1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/string.h> 21 #include <linux/kdev_t.h> 22 #include <linux/notifier.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/blkdev.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 #ifdef CONFIG_SYSFS_DEPRECATED 40 #ifdef CONFIG_SYSFS_DEPRECATED_V2 41 long sysfs_deprecated = 1; 42 #else 43 long sysfs_deprecated = 0; 44 #endif 45 static int __init sysfs_deprecated_setup(char *arg) 46 { 47 return kstrtol(arg, 10, &sysfs_deprecated); 48 } 49 early_param("sysfs.deprecated", sysfs_deprecated_setup); 50 #endif 51 52 /* Device links support. */ 53 static LIST_HEAD(deferred_sync); 54 static unsigned int defer_sync_state_count = 1; 55 static DEFINE_MUTEX(fwnode_link_lock); 56 static bool fw_devlink_is_permissive(void); 57 static void __fw_devlink_link_to_consumers(struct device *dev); 58 static bool fw_devlink_drv_reg_done; 59 static bool fw_devlink_best_effort; 60 61 /** 62 * __fwnode_link_add - Create a link between two fwnode_handles. 63 * @con: Consumer end of the link. 64 * @sup: Supplier end of the link. 65 * 66 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 67 * represents the detail that the firmware lists @sup fwnode as supplying a 68 * resource to @con. 69 * 70 * The driver core will use the fwnode link to create a device link between the 71 * two device objects corresponding to @con and @sup when they are created. The 72 * driver core will automatically delete the fwnode link between @con and @sup 73 * after doing that. 74 * 75 * Attempts to create duplicate links between the same pair of fwnode handles 76 * are ignored and there is no reference counting. 77 */ 78 static int __fwnode_link_add(struct fwnode_handle *con, 79 struct fwnode_handle *sup, u8 flags) 80 { 81 struct fwnode_link *link; 82 83 list_for_each_entry(link, &sup->consumers, s_hook) 84 if (link->consumer == con) { 85 link->flags |= flags; 86 return 0; 87 } 88 89 link = kzalloc(sizeof(*link), GFP_KERNEL); 90 if (!link) 91 return -ENOMEM; 92 93 link->supplier = sup; 94 INIT_LIST_HEAD(&link->s_hook); 95 link->consumer = con; 96 INIT_LIST_HEAD(&link->c_hook); 97 link->flags = flags; 98 99 list_add(&link->s_hook, &sup->consumers); 100 list_add(&link->c_hook, &con->suppliers); 101 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 102 con, sup); 103 104 return 0; 105 } 106 107 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 108 { 109 int ret; 110 111 mutex_lock(&fwnode_link_lock); 112 ret = __fwnode_link_add(con, sup, 0); 113 mutex_unlock(&fwnode_link_lock); 114 return ret; 115 } 116 117 /** 118 * __fwnode_link_del - Delete a link between two fwnode_handles. 119 * @link: the fwnode_link to be deleted 120 * 121 * The fwnode_link_lock needs to be held when this function is called. 122 */ 123 static void __fwnode_link_del(struct fwnode_link *link) 124 { 125 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 126 link->consumer, link->supplier); 127 list_del(&link->s_hook); 128 list_del(&link->c_hook); 129 kfree(link); 130 } 131 132 /** 133 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 134 * @link: the fwnode_link to be marked 135 * 136 * The fwnode_link_lock needs to be held when this function is called. 137 */ 138 static void __fwnode_link_cycle(struct fwnode_link *link) 139 { 140 pr_debug("%pfwf: Relaxing link with %pfwf\n", 141 link->consumer, link->supplier); 142 link->flags |= FWLINK_FLAG_CYCLE; 143 } 144 145 /** 146 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 147 * @fwnode: fwnode whose supplier links need to be deleted 148 * 149 * Deletes all supplier links connecting directly to @fwnode. 150 */ 151 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 152 { 153 struct fwnode_link *link, *tmp; 154 155 mutex_lock(&fwnode_link_lock); 156 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 157 __fwnode_link_del(link); 158 mutex_unlock(&fwnode_link_lock); 159 } 160 161 /** 162 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 163 * @fwnode: fwnode whose consumer links need to be deleted 164 * 165 * Deletes all consumer links connecting directly to @fwnode. 166 */ 167 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 168 { 169 struct fwnode_link *link, *tmp; 170 171 mutex_lock(&fwnode_link_lock); 172 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 173 __fwnode_link_del(link); 174 mutex_unlock(&fwnode_link_lock); 175 } 176 177 /** 178 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 179 * @fwnode: fwnode whose links needs to be deleted 180 * 181 * Deletes all links connecting directly to a fwnode. 182 */ 183 void fwnode_links_purge(struct fwnode_handle *fwnode) 184 { 185 fwnode_links_purge_suppliers(fwnode); 186 fwnode_links_purge_consumers(fwnode); 187 } 188 189 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 190 { 191 struct fwnode_handle *child; 192 193 /* Don't purge consumer links of an added child */ 194 if (fwnode->dev) 195 return; 196 197 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 198 fwnode_links_purge_consumers(fwnode); 199 200 fwnode_for_each_available_child_node(fwnode, child) 201 fw_devlink_purge_absent_suppliers(child); 202 } 203 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 204 205 /** 206 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 207 * @from: move consumers away from this fwnode 208 * @to: move consumers to this fwnode 209 * 210 * Move all consumer links from @from fwnode to @to fwnode. 211 */ 212 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 213 struct fwnode_handle *to) 214 { 215 struct fwnode_link *link, *tmp; 216 217 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 218 __fwnode_link_add(link->consumer, to, link->flags); 219 __fwnode_link_del(link); 220 } 221 } 222 223 /** 224 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 225 * @fwnode: fwnode from which to pick up dangling consumers 226 * @new_sup: fwnode of new supplier 227 * 228 * If the @fwnode has a corresponding struct device and the device supports 229 * probing (that is, added to a bus), then we want to let fw_devlink create 230 * MANAGED device links to this device, so leave @fwnode and its descendant's 231 * fwnode links alone. 232 * 233 * Otherwise, move its consumers to the new supplier @new_sup. 234 */ 235 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 236 struct fwnode_handle *new_sup) 237 { 238 struct fwnode_handle *child; 239 240 if (fwnode->dev && fwnode->dev->bus) 241 return; 242 243 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 244 __fwnode_links_move_consumers(fwnode, new_sup); 245 246 fwnode_for_each_available_child_node(fwnode, child) 247 __fw_devlink_pickup_dangling_consumers(child, new_sup); 248 } 249 250 static DEFINE_MUTEX(device_links_lock); 251 DEFINE_STATIC_SRCU(device_links_srcu); 252 253 static inline void device_links_write_lock(void) 254 { 255 mutex_lock(&device_links_lock); 256 } 257 258 static inline void device_links_write_unlock(void) 259 { 260 mutex_unlock(&device_links_lock); 261 } 262 263 int device_links_read_lock(void) __acquires(&device_links_srcu) 264 { 265 return srcu_read_lock(&device_links_srcu); 266 } 267 268 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 269 { 270 srcu_read_unlock(&device_links_srcu, idx); 271 } 272 273 int device_links_read_lock_held(void) 274 { 275 return srcu_read_lock_held(&device_links_srcu); 276 } 277 278 static void device_link_synchronize_removal(void) 279 { 280 synchronize_srcu(&device_links_srcu); 281 } 282 283 static void device_link_remove_from_lists(struct device_link *link) 284 { 285 list_del_rcu(&link->s_node); 286 list_del_rcu(&link->c_node); 287 } 288 289 static bool device_is_ancestor(struct device *dev, struct device *target) 290 { 291 while (target->parent) { 292 target = target->parent; 293 if (dev == target) 294 return true; 295 } 296 return false; 297 } 298 299 static inline bool device_link_flag_is_sync_state_only(u32 flags) 300 { 301 return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) == 302 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED); 303 } 304 305 /** 306 * device_is_dependent - Check if one device depends on another one 307 * @dev: Device to check dependencies for. 308 * @target: Device to check against. 309 * 310 * Check if @target depends on @dev or any device dependent on it (its child or 311 * its consumer etc). Return 1 if that is the case or 0 otherwise. 312 */ 313 int device_is_dependent(struct device *dev, void *target) 314 { 315 struct device_link *link; 316 int ret; 317 318 /* 319 * The "ancestors" check is needed to catch the case when the target 320 * device has not been completely initialized yet and it is still 321 * missing from the list of children of its parent device. 322 */ 323 if (dev == target || device_is_ancestor(dev, target)) 324 return 1; 325 326 ret = device_for_each_child(dev, target, device_is_dependent); 327 if (ret) 328 return ret; 329 330 list_for_each_entry(link, &dev->links.consumers, s_node) { 331 if (device_link_flag_is_sync_state_only(link->flags)) 332 continue; 333 334 if (link->consumer == target) 335 return 1; 336 337 ret = device_is_dependent(link->consumer, target); 338 if (ret) 339 break; 340 } 341 return ret; 342 } 343 344 static void device_link_init_status(struct device_link *link, 345 struct device *consumer, 346 struct device *supplier) 347 { 348 switch (supplier->links.status) { 349 case DL_DEV_PROBING: 350 switch (consumer->links.status) { 351 case DL_DEV_PROBING: 352 /* 353 * A consumer driver can create a link to a supplier 354 * that has not completed its probing yet as long as it 355 * knows that the supplier is already functional (for 356 * example, it has just acquired some resources from the 357 * supplier). 358 */ 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 default: 362 link->status = DL_STATE_DORMANT; 363 break; 364 } 365 break; 366 case DL_DEV_DRIVER_BOUND: 367 switch (consumer->links.status) { 368 case DL_DEV_PROBING: 369 link->status = DL_STATE_CONSUMER_PROBE; 370 break; 371 case DL_DEV_DRIVER_BOUND: 372 link->status = DL_STATE_ACTIVE; 373 break; 374 default: 375 link->status = DL_STATE_AVAILABLE; 376 break; 377 } 378 break; 379 case DL_DEV_UNBINDING: 380 link->status = DL_STATE_SUPPLIER_UNBIND; 381 break; 382 default: 383 link->status = DL_STATE_DORMANT; 384 break; 385 } 386 } 387 388 static int device_reorder_to_tail(struct device *dev, void *not_used) 389 { 390 struct device_link *link; 391 392 /* 393 * Devices that have not been registered yet will be put to the ends 394 * of the lists during the registration, so skip them here. 395 */ 396 if (device_is_registered(dev)) 397 devices_kset_move_last(dev); 398 399 if (device_pm_initialized(dev)) 400 device_pm_move_last(dev); 401 402 device_for_each_child(dev, NULL, device_reorder_to_tail); 403 list_for_each_entry(link, &dev->links.consumers, s_node) { 404 if (device_link_flag_is_sync_state_only(link->flags)) 405 continue; 406 device_reorder_to_tail(link->consumer, NULL); 407 } 408 409 return 0; 410 } 411 412 /** 413 * device_pm_move_to_tail - Move set of devices to the end of device lists 414 * @dev: Device to move 415 * 416 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 417 * 418 * It moves the @dev along with all of its children and all of its consumers 419 * to the ends of the device_kset and dpm_list, recursively. 420 */ 421 void device_pm_move_to_tail(struct device *dev) 422 { 423 int idx; 424 425 idx = device_links_read_lock(); 426 device_pm_lock(); 427 device_reorder_to_tail(dev, NULL); 428 device_pm_unlock(); 429 device_links_read_unlock(idx); 430 } 431 432 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 433 434 static ssize_t status_show(struct device *dev, 435 struct device_attribute *attr, char *buf) 436 { 437 const char *output; 438 439 switch (to_devlink(dev)->status) { 440 case DL_STATE_NONE: 441 output = "not tracked"; 442 break; 443 case DL_STATE_DORMANT: 444 output = "dormant"; 445 break; 446 case DL_STATE_AVAILABLE: 447 output = "available"; 448 break; 449 case DL_STATE_CONSUMER_PROBE: 450 output = "consumer probing"; 451 break; 452 case DL_STATE_ACTIVE: 453 output = "active"; 454 break; 455 case DL_STATE_SUPPLIER_UNBIND: 456 output = "supplier unbinding"; 457 break; 458 default: 459 output = "unknown"; 460 break; 461 } 462 463 return sysfs_emit(buf, "%s\n", output); 464 } 465 static DEVICE_ATTR_RO(status); 466 467 static ssize_t auto_remove_on_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469 { 470 struct device_link *link = to_devlink(dev); 471 const char *output; 472 473 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 474 output = "supplier unbind"; 475 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 476 output = "consumer unbind"; 477 else 478 output = "never"; 479 480 return sysfs_emit(buf, "%s\n", output); 481 } 482 static DEVICE_ATTR_RO(auto_remove_on); 483 484 static ssize_t runtime_pm_show(struct device *dev, 485 struct device_attribute *attr, char *buf) 486 { 487 struct device_link *link = to_devlink(dev); 488 489 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 490 } 491 static DEVICE_ATTR_RO(runtime_pm); 492 493 static ssize_t sync_state_only_show(struct device *dev, 494 struct device_attribute *attr, char *buf) 495 { 496 struct device_link *link = to_devlink(dev); 497 498 return sysfs_emit(buf, "%d\n", 499 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 500 } 501 static DEVICE_ATTR_RO(sync_state_only); 502 503 static struct attribute *devlink_attrs[] = { 504 &dev_attr_status.attr, 505 &dev_attr_auto_remove_on.attr, 506 &dev_attr_runtime_pm.attr, 507 &dev_attr_sync_state_only.attr, 508 NULL, 509 }; 510 ATTRIBUTE_GROUPS(devlink); 511 512 static void device_link_release_fn(struct work_struct *work) 513 { 514 struct device_link *link = container_of(work, struct device_link, rm_work); 515 516 /* Ensure that all references to the link object have been dropped. */ 517 device_link_synchronize_removal(); 518 519 pm_runtime_release_supplier(link); 520 /* 521 * If supplier_preactivated is set, the link has been dropped between 522 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 523 * in __driver_probe_device(). In that case, drop the supplier's 524 * PM-runtime usage counter to remove the reference taken by 525 * pm_runtime_get_suppliers(). 526 */ 527 if (link->supplier_preactivated) 528 pm_runtime_put_noidle(link->supplier); 529 530 pm_request_idle(link->supplier); 531 532 put_device(link->consumer); 533 put_device(link->supplier); 534 kfree(link); 535 } 536 537 static void devlink_dev_release(struct device *dev) 538 { 539 struct device_link *link = to_devlink(dev); 540 541 INIT_WORK(&link->rm_work, device_link_release_fn); 542 /* 543 * It may take a while to complete this work because of the SRCU 544 * synchronization in device_link_release_fn() and if the consumer or 545 * supplier devices get deleted when it runs, so put it into the "long" 546 * workqueue. 547 */ 548 queue_work(system_long_wq, &link->rm_work); 549 } 550 551 static struct class devlink_class = { 552 .name = "devlink", 553 .owner = THIS_MODULE, 554 .dev_groups = devlink_groups, 555 .dev_release = devlink_dev_release, 556 }; 557 558 static int devlink_add_symlinks(struct device *dev, 559 struct class_interface *class_intf) 560 { 561 int ret; 562 size_t len; 563 struct device_link *link = to_devlink(dev); 564 struct device *sup = link->supplier; 565 struct device *con = link->consumer; 566 char *buf; 567 568 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 569 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 570 len += strlen(":"); 571 len += strlen("supplier:") + 1; 572 buf = kzalloc(len, GFP_KERNEL); 573 if (!buf) 574 return -ENOMEM; 575 576 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 577 if (ret) 578 goto out; 579 580 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 581 if (ret) 582 goto err_con; 583 584 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 585 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 586 if (ret) 587 goto err_con_dev; 588 589 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 590 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 591 if (ret) 592 goto err_sup_dev; 593 594 goto out; 595 596 err_sup_dev: 597 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 598 sysfs_remove_link(&sup->kobj, buf); 599 err_con_dev: 600 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 601 err_con: 602 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 603 out: 604 kfree(buf); 605 return ret; 606 } 607 608 static void devlink_remove_symlinks(struct device *dev, 609 struct class_interface *class_intf) 610 { 611 struct device_link *link = to_devlink(dev); 612 size_t len; 613 struct device *sup = link->supplier; 614 struct device *con = link->consumer; 615 char *buf; 616 617 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 618 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 619 620 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 621 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 622 len += strlen(":"); 623 len += strlen("supplier:") + 1; 624 buf = kzalloc(len, GFP_KERNEL); 625 if (!buf) { 626 WARN(1, "Unable to properly free device link symlinks!\n"); 627 return; 628 } 629 630 if (device_is_registered(con)) { 631 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 632 sysfs_remove_link(&con->kobj, buf); 633 } 634 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 635 sysfs_remove_link(&sup->kobj, buf); 636 kfree(buf); 637 } 638 639 static struct class_interface devlink_class_intf = { 640 .class = &devlink_class, 641 .add_dev = devlink_add_symlinks, 642 .remove_dev = devlink_remove_symlinks, 643 }; 644 645 static int __init devlink_class_init(void) 646 { 647 int ret; 648 649 ret = class_register(&devlink_class); 650 if (ret) 651 return ret; 652 653 ret = class_interface_register(&devlink_class_intf); 654 if (ret) 655 class_unregister(&devlink_class); 656 657 return ret; 658 } 659 postcore_initcall(devlink_class_init); 660 661 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 662 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 663 DL_FLAG_AUTOPROBE_CONSUMER | \ 664 DL_FLAG_SYNC_STATE_ONLY | \ 665 DL_FLAG_INFERRED | \ 666 DL_FLAG_CYCLE) 667 668 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 669 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 670 671 /** 672 * device_link_add - Create a link between two devices. 673 * @consumer: Consumer end of the link. 674 * @supplier: Supplier end of the link. 675 * @flags: Link flags. 676 * 677 * The caller is responsible for the proper synchronization of the link creation 678 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 679 * runtime PM framework to take the link into account. Second, if the 680 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 681 * be forced into the active meta state and reference-counted upon the creation 682 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 683 * ignored. 684 * 685 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 686 * expected to release the link returned by it directly with the help of either 687 * device_link_del() or device_link_remove(). 