtime_resume(supplier); 894 895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 897 898 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 899 dev_dbg(consumer, 900 "Linked as a sync state only consumer to %s\n", 901 dev_name(supplier)); 902 goto out; 903 } 904 905 reorder: 906 /* 907 * Move the consumer and all of the devices depending on it to the end 908 * of dpm_list and the devices_kset list. 909 * 910 * It is necessary to hold dpm_list locked throughout all that or else 911 * we may end up suspending with a wrong ordering of it. 912 */ 913 device_reorder_to_tail(consumer, NULL); 914 915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 916 917 out: 918 device_pm_unlock(); 919 device_links_write_unlock(); 920 921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 922 pm_runtime_put(supplier); 923 924 return link; 925 } 926 EXPORT_SYMBOL_GPL(device_link_add); 927 928 static void __device_link_del(struct kref *kref) 929 { 930 struct device_link *link = container_of(kref, struct device_link, kref); 931 932 dev_dbg(link->consumer, "Dropping the link to %s\n", 933 dev_name(link->supplier)); 934 935 pm_runtime_drop_link(link); 936 937 device_link_remove_from_lists(link); 938 device_unregister(&link->link_dev); 939 } 940 941 static void device_link_put_kref(struct device_link *link) 942 { 943 if (link->flags & DL_FLAG_STATELESS) 944 kref_put(&link->kref, __device_link_del); 945 else if (!device_is_registered(link->consumer)) 946 __device_link_del(&link->kref); 947 else 948 WARN(1, "Unable to drop a managed device link reference\n"); 949 } 950 951 /** 952 * device_link_del - Delete a stateless link between two devices. 953 * @link: Device link to delete. 954 * 955 * The caller must ensure proper synchronization of this function with runtime 956 * PM. If the link was added multiple times, it needs to be deleted as often. 957 * Care is required for hotplugged devices: Their links are purged on removal 958 * and calling device_link_del() is then no longer allowed. 959 */ 960 void device_link_del(struct device_link *link) 961 { 962 device_links_write_lock(); 963 device_link_put_kref(link); 964 device_links_write_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(device_link_del); 967 968 /** 969 * device_link_remove - Delete a stateless link between two devices. 970 * @consumer: Consumer end of the link. 971 * @supplier: Supplier end of the link. 972 * 973 * The caller must ensure proper synchronization of this function with runtime 974 * PM. 975 */ 976 void device_link_remove(void *consumer, struct device *supplier) 977 { 978 struct device_link *link; 979 980 if (WARN_ON(consumer == supplier)) 981 return; 982 983 device_links_write_lock(); 984 985 list_for_each_entry(link, &supplier->links.consumers, s_node) { 986 if (link->consumer == consumer) { 987 device_link_put_kref(link); 988 break; 989 } 990 } 991 992 device_links_write_unlock(); 993 } 994 EXPORT_SYMBOL_GPL(device_link_remove); 995 996 static void device_links_missing_supplier(struct device *dev) 997 { 998 struct device_link *link; 999 1000 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1001 if (link->status != DL_STATE_CONSUMER_PROBE) 1002 continue; 1003 1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1006 } else { 1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1008 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1009 } 1010 } 1011 } 1012 1013 static bool dev_is_best_effort(struct device *dev) 1014 { 1015 return (fw_devlink_best_effort && dev->can_match) || 1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1017 } 1018 1019 static struct fwnode_handle *fwnode_links_check_suppliers( 1020 struct fwnode_handle *fwnode) 1021 { 1022 struct fwnode_link *link; 1023 1024 if (!fwnode || fw_devlink_is_permissive()) 1025 return NULL; 1026 1027 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1028 if (!(link->flags & 1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1030 return link->supplier; 1031 1032 return NULL; 1033 } 1034 1035 /** 1036 * device_links_check_suppliers - Check presence of supplier drivers. 1037 * @dev: Consumer device. 1038 * 1039 * Check links from this device to any suppliers. Walk the list of the device's 1040 * links to suppliers and see if all of them are available. If not, simply 1041 * return -EPROBE_DEFER. 1042 * 1043 * We need to guarantee that the supplier will not go away after the check has 1044 * been positive here. It only can go away in __device_release_driver() and 1045 * that function checks the device's links to consumers. This means we need to 1046 * mark the link as "consumer probe in progress" to make the supplier removal 1047 * wait for us to complete (or bad things may happen). 1048 * 1049 * Links without the DL_FLAG_MANAGED flag set are ignored. 1050 */ 1051 int device_links_check_suppliers(struct device *dev) 1052 { 1053 struct device_link *link; 1054 int ret = 0, fwnode_ret = 0; 1055 struct fwnode_handle *sup_fw; 1056 1057 /* 1058 * Device waiting for supplier to become available is not allowed to 1059 * probe. 1060 */ 1061 scoped_guard(mutex, &fwnode_link_lock) { 1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1063 if (sup_fw) { 1064 if (dev_is_best_effort(dev)) 1065 fwnode_ret = -EAGAIN; 1066 else 1067 return dev_err_probe(dev, -EPROBE_DEFER, 1068 "wait for supplier %pfwf\n", sup_fw); 1069 } 1070 } 1071 1072 device_links_write_lock(); 1073 1074 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1075 if (!(link->flags & DL_FLAG_MANAGED)) 1076 continue; 1077 1078 if (link->status != DL_STATE_AVAILABLE && 1079 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1080 1081 if (dev_is_best_effort(dev) && 1082 link->flags & DL_FLAG_INFERRED && 1083 !link->supplier->can_match) { 1084 ret = -EAGAIN; 1085 continue; 1086 } 1087 1088 device_links_missing_supplier(dev); 1089 ret = dev_err_probe(dev, -EPROBE_DEFER, 1090 "supplier %s not ready\n", dev_name(link->supplier)); 1091 break; 1092 } 1093 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1094 } 1095 dev->links.status = DL_DEV_PROBING; 1096 1097 device_links_write_unlock(); 1098 1099 return ret ? ret : fwnode_ret; 1100 } 1101 1102 /** 1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1104 * @dev: Device to call sync_state() on 1105 * @list: List head to queue the @dev on 1106 * 1107 * Queues a device for a sync_state() callback when the device links write lock 1108 * isn't held. This allows the sync_state() execution flow to use device links 1109 * APIs. The caller must ensure this function is called with 1110 * device_links_write_lock() held. 1111 * 1112 * This function does a get_device() to make sure the device is not freed while 1113 * on this list. 1114 * 1115 * So the caller must also ensure that device_links_flush_sync_list() is called 1116 * as soon as the caller releases device_links_write_lock(). This is necessary 1117 * to make sure the sync_state() is called in a timely fashion and the 1118 * put_device() is called on this device. 1119 */ 1120 static void __device_links_queue_sync_state(struct device *dev, 1121 struct list_head *list) 1122 { 1123 struct device_link *link; 1124 1125 if (!dev_has_sync_state(dev)) 1126 return; 1127 if (dev->state_synced) 1128 return; 1129 1130 list_for_each_entry(link, &dev->links.consumers, s_node) { 1131 if (!(link->flags & DL_FLAG_MANAGED)) 1132 continue; 1133 if (link->status != DL_STATE_ACTIVE) 1134 return; 1135 } 1136 1137 /* 1138 * Set the flag here to avoid adding the same device to a list more 1139 * than once. This can happen if new consumers get added to the device 1140 * and probed before the list is flushed. 1141 */ 1142 dev->state_synced = true; 1143 1144 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1145 return; 1146 1147 get_device(dev); 1148 list_add_tail(&dev->links.defer_sync, list); 1149 } 1150 1151 /** 1152 * device_links_flush_sync_list - Call sync_state() on a list of devices 1153 * @list: List of devices to call sync_state() on 1154 * @dont_lock_dev: Device for which lock is already held by the caller 1155 * 1156 * Calls sync_state() on all the devices that have been queued for it. This 1157 * function is used in conjunction with __device_links_queue_sync_state(). The 1158 * @dont_lock_dev parameter is useful when this function is called from a 1159 * context where a device lock is already held. 1160 */ 1161 static void device_links_flush_sync_list(struct list_head *list, 1162 struct device *dont_lock_dev) 1163 { 1164 struct device *dev, *tmp; 1165 1166 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1167 list_del_init(&dev->links.defer_sync); 1168 1169 if (dev != dont_lock_dev) 1170 device_lock(dev); 1171 1172 dev_sync_state(dev); 1173 1174 if (dev != dont_lock_dev) 1175 device_unlock(dev); 1176 1177 put_device(dev); 1178 } 1179 } 1180 1181 void device_links_supplier_sync_state_pause(void) 1182 { 1183 device_links_write_lock(); 1184 defer_sync_state_count++; 1185 device_links_write_unlock(); 1186 } 1187 1188 void device_links_supplier_sync_state_resume(void) 1189 { 1190 struct device *dev, *tmp; 1191 LIST_HEAD(sync_list); 1192 1193 device_links_write_lock(); 1194 if (!defer_sync_state_count) { 1195 WARN(true, "Unmatched sync_state pause/resume!"); 1196 goto out; 1197 } 1198 defer_sync_state_count--; 1199 if (defer_sync_state_count) 1200 goto out; 1201 1202 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1203 /* 1204 * Delete from deferred_sync list before queuing it to 1205 * sync_list because defer_sync is used for both lists. 1206 */ 1207 list_del_init(&dev->links.defer_sync); 1208 __device_links_queue_sync_state(dev, &sync_list); 1209 } 1210 out: 1211 device_links_write_unlock(); 1212 1213 device_links_flush_sync_list(&sync_list, NULL); 1214 } 1215 1216 static int sync_state_resume_initcall(void) 1217 { 1218 device_links_supplier_sync_state_resume(); 1219 return 0; 1220 } 1221 late_initcall(sync_state_resume_initcall); 1222 1223 static void __device_links_supplier_defer_sync(struct device *sup) 1224 { 1225 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1226 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1227 } 1228 1229 static void device_link_drop_managed(struct device_link *link) 1230 { 1231 link->flags &= ~DL_FLAG_MANAGED; 1232 WRITE_ONCE(link->status, DL_STATE_NONE); 1233 kref_put(&link->kref, __device_link_del); 1234 } 1235 1236 static ssize_t waiting_for_supplier_show(struct device *dev, 1237 struct device_attribute *attr, 1238 char *buf) 1239 { 1240 bool val; 1241 1242 device_lock(dev); 1243 scoped_guard(mutex, &fwnode_link_lock) 1244 val = !!fwnode_links_check_suppliers(dev->fwnode); 1245 device_unlock(dev); 1246 return sysfs_emit(buf, "%u\n", val); 1247 } 1248 static DEVICE_ATTR_RO(waiting_for_supplier); 1249 1250 /** 1251 * device_links_force_bind - Prepares device to be force bound 1252 * @dev: Consumer device. 1253 * 1254 * device_bind_driver() force binds a device to a driver without calling any 1255 * driver probe functions. So the consumer really isn't going to wait for any 1256 * supplier before it's bound to the driver. We still want the device link 1257 * states to be sensible when this happens. 1258 * 1259 * In preparation for device_bind_driver(), this function goes through each 1260 * supplier device links and checks if the supplier is bound. If it is, then 1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1263 */ 1264 void device_links_force_bind(struct device *dev) 1265 { 1266 struct device_link *link, *ln; 1267 1268 device_links_write_lock(); 1269 1270 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1271 if (!(link->flags & DL_FLAG_MANAGED)) 1272 continue; 1273 1274 if (link->status != DL_STATE_AVAILABLE) { 1275 device_link_drop_managed(link); 1276 continue; 1277 } 1278 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1279 } 1280 dev->links.status = DL_DEV_PROBING; 1281 1282 device_links_write_unlock(); 1283 } 1284 1285 /** 1286 * device_links_driver_bound - Update device links after probing its driver. 1287 * @dev: Device to update the links for. 1288 * 1289 * The probe has been successful, so update links from this device to any 1290 * consumers by changing their status to "available". 1291 * 1292 * Also change the status of @dev's links to suppliers to "active". 1293 * 1294 * Links without the DL_FLAG_MANAGED flag set are ignored. 1295 */ 1296 void device_links_driver_bound(struct device *dev) 1297 { 1298 struct device_link *link, *ln; 1299 LIST_HEAD(sync_list); 1300 1301 /* 1302 * If a device binds successfully, it's expected to have created all 1303 * the device links it needs to or make new device links as it needs 1304 * them. So, fw_devlink no longer needs to create device links to any 1305 * of the device's suppliers. 1306 * 1307 * Also, if a child firmware node of this bound device is not added as a 1308 * device by now, assume it is never going to be added. Make this bound 1309 * device the fallback supplier to the dangling consumers of the child 1310 * firmware node because this bound device is probably implementing the 1311 * child firmware node functionality and we don't want the dangling 1312 * consumers to defer probe indefinitely waiting for a device for the 1313 * child firmware node. 1314 */ 1315 if (dev->fwnode && dev->fwnode->dev == dev) { 1316 struct fwnode_handle *child; 1317 1318 fwnode_links_purge_suppliers(dev->fwnode); 1319 1320 guard(mutex)(&fwnode_link_lock); 1321 1322 fwnode_for_each_available_child_node(dev->fwnode, child) 1323 __fw_devlink_pickup_dangling_consumers(child, 1324 dev->fwnode); 1325 __fw_devlink_link_to_consumers(dev); 1326 } 1327 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1328 1329 device_links_write_lock(); 1330 1331 list_for_each_entry(link, &dev->links.consumers, s_node) { 1332 if (!(link->flags & DL_FLAG_MANAGED)) 1333 continue; 1334 1335 /* 1336 * Links created during consumer probe may be in the "consumer 1337 * probe" state to start with if the supplier is still probing 1338 * when they are created and they may become "active" if the 1339 * consumer probe returns first. Skip them here. 1340 */ 1341 if (link->status == DL_STATE_CONSUMER_PROBE || 1342 link->status == DL_STATE_ACTIVE) 1343 continue; 1344 1345 WARN_ON(link->status != DL_STATE_DORMANT); 1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1347 1348 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1349 driver_deferred_probe_add(link->consumer); 1350 } 1351 1352 if (defer_sync_state_count) 1353 __device_links_supplier_defer_sync(dev); 1354 else 1355 __device_links_queue_sync_state(dev, &sync_list); 1356 1357 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1358 struct device *supplier; 1359 1360 if (!(link->flags & DL_FLAG_MANAGED)) 1361 continue; 1362 1363 supplier = link->supplier; 1364 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1365 /* 1366 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1367 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1368 * save to drop the managed link completely. 1369 */ 1370 device_link_drop_managed(link); 1371 } else if (dev_is_best_effort(dev) && 1372 link->flags & DL_FLAG_INFERRED && 1373 link->status != DL_STATE_CONSUMER_PROBE && 1374 !link->supplier->can_match) { 1375 /* 1376 * When dev_is_best_effort() is true, we ignore device 1377 * links to suppliers that don't have a driver. If the 1378 * consumer device still managed to probe, there's no 1379 * point in maintaining a device link in a weird state 1380 * (consumer probed before supplier). So delete it. 1381 */ 1382 device_link_drop_managed(link); 1383 } else { 1384 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1385 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1386 } 1387 1388 /* 1389 * This needs to be done even for the deleted 1390 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1391 * device link that was preventing the supplier from getting a 1392 * sync_state() call. 1393 */ 1394 if (defer_sync_state_count) 1395 __device_links_supplier_defer_sync(supplier); 1396 else 1397 __device_links_queue_sync_state(supplier, &sync_list); 1398 } 1399 1400 dev->links.status = DL_DEV_DRIVER_BOUND; 1401 1402 device_links_write_unlock(); 1403 1404 device_links_flush_sync_list(&sync_list, dev); 1405 } 1406 1407 /** 1408 * __device_links_no_driver - Update links of a device without a driver. 1409 * @dev: Device without a drvier. 