1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/blkdev.h> 13 #include <linux/cleanup.h> 14 #include <linux/cpufreq.h> 15 #include <linux/device.h> 16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 17 #include <linux/err.h> 18 #include <linux/fwnode.h> 19 #include <linux/init.h> 20 #include <linux/kdev_t.h> 21 #include <linux/kstrtox.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/netdevice.h> 25 #include <linux/notifier.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sched/signal.h> 31 #include <linux/slab.h> 32 #include <linux/string_helpers.h> 33 #include <linux/swiotlb.h> 34 #include <linux/sysfs.h> 35 36 #include "base.h" 37 #include "physical_location.h" 38 #include "power/power.h" 39 40 /* Device links support. */ 41 static LIST_HEAD(deferred_sync); 42 static unsigned int defer_sync_state_count = 1; 43 static DEFINE_MUTEX(fwnode_link_lock); 44 static bool fw_devlink_is_permissive(void); 45 static void __fw_devlink_link_to_consumers(struct device *dev); 46 static bool fw_devlink_drv_reg_done; 47 static bool fw_devlink_best_effort; 48 static struct workqueue_struct *device_link_wq; 49 50 /** 51 * __fwnode_link_add - Create a link between two fwnode_handles. 52 * @con: Consumer end of the link. 53 * @sup: Supplier end of the link. 54 * @flags: Link flags. 55 * 56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 57 * represents the detail that the firmware lists @sup fwnode as supplying a 58 * resource to @con. 59 * 60 * The driver core will use the fwnode link to create a device link between the 61 * two device objects corresponding to @con and @sup when they are created. The 62 * driver core will automatically delete the fwnode link between @con and @sup 63 * after doing that. 64 * 65 * Attempts to create duplicate links between the same pair of fwnode handles 66 * are ignored and there is no reference counting. 67 */ 68 static int __fwnode_link_add(struct fwnode_handle *con, 69 struct fwnode_handle *sup, u8 flags) 70 { 71 struct fwnode_link *link; 72 73 list_for_each_entry(link, &sup->consumers, s_hook) 74 if (link->consumer == con) { 75 link->flags |= flags; 76 return 0; 77 } 78 79 link = kzalloc(sizeof(*link), GFP_KERNEL); 80 if (!link) 81 return -ENOMEM; 82 83 link->supplier = sup; 84 INIT_LIST_HEAD(&link->s_hook); 85 link->consumer = con; 86 INIT_LIST_HEAD(&link->c_hook); 87 link->flags = flags; 88 89 list_add(&link->s_hook, &sup->consumers); 90 list_add(&link->c_hook, &con->suppliers); 91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 92 con, sup); 93 94 return 0; 95 } 96 97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 98 u8 flags) 99 { 100 guard(mutex)(&fwnode_link_lock); 101 102 return __fwnode_link_add(con, sup, flags); 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 guard(mutex)(&fwnode_link_lock); 144 145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 146 __fwnode_link_del(link); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 guard(mutex)(&fwnode_link_lock); 160 161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 162 __fwnode_link_del(link); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 static int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 464 output = "supplier unbind"; 465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", 489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 490 } 491 static DEVICE_ATTR_RO(sync_state_only); 492 493 static struct attribute *devlink_attrs[] = { 494 &dev_attr_status.attr, 495 &dev_attr_auto_remove_on.attr, 496 &dev_attr_runtime_pm.attr, 497 &dev_attr_sync_state_only.attr, 498 NULL, 499 }; 500 ATTRIBUTE_GROUPS(devlink); 501 502 static void device_link_release_fn(struct work_struct *work) 503 { 504 struct device_link *link = container_of(work, struct device_link, rm_work); 505 506 /* Ensure that all references to the link object have been dropped. */ 507 device_link_synchronize_removal(); 508 509 pm_runtime_release_supplier(link); 510 /* 511 * If supplier_preactivated is set, the link has been dropped between 512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 513 * in __driver_probe_device(). In that case, drop the supplier's 514 * PM-runtime usage counter to remove the reference taken by 515 * pm_runtime_get_suppliers(). 516 */ 517 if (link->supplier_preactivated) 518 pm_runtime_put_noidle(link->supplier); 519 520 pm_request_idle(link->supplier); 521 522 put_device(link->consumer); 523 put_device(link->supplier); 524 kfree(link); 525 } 526 527 static void devlink_dev_release(struct device *dev) 528 { 529 struct device_link *link = to_devlink(dev); 530 531 INIT_WORK(&link->rm_work, device_link_release_fn); 532 /* 533 * It may take a while to complete this work because of the SRCU 534 * synchronization in device_link_release_fn() and if the consumer or 535 * supplier devices get deleted when it runs, so put it into the 536 * dedicated workqueue. 537 */ 538 queue_work(device_link_wq, &link->rm_work); 539 } 540 541 /** 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 543 */ 544 void device_link_wait_removal(void) 545 { 546 /* 547 * devlink removal jobs are queued in the dedicated work queue. 548 * To be sure that all removal jobs are terminated, ensure that any 549 * scheduled work has run to completion. 550 */ 551 flush_workqueue(device_link_wq); 552 } 553 EXPORT_SYMBOL_GPL(device_link_wait_removal); 554 555 static const struct class devlink_class = { 556 .name = "devlink", 557 .dev_groups = devlink_groups, 558 .dev_release = devlink_dev_release, 559 }; 560 561 static int devlink_add_symlinks(struct device *dev) 562 { 563 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 564 int ret; 565 struct device_link *link = to_devlink(dev); 566 struct device *sup = link->supplier; 567 struct device *con = link->consumer; 568 569 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 570 if (ret) 571 goto out; 572 573 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 574 if (ret) 575 goto err_con; 576 577 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 578 if (!buf_con) { 579 ret = -ENOMEM; 580 goto err_con_dev; 581 } 582 583 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con); 584 if (ret) 585 goto err_con_dev; 586 587 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 588 if (!buf_sup) { 589 ret = -ENOMEM; 590 goto err_sup_dev; 591 } 592 593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup); 594 if (ret) 595 goto err_sup_dev; 596 597 goto out; 598 599 err_sup_dev: 600 sysfs_remove_link(&sup->kobj, buf_con); 601 err_con_dev: 602 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 603 err_con: 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 out: 606 return ret; 607 } 608 609 static void devlink_remove_symlinks(struct device *dev) 610 { 611 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 612 struct device_link *link = to_devlink(dev); 613 struct device *sup = link->supplier; 614 struct device *con = link->consumer; 615 616 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 617 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 618 619 if (device_is_registered(con)) { 620 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 621 if (!buf_sup) 622 goto out; 623 sysfs_remove_link(&con->kobj, buf_sup); 624 } 625 626 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 627 if (!buf_con) 628 goto out; 629 sysfs_remove_link(&sup->kobj, buf_con); 630 631 return; 632 633 out: 634 WARN(1, "Unable to properly free device link symlinks!\n"); 635 } 636 637 static struct class_interface devlink_class_intf = { 638 .class = &devlink_class, 639 .add_dev = devlink_add_symlinks, 640 .remove_dev = devlink_remove_symlinks, 641 }; 642 643 static int __init devlink_class_init(void) 644 { 645 int ret; 646 647 ret = class_register(&devlink_class); 648 if (ret) 649 return ret; 650 651 ret = class_interface_register(&devlink_class_intf); 652 if (ret) 653 class_unregister(&devlink_class); 654 655 return ret; 656 } 657 postcore_initcall(devlink_class_init); 658 659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 660 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 661 DL_FLAG_AUTOPROBE_CONSUMER | \ 662 DL_FLAG_SYNC_STATE_ONLY | \ 663 DL_FLAG_INFERRED | \ 664 DL_FLAG_CYCLE) 665 666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 667 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 668 669 /** 670 * device_link_add - Create a link between two devices. 671 * @consumer: Consumer end of the link. 672 * @supplier: Supplier end of the link. 673 * @flags: Link flags. 674 * 675 * Return: On success, a device_link struct will be returned. 676 * On error or invalid flag settings, NULL will be returned. 677 * 678 * The caller is responsible for the proper synchronization of the link creation 679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 680 * runtime PM framework to take the link into account. Second, if the 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 682 * be forced into the active meta state and reference-counted upon the creation 683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 684 * ignored. 685 * 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 687 * expected to release the link returned by it directly with the help of either 688 * device_link_del() or device_link_remove(). 689 * 690 * If that flag is not set, however, the caller of this function is handing the 691 * management of the link over to the driver core entirely and its return value 692 * can only be used to check whether or not the link is present. In that case, 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 694 * flags can be used to indicate to the driver core when the link can be safely 695 * deleted. Namely, setting one of them in @flags indicates to the driver core 696 * that the link is not going to be used (by the given caller of this function) 697 * after unbinding the consumer or supplier driver, respectively, from its 698 * device, so the link can be deleted at that point. If none of them is set, 699 * the link will be maintained until one of the devices pointed to by it (either 700 * the consumer or the supplier) is unregistered. 701 * 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 705 * be used to request the driver core to automatically probe for a consumer 706 * driver after successfully binding a driver to the supplier device. 707 * 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 710 * the same time is invalid and will cause NULL to be returned upfront. 711 * However, if a device link between the given @consumer and @supplier pair 712 * exists already when this function is called for them, the existing link will 713 * be returned regardless of its current type and status (the link's flags may 714 * be modified then). The caller of this function is then expected to treat 715 * the link as though it has just been created, so (in particular) if 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 717 * explicitly when not needed any more (as stated above). 718 * 719 * A side effect of the link creation is re-ordering of dpm_list and the 720 * devices_kset list by moving the consumer device and all devices depending 721 * on it to the ends of these lists (that does not happen to devices that have 722 * not been registered when this function is called). 