688 * 689 * If that flag is not set, however, the caller of this function is handing the 690 * management of the link over to the driver core entirely and its return value 691 * can only be used to check whether or not the link is present. In that case, 692 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 693 * flags can be used to indicate to the driver core when the link can be safely 694 * deleted. Namely, setting one of them in @flags indicates to the driver core 695 * that the link is not going to be used (by the given caller of this function) 696 * after unbinding the consumer or supplier driver, respectively, from its 697 * device, so the link can be deleted at that point. If none of them is set, 698 * the link will be maintained until one of the devices pointed to by it (either 699 * the consumer or the supplier) is unregistered. 700 * 701 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 702 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 703 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 704 * be used to request the driver core to automatically probe for a consumer 705 * driver after successfully binding a driver to the supplier device. 706 * 707 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 708 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 709 * the same time is invalid and will cause NULL to be returned upfront. 710 * However, if a device link between the given @consumer and @supplier pair 711 * exists already when this function is called for them, the existing link will 712 * be returned regardless of its current type and status (the link's flags may 713 * be modified then). The caller of this function is then expected to treat 714 * the link as though it has just been created, so (in particular) if 715 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 716 * explicitly when not needed any more (as stated above). 717 * 718 * A side effect of the link creation is re-ordering of dpm_list and the 719 * devices_kset list by moving the consumer device and all devices depending 720 * on it to the ends of these lists (that does not happen to devices that have 721 * not been registered when this function is called). 722 * 723 * The supplier device is required to be registered when this function is called 724 * and NULL will be returned if that is not the case. The consumer device need 725 * not be registered, however. 726 */ 727 struct device_link *device_link_add(struct device *consumer, 728 struct device *supplier, u32 flags) 729 { 730 struct device_link *link; 731 732 if (!consumer || !supplier || consumer == supplier || 733 flags & ~DL_ADD_VALID_FLAGS || 734 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 735 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 736 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 737 DL_FLAG_AUTOREMOVE_SUPPLIER))) 738 return NULL; 739 740 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 741 if (pm_runtime_get_sync(supplier) < 0) { 742 pm_runtime_put_noidle(supplier); 743 return NULL; 744 } 745 } 746 747 if (!(flags & DL_FLAG_STATELESS)) 748 flags |= DL_FLAG_MANAGED; 749 750 if (flags & DL_FLAG_SYNC_STATE_ONLY && 751 !device_link_flag_is_sync_state_only(flags)) 752 return NULL; 753 754 device_links_write_lock(); 755 device_pm_lock(); 756 757 /* 758 * If the supplier has not been fully registered yet or there is a 759 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 760 * the supplier already in the graph, return NULL. If the link is a 761 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 762 * because it only affects sync_state() callbacks. 763 */ 764 if (!device_pm_initialized(supplier) 765 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 766 device_is_dependent(consumer, supplier))) { 767 link = NULL; 768 goto out; 769 } 770 771 /* 772 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 773 * So, only create it if the consumer hasn't probed yet. 774 */ 775 if (flags & DL_FLAG_SYNC_STATE_ONLY && 776 consumer->links.status != DL_DEV_NO_DRIVER && 777 consumer->links.status != DL_DEV_PROBING) { 778 link = NULL; 779 goto out; 780 } 781 782 /* 783 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 784 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 785 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 786 */ 787 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 788 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 789 790 list_for_each_entry(link, &supplier->links.consumers, s_node) { 791 if (link->consumer != consumer) 792 continue; 793 794 if (link->flags & DL_FLAG_INFERRED && 795 !(flags & DL_FLAG_INFERRED)) 796 link->flags &= ~DL_FLAG_INFERRED; 797 798 if (flags & DL_FLAG_PM_RUNTIME) { 799 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 800 pm_runtime_new_link(consumer); 801 link->flags |= DL_FLAG_PM_RUNTIME; 802 } 803 if (flags & DL_FLAG_RPM_ACTIVE) 804 refcount_inc(&link->rpm_active); 805 } 806 807 if (flags & DL_FLAG_STATELESS) { 808 kref_get(&link->kref); 809 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 810 !(link->flags & DL_FLAG_STATELESS)) { 811 link->flags |= DL_FLAG_STATELESS; 812 goto reorder; 813 } else { 814 link->flags |= DL_FLAG_STATELESS; 815 goto out; 816 } 817 } 818 819 /* 820 * If the life time of the link following from the new flags is 821 * longer than indicated by the flags of the existing link, 822 * update the existing link to stay around longer. 823 */ 824 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 825 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 826 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 827 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 828 } 829 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 830 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 831 DL_FLAG_AUTOREMOVE_SUPPLIER); 832 } 833 if (!(link->flags & DL_FLAG_MANAGED)) { 834 kref_get(&link->kref); 835 link->flags |= DL_FLAG_MANAGED; 836 device_link_init_status(link, consumer, supplier); 837 } 838 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 839 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 840 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 841 goto reorder; 842 } 843 844 goto out; 845 } 846 847 link = kzalloc(sizeof(*link), GFP_KERNEL); 848 if (!link) 849 goto out; 850 851 refcount_set(&link->rpm_active, 1); 852 853 get_device(supplier); 854 link->supplier = supplier; 855 INIT_LIST_HEAD(&link->s_node); 856 get_device(consumer); 857 link->consumer = consumer; 858 INIT_LIST_HEAD(&link->c_node); 859 link->flags = flags; 860 kref_init(&link->kref); 861 862 link->link_dev.class = &devlink_class; 863 device_set_pm_not_required(&link->link_dev); 864 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 865 dev_bus_name(supplier), dev_name(supplier), 866 dev_bus_name(consumer), dev_name(consumer)); 867 if (device_register(&link->link_dev)) { 868 put_device(&link->link_dev); 869 link = NULL; 870 goto out; 871 } 872 873 if (flags & DL_FLAG_PM_RUNTIME) { 874 if (flags & DL_FLAG_RPM_ACTIVE) 875 refcount_inc(&link->rpm_active); 876 877 pm_runtime_new_link(consumer); 878 } 879 880 /* Determine the initial link state. */ 881 if (flags & DL_FLAG_STATELESS) 882 link->status = DL_STATE_NONE; 883 else 884 device_link_init_status(link, consumer, supplier); 885 886 /* 887 * Some callers expect the link creation during consumer driver probe to 888 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 889 */ 890 if (link->status == DL_STATE_CONSUMER_PROBE && 891 flags & DL_FLAG_PM_RUNTIME) 892 pm_runtime_resume(supplier); 893 894 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 895 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 896 897 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 898 dev_dbg(consumer, 899 "Linked as a sync state only consumer to %s\n", 900 dev_name(supplier)); 901 goto out; 902 } 903 904 reorder: 905 /* 906 * Move the consumer and all of the devices depending on it to the end 907 * of dpm_list and the devices_kset list. 908 * 909 * It is necessary to hold dpm_list locked throughout all that or else 910 * we may end up suspending with a wrong ordering of it. 911 */ 912 device_reorder_to_tail(consumer, NULL); 913 914 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 915 916 out: 917 device_pm_unlock(); 918 device_links_write_unlock(); 919 920 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 921 pm_runtime_put(supplier); 922 923 return link; 924 } 925 EXPORT_SYMBOL_GPL(device_link_add); 926 927 static void __device_link_del(struct kref *kref) 928 { 929 struct device_link *link = container_of(kref, struct device_link, kref); 930 931 dev_dbg(link->consumer, "Dropping the link to %s\n", 932 dev_name(link->supplier)); 933 934 pm_runtime_drop_link(link); 935 936 device_link_remove_from_lists(link); 937 device_unregister(&link->link_dev); 938 } 939 940 static void device_link_put_kref(struct device_link *link) 941 { 942 if (link->flags & DL_FLAG_STATELESS) 943 kref_put(&link->kref, __device_link_del); 944 else if (!device_is_registered(link->consumer)) 945 __device_link_del(&link->kref); 946 else 947 WARN(1, "Unable to drop a managed device link reference\n"); 948 } 949 950 /** 951 * device_link_del - Delete a stateless link between two devices. 952 * @link: Device link to delete. 953 * 954 * The caller must ensure proper synchronization of this function with runtime 955 * PM. If the link was added multiple times, it needs to be deleted as often. 956 * Care is required for hotplugged devices: Their links are purged on removal 957 * and calling device_link_del() is then no longer allowed. 958 */ 959 void device_link_del(struct device_link *link) 960 { 961 device_links_write_lock(); 962 device_link_put_kref(link); 963 device_links_write_unlock(); 964 } 965 EXPORT_SYMBOL_GPL(device_link_del); 966 967 /** 968 * device_link_remove - Delete a stateless link between two devices. 969 * @consumer: Consumer end of the link. 970 * @supplier: Supplier end of the link. 971 * 972 * The caller must ensure proper synchronization of this function with runtime 973 * PM. 974 */ 975 void device_link_remove(void *consumer, struct device *supplier) 976 { 977 struct device_link *link; 978 979 if (WARN_ON(consumer == supplier)) 980 return; 981 982 device_links_write_lock(); 983 984 list_for_each_entry(link, &supplier->links.consumers, s_node) { 985 if (link->consumer == consumer) { 986 device_link_put_kref(link); 987 break; 988 } 989 } 990 991 device_links_write_unlock(); 992 } 993 EXPORT_SYMBOL_GPL(device_link_remove); 994 995 static void device_links_missing_supplier(struct device *dev) 996 { 997 struct device_link *link; 998 999 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1000 if (link->status != DL_STATE_CONSUMER_PROBE) 1001 continue; 1002 1003 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1004 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1005 } else { 1006 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1007 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1008 } 1009 } 1010 } 1011 1012 static bool dev_is_best_effort(struct device *dev) 1013 { 1014 return (fw_devlink_best_effort && dev->can_match) || 1015 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1016 } 1017 1018 static struct fwnode_handle *fwnode_links_check_suppliers( 1019 struct fwnode_handle *fwnode) 1020 { 1021 struct fwnode_link *link; 1022 1023 if (!fwnode || fw_devlink_is_permissive()) 1024 return NULL; 1025 1026 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1027 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1028 return link->supplier; 1029 1030 return NULL; 1031 } 1032 1033 /** 1034 * device_links_check_suppliers - Check presence of supplier drivers. 1035 * @dev: Consumer device. 1036 * 1037 * Check links from this device to any suppliers. Walk the list of the device's 1038 * links to suppliers and see if all of them are available. If not, simply 1039 * return -EPROBE_DEFER. 1040 * 1041 * We need to guarantee that the supplier will not go away after the check has 1042 * been positive here. It only can go away in __device_release_driver() and 1043 * that function checks the device's links to consumers. This means we need to 1044 * mark the link as "consumer probe in progress" to make the supplier removal 1045 * wait for us to complete (or bad things may happen). 1046 * 1047 * Links without the DL_FLAG_MANAGED flag set are ignored. 1048 */ 1049 int device_links_check_suppliers(struct device *dev) 1050 { 1051 struct device_link *link; 1052 int ret = 0, fwnode_ret = 0; 1053 struct fwnode_handle *sup_fw; 1054 1055 /* 1056 * Device waiting for supplier to become available is not allowed to 1057 * probe. 1058 */ 1059 mutex_lock(&fwnode_link_lock); 1060 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1061 if (sup_fw) { 1062 if (!dev_is_best_effort(dev)) { 1063 fwnode_ret = -EPROBE_DEFER; 1064 dev_err_probe(dev, -EPROBE_DEFER, 1065 "wait for supplier %pfwf\n", sup_fw); 1066 } else { 1067 fwnode_ret = -EAGAIN; 1068 } 1069 } 1070 mutex_unlock(&fwnode_link_lock); 1071 if (fwnode_ret == -EPROBE_DEFER) 1072 return fwnode_ret; 1073 1074 device_links_write_lock(); 1075 1076 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1077 if (!(link->flags & DL_FLAG_MANAGED)) 1078 continue; 1079 1080 if (link->status != DL_STATE_AVAILABLE && 1081 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1082 1083 if (dev_is_best_effort(dev) && 1084 link->flags & DL_FLAG_INFERRED && 1085 !link->supplier->can_match) { 1086 ret = -EAGAIN; 1087 continue; 1088 } 1089 1090 device_links_missing_supplier(dev); 1091 dev_err_probe(dev, -EPROBE_DEFER, 1092 "supplier %s not ready\n", 1093 dev_name(link->supplier)); 1094 ret = -EPROBE_DEFER; 1095 break; 1096 } 1097 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1098 } 1099 dev->links.status = DL_DEV_PROBING; 1100 1101 device_links_write_unlock(); 1102 1103 return ret ? ret : fwnode_ret; 1104 } 1105 1106 /** 1107 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1108 * @dev: Device to call sync_state() on 1109 * @list: List head to queue the @dev on 1110 * 1111 * Queues a device for a sync_state() callback when the device links write lock 1112 * isn't held. This allows the sync_state() execution flow to use device links 1113 * APIs. The caller must ensure this function is called with 1114 * device_links_write_lock() held. 1115 * 1116 * This function does a get_device() to make sure the device is not freed while 1117 * on this list. 1118 * 1119 * So the caller must also ensure that device_links_flush_sync_list() is called 1120 * as soon as the caller releases device_links_write_lock(). This is necessary 1121 * to make sure the sync_state() is called in a timely fashion and the 1122 * put_device() is called on this device. 1123 */ 1124 static void __device_links_queue_sync_state(struct device *dev, 1125 struct list_head *list) 1126 { 1127 struct device_link *link; 1128 1129 if (!dev_has_sync_state(dev)) 1130 return; 1131 if (dev->state_synced) 1132 return; 1133 1134 list_for_each_entry(link, &dev->links.consumers, s_node) { 1135 if (!(link->flags & DL_FLAG_MANAGED)) 1136 continue; 1137 if (link->status != DL_STATE_ACTIVE) 1138 return; 1139 } 1140 1141 /* 1142 * Set the flag here to avoid adding the same device to a list more 1143 * than once. This can happen if new consumers get added to the device 1144 * and probed before the list is flushed. 1145 */ 1146 dev->state_synced = true; 1147 1148 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1149 return; 1150 1151 get_device(dev); 1152 list_add_tail(&dev->links.defer_sync, list); 1153 } 1154 1155 /** 1156 * device_links_flush_sync_list - Call sync_state() on a list of devices 1157 * @list: List of devices to call sync_state() on 1158 * @dont_lock_dev: Device for which lock is already held by the caller 1159 * 1160 * Calls sync_state() on all the devices that have been queued for it. This 1161 * function is used in conjunction with __device_links_queue_sync_state(). The 1162 * @dont_lock_dev parameter is useful when this function is called from a 1163 * context where a device lock is already held. 1164 */ 1165 static void device_links_flush_sync_list(struct list_head *list, 1166 struct device *dont_lock_dev) 1167 { 1168 struct device *dev, *tmp; 1169 1170 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1171 list_del_init(&dev->links.defer_sync); 1172 1173 if (dev != dont_lock_dev) 1174 device_lock(dev); 1175 1176 if (dev->bus->sync_state) 1177 dev->bus->sync_state(dev); 1178 else if (dev->driver && dev->driver->sync_state) 1179 dev->driver->sync_state(dev); 1180 1181 if (dev != dont_lock_dev) 1182 device_unlock(dev); 1183 1184 put_device(dev); 1185 } 1186 } 1187 1188 void device_links_supplier_sync_state_pause(void) 1189 { 1190 device_links_write_lock(); 1191 defer_sync_state_count++; 1192 device_links_write_unlock(); 1193 } 1194 1195 void device_links_supplier_sync_state_resume(void) 1196 { 1197 struct device *dev, *tmp; 1198 LIST_HEAD(sync_list); 1199 1200 device_links_write_lock(); 1201 if (!defer_sync_state_count) { 1202 WARN(true, "Unmatched sync_state pause/resume!"); 1203 goto out; 1204 } 1205 defer_sync_state_count--; 1206 if (defer_sync_state_count) 1207 goto out; 1208 1209 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1210 /* 1211 * Delete from deferred_sync list before queuing it to 1212 * sync_list because defer_sync is used for both lists. 1213 */ 1214 list_del_init(&dev->links.defer_sync); 1215 __device_links_queue_sync_state(dev, &sync_list); 1216 } 1217 out: 1218 device_links_write_unlock(); 1219 1220 device_links_flush_sync_list(&sync_list, NULL); 1221 } 1222 1223 static int sync_state_resume_initcall(void) 1224 { 1225 device_links_supplier_sync_state_resume(); 1226 return 0; 1227 } 1228 late_initcall(sync_state_resume_initcall); 1229 1230 static void __device_links_supplier_defer_sync(struct device *sup) 1231 { 1232 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1233 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1234 } 1235 1236 static void device_link_drop_managed(struct device_link *link) 1237 { 1238 link->flags &= ~DL_FLAG_MANAGED; 1239 WRITE_ONCE(link->status, DL_STATE_NONE); 1240 kref_put(&link->kref, __device_link_del); 1241 } 1242 1243 static ssize_t waiting_for_supplier_show(struct device *dev, 1244 struct device_attribute *attr, 1245 char *buf) 1246 { 1247 bool val; 1248 1249 device_lock(dev); 1250 mutex_lock(&fwnode_link_lock); 1251 val = !!fwnode_links_check_suppliers(dev->fwnode); 1252 mutex_unlock(&fwnode_link_lock); 1253 device_unlock(dev); 1254 return sysfs_emit(buf, "%u\n", val); 1255 } 1256 static DEVICE_ATTR_RO(waiting_for_supplier); 1257 1258 /** 1259 * device_links_force_bind - Prepares device to be force bound 1260 * @dev: Consumer device. 1261 * 1262 * device_bind_driver() force binds a device to a driver without calling any 1263 * driver probe functions. So the consumer really isn't going to wait for any 1264 * supplier before it's bound to the driver. We still want the device link 1265 * states to be sensible when this happens. 