1410 * 1411 * Delete all non-persistent links from this device to any suppliers. 1412 * 1413 * Persistent links stay around, but their status is changed to "available", 1414 * unless they already are in the "supplier unbind in progress" state in which 1415 * case they need not be updated. 1416 * 1417 * Links without the DL_FLAG_MANAGED flag set are ignored. 1418 */ 1419 static void __device_links_no_driver(struct device *dev) 1420 { 1421 struct device_link *link, *ln; 1422 1423 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1424 if (!(link->flags & DL_FLAG_MANAGED)) 1425 continue; 1426 1427 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1428 device_link_drop_managed(link); 1429 continue; 1430 } 1431 1432 if (link->status != DL_STATE_CONSUMER_PROBE && 1433 link->status != DL_STATE_ACTIVE) 1434 continue; 1435 1436 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1437 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1438 } else { 1439 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1440 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1441 } 1442 } 1443 1444 dev->links.status = DL_DEV_NO_DRIVER; 1445 } 1446 1447 /** 1448 * device_links_no_driver - Update links after failing driver probe. 1449 * @dev: Device whose driver has just failed to probe. 1450 * 1451 * Clean up leftover links to consumers for @dev and invoke 1452 * %__device_links_no_driver() to update links to suppliers for it as 1453 * appropriate. 1454 * 1455 * Links without the DL_FLAG_MANAGED flag set are ignored. 1456 */ 1457 void device_links_no_driver(struct device *dev) 1458 { 1459 struct device_link *link; 1460 1461 device_links_write_lock(); 1462 1463 list_for_each_entry(link, &dev->links.consumers, s_node) { 1464 if (!(link->flags & DL_FLAG_MANAGED)) 1465 continue; 1466 1467 /* 1468 * The probe has failed, so if the status of the link is 1469 * "consumer probe" or "active", it must have been added by 1470 * a probing consumer while this device was still probing. 1471 * Change its state to "dormant", as it represents a valid 1472 * relationship, but it is not functionally meaningful. 1473 */ 1474 if (link->status == DL_STATE_CONSUMER_PROBE || 1475 link->status == DL_STATE_ACTIVE) 1476 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1477 } 1478 1479 __device_links_no_driver(dev); 1480 1481 device_links_write_unlock(); 1482 } 1483 1484 /** 1485 * device_links_driver_cleanup - Update links after driver removal. 1486 * @dev: Device whose driver has just gone away. 1487 * 1488 * Update links to consumers for @dev by changing their status to "dormant" and 1489 * invoke %__device_links_no_driver() to update links to suppliers for it as 1490 * appropriate. 1491 * 1492 * Links without the DL_FLAG_MANAGED flag set are ignored. 1493 */ 1494 void device_links_driver_cleanup(struct device *dev) 1495 { 1496 struct device_link *link, *ln; 1497 1498 device_links_write_lock(); 1499 1500 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1501 if (!(link->flags & DL_FLAG_MANAGED)) 1502 continue; 1503 1504 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1505 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1506 1507 /* 1508 * autoremove the links between this @dev and its consumer 1509 * devices that are not active, i.e. where the link state 1510 * has moved to DL_STATE_SUPPLIER_UNBIND. 1511 */ 1512 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1513 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1514 device_link_drop_managed(link); 1515 1516 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1517 } 1518 1519 list_del_init(&dev->links.defer_sync); 1520 __device_links_no_driver(dev); 1521 1522 device_links_write_unlock(); 1523 } 1524 1525 /** 1526 * device_links_busy - Check if there are any busy links to consumers. 1527 * @dev: Device to check. 1528 * 1529 * Check each consumer of the device and return 'true' if its link's status 1530 * is one of "consumer probe" or "active" (meaning that the given consumer is 1531 * probing right now or its driver is present). Otherwise, change the link 1532 * state to "supplier unbind" to prevent the consumer from being probed 1533 * successfully going forward. 1534 * 1535 * Return 'false' if there are no probing or active consumers. 1536 * 1537 * Links without the DL_FLAG_MANAGED flag set are ignored. 1538 */ 1539 bool device_links_busy(struct device *dev) 1540 { 1541 struct device_link *link; 1542 bool ret = false; 1543 1544 device_links_write_lock(); 1545 1546 list_for_each_entry(link, &dev->links.consumers, s_node) { 1547 if (!(link->flags & DL_FLAG_MANAGED)) 1548 continue; 1549 1550 if (link->status == DL_STATE_CONSUMER_PROBE 1551 || link->status == DL_STATE_ACTIVE) { 1552 ret = true; 1553 break; 1554 } 1555 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1556 } 1557 1558 dev->links.status = DL_DEV_UNBINDING; 1559 1560 device_links_write_unlock(); 1561 return ret; 1562 } 1563 1564 /** 1565 * device_links_unbind_consumers - Force unbind consumers of the given device. 1566 * @dev: Device to unbind the consumers of. 1567 * 1568 * Walk the list of links to consumers for @dev and if any of them is in the 1569 * "consumer probe" state, wait for all device probes in progress to complete 1570 * and start over. 1571 * 1572 * If that's not the case, change the status of the link to "supplier unbind" 1573 * and check if the link was in the "active" state. If so, force the consumer 1574 * driver to unbind and start over (the consumer will not re-probe as we have 1575 * changed the state of the link already). 1576 * 1577 * Links without the DL_FLAG_MANAGED flag set are ignored. 1578 */ 1579 void device_links_unbind_consumers(struct device *dev) 1580 { 1581 struct device_link *link; 1582 1583 start: 1584 device_links_write_lock(); 1585 1586 list_for_each_entry(link, &dev->links.consumers, s_node) { 1587 enum device_link_state status; 1588 1589 if (!(link->flags & DL_FLAG_MANAGED) || 1590 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1591 continue; 1592 1593 status = link->status; 1594 if (status == DL_STATE_CONSUMER_PROBE) { 1595 device_links_write_unlock(); 1596 1597 wait_for_device_probe(); 1598 goto start; 1599 } 1600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1601 if (status == DL_STATE_ACTIVE) { 1602 struct device *consumer = link->consumer; 1603 1604 get_device(consumer); 1605 1606 device_links_write_unlock(); 1607 1608 device_release_driver_internal(consumer, NULL, 1609 consumer->parent); 1610 put_device(consumer); 1611 goto start; 1612 } 1613 } 1614 1615 device_links_write_unlock(); 1616 } 1617 1618 /** 1619 * device_links_purge - Delete existing links to other devices. 1620 * @dev: Target device. 1621 */ 1622 static void device_links_purge(struct device *dev) 1623 { 1624 struct device_link *link, *ln; 1625 1626 if (dev->class == &devlink_class) 1627 return; 1628 1629 /* 1630 * Delete all of the remaining links from this device to any other 1631 * devices (either consumers or suppliers). 1632 */ 1633 device_links_write_lock(); 1634 1635 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1636 WARN_ON(link->status == DL_STATE_ACTIVE); 1637 __device_link_del(&link->kref); 1638 } 1639 1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1641 WARN_ON(link->status != DL_STATE_DORMANT && 1642 link->status != DL_STATE_NONE); 1643 __device_link_del(&link->kref); 1644 } 1645 1646 device_links_write_unlock(); 1647 } 1648 1649 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1650 DL_FLAG_SYNC_STATE_ONLY) 1651 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1652 DL_FLAG_AUTOPROBE_CONSUMER) 1653 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1654 DL_FLAG_PM_RUNTIME) 1655 1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1657 static int __init fw_devlink_setup(char *arg) 1658 { 1659 if (!arg) 1660 return -EINVAL; 1661 1662 if (strcmp(arg, "off") == 0) { 1663 fw_devlink_flags = 0; 1664 } else if (strcmp(arg, "permissive") == 0) { 1665 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1666 } else if (strcmp(arg, "on") == 0) { 1667 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1668 } else if (strcmp(arg, "rpm") == 0) { 1669 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1670 } 1671 return 0; 1672 } 1673 early_param("fw_devlink", fw_devlink_setup); 1674 1675 static bool fw_devlink_strict; 1676 static int __init fw_devlink_strict_setup(char *arg) 1677 { 1678 return kstrtobool(arg, &fw_devlink_strict); 1679 } 1680 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1681 1682 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1684 1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1686 static int fw_devlink_sync_state; 1687 #else 1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1689 #endif 1690 1691 static int __init fw_devlink_sync_state_setup(char *arg) 1692 { 1693 if (!arg) 1694 return -EINVAL; 1695 1696 if (strcmp(arg, "strict") == 0) { 1697 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1698 return 0; 1699 } else if (strcmp(arg, "timeout") == 0) { 1700 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1701 return 0; 1702 } 1703 return -EINVAL; 1704 } 1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1706 1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1708 { 1709 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1710 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1711 1712 return fw_devlink_flags; 1713 } 1714 1715 static bool fw_devlink_is_permissive(void) 1716 { 1717 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1718 } 1719 1720 bool fw_devlink_is_strict(void) 1721 { 1722 return fw_devlink_strict && !fw_devlink_is_permissive(); 1723 } 1724 1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1726 { 1727 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1728 return; 1729 1730 fwnode_call_int_op(fwnode, add_links); 1731 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1732 } 1733 1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1735 { 1736 struct fwnode_handle *child = NULL; 1737 1738 fw_devlink_parse_fwnode(fwnode); 1739 1740 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1741 fw_devlink_parse_fwtree(child); 1742 } 1743 1744 static void fw_devlink_relax_link(struct device_link *link) 1745 { 1746 if (!(link->flags & DL_FLAG_INFERRED)) 1747 return; 1748 1749 if (device_link_flag_is_sync_state_only(link->flags)) 1750 return; 1751 1752 pm_runtime_drop_link(link); 1753 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1754 dev_dbg(link->consumer, "Relaxing link with %s\n", 1755 dev_name(link->supplier)); 1756 } 1757 1758 static int fw_devlink_no_driver(struct device *dev, void *data) 1759 { 1760 struct device_link *link = to_devlink(dev); 1761 1762 if (!link->supplier->can_match) 1763 fw_devlink_relax_link(link); 1764 1765 return 0; 1766 } 1767 1768 void fw_devlink_drivers_done(void) 1769 { 1770 fw_devlink_drv_reg_done = true; 1771 device_links_write_lock(); 1772 class_for_each_device(&devlink_class, NULL, NULL, 1773 fw_devlink_no_driver); 1774 device_links_write_unlock(); 1775 } 1776 1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1778 { 1779 struct device_link *link = to_devlink(dev); 1780 struct device *sup = link->supplier; 1781 1782 if (!(link->flags & DL_FLAG_MANAGED) || 1783 link->status == DL_STATE_ACTIVE || sup->state_synced || 1784 !dev_has_sync_state(sup)) 1785 return 0; 1786 1787 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1788 dev_warn(sup, "sync_state() pending due to %s\n", 1789 dev_name(link->consumer)); 1790 return 0; 1791 } 1792 1793 if (!list_empty(&sup->links.defer_sync)) 1794 return 0; 1795 1796 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1797 sup->state_synced = true; 1798 get_device(sup); 1799 list_add_tail(&sup->links.defer_sync, data); 1800 1801 return 0; 1802 } 1803 1804 void fw_devlink_probing_done(void) 1805 { 1806 LIST_HEAD(sync_list); 1807 1808 device_links_write_lock(); 1809 class_for_each_device(&devlink_class, NULL, &sync_list, 1810 fw_devlink_dev_sync_state); 1811 device_links_write_unlock(); 1812 device_links_flush_sync_list(&sync_list, NULL); 1813 } 1814 1815 /** 1816 * wait_for_init_devices_probe - Try to probe any device needed for init 1817 * 1818 * Some devices might need to be probed and bound successfully before the kernel 1819 * boot sequence can finish and move on to init/userspace. For example, a 1820 * network interface might need to be bound to be able to mount a NFS rootfs. 1821 * 1822 * With fw_devlink=on by default, some of these devices might be blocked from 1823 * probing because they are waiting on a optional supplier that doesn't have a 1824 * driver. While fw_devlink will eventually identify such devices and unblock 1825 * the probing automatically, it might be too late by the time it unblocks the 1826 * probing of devices. For example, the IP4 autoconfig might timeout before 1827 * fw_devlink unblocks probing of the network interface. 1828 * 1829 * This function is available to temporarily try and probe all devices that have 1830 * a driver even if some of their suppliers haven't been added or don't have 1831 * drivers. 1832 * 1833 * The drivers can then decide which of the suppliers are optional vs mandatory 1834 * and probe the device if possible. By the time this function returns, all such 1835 * "best effort" probes are guaranteed to be completed. If a device successfully 1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1837 * device where the supplier hasn't yet probed successfully because they have to 1838 * be optional dependencies. 1839 * 1840 * Any devices that didn't successfully probe go back to being treated as if 1841 * this function was never called. 1842 * 1843 * This also means that some devices that aren't needed for init and could have 1844 * waited for their optional supplier to probe (when the supplier's module is 1845 * loaded later on) would end up probing prematurely with limited functionality. 1846 * So call this function only when boot would fail without it. 1847 */ 1848 void __init wait_for_init_devices_probe(void) 1849 { 1850 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1851 return; 1852 1853 /* 1854 * Wait for all ongoing probes to finish so that the "best effort" is 1855 * only applied to devices that can't probe otherwise. 1856 */ 1857 wait_for_device_probe(); 1858 1859 pr_info("Trying to probe devices needed for running init ...\n"); 1860 fw_devlink_best_effort = true; 1861 driver_deferred_probe_trigger(); 1862 1863 /* 1864 * Wait for all "best effort" probes to finish before going back to 1865 * normal enforcement. 1866 */ 1867 wait_for_device_probe(); 1868 fw_devlink_best_effort = false; 1869 } 1870 1871 static void fw_devlink_unblock_consumers(struct device *dev) 1872 { 1873 struct device_link *link; 1874 1875 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1876 return; 1877 1878 device_links_write_lock(); 1879 list_for_each_entry(link, &dev->links.consumers, s_node) 1880 fw_devlink_relax_link(link); 1881 device_links_write_unlock(); 1882 } 1883 1884 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1885 1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1887 { 1888 struct device *dev; 1889 bool ret; 1890 1891 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1892 return false; 1893 1894 dev = get_dev_from_fwnode(fwnode); 1895 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1896 put_device(dev); 1897 1898 return ret; 1899 } 1900 1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1902 { 1903 struct fwnode_handle *parent; 1904 1905 fwnode_for_each_parent_node(fwnode, parent) { 1906 if (fwnode_init_without_drv(parent)) { 1907 fwnode_handle_put(parent); 1908 return true; 1909 } 1910 } 1911 1912 return false; 1913 } 1914 1915 /** 1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1917 * @ancestor: Firmware which is tested for being an ancestor 1918 * @child: Firmware which is tested for being the child 1919 * 1920 * A node is considered an ancestor of itself too. 1921 * 1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1923 */ 1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1925 const struct fwnode_handle *child) 1926 { 1927 struct fwnode_handle *parent; 1928 1929 if (IS_ERR_OR_NULL(ancestor)) 1930 return false; 1931 1932 if (child == ancestor) 1933 return true; 1934 1935 fwnode_for_each_parent_node(child, parent) { 1936 if (parent == ancestor) { 1937 fwnode_handle_put(parent); 1938 return true; 1939 } 1940 } 1941 return false; 1942 } 1943 1944 /** 1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1946 * @fwnode: firmware node 1947 * 1948 * Given a firmware node (@fwnode), this function finds its closest ancestor 1949 * firmware node that has a corresponding struct device and returns that struct 1950 * device. 