723 * 724 * The supplier device is required to be registered when this function is called 725 * and NULL will be returned if that is not the case. The consumer device need 726 * not be registered, however. 727 */ 728 struct device_link *device_link_add(struct device *consumer, 729 struct device *supplier, u32 flags) 730 { 731 struct device_link *link; 732 733 if (!consumer || !supplier || consumer == supplier || 734 flags & ~DL_ADD_VALID_FLAGS || 735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 736 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 738 DL_FLAG_AUTOREMOVE_SUPPLIER))) 739 return NULL; 740 741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 742 if (pm_runtime_get_sync(supplier) < 0) { 743 pm_runtime_put_noidle(supplier); 744 return NULL; 745 } 746 } 747 748 if (!(flags & DL_FLAG_STATELESS)) 749 flags |= DL_FLAG_MANAGED; 750 751 if (flags & DL_FLAG_SYNC_STATE_ONLY && 752 !device_link_flag_is_sync_state_only(flags)) 753 return NULL; 754 755 device_links_write_lock(); 756 device_pm_lock(); 757 758 /* 759 * If the supplier has not been fully registered yet or there is a 760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 761 * the supplier already in the graph, return NULL. If the link is a 762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 763 * because it only affects sync_state() callbacks. 764 */ 765 if (!device_pm_initialized(supplier) 766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 767 device_is_dependent(consumer, supplier))) { 768 link = NULL; 769 goto out; 770 } 771 772 /* 773 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 774 * So, only create it if the consumer hasn't probed yet. 775 */ 776 if (flags & DL_FLAG_SYNC_STATE_ONLY && 777 consumer->links.status != DL_DEV_NO_DRIVER && 778 consumer->links.status != DL_DEV_PROBING) { 779 link = NULL; 780 goto out; 781 } 782 783 /* 784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 787 */ 788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 790 791 list_for_each_entry(link, &supplier->links.consumers, s_node) { 792 if (link->consumer != consumer) 793 continue; 794 795 if (link->flags & DL_FLAG_INFERRED && 796 !(flags & DL_FLAG_INFERRED)) 797 link->flags &= ~DL_FLAG_INFERRED; 798 799 if (flags & DL_FLAG_PM_RUNTIME) { 800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 801 pm_runtime_new_link(consumer); 802 link->flags |= DL_FLAG_PM_RUNTIME; 803 } 804 if (flags & DL_FLAG_RPM_ACTIVE) 805 refcount_inc(&link->rpm_active); 806 } 807 808 if (flags & DL_FLAG_STATELESS) { 809 kref_get(&link->kref); 810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 811 !(link->flags & DL_FLAG_STATELESS)) { 812 link->flags |= DL_FLAG_STATELESS; 813 goto reorder; 814 } else { 815 link->flags |= DL_FLAG_STATELESS; 816 goto out; 817 } 818 } 819 820 /* 821 * If the life time of the link following from the new flags is 822 * longer than indicated by the flags of the existing link, 823 * update the existing link to stay around longer. 824 */ 825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 829 } 830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 832 DL_FLAG_AUTOREMOVE_SUPPLIER); 833 } 834 if (!(link->flags & DL_FLAG_MANAGED)) { 835 kref_get(&link->kref); 836 link->flags |= DL_FLAG_MANAGED; 837 device_link_init_status(link, consumer, supplier); 838 } 839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 842 goto reorder; 843 } 844 845 goto out; 846 } 847 848 link = kzalloc(sizeof(*link), GFP_KERNEL); 849 if (!link) 850 goto out; 851 852 refcount_set(&link->rpm_active, 1); 853 854 get_device(supplier); 855 link->supplier = supplier; 856 INIT_LIST_HEAD(&link->s_node); 857 get_device(consumer); 858 link->consumer = consumer; 859 INIT_LIST_HEAD(&link->c_node); 860 link->flags = flags; 861 kref_init(&link->kref); 862 863 link->link_dev.class = &devlink_class; 864 device_set_pm_not_required(&link->link_dev); 865 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 866 dev_bus_name(supplier), dev_name(supplier), 867 dev_bus_name(consumer), dev_name(consumer)); 868 if (device_register(&link->link_dev)) { 869 put_device(&link->link_dev); 870 link = NULL; 871 goto out; 872 } 873 874 if (flags & DL_FLAG_PM_RUNTIME) { 875 if (flags & DL_FLAG_RPM_ACTIVE) 876 refcount_inc(&link->rpm_active); 877 878 pm_runtime_new_link(consumer); 879 } 880 881 /* Determine the initial link state. */ 882 if (flags & DL_FLAG_STATELESS) 883 link->status = DL_STATE_NONE; 884 else 885 device_link_init_status(link, consumer, supplier); 886 887 /* 888 * Some callers expect the link creation during consumer driver probe to 889 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 890 */ 891 if (link->status == DL_STATE_CONSUMER_PROBE && 892 flags & DL_FLAG_PM_RUNTIME) 893 pm_runtime_resume(supplier); 894 895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 897 898 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 899 dev_dbg(consumer, 900 "Linked as a sync state only consumer to %s\n", 901 dev_name(supplier)); 902 goto out; 903 } 904 905 reorder: 906 /* 907 * Move the consumer and all of the devices depending on it to the end 908 * of dpm_list and the devices_kset list. 909 * 910 * It is necessary to hold dpm_list locked throughout all that or else 911 * we may end up suspending with a wrong ordering of it. 912 */ 913 device_reorder_to_tail(consumer, NULL); 914 915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 916 917 out: 918 device_pm_unlock(); 919 device_links_write_unlock(); 920 921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 922 pm_runtime_put(supplier); 923 924 return link; 925 } 926 EXPORT_SYMBOL_GPL(device_link_add); 927 928 static void __device_link_del(struct kref *kref) 929 { 930 struct device_link *link = container_of(kref, struct device_link, kref); 931 932 dev_dbg(link->consumer, "Dropping the link to %s\n", 933 dev_name(link->supplier)); 934 935 pm_runtime_drop_link(link); 936 937 device_link_remove_from_lists(link); 938 device_unregister(&link->link_dev); 939 } 940 941 static void device_link_put_kref(struct device_link *link) 942 { 943 if (link->flags & DL_FLAG_STATELESS) 944 kref_put(&link->kref, __device_link_del); 945 else if (!device_is_registered(link->consumer)) 946 __device_link_del(&link->kref); 947 else 948 WARN(1, "Unable to drop a managed device link reference\n"); 949 } 950 951 /** 952 * device_link_del - Delete a stateless link between two devices. 953 * @link: Device link to delete. 954 * 955 * The caller must ensure proper synchronization of this function with runtime 956 * PM. If the link was added multiple times, it needs to be deleted as often. 957 * Care is required for hotplugged devices: Their links are purged on removal 958 * and calling device_link_del() is then no longer allowed. 959 */ 960 void device_link_del(struct device_link *link) 961 { 962 device_links_write_lock(); 963 device_link_put_kref(link); 964 device_links_write_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(device_link_del); 967 968 /** 969 * device_link_remove - Delete a stateless link between two devices. 970 * @consumer: Consumer end of the link. 971 * @supplier: Supplier end of the link. 972 * 973 * The caller must ensure proper synchronization of this function with runtime 974 * PM. 975 */ 976 void device_link_remove(void *consumer, struct device *supplier) 977 { 978 struct device_link *link; 979 980 if (WARN_ON(consumer == supplier)) 981 return; 982 983 device_links_write_lock(); 984 985 list_for_each_entry(link, &supplier->links.consumers, s_node) { 986 if (link->consumer == consumer) { 987 device_link_put_kref(link); 988 break; 989 } 990 } 991 992 device_links_write_unlock(); 993 } 994 EXPORT_SYMBOL_GPL(device_link_remove); 995 996 static void device_links_missing_supplier(struct device *dev) 997 { 998 struct device_link *link; 999 1000 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1001 if (link->status != DL_STATE_CONSUMER_PROBE) 1002 continue; 1003 1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1006 } else { 1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1008 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1009 } 1010 } 1011 } 1012 1013 static bool dev_is_best_effort(struct device *dev) 1014 { 1015 return (fw_devlink_best_effort && dev->can_match) || 1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1017 } 1018 1019 static struct fwnode_handle *fwnode_links_check_suppliers( 1020 struct fwnode_handle *fwnode) 1021 { 1022 struct fwnode_link *link; 1023 1024 if (!fwnode || fw_devlink_is_permissive()) 1025 return NULL; 1026 1027 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1028 if (!(link->flags & 1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1030 return link->supplier; 1031 1032 return NULL; 1033 } 1034 1035 /** 1036 * device_links_check_suppliers - Check presence of supplier drivers. 1037 * @dev: Consumer device. 1038 * 1039 * Check links from this device to any suppliers. Walk the list of the device's 1040 * links to suppliers and see if all of them are available. If not, simply 1041 * return -EPROBE_DEFER. 1042 * 1043 * We need to guarantee that the supplier will not go away after the check has 1044 * been positive here. It only can go away in __device_release_driver() and 1045 * that function checks the device's links to consumers. This means we need to 1046 * mark the link as "consumer probe in progress" to make the supplier removal 1047 * wait for us to complete (or bad things may happen). 1048 * 1049 * Links without the DL_FLAG_MANAGED flag set are ignored. 1050 */ 1051 int device_links_check_suppliers(struct device *dev) 1052 { 1053 struct device_link *link; 1054 int ret = 0, fwnode_ret = 0; 1055 struct fwnode_handle *sup_fw; 1056 1057 /* 1058 * Device waiting for supplier to become available is not allowed to 1059 * probe. 1060 */ 1061 scoped_guard(mutex, &fwnode_link_lock) { 1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1063 if (sup_fw) { 1064 if (dev_is_best_effort(dev)) 1065 fwnode_ret = -EAGAIN; 1066 else 1067 return dev_err_probe(dev, -EPROBE_DEFER, 1068 "wait for supplier %pfwf\n", sup_fw); 1069 } 1070 } 1071 1072 device_links_write_lock(); 1073 1074 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1075 if (!(link->flags & DL_FLAG_MANAGED)) 1076 continue; 1077 1078 if (link->status != DL_STATE_AVAILABLE && 1079 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1080 1081 if (dev_is_best_effort(dev) && 1082 link->flags & DL_FLAG_INFERRED && 1083 !link->supplier->can_match) { 1084 ret = -EAGAIN; 1085 continue; 1086 } 1087 1088 device_links_missing_supplier(dev); 1089 ret = dev_err_probe(dev, -EPROBE_DEFER, 1090 "supplier %s not ready\n", dev_name(link->supplier)); 1091 break; 1092 } 1093 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1094 } 1095 dev->links.status = DL_DEV_PROBING; 1096 1097 device_links_write_unlock(); 1098 1099 return ret ? ret : fwnode_ret; 1100 } 1101 1102 /** 1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1104 * @dev: Device to call sync_state() on 1105 * @list: List head to queue the @dev on 1106 * 1107 * Queues a device for a sync_state() callback when the device links write lock 1108 * isn't held. This allows the sync_state() execution flow to use device links 1109 * APIs. The caller must ensure this function is called with 1110 * device_links_write_lock() held. 1111 * 1112 * This function does a get_device() to make sure the device is not freed while 1113 * on this list. 1114 * 1115 * So the caller must also ensure that device_links_flush_sync_list() is called 1116 * as soon as the caller releases device_links_write_lock(). This is necessary 1117 * to make sure the sync_state() is called in a timely fashion and the 1118 * put_device() is called on this device. 