1266 * 1267 * In preparation for device_bind_driver(), this function goes through each 1268 * supplier device links and checks if the supplier is bound. If it is, then 1269 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1270 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1271 */ 1272 void device_links_force_bind(struct device *dev) 1273 { 1274 struct device_link *link, *ln; 1275 1276 device_links_write_lock(); 1277 1278 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1279 if (!(link->flags & DL_FLAG_MANAGED)) 1280 continue; 1281 1282 if (link->status != DL_STATE_AVAILABLE) { 1283 device_link_drop_managed(link); 1284 continue; 1285 } 1286 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1287 } 1288 dev->links.status = DL_DEV_PROBING; 1289 1290 device_links_write_unlock(); 1291 } 1292 1293 /** 1294 * device_links_driver_bound - Update device links after probing its driver. 1295 * @dev: Device to update the links for. 1296 * 1297 * The probe has been successful, so update links from this device to any 1298 * consumers by changing their status to "available". 1299 * 1300 * Also change the status of @dev's links to suppliers to "active". 1301 * 1302 * Links without the DL_FLAG_MANAGED flag set are ignored. 1303 */ 1304 void device_links_driver_bound(struct device *dev) 1305 { 1306 struct device_link *link, *ln; 1307 LIST_HEAD(sync_list); 1308 1309 /* 1310 * If a device binds successfully, it's expected to have created all 1311 * the device links it needs to or make new device links as it needs 1312 * them. So, fw_devlink no longer needs to create device links to any 1313 * of the device's suppliers. 1314 * 1315 * Also, if a child firmware node of this bound device is not added as a 1316 * device by now, assume it is never going to be added. Make this bound 1317 * device the fallback supplier to the dangling consumers of the child 1318 * firmware node because this bound device is probably implementing the 1319 * child firmware node functionality and we don't want the dangling 1320 * consumers to defer probe indefinitely waiting for a device for the 1321 * child firmware node. 1322 */ 1323 if (dev->fwnode && dev->fwnode->dev == dev) { 1324 struct fwnode_handle *child; 1325 fwnode_links_purge_suppliers(dev->fwnode); 1326 mutex_lock(&fwnode_link_lock); 1327 fwnode_for_each_available_child_node(dev->fwnode, child) 1328 __fw_devlink_pickup_dangling_consumers(child, 1329 dev->fwnode); 1330 __fw_devlink_link_to_consumers(dev); 1331 mutex_unlock(&fwnode_link_lock); 1332 } 1333 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1334 1335 device_links_write_lock(); 1336 1337 list_for_each_entry(link, &dev->links.consumers, s_node) { 1338 if (!(link->flags & DL_FLAG_MANAGED)) 1339 continue; 1340 1341 /* 1342 * Links created during consumer probe may be in the "consumer 1343 * probe" state to start with if the supplier is still probing 1344 * when they are created and they may become "active" if the 1345 * consumer probe returns first. Skip them here. 1346 */ 1347 if (link->status == DL_STATE_CONSUMER_PROBE || 1348 link->status == DL_STATE_ACTIVE) 1349 continue; 1350 1351 WARN_ON(link->status != DL_STATE_DORMANT); 1352 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1353 1354 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1355 driver_deferred_probe_add(link->consumer); 1356 } 1357 1358 if (defer_sync_state_count) 1359 __device_links_supplier_defer_sync(dev); 1360 else 1361 __device_links_queue_sync_state(dev, &sync_list); 1362 1363 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1364 struct device *supplier; 1365 1366 if (!(link->flags & DL_FLAG_MANAGED)) 1367 continue; 1368 1369 supplier = link->supplier; 1370 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1371 /* 1372 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1373 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1374 * save to drop the managed link completely. 1375 */ 1376 device_link_drop_managed(link); 1377 } else if (dev_is_best_effort(dev) && 1378 link->flags & DL_FLAG_INFERRED && 1379 link->status != DL_STATE_CONSUMER_PROBE && 1380 !link->supplier->can_match) { 1381 /* 1382 * When dev_is_best_effort() is true, we ignore device 1383 * links to suppliers that don't have a driver. If the 1384 * consumer device still managed to probe, there's no 1385 * point in maintaining a device link in a weird state 1386 * (consumer probed before supplier). So delete it. 1387 */ 1388 device_link_drop_managed(link); 1389 } else { 1390 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1391 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1392 } 1393 1394 /* 1395 * This needs to be done even for the deleted 1396 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1397 * device link that was preventing the supplier from getting a 1398 * sync_state() call. 1399 */ 1400 if (defer_sync_state_count) 1401 __device_links_supplier_defer_sync(supplier); 1402 else 1403 __device_links_queue_sync_state(supplier, &sync_list); 1404 } 1405 1406 dev->links.status = DL_DEV_DRIVER_BOUND; 1407 1408 device_links_write_unlock(); 1409 1410 device_links_flush_sync_list(&sync_list, dev); 1411 } 1412 1413 /** 1414 * __device_links_no_driver - Update links of a device without a driver. 1415 * @dev: Device without a drvier. 1416 * 1417 * Delete all non-persistent links from this device to any suppliers. 1418 * 1419 * Persistent links stay around, but their status is changed to "available", 1420 * unless they already are in the "supplier unbind in progress" state in which 1421 * case they need not be updated. 1422 * 1423 * Links without the DL_FLAG_MANAGED flag set are ignored. 1424 */ 1425 static void __device_links_no_driver(struct device *dev) 1426 { 1427 struct device_link *link, *ln; 1428 1429 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1430 if (!(link->flags & DL_FLAG_MANAGED)) 1431 continue; 1432 1433 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1434 device_link_drop_managed(link); 1435 continue; 1436 } 1437 1438 if (link->status != DL_STATE_CONSUMER_PROBE && 1439 link->status != DL_STATE_ACTIVE) 1440 continue; 1441 1442 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1443 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1444 } else { 1445 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1446 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1447 } 1448 } 1449 1450 dev->links.status = DL_DEV_NO_DRIVER; 1451 } 1452 1453 /** 1454 * device_links_no_driver - Update links after failing driver probe. 1455 * @dev: Device whose driver has just failed to probe. 1456 * 1457 * Clean up leftover links to consumers for @dev and invoke 1458 * %__device_links_no_driver() to update links to suppliers for it as 1459 * appropriate. 1460 * 1461 * Links without the DL_FLAG_MANAGED flag set are ignored. 1462 */ 1463 void device_links_no_driver(struct device *dev) 1464 { 1465 struct device_link *link; 1466 1467 device_links_write_lock(); 1468 1469 list_for_each_entry(link, &dev->links.consumers, s_node) { 1470 if (!(link->flags & DL_FLAG_MANAGED)) 1471 continue; 1472 1473 /* 1474 * The probe has failed, so if the status of the link is 1475 * "consumer probe" or "active", it must have been added by 1476 * a probing consumer while this device was still probing. 1477 * Change its state to "dormant", as it represents a valid 1478 * relationship, but it is not functionally meaningful. 1479 */ 1480 if (link->status == DL_STATE_CONSUMER_PROBE || 1481 link->status == DL_STATE_ACTIVE) 1482 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1483 } 1484 1485 __device_links_no_driver(dev); 1486 1487 device_links_write_unlock(); 1488 } 1489 1490 /** 1491 * device_links_driver_cleanup - Update links after driver removal. 1492 * @dev: Device whose driver has just gone away. 1493 * 1494 * Update links to consumers for @dev by changing their status to "dormant" and 1495 * invoke %__device_links_no_driver() to update links to suppliers for it as 1496 * appropriate. 1497 * 1498 * Links without the DL_FLAG_MANAGED flag set are ignored. 1499 */ 1500 void device_links_driver_cleanup(struct device *dev) 1501 { 1502 struct device_link *link, *ln; 1503 1504 device_links_write_lock(); 1505 1506 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1507 if (!(link->flags & DL_FLAG_MANAGED)) 1508 continue; 1509 1510 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1511 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1512 1513 /* 1514 * autoremove the links between this @dev and its consumer 1515 * devices that are not active, i.e. where the link state 1516 * has moved to DL_STATE_SUPPLIER_UNBIND. 1517 */ 1518 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1519 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1520 device_link_drop_managed(link); 1521 1522 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1523 } 1524 1525 list_del_init(&dev->links.defer_sync); 1526 __device_links_no_driver(dev); 1527 1528 device_links_write_unlock(); 1529 } 1530 1531 /** 1532 * device_links_busy - Check if there are any busy links to consumers. 1533 * @dev: Device to check. 1534 * 1535 * Check each consumer of the device and return 'true' if its link's status 1536 * is one of "consumer probe" or "active" (meaning that the given consumer is 1537 * probing right now or its driver is present). Otherwise, change the link 1538 * state to "supplier unbind" to prevent the consumer from being probed 1539 * successfully going forward. 1540 * 1541 * Return 'false' if there are no probing or active consumers. 1542 * 1543 * Links without the DL_FLAG_MANAGED flag set are ignored. 1544 */ 1545 bool device_links_busy(struct device *dev) 1546 { 1547 struct device_link *link; 1548 bool ret = false; 1549 1550 device_links_write_lock(); 1551 1552 list_for_each_entry(link, &dev->links.consumers, s_node) { 1553 if (!(link->flags & DL_FLAG_MANAGED)) 1554 continue; 1555 1556 if (link->status == DL_STATE_CONSUMER_PROBE 1557 || link->status == DL_STATE_ACTIVE) { 1558 ret = true; 1559 break; 1560 } 1561 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1562 } 1563 1564 dev->links.status = DL_DEV_UNBINDING; 1565 1566 device_links_write_unlock(); 1567 return ret; 1568 } 1569 1570 /** 1571 * device_links_unbind_consumers - Force unbind consumers of the given device. 1572 * @dev: Device to unbind the consumers of. 1573 * 1574 * Walk the list of links to consumers for @dev and if any of them is in the 1575 * "consumer probe" state, wait for all device probes in progress to complete 1576 * and start over. 1577 * 1578 * If that's not the case, change the status of the link to "supplier unbind" 1579 * and check if the link was in the "active" state. If so, force the consumer 1580 * driver to unbind and start over (the consumer will not re-probe as we have 1581 * changed the state of the link already). 1582 * 1583 * Links without the DL_FLAG_MANAGED flag set are ignored. 1584 */ 1585 void device_links_unbind_consumers(struct device *dev) 1586 { 1587 struct device_link *link; 1588 1589 start: 1590 device_links_write_lock(); 1591 1592 list_for_each_entry(link, &dev->links.consumers, s_node) { 1593 enum device_link_state status; 1594 1595 if (!(link->flags & DL_FLAG_MANAGED) || 1596 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1597 continue; 1598 1599 status = link->status; 1600 if (status == DL_STATE_CONSUMER_PROBE) { 1601 device_links_write_unlock(); 1602 1603 wait_for_device_probe(); 1604 goto start; 1605 } 1606 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1607 if (status == DL_STATE_ACTIVE) { 1608 struct device *consumer = link->consumer; 1609 1610 get_device(consumer); 1611 1612 device_links_write_unlock(); 1613 1614 device_release_driver_internal(consumer, NULL, 1615 consumer->parent); 1616 put_device(consumer); 1617 goto start; 1618 } 1619 } 1620 1621 device_links_write_unlock(); 1622 } 1623 1624 /** 1625 * device_links_purge - Delete existing links to other devices. 1626 * @dev: Target device. 1627 */ 1628 static void device_links_purge(struct device *dev) 1629 { 1630 struct device_link *link, *ln; 1631 1632 if (dev->class == &devlink_class) 1633 return; 1634 1635 /* 1636 * Delete all of the remaining links from this device to any other 1637 * devices (either consumers or suppliers). 1638 */ 1639 device_links_write_lock(); 1640 1641 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1642 WARN_ON(link->status == DL_STATE_ACTIVE); 1643 __device_link_del(&link->kref); 1644 } 1645 1646 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1647 WARN_ON(link->status != DL_STATE_DORMANT && 1648 link->status != DL_STATE_NONE); 1649 __device_link_del(&link->kref); 1650 } 1651 1652 device_links_write_unlock(); 1653 } 1654 1655 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1656 DL_FLAG_SYNC_STATE_ONLY) 1657 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1658 DL_FLAG_AUTOPROBE_CONSUMER) 1659 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1660 DL_FLAG_PM_RUNTIME) 1661 1662 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1663 static int __init fw_devlink_setup(char *arg) 1664 { 1665 if (!arg) 1666 return -EINVAL; 1667 1668 if (strcmp(arg, "off") == 0) { 1669 fw_devlink_flags = 0; 1670 } else if (strcmp(arg, "permissive") == 0) { 1671 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1672 } else if (strcmp(arg, "on") == 0) { 1673 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1674 } else if (strcmp(arg, "rpm") == 0) { 1675 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1676 } 1677 return 0; 1678 } 1679 early_param("fw_devlink", fw_devlink_setup); 1680 1681 static bool fw_devlink_strict; 1682 static int __init fw_devlink_strict_setup(char *arg) 1683 { 1684 return kstrtobool(arg, &fw_devlink_strict); 1685 } 1686 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1687 1688 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1689 { 1690 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1691 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1692 1693 return fw_devlink_flags; 1694 } 1695 1696 static bool fw_devlink_is_permissive(void) 1697 { 1698 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1699 } 1700 1701 bool fw_devlink_is_strict(void) 1702 { 1703 return fw_devlink_strict && !fw_devlink_is_permissive(); 1704 } 1705 1706 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1707 { 1708 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1709 return; 1710 1711 fwnode_call_int_op(fwnode, add_links); 1712 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1713 } 1714 1715 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1716 { 1717 struct fwnode_handle *child = NULL; 1718 1719 fw_devlink_parse_fwnode(fwnode); 1720 1721 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1722 fw_devlink_parse_fwtree(child); 1723 } 1724 1725 static void fw_devlink_relax_link(struct device_link *link) 1726 { 1727 if (!(link->flags & DL_FLAG_INFERRED)) 1728 return; 1729 1730 if (device_link_flag_is_sync_state_only(link->flags)) 1731 return; 1732 1733 pm_runtime_drop_link(link); 1734 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1735 dev_dbg(link->consumer, "Relaxing link with %s\n", 1736 dev_name(link->supplier)); 1737 } 1738 1739 static int fw_devlink_no_driver(struct device *dev, void *data) 1740 { 1741 struct device_link *link = to_devlink(dev); 1742 1743 if (!link->supplier->can_match) 1744 fw_devlink_relax_link(link); 1745 1746 return 0; 1747 } 1748 1749 void fw_devlink_drivers_done(void) 1750 { 1751 fw_devlink_drv_reg_done = true; 1752 device_links_write_lock(); 1753 class_for_each_device(&devlink_class, NULL, NULL, 1754 fw_devlink_no_driver); 1755 device_links_write_unlock(); 1756 } 1757 1758 /** 1759 * wait_for_init_devices_probe - Try to probe any device needed for init 1760 * 1761 * Some devices might need to be probed and bound successfully before the kernel 1762 * boot sequence can finish and move on to init/userspace. For example, a 1763 * network interface might need to be bound to be able to mount a NFS rootfs. 1764 * 1765 * With fw_devlink=on by default, some of these devices might be blocked from 1766 * probing because they are waiting on a optional supplier that doesn't have a 1767 * driver. While fw_devlink will eventually identify such devices and unblock 1768 * the probing automatically, it might be too late by the time it unblocks the 1769 * probing of devices. For example, the IP4 autoconfig might timeout before 1770 * fw_devlink unblocks probing of the network interface. 1771 * 1772 * This function is available to temporarily try and probe all devices that have 1773 * a driver even if some of their suppliers haven't been added or don't have 1774 * drivers. 1775 * 1776 * The drivers can then decide which of the suppliers are optional vs mandatory 1777 * and probe the device if possible. By the time this function returns, all such 1778 * "best effort" probes are guaranteed to be completed. If a device successfully 1779 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1780 * device where the supplier hasn't yet probed successfully because they have to 1781 * be optional dependencies. 1782 * 1783 * Any devices that didn't successfully probe go back to being treated as if 1784 * this function was never called. 1785 * 1786 * This also means that some devices that aren't needed for init and could have 1787 * waited for their optional supplier to probe (when the supplier's module is 1788 * loaded later on) would end up probing prematurely with limited functionality. 1789 * So call this function only when boot would fail without it. 1790 */ 1791 void __init wait_for_init_devices_probe(void) 1792 { 1793 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1794 return; 1795 1796 /* 1797 * Wait for all ongoing probes to finish so that the "best effort" is 1798 * only applied to devices that can't probe otherwise. 1799 */ 1800 wait_for_device_probe(); 1801 1802 pr_info("Trying to probe devices needed for running init ...\n"); 1803 fw_devlink_best_effort = true; 1804 driver_deferred_probe_trigger(); 1805 1806 /* 1807 * Wait for all "best effort" probes to finish before going back to 1808 * normal enforcement. 1809 */ 1810 wait_for_device_probe(); 1811 fw_devlink_best_effort = false; 1812 } 1813 1814 static void fw_devlink_unblock_consumers(struct device *dev) 1815 { 1816 struct device_link *link; 1817 1818 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1819 return; 1820 1821 device_links_write_lock(); 1822 list_for_each_entry(link, &dev->links.consumers, s_node) 1823 fw_devlink_relax_link(link); 1824 device_links_write_unlock(); 1825 } 1826 1827 1828 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1829 { 1830 struct device *dev; 1831 bool ret; 1832 1833 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1834 return false; 1835 1836 dev = get_dev_from_fwnode(fwnode); 1837 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1838 put_device(dev); 1839 1840 return ret; 1841 } 1842 1843 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1844 { 1845 struct fwnode_handle *parent; 1846 1847 fwnode_for_each_parent_node(fwnode, parent) { 1848 if (fwnode_init_without_drv(parent)) { 1849 fwnode_handle_put(parent); 1850 return true; 1851 } 1852 } 1853 1854 return false; 1855 } 1856 1857 /** 1858 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1859 * @con: Potential consumer device. 1860 * @sup_handle: Potential supplier's fwnode. 