1951 * 1952 * The caller is responsible for calling put_device() on the returned device 1953 * pointer. 1954 * 1955 * Return: a pointer to the device of the @fwnode's closest ancestor. 1956 */ 1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1958 { 1959 struct fwnode_handle *parent; 1960 struct device *dev; 1961 1962 fwnode_for_each_parent_node(fwnode, parent) { 1963 dev = get_dev_from_fwnode(parent); 1964 if (dev) { 1965 fwnode_handle_put(parent); 1966 return dev; 1967 } 1968 } 1969 return NULL; 1970 } 1971 1972 /** 1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1974 * @con: Potential consumer device. 1975 * @sup_handle: Potential supplier's fwnode. 1976 * 1977 * Needs to be called with fwnode_lock and device link lock held. 1978 * 1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1980 * depend on @con. This function can detect multiple cyles between @sup_handle 1981 * and @con. When such dependency cycles are found, convert all device links 1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1984 * converted into a device link in the future, they are created as 1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1986 * fw_devlink=permissive just between the devices in the cycle. We need to do 1987 * this because, at this point, fw_devlink can't tell which of these 1988 * dependencies is not a real dependency. 1989 * 1990 * Return true if one or more cycles were found. Otherwise, return false. 1991 */ 1992 static bool __fw_devlink_relax_cycles(struct device *con, 1993 struct fwnode_handle *sup_handle) 1994 { 1995 struct device *sup_dev = NULL, *par_dev = NULL; 1996 struct fwnode_link *link; 1997 struct device_link *dev_link; 1998 bool ret = false; 1999 2000 if (!sup_handle) 2001 return false; 2002 2003 /* 2004 * We aren't trying to find all cycles. Just a cycle between con and 2005 * sup_handle. 2006 */ 2007 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2008 return false; 2009 2010 sup_handle->flags |= FWNODE_FLAG_VISITED; 2011 2012 sup_dev = get_dev_from_fwnode(sup_handle); 2013 2014 /* Termination condition. */ 2015 if (sup_dev == con) { 2016 pr_debug("----- cycle: start -----\n"); 2017 ret = true; 2018 goto out; 2019 } 2020 2021 /* 2022 * If sup_dev is bound to a driver and @con hasn't started binding to a 2023 * driver, sup_dev can't be a consumer of @con. So, no need to check 2024 * further. 2025 */ 2026 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2027 con->links.status == DL_DEV_NO_DRIVER) { 2028 ret = false; 2029 goto out; 2030 } 2031 2032 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2033 if (link->flags & FWLINK_FLAG_IGNORE) 2034 continue; 2035 2036 if (__fw_devlink_relax_cycles(con, link->supplier)) { 2037 __fwnode_link_cycle(link); 2038 ret = true; 2039 } 2040 } 2041 2042 /* 2043 * Give priority to device parent over fwnode parent to account for any 2044 * quirks in how fwnodes are converted to devices. 2045 */ 2046 if (sup_dev) 2047 par_dev = get_device(sup_dev->parent); 2048 else 2049 par_dev = fwnode_get_next_parent_dev(sup_handle); 2050 2051 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) { 2052 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2053 par_dev->fwnode); 2054 ret = true; 2055 } 2056 2057 if (!sup_dev) 2058 goto out; 2059 2060 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2061 /* 2062 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2063 * such due to a cycle. 2064 */ 2065 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2066 !(dev_link->flags & DL_FLAG_CYCLE)) 2067 continue; 2068 2069 if (__fw_devlink_relax_cycles(con, 2070 dev_link->supplier->fwnode)) { 2071 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2072 dev_link->supplier->fwnode); 2073 fw_devlink_relax_link(dev_link); 2074 dev_link->flags |= DL_FLAG_CYCLE; 2075 ret = true; 2076 } 2077 } 2078 2079 out: 2080 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2081 put_device(sup_dev); 2082 put_device(par_dev); 2083 return ret; 2084 } 2085 2086 /** 2087 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2088 * @con: consumer device for the device link 2089 * @sup_handle: fwnode handle of supplier 2090 * @link: fwnode link that's being converted to a device link 2091 * 2092 * This function will try to create a device link between the consumer device 2093 * @con and the supplier device represented by @sup_handle. 2094 * 2095 * The supplier has to be provided as a fwnode because incorrect cycles in 2096 * fwnode links can sometimes cause the supplier device to never be created. 2097 * This function detects such cases and returns an error if it cannot create a 2098 * device link from the consumer to a missing supplier. 2099 * 2100 * Returns, 2101 * 0 on successfully creating a device link 2102 * -EINVAL if the device link cannot be created as expected 2103 * -EAGAIN if the device link cannot be created right now, but it may be 2104 * possible to do that in the future 2105 */ 2106 static int fw_devlink_create_devlink(struct device *con, 2107 struct fwnode_handle *sup_handle, 2108 struct fwnode_link *link) 2109 { 2110 struct device *sup_dev; 2111 int ret = 0; 2112 u32 flags; 2113 2114 if (link->flags & FWLINK_FLAG_IGNORE) 2115 return 0; 2116 2117 if (con->fwnode == link->consumer) 2118 flags = fw_devlink_get_flags(link->flags); 2119 else 2120 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2121 2122 /* 2123 * In some cases, a device P might also be a supplier to its child node 2124 * C. However, this would defer the probe of C until the probe of P 2125 * completes successfully. This is perfectly fine in the device driver 2126 * model. device_add() doesn't guarantee probe completion of the device 2127 * by the time it returns. 2128 * 2129 * However, there are a few drivers that assume C will finish probing 2130 * as soon as it's added and before P finishes probing. So, we provide 2131 * a flag to let fw_devlink know not to delay the probe of C until the 2132 * probe of P completes successfully. 2133 * 2134 * When such a flag is set, we can't create device links where P is the 2135 * supplier of C as that would delay the probe of C. 2136 */ 2137 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2138 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2139 return -EINVAL; 2140 2141 /* 2142 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2143 * So, one might expect that cycle detection isn't necessary for them. 2144 * However, if the device link was marked as SYNC_STATE_ONLY because 2145 * it's part of a cycle, then we still need to do cycle detection. This 2146 * is because the consumer and supplier might be part of multiple cycles 2147 * and we need to detect all those cycles. 2148 */ 2149 if (!device_link_flag_is_sync_state_only(flags) || 2150 flags & DL_FLAG_CYCLE) { 2151 device_links_write_lock(); 2152 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2153 __fwnode_link_cycle(link); 2154 flags = fw_devlink_get_flags(link->flags); 2155 pr_debug("----- cycle: end -----\n"); 2156 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2157 sup_handle); 2158 } 2159 device_links_write_unlock(); 2160 } 2161 2162 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2163 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2164 else 2165 sup_dev = get_dev_from_fwnode(sup_handle); 2166 2167 if (sup_dev) { 2168 /* 2169 * If it's one of those drivers that don't actually bind to 2170 * their device using driver core, then don't wait on this 2171 * supplier device indefinitely. 2172 */ 2173 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2174 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2175 dev_dbg(con, 2176 "Not linking %pfwf - dev might never probe\n", 2177 sup_handle); 2178 ret = -EINVAL; 2179 goto out; 2180 } 2181 2182 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2183 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2184 flags, dev_name(sup_dev)); 2185 ret = -EINVAL; 2186 } 2187 2188 goto out; 2189 } 2190 2191 /* 2192 * Supplier or supplier's ancestor already initialized without a struct 2193 * device or being probed by a driver. 2194 */ 2195 if (fwnode_init_without_drv(sup_handle) || 2196 fwnode_ancestor_init_without_drv(sup_handle)) { 2197 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2198 sup_handle); 2199 return -EINVAL; 2200 } 2201 2202 ret = -EAGAIN; 2203 out: 2204 put_device(sup_dev); 2205 return ret; 2206 } 2207 2208 /** 2209 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2210 * @dev: Device that needs to be linked to its consumers 2211 * 2212 * This function looks at all the consumer fwnodes of @dev and creates device 2213 * links between the consumer device and @dev (supplier). 2214 * 2215 * If the consumer device has not been added yet, then this function creates a 2216 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2217 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2218 * sync_state() callback before the real consumer device gets to be added and 2219 * then probed. 2220 * 2221 * Once device links are created from the real consumer to @dev (supplier), the 2222 * fwnode links are deleted. 2223 */ 2224 static void __fw_devlink_link_to_consumers(struct device *dev) 2225 { 2226 struct fwnode_handle *fwnode = dev->fwnode; 2227 struct fwnode_link *link, *tmp; 2228 2229 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2230 struct device *con_dev; 2231 bool own_link = true; 2232 int ret; 2233 2234 con_dev = get_dev_from_fwnode(link->consumer); 2235 /* 2236 * If consumer device is not available yet, make a "proxy" 2237 * SYNC_STATE_ONLY link from the consumer's parent device to 2238 * the supplier device. This is necessary to make sure the 2239 * supplier doesn't get a sync_state() callback before the real 2240 * consumer can create a device link to the supplier. 2241 * 2242 * This proxy link step is needed to handle the case where the 2243 * consumer's parent device is added before the supplier. 2244 */ 2245 if (!con_dev) { 2246 con_dev = fwnode_get_next_parent_dev(link->consumer); 2247 /* 2248 * However, if the consumer's parent device is also the 2249 * parent of the supplier, don't create a 2250 * consumer-supplier link from the parent to its child 2251 * device. Such a dependency is impossible. 2252 */ 2253 if (con_dev && 2254 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2255 put_device(con_dev); 2256 con_dev = NULL; 2257 } else { 2258 own_link = false; 2259 } 2260 } 2261 2262 if (!con_dev) 2263 continue; 2264 2265 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2266 put_device(con_dev); 2267 if (!own_link || ret == -EAGAIN) 2268 continue; 2269 2270 __fwnode_link_del(link); 2271 } 2272 } 2273 2274 /** 2275 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2276 * @dev: The consumer device that needs to be linked to its suppliers 2277 * @fwnode: Root of the fwnode tree that is used to create device links 2278 * 2279 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2280 * @fwnode and creates device links between @dev (consumer) and all the 2281 * supplier devices of the entire fwnode tree at @fwnode. 2282 * 2283 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2284 * and the real suppliers of @dev. Once these device links are created, the 2285 * fwnode links are deleted. 2286 * 2287 * In addition, it also looks at all the suppliers of the entire fwnode tree 2288 * because some of the child devices of @dev that have not been added yet 2289 * (because @dev hasn't probed) might already have their suppliers added to 2290 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2291 * @dev (consumer) and these suppliers to make sure they don't execute their 2292 * sync_state() callbacks before these child devices have a chance to create 2293 * their device links. The fwnode links that correspond to the child devices 2294 * aren't delete because they are needed later to create the device links 2295 * between the real consumer and supplier devices. 2296 */ 2297 static void __fw_devlink_link_to_suppliers(struct device *dev, 2298 struct fwnode_handle *fwnode) 2299 { 2300 bool own_link = (dev->fwnode == fwnode); 2301 struct fwnode_link *link, *tmp; 2302 struct fwnode_handle *child = NULL; 2303 2304 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2305 int ret; 2306 struct fwnode_handle *sup = link->supplier; 2307 2308 ret = fw_devlink_create_devlink(dev, sup, link); 2309 if (!own_link || ret == -EAGAIN) 2310 continue; 2311 2312 __fwnode_link_del(link); 2313 } 2314 2315 /* 2316 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2317 * all the descendants. This proxy link step is needed to handle the 2318 * case where the supplier is added before the consumer's parent device 2319 * (@dev). 2320 */ 2321 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2322 __fw_devlink_link_to_suppliers(dev, child); 2323 } 2324 2325 static void fw_devlink_link_device(struct device *dev) 2326 { 2327 struct fwnode_handle *fwnode = dev->fwnode; 2328 2329 if (!fw_devlink_flags) 2330 return; 2331 2332 fw_devlink_parse_fwtree(fwnode); 2333 2334 guard(mutex)(&fwnode_link_lock); 2335 2336 __fw_devlink_link_to_consumers(dev); 2337 __fw_devlink_link_to_suppliers(dev, fwnode); 2338 } 2339 2340 /* Device links support end. */ 2341 2342 static struct kobject *dev_kobj; 2343 2344 /* /sys/dev/char */ 2345 static struct kobject *sysfs_dev_char_kobj; 2346 2347 /* /sys/dev/block */ 2348 static struct kobject *sysfs_dev_block_kobj; 2349 2350 static DEFINE_MUTEX(device_hotplug_lock); 2351 2352 void lock_device_hotplug(void) 2353 { 2354 mutex_lock(&device_hotplug_lock); 2355 } 2356 2357 void unlock_device_hotplug(void) 2358 { 2359 mutex_unlock(&device_hotplug_lock); 2360 } 2361 2362 int lock_device_hotplug_sysfs(void) 2363 { 2364 if (mutex_trylock(&device_hotplug_lock)) 2365 return 0; 2366 2367 /* Avoid busy looping (5 ms of sleep should do). */ 2368 msleep(5); 2369 return restart_syscall(); 2370 } 2371 2372 #ifdef CONFIG_BLOCK 2373 static inline int device_is_not_partition(struct device *dev) 2374 { 2375 return !(dev->type == &part_type); 2376 } 2377 #else 2378 static inline int device_is_not_partition(struct device *dev) 2379 { 2380 return 1; 2381 } 2382 #endif 2383 2384 static void device_platform_notify(struct device *dev) 2385 { 2386 acpi_device_notify(dev); 2387 2388 software_node_notify(dev); 2389 } 2390 2391 static void device_platform_notify_remove(struct device *dev) 2392 { 2393 software_node_notify_remove(dev); 2394 2395 acpi_device_notify_remove(dev); 2396 } 2397 2398 /** 2399 * dev_driver_string - Return a device's driver name, if at all possible 2400 * @dev: struct device to get the name of 2401 * 2402 * Will return the device's driver's name if it is bound to a device. If 2403 * the device is not bound to a driver, it will return the name of the bus 2404 * it is attached to. If it is not attached to a bus either, an empty 2405 * string will be returned. 