1119 */ 1120 static void __device_links_queue_sync_state(struct device *dev, 1121 struct list_head *list) 1122 { 1123 struct device_link *link; 1124 1125 if (!dev_has_sync_state(dev)) 1126 return; 1127 if (dev->state_synced) 1128 return; 1129 1130 list_for_each_entry(link, &dev->links.consumers, s_node) { 1131 if (!(link->flags & DL_FLAG_MANAGED)) 1132 continue; 1133 if (link->status != DL_STATE_ACTIVE) 1134 return; 1135 } 1136 1137 /* 1138 * Set the flag here to avoid adding the same device to a list more 1139 * than once. This can happen if new consumers get added to the device 1140 * and probed before the list is flushed. 1141 */ 1142 dev->state_synced = true; 1143 1144 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1145 return; 1146 1147 get_device(dev); 1148 list_add_tail(&dev->links.defer_sync, list); 1149 } 1150 1151 /** 1152 * device_links_flush_sync_list - Call sync_state() on a list of devices 1153 * @list: List of devices to call sync_state() on 1154 * @dont_lock_dev: Device for which lock is already held by the caller 1155 * 1156 * Calls sync_state() on all the devices that have been queued for it. This 1157 * function is used in conjunction with __device_links_queue_sync_state(). The 1158 * @dont_lock_dev parameter is useful when this function is called from a 1159 * context where a device lock is already held. 1160 */ 1161 static void device_links_flush_sync_list(struct list_head *list, 1162 struct device *dont_lock_dev) 1163 { 1164 struct device *dev, *tmp; 1165 1166 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1167 list_del_init(&dev->links.defer_sync); 1168 1169 if (dev != dont_lock_dev) 1170 device_lock(dev); 1171 1172 dev_sync_state(dev); 1173 1174 if (dev != dont_lock_dev) 1175 device_unlock(dev); 1176 1177 put_device(dev); 1178 } 1179 } 1180 1181 void device_links_supplier_sync_state_pause(void) 1182 { 1183 device_links_write_lock(); 1184 defer_sync_state_count++; 1185 device_links_write_unlock(); 1186 } 1187 1188 void device_links_supplier_sync_state_resume(void) 1189 { 1190 struct device *dev, *tmp; 1191 LIST_HEAD(sync_list); 1192 1193 device_links_write_lock(); 1194 if (!defer_sync_state_count) { 1195 WARN(true, "Unmatched sync_state pause/resume!"); 1196 goto out; 1197 } 1198 defer_sync_state_count--; 1199 if (defer_sync_state_count) 1200 goto out; 1201 1202 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1203 /* 1204 * Delete from deferred_sync list before queuing it to 1205 * sync_list because defer_sync is used for both lists. 1206 */ 1207 list_del_init(&dev->links.defer_sync); 1208 __device_links_queue_sync_state(dev, &sync_list); 1209 } 1210 out: 1211 device_links_write_unlock(); 1212 1213 device_links_flush_sync_list(&sync_list, NULL); 1214 } 1215 1216 static int sync_state_resume_initcall(void) 1217 { 1218 device_links_supplier_sync_state_resume(); 1219 return 0; 1220 } 1221 late_initcall(sync_state_resume_initcall); 1222 1223 static void __device_links_supplier_defer_sync(struct device *sup) 1224 { 1225 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1226 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1227 } 1228 1229 static void device_link_drop_managed(struct device_link *link) 1230 { 1231 link->flags &= ~DL_FLAG_MANAGED; 1232 WRITE_ONCE(link->status, DL_STATE_NONE); 1233 kref_put(&link->kref, __device_link_del); 1234 } 1235 1236 static ssize_t waiting_for_supplier_show(struct device *dev, 1237 struct device_attribute *attr, 1238 char *buf) 1239 { 1240 bool val; 1241 1242 device_lock(dev); 1243 scoped_guard(mutex, &fwnode_link_lock) 1244 val = !!fwnode_links_check_suppliers(dev->fwnode); 1245 device_unlock(dev); 1246 return sysfs_emit(buf, "%u\n", val); 1247 } 1248 static DEVICE_ATTR_RO(waiting_for_supplier); 1249 1250 /** 1251 * device_links_force_bind - Prepares device to be force bound 1252 * @dev: Consumer device. 1253 * 1254 * device_bind_driver() force binds a device to a driver without calling any 1255 * driver probe functions. So the consumer really isn't going to wait for any 1256 * supplier before it's bound to the driver. We still want the device link 1257 * states to be sensible when this happens. 1258 * 1259 * In preparation for device_bind_driver(), this function goes through each 1260 * supplier device links and checks if the supplier is bound. If it is, then 1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1263 */ 1264 void device_links_force_bind(struct device *dev) 1265 { 1266 struct device_link *link, *ln; 1267 1268 device_links_write_lock(); 1269 1270 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1271 if (!(link->flags & DL_FLAG_MANAGED)) 1272 continue; 1273 1274 if (link->status != DL_STATE_AVAILABLE) { 1275 device_link_drop_managed(link); 1276 continue; 1277 } 1278 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1279 } 1280 dev->links.status = DL_DEV_PROBING; 1281 1282 device_links_write_unlock(); 1283 } 1284 1285 /** 1286 * device_links_driver_bound - Update device links after probing its driver. 1287 * @dev: Device to update the links for. 1288 * 1289 * The probe has been successful, so update links from this device to any 1290 * consumers by changing their status to "available". 1291 * 1292 * Also change the status of @dev's links to suppliers to "active". 1293 * 1294 * Links without the DL_FLAG_MANAGED flag set are ignored. 1295 */ 1296 void device_links_driver_bound(struct device *dev) 1297 { 1298 struct device_link *link, *ln; 1299 LIST_HEAD(sync_list); 1300 1301 /* 1302 * If a device binds successfully, it's expected to have created all 1303 * the device links it needs to or make new device links as it needs 1304 * them. So, fw_devlink no longer needs to create device links to any 1305 * of the device's suppliers. 1306 * 1307 * Also, if a child firmware node of this bound device is not added as a 1308 * device by now, assume it is never going to be added. Make this bound 1309 * device the fallback supplier to the dangling consumers of the child 1310 * firmware node because this bound device is probably implementing the 1311 * child firmware node functionality and we don't want the dangling 1312 * consumers to defer probe indefinitely waiting for a device for the 1313 * child firmware node. 1314 */ 1315 if (dev->fwnode && dev->fwnode->dev == dev) { 1316 struct fwnode_handle *child; 1317 1318 fwnode_links_purge_suppliers(dev->fwnode); 1319 1320 guard(mutex)(&fwnode_link_lock); 1321 1322 fwnode_for_each_available_child_node(dev->fwnode, child) 1323 __fw_devlink_pickup_dangling_consumers(child, 1324 dev->fwnode); 1325 __fw_devlink_link_to_consumers(dev); 1326 } 1327 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1328 1329 device_links_write_lock(); 1330 1331 list_for_each_entry(link, &dev->links.consumers, s_node) { 1332 if (!(link->flags & DL_FLAG_MANAGED)) 1333 continue; 1334 1335 /* 1336 * Links created during consumer probe may be in the "consumer 1337 * probe" state to start with if the supplier is still probing 1338 * when they are created and they may become "active" if the 1339 * consumer probe returns first. Skip them here. 1340 */ 1341 if (link->status == DL_STATE_CONSUMER_PROBE || 1342 link->status == DL_STATE_ACTIVE) 1343 continue; 1344 1345 WARN_ON(link->status != DL_STATE_DORMANT); 1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1347 1348 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1349 driver_deferred_probe_add(link->consumer); 1350 } 1351 1352 if (defer_sync_state_count) 1353 __device_links_supplier_defer_sync(dev); 1354 else 1355 __device_links_queue_sync_state(dev, &sync_list); 1356 1357 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1358 struct device *supplier; 1359 1360 if (!(link->flags & DL_FLAG_MANAGED)) 1361 continue; 1362 1363 supplier = link->supplier; 1364 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1365 /* 1366 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1367 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1368 * save to drop the managed link completely. 1369 */ 1370 device_link_drop_managed(link); 1371 } else if (dev_is_best_effort(dev) && 1372 link->flags & DL_FLAG_INFERRED && 1373 link->status != DL_STATE_CONSUMER_PROBE && 1374 !link->supplier->can_match) { 1375 /* 1376 * When dev_is_best_effort() is true, we ignore device 1377 * links to suppliers that don't have a driver. If the 1378 * consumer device still managed to probe, there's no 1379 * point in maintaining a device link in a weird state 1380 * (consumer probed before supplier). So delete it. 1381 */ 1382 device_link_drop_managed(link); 1383 } else { 1384 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1385 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1386 } 1387 1388 /* 1389 * This needs to be done even for the deleted 1390 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1391 * device link that was preventing the supplier from getting a 1392 * sync_state() call. 1393 */ 1394 if (defer_sync_state_count) 1395 __device_links_supplier_defer_sync(supplier); 1396 else 1397 __device_links_queue_sync_state(supplier, &sync_list); 1398 } 1399 1400 dev->links.status = DL_DEV_DRIVER_BOUND; 1401 1402 device_links_write_unlock(); 1403 1404 device_links_flush_sync_list(&sync_list, dev); 1405 } 1406 1407 /** 1408 * __device_links_no_driver - Update links of a device without a driver. 1409 * @dev: Device without a drvier. 1410 * 1411 * Delete all non-persistent links from this device to any suppliers. 1412 * 1413 * Persistent links stay around, but their status is changed to "available", 1414 * unless they already are in the "supplier unbind in progress" state in which 1415 * case they need not be updated. 1416 * 1417 * Links without the DL_FLAG_MANAGED flag set are ignored. 1418 */ 1419 static void __device_links_no_driver(struct device *dev) 1420 { 1421 struct device_link *link, *ln; 1422 1423 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1424 if (!(link->flags & DL_FLAG_MANAGED)) 1425 continue; 1426 1427 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1428 device_link_drop_managed(link); 1429 continue; 1430 } 1431 1432 if (link->status != DL_STATE_CONSUMER_PROBE && 1433 link->status != DL_STATE_ACTIVE) 1434 continue; 1435 1436 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1437 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1438 } else { 1439 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1440 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1441 } 1442 } 1443 1444 dev->links.status = DL_DEV_NO_DRIVER; 1445 } 1446 1447 /** 1448 * device_links_no_driver - Update links after failing driver probe. 1449 * @dev: Device whose driver has just failed to probe. 1450 * 1451 * Clean up leftover links to consumers for @dev and invoke 1452 * %__device_links_no_driver() to update links to suppliers for it as 1453 * appropriate. 1454 * 1455 * Links without the DL_FLAG_MANAGED flag set are ignored. 