1861 * 1862 * Needs to be called with fwnode_lock and device link lock held. 1863 * 1864 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1865 * depend on @con. This function can detect multiple cyles between @sup_handle 1866 * and @con. When such dependency cycles are found, convert all device links 1867 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1868 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1869 * converted into a device link in the future, they are created as 1870 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1871 * fw_devlink=permissive just between the devices in the cycle. We need to do 1872 * this because, at this point, fw_devlink can't tell which of these 1873 * dependencies is not a real dependency. 1874 * 1875 * Return true if one or more cycles were found. Otherwise, return false. 1876 */ 1877 static bool __fw_devlink_relax_cycles(struct device *con, 1878 struct fwnode_handle *sup_handle) 1879 { 1880 struct device *sup_dev = NULL, *par_dev = NULL; 1881 struct fwnode_link *link; 1882 struct device_link *dev_link; 1883 bool ret = false; 1884 1885 if (!sup_handle) 1886 return false; 1887 1888 /* 1889 * We aren't trying to find all cycles. Just a cycle between con and 1890 * sup_handle. 1891 */ 1892 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1893 return false; 1894 1895 sup_handle->flags |= FWNODE_FLAG_VISITED; 1896 1897 sup_dev = get_dev_from_fwnode(sup_handle); 1898 1899 /* Termination condition. */ 1900 if (sup_dev == con) { 1901 ret = true; 1902 goto out; 1903 } 1904 1905 /* 1906 * If sup_dev is bound to a driver and @con hasn't started binding to a 1907 * driver, sup_dev can't be a consumer of @con. So, no need to check 1908 * further. 1909 */ 1910 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1911 con->links.status == DL_DEV_NO_DRIVER) { 1912 ret = false; 1913 goto out; 1914 } 1915 1916 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1917 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1918 __fwnode_link_cycle(link); 1919 ret = true; 1920 } 1921 } 1922 1923 /* 1924 * Give priority to device parent over fwnode parent to account for any 1925 * quirks in how fwnodes are converted to devices. 1926 */ 1927 if (sup_dev) 1928 par_dev = get_device(sup_dev->parent); 1929 else 1930 par_dev = fwnode_get_next_parent_dev(sup_handle); 1931 1932 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) 1933 ret = true; 1934 1935 if (!sup_dev) 1936 goto out; 1937 1938 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 1939 /* 1940 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 1941 * such due to a cycle. 1942 */ 1943 if (device_link_flag_is_sync_state_only(dev_link->flags) && 1944 !(dev_link->flags & DL_FLAG_CYCLE)) 1945 continue; 1946 1947 if (__fw_devlink_relax_cycles(con, 1948 dev_link->supplier->fwnode)) { 1949 fw_devlink_relax_link(dev_link); 1950 dev_link->flags |= DL_FLAG_CYCLE; 1951 ret = true; 1952 } 1953 } 1954 1955 out: 1956 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 1957 put_device(sup_dev); 1958 put_device(par_dev); 1959 return ret; 1960 } 1961 1962 /** 1963 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1964 * @con: consumer device for the device link 1965 * @sup_handle: fwnode handle of supplier 1966 * @link: fwnode link that's being converted to a device link 1967 * 1968 * This function will try to create a device link between the consumer device 1969 * @con and the supplier device represented by @sup_handle. 1970 * 1971 * The supplier has to be provided as a fwnode because incorrect cycles in 1972 * fwnode links can sometimes cause the supplier device to never be created. 1973 * This function detects such cases and returns an error if it cannot create a 1974 * device link from the consumer to a missing supplier. 1975 * 1976 * Returns, 1977 * 0 on successfully creating a device link 1978 * -EINVAL if the device link cannot be created as expected 1979 * -EAGAIN if the device link cannot be created right now, but it may be 1980 * possible to do that in the future 1981 */ 1982 static int fw_devlink_create_devlink(struct device *con, 1983 struct fwnode_handle *sup_handle, 1984 struct fwnode_link *link) 1985 { 1986 struct device *sup_dev; 1987 int ret = 0; 1988 u32 flags; 1989 1990 if (con->fwnode == link->consumer) 1991 flags = fw_devlink_get_flags(link->flags); 1992 else 1993 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1994 1995 /* 1996 * In some cases, a device P might also be a supplier to its child node 1997 * C. However, this would defer the probe of C until the probe of P 1998 * completes successfully. This is perfectly fine in the device driver 1999 * model. device_add() doesn't guarantee probe completion of the device 2000 * by the time it returns. 2001 * 2002 * However, there are a few drivers that assume C will finish probing 2003 * as soon as it's added and before P finishes probing. So, we provide 2004 * a flag to let fw_devlink know not to delay the probe of C until the 2005 * probe of P completes successfully. 2006 * 2007 * When such a flag is set, we can't create device links where P is the 2008 * supplier of C as that would delay the probe of C. 2009 */ 2010 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2011 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2012 return -EINVAL; 2013 2014 /* 2015 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2016 * So cycle detection isn't necessary and shouldn't be done. 2017 */ 2018 if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) { 2019 device_links_write_lock(); 2020 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2021 __fwnode_link_cycle(link); 2022 flags = fw_devlink_get_flags(link->flags); 2023 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2024 sup_handle); 2025 } 2026 device_links_write_unlock(); 2027 } 2028 2029 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2030 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2031 else 2032 sup_dev = get_dev_from_fwnode(sup_handle); 2033 2034 if (sup_dev) { 2035 /* 2036 * If it's one of those drivers that don't actually bind to 2037 * their device using driver core, then don't wait on this 2038 * supplier device indefinitely. 2039 */ 2040 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2041 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2042 dev_dbg(con, 2043 "Not linking %pfwf - dev might never probe\n", 2044 sup_handle); 2045 ret = -EINVAL; 2046 goto out; 2047 } 2048 2049 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2050 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2051 flags, dev_name(sup_dev)); 2052 ret = -EINVAL; 2053 } 2054 2055 goto out; 2056 } 2057 2058 /* 2059 * Supplier or supplier's ancestor already initialized without a struct 2060 * device or being probed by a driver. 2061 */ 2062 if (fwnode_init_without_drv(sup_handle) || 2063 fwnode_ancestor_init_without_drv(sup_handle)) { 2064 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2065 sup_handle); 2066 return -EINVAL; 2067 } 2068 2069 ret = -EAGAIN; 2070 out: 2071 put_device(sup_dev); 2072 return ret; 2073 } 2074 2075 /** 2076 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2077 * @dev: Device that needs to be linked to its consumers 2078 * 2079 * This function looks at all the consumer fwnodes of @dev and creates device 2080 * links between the consumer device and @dev (supplier). 2081 * 2082 * If the consumer device has not been added yet, then this function creates a 2083 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2084 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2085 * sync_state() callback before the real consumer device gets to be added and 2086 * then probed. 2087 * 2088 * Once device links are created from the real consumer to @dev (supplier), the 2089 * fwnode links are deleted. 2090 */ 2091 static void __fw_devlink_link_to_consumers(struct device *dev) 2092 { 2093 struct fwnode_handle *fwnode = dev->fwnode; 2094 struct fwnode_link *link, *tmp; 2095 2096 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2097 struct device *con_dev; 2098 bool own_link = true; 2099 int ret; 2100 2101 con_dev = get_dev_from_fwnode(link->consumer); 2102 /* 2103 * If consumer device is not available yet, make a "proxy" 2104 * SYNC_STATE_ONLY link from the consumer's parent device to 2105 * the supplier device. This is necessary to make sure the 2106 * supplier doesn't get a sync_state() callback before the real 2107 * consumer can create a device link to the supplier. 2108 * 2109 * This proxy link step is needed to handle the case where the 2110 * consumer's parent device is added before the supplier. 2111 */ 2112 if (!con_dev) { 2113 con_dev = fwnode_get_next_parent_dev(link->consumer); 2114 /* 2115 * However, if the consumer's parent device is also the 2116 * parent of the supplier, don't create a 2117 * consumer-supplier link from the parent to its child 2118 * device. Such a dependency is impossible. 2119 */ 2120 if (con_dev && 2121 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2122 put_device(con_dev); 2123 con_dev = NULL; 2124 } else { 2125 own_link = false; 2126 } 2127 } 2128 2129 if (!con_dev) 2130 continue; 2131 2132 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2133 put_device(con_dev); 2134 if (!own_link || ret == -EAGAIN) 2135 continue; 2136 2137 __fwnode_link_del(link); 2138 } 2139 } 2140 2141 /** 2142 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2143 * @dev: The consumer device that needs to be linked to its suppliers 2144 * @fwnode: Root of the fwnode tree that is used to create device links 2145 * 2146 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2147 * @fwnode and creates device links between @dev (consumer) and all the 2148 * supplier devices of the entire fwnode tree at @fwnode. 2149 * 2150 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2151 * and the real suppliers of @dev. Once these device links are created, the 2152 * fwnode links are deleted. 2153 * 2154 * In addition, it also looks at all the suppliers of the entire fwnode tree 2155 * because some of the child devices of @dev that have not been added yet 2156 * (because @dev hasn't probed) might already have their suppliers added to 2157 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2158 * @dev (consumer) and these suppliers to make sure they don't execute their 2159 * sync_state() callbacks before these child devices have a chance to create 2160 * their device links. The fwnode links that correspond to the child devices 2161 * aren't delete because they are needed later to create the device links 2162 * between the real consumer and supplier devices. 2163 */ 2164 static void __fw_devlink_link_to_suppliers(struct device *dev, 2165 struct fwnode_handle *fwnode) 2166 { 2167 bool own_link = (dev->fwnode == fwnode); 2168 struct fwnode_link *link, *tmp; 2169 struct fwnode_handle *child = NULL; 2170 2171 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2172 int ret; 2173 struct fwnode_handle *sup = link->supplier; 2174 2175 ret = fw_devlink_create_devlink(dev, sup, link); 2176 if (!own_link || ret == -EAGAIN) 2177 continue; 2178 2179 __fwnode_link_del(link); 2180 } 2181 2182 /* 2183 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2184 * all the descendants. This proxy link step is needed to handle the 2185 * case where the supplier is added before the consumer's parent device 2186 * (@dev). 2187 */ 2188 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2189 __fw_devlink_link_to_suppliers(dev, child); 2190 } 2191 2192 static void fw_devlink_link_device(struct device *dev) 2193 { 2194 struct fwnode_handle *fwnode = dev->fwnode; 2195 2196 if (!fw_devlink_flags) 2197 return; 2198 2199 fw_devlink_parse_fwtree(fwnode); 2200 2201 mutex_lock(&fwnode_link_lock); 2202 __fw_devlink_link_to_consumers(dev); 2203 __fw_devlink_link_to_suppliers(dev, fwnode); 2204 mutex_unlock(&fwnode_link_lock); 2205 } 2206 2207 /* Device links support end. */ 2208 2209 int (*platform_notify)(struct device *dev) = NULL; 2210 int (*platform_notify_remove)(struct device *dev) = NULL; 2211 static struct kobject *dev_kobj; 2212 struct kobject *sysfs_dev_char_kobj; 2213 struct kobject *sysfs_dev_block_kobj; 2214 2215 static DEFINE_MUTEX(device_hotplug_lock); 2216 2217 void lock_device_hotplug(void) 2218 { 2219 mutex_lock(&device_hotplug_lock); 2220 } 2221 2222 void unlock_device_hotplug(void) 2223 { 2224 mutex_unlock(&device_hotplug_lock); 2225 } 2226 2227 int lock_device_hotplug_sysfs(void) 2228 { 2229 if (mutex_trylock(&device_hotplug_lock)) 2230 return 0; 2231 2232 /* Avoid busy looping (5 ms of sleep should do). */ 2233 msleep(5); 2234 return restart_syscall(); 2235 } 2236 2237 #ifdef CONFIG_BLOCK 2238 static inline int device_is_not_partition(struct device *dev) 2239 { 2240 return !(dev->type == &part_type); 2241 } 2242 #else 2243 static inline int device_is_not_partition(struct device *dev) 2244 { 2245 return 1; 2246 } 2247 #endif 2248 2249 static void device_platform_notify(struct device *dev) 2250 { 2251 acpi_device_notify(dev); 2252 2253 software_node_notify(dev); 2254 2255 if (platform_notify) 2256 platform_notify(dev); 2257 } 2258 2259 static void device_platform_notify_remove(struct device *dev) 2260 { 2261 acpi_device_notify_remove(dev); 2262 2263 software_node_notify_remove(dev); 2264 2265 if (platform_notify_remove) 2266 platform_notify_remove(dev); 2267 } 2268 2269 /** 2270 * dev_driver_string - Return a device's driver name, if at all possible 2271 * @dev: struct device to get the name of 2272 * 2273 * Will return the device's driver's name if it is bound to a device. If 2274 * the device is not bound to a driver, it will return the name of the bus 2275 * it is attached to. If it is not attached to a bus either, an empty 2276 * string will be returned. 2277 */ 2278 const char *dev_driver_string(const struct device *dev) 2279 { 2280 struct device_driver *drv; 2281 2282 /* dev->driver can change to NULL underneath us because of unbinding, 2283 * so be careful about accessing it. dev->bus and dev->class should 2284 * never change once they are set, so they don't need special care. 2285 */ 2286 drv = READ_ONCE(dev->driver); 2287 return drv ? drv->name : dev_bus_name(dev); 2288 } 2289 EXPORT_SYMBOL(dev_driver_string); 2290 2291 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2292 2293 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2294 char *buf) 2295 { 2296 struct device_attribute *dev_attr = to_dev_attr(attr); 2297 struct device *dev = kobj_to_dev(kobj); 2298 ssize_t ret = -EIO; 2299 2300 if (dev_attr->show) 2301 ret = dev_attr->show(dev, dev_attr, buf); 2302 if (ret >= (ssize_t)PAGE_SIZE) { 2303 printk("dev_attr_show: %pS returned bad count\n", 2304 dev_attr->show); 2305 } 2306 return ret; 2307 } 2308 2309 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2310 const char *buf, size_t count) 2311 { 2312 struct device_attribute *dev_attr = to_dev_attr(attr); 2313 struct device *dev = kobj_to_dev(kobj); 2314 ssize_t ret = -EIO; 2315 2316 if (dev_attr->store) 2317 ret = dev_attr->store(dev, dev_attr, buf, count); 2318 return ret; 2319 } 2320 2321 static const struct sysfs_ops dev_sysfs_ops = { 2322 .show = dev_attr_show, 2323 .store = dev_attr_store, 2324 }; 2325 2326 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2327 2328 ssize_t device_store_ulong(struct device *dev, 2329 struct device_attribute *attr, 2330 const char *buf, size_t size) 2331 { 2332 struct dev_ext_attribute *ea = to_ext_attr(attr); 2333 int ret; 2334 unsigned long new; 2335 2336 ret = kstrtoul(buf, 0, &new); 2337 if (ret) 2338 return ret; 2339 *(unsigned long *)(ea->var) = new; 2340 /* Always return full write size even if we didn't consume all */ 2341 return size; 2342 } 2343 EXPORT_SYMBOL_GPL(device_store_ulong); 2344 2345 ssize_t device_show_ulong(struct device *dev, 2346 struct device_attribute *attr, 2347 char *buf) 2348 { 2349 struct dev_ext_attribute *ea = to_ext_attr(attr); 2350 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2351 } 2352 EXPORT_SYMBOL_GPL(device_show_ulong); 2353 2354 ssize_t device_store_int(struct device *dev, 2355 struct device_attribute *attr, 2356 const char *buf, size_t size) 2357 { 2358 struct dev_ext_attribute *ea = to_ext_attr(attr); 2359 int ret; 2360 long new; 2361 2362 ret = kstrtol(buf, 0, &new); 2363 if (ret) 2364 return ret; 2365 2366 if (new > INT_MAX || new < INT_MIN) 2367 return -EINVAL; 2368 *(int *)(ea->var) = new; 2369 /* Always return full write size even if we didn't consume all */ 2370 return size; 2371 } 2372 EXPORT_SYMBOL_GPL(device_store_int); 2373 2374 ssize_t device_show_int(struct device *dev, 2375 struct device_attribute *attr, 2376 char *buf) 2377 { 2378 struct dev_ext_attribute *ea = to_ext_attr(attr); 2379 2380 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2381 } 2382 EXPORT_SYMBOL_GPL(device_show_int); 2383 2384 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2385 const char *buf, size_t size) 2386 { 2387 struct dev_ext_attribute *ea = to_ext_attr(attr); 2388 2389 if (kstrtobool(buf, ea->var) < 0) 2390 return -EINVAL; 2391 2392 return size; 2393 } 2394 EXPORT_SYMBOL_GPL(device_store_bool); 2395 2396 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2397 char *buf) 2398 { 2399 struct dev_ext_attribute *ea = to_ext_attr(attr); 2400 2401 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2402 } 2403 EXPORT_SYMBOL_GPL(device_show_bool); 2404 2405 /** 2406 * device_release - free device structure. 2407 * @kobj: device's kobject. 2408 * 2409 * This is called once the reference count for the object 2410 * reaches 0. We forward the call to the device's release 2411 * method, which should handle actually freeing the structure. 2412 */ 2413 static void device_release(struct kobject *kobj) 2414 { 2415 struct device *dev = kobj_to_dev(kobj); 2416 struct device_private *p = dev->p; 2417 2418 /* 2419 * Some platform devices are driven without driver attached 2420 * and managed resources may have been acquired. Make sure 2421 * all resources are released. 