2406 */ 2407 const char *dev_driver_string(const struct device *dev) 2408 { 2409 struct device_driver *drv; 2410 2411 /* dev->driver can change to NULL underneath us because of unbinding, 2412 * so be careful about accessing it. dev->bus and dev->class should 2413 * never change once they are set, so they don't need special care. 2414 */ 2415 drv = READ_ONCE(dev->driver); 2416 return drv ? drv->name : dev_bus_name(dev); 2417 } 2418 EXPORT_SYMBOL(dev_driver_string); 2419 2420 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2421 2422 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2423 char *buf) 2424 { 2425 struct device_attribute *dev_attr = to_dev_attr(attr); 2426 struct device *dev = kobj_to_dev(kobj); 2427 ssize_t ret = -EIO; 2428 2429 if (dev_attr->show) 2430 ret = dev_attr->show(dev, dev_attr, buf); 2431 if (ret >= (ssize_t)PAGE_SIZE) { 2432 printk("dev_attr_show: %pS returned bad count\n", 2433 dev_attr->show); 2434 } 2435 return ret; 2436 } 2437 2438 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2439 const char *buf, size_t count) 2440 { 2441 struct device_attribute *dev_attr = to_dev_attr(attr); 2442 struct device *dev = kobj_to_dev(kobj); 2443 ssize_t ret = -EIO; 2444 2445 if (dev_attr->store) 2446 ret = dev_attr->store(dev, dev_attr, buf, count); 2447 return ret; 2448 } 2449 2450 static const struct sysfs_ops dev_sysfs_ops = { 2451 .show = dev_attr_show, 2452 .store = dev_attr_store, 2453 }; 2454 2455 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2456 2457 ssize_t device_store_ulong(struct device *dev, 2458 struct device_attribute *attr, 2459 const char *buf, size_t size) 2460 { 2461 struct dev_ext_attribute *ea = to_ext_attr(attr); 2462 int ret; 2463 unsigned long new; 2464 2465 ret = kstrtoul(buf, 0, &new); 2466 if (ret) 2467 return ret; 2468 *(unsigned long *)(ea->var) = new; 2469 /* Always return full write size even if we didn't consume all */ 2470 return size; 2471 } 2472 EXPORT_SYMBOL_GPL(device_store_ulong); 2473 2474 ssize_t device_show_ulong(struct device *dev, 2475 struct device_attribute *attr, 2476 char *buf) 2477 { 2478 struct dev_ext_attribute *ea = to_ext_attr(attr); 2479 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2480 } 2481 EXPORT_SYMBOL_GPL(device_show_ulong); 2482 2483 ssize_t device_store_int(struct device *dev, 2484 struct device_attribute *attr, 2485 const char *buf, size_t size) 2486 { 2487 struct dev_ext_attribute *ea = to_ext_attr(attr); 2488 int ret; 2489 long new; 2490 2491 ret = kstrtol(buf, 0, &new); 2492 if (ret) 2493 return ret; 2494 2495 if (new > INT_MAX || new < INT_MIN) 2496 return -EINVAL; 2497 *(int *)(ea->var) = new; 2498 /* Always return full write size even if we didn't consume all */ 2499 return size; 2500 } 2501 EXPORT_SYMBOL_GPL(device_store_int); 2502 2503 ssize_t device_show_int(struct device *dev, 2504 struct device_attribute *attr, 2505 char *buf) 2506 { 2507 struct dev_ext_attribute *ea = to_ext_attr(attr); 2508 2509 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2510 } 2511 EXPORT_SYMBOL_GPL(device_show_int); 2512 2513 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2514 const char *buf, size_t size) 2515 { 2516 struct dev_ext_attribute *ea = to_ext_attr(attr); 2517 2518 if (kstrtobool(buf, ea->var) < 0) 2519 return -EINVAL; 2520 2521 return size; 2522 } 2523 EXPORT_SYMBOL_GPL(device_store_bool); 2524 2525 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2526 char *buf) 2527 { 2528 struct dev_ext_attribute *ea = to_ext_attr(attr); 2529 2530 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2531 } 2532 EXPORT_SYMBOL_GPL(device_show_bool); 2533 2534 ssize_t device_show_string(struct device *dev, 2535 struct device_attribute *attr, char *buf) 2536 { 2537 struct dev_ext_attribute *ea = to_ext_attr(attr); 2538 2539 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2540 } 2541 EXPORT_SYMBOL_GPL(device_show_string); 2542 2543 /** 2544 * device_release - free device structure. 2545 * @kobj: device's kobject. 2546 * 2547 * This is called once the reference count for the object 2548 * reaches 0. We forward the call to the device's release 2549 * method, which should handle actually freeing the structure. 2550 */ 2551 static void device_release(struct kobject *kobj) 2552 { 2553 struct device *dev = kobj_to_dev(kobj); 2554 struct device_private *p = dev->p; 2555 2556 /* 2557 * Some platform devices are driven without driver attached 2558 * and managed resources may have been acquired. Make sure 2559 * all resources are released. 2560 * 2561 * Drivers still can add resources into device after device 2562 * is deleted but alive, so release devres here to avoid 2563 * possible memory leak. 2564 */ 2565 devres_release_all(dev); 2566 2567 kfree(dev->dma_range_map); 2568 2569 if (dev->release) 2570 dev->release(dev); 2571 else if (dev->type && dev->type->release) 2572 dev->type->release(dev); 2573 else if (dev->class && dev->class->dev_release) 2574 dev->class->dev_release(dev); 2575 else 2576 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2577 dev_name(dev)); 2578 kfree(p); 2579 } 2580 2581 static const void *device_namespace(const struct kobject *kobj) 2582 { 2583 const struct device *dev = kobj_to_dev(kobj); 2584 const void *ns = NULL; 2585 2586 if (dev->class && dev->class->namespace) 2587 ns = dev->class->namespace(dev); 2588 2589 return ns; 2590 } 2591 2592 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2593 { 2594 const struct device *dev = kobj_to_dev(kobj); 2595 2596 if (dev->class && dev->class->get_ownership) 2597 dev->class->get_ownership(dev, uid, gid); 2598 } 2599 2600 static const struct kobj_type device_ktype = { 2601 .release = device_release, 2602 .sysfs_ops = &dev_sysfs_ops, 2603 .namespace = device_namespace, 2604 .get_ownership = device_get_ownership, 2605 }; 2606 2607 2608 static int dev_uevent_filter(const struct kobject *kobj) 2609 { 2610 const struct kobj_type *ktype = get_ktype(kobj); 2611 2612 if (ktype == &device_ktype) { 2613 const struct device *dev = kobj_to_dev(kobj); 2614 if (dev->bus) 2615 return 1; 2616 if (dev->class) 2617 return 1; 2618 } 2619 return 0; 2620 } 2621 2622 static const char *dev_uevent_name(const struct kobject *kobj) 2623 { 2624 const struct device *dev = kobj_to_dev(kobj); 2625 2626 if (dev->bus) 2627 return dev->bus->name; 2628 if (dev->class) 2629 return dev->class->name; 2630 return NULL; 2631 } 2632 2633 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2634 { 2635 const struct device *dev = kobj_to_dev(kobj); 2636 int retval = 0; 2637 2638 /* add device node properties if present */ 2639 if (MAJOR(dev->devt)) { 2640 const char *tmp; 2641 const char *name; 2642 umode_t mode = 0; 2643 kuid_t uid = GLOBAL_ROOT_UID; 2644 kgid_t gid = GLOBAL_ROOT_GID; 2645 2646 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2647 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2648 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2649 if (name) { 2650 add_uevent_var(env, "DEVNAME=%s", name); 2651 if (mode) 2652 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2653 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2654 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2655 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2656 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2657 kfree(tmp); 2658 } 2659 } 2660 2661 if (dev->type && dev->type->name) 2662 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2663 2664 if (dev->driver) 2665 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2666 2667 /* Add common DT information about the device */ 2668 of_device_uevent(dev, env); 2669 2670 /* have the bus specific function add its stuff */ 2671 if (dev->bus && dev->bus->uevent) { 2672 retval = dev->bus->uevent(dev, env); 2673 if (retval) 2674 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2675 dev_name(dev), __func__, retval); 2676 } 2677 2678 /* have the class specific function add its stuff */ 2679 if (dev->class && dev->class->dev_uevent) { 2680 retval = dev->class->dev_uevent(dev, env); 2681 if (retval) 2682 pr_debug("device: '%s': %s: class uevent() " 2683 "returned %d\n", dev_name(dev), 2684 __func__, retval); 2685 } 2686 2687 /* have the device type specific function add its stuff */ 2688 if (dev->type && dev->type->uevent) { 2689 retval = dev->type->uevent(dev, env); 2690 if (retval) 2691 pr_debug("device: '%s': %s: dev_type uevent() " 2692 "returned %d\n", dev_name(dev), 2693 __func__, retval); 2694 } 2695 2696 return retval; 2697 } 2698 2699 static const struct kset_uevent_ops device_uevent_ops = { 2700 .filter = dev_uevent_filter, 2701 .name = dev_uevent_name, 2702 .uevent = dev_uevent, 2703 }; 2704 2705 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2706 char *buf) 2707 { 2708 struct kobject *top_kobj; 2709 struct kset *kset; 2710 struct kobj_uevent_env *env = NULL; 2711 int i; 2712 int len = 0; 2713 int retval; 2714 2715 /* search the kset, the device belongs to */ 2716 top_kobj = &dev->kobj; 2717 while (!top_kobj->kset && top_kobj->parent) 2718 top_kobj = top_kobj->parent; 2719 if (!top_kobj->kset) 2720 goto out; 2721 2722 kset = top_kobj->kset; 2723 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2724 goto out; 2725 2726 /* respect filter */ 2727 if (kset->uevent_ops && kset->uevent_ops->filter) 2728 if (!kset->uevent_ops->filter(&dev->kobj)) 2729 goto out; 2730 2731 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2732 if (!env) 2733 return -ENOMEM; 2734 2735 /* Synchronize with really_probe() */ 2736 device_lock(dev); 2737 /* let the kset specific function add its keys */ 2738 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2739 device_unlock(dev); 2740 if (retval) 2741 goto out; 2742 2743 /* copy keys to file */ 2744 for (i = 0; i < env->envp_idx; i++) 2745 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2746 out: 2747 kfree(env); 2748 return len; 2749 } 2750 2751 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2752 const char *buf, size_t count) 2753 { 2754 int rc; 2755 2756 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2757 2758 if (rc) { 2759 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2760 return rc; 2761 } 2762 2763 return count; 2764 } 2765 static DEVICE_ATTR_RW(uevent); 2766 2767 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2768 char *buf) 2769 { 2770 bool val; 2771 2772 device_lock(dev); 2773 val = !dev->offline; 2774 device_unlock(dev); 2775 return sysfs_emit(buf, "%u\n", val); 2776 } 2777 2778 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2779 const char *buf, size_t count) 2780 { 2781 bool val; 2782 int ret; 2783 2784 ret = kstrtobool(buf, &val); 2785 if (ret < 0) 2786 return ret; 2787 2788 ret = lock_device_hotplug_sysfs(); 2789 if (ret) 2790 return ret; 2791 2792 ret = val ? device_online(dev) : device_offline(dev); 2793 unlock_device_hotplug(); 2794 return ret < 0 ? ret : count; 2795 } 2796 static DEVICE_ATTR_RW(online); 2797 2798 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2799 char *buf) 2800 { 2801 const char *loc; 2802 2803 switch (dev->removable) { 2804 case DEVICE_REMOVABLE: 2805 loc = "removable"; 2806 break; 2807 case DEVICE_FIXED: 2808 loc = "fixed"; 2809 break; 2810 default: 2811 loc = "unknown"; 2812 } 2813 return sysfs_emit(buf, "%s\n", loc); 2814 } 2815 static DEVICE_ATTR_RO(removable); 2816 2817 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2818 { 2819 return sysfs_create_groups(&dev->kobj, groups); 2820 } 2821 EXPORT_SYMBOL_GPL(device_add_groups); 2822 2823 void device_remove_groups(struct device *dev, 2824 const struct attribute_group **groups) 2825 { 2826 sysfs_remove_groups(&dev->kobj, groups); 2827 } 2828 EXPORT_SYMBOL_GPL(device_remove_groups); 2829 2830 union device_attr_group_devres { 2831 const struct attribute_group *group; 2832 const struct attribute_group **groups; 2833 }; 2834 2835 static void devm_attr_group_remove(struct device *dev, void *res) 2836 { 2837 union device_attr_group_devres *devres = res; 2838 const struct attribute_group *group = devres->group; 2839 2840 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2841 sysfs_remove_group(&dev->kobj, group); 2842 } 2843 2844 /** 2845 * devm_device_add_group - given a device, create a managed attribute group 2846 * @dev: The device to create the group for 2847 * @grp: The attribute group to create 2848 * 2849 * This function creates a group for the first time. It will explicitly 2850 * warn and error if any of the attribute files being created already exist. 2851 * 2852 * Returns 0 on success or error code on failure. 2853 */ 2854 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2855 { 2856 union device_attr_group_devres *devres; 2857 int error; 2858 2859 devres = devres_alloc(devm_attr_group_remove, 2860 sizeof(*devres), GFP_KERNEL); 2861 if (!devres) 2862 return -ENOMEM; 2863 2864 error = sysfs_create_group(&dev->kobj, grp); 2865 if (error) { 2866 devres_free(devres); 2867 return error; 2868 } 2869 2870 devres->group = grp; 2871 devres_add(dev, devres); 2872 return 0; 2873 } 2874 EXPORT_SYMBOL_GPL(devm_device_add_group); 2875 2876 static int device_add_attrs(struct device *dev) 2877 { 2878 const struct class *class = dev->class; 2879 const struct device_type *type = dev->type; 2880 int error; 2881 2882 if (class) { 2883 error = device_add_groups(dev, class->dev_groups); 2884 if (error) 2885 return error; 2886 } 2887 2888 if (type) { 2889 error = device_add_groups(dev, type->groups); 2890 if (error) 2891 goto err_remove_class_groups; 2892 } 2893 2894 error = device_add_groups(dev, dev->groups); 2895 if (error) 2896 goto err_remove_type_groups; 2897 2898 if (device_supports_offline(dev) && !dev->offline_disabled) { 2899 error = device_create_file(dev, &dev_attr_online); 2900 if (error) 2901 goto err_remove_dev_groups; 2902 } 2903 2904 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2905 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2906 if (error) 2907 goto err_remove_dev_online; 2908 } 2909 2910 if (dev_removable_is_valid(dev)) { 2911 error = device_create_file(dev, &dev_attr_removable); 2912 if (error) 2913 goto err_remove_dev_waiting_for_supplier; 2914 } 2915 2916 if (dev_add_physical_location(dev)) { 2917 error = device_add_group(dev, 2918 &dev_attr_physical_location_group); 2919 if (error) 2920 goto err_remove_dev_removable; 2921 } 2922 2923 return 0; 2924 2925 err_remove_dev_removable: 2926 device_remove_file(dev, &dev_attr_removable); 2927 err_remove_dev_waiting_for_supplier: 2928 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2929 err_remove_dev_online: 2930 device_remove_file(dev, &dev_attr_online); 2931 err_remove_dev_groups: 2932 device_remove_groups(dev, dev->groups); 2933 err_remove_type_groups: 2934 if (type) 2935 device_remove_groups(dev, type->groups); 2936 err_remove_class_groups: 2937 if (class) 2938 device_remove_groups(dev, class->dev_groups); 2939 2940 return error; 2941 } 2942 2943 static void device_remove_attrs(struct device *dev) 2944 { 2945 const struct class *class = dev->class; 2946 const struct device_type *type = dev->type; 2947 2948 if (dev->physical_location) { 2949 device_remove_group(dev, &dev_attr_physical_location_group); 2950 kfree(dev->physical_location); 2951 } 2952 2953 device_remove_file(dev, &dev_attr_removable); 2954 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2955 device_remove_file(dev, &dev_attr_online); 2956 device_remove_groups(dev, dev->groups); 2957 2958 if (type) 2959 device_remove_groups(dev, type->groups); 2960 2961 if (class) 2962 device_remove_groups(dev, class->dev_groups); 2963 } 2964 2965 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2966 char *buf) 2967 { 2968 return print_dev_t(buf, dev->devt); 2969 } 2970 static DEVICE_ATTR_RO(dev); 2971 2972 /* /sys/devices/ */ 2973 struct kset *devices_kset; 2974 2975 /** 2976 * devices_kset_move_before - Move device in the devices_kset's list. 2977 * @deva: Device to move. 2978 * @devb: Device @deva should come before. 2979 */ 2980 static void devices_kset_move_before(struct device *deva, struct device *devb) 2981 { 2982 if (!devices_kset) 2983 return; 2984 pr_debug("devices_kset: Moving %s before %s\n", 2985 dev_name(deva), dev_name(devb)); 2986 spin_lock(&devices_kset->list_lock); 2987 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2988 spin_unlock(&devices_kset->list_lock); 2989 } 2990 2991 /** 2992 * devices_kset_move_after - Move device in the devices_kset's list. 2993 * @deva: Device to move 2994 * @devb: Device @deva should come after. 2995 */ 2996 static void devices_kset_move_after(struct device *deva, struct device *devb) 2997 { 2998 if (!devices_kset) 2999 return; 3000 pr_debug("devices_kset: Moving %s after %s\n", 3001 dev_name(deva), dev_name(devb)); 3002 spin_lock(&devices_kset->list_lock); 3003 list_move(&deva->kobj.entry, &devb->kobj.entry); 3004 spin_unlock(&devices_kset->list_lock); 3005 } 3006 3007 /** 3008 * devices_kset_move_last - move the device to the end of devices_kset's list. 3009 * @dev: device to move 3010 */ 3011 void devices_kset_move_last(struct device *dev) 3012 { 3013 if (!devices_kset) 3014 return; 3015 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3016 spin_lock(&devices_kset->list_lock); 3017 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3018 spin_unlock(&devices_kset->list_lock); 3019 } 3020 3021 /** 3022 * device_create_file - create sysfs attribute file for device. 