1456 */ 1457 void device_links_no_driver(struct device *dev) 1458 { 1459 struct device_link *link; 1460 1461 device_links_write_lock(); 1462 1463 list_for_each_entry(link, &dev->links.consumers, s_node) { 1464 if (!(link->flags & DL_FLAG_MANAGED)) 1465 continue; 1466 1467 /* 1468 * The probe has failed, so if the status of the link is 1469 * "consumer probe" or "active", it must have been added by 1470 * a probing consumer while this device was still probing. 1471 * Change its state to "dormant", as it represents a valid 1472 * relationship, but it is not functionally meaningful. 1473 */ 1474 if (link->status == DL_STATE_CONSUMER_PROBE || 1475 link->status == DL_STATE_ACTIVE) 1476 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1477 } 1478 1479 __device_links_no_driver(dev); 1480 1481 device_links_write_unlock(); 1482 } 1483 1484 /** 1485 * device_links_driver_cleanup - Update links after driver removal. 1486 * @dev: Device whose driver has just gone away. 1487 * 1488 * Update links to consumers for @dev by changing their status to "dormant" and 1489 * invoke %__device_links_no_driver() to update links to suppliers for it as 1490 * appropriate. 1491 * 1492 * Links without the DL_FLAG_MANAGED flag set are ignored. 1493 */ 1494 void device_links_driver_cleanup(struct device *dev) 1495 { 1496 struct device_link *link, *ln; 1497 1498 device_links_write_lock(); 1499 1500 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1501 if (!(link->flags & DL_FLAG_MANAGED)) 1502 continue; 1503 1504 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1505 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1506 1507 /* 1508 * autoremove the links between this @dev and its consumer 1509 * devices that are not active, i.e. where the link state 1510 * has moved to DL_STATE_SUPPLIER_UNBIND. 1511 */ 1512 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1513 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1514 device_link_drop_managed(link); 1515 1516 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1517 } 1518 1519 list_del_init(&dev->links.defer_sync); 1520 __device_links_no_driver(dev); 1521 1522 device_links_write_unlock(); 1523 } 1524 1525 /** 1526 * device_links_busy - Check if there are any busy links to consumers. 1527 * @dev: Device to check. 1528 * 1529 * Check each consumer of the device and return 'true' if its link's status 1530 * is one of "consumer probe" or "active" (meaning that the given consumer is 1531 * probing right now or its driver is present). Otherwise, change the link 1532 * state to "supplier unbind" to prevent the consumer from being probed 1533 * successfully going forward. 1534 * 1535 * Return 'false' if there are no probing or active consumers. 1536 * 1537 * Links without the DL_FLAG_MANAGED flag set are ignored. 1538 */ 1539 bool device_links_busy(struct device *dev) 1540 { 1541 struct device_link *link; 1542 bool ret = false; 1543 1544 device_links_write_lock(); 1545 1546 list_for_each_entry(link, &dev->links.consumers, s_node) { 1547 if (!(link->flags & DL_FLAG_MANAGED)) 1548 continue; 1549 1550 if (link->status == DL_STATE_CONSUMER_PROBE 1551 || link->status == DL_STATE_ACTIVE) { 1552 ret = true; 1553 break; 1554 } 1555 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1556 } 1557 1558 dev->links.status = DL_DEV_UNBINDING; 1559 1560 device_links_write_unlock(); 1561 return ret; 1562 } 1563 1564 /** 1565 * device_links_unbind_consumers - Force unbind consumers of the given device. 1566 * @dev: Device to unbind the consumers of. 1567 * 1568 * Walk the list of links to consumers for @dev and if any of them is in the 1569 * "consumer probe" state, wait for all device probes in progress to complete 1570 * and start over. 1571 * 1572 * If that's not the case, change the status of the link to "supplier unbind" 1573 * and check if the link was in the "active" state. If so, force the consumer 1574 * driver to unbind and start over (the consumer will not re-probe as we have 1575 * changed the state of the link already). 1576 * 1577 * Links without the DL_FLAG_MANAGED flag set are ignored. 1578 */ 1579 void device_links_unbind_consumers(struct device *dev) 1580 { 1581 struct device_link *link; 1582 1583 start: 1584 device_links_write_lock(); 1585 1586 list_for_each_entry(link, &dev->links.consumers, s_node) { 1587 enum device_link_state status; 1588 1589 if (!(link->flags & DL_FLAG_MANAGED) || 1590 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1591 continue; 1592 1593 status = link->status; 1594 if (status == DL_STATE_CONSUMER_PROBE) { 1595 device_links_write_unlock(); 1596 1597 wait_for_device_probe(); 1598 goto start; 1599 } 1600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1601 if (status == DL_STATE_ACTIVE) { 1602 struct device *consumer = link->consumer; 1603 1604 get_device(consumer); 1605 1606 device_links_write_unlock(); 1607 1608 device_release_driver_internal(consumer, NULL, 1609 consumer->parent); 1610 put_device(consumer); 1611 goto start; 1612 } 1613 } 1614 1615 device_links_write_unlock(); 1616 } 1617 1618 /** 1619 * device_links_purge - Delete existing links to other devices. 1620 * @dev: Target device. 1621 */ 1622 static void device_links_purge(struct device *dev) 1623 { 1624 struct device_link *link, *ln; 1625 1626 if (dev->class == &devlink_class) 1627 return; 1628 1629 /* 1630 * Delete all of the remaining links from this device to any other 1631 * devices (either consumers or suppliers). 1632 */ 1633 device_links_write_lock(); 1634 1635 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1636 WARN_ON(link->status == DL_STATE_ACTIVE); 1637 __device_link_del(&link->kref); 1638 } 1639 1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1641 WARN_ON(link->status != DL_STATE_DORMANT && 1642 link->status != DL_STATE_NONE); 1643 __device_link_del(&link->kref); 1644 } 1645 1646 device_links_write_unlock(); 1647 } 1648 1649 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1650 DL_FLAG_SYNC_STATE_ONLY) 1651 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1652 DL_FLAG_AUTOPROBE_CONSUMER) 1653 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1654 DL_FLAG_PM_RUNTIME) 1655 1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1657 static int __init fw_devlink_setup(char *arg) 1658 { 1659 if (!arg) 1660 return -EINVAL; 1661 1662 if (strcmp(arg, "off") == 0) { 1663 fw_devlink_flags = 0; 1664 } else if (strcmp(arg, "permissive") == 0) { 1665 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1666 } else if (strcmp(arg, "on") == 0) { 1667 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1668 } else if (strcmp(arg, "rpm") == 0) { 1669 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1670 } 1671 return 0; 1672 } 1673 early_param("fw_devlink", fw_devlink_setup); 1674 1675 static bool fw_devlink_strict; 1676 static int __init fw_devlink_strict_setup(char *arg) 1677 { 1678 return kstrtobool(arg, &fw_devlink_strict); 1679 } 1680 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1681 1682 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1684 1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1686 static int fw_devlink_sync_state; 1687 #else 1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1689 #endif 1690 1691 static int __init fw_devlink_sync_state_setup(char *arg) 1692 { 1693 if (!arg) 1694 return -EINVAL; 1695 1696 if (strcmp(arg, "strict") == 0) { 1697 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1698 return 0; 1699 } else if (strcmp(arg, "timeout") == 0) { 1700 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1701 return 0; 1702 } 1703 return -EINVAL; 1704 } 1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1706 1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1708 { 1709 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1710 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1711 1712 return fw_devlink_flags; 1713 } 1714 1715 static bool fw_devlink_is_permissive(void) 1716 { 1717 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1718 } 1719 1720 bool fw_devlink_is_strict(void) 1721 { 1722 return fw_devlink_strict && !fw_devlink_is_permissive(); 1723 } 1724 1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1726 { 1727 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1728 return; 1729 1730 fwnode_call_int_op(fwnode, add_links); 1731 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1732 } 1733 1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1735 { 1736 struct fwnode_handle *child = NULL; 1737 1738 fw_devlink_parse_fwnode(fwnode); 1739 1740 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1741 fw_devlink_parse_fwtree(child); 1742 } 1743 1744 static void fw_devlink_relax_link(struct device_link *link) 1745 { 1746 if (!(link->flags & DL_FLAG_INFERRED)) 1747 return; 1748 1749 if (device_link_flag_is_sync_state_only(link->flags)) 1750 return; 1751 1752 pm_runtime_drop_link(link); 1753 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1754 dev_dbg(link->consumer, "Relaxing link with %s\n", 1755 dev_name(link->supplier)); 1756 } 1757 1758 static int fw_devlink_no_driver(struct device *dev, void *data) 1759 { 1760 struct device_link *link = to_devlink(dev); 1761 1762 if (!link->supplier->can_match) 1763 fw_devlink_relax_link(link); 1764 1765 return 0; 1766 } 1767 1768 void fw_devlink_drivers_done(void) 1769 { 1770 fw_devlink_drv_reg_done = true; 1771 device_links_write_lock(); 1772 class_for_each_device(&devlink_class, NULL, NULL, 1773 fw_devlink_no_driver); 1774 device_links_write_unlock(); 1775 } 1776 1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1778 { 1779 struct device_link *link = to_devlink(dev); 1780 struct device *sup = link->supplier; 1781 1782 if (!(link->flags & DL_FLAG_MANAGED) || 1783 link->status == DL_STATE_ACTIVE || sup->state_synced || 1784 !dev_has_sync_state(sup)) 1785 return 0; 1786 1787 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1788 dev_warn(sup, "sync_state() pending due to %s\n", 1789 dev_name(link->consumer)); 1790 return 0; 1791 } 1792 1793 if (!list_empty(&sup->links.defer_sync)) 1794 return 0; 1795 1796 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1797 sup->state_synced = true; 1798 get_device(sup); 1799 list_add_tail(&sup->links.defer_sync, data); 1800 1801 return 0; 1802 } 1803 1804 void fw_devlink_probing_done(void) 1805 { 1806 LIST_HEAD(sync_list); 1807 1808 device_links_write_lock(); 1809 class_for_each_device(&devlink_class, NULL, &sync_list, 1810 fw_devlink_dev_sync_state); 1811 device_links_write_unlock(); 1812 device_links_flush_sync_list(&sync_list, NULL); 1813 } 1814 1815 /** 1816 * wait_for_init_devices_probe - Try to probe any device needed for init 1817 * 1818 * Some devices might need to be probed and bound successfully before the kernel 1819 * boot sequence can finish and move on to init/userspace. For example, a 1820 * network interface might need to be bound to be able to mount a NFS rootfs. 1821 * 1822 * With fw_devlink=on by default, some of these devices might be blocked from 1823 * probing because they are waiting on a optional supplier that doesn't have a 1824 * driver. While fw_devlink will eventually identify such devices and unblock 1825 * the probing automatically, it might be too late by the time it unblocks the 1826 * probing of devices. For example, the IP4 autoconfig might timeout before 1827 * fw_devlink unblocks probing of the network interface. 