2422 * 2423 * Drivers still can add resources into device after device 2424 * is deleted but alive, so release devres here to avoid 2425 * possible memory leak. 2426 */ 2427 devres_release_all(dev); 2428 2429 kfree(dev->dma_range_map); 2430 2431 if (dev->release) 2432 dev->release(dev); 2433 else if (dev->type && dev->type->release) 2434 dev->type->release(dev); 2435 else if (dev->class && dev->class->dev_release) 2436 dev->class->dev_release(dev); 2437 else 2438 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2439 dev_name(dev)); 2440 kfree(p); 2441 } 2442 2443 static const void *device_namespace(const struct kobject *kobj) 2444 { 2445 const struct device *dev = kobj_to_dev(kobj); 2446 const void *ns = NULL; 2447 2448 if (dev->class && dev->class->ns_type) 2449 ns = dev->class->namespace(dev); 2450 2451 return ns; 2452 } 2453 2454 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2455 { 2456 const struct device *dev = kobj_to_dev(kobj); 2457 2458 if (dev->class && dev->class->get_ownership) 2459 dev->class->get_ownership(dev, uid, gid); 2460 } 2461 2462 static const struct kobj_type device_ktype = { 2463 .release = device_release, 2464 .sysfs_ops = &dev_sysfs_ops, 2465 .namespace = device_namespace, 2466 .get_ownership = device_get_ownership, 2467 }; 2468 2469 2470 static int dev_uevent_filter(const struct kobject *kobj) 2471 { 2472 const struct kobj_type *ktype = get_ktype(kobj); 2473 2474 if (ktype == &device_ktype) { 2475 const struct device *dev = kobj_to_dev(kobj); 2476 if (dev->bus) 2477 return 1; 2478 if (dev->class) 2479 return 1; 2480 } 2481 return 0; 2482 } 2483 2484 static const char *dev_uevent_name(const struct kobject *kobj) 2485 { 2486 const struct device *dev = kobj_to_dev(kobj); 2487 2488 if (dev->bus) 2489 return dev->bus->name; 2490 if (dev->class) 2491 return dev->class->name; 2492 return NULL; 2493 } 2494 2495 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2496 { 2497 const struct device *dev = kobj_to_dev(kobj); 2498 int retval = 0; 2499 2500 /* add device node properties if present */ 2501 if (MAJOR(dev->devt)) { 2502 const char *tmp; 2503 const char *name; 2504 umode_t mode = 0; 2505 kuid_t uid = GLOBAL_ROOT_UID; 2506 kgid_t gid = GLOBAL_ROOT_GID; 2507 2508 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2509 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2510 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2511 if (name) { 2512 add_uevent_var(env, "DEVNAME=%s", name); 2513 if (mode) 2514 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2515 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2516 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2517 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2518 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2519 kfree(tmp); 2520 } 2521 } 2522 2523 if (dev->type && dev->type->name) 2524 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2525 2526 if (dev->driver) 2527 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2528 2529 /* Add common DT information about the device */ 2530 of_device_uevent(dev, env); 2531 2532 /* have the bus specific function add its stuff */ 2533 if (dev->bus && dev->bus->uevent) { 2534 retval = dev->bus->uevent(dev, env); 2535 if (retval) 2536 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2537 dev_name(dev), __func__, retval); 2538 } 2539 2540 /* have the class specific function add its stuff */ 2541 if (dev->class && dev->class->dev_uevent) { 2542 retval = dev->class->dev_uevent(dev, env); 2543 if (retval) 2544 pr_debug("device: '%s': %s: class uevent() " 2545 "returned %d\n", dev_name(dev), 2546 __func__, retval); 2547 } 2548 2549 /* have the device type specific function add its stuff */ 2550 if (dev->type && dev->type->uevent) { 2551 retval = dev->type->uevent(dev, env); 2552 if (retval) 2553 pr_debug("device: '%s': %s: dev_type uevent() " 2554 "returned %d\n", dev_name(dev), 2555 __func__, retval); 2556 } 2557 2558 return retval; 2559 } 2560 2561 static const struct kset_uevent_ops device_uevent_ops = { 2562 .filter = dev_uevent_filter, 2563 .name = dev_uevent_name, 2564 .uevent = dev_uevent, 2565 }; 2566 2567 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2568 char *buf) 2569 { 2570 struct kobject *top_kobj; 2571 struct kset *kset; 2572 struct kobj_uevent_env *env = NULL; 2573 int i; 2574 int len = 0; 2575 int retval; 2576 2577 /* search the kset, the device belongs to */ 2578 top_kobj = &dev->kobj; 2579 while (!top_kobj->kset && top_kobj->parent) 2580 top_kobj = top_kobj->parent; 2581 if (!top_kobj->kset) 2582 goto out; 2583 2584 kset = top_kobj->kset; 2585 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2586 goto out; 2587 2588 /* respect filter */ 2589 if (kset->uevent_ops && kset->uevent_ops->filter) 2590 if (!kset->uevent_ops->filter(&dev->kobj)) 2591 goto out; 2592 2593 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2594 if (!env) 2595 return -ENOMEM; 2596 2597 /* let the kset specific function add its keys */ 2598 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2599 if (retval) 2600 goto out; 2601 2602 /* copy keys to file */ 2603 for (i = 0; i < env->envp_idx; i++) 2604 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2605 out: 2606 kfree(env); 2607 return len; 2608 } 2609 2610 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2611 const char *buf, size_t count) 2612 { 2613 int rc; 2614 2615 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2616 2617 if (rc) { 2618 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2619 return rc; 2620 } 2621 2622 return count; 2623 } 2624 static DEVICE_ATTR_RW(uevent); 2625 2626 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2627 char *buf) 2628 { 2629 bool val; 2630 2631 device_lock(dev); 2632 val = !dev->offline; 2633 device_unlock(dev); 2634 return sysfs_emit(buf, "%u\n", val); 2635 } 2636 2637 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2638 const char *buf, size_t count) 2639 { 2640 bool val; 2641 int ret; 2642 2643 ret = kstrtobool(buf, &val); 2644 if (ret < 0) 2645 return ret; 2646 2647 ret = lock_device_hotplug_sysfs(); 2648 if (ret) 2649 return ret; 2650 2651 ret = val ? device_online(dev) : device_offline(dev); 2652 unlock_device_hotplug(); 2653 return ret < 0 ? ret : count; 2654 } 2655 static DEVICE_ATTR_RW(online); 2656 2657 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2658 char *buf) 2659 { 2660 const char *loc; 2661 2662 switch (dev->removable) { 2663 case DEVICE_REMOVABLE: 2664 loc = "removable"; 2665 break; 2666 case DEVICE_FIXED: 2667 loc = "fixed"; 2668 break; 2669 default: 2670 loc = "unknown"; 2671 } 2672 return sysfs_emit(buf, "%s\n", loc); 2673 } 2674 static DEVICE_ATTR_RO(removable); 2675 2676 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2677 { 2678 return sysfs_create_groups(&dev->kobj, groups); 2679 } 2680 EXPORT_SYMBOL_GPL(device_add_groups); 2681 2682 void device_remove_groups(struct device *dev, 2683 const struct attribute_group **groups) 2684 { 2685 sysfs_remove_groups(&dev->kobj, groups); 2686 } 2687 EXPORT_SYMBOL_GPL(device_remove_groups); 2688 2689 union device_attr_group_devres { 2690 const struct attribute_group *group; 2691 const struct attribute_group **groups; 2692 }; 2693 2694 static void devm_attr_group_remove(struct device *dev, void *res) 2695 { 2696 union device_attr_group_devres *devres = res; 2697 const struct attribute_group *group = devres->group; 2698 2699 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2700 sysfs_remove_group(&dev->kobj, group); 2701 } 2702 2703 static void devm_attr_groups_remove(struct device *dev, void *res) 2704 { 2705 union device_attr_group_devres *devres = res; 2706 const struct attribute_group **groups = devres->groups; 2707 2708 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2709 sysfs_remove_groups(&dev->kobj, groups); 2710 } 2711 2712 /** 2713 * devm_device_add_group - given a device, create a managed attribute group 2714 * @dev: The device to create the group for 2715 * @grp: The attribute group to create 2716 * 2717 * This function creates a group for the first time. It will explicitly 2718 * warn and error if any of the attribute files being created already exist. 2719 * 2720 * Returns 0 on success or error code on failure. 2721 */ 2722 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2723 { 2724 union device_attr_group_devres *devres; 2725 int error; 2726 2727 devres = devres_alloc(devm_attr_group_remove, 2728 sizeof(*devres), GFP_KERNEL); 2729 if (!devres) 2730 return -ENOMEM; 2731 2732 error = sysfs_create_group(&dev->kobj, grp); 2733 if (error) { 2734 devres_free(devres); 2735 return error; 2736 } 2737 2738 devres->group = grp; 2739 devres_add(dev, devres); 2740 return 0; 2741 } 2742 EXPORT_SYMBOL_GPL(devm_device_add_group); 2743 2744 /** 2745 * devm_device_add_groups - create a bunch of managed attribute groups 2746 * @dev: The device to create the group for 2747 * @groups: The attribute groups to create, NULL terminated 2748 * 2749 * This function creates a bunch of managed attribute groups. If an error 2750 * occurs when creating a group, all previously created groups will be 2751 * removed, unwinding everything back to the original state when this 2752 * function was called. It will explicitly warn and error if any of the 2753 * attribute files being created already exist. 2754 * 2755 * Returns 0 on success or error code from sysfs_create_group on failure. 2756 */ 2757 int devm_device_add_groups(struct device *dev, 2758 const struct attribute_group **groups) 2759 { 2760 union device_attr_group_devres *devres; 2761 int error; 2762 2763 devres = devres_alloc(devm_attr_groups_remove, 2764 sizeof(*devres), GFP_KERNEL); 2765 if (!devres) 2766 return -ENOMEM; 2767 2768 error = sysfs_create_groups(&dev->kobj, groups); 2769 if (error) { 2770 devres_free(devres); 2771 return error; 2772 } 2773 2774 devres->groups = groups; 2775 devres_add(dev, devres); 2776 return 0; 2777 } 2778 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2779 2780 static int device_add_attrs(struct device *dev) 2781 { 2782 struct class *class = dev->class; 2783 const struct device_type *type = dev->type; 2784 int error; 2785 2786 if (class) { 2787 error = device_add_groups(dev, class->dev_groups); 2788 if (error) 2789 return error; 2790 } 2791 2792 if (type) { 2793 error = device_add_groups(dev, type->groups); 2794 if (error) 2795 goto err_remove_class_groups; 2796 } 2797 2798 error = device_add_groups(dev, dev->groups); 2799 if (error) 2800 goto err_remove_type_groups; 2801 2802 if (device_supports_offline(dev) && !dev->offline_disabled) { 2803 error = device_create_file(dev, &dev_attr_online); 2804 if (error) 2805 goto err_remove_dev_groups; 2806 } 2807 2808 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2809 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2810 if (error) 2811 goto err_remove_dev_online; 2812 } 2813 2814 if (dev_removable_is_valid(dev)) { 2815 error = device_create_file(dev, &dev_attr_removable); 2816 if (error) 2817 goto err_remove_dev_waiting_for_supplier; 2818 } 2819 2820 if (dev_add_physical_location(dev)) { 2821 error = device_add_group(dev, 2822 &dev_attr_physical_location_group); 2823 if (error) 2824 goto err_remove_dev_removable; 2825 } 2826 2827 return 0; 2828 2829 err_remove_dev_removable: 2830 device_remove_file(dev, &dev_attr_removable); 2831 err_remove_dev_waiting_for_supplier: 2832 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2833 err_remove_dev_online: 2834 device_remove_file(dev, &dev_attr_online); 2835 err_remove_dev_groups: 2836 device_remove_groups(dev, dev->groups); 2837 err_remove_type_groups: 2838 if (type) 2839 device_remove_groups(dev, type->groups); 2840 err_remove_class_groups: 2841 if (class) 2842 device_remove_groups(dev, class->dev_groups); 2843 2844 return error; 2845 } 2846 2847 static void device_remove_attrs(struct device *dev) 2848 { 2849 struct class *class = dev->class; 2850 const struct device_type *type = dev->type; 2851 2852 if (dev->physical_location) { 2853 device_remove_group(dev, &dev_attr_physical_location_group); 2854 kfree(dev->physical_location); 2855 } 2856 2857 device_remove_file(dev, &dev_attr_removable); 2858 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2859 device_remove_file(dev, &dev_attr_online); 2860 device_remove_groups(dev, dev->groups); 2861 2862 if (type) 2863 device_remove_groups(dev, type->groups); 2864 2865 if (class) 2866 device_remove_groups(dev, class->dev_groups); 2867 } 2868 2869 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2870 char *buf) 2871 { 2872 return print_dev_t(buf, dev->devt); 2873 } 2874 static DEVICE_ATTR_RO(dev); 2875 2876 /* /sys/devices/ */ 2877 struct kset *devices_kset; 2878 2879 /** 2880 * devices_kset_move_before - Move device in the devices_kset's list. 2881 * @deva: Device to move. 2882 * @devb: Device @deva should come before. 2883 */ 2884 static void devices_kset_move_before(struct device *deva, struct device *devb) 2885 { 2886 if (!devices_kset) 2887 return; 2888 pr_debug("devices_kset: Moving %s before %s\n", 2889 dev_name(deva), dev_name(devb)); 2890 spin_lock(&devices_kset->list_lock); 2891 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2892 spin_unlock(&devices_kset->list_lock); 2893 } 2894 2895 /** 2896 * devices_kset_move_after - Move device in the devices_kset's list. 2897 * @deva: Device to move 2898 * @devb: Device @deva should come after. 2899 */ 2900 static void devices_kset_move_after(struct device *deva, struct device *devb) 2901 { 2902 if (!devices_kset) 2903 return; 2904 pr_debug("devices_kset: Moving %s after %s\n", 2905 dev_name(deva), dev_name(devb)); 2906 spin_lock(&devices_kset->list_lock); 2907 list_move(&deva->kobj.entry, &devb->kobj.entry); 2908 spin_unlock(&devices_kset->list_lock); 2909 } 2910 2911 /** 2912 * devices_kset_move_last - move the device to the end of devices_kset's list. 2913 * @dev: device to move 2914 */ 2915 void devices_kset_move_last(struct device *dev) 2916 { 2917 if (!devices_kset) 2918 return; 2919 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2920 spin_lock(&devices_kset->list_lock); 2921 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2922 spin_unlock(&devices_kset->list_lock); 2923 } 2924 2925 /** 2926 * device_create_file - create sysfs attribute file for device. 2927 * @dev: device. 2928 * @attr: device attribute descriptor. 2929 */ 2930 int device_create_file(struct device *dev, 2931 const struct device_attribute *attr) 2932 { 2933 int error = 0; 2934 2935 if (dev) { 2936 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2937 "Attribute %s: write permission without 'store'\n", 2938 attr->attr.name); 2939 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2940 "Attribute %s: read permission without 'show'\n", 2941 attr->attr.name); 2942 error = sysfs_create_file(&dev->kobj, &attr->attr); 2943 } 2944 2945 return error; 2946 } 2947 EXPORT_SYMBOL_GPL(device_create_file); 2948 2949 /** 2950 * device_remove_file - remove sysfs attribute file. 2951 * @dev: device. 2952 * @attr: device attribute descriptor. 2953 */ 2954 void device_remove_file(struct device *dev, 2955 const struct device_attribute *attr) 2956 { 2957 if (dev) 2958 sysfs_remove_file(&dev->kobj, &attr->attr); 2959 } 2960 EXPORT_SYMBOL_GPL(device_remove_file); 2961 2962 /** 2963 * device_remove_file_self - remove sysfs attribute file from its own method. 2964 * @dev: device. 2965 * @attr: device attribute descriptor. 2966 * 2967 * See kernfs_remove_self() for details. 2968 */ 2969 bool device_remove_file_self(struct device *dev, 2970 const struct device_attribute *attr) 2971 { 2972 if (dev) 2973 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2974 else 2975 return false; 2976 } 2977 EXPORT_SYMBOL_GPL(device_remove_file_self); 2978 2979 /** 2980 * device_create_bin_file - create sysfs binary attribute file for device. 2981 * @dev: device. 2982 * @attr: device binary attribute descriptor. 2983 */ 2984 int device_create_bin_file(struct device *dev, 2985 const struct bin_attribute *attr) 2986 { 2987 int error = -EINVAL; 2988 if (dev) 2989 error = sysfs_create_bin_file(&dev->kobj, attr); 2990 return error; 2991 } 2992 EXPORT_SYMBOL_GPL(device_create_bin_file); 2993 2994 /** 2995 * device_remove_bin_file - remove sysfs binary attribute file 2996 * @dev: device. 2997 * @attr: device binary attribute descriptor. 2998 */ 2999 void device_remove_bin_file(struct device *dev, 3000 const struct bin_attribute *attr) 3001 { 3002 if (dev) 3003 sysfs_remove_bin_file(&dev->kobj, attr); 3004 } 3005 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3006 3007 static void klist_children_get(struct klist_node *n) 3008 { 3009 struct device_private *p = to_device_private_parent(n); 3010 struct device *dev = p->device; 3011 3012 get_device(dev); 3013 } 3014 3015 static void klist_children_put(struct klist_node *n) 3016 { 3017 struct device_private *p = to_device_private_parent(n); 3018 struct device *dev = p->device; 3019 3020 put_device(dev); 3021 } 3022 3023 /** 3024 * device_initialize - init device structure. 3025 * @dev: device. 3026 * 3027 * This prepares the device for use by other layers by initializing 3028 * its fields. 3029 * It is the first half of device_register(), if called by 3030 * that function, though it can also be called separately, so one 3031 * may use @dev's fields. In particular, get_device()/put_device() 3032 * may be used for reference counting of @dev after calling this 3033 * function. 3034 * 3035 * All fields in @dev must be initialized by the caller to 0, except 3036 * for those explicitly set to some other value. The simplest 3037 * approach is to use kzalloc() to allocate the structure containing 3038 * @dev. 3039 * 3040 * NOTE: Use put_device() to give up your reference instead of freeing 3041 * @dev directly once you have called this function. 3042 */ 3043 void device_initialize(struct device *dev) 3044 { 3045 dev->kobj.kset = devices_kset; 3046 kobject_init(&dev->kobj, &device_ktype); 3047 INIT_LIST_HEAD(&dev->dma_pools); 3048 mutex_init(&dev->mutex); 3049 lockdep_set_novalidate_class(&dev->mutex); 3050 spin_lock_init(&dev->devres_lock); 3051 INIT_LIST_HEAD(&dev->devres_head); 3052 device_pm_init(dev); 3053 set_dev_node(dev, NUMA_NO_NODE); 3054 INIT_LIST_HEAD(&dev->links.consumers); 3055 INIT_LIST_HEAD(&dev->links.suppliers); 3056 INIT_LIST_HEAD(&dev->links.defer_sync); 3057 dev->links.status = DL_DEV_NO_DRIVER; 3058 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3059 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3060 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3061 dev->dma_coherent = dma_default_coherent; 3062 #endif 3063 #ifdef CONFIG_SWIOTLB 3064 dev->dma_io_tlb_mem = &io_tlb_default_mem; 3065 #endif 3066 } 3067 EXPORT_SYMBOL_GPL(device_initialize); 3068 3069 struct kobject *virtual_device_parent(struct device *dev) 3070 { 3071 static struct kobject *virtual_dir = NULL; 3072 3073 if (!virtual_dir) 3074 virtual_dir = kobject_create_and_add("virtual", 3075 &devices_kset->kobj); 3076 3077 return virtual_dir; 3078 } 3079 3080 struct class_dir { 3081 struct kobject kobj; 3082 struct class *class; 3083 }; 3084 3085 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3086 3087 static void class_dir_release(struct kobject *kobj) 3088 { 3089 struct class_dir *dir = to_class_dir(kobj); 3090 kfree(dir); 3091 } 3092 3093 static const 3094 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3095 { 3096 const struct class_dir *dir = to_class_dir(kobj); 3097 return dir->class->ns_type; 3098 } 3099 3100 static const struct kobj_type class_dir_ktype = { 3101 .release = class_dir_release, 3102 .sysfs_ops = &kobj_sysfs_ops, 3103 .child_ns_type = class_dir_child_ns_type 3104 }; 3105 3106 static struct kobject * 3107 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 3108 { 3109 struct class_dir *dir; 3110 int retval; 3111 3112 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3113 if (!dir) 3114 return ERR_PTR(-ENOMEM); 3115 3116 dir->class = class; 3117 kobject_init(&dir->kobj, &class_dir_ktype); 3118 3119 dir->kobj.kset = &class->p->glue_dirs; 3120 3121 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 3122 if (retval < 0) { 3123 kobject_put(&dir->kobj); 3124 return ERR_PTR(retval); 3125 } 3126 return &dir->kobj; 3127 } 3128 3129 static DEFINE_MUTEX(gdp_mutex); 3130 3131 static struct kobject *get_device_parent(struct device *dev, 3132 struct device *parent) 3133 { 3134 struct kobject *kobj = NULL; 3135 3136 if (dev->class) { 3137 struct kobject *parent_kobj; 3138 struct kobject *k; 3139 3140 #ifdef CONFIG_BLOCK 3141 /* block disks show up in /sys/block */ 3142 if (sysfs_deprecated && dev->class == &block_class) { 3143 if (parent && parent->class == &block_class) 3144 return &parent->kobj; 3145 return &block_class.p->subsys.kobj; 3146 } 3147 #endif 3148 3149 /* 3150 * If we have no parent, we live in "virtual". 