3023 * @dev: device. 3024 * @attr: device attribute descriptor. 3025 */ 3026 int device_create_file(struct device *dev, 3027 const struct device_attribute *attr) 3028 { 3029 int error = 0; 3030 3031 if (dev) { 3032 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3033 "Attribute %s: write permission without 'store'\n", 3034 attr->attr.name); 3035 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3036 "Attribute %s: read permission without 'show'\n", 3037 attr->attr.name); 3038 error = sysfs_create_file(&dev->kobj, &attr->attr); 3039 } 3040 3041 return error; 3042 } 3043 EXPORT_SYMBOL_GPL(device_create_file); 3044 3045 /** 3046 * device_remove_file - remove sysfs attribute file. 3047 * @dev: device. 3048 * @attr: device attribute descriptor. 3049 */ 3050 void device_remove_file(struct device *dev, 3051 const struct device_attribute *attr) 3052 { 3053 if (dev) 3054 sysfs_remove_file(&dev->kobj, &attr->attr); 3055 } 3056 EXPORT_SYMBOL_GPL(device_remove_file); 3057 3058 /** 3059 * device_remove_file_self - remove sysfs attribute file from its own method. 3060 * @dev: device. 3061 * @attr: device attribute descriptor. 3062 * 3063 * See kernfs_remove_self() for details. 3064 */ 3065 bool device_remove_file_self(struct device *dev, 3066 const struct device_attribute *attr) 3067 { 3068 if (dev) 3069 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3070 else 3071 return false; 3072 } 3073 EXPORT_SYMBOL_GPL(device_remove_file_self); 3074 3075 /** 3076 * device_create_bin_file - create sysfs binary attribute file for device. 3077 * @dev: device. 3078 * @attr: device binary attribute descriptor. 3079 */ 3080 int device_create_bin_file(struct device *dev, 3081 const struct bin_attribute *attr) 3082 { 3083 int error = -EINVAL; 3084 if (dev) 3085 error = sysfs_create_bin_file(&dev->kobj, attr); 3086 return error; 3087 } 3088 EXPORT_SYMBOL_GPL(device_create_bin_file); 3089 3090 /** 3091 * device_remove_bin_file - remove sysfs binary attribute file 3092 * @dev: device. 3093 * @attr: device binary attribute descriptor. 3094 */ 3095 void device_remove_bin_file(struct device *dev, 3096 const struct bin_attribute *attr) 3097 { 3098 if (dev) 3099 sysfs_remove_bin_file(&dev->kobj, attr); 3100 } 3101 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3102 3103 static void klist_children_get(struct klist_node *n) 3104 { 3105 struct device_private *p = to_device_private_parent(n); 3106 struct device *dev = p->device; 3107 3108 get_device(dev); 3109 } 3110 3111 static void klist_children_put(struct klist_node *n) 3112 { 3113 struct device_private *p = to_device_private_parent(n); 3114 struct device *dev = p->device; 3115 3116 put_device(dev); 3117 } 3118 3119 /** 3120 * device_initialize - init device structure. 3121 * @dev: device. 3122 * 3123 * This prepares the device for use by other layers by initializing 3124 * its fields. 3125 * It is the first half of device_register(), if called by 3126 * that function, though it can also be called separately, so one 3127 * may use @dev's fields. In particular, get_device()/put_device() 3128 * may be used for reference counting of @dev after calling this 3129 * function. 3130 * 3131 * All fields in @dev must be initialized by the caller to 0, except 3132 * for those explicitly set to some other value. The simplest 3133 * approach is to use kzalloc() to allocate the structure containing 3134 * @dev. 3135 * 3136 * NOTE: Use put_device() to give up your reference instead of freeing 3137 * @dev directly once you have called this function. 3138 */ 3139 void device_initialize(struct device *dev) 3140 { 3141 dev->kobj.kset = devices_kset; 3142 kobject_init(&dev->kobj, &device_ktype); 3143 INIT_LIST_HEAD(&dev->dma_pools); 3144 mutex_init(&dev->mutex); 3145 lockdep_set_novalidate_class(&dev->mutex); 3146 spin_lock_init(&dev->devres_lock); 3147 INIT_LIST_HEAD(&dev->devres_head); 3148 device_pm_init(dev); 3149 set_dev_node(dev, NUMA_NO_NODE); 3150 INIT_LIST_HEAD(&dev->links.consumers); 3151 INIT_LIST_HEAD(&dev->links.suppliers); 3152 INIT_LIST_HEAD(&dev->links.defer_sync); 3153 dev->links.status = DL_DEV_NO_DRIVER; 3154 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3155 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3156 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3157 dev->dma_coherent = dma_default_coherent; 3158 #endif 3159 swiotlb_dev_init(dev); 3160 } 3161 EXPORT_SYMBOL_GPL(device_initialize); 3162 3163 struct kobject *virtual_device_parent(void) 3164 { 3165 static struct kobject *virtual_dir = NULL; 3166 3167 if (!virtual_dir) 3168 virtual_dir = kobject_create_and_add("virtual", 3169 &devices_kset->kobj); 3170 3171 return virtual_dir; 3172 } 3173 3174 struct class_dir { 3175 struct kobject kobj; 3176 const struct class *class; 3177 }; 3178 3179 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3180 3181 static void class_dir_release(struct kobject *kobj) 3182 { 3183 struct class_dir *dir = to_class_dir(kobj); 3184 kfree(dir); 3185 } 3186 3187 static const 3188 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3189 { 3190 const struct class_dir *dir = to_class_dir(kobj); 3191 return dir->class->ns_type; 3192 } 3193 3194 static const struct kobj_type class_dir_ktype = { 3195 .release = class_dir_release, 3196 .sysfs_ops = &kobj_sysfs_ops, 3197 .child_ns_type = class_dir_child_ns_type 3198 }; 3199 3200 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3201 struct kobject *parent_kobj) 3202 { 3203 struct class_dir *dir; 3204 int retval; 3205 3206 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3207 if (!dir) 3208 return ERR_PTR(-ENOMEM); 3209 3210 dir->class = sp->class; 3211 kobject_init(&dir->kobj, &class_dir_ktype); 3212 3213 dir->kobj.kset = &sp->glue_dirs; 3214 3215 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3216 if (retval < 0) { 3217 kobject_put(&dir->kobj); 3218 return ERR_PTR(retval); 3219 } 3220 return &dir->kobj; 3221 } 3222 3223 static DEFINE_MUTEX(gdp_mutex); 3224 3225 static struct kobject *get_device_parent(struct device *dev, 3226 struct device *parent) 3227 { 3228 struct subsys_private *sp = class_to_subsys(dev->class); 3229 struct kobject *kobj = NULL; 3230 3231 if (sp) { 3232 struct kobject *parent_kobj; 3233 struct kobject *k; 3234 3235 /* 3236 * If we have no parent, we live in "virtual". 3237 * Class-devices with a non class-device as parent, live 3238 * in a "glue" directory to prevent namespace collisions. 3239 */ 3240 if (parent == NULL) 3241 parent_kobj = virtual_device_parent(); 3242 else if (parent->class && !dev->class->ns_type) { 3243 subsys_put(sp); 3244 return &parent->kobj; 3245 } else { 3246 parent_kobj = &parent->kobj; 3247 } 3248 3249 mutex_lock(&gdp_mutex); 3250 3251 /* find our class-directory at the parent and reference it */ 3252 spin_lock(&sp->glue_dirs.list_lock); 3253 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3254 if (k->parent == parent_kobj) { 3255 kobj = kobject_get(k); 3256 break; 3257 } 3258 spin_unlock(&sp->glue_dirs.list_lock); 3259 if (kobj) { 3260 mutex_unlock(&gdp_mutex); 3261 subsys_put(sp); 3262 return kobj; 3263 } 3264 3265 /* or create a new class-directory at the parent device */ 3266 k = class_dir_create_and_add(sp, parent_kobj); 3267 /* do not emit an uevent for this simple "glue" directory */ 3268 mutex_unlock(&gdp_mutex); 3269 subsys_put(sp); 3270 return k; 3271 } 3272 3273 /* subsystems can specify a default root directory for their devices */ 3274 if (!parent && dev->bus) { 3275 struct device *dev_root = bus_get_dev_root(dev->bus); 3276 3277 if (dev_root) { 3278 kobj = &dev_root->kobj; 3279 put_device(dev_root); 3280 return kobj; 3281 } 3282 } 3283 3284 if (parent) 3285 return &parent->kobj; 3286 return NULL; 3287 } 3288 3289 static inline bool live_in_glue_dir(struct kobject *kobj, 3290 struct device *dev) 3291 { 3292 struct subsys_private *sp; 3293 bool retval; 3294 3295 if (!kobj || !dev->class) 3296 return false; 3297 3298 sp = class_to_subsys(dev->class); 3299 if (!sp) 3300 return false; 3301 3302 if (kobj->kset == &sp->glue_dirs) 3303 retval = true; 3304 else 3305 retval = false; 3306 3307 subsys_put(sp); 3308 return retval; 3309 } 3310 3311 static inline struct kobject *get_glue_dir(struct device *dev) 3312 { 3313 return dev->kobj.parent; 3314 } 3315 3316 /** 3317 * kobject_has_children - Returns whether a kobject has children. 3318 * @kobj: the object to test 3319 * 3320 * This will return whether a kobject has other kobjects as children. 3321 * 3322 * It does NOT account for the presence of attribute files, only sub 3323 * directories. It also assumes there is no concurrent addition or 3324 * removal of such children, and thus relies on external locking. 3325 */ 3326 static inline bool kobject_has_children(struct kobject *kobj) 3327 { 3328 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3329 3330 return kobj->sd && kobj->sd->dir.subdirs; 3331 } 3332 3333 /* 3334 * make sure cleaning up dir as the last step, we need to make 3335 * sure .release handler of kobject is run with holding the 3336 * global lock 3337 */ 3338 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3339 { 3340 unsigned int ref; 3341 3342 /* see if we live in a "glue" directory */ 3343 if (!live_in_glue_dir(glue_dir, dev)) 3344 return; 3345 3346 mutex_lock(&gdp_mutex); 3347 /** 3348 * There is a race condition between removing glue directory 3349 * and adding a new device under the glue directory. 3350 * 3351 * CPU1: CPU2: 3352 * 3353 * device_add() 3354 * get_device_parent() 3355 * class_dir_create_and_add() 3356 * kobject_add_internal() 3357 * create_dir() // create glue_dir 3358 * 3359 * device_add() 3360 * get_device_parent() 3361 * kobject_get() // get glue_dir 3362 * 3363 * device_del() 3364 * cleanup_glue_dir() 3365 * kobject_del(glue_dir) 3366 * 3367 * kobject_add() 3368 * kobject_add_internal() 3369 * create_dir() // in glue_dir 3370 * sysfs_create_dir_ns() 3371 * kernfs_create_dir_ns(sd) 3372 * 3373 * sysfs_remove_dir() // glue_dir->sd=NULL 3374 * sysfs_put() // free glue_dir->sd 3375 * 3376 * // sd is freed 3377 * kernfs_new_node(sd) 3378 * kernfs_get(glue_dir) 3379 * kernfs_add_one() 3380 * kernfs_put() 3381 * 3382 * Before CPU1 remove last child device under glue dir, if CPU2 add 3383 * a new device under glue dir, the glue_dir kobject reference count 3384 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3385 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3386 * and sysfs_put(). This result in glue_dir->sd is freed. 3387 * 3388 * Then the CPU2 will see a stale "empty" but still potentially used 3389 * glue dir around in kernfs_new_node(). 3390 * 3391 * In order to avoid this happening, we also should make sure that 3392 * kernfs_node for glue_dir is released in CPU1 only when refcount 3393 * for glue_dir kobj is 1. 3394 */ 3395 ref = kref_read(&glue_dir->kref); 3396 if (!kobject_has_children(glue_dir) && !--ref) 3397 kobject_del(glue_dir); 3398 kobject_put(glue_dir); 3399 mutex_unlock(&gdp_mutex); 3400 } 3401 3402 static int device_add_class_symlinks(struct device *dev) 3403 { 3404 struct device_node *of_node = dev_of_node(dev); 3405 struct subsys_private *sp; 3406 int error; 3407 3408 if (of_node) { 3409 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3410 if (error) 3411 dev_warn(dev, "Error %d creating of_node link\n",error); 3412 /* An error here doesn't warrant bringing down the device */ 3413 } 3414 3415 sp = class_to_subsys(dev->class); 3416 if (!sp) 3417 return 0; 3418 3419 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3420 if (error) 3421 goto out_devnode; 3422 3423 if (dev->parent && device_is_not_partition(dev)) { 3424 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3425 "device"); 3426 if (error) 3427 goto out_subsys; 3428 } 3429 3430 /* link in the class directory pointing to the device */ 3431 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3432 if (error) 3433 goto out_device; 3434 goto exit; 3435 3436 out_device: 3437 sysfs_remove_link(&dev->kobj, "device"); 3438 out_subsys: 3439 sysfs_remove_link(&dev->kobj, "subsystem"); 3440 out_devnode: 3441 sysfs_remove_link(&dev->kobj, "of_node"); 3442 exit: 3443 subsys_put(sp); 3444 return error; 3445 } 3446 3447 static void device_remove_class_symlinks(struct device *dev) 3448 { 3449 struct subsys_private *sp = class_to_subsys(dev->class); 3450 3451 if (dev_of_node(dev)) 3452 sysfs_remove_link(&dev->kobj, "of_node"); 3453 3454 if (!sp) 3455 return; 3456 3457 if (dev->parent && device_is_not_partition(dev)) 3458 sysfs_remove_link(&dev->kobj, "device"); 3459 sysfs_remove_link(&dev->kobj, "subsystem"); 3460 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3461 subsys_put(sp); 3462 } 3463 3464 /** 3465 * dev_set_name - set a device name 3466 * @dev: device 3467 * @fmt: format string for the device's name 3468 */ 3469 int dev_set_name(struct device *dev, const char *fmt, ...) 3470 { 3471 va_list vargs; 3472 int err; 3473 3474 va_start(vargs, fmt); 3475 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3476 va_end(vargs); 3477 return err; 3478 } 3479 EXPORT_SYMBOL_GPL(dev_set_name); 3480 3481 /* select a /sys/dev/ directory for the device */ 3482 static struct kobject *device_to_dev_kobj(struct device *dev) 3483 { 3484 if (is_blockdev(dev)) 3485 return sysfs_dev_block_kobj; 3486 else 3487 return sysfs_dev_char_kobj; 3488 } 3489 3490 static int device_create_sys_dev_entry(struct device *dev) 3491 { 3492 struct kobject *kobj = device_to_dev_kobj(dev); 3493 int error = 0; 3494 char devt_str[15]; 3495 3496 if (kobj) { 3497 format_dev_t(devt_str, dev->devt); 3498 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3499 } 3500 3501 return error; 3502 } 3503 3504 static void device_remove_sys_dev_entry(struct device *dev) 3505 { 3506 struct kobject *kobj = device_to_dev_kobj(dev); 3507 char devt_str[15]; 3508 3509 if (kobj) { 3510 format_dev_t(devt_str, dev->devt); 3511 sysfs_remove_link(kobj, devt_str); 3512 } 3513 } 3514 3515 static int device_private_init(struct device *dev) 3516 { 3517 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3518 if (!dev->p) 3519 return -ENOMEM; 3520 dev->p->device = dev; 3521 klist_init(&dev->p->klist_children, klist_children_get, 3522 klist_children_put); 3523 INIT_LIST_HEAD(&dev->p->deferred_probe); 3524 return 0; 3525 } 3526 3527 /** 3528 * device_add - add device to device hierarchy. 3529 * @dev: device. 3530 * 3531 * This is part 2 of device_register(), though may be called 3532 * separately _iff_ device_initialize() has been called separately. 3533 * 3534 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3535 * to the global and sibling lists for the device, then 3536 * adds it to the other relevant subsystems of the driver model. 3537 * 3538 * Do not call this routine or device_register() more than once for 3539 * any device structure. The driver model core is not designed to work 3540 * with devices that get unregistered and then spring back to life. 3541 * (Among other things, it's very hard to guarantee that all references 3542 * to the previous incarnation of @dev have been dropped.) Allocate 3543 * and register a fresh new struct device instead. 3544 * 3545 * NOTE: _Never_ directly free @dev after calling this function, even 3546 * if it returned an error! Always use put_device() to give up your 3547 * reference instead. 3548 * 3549 * Rule of thumb is: if device_add() succeeds, you should call 3550 * device_del() when you want to get rid of it. If device_add() has 3551 * *not* succeeded, use *only* put_device() to drop the reference 3552 * count. 