1828 * 1829 * This function is available to temporarily try and probe all devices that have 1830 * a driver even if some of their suppliers haven't been added or don't have 1831 * drivers. 1832 * 1833 * The drivers can then decide which of the suppliers are optional vs mandatory 1834 * and probe the device if possible. By the time this function returns, all such 1835 * "best effort" probes are guaranteed to be completed. If a device successfully 1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1837 * device where the supplier hasn't yet probed successfully because they have to 1838 * be optional dependencies. 1839 * 1840 * Any devices that didn't successfully probe go back to being treated as if 1841 * this function was never called. 1842 * 1843 * This also means that some devices that aren't needed for init and could have 1844 * waited for their optional supplier to probe (when the supplier's module is 1845 * loaded later on) would end up probing prematurely with limited functionality. 1846 * So call this function only when boot would fail without it. 1847 */ 1848 void __init wait_for_init_devices_probe(void) 1849 { 1850 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1851 return; 1852 1853 /* 1854 * Wait for all ongoing probes to finish so that the "best effort" is 1855 * only applied to devices that can't probe otherwise. 1856 */ 1857 wait_for_device_probe(); 1858 1859 pr_info("Trying to probe devices needed for running init ...\n"); 1860 fw_devlink_best_effort = true; 1861 driver_deferred_probe_trigger(); 1862 1863 /* 1864 * Wait for all "best effort" probes to finish before going back to 1865 * normal enforcement. 1866 */ 1867 wait_for_device_probe(); 1868 fw_devlink_best_effort = false; 1869 } 1870 1871 static void fw_devlink_unblock_consumers(struct device *dev) 1872 { 1873 struct device_link *link; 1874 1875 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1876 return; 1877 1878 device_links_write_lock(); 1879 list_for_each_entry(link, &dev->links.consumers, s_node) 1880 fw_devlink_relax_link(link); 1881 device_links_write_unlock(); 1882 } 1883 1884 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1885 { 1886 struct device *dev; 1887 bool ret; 1888 1889 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1890 return false; 1891 1892 dev = get_dev_from_fwnode(fwnode); 1893 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1894 put_device(dev); 1895 1896 return ret; 1897 } 1898 1899 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1900 { 1901 struct fwnode_handle *parent; 1902 1903 fwnode_for_each_parent_node(fwnode, parent) { 1904 if (fwnode_init_without_drv(parent)) { 1905 fwnode_handle_put(parent); 1906 return true; 1907 } 1908 } 1909 1910 return false; 1911 } 1912 1913 /** 1914 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1915 * @ancestor: Firmware which is tested for being an ancestor 1916 * @child: Firmware which is tested for being the child 1917 * 1918 * A node is considered an ancestor of itself too. 1919 * 1920 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1921 */ 1922 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1923 const struct fwnode_handle *child) 1924 { 1925 struct fwnode_handle *parent; 1926 1927 if (IS_ERR_OR_NULL(ancestor)) 1928 return false; 1929 1930 if (child == ancestor) 1931 return true; 1932 1933 fwnode_for_each_parent_node(child, parent) { 1934 if (parent == ancestor) { 1935 fwnode_handle_put(parent); 1936 return true; 1937 } 1938 } 1939 return false; 1940 } 1941 1942 /** 1943 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1944 * @fwnode: firmware node 1945 * 1946 * Given a firmware node (@fwnode), this function finds its closest ancestor 1947 * firmware node that has a corresponding struct device and returns that struct 1948 * device. 1949 * 1950 * The caller is responsible for calling put_device() on the returned device 1951 * pointer. 1952 * 1953 * Return: a pointer to the device of the @fwnode's closest ancestor. 1954 */ 1955 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1956 { 1957 struct fwnode_handle *parent; 1958 struct device *dev; 1959 1960 fwnode_for_each_parent_node(fwnode, parent) { 1961 dev = get_dev_from_fwnode(parent); 1962 if (dev) { 1963 fwnode_handle_put(parent); 1964 return dev; 1965 } 1966 } 1967 return NULL; 1968 } 1969 1970 /** 1971 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1972 * @con_handle: Potential consumer device fwnode. 1973 * @sup_handle: Potential supplier's fwnode. 1974 * 1975 * Needs to be called with fwnode_lock and device link lock held. 1976 * 1977 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1978 * depend on @con. This function can detect multiple cyles between @sup_handle 1979 * and @con. When such dependency cycles are found, convert all device links 1980 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1981 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1982 * converted into a device link in the future, they are created as 1983 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1984 * fw_devlink=permissive just between the devices in the cycle. We need to do 1985 * this because, at this point, fw_devlink can't tell which of these 1986 * dependencies is not a real dependency. 1987 * 1988 * Return true if one or more cycles were found. Otherwise, return false. 1989 */ 1990 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle, 1991 struct fwnode_handle *sup_handle) 1992 { 1993 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL; 1994 struct fwnode_link *link; 1995 struct device_link *dev_link; 1996 bool ret = false; 1997 1998 if (!sup_handle) 1999 return false; 2000 2001 /* 2002 * We aren't trying to find all cycles. Just a cycle between con and 2003 * sup_handle. 2004 */ 2005 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2006 return false; 2007 2008 sup_handle->flags |= FWNODE_FLAG_VISITED; 2009 2010 /* Termination condition. */ 2011 if (sup_handle == con_handle) { 2012 pr_debug("----- cycle: start -----\n"); 2013 ret = true; 2014 goto out; 2015 } 2016 2017 sup_dev = get_dev_from_fwnode(sup_handle); 2018 con_dev = get_dev_from_fwnode(con_handle); 2019 /* 2020 * If sup_dev is bound to a driver and @con hasn't started binding to a 2021 * driver, sup_dev can't be a consumer of @con. So, no need to check 2022 * further. 2023 */ 2024 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2025 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) { 2026 ret = false; 2027 goto out; 2028 } 2029 2030 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2031 if (link->flags & FWLINK_FLAG_IGNORE) 2032 continue; 2033 2034 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) { 2035 __fwnode_link_cycle(link); 2036 ret = true; 2037 } 2038 } 2039 2040 /* 2041 * Give priority to device parent over fwnode parent to account for any 2042 * quirks in how fwnodes are converted to devices. 2043 */ 2044 if (sup_dev) 2045 par_dev = get_device(sup_dev->parent); 2046 else 2047 par_dev = fwnode_get_next_parent_dev(sup_handle); 2048 2049 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) { 2050 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2051 par_dev->fwnode); 2052 ret = true; 2053 } 2054 2055 if (!sup_dev) 2056 goto out; 2057 2058 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2059 /* 2060 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2061 * such due to a cycle. 2062 */ 2063 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2064 !(dev_link->flags & DL_FLAG_CYCLE)) 2065 continue; 2066 2067 if (__fw_devlink_relax_cycles(con_handle, 2068 dev_link->supplier->fwnode)) { 2069 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2070 dev_link->supplier->fwnode); 2071 fw_devlink_relax_link(dev_link); 2072 dev_link->flags |= DL_FLAG_CYCLE; 2073 ret = true; 2074 } 2075 } 2076 2077 out: 2078 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2079 put_device(sup_dev); 2080 put_device(con_dev); 2081 put_device(par_dev); 2082 return ret; 2083 } 2084 2085 /** 2086 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2087 * @con: consumer device for the device link 2088 * @sup_handle: fwnode handle of supplier 2089 * @link: fwnode link that's being converted to a device link 2090 * 2091 * This function will try to create a device link between the consumer device 2092 * @con and the supplier device represented by @sup_handle. 2093 * 2094 * The supplier has to be provided as a fwnode because incorrect cycles in 2095 * fwnode links can sometimes cause the supplier device to never be created. 2096 * This function detects such cases and returns an error if it cannot create a 2097 * device link from the consumer to a missing supplier. 2098 * 2099 * Returns, 2100 * 0 on successfully creating a device link 2101 * -EINVAL if the device link cannot be created as expected 2102 * -EAGAIN if the device link cannot be created right now, but it may be 2103 * possible to do that in the future 2104 */ 2105 static int fw_devlink_create_devlink(struct device *con, 2106 struct fwnode_handle *sup_handle, 2107 struct fwnode_link *link) 2108 { 2109 struct device *sup_dev; 2110 int ret = 0; 2111 u32 flags; 2112 2113 if (link->flags & FWLINK_FLAG_IGNORE) 2114 return 0; 2115 2116 /* 2117 * In some cases, a device P might also be a supplier to its child node 2118 * C. However, this would defer the probe of C until the probe of P 2119 * completes successfully. This is perfectly fine in the device driver 2120 * model. device_add() doesn't guarantee probe completion of the device 2121 * by the time it returns. 2122 * 2123 * However, there are a few drivers that assume C will finish probing 2124 * as soon as it's added and before P finishes probing. So, we provide 2125 * a flag to let fw_devlink know not to delay the probe of C until the 2126 * probe of P completes successfully. 2127 * 2128 * When such a flag is set, we can't create device links where P is the 2129 * supplier of C as that would delay the probe of C. 2130 */ 2131 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2132 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2133 return -EINVAL; 2134 2135 /* 2136 * Don't try to optimize by not calling the cycle detection logic under 2137 * certain conditions. There's always some corner case that won't get 2138 * detected. 2139 */ 2140 device_links_write_lock(); 2141 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) { 2142 __fwnode_link_cycle(link); 2143 pr_debug("----- cycle: end -----\n"); 2144 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n", 2145 link->consumer, sup_handle); 2146 } 2147 device_links_write_unlock(); 2148 2149 if (con->fwnode == link->consumer) 2150 flags = fw_devlink_get_flags(link->flags); 2151 else 2152 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2153 2154 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2155 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2156 else 2157 sup_dev = get_dev_from_fwnode(sup_handle); 2158 2159 if (sup_dev) { 2160 /* 2161 * If it's one of those drivers that don't actually bind to 2162 * their device using driver core, then don't wait on this 2163 * supplier device indefinitely. 