3151 * Class-devices with a non class-device as parent, live 3152 * in a "glue" directory to prevent namespace collisions. 3153 */ 3154 if (parent == NULL) 3155 parent_kobj = virtual_device_parent(dev); 3156 else if (parent->class && !dev->class->ns_type) 3157 return &parent->kobj; 3158 else 3159 parent_kobj = &parent->kobj; 3160 3161 mutex_lock(&gdp_mutex); 3162 3163 /* find our class-directory at the parent and reference it */ 3164 spin_lock(&dev->class->p->glue_dirs.list_lock); 3165 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 3166 if (k->parent == parent_kobj) { 3167 kobj = kobject_get(k); 3168 break; 3169 } 3170 spin_unlock(&dev->class->p->glue_dirs.list_lock); 3171 if (kobj) { 3172 mutex_unlock(&gdp_mutex); 3173 return kobj; 3174 } 3175 3176 /* or create a new class-directory at the parent device */ 3177 k = class_dir_create_and_add(dev->class, parent_kobj); 3178 /* do not emit an uevent for this simple "glue" directory */ 3179 mutex_unlock(&gdp_mutex); 3180 return k; 3181 } 3182 3183 /* subsystems can specify a default root directory for their devices */ 3184 if (!parent && dev->bus) { 3185 struct device *dev_root = bus_get_dev_root(dev->bus); 3186 3187 if (dev_root) { 3188 kobj = &dev_root->kobj; 3189 put_device(dev_root); 3190 return kobj; 3191 } 3192 } 3193 3194 if (parent) 3195 return &parent->kobj; 3196 return NULL; 3197 } 3198 3199 static inline bool live_in_glue_dir(struct kobject *kobj, 3200 struct device *dev) 3201 { 3202 if (!kobj || !dev->class || 3203 kobj->kset != &dev->class->p->glue_dirs) 3204 return false; 3205 return true; 3206 } 3207 3208 static inline struct kobject *get_glue_dir(struct device *dev) 3209 { 3210 return dev->kobj.parent; 3211 } 3212 3213 /** 3214 * kobject_has_children - Returns whether a kobject has children. 3215 * @kobj: the object to test 3216 * 3217 * This will return whether a kobject has other kobjects as children. 3218 * 3219 * It does NOT account for the presence of attribute files, only sub 3220 * directories. It also assumes there is no concurrent addition or 3221 * removal of such children, and thus relies on external locking. 3222 */ 3223 static inline bool kobject_has_children(struct kobject *kobj) 3224 { 3225 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3226 3227 return kobj->sd && kobj->sd->dir.subdirs; 3228 } 3229 3230 /* 3231 * make sure cleaning up dir as the last step, we need to make 3232 * sure .release handler of kobject is run with holding the 3233 * global lock 3234 */ 3235 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3236 { 3237 unsigned int ref; 3238 3239 /* see if we live in a "glue" directory */ 3240 if (!live_in_glue_dir(glue_dir, dev)) 3241 return; 3242 3243 mutex_lock(&gdp_mutex); 3244 /** 3245 * There is a race condition between removing glue directory 3246 * and adding a new device under the glue directory. 3247 * 3248 * CPU1: CPU2: 3249 * 3250 * device_add() 3251 * get_device_parent() 3252 * class_dir_create_and_add() 3253 * kobject_add_internal() 3254 * create_dir() // create glue_dir 3255 * 3256 * device_add() 3257 * get_device_parent() 3258 * kobject_get() // get glue_dir 3259 * 3260 * device_del() 3261 * cleanup_glue_dir() 3262 * kobject_del(glue_dir) 3263 * 3264 * kobject_add() 3265 * kobject_add_internal() 3266 * create_dir() // in glue_dir 3267 * sysfs_create_dir_ns() 3268 * kernfs_create_dir_ns(sd) 3269 * 3270 * sysfs_remove_dir() // glue_dir->sd=NULL 3271 * sysfs_put() // free glue_dir->sd 3272 * 3273 * // sd is freed 3274 * kernfs_new_node(sd) 3275 * kernfs_get(glue_dir) 3276 * kernfs_add_one() 3277 * kernfs_put() 3278 * 3279 * Before CPU1 remove last child device under glue dir, if CPU2 add 3280 * a new device under glue dir, the glue_dir kobject reference count 3281 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3282 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3283 * and sysfs_put(). This result in glue_dir->sd is freed. 3284 * 3285 * Then the CPU2 will see a stale "empty" but still potentially used 3286 * glue dir around in kernfs_new_node(). 3287 * 3288 * In order to avoid this happening, we also should make sure that 3289 * kernfs_node for glue_dir is released in CPU1 only when refcount 3290 * for glue_dir kobj is 1. 3291 */ 3292 ref = kref_read(&glue_dir->kref); 3293 if (!kobject_has_children(glue_dir) && !--ref) 3294 kobject_del(glue_dir); 3295 kobject_put(glue_dir); 3296 mutex_unlock(&gdp_mutex); 3297 } 3298 3299 static int device_add_class_symlinks(struct device *dev) 3300 { 3301 struct device_node *of_node = dev_of_node(dev); 3302 int error; 3303 3304 if (of_node) { 3305 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3306 if (error) 3307 dev_warn(dev, "Error %d creating of_node link\n",error); 3308 /* An error here doesn't warrant bringing down the device */ 3309 } 3310 3311 if (!dev->class) 3312 return 0; 3313 3314 error = sysfs_create_link(&dev->kobj, 3315 &dev->class->p->subsys.kobj, 3316 "subsystem"); 3317 if (error) 3318 goto out_devnode; 3319 3320 if (dev->parent && device_is_not_partition(dev)) { 3321 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3322 "device"); 3323 if (error) 3324 goto out_subsys; 3325 } 3326 3327 #ifdef CONFIG_BLOCK 3328 /* /sys/block has directories and does not need symlinks */ 3329 if (sysfs_deprecated && dev->class == &block_class) 3330 return 0; 3331 #endif 3332 3333 /* link in the class directory pointing to the device */ 3334 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3335 &dev->kobj, dev_name(dev)); 3336 if (error) 3337 goto out_device; 3338 3339 return 0; 3340 3341 out_device: 3342 sysfs_remove_link(&dev->kobj, "device"); 3343 3344 out_subsys: 3345 sysfs_remove_link(&dev->kobj, "subsystem"); 3346 out_devnode: 3347 sysfs_remove_link(&dev->kobj, "of_node"); 3348 return error; 3349 } 3350 3351 static void device_remove_class_symlinks(struct device *dev) 3352 { 3353 if (dev_of_node(dev)) 3354 sysfs_remove_link(&dev->kobj, "of_node"); 3355 3356 if (!dev->class) 3357 return; 3358 3359 if (dev->parent && device_is_not_partition(dev)) 3360 sysfs_remove_link(&dev->kobj, "device"); 3361 sysfs_remove_link(&dev->kobj, "subsystem"); 3362 #ifdef CONFIG_BLOCK 3363 if (sysfs_deprecated && dev->class == &block_class) 3364 return; 3365 #endif 3366 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3367 } 3368 3369 /** 3370 * dev_set_name - set a device name 3371 * @dev: device 3372 * @fmt: format string for the device's name 3373 */ 3374 int dev_set_name(struct device *dev, const char *fmt, ...) 3375 { 3376 va_list vargs; 3377 int err; 3378 3379 va_start(vargs, fmt); 3380 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3381 va_end(vargs); 3382 return err; 3383 } 3384 EXPORT_SYMBOL_GPL(dev_set_name); 3385 3386 /** 3387 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3388 * @dev: device 3389 * 3390 * By default we select char/ for new entries. Setting class->dev_obj 3391 * to NULL prevents an entry from being created. class->dev_kobj must 3392 * be set (or cleared) before any devices are registered to the class 3393 * otherwise device_create_sys_dev_entry() and 3394 * device_remove_sys_dev_entry() will disagree about the presence of 3395 * the link. 3396 */ 3397 static struct kobject *device_to_dev_kobj(struct device *dev) 3398 { 3399 struct kobject *kobj; 3400 3401 if (dev->class) 3402 kobj = dev->class->dev_kobj; 3403 else 3404 kobj = sysfs_dev_char_kobj; 3405 3406 return kobj; 3407 } 3408 3409 static int device_create_sys_dev_entry(struct device *dev) 3410 { 3411 struct kobject *kobj = device_to_dev_kobj(dev); 3412 int error = 0; 3413 char devt_str[15]; 3414 3415 if (kobj) { 3416 format_dev_t(devt_str, dev->devt); 3417 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3418 } 3419 3420 return error; 3421 } 3422 3423 static void device_remove_sys_dev_entry(struct device *dev) 3424 { 3425 struct kobject *kobj = device_to_dev_kobj(dev); 3426 char devt_str[15]; 3427 3428 if (kobj) { 3429 format_dev_t(devt_str, dev->devt); 3430 sysfs_remove_link(kobj, devt_str); 3431 } 3432 } 3433 3434 static int device_private_init(struct device *dev) 3435 { 3436 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3437 if (!dev->p) 3438 return -ENOMEM; 3439 dev->p->device = dev; 3440 klist_init(&dev->p->klist_children, klist_children_get, 3441 klist_children_put); 3442 INIT_LIST_HEAD(&dev->p->deferred_probe); 3443 return 0; 3444 } 3445 3446 /** 3447 * device_add - add device to device hierarchy. 3448 * @dev: device. 3449 * 3450 * This is part 2 of device_register(), though may be called 3451 * separately _iff_ device_initialize() has been called separately. 3452 * 3453 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3454 * to the global and sibling lists for the device, then 3455 * adds it to the other relevant subsystems of the driver model. 3456 * 3457 * Do not call this routine or device_register() more than once for 3458 * any device structure. The driver model core is not designed to work 3459 * with devices that get unregistered and then spring back to life. 3460 * (Among other things, it's very hard to guarantee that all references 3461 * to the previous incarnation of @dev have been dropped.) Allocate 3462 * and register a fresh new struct device instead. 3463 * 3464 * NOTE: _Never_ directly free @dev after calling this function, even 3465 * if it returned an error! Always use put_device() to give up your 3466 * reference instead. 3467 * 3468 * Rule of thumb is: if device_add() succeeds, you should call 3469 * device_del() when you want to get rid of it. If device_add() has 3470 * *not* succeeded, use *only* put_device() to drop the reference 3471 * count. 3472 */ 3473 int device_add(struct device *dev) 3474 { 3475 struct device *parent; 3476 struct kobject *kobj; 3477 struct class_interface *class_intf; 3478 int error = -EINVAL; 3479 struct kobject *glue_dir = NULL; 3480 3481 dev = get_device(dev); 3482 if (!dev) 3483 goto done; 3484 3485 if (!dev->p) { 3486 error = device_private_init(dev); 3487 if (error) 3488 goto done; 3489 } 3490 3491 /* 3492 * for statically allocated devices, which should all be converted 3493 * some day, we need to initialize the name. We prevent reading back 3494 * the name, and force the use of dev_name() 3495 */ 3496 if (dev->init_name) { 3497 dev_set_name(dev, "%s", dev->init_name); 3498 dev->init_name = NULL; 3499 } 3500 3501 /* subsystems can specify simple device enumeration */ 3502 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3503 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3504 3505 if (!dev_name(dev)) { 3506 error = -EINVAL; 3507 goto name_error; 3508 } 3509 3510 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3511 3512 parent = get_device(dev->parent); 3513 kobj = get_device_parent(dev, parent); 3514 if (IS_ERR(kobj)) { 3515 error = PTR_ERR(kobj); 3516 goto parent_error; 3517 } 3518 if (kobj) 3519 dev->kobj.parent = kobj; 3520 3521 /* use parent numa_node */ 3522 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3523 set_dev_node(dev, dev_to_node(parent)); 3524 3525 /* first, register with generic layer. */ 3526 /* we require the name to be set before, and pass NULL */ 3527 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3528 if (error) { 3529 glue_dir = kobj; 3530 goto Error; 3531 } 3532 3533 /* notify platform of device entry */ 3534 device_platform_notify(dev); 3535 3536 error = device_create_file(dev, &dev_attr_uevent); 3537 if (error) 3538 goto attrError; 3539 3540 error = device_add_class_symlinks(dev); 3541 if (error) 3542 goto SymlinkError; 3543 error = device_add_attrs(dev); 3544 if (error) 3545 goto AttrsError; 3546 error = bus_add_device(dev); 3547 if (error) 3548 goto BusError; 3549 error = dpm_sysfs_add(dev); 3550 if (error) 3551 goto DPMError; 3552 device_pm_add(dev); 3553 3554 if (MAJOR(dev->devt)) { 3555 error = device_create_file(dev, &dev_attr_dev); 3556 if (error) 3557 goto DevAttrError; 3558 3559 error = device_create_sys_dev_entry(dev); 3560 if (error) 3561 goto SysEntryError; 3562 3563 devtmpfs_create_node(dev); 3564 } 3565 3566 /* Notify clients of device addition. This call must come 3567 * after dpm_sysfs_add() and before kobject_uevent(). 3568 */ 3569 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3570 kobject_uevent(&dev->kobj, KOBJ_ADD); 3571 3572 /* 3573 * Check if any of the other devices (consumers) have been waiting for 3574 * this device (supplier) to be added so that they can create a device 3575 * link to it. 3576 * 3577 * This needs to happen after device_pm_add() because device_link_add() 3578 * requires the supplier be registered before it's called. 3579 * 3580 * But this also needs to happen before bus_probe_device() to make sure 3581 * waiting consumers can link to it before the driver is bound to the 3582 * device and the driver sync_state callback is called for this device. 3583 */ 3584 if (dev->fwnode && !dev->fwnode->dev) { 3585 dev->fwnode->dev = dev; 3586 fw_devlink_link_device(dev); 3587 } 3588 3589 bus_probe_device(dev); 3590 3591 /* 3592 * If all driver registration is done and a newly added device doesn't 3593 * match with any driver, don't block its consumers from probing in 3594 * case the consumer device is able to operate without this supplier. 3595 */ 3596 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3597 fw_devlink_unblock_consumers(dev); 3598 3599 if (parent) 3600 klist_add_tail(&dev->p->knode_parent, 3601 &parent->p->klist_children); 3602 3603 if (dev->class) { 3604 mutex_lock(&dev->class->p->mutex); 3605 /* tie the class to the device */ 3606 klist_add_tail(&dev->p->knode_class, 3607 &dev->class->p->klist_devices); 3608 3609 /* notify any interfaces that the device is here */ 3610 list_for_each_entry(class_intf, 3611 &dev->class->p->interfaces, node) 3612 if (class_intf->add_dev) 3613 class_intf->add_dev(dev, class_intf); 3614 mutex_unlock(&dev->class->p->mutex); 3615 } 3616 done: 3617 put_device(dev); 3618 return error; 3619 SysEntryError: 3620 if (MAJOR(dev->devt)) 3621 device_remove_file(dev, &dev_attr_dev); 3622 DevAttrError: 3623 device_pm_remove(dev); 3624 dpm_sysfs_remove(dev); 3625 DPMError: 3626 dev->driver = NULL; 3627 bus_remove_device(dev); 3628 BusError: 3629 device_remove_attrs(dev); 3630 AttrsError: 3631 device_remove_class_symlinks(dev); 3632 SymlinkError: 3633 device_remove_file(dev, &dev_attr_uevent); 3634 attrError: 3635 device_platform_notify_remove(dev); 3636 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3637 glue_dir = get_glue_dir(dev); 3638 kobject_del(&dev->kobj); 3639 Error: 3640 cleanup_glue_dir(dev, glue_dir); 3641 parent_error: 3642 put_device(parent); 3643 name_error: 3644 kfree(dev->p); 3645 dev->p = NULL; 3646 goto done; 3647 } 3648 EXPORT_SYMBOL_GPL(device_add); 3649 3650 /** 3651 * device_register - register a device with the system. 3652 * @dev: pointer to the device structure 3653 * 3654 * This happens in two clean steps - initialize the device 3655 * and add it to the system. The two steps can be called 3656 * separately, but this is the easiest and most common. 3657 * I.e. you should only call the two helpers separately if 3658 * have a clearly defined need to use and refcount the device 3659 * before it is added to the hierarchy. 3660 * 3661 * For more information, see the kerneldoc for device_initialize() 3662 * and device_add(). 3663 * 3664 * NOTE: _Never_ directly free @dev after calling this function, even 3665 * if it returned an error! Always use put_device() to give up the 3666 * reference initialized in this function instead. 3667 */ 3668 int device_register(struct device *dev) 3669 { 3670 device_initialize(dev); 3671 return device_add(dev); 3672 } 3673 EXPORT_SYMBOL_GPL(device_register); 3674 3675 /** 3676 * get_device - increment reference count for device. 3677 * @dev: device. 3678 * 3679 * This simply forwards the call to kobject_get(), though 3680 * we do take care to provide for the case that we get a NULL 3681 * pointer passed in. 3682 */ 3683 struct device *get_device(struct device *dev) 3684 { 3685 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3686 } 3687 EXPORT_SYMBOL_GPL(get_device); 3688 3689 /** 3690 * put_device - decrement reference count. 3691 * @dev: device in question. 3692 */ 3693 void put_device(struct device *dev) 3694 { 3695 /* might_sleep(); */ 3696 if (dev) 3697 kobject_put(&dev->kobj); 3698 } 3699 EXPORT_SYMBOL_GPL(put_device); 3700 3701 bool kill_device(struct device *dev) 3702 { 3703 /* 3704 * Require the device lock and set the "dead" flag to guarantee that 3705 * the update behavior is consistent with the other bitfields near 3706 * it and that we cannot have an asynchronous probe routine trying 3707 * to run while we are tearing out the bus/class/sysfs from 3708 * underneath the device. 3709 */ 3710 device_lock_assert(dev); 3711 3712 if (dev->p->dead) 3713 return false; 3714 dev->p->dead = true; 3715 return true; 3716 } 3717 EXPORT_SYMBOL_GPL(kill_device); 3718 3719 /** 3720 * device_del - delete device from system. 3721 * @dev: device. 3722 * 3723 * This is the first part of the device unregistration 3724 * sequence. This removes the device from the lists we control 3725 * from here, has it removed from the other driver model 3726 * subsystems it was added to in device_add(), and removes it 3727 * from the kobject hierarchy. 3728 * 3729 * NOTE: this should be called manually _iff_ device_add() was 3730 * also called manually. 3731 */ 3732 void device_del(struct device *dev) 3733 { 3734 struct device *parent = dev->parent; 3735 struct kobject *glue_dir = NULL; 3736 struct class_interface *class_intf; 3737 unsigned int noio_flag; 3738 3739 device_lock(dev); 3740 kill_device(dev); 3741 device_unlock(dev); 3742 3743 if (dev->fwnode && dev->fwnode->dev == dev) 3744 dev->fwnode->dev = NULL; 3745 3746 /* Notify clients of device removal. This call must come 3747 * before dpm_sysfs_remove(). 3748 */ 3749 noio_flag = memalloc_noio_save(); 3750 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3751 3752 dpm_sysfs_remove(dev); 3753 if (parent) 3754 klist_del(&dev->p->knode_parent); 3755 if (MAJOR(dev->devt)) { 3756 devtmpfs_delete_node(dev); 3757 device_remove_sys_dev_entry(dev); 3758 device_remove_file(dev, &dev_attr_dev); 3759 } 3760 if (dev->class) { 3761 device_remove_class_symlinks(dev); 3762 3763 mutex_lock(&dev->class->p->mutex); 3764 /* notify any interfaces that the device is now gone */ 3765 list_for_each_entry(class_intf, 3766 &dev->class->p->interfaces, node) 3767 if (class_intf->remove_dev) 3768 class_intf->remove_dev(dev, class_intf); 3769 /* remove the device from the class list */ 3770 klist_del(&dev->p->knode_class); 3771 mutex_unlock(&dev->class->p->mutex); 3772 } 3773 device_remove_file(dev, &dev_attr_uevent); 3774 device_remove_attrs(dev); 3775 bus_remove_device(dev); 3776 device_pm_remove(dev); 3777 driver_deferred_probe_del(dev); 3778 device_platform_notify_remove(dev); 3779 device_links_purge(dev); 3780 3781 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3782 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3783 glue_dir = get_glue_dir(dev); 3784 kobject_del(&dev->kobj); 3785 cleanup_glue_dir(dev, glue_dir); 3786 memalloc_noio_restore(noio_flag); 3787 put_device(parent); 3788 } 3789 EXPORT_SYMBOL_GPL(device_del); 3790 3791 /** 3792 * device_unregister - unregister device from system. 