3553 */ 3554 int device_add(struct device *dev) 3555 { 3556 struct subsys_private *sp; 3557 struct device *parent; 3558 struct kobject *kobj; 3559 struct class_interface *class_intf; 3560 int error = -EINVAL; 3561 struct kobject *glue_dir = NULL; 3562 3563 dev = get_device(dev); 3564 if (!dev) 3565 goto done; 3566 3567 if (!dev->p) { 3568 error = device_private_init(dev); 3569 if (error) 3570 goto done; 3571 } 3572 3573 /* 3574 * for statically allocated devices, which should all be converted 3575 * some day, we need to initialize the name. We prevent reading back 3576 * the name, and force the use of dev_name() 3577 */ 3578 if (dev->init_name) { 3579 error = dev_set_name(dev, "%s", dev->init_name); 3580 dev->init_name = NULL; 3581 } 3582 3583 if (dev_name(dev)) 3584 error = 0; 3585 /* subsystems can specify simple device enumeration */ 3586 else if (dev->bus && dev->bus->dev_name) 3587 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3588 else 3589 error = -EINVAL; 3590 if (error) 3591 goto name_error; 3592 3593 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3594 3595 parent = get_device(dev->parent); 3596 kobj = get_device_parent(dev, parent); 3597 if (IS_ERR(kobj)) { 3598 error = PTR_ERR(kobj); 3599 goto parent_error; 3600 } 3601 if (kobj) 3602 dev->kobj.parent = kobj; 3603 3604 /* use parent numa_node */ 3605 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3606 set_dev_node(dev, dev_to_node(parent)); 3607 3608 /* first, register with generic layer. */ 3609 /* we require the name to be set before, and pass NULL */ 3610 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3611 if (error) { 3612 glue_dir = kobj; 3613 goto Error; 3614 } 3615 3616 /* notify platform of device entry */ 3617 device_platform_notify(dev); 3618 3619 error = device_create_file(dev, &dev_attr_uevent); 3620 if (error) 3621 goto attrError; 3622 3623 error = device_add_class_symlinks(dev); 3624 if (error) 3625 goto SymlinkError; 3626 error = device_add_attrs(dev); 3627 if (error) 3628 goto AttrsError; 3629 error = bus_add_device(dev); 3630 if (error) 3631 goto BusError; 3632 error = dpm_sysfs_add(dev); 3633 if (error) 3634 goto DPMError; 3635 device_pm_add(dev); 3636 3637 if (MAJOR(dev->devt)) { 3638 error = device_create_file(dev, &dev_attr_dev); 3639 if (error) 3640 goto DevAttrError; 3641 3642 error = device_create_sys_dev_entry(dev); 3643 if (error) 3644 goto SysEntryError; 3645 3646 devtmpfs_create_node(dev); 3647 } 3648 3649 /* Notify clients of device addition. This call must come 3650 * after dpm_sysfs_add() and before kobject_uevent(). 3651 */ 3652 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3653 kobject_uevent(&dev->kobj, KOBJ_ADD); 3654 3655 /* 3656 * Check if any of the other devices (consumers) have been waiting for 3657 * this device (supplier) to be added so that they can create a device 3658 * link to it. 3659 * 3660 * This needs to happen after device_pm_add() because device_link_add() 3661 * requires the supplier be registered before it's called. 3662 * 3663 * But this also needs to happen before bus_probe_device() to make sure 3664 * waiting consumers can link to it before the driver is bound to the 3665 * device and the driver sync_state callback is called for this device. 3666 */ 3667 if (dev->fwnode && !dev->fwnode->dev) { 3668 dev->fwnode->dev = dev; 3669 fw_devlink_link_device(dev); 3670 } 3671 3672 bus_probe_device(dev); 3673 3674 /* 3675 * If all driver registration is done and a newly added device doesn't 3676 * match with any driver, don't block its consumers from probing in 3677 * case the consumer device is able to operate without this supplier. 3678 */ 3679 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3680 fw_devlink_unblock_consumers(dev); 3681 3682 if (parent) 3683 klist_add_tail(&dev->p->knode_parent, 3684 &parent->p->klist_children); 3685 3686 sp = class_to_subsys(dev->class); 3687 if (sp) { 3688 mutex_lock(&sp->mutex); 3689 /* tie the class to the device */ 3690 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3691 3692 /* notify any interfaces that the device is here */ 3693 list_for_each_entry(class_intf, &sp->interfaces, node) 3694 if (class_intf->add_dev) 3695 class_intf->add_dev(dev); 3696 mutex_unlock(&sp->mutex); 3697 subsys_put(sp); 3698 } 3699 done: 3700 put_device(dev); 3701 return error; 3702 SysEntryError: 3703 if (MAJOR(dev->devt)) 3704 device_remove_file(dev, &dev_attr_dev); 3705 DevAttrError: 3706 device_pm_remove(dev); 3707 dpm_sysfs_remove(dev); 3708 DPMError: 3709 dev->driver = NULL; 3710 bus_remove_device(dev); 3711 BusError: 3712 device_remove_attrs(dev); 3713 AttrsError: 3714 device_remove_class_symlinks(dev); 3715 SymlinkError: 3716 device_remove_file(dev, &dev_attr_uevent); 3717 attrError: 3718 device_platform_notify_remove(dev); 3719 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3720 glue_dir = get_glue_dir(dev); 3721 kobject_del(&dev->kobj); 3722 Error: 3723 cleanup_glue_dir(dev, glue_dir); 3724 parent_error: 3725 put_device(parent); 3726 name_error: 3727 kfree(dev->p); 3728 dev->p = NULL; 3729 goto done; 3730 } 3731 EXPORT_SYMBOL_GPL(device_add); 3732 3733 /** 3734 * device_register - register a device with the system. 3735 * @dev: pointer to the device structure 3736 * 3737 * This happens in two clean steps - initialize the device 3738 * and add it to the system. The two steps can be called 3739 * separately, but this is the easiest and most common. 3740 * I.e. you should only call the two helpers separately if 3741 * have a clearly defined need to use and refcount the device 3742 * before it is added to the hierarchy. 3743 * 3744 * For more information, see the kerneldoc for device_initialize() 3745 * and device_add(). 3746 * 3747 * NOTE: _Never_ directly free @dev after calling this function, even 3748 * if it returned an error! Always use put_device() to give up the 3749 * reference initialized in this function instead. 3750 */ 3751 int device_register(struct device *dev) 3752 { 3753 device_initialize(dev); 3754 return device_add(dev); 3755 } 3756 EXPORT_SYMBOL_GPL(device_register); 3757 3758 /** 3759 * get_device - increment reference count for device. 3760 * @dev: device. 3761 * 3762 * This simply forwards the call to kobject_get(), though 3763 * we do take care to provide for the case that we get a NULL 3764 * pointer passed in. 3765 */ 3766 struct device *get_device(struct device *dev) 3767 { 3768 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3769 } 3770 EXPORT_SYMBOL_GPL(get_device); 3771 3772 /** 3773 * put_device - decrement reference count. 3774 * @dev: device in question. 3775 */ 3776 void put_device(struct device *dev) 3777 { 3778 /* might_sleep(); */ 3779 if (dev) 3780 kobject_put(&dev->kobj); 3781 } 3782 EXPORT_SYMBOL_GPL(put_device); 3783 3784 bool kill_device(struct device *dev) 3785 { 3786 /* 3787 * Require the device lock and set the "dead" flag to guarantee that 3788 * the update behavior is consistent with the other bitfields near 3789 * it and that we cannot have an asynchronous probe routine trying 3790 * to run while we are tearing out the bus/class/sysfs from 3791 * underneath the device. 3792 */ 3793 device_lock_assert(dev); 3794 3795 if (dev->p->dead) 3796 return false; 3797 dev->p->dead = true; 3798 return true; 3799 } 3800 EXPORT_SYMBOL_GPL(kill_device); 3801 3802 /** 3803 * device_del - delete device from system. 3804 * @dev: device. 3805 * 3806 * This is the first part of the device unregistration 3807 * sequence. This removes the device from the lists we control 3808 * from here, has it removed from the other driver model 3809 * subsystems it was added to in device_add(), and removes it 3810 * from the kobject hierarchy. 3811 * 3812 * NOTE: this should be called manually _iff_ device_add() was 3813 * also called manually. 3814 */ 3815 void device_del(struct device *dev) 3816 { 3817 struct subsys_private *sp; 3818 struct device *parent = dev->parent; 3819 struct kobject *glue_dir = NULL; 3820 struct class_interface *class_intf; 3821 unsigned int noio_flag; 3822 3823 device_lock(dev); 3824 kill_device(dev); 3825 device_unlock(dev); 3826 3827 if (dev->fwnode && dev->fwnode->dev == dev) 3828 dev->fwnode->dev = NULL; 3829 3830 /* Notify clients of device removal. This call must come 3831 * before dpm_sysfs_remove(). 3832 */ 3833 noio_flag = memalloc_noio_save(); 3834 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3835 3836 dpm_sysfs_remove(dev); 3837 if (parent) 3838 klist_del(&dev->p->knode_parent); 3839 if (MAJOR(dev->devt)) { 3840 devtmpfs_delete_node(dev); 3841 device_remove_sys_dev_entry(dev); 3842 device_remove_file(dev, &dev_attr_dev); 3843 } 3844 3845 sp = class_to_subsys(dev->class); 3846 if (sp) { 3847 device_remove_class_symlinks(dev); 3848 3849 mutex_lock(&sp->mutex); 3850 /* notify any interfaces that the device is now gone */ 3851 list_for_each_entry(class_intf, &sp->interfaces, node) 3852 if (class_intf->remove_dev) 3853 class_intf->remove_dev(dev); 3854 /* remove the device from the class list */ 3855 klist_del(&dev->p->knode_class); 3856 mutex_unlock(&sp->mutex); 3857 subsys_put(sp); 3858 } 3859 device_remove_file(dev, &dev_attr_uevent); 3860 device_remove_attrs(dev); 3861 bus_remove_device(dev); 3862 device_pm_remove(dev); 3863 driver_deferred_probe_del(dev); 3864 device_platform_notify_remove(dev); 3865 device_links_purge(dev); 3866 3867 /* 3868 * If a device does not have a driver attached, we need to clean 3869 * up any managed resources. We do this in device_release(), but 3870 * it's never called (and we leak the device) if a managed 3871 * resource holds a reference to the device. So release all 3872 * managed resources here, like we do in driver_detach(). We 3873 * still need to do so again in device_release() in case someone 3874 * adds a new resource after this point, though. 3875 */ 3876 devres_release_all(dev); 3877 3878 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3879 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3880 glue_dir = get_glue_dir(dev); 3881 kobject_del(&dev->kobj); 3882 cleanup_glue_dir(dev, glue_dir); 3883 memalloc_noio_restore(noio_flag); 3884 put_device(parent); 3885 } 3886 EXPORT_SYMBOL_GPL(device_del); 3887 3888 /** 3889 * device_unregister - unregister device from system. 3890 * @dev: device going away. 3891 * 3892 * We do this in two parts, like we do device_register(). First, 3893 * we remove it from all the subsystems with device_del(), then 3894 * we decrement the reference count via put_device(). If that 3895 * is the final reference count, the device will be cleaned up 3896 * via device_release() above. Otherwise, the structure will 3897 * stick around until the final reference to the device is dropped. 3898 */ 3899 void device_unregister(struct device *dev) 3900 { 3901 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3902 device_del(dev); 3903 put_device(dev); 3904 } 3905 EXPORT_SYMBOL_GPL(device_unregister); 3906 3907 static struct device *prev_device(struct klist_iter *i) 3908 { 3909 struct klist_node *n = klist_prev(i); 3910 struct device *dev = NULL; 3911 struct device_private *p; 3912 3913 if (n) { 3914 p = to_device_private_parent(n); 3915 dev = p->device; 3916 } 3917 return dev; 3918 } 3919 3920 static struct device *next_device(struct klist_iter *i) 3921 { 3922 struct klist_node *n = klist_next(i); 3923 struct device *dev = NULL; 3924 struct device_private *p; 3925 3926 if (n) { 3927 p = to_device_private_parent(n); 3928 dev = p->device; 3929 } 3930 return dev; 3931 } 3932 3933 /** 3934 * device_get_devnode - path of device node file 3935 * @dev: device 3936 * @mode: returned file access mode 3937 * @uid: returned file owner 3938 * @gid: returned file group 3939 * @tmp: possibly allocated string 3940 * 3941 * Return the relative path of a possible device node. 3942 * Non-default names may need to allocate a memory to compose 3943 * a name. This memory is returned in tmp and needs to be 3944 * freed by the caller. 3945 */ 3946 const char *device_get_devnode(const struct device *dev, 3947 umode_t *mode, kuid_t *uid, kgid_t *gid, 3948 const char **tmp) 3949 { 3950 char *s; 3951 3952 *tmp = NULL; 3953 3954 /* the device type may provide a specific name */ 3955 if (dev->type && dev->type->devnode) 3956 *tmp = dev->type->devnode(dev, mode, uid, gid); 3957 if (*tmp) 3958 return *tmp; 3959 3960 /* the class may provide a specific name */ 3961 if (dev->class && dev->class->devnode) 3962 *tmp = dev->class->devnode(dev, mode); 3963 if (*tmp) 3964 return *tmp; 3965 3966 /* return name without allocation, tmp == NULL */ 3967 if (strchr(dev_name(dev), '!') == NULL) 3968 return dev_name(dev); 3969 3970 /* replace '!' in the name with '/' */ 3971 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3972 if (!s) 3973 return NULL; 3974 return *tmp = s; 3975 } 3976 3977 /** 3978 * device_for_each_child - device child iterator. 3979 * @parent: parent struct device. 3980 * @fn: function to be called for each device. 3981 * @data: data for the callback. 3982 * 3983 * Iterate over @parent's child devices, and call @fn for each, 3984 * passing it @data. 3985 * 3986 * We check the return of @fn each time. If it returns anything 3987 * other than 0, we break out and return that value. 3988 */ 3989 int device_for_each_child(struct device *parent, void *data, 3990 int (*fn)(struct device *dev, void *data)) 3991 { 3992 struct klist_iter i; 3993 struct device *child; 3994 int error = 0; 3995 3996 if (!parent || !parent->p) 3997 return 0; 3998 3999 klist_iter_init(&parent->p->klist_children, &i); 4000 while (!error && (child = next_device(&i))) 4001 error = fn(child, data); 4002 klist_iter_exit(&i); 4003 return error; 4004 } 4005 EXPORT_SYMBOL_GPL(device_for_each_child); 4006 4007 /** 4008 * device_for_each_child_reverse - device child iterator in reversed order. 4009 * @parent: parent struct device. 4010 * @fn: function to be called for each device. 4011 * @data: data for the callback. 4012 * 4013 * Iterate over @parent's child devices, and call @fn for each, 4014 * passing it @data. 4015 * 4016 * We check the return of @fn each time. If it returns anything 4017 * other than 0, we break out and return that value. 4018 */ 4019 int device_for_each_child_reverse(struct device *parent, void *data, 4020 int (*fn)(struct device *dev, void *data)) 4021 { 4022 struct klist_iter i; 4023 struct device *child; 4024 int error = 0; 4025 4026 if (!parent || !parent->p) 4027 return 0; 4028 4029 klist_iter_init(&parent->p->klist_children, &i); 4030 while ((child = prev_device(&i)) && !error) 4031 error = fn(child, data); 4032 klist_iter_exit(&i); 4033 return error; 4034 } 4035 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4036 4037 /** 4038 * device_for_each_child_reverse_from - device child iterator in reversed order. 4039 * @parent: parent struct device. 4040 * @from: optional starting point in child list 4041 * @fn: function to be called for each device. 4042 * @data: data for the callback. 4043 * 4044 * Iterate over @parent's child devices, starting at @from, and call @fn 4045 * for each, passing it @data. This helper is identical to 4046 * device_for_each_child_reverse() when @from is NULL. 4047 * 4048 * @fn is checked each iteration. If it returns anything other than 0, 4049 * iteration stop and that value is returned to the caller of 4050 * device_for_each_child_reverse_from(); 4051 */ 4052 int device_for_each_child_reverse_from(struct device *parent, 4053 struct device *from, const void *data, 4054 int (*fn)(struct device *, const void *)) 4055 { 4056 struct klist_iter i; 4057 struct device *child; 4058 int error = 0; 4059 4060 if (!parent->p) 4061 return 0; 4062 4063 klist_iter_init_node(&parent->p->klist_children, &i, 4064 (from ? &from->p->knode_parent : NULL)); 4065 while ((child = prev_device(&i)) && !error) 4066 error = fn(child, data); 4067 klist_iter_exit(&i); 4068 return error; 4069 } 4070 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from); 4071 4072 /** 4073 * device_find_child - device iterator for locating a particular device. 4074 * @parent: parent struct device 4075 * @match: Callback function to check device 4076 * @data: Data to pass to match function 4077 * 4078 * This is similar to the device_for_each_child() function above, but it 4079 * returns a reference to a device that is 'found' for later use, as 4080 * determined by the @match callback. 4081 * 4082 * The callback should return 0 if the device doesn't match and non-zero 4083 * if it does. If the callback returns non-zero and a reference to the 4084 * current device can be obtained, this function will return to the caller 4085 * and not iterate over any more devices. 4086 * 4087 * NOTE: you will need to drop the reference with put_device() after use. 4088 */ 4089 struct device *device_find_child(struct device *parent, void *data, 4090 int (*match)(struct device *dev, void *data)) 4091 { 4092 struct klist_iter i; 4093 struct device *child; 4094 4095 if (!parent || !parent->p) 4096 return NULL; 4097 4098 klist_iter_init(&parent->p->klist_children, &i); 4099 while ((child = next_device(&i))) 4100 if (match(child, data) && get_device(child)) 4101 break; 4102 klist_iter_exit(&i); 4103 return child; 4104 } 4105 EXPORT_SYMBOL_GPL(device_find_child); 4106 4107 /** 4108 * device_find_child_by_name - device iterator for locating a child device. 