2164 */ 2165 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2166 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2167 dev_dbg(con, 2168 "Not linking %pfwf - dev might never probe\n", 2169 sup_handle); 2170 ret = -EINVAL; 2171 goto out; 2172 } 2173 2174 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2175 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n", 2176 flags, dev_name(sup_dev), link->consumer); 2177 ret = -EINVAL; 2178 } 2179 2180 goto out; 2181 } 2182 2183 /* 2184 * Supplier or supplier's ancestor already initialized without a struct 2185 * device or being probed by a driver. 2186 */ 2187 if (fwnode_init_without_drv(sup_handle) || 2188 fwnode_ancestor_init_without_drv(sup_handle)) { 2189 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2190 sup_handle); 2191 return -EINVAL; 2192 } 2193 2194 ret = -EAGAIN; 2195 out: 2196 put_device(sup_dev); 2197 return ret; 2198 } 2199 2200 /** 2201 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2202 * @dev: Device that needs to be linked to its consumers 2203 * 2204 * This function looks at all the consumer fwnodes of @dev and creates device 2205 * links between the consumer device and @dev (supplier). 2206 * 2207 * If the consumer device has not been added yet, then this function creates a 2208 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2209 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2210 * sync_state() callback before the real consumer device gets to be added and 2211 * then probed. 2212 * 2213 * Once device links are created from the real consumer to @dev (supplier), the 2214 * fwnode links are deleted. 2215 */ 2216 static void __fw_devlink_link_to_consumers(struct device *dev) 2217 { 2218 struct fwnode_handle *fwnode = dev->fwnode; 2219 struct fwnode_link *link, *tmp; 2220 2221 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2222 struct device *con_dev; 2223 bool own_link = true; 2224 int ret; 2225 2226 con_dev = get_dev_from_fwnode(link->consumer); 2227 /* 2228 * If consumer device is not available yet, make a "proxy" 2229 * SYNC_STATE_ONLY link from the consumer's parent device to 2230 * the supplier device. This is necessary to make sure the 2231 * supplier doesn't get a sync_state() callback before the real 2232 * consumer can create a device link to the supplier. 2233 * 2234 * This proxy link step is needed to handle the case where the 2235 * consumer's parent device is added before the supplier. 2236 */ 2237 if (!con_dev) { 2238 con_dev = fwnode_get_next_parent_dev(link->consumer); 2239 /* 2240 * However, if the consumer's parent device is also the 2241 * parent of the supplier, don't create a 2242 * consumer-supplier link from the parent to its child 2243 * device. Such a dependency is impossible. 2244 */ 2245 if (con_dev && 2246 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2247 put_device(con_dev); 2248 con_dev = NULL; 2249 } else { 2250 own_link = false; 2251 } 2252 } 2253 2254 if (!con_dev) 2255 continue; 2256 2257 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2258 put_device(con_dev); 2259 if (!own_link || ret == -EAGAIN) 2260 continue; 2261 2262 __fwnode_link_del(link); 2263 } 2264 } 2265 2266 /** 2267 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2268 * @dev: The consumer device that needs to be linked to its suppliers 2269 * @fwnode: Root of the fwnode tree that is used to create device links 2270 * 2271 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2272 * @fwnode and creates device links between @dev (consumer) and all the 2273 * supplier devices of the entire fwnode tree at @fwnode. 2274 * 2275 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2276 * and the real suppliers of @dev. Once these device links are created, the 2277 * fwnode links are deleted. 2278 * 2279 * In addition, it also looks at all the suppliers of the entire fwnode tree 2280 * because some of the child devices of @dev that have not been added yet 2281 * (because @dev hasn't probed) might already have their suppliers added to 2282 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2283 * @dev (consumer) and these suppliers to make sure they don't execute their 2284 * sync_state() callbacks before these child devices have a chance to create 2285 * their device links. The fwnode links that correspond to the child devices 2286 * aren't delete because they are needed later to create the device links 2287 * between the real consumer and supplier devices. 2288 */ 2289 static void __fw_devlink_link_to_suppliers(struct device *dev, 2290 struct fwnode_handle *fwnode) 2291 { 2292 bool own_link = (dev->fwnode == fwnode); 2293 struct fwnode_link *link, *tmp; 2294 struct fwnode_handle *child = NULL; 2295 2296 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2297 int ret; 2298 struct fwnode_handle *sup = link->supplier; 2299 2300 ret = fw_devlink_create_devlink(dev, sup, link); 2301 if (!own_link || ret == -EAGAIN) 2302 continue; 2303 2304 __fwnode_link_del(link); 2305 } 2306 2307 /* 2308 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2309 * all the descendants. This proxy link step is needed to handle the 2310 * case where the supplier is added before the consumer's parent device 2311 * (@dev). 2312 */ 2313 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2314 __fw_devlink_link_to_suppliers(dev, child); 2315 } 2316 2317 static void fw_devlink_link_device(struct device *dev) 2318 { 2319 struct fwnode_handle *fwnode = dev->fwnode; 2320 2321 if (!fw_devlink_flags) 2322 return; 2323 2324 fw_devlink_parse_fwtree(fwnode); 2325 2326 guard(mutex)(&fwnode_link_lock); 2327 2328 __fw_devlink_link_to_consumers(dev); 2329 __fw_devlink_link_to_suppliers(dev, fwnode); 2330 } 2331 2332 /* Device links support end. */ 2333 2334 static struct kobject *dev_kobj; 2335 2336 /* /sys/dev/char */ 2337 static struct kobject *sysfs_dev_char_kobj; 2338 2339 /* /sys/dev/block */ 2340 static struct kobject *sysfs_dev_block_kobj; 2341 2342 static DEFINE_MUTEX(device_hotplug_lock); 2343 2344 void lock_device_hotplug(void) 2345 { 2346 mutex_lock(&device_hotplug_lock); 2347 } 2348 2349 void unlock_device_hotplug(void) 2350 { 2351 mutex_unlock(&device_hotplug_lock); 2352 } 2353 2354 int lock_device_hotplug_sysfs(void) 2355 { 2356 if (mutex_trylock(&device_hotplug_lock)) 2357 return 0; 2358 2359 /* Avoid busy looping (5 ms of sleep should do). */ 2360 msleep(5); 2361 return restart_syscall(); 2362 } 2363 2364 #ifdef CONFIG_BLOCK 2365 static inline int device_is_not_partition(struct device *dev) 2366 { 2367 return !(dev->type == &part_type); 2368 } 2369 #else 2370 static inline int device_is_not_partition(struct device *dev) 2371 { 2372 return 1; 2373 } 2374 #endif 2375 2376 static void device_platform_notify(struct device *dev) 2377 { 2378 acpi_device_notify(dev); 2379 2380 software_node_notify(dev); 2381 } 2382 2383 static void device_platform_notify_remove(struct device *dev) 2384 { 2385 software_node_notify_remove(dev); 2386 2387 acpi_device_notify_remove(dev); 2388 } 2389 2390 /** 2391 * dev_driver_string - Return a device's driver name, if at all possible 2392 * @dev: struct device to get the name of 2393 * 2394 * Will return the device's driver's name if it is bound to a device. If 2395 * the device is not bound to a driver, it will return the name of the bus 2396 * it is attached to. If it is not attached to a bus either, an empty 2397 * string will be returned. 2398 */ 2399 const char *dev_driver_string(const struct device *dev) 2400 { 2401 struct device_driver *drv; 2402 2403 /* dev->driver can change to NULL underneath us because of unbinding, 2404 * so be careful about accessing it. dev->bus and dev->class should 2405 * never change once they are set, so they don't need special care. 2406 */ 2407 drv = READ_ONCE(dev->driver); 2408 return drv ? drv->name : dev_bus_name(dev); 2409 } 2410 EXPORT_SYMBOL(dev_driver_string); 2411 2412 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2413 2414 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2415 char *buf) 2416 { 2417 struct device_attribute *dev_attr = to_dev_attr(attr); 2418 struct device *dev = kobj_to_dev(kobj); 2419 ssize_t ret = -EIO; 2420 2421 if (dev_attr->show) 2422 ret = dev_attr->show(dev, dev_attr, buf); 2423 if (ret >= (ssize_t)PAGE_SIZE) { 2424 printk("dev_attr_show: %pS returned bad count\n", 2425 dev_attr->show); 2426 } 2427 return ret; 2428 } 2429 2430 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2431 const char *buf, size_t count) 2432 { 2433 struct device_attribute *dev_attr = to_dev_attr(attr); 2434 struct device *dev = kobj_to_dev(kobj); 2435 ssize_t ret = -EIO; 2436 2437 if (dev_attr->store) 2438 ret = dev_attr->store(dev, dev_attr, buf, count); 2439 return ret; 2440 } 2441 2442 static const struct sysfs_ops dev_sysfs_ops = { 2443 .show = dev_attr_show, 2444 .store = dev_attr_store, 2445 }; 2446 2447 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2448 2449 ssize_t device_store_ulong(struct device *dev, 2450 struct device_attribute *attr, 2451 const char *buf, size_t size) 2452 { 2453 struct dev_ext_attribute *ea = to_ext_attr(attr); 2454 int ret; 2455 unsigned long new; 2456 2457 ret = kstrtoul(buf, 0, &new); 2458 if (ret) 2459 return ret; 2460 *(unsigned long *)(ea->var) = new; 2461 /* Always return full write size even if we didn't consume all */ 2462 return size; 2463 } 2464 EXPORT_SYMBOL_GPL(device_store_ulong); 2465 2466 ssize_t device_show_ulong(struct device *dev, 2467 struct device_attribute *attr, 2468 char *buf) 2469 { 2470 struct dev_ext_attribute *ea = to_ext_attr(attr); 2471 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2472 } 2473 EXPORT_SYMBOL_GPL(device_show_ulong); 2474 2475 ssize_t device_store_int(struct device *dev, 2476 struct device_attribute *attr, 2477 const char *buf, size_t size) 2478 { 2479 struct dev_ext_attribute *ea = to_ext_attr(attr); 2480 int ret; 2481 long new; 2482 2483 ret = kstrtol(buf, 0, &new); 2484 if (ret) 2485 return ret; 2486 2487 if (new > INT_MAX || new < INT_MIN) 2488 return -EINVAL; 2489 *(int *)(ea->var) = new; 2490 /* Always return full write size even if we didn't consume all */ 2491 return size; 2492 } 2493 EXPORT_SYMBOL_GPL(device_store_int); 2494 2495 ssize_t device_show_int(struct device *dev, 2496 struct device_attribute *attr, 2497 char *buf) 2498 { 2499 struct dev_ext_attribute *ea = to_ext_attr(attr); 2500 2501 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2502 } 2503 EXPORT_SYMBOL_GPL(device_show_int); 2504 2505 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2506 const char *buf, size_t size) 2507 { 2508 struct dev_ext_attribute *ea = to_ext_attr(attr); 2509 2510 if (kstrtobool(buf, ea->var) < 0) 2511 return -EINVAL; 2512 2513 return size; 2514 } 2515 EXPORT_SYMBOL_GPL(device_store_bool); 2516 2517 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2518 char *buf) 2519 { 2520 struct dev_ext_attribute *ea = to_ext_attr(attr); 2521 2522 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2523 } 2524 EXPORT_SYMBOL_GPL(device_show_bool); 2525 2526 ssize_t device_show_string(struct device *dev, 2527 struct device_attribute *attr, char *buf) 2528 { 2529 struct dev_ext_attribute *ea = to_ext_attr(attr); 2530 2531 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2532 } 2533 EXPORT_SYMBOL_GPL(device_show_string); 2534 2535 /** 2536 * device_release - free device structure. 