3793 * @dev: device going away. 3794 * 3795 * We do this in two parts, like we do device_register(). First, 3796 * we remove it from all the subsystems with device_del(), then 3797 * we decrement the reference count via put_device(). If that 3798 * is the final reference count, the device will be cleaned up 3799 * via device_release() above. Otherwise, the structure will 3800 * stick around until the final reference to the device is dropped. 3801 */ 3802 void device_unregister(struct device *dev) 3803 { 3804 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3805 device_del(dev); 3806 put_device(dev); 3807 } 3808 EXPORT_SYMBOL_GPL(device_unregister); 3809 3810 static struct device *prev_device(struct klist_iter *i) 3811 { 3812 struct klist_node *n = klist_prev(i); 3813 struct device *dev = NULL; 3814 struct device_private *p; 3815 3816 if (n) { 3817 p = to_device_private_parent(n); 3818 dev = p->device; 3819 } 3820 return dev; 3821 } 3822 3823 static struct device *next_device(struct klist_iter *i) 3824 { 3825 struct klist_node *n = klist_next(i); 3826 struct device *dev = NULL; 3827 struct device_private *p; 3828 3829 if (n) { 3830 p = to_device_private_parent(n); 3831 dev = p->device; 3832 } 3833 return dev; 3834 } 3835 3836 /** 3837 * device_get_devnode - path of device node file 3838 * @dev: device 3839 * @mode: returned file access mode 3840 * @uid: returned file owner 3841 * @gid: returned file group 3842 * @tmp: possibly allocated string 3843 * 3844 * Return the relative path of a possible device node. 3845 * Non-default names may need to allocate a memory to compose 3846 * a name. This memory is returned in tmp and needs to be 3847 * freed by the caller. 3848 */ 3849 const char *device_get_devnode(const struct device *dev, 3850 umode_t *mode, kuid_t *uid, kgid_t *gid, 3851 const char **tmp) 3852 { 3853 char *s; 3854 3855 *tmp = NULL; 3856 3857 /* the device type may provide a specific name */ 3858 if (dev->type && dev->type->devnode) 3859 *tmp = dev->type->devnode(dev, mode, uid, gid); 3860 if (*tmp) 3861 return *tmp; 3862 3863 /* the class may provide a specific name */ 3864 if (dev->class && dev->class->devnode) 3865 *tmp = dev->class->devnode(dev, mode); 3866 if (*tmp) 3867 return *tmp; 3868 3869 /* return name without allocation, tmp == NULL */ 3870 if (strchr(dev_name(dev), '!') == NULL) 3871 return dev_name(dev); 3872 3873 /* replace '!' in the name with '/' */ 3874 s = kstrdup(dev_name(dev), GFP_KERNEL); 3875 if (!s) 3876 return NULL; 3877 strreplace(s, '!', '/'); 3878 return *tmp = s; 3879 } 3880 3881 /** 3882 * device_for_each_child - device child iterator. 3883 * @parent: parent struct device. 3884 * @fn: function to be called for each device. 3885 * @data: data for the callback. 3886 * 3887 * Iterate over @parent's child devices, and call @fn for each, 3888 * passing it @data. 3889 * 3890 * We check the return of @fn each time. If it returns anything 3891 * other than 0, we break out and return that value. 3892 */ 3893 int device_for_each_child(struct device *parent, void *data, 3894 int (*fn)(struct device *dev, void *data)) 3895 { 3896 struct klist_iter i; 3897 struct device *child; 3898 int error = 0; 3899 3900 if (!parent->p) 3901 return 0; 3902 3903 klist_iter_init(&parent->p->klist_children, &i); 3904 while (!error && (child = next_device(&i))) 3905 error = fn(child, data); 3906 klist_iter_exit(&i); 3907 return error; 3908 } 3909 EXPORT_SYMBOL_GPL(device_for_each_child); 3910 3911 /** 3912 * device_for_each_child_reverse - device child iterator in reversed order. 3913 * @parent: parent struct device. 3914 * @fn: function to be called for each device. 3915 * @data: data for the callback. 3916 * 3917 * Iterate over @parent's child devices, and call @fn for each, 3918 * passing it @data. 3919 * 3920 * We check the return of @fn each time. If it returns anything 3921 * other than 0, we break out and return that value. 3922 */ 3923 int device_for_each_child_reverse(struct device *parent, void *data, 3924 int (*fn)(struct device *dev, void *data)) 3925 { 3926 struct klist_iter i; 3927 struct device *child; 3928 int error = 0; 3929 3930 if (!parent->p) 3931 return 0; 3932 3933 klist_iter_init(&parent->p->klist_children, &i); 3934 while ((child = prev_device(&i)) && !error) 3935 error = fn(child, data); 3936 klist_iter_exit(&i); 3937 return error; 3938 } 3939 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3940 3941 /** 3942 * device_find_child - device iterator for locating a particular device. 3943 * @parent: parent struct device 3944 * @match: Callback function to check device 3945 * @data: Data to pass to match function 3946 * 3947 * This is similar to the device_for_each_child() function above, but it 3948 * returns a reference to a device that is 'found' for later use, as 3949 * determined by the @match callback. 3950 * 3951 * The callback should return 0 if the device doesn't match and non-zero 3952 * if it does. If the callback returns non-zero and a reference to the 3953 * current device can be obtained, this function will return to the caller 3954 * and not iterate over any more devices. 3955 * 3956 * NOTE: you will need to drop the reference with put_device() after use. 3957 */ 3958 struct device *device_find_child(struct device *parent, void *data, 3959 int (*match)(struct device *dev, void *data)) 3960 { 3961 struct klist_iter i; 3962 struct device *child; 3963 3964 if (!parent) 3965 return NULL; 3966 3967 klist_iter_init(&parent->p->klist_children, &i); 3968 while ((child = next_device(&i))) 3969 if (match(child, data) && get_device(child)) 3970 break; 3971 klist_iter_exit(&i); 3972 return child; 3973 } 3974 EXPORT_SYMBOL_GPL(device_find_child); 3975 3976 /** 3977 * device_find_child_by_name - device iterator for locating a child device. 3978 * @parent: parent struct device 3979 * @name: name of the child device 3980 * 3981 * This is similar to the device_find_child() function above, but it 3982 * returns a reference to a device that has the name @name. 3983 * 3984 * NOTE: you will need to drop the reference with put_device() after use. 3985 */ 3986 struct device *device_find_child_by_name(struct device *parent, 3987 const char *name) 3988 { 3989 struct klist_iter i; 3990 struct device *child; 3991 3992 if (!parent) 3993 return NULL; 3994 3995 klist_iter_init(&parent->p->klist_children, &i); 3996 while ((child = next_device(&i))) 3997 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3998 break; 3999 klist_iter_exit(&i); 4000 return child; 4001 } 4002 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4003 4004 static int match_any(struct device *dev, void *unused) 4005 { 4006 return 1; 4007 } 4008 4009 /** 4010 * device_find_any_child - device iterator for locating a child device, if any. 4011 * @parent: parent struct device 4012 * 4013 * This is similar to the device_find_child() function above, but it 4014 * returns a reference to a child device, if any. 4015 * 4016 * NOTE: you will need to drop the reference with put_device() after use. 4017 */ 4018 struct device *device_find_any_child(struct device *parent) 4019 { 4020 return device_find_child(parent, NULL, match_any); 4021 } 4022 EXPORT_SYMBOL_GPL(device_find_any_child); 4023 4024 int __init devices_init(void) 4025 { 4026 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4027 if (!devices_kset) 4028 return -ENOMEM; 4029 dev_kobj = kobject_create_and_add("dev", NULL); 4030 if (!dev_kobj) 4031 goto dev_kobj_err; 4032 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4033 if (!sysfs_dev_block_kobj) 4034 goto block_kobj_err; 4035 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4036 if (!sysfs_dev_char_kobj) 4037 goto char_kobj_err; 4038 4039 return 0; 4040 4041 char_kobj_err: 4042 kobject_put(sysfs_dev_block_kobj); 4043 block_kobj_err: 4044 kobject_put(dev_kobj); 4045 dev_kobj_err: 4046 kset_unregister(devices_kset); 4047 return -ENOMEM; 4048 } 4049 4050 static int device_check_offline(struct device *dev, void *not_used) 4051 { 4052 int ret; 4053 4054 ret = device_for_each_child(dev, NULL, device_check_offline); 4055 if (ret) 4056 return ret; 4057 4058 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4059 } 4060 4061 /** 4062 * device_offline - Prepare the device for hot-removal. 4063 * @dev: Device to be put offline. 4064 * 4065 * Execute the device bus type's .offline() callback, if present, to prepare 4066 * the device for a subsequent hot-removal. If that succeeds, the device must 4067 * not be used until either it is removed or its bus type's .online() callback 4068 * is executed. 4069 * 4070 * Call under device_hotplug_lock. 4071 */ 4072 int device_offline(struct device *dev) 4073 { 4074 int ret; 4075 4076 if (dev->offline_disabled) 4077 return -EPERM; 4078 4079 ret = device_for_each_child(dev, NULL, device_check_offline); 4080 if (ret) 4081 return ret; 4082 4083 device_lock(dev); 4084 if (device_supports_offline(dev)) { 4085 if (dev->offline) { 4086 ret = 1; 4087 } else { 4088 ret = dev->bus->offline(dev); 4089 if (!ret) { 4090 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4091 dev->offline = true; 4092 } 4093 } 4094 } 4095 device_unlock(dev); 4096 4097 return ret; 4098 } 4099 4100 /** 4101 * device_online - Put the device back online after successful device_offline(). 4102 * @dev: Device to be put back online. 4103 * 4104 * If device_offline() has been successfully executed for @dev, but the device 4105 * has not been removed subsequently, execute its bus type's .online() callback 4106 * to indicate that the device can be used again. 4107 * 4108 * Call under device_hotplug_lock. 4109 */ 4110 int device_online(struct device *dev) 4111 { 4112 int ret = 0; 4113 4114 device_lock(dev); 4115 if (device_supports_offline(dev)) { 4116 if (dev->offline) { 4117 ret = dev->bus->online(dev); 4118 if (!ret) { 4119 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4120 dev->offline = false; 4121 } 4122 } else { 4123 ret = 1; 4124 } 4125 } 4126 device_unlock(dev); 4127 4128 return ret; 4129 } 4130 4131 struct root_device { 4132 struct device dev; 4133 struct module *owner; 4134 }; 4135 4136 static inline struct root_device *to_root_device(struct device *d) 4137 { 4138 return container_of(d, struct root_device, dev); 4139 } 4140 4141 static void root_device_release(struct device *dev) 4142 { 4143 kfree(to_root_device(dev)); 4144 } 4145 4146 /** 4147 * __root_device_register - allocate and register a root device 4148 * @name: root device name 4149 * @owner: owner module of the root device, usually THIS_MODULE 4150 * 4151 * This function allocates a root device and registers it 4152 * using device_register(). In order to free the returned 4153 * device, use root_device_unregister(). 4154 * 4155 * Root devices are dummy devices which allow other devices 4156 * to be grouped under /sys/devices. Use this function to 4157 * allocate a root device and then use it as the parent of 4158 * any device which should appear under /sys/devices/{name} 4159 * 4160 * The /sys/devices/{name} directory will also contain a 4161 * 'module' symlink which points to the @owner directory 4162 * in sysfs. 4163 * 4164 * Returns &struct device pointer on success, or ERR_PTR() on error. 4165 * 4166 * Note: You probably want to use root_device_register(). 4167 */ 4168 struct device *__root_device_register(const char *name, struct module *owner) 4169 { 4170 struct root_device *root; 4171 int err = -ENOMEM; 4172 4173 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4174 if (!root) 4175 return ERR_PTR(err); 4176 4177 err = dev_set_name(&root->dev, "%s", name); 4178 if (err) { 4179 kfree(root); 4180 return ERR_PTR(err); 4181 } 4182 4183 root->dev.release = root_device_release; 4184 4185 err = device_register(&root->dev); 4186 if (err) { 4187 put_device(&root->dev); 4188 return ERR_PTR(err); 4189 } 4190 4191 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4192 if (owner) { 4193 struct module_kobject *mk = &owner->mkobj; 4194 4195 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4196 if (err) { 4197 device_unregister(&root->dev); 4198 return ERR_PTR(err); 4199 } 4200 root->owner = owner; 4201 } 4202 #endif 4203 4204 return &root->dev; 4205 } 4206 EXPORT_SYMBOL_GPL(__root_device_register); 4207 4208 /** 4209 * root_device_unregister - unregister and free a root device 4210 * @dev: device going away 4211 * 4212 * This function unregisters and cleans up a device that was created by 4213 * root_device_register(). 4214 */ 4215 void root_device_unregister(struct device *dev) 4216 { 4217 struct root_device *root = to_root_device(dev); 4218 4219 if (root->owner) 4220 sysfs_remove_link(&root->dev.kobj, "module"); 4221 4222 device_unregister(dev); 4223 } 4224 EXPORT_SYMBOL_GPL(root_device_unregister); 4225 4226 4227 static void device_create_release(struct device *dev) 4228 { 4229 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4230 kfree(dev); 4231 } 4232 4233 static __printf(6, 0) struct device * 4234 device_create_groups_vargs(struct class *class, struct device *parent, 4235 dev_t devt, void *drvdata, 4236 const struct attribute_group **groups, 4237 const char *fmt, va_list args) 4238 { 4239 struct device *dev = NULL; 4240 int retval = -ENODEV; 4241 4242 if (IS_ERR_OR_NULL(class)) 4243 goto error; 4244 4245 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4246 if (!dev) { 4247 retval = -ENOMEM; 4248 goto error; 4249 } 4250 4251 device_initialize(dev); 4252 dev->devt = devt; 4253 dev->class = class; 4254 dev->parent = parent; 4255 dev->groups = groups; 4256 dev->release = device_create_release; 4257 dev_set_drvdata(dev, drvdata); 4258 4259 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4260 if (retval) 4261 goto error; 4262 4263 retval = device_add(dev); 4264 if (retval) 4265 goto error; 4266 4267 return dev; 4268 4269 error: 4270 put_device(dev); 4271 return ERR_PTR(retval); 4272 } 4273 4274 /** 4275 * device_create - creates a device and registers it with sysfs 4276 * @class: pointer to the struct class that this device should be registered to 4277 * @parent: pointer to the parent struct device of this new device, if any 4278 * @devt: the dev_t for the char device to be added 4279 * @drvdata: the data to be added to the device for callbacks 4280 * @fmt: string for the device's name 4281 * 4282 * This function can be used by char device classes. A struct device 4283 * will be created in sysfs, registered to the specified class. 4284 * 4285 * A "dev" file will be created, showing the dev_t for the device, if 4286 * the dev_t is not 0,0. 4287 * If a pointer to a parent struct device is passed in, the newly created 4288 * struct device will be a child of that device in sysfs. 4289 * The pointer to the struct device will be returned from the call. 4290 * Any further sysfs files that might be required can be created using this 4291 * pointer. 4292 * 4293 * Returns &struct device pointer on success, or ERR_PTR() on error. 4294 * 4295 * Note: the struct class passed to this function must have previously 4296 * been created with a call to class_create(). 4297 */ 4298 struct device *device_create(struct class *class, struct device *parent, 4299 dev_t devt, void *drvdata, const char *fmt, ...) 4300 { 4301 va_list vargs; 4302 struct device *dev; 4303 4304 va_start(vargs, fmt); 4305 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4306 fmt, vargs); 4307 va_end(vargs); 4308 return dev; 4309 } 4310 EXPORT_SYMBOL_GPL(device_create); 4311 4312 /** 4313 * device_create_with_groups - creates a device and registers it with sysfs 4314 * @class: pointer to the struct class that this device should be registered to 4315 * @parent: pointer to the parent struct device of this new device, if any 4316 * @devt: the dev_t for the char device to be added 4317 * @drvdata: the data to be added to the device for callbacks 4318 * @groups: NULL-terminated list of attribute groups to be created 4319 * @fmt: string for the device's name 4320 * 4321 * This function can be used by char device classes. A struct device 4322 * will be created in sysfs, registered to the specified class. 4323 * Additional attributes specified in the groups parameter will also 4324 * be created automatically. 4325 * 4326 * A "dev" file will be created, showing the dev_t for the device, if 4327 * the dev_t is not 0,0. 4328 * If a pointer to a parent struct device is passed in, the newly created 4329 * struct device will be a child of that device in sysfs. 4330 * The pointer to the struct device will be returned from the call. 4331 * Any further sysfs files that might be required can be created using this 4332 * pointer. 4333 * 4334 * Returns &struct device pointer on success, or ERR_PTR() on error. 4335 * 4336 * Note: the struct class passed to this function must have previously 4337 * been created with a call to class_create(). 4338 */ 4339 struct device *device_create_with_groups(struct class *class, 4340 struct device *parent, dev_t devt, 4341 void *drvdata, 4342 const struct attribute_group **groups, 4343 const char *fmt, ...) 4344 { 4345 va_list vargs; 4346 struct device *dev; 4347 4348 va_start(vargs, fmt); 4349 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4350 fmt, vargs); 4351 va_end(vargs); 4352 return dev; 4353 } 4354 EXPORT_SYMBOL_GPL(device_create_with_groups); 4355 4356 /** 4357 * device_destroy - removes a device that was created with device_create() 4358 * @class: pointer to the struct class that this device was registered with 4359 * @devt: the dev_t of the device that was previously registered 4360 * 4361 * This call unregisters and cleans up a device that was created with a 4362 * call to device_create(). 4363 */ 4364 void device_destroy(struct class *class, dev_t devt) 4365 { 4366 struct device *dev; 4367 4368 dev = class_find_device_by_devt(class, devt); 4369 if (dev) { 4370 put_device(dev); 4371 device_unregister(dev); 4372 } 4373 } 4374 EXPORT_SYMBOL_GPL(device_destroy); 4375 4376 /** 4377 * device_rename - renames a device 4378 * @dev: the pointer to the struct device to be renamed 4379 * @new_name: the new name of the device 4380 * 4381 * It is the responsibility of the caller to provide mutual 4382 * exclusion between two different calls of device_rename 4383 * on the same device to ensure that new_name is valid and 4384 * won't conflict with other devices. 