4109 * @parent: parent struct device 4110 * @name: name of the child device 4111 * 4112 * This is similar to the device_find_child() function above, but it 4113 * returns a reference to a device that has the name @name. 4114 * 4115 * NOTE: you will need to drop the reference with put_device() after use. 4116 */ 4117 struct device *device_find_child_by_name(struct device *parent, 4118 const char *name) 4119 { 4120 struct klist_iter i; 4121 struct device *child; 4122 4123 if (!parent) 4124 return NULL; 4125 4126 klist_iter_init(&parent->p->klist_children, &i); 4127 while ((child = next_device(&i))) 4128 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4129 break; 4130 klist_iter_exit(&i); 4131 return child; 4132 } 4133 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4134 4135 static int match_any(struct device *dev, void *unused) 4136 { 4137 return 1; 4138 } 4139 4140 /** 4141 * device_find_any_child - device iterator for locating a child device, if any. 4142 * @parent: parent struct device 4143 * 4144 * This is similar to the device_find_child() function above, but it 4145 * returns a reference to a child device, if any. 4146 * 4147 * NOTE: you will need to drop the reference with put_device() after use. 4148 */ 4149 struct device *device_find_any_child(struct device *parent) 4150 { 4151 return device_find_child(parent, NULL, match_any); 4152 } 4153 EXPORT_SYMBOL_GPL(device_find_any_child); 4154 4155 int __init devices_init(void) 4156 { 4157 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4158 if (!devices_kset) 4159 return -ENOMEM; 4160 dev_kobj = kobject_create_and_add("dev", NULL); 4161 if (!dev_kobj) 4162 goto dev_kobj_err; 4163 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4164 if (!sysfs_dev_block_kobj) 4165 goto block_kobj_err; 4166 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4167 if (!sysfs_dev_char_kobj) 4168 goto char_kobj_err; 4169 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4170 if (!device_link_wq) 4171 goto wq_err; 4172 4173 return 0; 4174 4175 wq_err: 4176 kobject_put(sysfs_dev_char_kobj); 4177 char_kobj_err: 4178 kobject_put(sysfs_dev_block_kobj); 4179 block_kobj_err: 4180 kobject_put(dev_kobj); 4181 dev_kobj_err: 4182 kset_unregister(devices_kset); 4183 return -ENOMEM; 4184 } 4185 4186 static int device_check_offline(struct device *dev, void *not_used) 4187 { 4188 int ret; 4189 4190 ret = device_for_each_child(dev, NULL, device_check_offline); 4191 if (ret) 4192 return ret; 4193 4194 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4195 } 4196 4197 /** 4198 * device_offline - Prepare the device for hot-removal. 4199 * @dev: Device to be put offline. 4200 * 4201 * Execute the device bus type's .offline() callback, if present, to prepare 4202 * the device for a subsequent hot-removal. If that succeeds, the device must 4203 * not be used until either it is removed or its bus type's .online() callback 4204 * is executed. 4205 * 4206 * Call under device_hotplug_lock. 4207 */ 4208 int device_offline(struct device *dev) 4209 { 4210 int ret; 4211 4212 if (dev->offline_disabled) 4213 return -EPERM; 4214 4215 ret = device_for_each_child(dev, NULL, device_check_offline); 4216 if (ret) 4217 return ret; 4218 4219 device_lock(dev); 4220 if (device_supports_offline(dev)) { 4221 if (dev->offline) { 4222 ret = 1; 4223 } else { 4224 ret = dev->bus->offline(dev); 4225 if (!ret) { 4226 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4227 dev->offline = true; 4228 } 4229 } 4230 } 4231 device_unlock(dev); 4232 4233 return ret; 4234 } 4235 4236 /** 4237 * device_online - Put the device back online after successful device_offline(). 4238 * @dev: Device to be put back online. 4239 * 4240 * If device_offline() has been successfully executed for @dev, but the device 4241 * has not been removed subsequently, execute its bus type's .online() callback 4242 * to indicate that the device can be used again. 4243 * 4244 * Call under device_hotplug_lock. 4245 */ 4246 int device_online(struct device *dev) 4247 { 4248 int ret = 0; 4249 4250 device_lock(dev); 4251 if (device_supports_offline(dev)) { 4252 if (dev->offline) { 4253 ret = dev->bus->online(dev); 4254 if (!ret) { 4255 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4256 dev->offline = false; 4257 } 4258 } else { 4259 ret = 1; 4260 } 4261 } 4262 device_unlock(dev); 4263 4264 return ret; 4265 } 4266 4267 struct root_device { 4268 struct device dev; 4269 struct module *owner; 4270 }; 4271 4272 static inline struct root_device *to_root_device(struct device *d) 4273 { 4274 return container_of(d, struct root_device, dev); 4275 } 4276 4277 static void root_device_release(struct device *dev) 4278 { 4279 kfree(to_root_device(dev)); 4280 } 4281 4282 /** 4283 * __root_device_register - allocate and register a root device 4284 * @name: root device name 4285 * @owner: owner module of the root device, usually THIS_MODULE 4286 * 4287 * This function allocates a root device and registers it 4288 * using device_register(). In order to free the returned 4289 * device, use root_device_unregister(). 4290 * 4291 * Root devices are dummy devices which allow other devices 4292 * to be grouped under /sys/devices. Use this function to 4293 * allocate a root device and then use it as the parent of 4294 * any device which should appear under /sys/devices/{name} 4295 * 4296 * The /sys/devices/{name} directory will also contain a 4297 * 'module' symlink which points to the @owner directory 4298 * in sysfs. 4299 * 4300 * Returns &struct device pointer on success, or ERR_PTR() on error. 4301 * 4302 * Note: You probably want to use root_device_register(). 4303 */ 4304 struct device *__root_device_register(const char *name, struct module *owner) 4305 { 4306 struct root_device *root; 4307 int err = -ENOMEM; 4308 4309 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4310 if (!root) 4311 return ERR_PTR(err); 4312 4313 err = dev_set_name(&root->dev, "%s", name); 4314 if (err) { 4315 kfree(root); 4316 return ERR_PTR(err); 4317 } 4318 4319 root->dev.release = root_device_release; 4320 4321 err = device_register(&root->dev); 4322 if (err) { 4323 put_device(&root->dev); 4324 return ERR_PTR(err); 4325 } 4326 4327 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4328 if (owner) { 4329 struct module_kobject *mk = &owner->mkobj; 4330 4331 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4332 if (err) { 4333 device_unregister(&root->dev); 4334 return ERR_PTR(err); 4335 } 4336 root->owner = owner; 4337 } 4338 #endif 4339 4340 return &root->dev; 4341 } 4342 EXPORT_SYMBOL_GPL(__root_device_register); 4343 4344 /** 4345 * root_device_unregister - unregister and free a root device 4346 * @dev: device going away 4347 * 4348 * This function unregisters and cleans up a device that was created by 4349 * root_device_register(). 4350 */ 4351 void root_device_unregister(struct device *dev) 4352 { 4353 struct root_device *root = to_root_device(dev); 4354 4355 if (root->owner) 4356 sysfs_remove_link(&root->dev.kobj, "module"); 4357 4358 device_unregister(dev); 4359 } 4360 EXPORT_SYMBOL_GPL(root_device_unregister); 4361 4362 4363 static void device_create_release(struct device *dev) 4364 { 4365 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4366 kfree(dev); 4367 } 4368 4369 static __printf(6, 0) struct device * 4370 device_create_groups_vargs(const struct class *class, struct device *parent, 4371 dev_t devt, void *drvdata, 4372 const struct attribute_group **groups, 4373 const char *fmt, va_list args) 4374 { 4375 struct device *dev = NULL; 4376 int retval = -ENODEV; 4377 4378 if (IS_ERR_OR_NULL(class)) 4379 goto error; 4380 4381 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4382 if (!dev) { 4383 retval = -ENOMEM; 4384 goto error; 4385 } 4386 4387 device_initialize(dev); 4388 dev->devt = devt; 4389 dev->class = class; 4390 dev->parent = parent; 4391 dev->groups = groups; 4392 dev->release = device_create_release; 4393 dev_set_drvdata(dev, drvdata); 4394 4395 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4396 if (retval) 4397 goto error; 4398 4399 retval = device_add(dev); 4400 if (retval) 4401 goto error; 4402 4403 return dev; 4404 4405 error: 4406 put_device(dev); 4407 return ERR_PTR(retval); 4408 } 4409 4410 /** 4411 * device_create - creates a device and registers it with sysfs 4412 * @class: pointer to the struct class that this device should be registered to 4413 * @parent: pointer to the parent struct device of this new device, if any 4414 * @devt: the dev_t for the char device to be added 4415 * @drvdata: the data to be added to the device for callbacks 4416 * @fmt: string for the device's name 4417 * 4418 * This function can be used by char device classes. A struct device 4419 * will be created in sysfs, registered to the specified class. 4420 * 4421 * A "dev" file will be created, showing the dev_t for the device, if 4422 * the dev_t is not 0,0. 4423 * If a pointer to a parent struct device is passed in, the newly created 4424 * struct device will be a child of that device in sysfs. 4425 * The pointer to the struct device will be returned from the call. 4426 * Any further sysfs files that might be required can be created using this 4427 * pointer. 4428 * 4429 * Returns &struct device pointer on success, or ERR_PTR() on error. 4430 */ 4431 struct device *device_create(const struct class *class, struct device *parent, 4432 dev_t devt, void *drvdata, const char *fmt, ...) 4433 { 4434 va_list vargs; 4435 struct device *dev; 4436 4437 va_start(vargs, fmt); 4438 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4439 fmt, vargs); 4440 va_end(vargs); 4441 return dev; 4442 } 4443 EXPORT_SYMBOL_GPL(device_create); 4444 4445 /** 4446 * device_create_with_groups - creates a device and registers it with sysfs 4447 * @class: pointer to the struct class that this device should be registered to 4448 * @parent: pointer to the parent struct device of this new device, if any 4449 * @devt: the dev_t for the char device to be added 4450 * @drvdata: the data to be added to the device for callbacks 4451 * @groups: NULL-terminated list of attribute groups to be created 4452 * @fmt: string for the device's name 4453 * 4454 * This function can be used by char device classes. A struct device 4455 * will be created in sysfs, registered to the specified class. 4456 * Additional attributes specified in the groups parameter will also 4457 * be created automatically. 4458 * 4459 * A "dev" file will be created, showing the dev_t for the device, if 4460 * the dev_t is not 0,0. 4461 * If a pointer to a parent struct device is passed in, the newly created 4462 * struct device will be a child of that device in sysfs. 4463 * The pointer to the struct device will be returned from the call. 4464 * Any further sysfs files that might be required can be created using this 4465 * pointer. 4466 * 4467 * Returns &struct device pointer on success, or ERR_PTR() on error. 4468 */ 4469 struct device *device_create_with_groups(const struct class *class, 4470 struct device *parent, dev_t devt, 4471 void *drvdata, 4472 const struct attribute_group **groups, 4473 const char *fmt, ...) 4474 { 4475 va_list vargs; 4476 struct device *dev; 4477 4478 va_start(vargs, fmt); 4479 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4480 fmt, vargs); 4481 va_end(vargs); 4482 return dev; 4483 } 4484 EXPORT_SYMBOL_GPL(device_create_with_groups); 4485 4486 /** 4487 * device_destroy - removes a device that was created with device_create() 4488 * @class: pointer to the struct class that this device was registered with 4489 * @devt: the dev_t of the device that was previously registered 4490 * 4491 * This call unregisters and cleans up a device that was created with a 4492 * call to device_create(). 4493 */ 4494 void device_destroy(const struct class *class, dev_t devt) 4495 { 4496 struct device *dev; 4497 4498 dev = class_find_device_by_devt(class, devt); 4499 if (dev) { 4500 put_device(dev); 4501 device_unregister(dev); 4502 } 4503 } 4504 EXPORT_SYMBOL_GPL(device_destroy); 4505 4506 /** 4507 * device_rename - renames a device 4508 * @dev: the pointer to the struct device to be renamed 4509 * @new_name: the new name of the device 4510 * 4511 * It is the responsibility of the caller to provide mutual 4512 * exclusion between two different calls of device_rename 4513 * on the same device to ensure that new_name is valid and 4514 * won't conflict with other devices. 4515 * 4516 * Note: given that some subsystems (networking and infiniband) use this 4517 * function, with no immediate plans for this to change, we cannot assume or 4518 * require that this function not be called at all. 4519 * 4520 * However, if you're writing new code, do not call this function. The following 4521 * text from Kay Sievers offers some insight: 4522 * 4523 * Renaming devices is racy at many levels, symlinks and other stuff are not 4524 * replaced atomically, and you get a "move" uevent, but it's not easy to 4525 * connect the event to the old and new device. Device nodes are not renamed at 4526 * all, there isn't even support for that in the kernel now. 4527 * 4528 * In the meantime, during renaming, your target name might be taken by another 4529 * driver, creating conflicts. Or the old name is taken directly after you 4530 * renamed it -- then you get events for the same DEVPATH, before you even see 4531 * the "move" event. It's just a mess, and nothing new should ever rely on 4532 * kernel device renaming. Besides that, it's not even implemented now for 4533 * other things than (driver-core wise very simple) network devices. 4534 * 4535 * Make up a "real" name in the driver before you register anything, or add 4536 * some other attributes for userspace to find the device, or use udev to add 4537 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4538 * don't even want to get into that and try to implement the missing pieces in 4539 * the core. We really have other pieces to fix in the driver core mess. :) 4540 */ 4541 int device_rename(struct device *dev, const char *new_name) 4542 { 4543 struct subsys_private *sp = NULL; 4544 struct kobject *kobj = &dev->kobj; 4545 char *old_device_name = NULL; 4546 int error; 4547 bool is_link_renamed = false; 4548 4549 dev = get_device(dev); 4550 if (!dev) 4551 return -EINVAL; 4552 4553 dev_dbg(dev, "renaming to %s\n", new_name); 4554 4555 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4556 if (!old_device_name) { 4557 error = -ENOMEM; 4558 goto out; 4559 } 4560 4561 if (dev->class) { 4562 sp = class_to_subsys(dev->class); 4563 4564 if (!sp) { 4565 error = -EINVAL; 4566 goto out; 4567 } 4568 4569 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4570 new_name, kobject_namespace(kobj)); 4571 if (error) 4572 goto out; 4573 4574 is_link_renamed = true; 4575 } 4576 4577 error = kobject_rename(kobj, new_name); 4578 out: 4579 if (error && is_link_renamed) 4580 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4581 old_device_name, kobject_namespace(kobj)); 4582 subsys_put(sp); 4583 4584 put_device(dev); 4585 4586 kfree(old_device_name); 4587 4588 return error; 4589 } 4590 EXPORT_SYMBOL_GPL(device_rename); 4591 4592 static int device_move_class_links(struct device *dev, 4593 struct device *old_parent, 4594 struct device *new_parent) 4595 { 4596 int error = 0; 4597 4598 if (old_parent) 4599 sysfs_remove_link(&dev->kobj, "device"); 4600 if (new_parent) 4601 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4602 "device"); 4603 return error; 4604 } 4605 4606 /** 4607 * device_move - moves a device to a new parent 4608 * @dev: the pointer to the struct device to be moved 4609 * @new_parent: the new parent of the device (can be NULL) 4610 * @dpm_order: how to reorder the dpm_list 4611 */ 4612 int device_move(struct device *dev, struct device *new_parent, 4613 enum dpm_order dpm_order) 4614 { 4615 int error; 4616 struct device *old_parent; 4617 struct kobject *new_parent_kobj; 4618 4619 dev = get_device(dev); 4620 if (!dev) 4621 return -EINVAL; 4622 4623 device_pm_lock(); 4624 