2537 * @kobj: device's kobject. 2538 * 2539 * This is called once the reference count for the object 2540 * reaches 0. We forward the call to the device's release 2541 * method, which should handle actually freeing the structure. 2542 */ 2543 static void device_release(struct kobject *kobj) 2544 { 2545 struct device *dev = kobj_to_dev(kobj); 2546 struct device_private *p = dev->p; 2547 2548 /* 2549 * Some platform devices are driven without driver attached 2550 * and managed resources may have been acquired. Make sure 2551 * all resources are released. 2552 * 2553 * Drivers still can add resources into device after device 2554 * is deleted but alive, so release devres here to avoid 2555 * possible memory leak. 2556 */ 2557 devres_release_all(dev); 2558 2559 kfree(dev->dma_range_map); 2560 2561 if (dev->release) 2562 dev->release(dev); 2563 else if (dev->type && dev->type->release) 2564 dev->type->release(dev); 2565 else if (dev->class && dev->class->dev_release) 2566 dev->class->dev_release(dev); 2567 else 2568 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2569 dev_name(dev)); 2570 kfree(p); 2571 } 2572 2573 static const void *device_namespace(const struct kobject *kobj) 2574 { 2575 const struct device *dev = kobj_to_dev(kobj); 2576 const void *ns = NULL; 2577 2578 if (dev->class && dev->class->namespace) 2579 ns = dev->class->namespace(dev); 2580 2581 return ns; 2582 } 2583 2584 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2585 { 2586 const struct device *dev = kobj_to_dev(kobj); 2587 2588 if (dev->class && dev->class->get_ownership) 2589 dev->class->get_ownership(dev, uid, gid); 2590 } 2591 2592 static const struct kobj_type device_ktype = { 2593 .release = device_release, 2594 .sysfs_ops = &dev_sysfs_ops, 2595 .namespace = device_namespace, 2596 .get_ownership = device_get_ownership, 2597 }; 2598 2599 2600 static int dev_uevent_filter(const struct kobject *kobj) 2601 { 2602 const struct kobj_type *ktype = get_ktype(kobj); 2603 2604 if (ktype == &device_ktype) { 2605 const struct device *dev = kobj_to_dev(kobj); 2606 if (dev->bus) 2607 return 1; 2608 if (dev->class) 2609 return 1; 2610 } 2611 return 0; 2612 } 2613 2614 static const char *dev_uevent_name(const struct kobject *kobj) 2615 { 2616 const struct device *dev = kobj_to_dev(kobj); 2617 2618 if (dev->bus) 2619 return dev->bus->name; 2620 if (dev->class) 2621 return dev->class->name; 2622 return NULL; 2623 } 2624 2625 /* 2626 * Try filling "DRIVER=<name>" uevent variable for a device. Because this 2627 * function may race with binding and unbinding the device from a driver, 2628 * we need to be careful. Binding is generally safe, at worst we miss the 2629 * fact that the device is already bound to a driver (but the driver 2630 * information that is delivered through uevents is best-effort, it may 2631 * become obsolete as soon as it is generated anyways). Unbinding is more 2632 * risky as driver pointer is transitioning to NULL, so READ_ONCE() should 2633 * be used to make sure we are dealing with the same pointer, and to 2634 * ensure that driver structure is not going to disappear from under us 2635 * we take bus' drivers klist lock. The assumption that only registered 2636 * driver can be bound to a device, and to unregister a driver bus code 2637 * will take the same lock. 2638 */ 2639 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env) 2640 { 2641 struct subsys_private *sp = bus_to_subsys(dev->bus); 2642 2643 if (sp) { 2644 scoped_guard(spinlock, &sp->klist_drivers.k_lock) { 2645 struct device_driver *drv = READ_ONCE(dev->driver); 2646 if (drv) 2647 add_uevent_var(env, "DRIVER=%s", drv->name); 2648 } 2649 2650 subsys_put(sp); 2651 } 2652 } 2653 2654 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2655 { 2656 const struct device *dev = kobj_to_dev(kobj); 2657 int retval = 0; 2658 2659 /* add device node properties if present */ 2660 if (MAJOR(dev->devt)) { 2661 const char *tmp; 2662 const char *name; 2663 umode_t mode = 0; 2664 kuid_t uid = GLOBAL_ROOT_UID; 2665 kgid_t gid = GLOBAL_ROOT_GID; 2666 2667 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2668 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2669 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2670 if (name) { 2671 add_uevent_var(env, "DEVNAME=%s", name); 2672 if (mode) 2673 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2674 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2675 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2676 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2677 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2678 kfree(tmp); 2679 } 2680 } 2681 2682 if (dev->type && dev->type->name) 2683 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2684 2685 /* Add "DRIVER=%s" variable if the device is bound to a driver */ 2686 dev_driver_uevent(dev, env); 2687 2688 /* Add common DT information about the device */ 2689 of_device_uevent(dev, env); 2690 2691 /* have the bus specific function add its stuff */ 2692 if (dev->bus && dev->bus->uevent) { 2693 retval = dev->bus->uevent(dev, env); 2694 if (retval) 2695 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2696 dev_name(dev), __func__, retval); 2697 } 2698 2699 /* have the class specific function add its stuff */ 2700 if (dev->class && dev->class->dev_uevent) { 2701 retval = dev->class->dev_uevent(dev, env); 2702 if (retval) 2703 pr_debug("device: '%s': %s: class uevent() " 2704 "returned %d\n", dev_name(dev), 2705 __func__, retval); 2706 } 2707 2708 /* have the device type specific function add its stuff */ 2709 if (dev->type && dev->type->uevent) { 2710 retval = dev->type->uevent(dev, env); 2711 if (retval) 2712 pr_debug("device: '%s': %s: dev_type uevent() " 2713 "returned %d\n", dev_name(dev), 2714 __func__, retval); 2715 } 2716 2717 return retval; 2718 } 2719 2720 static const struct kset_uevent_ops device_uevent_ops = { 2721 .filter = dev_uevent_filter, 2722 .name = dev_uevent_name, 2723 .uevent = dev_uevent, 2724 }; 2725 2726 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2727 char *buf) 2728 { 2729 struct kobject *top_kobj; 2730 struct kset *kset; 2731 struct kobj_uevent_env *env = NULL; 2732 int i; 2733 int len = 0; 2734 int retval; 2735 2736 /* search the kset, the device belongs to */ 2737 top_kobj = &dev->kobj; 2738 while (!top_kobj->kset && top_kobj->parent) 2739 top_kobj = top_kobj->parent; 2740 if (!top_kobj->kset) 2741 goto out; 2742 2743 kset = top_kobj->kset; 2744 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2745 goto out; 2746 2747 /* respect filter */ 2748 if (kset->uevent_ops && kset->uevent_ops->filter) 2749 if (!kset->uevent_ops->filter(&dev->kobj)) 2750 goto out; 2751 2752 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2753 if (!env) 2754 return -ENOMEM; 2755 2756 /* let the kset specific function add its keys */ 2757 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2758 if (retval) 2759 goto out; 2760 2761 /* copy keys to file */ 2762 for (i = 0; i < env->envp_idx; i++) 2763 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2764 out: 2765 kfree(env); 2766 return len; 2767 } 2768 2769 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2770 const char *buf, size_t count) 2771 { 2772 int rc; 2773 2774 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2775 2776 if (rc) { 2777 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2778 return rc; 2779 } 2780 2781 return count; 2782 } 2783 static DEVICE_ATTR_RW(uevent); 2784 2785 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2786 char *buf) 2787 { 2788 bool val; 2789 2790 device_lock(dev); 2791 val = !dev->offline; 2792 device_unlock(dev); 2793 return sysfs_emit(buf, "%u\n", val); 2794 } 2795 2796 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2797 const char *buf, size_t count) 2798 { 2799 bool val; 2800 int ret; 2801 2802 ret = kstrtobool(buf, &val); 2803 if (ret < 0) 2804 return ret; 2805 2806 ret = lock_device_hotplug_sysfs(); 2807 if (ret) 2808 return ret; 2809 2810 ret = val ? device_online(dev) : device_offline(dev); 2811 unlock_device_hotplug(); 2812 return ret < 0 ? ret : count; 2813 } 2814 static DEVICE_ATTR_RW(online); 2815 2816 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2817 char *buf) 2818 { 2819 const char *loc; 2820 2821 switch (dev->removable) { 2822 case DEVICE_REMOVABLE: 2823 loc = "removable"; 2824 break; 2825 case DEVICE_FIXED: 2826 loc = "fixed"; 2827 break; 2828 default: 2829 loc = "unknown"; 2830 } 2831 return sysfs_emit(buf, "%s\n", loc); 2832 } 2833 static DEVICE_ATTR_RO(removable); 2834 2835 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2836 { 2837 return sysfs_create_groups(&dev->kobj, groups); 2838 } 2839 EXPORT_SYMBOL_GPL(device_add_groups); 2840 2841 void device_remove_groups(struct device *dev, 2842 const struct attribute_group **groups) 2843 { 2844 sysfs_remove_groups(&dev->kobj, groups); 2845 } 2846 EXPORT_SYMBOL_GPL(device_remove_groups); 2847 2848 union device_attr_group_devres { 2849 const struct attribute_group *group; 2850 const struct attribute_group **groups; 2851 }; 2852 2853 static void devm_attr_group_remove(struct device *dev, void *res) 2854 { 2855 union device_attr_group_devres *devres = res; 2856 const struct attribute_group *group = devres->group; 2857 2858 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2859 sysfs_remove_group(&dev->kobj, group); 2860 } 2861 2862 /** 2863 * devm_device_add_group - given a device, create a managed attribute group 2864 * @dev: The device to create the group for 2865 * @grp: The attribute group to create 2866 * 2867 * This function creates a group for the first time. It will explicitly 2868 * warn and error if any of the attribute files being created already exist. 2869 * 2870 * Returns 0 on success or error code on failure. 