4385 * 4386 * Note: Don't call this function. Currently, the networking layer calls this 4387 * function, but that will change. The following text from Kay Sievers offers 4388 * some insight: 4389 * 4390 * Renaming devices is racy at many levels, symlinks and other stuff are not 4391 * replaced atomically, and you get a "move" uevent, but it's not easy to 4392 * connect the event to the old and new device. Device nodes are not renamed at 4393 * all, there isn't even support for that in the kernel now. 4394 * 4395 * In the meantime, during renaming, your target name might be taken by another 4396 * driver, creating conflicts. Or the old name is taken directly after you 4397 * renamed it -- then you get events for the same DEVPATH, before you even see 4398 * the "move" event. It's just a mess, and nothing new should ever rely on 4399 * kernel device renaming. Besides that, it's not even implemented now for 4400 * other things than (driver-core wise very simple) network devices. 4401 * 4402 * We are currently about to change network renaming in udev to completely 4403 * disallow renaming of devices in the same namespace as the kernel uses, 4404 * because we can't solve the problems properly, that arise with swapping names 4405 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4406 * be allowed to some other name than eth[0-9]*, for the aforementioned 4407 * reasons. 4408 * 4409 * Make up a "real" name in the driver before you register anything, or add 4410 * some other attributes for userspace to find the device, or use udev to add 4411 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4412 * don't even want to get into that and try to implement the missing pieces in 4413 * the core. We really have other pieces to fix in the driver core mess. :) 4414 */ 4415 int device_rename(struct device *dev, const char *new_name) 4416 { 4417 struct kobject *kobj = &dev->kobj; 4418 char *old_device_name = NULL; 4419 int error; 4420 4421 dev = get_device(dev); 4422 if (!dev) 4423 return -EINVAL; 4424 4425 dev_dbg(dev, "renaming to %s\n", new_name); 4426 4427 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4428 if (!old_device_name) { 4429 error = -ENOMEM; 4430 goto out; 4431 } 4432 4433 if (dev->class) { 4434 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4435 kobj, old_device_name, 4436 new_name, kobject_namespace(kobj)); 4437 if (error) 4438 goto out; 4439 } 4440 4441 error = kobject_rename(kobj, new_name); 4442 if (error) 4443 goto out; 4444 4445 out: 4446 put_device(dev); 4447 4448 kfree(old_device_name); 4449 4450 return error; 4451 } 4452 EXPORT_SYMBOL_GPL(device_rename); 4453 4454 static int device_move_class_links(struct device *dev, 4455 struct device *old_parent, 4456 struct device *new_parent) 4457 { 4458 int error = 0; 4459 4460 if (old_parent) 4461 sysfs_remove_link(&dev->kobj, "device"); 4462 if (new_parent) 4463 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4464 "device"); 4465 return error; 4466 } 4467 4468 /** 4469 * device_move - moves a device to a new parent 4470 * @dev: the pointer to the struct device to be moved 4471 * @new_parent: the new parent of the device (can be NULL) 4472 * @dpm_order: how to reorder the dpm_list 4473 */ 4474 int device_move(struct device *dev, struct device *new_parent, 4475 enum dpm_order dpm_order) 4476 { 4477 int error; 4478 struct device *old_parent; 4479 struct kobject *new_parent_kobj; 4480 4481 dev = get_device(dev); 4482 if (!dev) 4483 return -EINVAL; 4484 4485 device_pm_lock(); 4486 new_parent = get_device(new_parent); 4487 new_parent_kobj = get_device_parent(dev, new_parent); 4488 if (IS_ERR(new_parent_kobj)) { 4489 error = PTR_ERR(new_parent_kobj); 4490 put_device(new_parent); 4491 goto out; 4492 } 4493 4494 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4495 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4496 error = kobject_move(&dev->kobj, new_parent_kobj); 4497 if (error) { 4498 cleanup_glue_dir(dev, new_parent_kobj); 4499 put_device(new_parent); 4500 goto out; 4501 } 4502 old_parent = dev->parent; 4503 dev->parent = new_parent; 4504 if (old_parent) 4505 klist_remove(&dev->p->knode_parent); 4506 if (new_parent) { 4507 klist_add_tail(&dev->p->knode_parent, 4508 &new_parent->p->klist_children); 4509 set_dev_node(dev, dev_to_node(new_parent)); 4510 } 4511 4512 if (dev->class) { 4513 error = device_move_class_links(dev, old_parent, new_parent); 4514 if (error) { 4515 /* We ignore errors on cleanup since we're hosed anyway... */ 4516 device_move_class_links(dev, new_parent, old_parent); 4517 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4518 if (new_parent) 4519 klist_remove(&dev->p->knode_parent); 4520 dev->parent = old_parent; 4521 if (old_parent) { 4522 klist_add_tail(&dev->p->knode_parent, 4523 &old_parent->p->klist_children); 4524 set_dev_node(dev, dev_to_node(old_parent)); 4525 } 4526 } 4527 cleanup_glue_dir(dev, new_parent_kobj); 4528 put_device(new_parent); 4529 goto out; 4530 } 4531 } 4532 switch (dpm_order) { 4533 case DPM_ORDER_NONE: 4534 break; 4535 case DPM_ORDER_DEV_AFTER_PARENT: 4536 device_pm_move_after(dev, new_parent); 4537 devices_kset_move_after(dev, new_parent); 4538 break; 4539 case DPM_ORDER_PARENT_BEFORE_DEV: 4540 device_pm_move_before(new_parent, dev); 4541 devices_kset_move_before(new_parent, dev); 4542 break; 4543 case DPM_ORDER_DEV_LAST: 4544 device_pm_move_last(dev); 4545 devices_kset_move_last(dev); 4546 break; 4547 } 4548 4549 put_device(old_parent); 4550 out: 4551 device_pm_unlock(); 4552 put_device(dev); 4553 return error; 4554 } 4555 EXPORT_SYMBOL_GPL(device_move); 4556 4557 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4558 kgid_t kgid) 4559 { 4560 struct kobject *kobj = &dev->kobj; 4561 struct class *class = dev->class; 4562 const struct device_type *type = dev->type; 4563 int error; 4564 4565 if (class) { 4566 /* 4567 * Change the device groups of the device class for @dev to 4568 * @kuid/@kgid. 4569 */ 4570 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4571 kgid); 4572 if (error) 4573 return error; 4574 } 4575 4576 if (type) { 4577 /* 4578 * Change the device groups of the device type for @dev to 4579 * @kuid/@kgid. 4580 */ 4581 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4582 kgid); 4583 if (error) 4584 return error; 4585 } 4586 4587 /* Change the device groups of @dev to @kuid/@kgid. */ 4588 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4589 if (error) 4590 return error; 4591 4592 if (device_supports_offline(dev) && !dev->offline_disabled) { 4593 /* Change online device attributes of @dev to @kuid/@kgid. */ 4594 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4595 kuid, kgid); 4596 if (error) 4597 return error; 4598 } 4599 4600 return 0; 4601 } 4602 4603 /** 4604 * device_change_owner - change the owner of an existing device. 4605 * @dev: device. 4606 * @kuid: new owner's kuid 4607 * @kgid: new owner's kgid 4608 * 4609 * This changes the owner of @dev and its corresponding sysfs entries to 4610 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4611 * core. 4612 * 4613 * Returns 0 on success or error code on failure. 4614 */ 4615 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4616 { 4617 int error; 4618 struct kobject *kobj = &dev->kobj; 4619 4620 dev = get_device(dev); 4621 if (!dev) 4622 return -EINVAL; 4623 4624 /* 4625 * Change the kobject and the default attributes and groups of the 4626 * ktype associated with it to @kuid/@kgid. 4627 */ 4628 error = sysfs_change_owner(kobj, kuid, kgid); 4629 if (error) 4630 goto out; 4631 4632 /* 4633 * Change the uevent file for @dev to the new owner. The uevent file 4634 * was created in a separate step when @dev got added and we mirror 4635 * that step here. 4636 */ 4637 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4638 kgid); 4639 if (error) 4640 goto out; 4641 4642 /* 4643 * Change the device groups, the device groups associated with the 4644 * device class, and the groups associated with the device type of @dev 4645 * to @kuid/@kgid. 4646 */ 4647 error = device_attrs_change_owner(dev, kuid, kgid); 4648 if (error) 4649 goto out; 4650 4651 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4652 if (error) 4653 goto out; 4654 4655 #ifdef CONFIG_BLOCK 4656 if (sysfs_deprecated && dev->class == &block_class) 4657 goto out; 4658 #endif 4659 4660 /* 4661 * Change the owner of the symlink located in the class directory of 4662 * the device class associated with @dev which points to the actual 4663 * directory entry for @dev to @kuid/@kgid. This ensures that the 4664 * symlink shows the same permissions as its target. 4665 */ 4666 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4667 dev_name(dev), kuid, kgid); 4668 if (error) 4669 goto out; 4670 4671 out: 4672 put_device(dev); 4673 return error; 4674 } 4675 EXPORT_SYMBOL_GPL(device_change_owner); 4676 4677 /** 4678 * device_shutdown - call ->shutdown() on each device to shutdown. 4679 */ 4680 void device_shutdown(void) 4681 { 4682 struct device *dev, *parent; 4683 4684 wait_for_device_probe(); 4685 device_block_probing(); 4686 4687 cpufreq_suspend(); 4688 4689 spin_lock(&devices_kset->list_lock); 4690 /* 4691 * Walk the devices list backward, shutting down each in turn. 4692 * Beware that device unplug events may also start pulling 4693 * devices offline, even as the system is shutting down. 4694 */ 4695 while (!list_empty(&devices_kset->list)) { 4696 dev = list_entry(devices_kset->list.prev, struct device, 4697 kobj.entry); 4698 4699 /* 4700 * hold reference count of device's parent to 4701 * prevent it from being freed because parent's 4702 * lock is to be held 4703 */ 4704 parent = get_device(dev->parent); 4705 get_device(dev); 4706 /* 4707 * Make sure the device is off the kset list, in the 4708 * event that dev->*->shutdown() doesn't remove it. 4709 */ 4710 list_del_init(&dev->kobj.entry); 4711 spin_unlock(&devices_kset->list_lock); 4712 4713 /* hold lock to avoid race with probe/release */ 4714 if (parent) 4715 device_lock(parent); 4716 device_lock(dev); 4717 4718 /* Don't allow any more runtime suspends */ 4719 pm_runtime_get_noresume(dev); 4720 pm_runtime_barrier(dev); 4721 4722 if (dev->class && dev->class->shutdown_pre) { 4723 if (initcall_debug) 4724 dev_info(dev, "shutdown_pre\n"); 4725 dev->class->shutdown_pre(dev); 4726 } 4727 if (dev->bus && dev->bus->shutdown) { 4728 if (initcall_debug) 4729 dev_info(dev, "shutdown\n"); 4730 dev->bus->shutdown(dev); 4731 } else if (dev->driver && dev->driver->shutdown) { 4732 if (initcall_debug) 4733 dev_info(dev, "shutdown\n"); 4734 dev->driver->shutdown(dev); 4735 } 4736 4737 device_unlock(dev); 4738 if (parent) 4739 device_unlock(parent); 4740 4741 put_device(dev); 4742 put_device(parent); 4743 4744 spin_lock(&devices_kset->list_lock); 4745 } 4746 spin_unlock(&devices_kset->list_lock); 4747 } 4748 4749 /* 4750 * Device logging functions 4751 */ 4752 4753 #ifdef CONFIG_PRINTK 4754 static void 4755 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4756 { 4757 const char *subsys; 4758 4759 memset(dev_info, 0, sizeof(*dev_info)); 4760 4761 if (dev->class) 4762 subsys = dev->class->name; 4763 else if (dev->bus) 4764 subsys = dev->bus->name; 4765 else 4766 return; 4767 4768 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4769 4770 /* 4771 * Add device identifier DEVICE=: 4772 * b12:8 block dev_t 4773 * c127:3 char dev_t 4774 * n8 netdev ifindex 4775 * +sound:card0 subsystem:devname 4776 */ 4777 if (MAJOR(dev->devt)) { 4778 char c; 4779 4780 if (strcmp(subsys, "block") == 0) 4781 c = 'b'; 4782 else 4783 c = 'c'; 4784 4785 snprintf(dev_info->device, sizeof(dev_info->device), 4786 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4787 } else if (strcmp(subsys, "net") == 0) { 4788 struct net_device *net = to_net_dev(dev); 4789 4790 snprintf(dev_info->device, sizeof(dev_info->device), 4791 "n%u", net->ifindex); 4792 } else { 4793 snprintf(dev_info->device, sizeof(dev_info->device), 4794 "+%s:%s", subsys, dev_name(dev)); 4795 } 4796 } 4797 4798 int dev_vprintk_emit(int level, const struct device *dev, 4799 const char *fmt, va_list args) 4800 { 4801 struct dev_printk_info dev_info; 4802 4803 set_dev_info(dev, &dev_info); 4804 4805 return vprintk_emit(0, level, &dev_info, fmt, args); 4806 } 4807 EXPORT_SYMBOL(dev_vprintk_emit); 4808 4809 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4810 { 4811 va_list args; 4812 int r; 4813 4814 va_start(args, fmt); 4815 4816 r = dev_vprintk_emit(level, dev, fmt, args); 4817 4818 va_end(args); 4819 4820 return r; 4821 } 4822 EXPORT_SYMBOL(dev_printk_emit); 4823 4824 static void __dev_printk(const char *level, const struct device *dev, 4825 struct va_format *vaf) 4826 { 4827 if (dev) 4828 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4829 dev_driver_string(dev), dev_name(dev), vaf); 4830 else 4831 printk("%s(NULL device *): %pV", level, vaf); 4832 } 4833 4834 void _dev_printk(const char *level, const struct device *dev, 4835 const char *fmt, ...) 4836 { 4837 struct va_format vaf; 4838 va_list args; 4839 4840 va_start(args, fmt); 4841 4842 vaf.fmt = fmt; 4843 vaf.va = &args; 4844 4845 __dev_printk(level, dev, &vaf); 4846 4847 va_end(args); 4848 } 4849 EXPORT_SYMBOL(_dev_printk); 4850 4851 #define define_dev_printk_level(func, kern_level) \ 4852 void func(const struct device *dev, const char *fmt, ...) \ 4853 { \ 4854 struct va_format vaf; \ 4855 va_list args; \ 4856 \ 4857 va_start(args, fmt); \ 4858 \ 4859 vaf.fmt = fmt; \ 4860 vaf.va = &args; \ 4861 \ 4862 __dev_printk(kern_level, dev, &vaf); \ 4863 \ 4864 va_end(args); \ 4865 } \ 4866 EXPORT_SYMBOL(func); 4867 4868 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4869 define_dev_printk_level(_dev_alert, KERN_ALERT); 4870 define_dev_printk_level(_dev_crit, KERN_CRIT); 4871 define_dev_printk_level(_dev_err, KERN_ERR); 4872 define_dev_printk_level(_dev_warn, KERN_WARNING); 4873 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4874 define_dev_printk_level(_dev_info, KERN_INFO); 4875 4876 #endif 4877 4878 /** 4879 * dev_err_probe - probe error check and log helper 4880 * @dev: the pointer to the struct device 4881 * @err: error value to test 4882 * @fmt: printf-style format string 4883 * @...: arguments as specified in the format string 4884 * 4885 * This helper implements common pattern present in probe functions for error 4886 * checking: print debug or error message depending if the error value is 4887 * -EPROBE_DEFER and propagate error upwards. 4888 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4889 * checked later by reading devices_deferred debugfs attribute. 4890 * It replaces code sequence:: 4891 * 4892 * if (err != -EPROBE_DEFER) 4893 * dev_err(dev, ...); 4894 * else 4895 * dev_dbg(dev, ...); 4896 * return err; 4897 * 4898 * with:: 4899 * 4900 * return dev_err_probe(dev, err, ...); 4901 * 4902 * Note that it is deemed acceptable to use this function for error 4903 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4904 * The benefit compared to a normal dev_err() is the standardized format 4905 * of the error code and the fact that the error code is returned. 4906 * 4907 * Returns @err. 4908 * 4909 */ 4910 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4911 { 4912 struct va_format vaf; 4913 va_list args; 4914 4915 va_start(args, fmt); 4916 vaf.fmt = fmt; 4917 vaf.va = &args; 4918 4919 if (err != -EPROBE_DEFER) { 4920 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4921 } else { 4922 device_set_deferred_probe_reason(dev, &vaf); 4923 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4924 } 4925 4926 va_end(args); 4927 4928 return err; 4929 } 4930 EXPORT_SYMBOL_GPL(dev_err_probe); 4931 4932 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4933 { 4934 return fwnode && !IS_ERR(fwnode->secondary); 4935 } 4936 4937 /** 4938 * set_primary_fwnode - Change the primary firmware node of a given device. 4939 * @dev: Device to handle. 4940 * @fwnode: New primary firmware node of the device. 4941 * 4942 * Set the device's firmware node pointer to @fwnode, but if a secondary 4943 * firmware node of the device is present, preserve it. 4944 * 4945 * Valid fwnode cases are: 4946 * - primary --> secondary --> -ENODEV 4947 * - primary --> NULL 4948 * - secondary --> -ENODEV 4949 * - NULL 4950 */ 4951 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4952 { 4953 struct device *parent = dev->parent; 4954 struct fwnode_handle *fn = dev->fwnode; 4955 4956 if (fwnode) { 4957 if (fwnode_is_primary(fn)) 4958 fn = fn->secondary; 4959 4960 if (fn) { 4961 WARN_ON(fwnode->secondary); 4962 fwnode->secondary = fn; 4963 } 4964 dev->fwnode = fwnode; 4965 } else { 4966 if (fwnode_is_primary(fn)) { 4967 dev->fwnode = fn->secondary; 4968 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4969 if (!(parent && fn == parent->fwnode)) 4970 fn->secondary = NULL; 4971 } else { 4972 dev->fwnode = NULL; 4973 } 4974 } 4975 } 4976 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4977 4978 /** 4979 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4980 * @dev: Device to handle. 4981 * @fwnode: New secondary firmware node of the device. 4982 * 4983 * If a primary firmware node of the device is present, set its secondary 4984 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4985 * @fwnode. 4986 */ 4987 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4988 { 4989 if (fwnode) 4990 fwnode->secondary = ERR_PTR(-ENODEV); 4991 4992 if (fwnode_is_primary(dev->fwnode)) 4993 dev->fwnode->secondary = fwnode; 4994 else 4995 dev->fwnode = fwnode; 4996 } 4997 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4998 4999 /** 5000 * device_set_of_node_from_dev - reuse device-tree node of another device 5001 * @dev: device whose device-tree node is being set 5002 * @dev2: device whose device-tree node is being reused 5003 * 5004 * Takes another reference to the new device-tree node after first dropping 5005 * any reference held to the old node. 5006 */ 5007 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5008 { 5009 of_node_put(dev->of_node); 5010 dev->of_node = of_node_get(dev2->of_node); 5011 dev->of_node_reused = true; 5012 } 5013 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5014 5015 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5016 { 5017 dev->fwnode = fwnode; 5018 dev->of_node = to_of_node(fwnode); 5019 } 5020 EXPORT_SYMBOL_GPL(device_set_node); 5021 5022 int device_match_name(struct device *dev, const void *name) 5023 { 5024 return sysfs_streq(dev_name(dev), name); 5025 } 5026 EXPORT_SYMBOL_GPL(device_match_name); 5027 5028 int device_match_of_node(struct device *dev, const void *np) 5029 { 5030 return dev->of_node == np; 5031 } 5032 EXPORT_SYMBOL_GPL(device_match_of_node); 5033 5034 int device_match_fwnode(struct device *dev, const void *fwnode) 5035 { 5036 return dev_fwnode(dev) == fwnode; 5037 } 5038 EXPORT_SYMBOL_GPL(device_match_fwnode); 5039 5040 int device_match_devt(struct device *dev, const void *pdevt) 5041 { 5042 return dev->devt == *(dev_t *)pdevt; 5043 } 5044 EXPORT_SYMBOL_GPL(device_match_devt); 5045 5046 int device_match_acpi_dev(struct device *dev, const void *adev) 5047 { 5048 return ACPI_COMPANION(dev) == adev; 5049 } 5050 EXPORT_SYMBOL(device_match_acpi_dev); 5051 5052 int device_match_acpi_handle(struct device *dev, const void *handle) 5053 { 5054 return ACPI_HANDLE(dev) == handle; 5055 } 5056 EXPORT_SYMBOL(device_match_acpi_handle); 5057 5058 int device_match_any(struct device *dev, const void *unused) 5059 { 5060 return 1; 5061 } 5062 EXPORT_SYMBOL_GPL(device_match_any); 5063