new_parent = get_device(new_parent); 4625 new_parent_kobj = get_device_parent(dev, new_parent); 4626 if (IS_ERR(new_parent_kobj)) { 4627 error = PTR_ERR(new_parent_kobj); 4628 put_device(new_parent); 4629 goto out; 4630 } 4631 4632 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4633 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4634 error = kobject_move(&dev->kobj, new_parent_kobj); 4635 if (error) { 4636 cleanup_glue_dir(dev, new_parent_kobj); 4637 put_device(new_parent); 4638 goto out; 4639 } 4640 old_parent = dev->parent; 4641 dev->parent = new_parent; 4642 if (old_parent) 4643 klist_remove(&dev->p->knode_parent); 4644 if (new_parent) { 4645 klist_add_tail(&dev->p->knode_parent, 4646 &new_parent->p->klist_children); 4647 set_dev_node(dev, dev_to_node(new_parent)); 4648 } 4649 4650 if (dev->class) { 4651 error = device_move_class_links(dev, old_parent, new_parent); 4652 if (error) { 4653 /* We ignore errors on cleanup since we're hosed anyway... */ 4654 device_move_class_links(dev, new_parent, old_parent); 4655 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4656 if (new_parent) 4657 klist_remove(&dev->p->knode_parent); 4658 dev->parent = old_parent; 4659 if (old_parent) { 4660 klist_add_tail(&dev->p->knode_parent, 4661 &old_parent->p->klist_children); 4662 set_dev_node(dev, dev_to_node(old_parent)); 4663 } 4664 } 4665 cleanup_glue_dir(dev, new_parent_kobj); 4666 put_device(new_parent); 4667 goto out; 4668 } 4669 } 4670 switch (dpm_order) { 4671 case DPM_ORDER_NONE: 4672 break; 4673 case DPM_ORDER_DEV_AFTER_PARENT: 4674 device_pm_move_after(dev, new_parent); 4675 devices_kset_move_after(dev, new_parent); 4676 break; 4677 case DPM_ORDER_PARENT_BEFORE_DEV: 4678 device_pm_move_before(new_parent, dev); 4679 devices_kset_move_before(new_parent, dev); 4680 break; 4681 case DPM_ORDER_DEV_LAST: 4682 device_pm_move_last(dev); 4683 devices_kset_move_last(dev); 4684 break; 4685 } 4686 4687 put_device(old_parent); 4688 out: 4689 device_pm_unlock(); 4690 put_device(dev); 4691 return error; 4692 } 4693 EXPORT_SYMBOL_GPL(device_move); 4694 4695 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4696 kgid_t kgid) 4697 { 4698 struct kobject *kobj = &dev->kobj; 4699 const struct class *class = dev->class; 4700 const struct device_type *type = dev->type; 4701 int error; 4702 4703 if (class) { 4704 /* 4705 * Change the device groups of the device class for @dev to 4706 * @kuid/@kgid. 4707 */ 4708 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4709 kgid); 4710 if (error) 4711 return error; 4712 } 4713 4714 if (type) { 4715 /* 4716 * Change the device groups of the device type for @dev to 4717 * @kuid/@kgid. 4718 */ 4719 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4720 kgid); 4721 if (error) 4722 return error; 4723 } 4724 4725 /* Change the device groups of @dev to @kuid/@kgid. */ 4726 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4727 if (error) 4728 return error; 4729 4730 if (device_supports_offline(dev) && !dev->offline_disabled) { 4731 /* Change online device attributes of @dev to @kuid/@kgid. */ 4732 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4733 kuid, kgid); 4734 if (error) 4735 return error; 4736 } 4737 4738 return 0; 4739 } 4740 4741 /** 4742 * device_change_owner - change the owner of an existing device. 4743 * @dev: device. 4744 * @kuid: new owner's kuid 4745 * @kgid: new owner's kgid 4746 * 4747 * This changes the owner of @dev and its corresponding sysfs entries to 4748 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4749 * core. 4750 * 4751 * Returns 0 on success or error code on failure. 4752 */ 4753 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4754 { 4755 int error; 4756 struct kobject *kobj = &dev->kobj; 4757 struct subsys_private *sp; 4758 4759 dev = get_device(dev); 4760 if (!dev) 4761 return -EINVAL; 4762 4763 /* 4764 * Change the kobject and the default attributes and groups of the 4765 * ktype associated with it to @kuid/@kgid. 4766 */ 4767 error = sysfs_change_owner(kobj, kuid, kgid); 4768 if (error) 4769 goto out; 4770 4771 /* 4772 * Change the uevent file for @dev to the new owner. The uevent file 4773 * was created in a separate step when @dev got added and we mirror 4774 * that step here. 4775 */ 4776 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4777 kgid); 4778 if (error) 4779 goto out; 4780 4781 /* 4782 * Change the device groups, the device groups associated with the 4783 * device class, and the groups associated with the device type of @dev 4784 * to @kuid/@kgid. 4785 */ 4786 error = device_attrs_change_owner(dev, kuid, kgid); 4787 if (error) 4788 goto out; 4789 4790 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4791 if (error) 4792 goto out; 4793 4794 /* 4795 * Change the owner of the symlink located in the class directory of 4796 * the device class associated with @dev which points to the actual 4797 * directory entry for @dev to @kuid/@kgid. This ensures that the 4798 * symlink shows the same permissions as its target. 4799 */ 4800 sp = class_to_subsys(dev->class); 4801 if (!sp) { 4802 error = -EINVAL; 4803 goto out; 4804 } 4805 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4806 subsys_put(sp); 4807 4808 out: 4809 put_device(dev); 4810 return error; 4811 } 4812 EXPORT_SYMBOL_GPL(device_change_owner); 4813 4814 /** 4815 * device_shutdown - call ->shutdown() on each device to shutdown. 4816 */ 4817 void device_shutdown(void) 4818 { 4819 struct device *dev, *parent; 4820 4821 wait_for_device_probe(); 4822 device_block_probing(); 4823 4824 cpufreq_suspend(); 4825 4826 spin_lock(&devices_kset->list_lock); 4827 /* 4828 * Walk the devices list backward, shutting down each in turn. 4829 * Beware that device unplug events may also start pulling 4830 * devices offline, even as the system is shutting down. 4831 */ 4832 while (!list_empty(&devices_kset->list)) { 4833 dev = list_entry(devices_kset->list.prev, struct device, 4834 kobj.entry); 4835 4836 /* 4837 * hold reference count of device's parent to 4838 * prevent it from being freed because parent's 4839 * lock is to be held 4840 */ 4841 parent = get_device(dev->parent); 4842 get_device(dev); 4843 /* 4844 * Make sure the device is off the kset list, in the 4845 * event that dev->*->shutdown() doesn't remove it. 4846 */ 4847 list_del_init(&dev->kobj.entry); 4848 spin_unlock(&devices_kset->list_lock); 4849 4850 /* hold lock to avoid race with probe/release */ 4851 if (parent) 4852 device_lock(parent); 4853 device_lock(dev); 4854 4855 /* Don't allow any more runtime suspends */ 4856 pm_runtime_get_noresume(dev); 4857 pm_runtime_barrier(dev); 4858 4859 if (dev->class && dev->class->shutdown_pre) { 4860 if (initcall_debug) 4861 dev_info(dev, "shutdown_pre\n"); 4862 dev->class->shutdown_pre(dev); 4863 } 4864 if (dev->bus && dev->bus->shutdown) { 4865 if (initcall_debug) 4866 dev_info(dev, "shutdown\n"); 4867 dev->bus->shutdown(dev); 4868 } else if (dev->driver && dev->driver->shutdown) { 4869 if (initcall_debug) 4870 dev_info(dev, "shutdown\n"); 4871 dev->driver->shutdown(dev); 4872 } 4873 4874 device_unlock(dev); 4875 if (parent) 4876 device_unlock(parent); 4877 4878 put_device(dev); 4879 put_device(parent); 4880 4881 spin_lock(&devices_kset->list_lock); 4882 } 4883 spin_unlock(&devices_kset->list_lock); 4884 } 4885 4886 /* 4887 * Device logging functions 4888 */ 4889 4890 #ifdef CONFIG_PRINTK 4891 static void 4892 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4893 { 4894 const char *subsys; 4895 4896 memset(dev_info, 0, sizeof(*dev_info)); 4897 4898 if (dev->class) 4899 subsys = dev->class->name; 4900 else if (dev->bus) 4901 subsys = dev->bus->name; 4902 else 4903 return; 4904 4905 strscpy(dev_info->subsystem, subsys); 4906 4907 /* 4908 * Add device identifier DEVICE=: 4909 * b12:8 block dev_t 4910 * c127:3 char dev_t 4911 * n8 netdev ifindex 4912 * +sound:card0 subsystem:devname 4913 */ 4914 if (MAJOR(dev->devt)) { 4915 char c; 4916 4917 if (strcmp(subsys, "block") == 0) 4918 c = 'b'; 4919 else 4920 c = 'c'; 4921 4922 snprintf(dev_info->device, sizeof(dev_info->device), 4923 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4924 } else if (strcmp(subsys, "net") == 0) { 4925 struct net_device *net = to_net_dev(dev); 4926 4927 snprintf(dev_info->device, sizeof(dev_info->device), 4928 "n%u", net->ifindex); 4929 } else { 4930 snprintf(dev_info->device, sizeof(dev_info->device), 4931 "+%s:%s", subsys, dev_name(dev)); 4932 } 4933 } 4934 4935 int dev_vprintk_emit(int level, const struct device *dev, 4936 const char *fmt, va_list args) 4937 { 4938 struct dev_printk_info dev_info; 4939 4940 set_dev_info(dev, &dev_info); 4941 4942 return vprintk_emit(0, level, &dev_info, fmt, args); 4943 } 4944 EXPORT_SYMBOL(dev_vprintk_emit); 4945 4946 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4947 { 4948 va_list args; 4949 int r; 4950 4951 va_start(args, fmt); 4952 4953 r = dev_vprintk_emit(level, dev, fmt, args); 4954 4955 va_end(args); 4956 4957 return r; 4958 } 4959 EXPORT_SYMBOL(dev_printk_emit); 4960 4961 static void __dev_printk(const char *level, const struct device *dev, 4962 struct va_format *vaf) 4963 { 4964 if (dev) 4965 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4966 dev_driver_string(dev), dev_name(dev), vaf); 4967 else 4968 printk("%s(NULL device *): %pV", level, vaf); 4969 } 4970 4971 void _dev_printk(const char *level, const struct device *dev, 4972 const char *fmt, ...) 4973 { 4974 struct va_format vaf; 4975 va_list args; 4976 4977 va_start(args, fmt); 4978 4979 vaf.fmt = fmt; 4980 vaf.va = &args; 4981 4982 __dev_printk(level, dev, &vaf); 4983 4984 va_end(args); 4985 } 4986 EXPORT_SYMBOL(_dev_printk); 4987 4988 #define define_dev_printk_level(func, kern_level) \ 4989 void func(const struct device *dev, const char *fmt, ...) \ 4990 { \ 4991 struct va_format vaf; \ 4992 va_list args; \ 4993 \ 4994 va_start(args, fmt); \ 4995 \ 4996 vaf.fmt = fmt; \ 4997 vaf.va = &args; \ 4998 \ 4999 __dev_printk(kern_level, dev, &vaf); \ 5000 \ 5001 va_end(args); \ 5002 } \ 5003 EXPORT_SYMBOL(func); 5004 5005 define_dev_printk_level(_dev_emerg, KERN_EMERG); 5006 define_dev_printk_level(_dev_alert, KERN_ALERT); 5007 define_dev_printk_level(_dev_crit, KERN_CRIT); 5008 define_dev_printk_level(_dev_err, KERN_ERR); 5009 define_dev_printk_level(_dev_warn, KERN_WARNING); 5010 define_dev_printk_level(_dev_notice, KERN_NOTICE); 5011 define_dev_printk_level(_dev_info, KERN_INFO); 5012 5013 #endif 5014 5015 /** 5016 * dev_err_probe - probe error check and log helper 5017 * @dev: the pointer to the struct device 5018 * @err: error value to test 5019 * @fmt: printf-style format string 5020 * @...: arguments as specified in the format string 5021 * 5022 * This helper implements common pattern present in probe functions for error 5023 * checking: print debug or error message depending if the error value is 5024 * -EPROBE_DEFER and propagate error upwards. 5025 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5026 * checked later by reading devices_deferred debugfs attribute. 5027 * It replaces code sequence:: 5028 * 5029 * if (err != -EPROBE_DEFER) 5030 * dev_err(dev, ...); 5031 * else 5032 * dev_dbg(dev, ...); 5033 * return err; 5034 * 5035 * with:: 5036 * 5037 * return dev_err_probe(dev, err, ...); 5038 * 5039 * Using this helper in your probe function is totally fine even if @err is 5040 * known to never be -EPROBE_DEFER. 5041 * The benefit compared to a normal dev_err() is the standardized format 5042 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN" 5043 * instead of "-35") and the fact that the error code is returned which allows 5044 * more compact error paths. 5045 * 5046 * Returns @err. 5047 */ 5048 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5049 { 5050 struct va_format vaf; 5051 va_list args; 5052 5053 va_start(args, fmt); 5054 vaf.fmt = fmt; 5055 vaf.va = &args; 5056 5057 switch (err) { 5058 case -EPROBE_DEFER: 5059 device_set_deferred_probe_reason(dev, &vaf); 5060 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5061 break; 5062 5063 case -ENOMEM: 5064 /* 5065 * We don't print anything on -ENOMEM, there is already enough 5066 * output. 5067 */ 5068 break; 5069 5070 default: 5071 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5072 break; 5073 } 5074 5075 va_end(args); 5076 5077 return err; 5078 } 5079 EXPORT_SYMBOL_GPL(dev_err_probe); 5080 5081 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5082 { 5083 return fwnode && !IS_ERR(fwnode->secondary); 5084 } 5085 5086 /** 5087 * set_primary_fwnode - Change the primary firmware node of a given device. 5088 * @dev: Device to handle. 5089 * @fwnode: New primary firmware node of the device. 5090 * 5091 * Set the device's firmware node pointer to @fwnode, but if a secondary 5092 * firmware node of the device is present, preserve it. 5093 * 5094 * Valid fwnode cases are: 5095 * - primary --> secondary --> -ENODEV 5096 * - primary --> NULL 5097 * - secondary --> -ENODEV 5098 * - NULL 5099 */ 5100 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5101 { 5102 struct device *parent = dev->parent; 5103 struct fwnode_handle *fn = dev->fwnode; 5104 5105 if (fwnode) { 5106 if (fwnode_is_primary(fn)) 5107 fn = fn->secondary; 5108 5109 if (fn) { 5110 WARN_ON(fwnode->secondary); 5111 fwnode->secondary = fn; 5112 } 5113 dev->fwnode = fwnode; 5114 } else { 5115 if (fwnode_is_primary(fn)) { 5116 dev->fwnode = fn->secondary; 5117 5118 /* Skip nullifying fn->secondary if the primary is shared */ 5119 if (parent && fn == parent->fwnode) 5120 return; 5121 5122 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5123 fn->secondary = NULL; 5124 } else { 5125 dev->fwnode = NULL; 5126 } 5127 } 5128 } 5129 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5130 5131 /** 5132 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5133 * @dev: Device to handle. 5134 * @fwnode: New secondary firmware node of the device. 5135 * 5136 * If a primary firmware node of the device is present, set its secondary 5137 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5138 * @fwnode. 5139 */ 5140 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5141 { 5142 if (fwnode) 5143 fwnode->secondary = ERR_PTR(-ENODEV); 5144 5145 if (fwnode_is_primary(dev->fwnode)) 5146 dev->fwnode->secondary = fwnode; 5147 else 5148 dev->fwnode = fwnode; 5149 } 5150 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5151 5152 /** 5153 * device_set_of_node_from_dev - reuse device-tree node of another device 5154 * @dev: device whose device-tree node is being set 5155 * @dev2: device whose device-tree node is being reused 5156 * 5157 * Takes another reference to the new device-tree node after first dropping 5158 * any reference held to the old node. 5159 */ 5160 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5161 { 5162 of_node_put(dev->of_node); 5163 dev->of_node = of_node_get(dev2->of_node); 5164 dev->of_node_reused = true; 5165 } 5166 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5167 5168 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5169 { 5170 dev->fwnode = fwnode; 5171 dev->of_node = to_of_node(fwnode); 5172 } 5173 EXPORT_SYMBOL_GPL(device_set_node); 5174 5175 int device_match_name(struct device *dev, const void *name) 5176 { 5177 return sysfs_streq(dev_name(dev), name); 5178 } 5179 EXPORT_SYMBOL_GPL(device_match_name); 5180 5181 int device_match_of_node(struct device *dev, const void *np) 5182 { 5183 return dev->of_node == np; 5184 } 5185 EXPORT_SYMBOL_GPL(device_match_of_node); 5186 5187 int device_match_fwnode(struct device *dev, const void *fwnode) 5188 { 5189 return dev_fwnode(dev) == fwnode; 5190 } 5191 EXPORT_SYMBOL_GPL(device_match_fwnode); 5192 5193 int device_match_devt(struct device *dev, const void *pdevt) 5194 { 5195 return dev->devt == *(dev_t *)pdevt; 5196 } 5197 EXPORT_SYMBOL_GPL(device_match_devt); 5198 5199 int device_match_acpi_dev(struct device *dev, const void *adev) 5200 { 5201 return ACPI_COMPANION(dev) == adev; 5202 } 5203 EXPORT_SYMBOL(device_match_acpi_dev); 5204 5205 int device_match_acpi_handle(struct device *dev, const void *handle) 5206 { 5207 return ACPI_HANDLE(dev) == handle; 5208 } 5209 EXPORT_SYMBOL(device_match_acpi_handle); 5210 5211 int device_match_any(struct device *dev, const void *unused) 5212 { 5213 return 1; 5214 } 5215 EXPORT_SYMBOL_GPL(device_match_any); 5216