2871 */ 2872 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2873 { 2874 union device_attr_group_devres *devres; 2875 int error; 2876 2877 devres = devres_alloc(devm_attr_group_remove, 2878 sizeof(*devres), GFP_KERNEL); 2879 if (!devres) 2880 return -ENOMEM; 2881 2882 error = sysfs_create_group(&dev->kobj, grp); 2883 if (error) { 2884 devres_free(devres); 2885 return error; 2886 } 2887 2888 devres->group = grp; 2889 devres_add(dev, devres); 2890 return 0; 2891 } 2892 EXPORT_SYMBOL_GPL(devm_device_add_group); 2893 2894 static int device_add_attrs(struct device *dev) 2895 { 2896 const struct class *class = dev->class; 2897 const struct device_type *type = dev->type; 2898 int error; 2899 2900 if (class) { 2901 error = device_add_groups(dev, class->dev_groups); 2902 if (error) 2903 return error; 2904 } 2905 2906 if (type) { 2907 error = device_add_groups(dev, type->groups); 2908 if (error) 2909 goto err_remove_class_groups; 2910 } 2911 2912 error = device_add_groups(dev, dev->groups); 2913 if (error) 2914 goto err_remove_type_groups; 2915 2916 if (device_supports_offline(dev) && !dev->offline_disabled) { 2917 error = device_create_file(dev, &dev_attr_online); 2918 if (error) 2919 goto err_remove_dev_groups; 2920 } 2921 2922 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2923 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2924 if (error) 2925 goto err_remove_dev_online; 2926 } 2927 2928 if (dev_removable_is_valid(dev)) { 2929 error = device_create_file(dev, &dev_attr_removable); 2930 if (error) 2931 goto err_remove_dev_waiting_for_supplier; 2932 } 2933 2934 if (dev_add_physical_location(dev)) { 2935 error = device_add_group(dev, 2936 &dev_attr_physical_location_group); 2937 if (error) 2938 goto err_remove_dev_removable; 2939 } 2940 2941 return 0; 2942 2943 err_remove_dev_removable: 2944 device_remove_file(dev, &dev_attr_removable); 2945 err_remove_dev_waiting_for_supplier: 2946 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2947 err_remove_dev_online: 2948 device_remove_file(dev, &dev_attr_online); 2949 err_remove_dev_groups: 2950 device_remove_groups(dev, dev->groups); 2951 err_remove_type_groups: 2952 if (type) 2953 device_remove_groups(dev, type->groups); 2954 err_remove_class_groups: 2955 if (class) 2956 device_remove_groups(dev, class->dev_groups); 2957 2958 return error; 2959 } 2960 2961 static void device_remove_attrs(struct device *dev) 2962 { 2963 const struct class *class = dev->class; 2964 const struct device_type *type = dev->type; 2965 2966 if (dev->physical_location) { 2967 device_remove_group(dev, &dev_attr_physical_location_group); 2968 kfree(dev->physical_location); 2969 } 2970 2971 device_remove_file(dev, &dev_attr_removable); 2972 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2973 device_remove_file(dev, &dev_attr_online); 2974 device_remove_groups(dev, dev->groups); 2975 2976 if (type) 2977 device_remove_groups(dev, type->groups); 2978 2979 if (class) 2980 device_remove_groups(dev, class->dev_groups); 2981 } 2982 2983 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2984 char *buf) 2985 { 2986 return print_dev_t(buf, dev->devt); 2987 } 2988 static DEVICE_ATTR_RO(dev); 2989 2990 /* /sys/devices/ */ 2991 struct kset *devices_kset; 2992 2993 /** 2994 * devices_kset_move_before - Move device in the devices_kset's list. 2995 * @deva: Device to move. 2996 * @devb: Device @deva should come before. 2997 */ 2998 static void devices_kset_move_before(struct device *deva, struct device *devb) 2999 { 3000 if (!devices_kset) 3001 return; 3002 pr_debug("devices_kset: Moving %s before %s\n", 3003 dev_name(deva), dev_name(devb)); 3004 spin_lock(&devices_kset->list_lock); 3005 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 3006 spin_unlock(&devices_kset->list_lock); 3007 } 3008 3009 /** 3010 * devices_kset_move_after - Move device in the devices_kset's list. 3011 * @deva: Device to move 3012 * @devb: Device @deva should come after. 3013 */ 3014 static void devices_kset_move_after(struct device *deva, struct device *devb) 3015 { 3016 if (!devices_kset) 3017 return; 3018 pr_debug("devices_kset: Moving %s after %s\n", 3019 dev_name(deva), dev_name(devb)); 3020 spin_lock(&devices_kset->list_lock); 3021 list_move(&deva->kobj.entry, &devb->kobj.entry); 3022 spin_unlock(&devices_kset->list_lock); 3023 } 3024 3025 /** 3026 * devices_kset_move_last - move the device to the end of devices_kset's list. 3027 * @dev: device to move 3028 */ 3029 void devices_kset_move_last(struct device *dev) 3030 { 3031 if (!devices_kset) 3032 return; 3033 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3034 spin_lock(&devices_kset->list_lock); 3035 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3036 spin_unlock(&devices_kset->list_lock); 3037 } 3038 3039 /** 3040 * device_create_file - create sysfs attribute file for device. 3041 * @dev: device. 3042 * @attr: device attribute descriptor. 3043 */ 3044 int device_create_file(struct device *dev, 3045 const struct device_attribute *attr) 3046 { 3047 int error = 0; 3048 3049 if (dev) { 3050 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3051 "Attribute %s: write permission without 'store'\n", 3052 attr->attr.name); 3053 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3054 "Attribute %s: read permission without 'show'\n", 3055 attr->attr.name); 3056 error = sysfs_create_file(&dev->kobj, &attr->attr); 3057 } 3058 3059 return error; 3060 } 3061 EXPORT_SYMBOL_GPL(device_create_file); 3062 3063 /** 3064 * device_remove_file - remove sysfs attribute file. 3065 * @dev: device. 3066 * @attr: device attribute descriptor. 3067 */ 3068 void device_remove_file(struct device *dev, 3069 const struct device_attribute *attr) 3070 { 3071 if (dev) 3072 sysfs_remove_file(&dev->kobj, &attr->attr); 3073 } 3074 EXPORT_SYMBOL_GPL(device_remove_file); 3075 3076 /** 3077 * device_remove_file_self - remove sysfs attribute file from its own method. 3078 * @dev: device. 3079 * @attr: device attribute descriptor. 3080 * 3081 * See kernfs_remove_self() for details. 3082 */ 3083 bool device_remove_file_self(struct device *dev, 3084 const struct device_attribute *attr) 3085 { 3086 if (dev) 3087 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3088 else 3089 return false; 3090 } 3091 EXPORT_SYMBOL_GPL(device_remove_file_self); 3092 3093 /** 3094 * device_create_bin_file - create sysfs binary attribute file for device. 3095 * @dev: device. 3096 * @attr: device binary attribute descriptor. 3097 */ 3098 int device_create_bin_file(struct device *dev, 3099 const struct bin_attribute *attr) 3100 { 3101 int error = -EINVAL; 3102 if (dev) 3103 error = sysfs_create_bin_file(&dev->kobj, attr); 3104 return error; 3105 } 3106 EXPORT_SYMBOL_GPL(device_create_bin_file); 3107 3108 /** 3109 * device_remove_bin_file - remove sysfs binary attribute file 3110 * @dev: device. 3111 * @attr: device binary attribute descriptor. 3112 */ 3113 void device_remove_bin_file(struct device *dev, 3114 const struct bin_attribute *attr) 3115 { 3116 if (dev) 3117 sysfs_remove_bin_file(&dev->kobj, attr); 3118 } 3119 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3120 3121 static void klist_children_get(struct klist_node *n) 3122 { 3123 struct device_private *p = to_device_private_parent(n); 3124 struct device *dev = p->device; 3125 3126 get_device(dev); 3127 } 3128 3129 static void klist_children_put(struct klist_node *n) 3130 { 3131 struct device_private *p = to_device_private_parent(n); 3132 struct device *dev = p->device; 3133 3134 put_device(dev); 3135 } 3136 3137 /** 3138 * device_initialize - init device structure. 3139 * @dev: device. 3140 * 3141 * This prepares the device for use by other layers by initializing 3142 * its fields. 3143 * It is the first half of device_register(), if called by 3144 * that function, though it can also be called separately, so one 3145 * may use @dev's fields. In particular, get_device()/put_device() 3146 * may be used for reference counting of @dev after calling this 3147 * function. 3148 * 3149 * All fields in @dev must be initialized by the caller to 0, except 3150 * for those explicitly set to some other value. The simplest 3151 * approach is to use kzalloc() to allocate the structure containing 3152 * @dev. 3153 * 3154 * NOTE: Use put_device() to give up your reference instead of freeing 3155 * @dev directly once you have called this function. 3156 */ 3157 void device_initialize(struct device *dev) 3158 { 3159 dev->kobj.kset = devices_kset; 3160 kobject_init(&dev->kobj, &device_ktype); 3161 INIT_LIST_HEAD(&dev->dma_pools); 3162 mutex_init(&dev->mutex); 3163 lockdep_set_novalidate_class(&dev->mutex); 3164 spin_lock_init(&dev->devres_lock); 3165 INIT_LIST_HEAD(&dev->devres_head); 3166 device_pm_init(dev); 3167 set_dev_node(dev, NUMA_NO_NODE); 3168 INIT_LIST_HEAD(&dev->links.consumers); 3169 INIT_LIST_HEAD(&dev->links.suppliers); 3170 INIT_LIST_HEAD(&dev->links.defer_sync); 3171 dev->links.status = DL_DEV_NO_DRIVER; 3172 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3173 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3174 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3175 dev->dma_coherent = dma_default_coherent; 3176 #endif 3177 swiotlb_dev_init(dev); 3178 } 3179 EXPORT_SYMBOL_GPL(device_initialize); 3180 3181 struct kobject *virtual_device_parent(void) 3182 { 3183 static struct kobject *virtual_dir = NULL; 3184 3185 if (!virtual_dir) 3186 virtual_dir = kobject_create_and_add("virtual", 3187 &devices_kset->kobj); 3188 3189 return virtual_dir; 3190 } 3191 3192 struct class_dir { 3193 struct kobject kobj; 3194 const struct class *class; 3195 }; 3196 3197 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3198 3199 static void class_dir_release(struct kobject *kobj) 3200 { 3201 struct class_dir *dir = to_class_dir(kobj); 3202 kfree(dir); 3203 } 3204 3205 static const 3206 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3207 { 3208 const struct class_dir *dir = to_class_dir(kobj); 3209 return dir->class->ns_type; 3210 } 3211 3212 static const struct kobj_type class_dir_ktype = { 3213 .release = class_dir_release, 3214 .sysfs_ops = &kobj_sysfs_ops, 3215 .child_ns_type = class_dir_child_ns_type 3216 }; 3217 3218 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3219 struct kobject *parent_kobj) 3220 { 3221 struct class_dir *dir; 3222 int retval; 3223 3224 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3225 if (!dir) 3226 return ERR_PTR(-ENOMEM); 3227 3228 dir->class = sp->class; 3229 kobject_init(&dir->kobj, &class_dir_ktype); 3230 3231 dir->kobj.kset = &sp->glue_dirs; 3232 3233 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3234 if (retval < 0) { 3235 kobject_put(&dir->kobj); 3236 return ERR_PTR(retval); 3237 } 3238 return &dir->kobj; 3239 } 3240 3241 static DEFINE_MUTEX(gdp_mutex); 3242 3243 static struct kobject *get_device_parent(struct device *dev, 3244 struct device *parent) 3245 { 3246 struct subsys_private *sp = class_to_subsys(dev->class); 3247 struct kobject *kobj = NULL; 3248 3249 if (sp) { 3250 struct kobject *parent_kobj; 3251 struct kobject *k; 3252 3253 /* 3254 * If we have no parent, we live in "virtual". 3255 * Class-devices with a non class-device as parent, live 3256 * in a "glue" directory to prevent namespace collisions. 3257 */ 3258 if (parent == NULL) 3259 parent_kobj = virtual_device_parent(); 3260 else if (parent->class && !dev->class->ns_type) { 3261 subsys_put(sp); 3262 return &parent->kobj; 3263 } else { 3264 parent_kobj = &parent->kobj; 3265 } 3266 3267 mutex_lock(&gdp_mutex); 3268 3269 /* find our class-directory at the parent and reference it */ 3270 spin_lock(&sp->glue_dirs.list_lock); 3271 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3272 if (k->parent == parent_kobj) { 3273 kobj = kobject_get(k); 3274 break; 3275 } 3276 spin_unlock(&sp->glue_dirs.list_lock); 3277 if (kobj) { 3278 mutex_unlock(&gdp_mutex); 3279 subsys_put(sp); 3280 return kobj; 3281 } 3282 3283 /* or create a new class-directory at the parent device */ 3284 k = class_dir_create_and_add(sp, parent_kobj); 3285 /* do not emit an uevent for this simple "glue" directory */ 3286 mutex_unlock(&gdp_mutex); 3287 subsys_put(sp); 3288 return k; 3289 } 3290 3291 /* subsystems can specify a default root directory for their devices */ 3292 if (!parent && dev->bus) { 3293 struct device *dev_root = bus_get_dev_root(dev->bus); 3294 3295 if (dev_root) { 3296 kobj = &dev_root->kobj; 3297 put_device(dev_root); 3298 return kobj; 3299 } 3300 } 3301 3302 if (parent) 3303 return &parent->kobj; 3304 return NULL; 3305 } 3306 3307 static inline bool live_in_glue_dir(struct kobject *kobj, 3308 struct device *dev) 3309 { 3310 struct subsys_private *sp; 3311 bool retval; 3312 3313 if (!kobj || !dev->class) 3314 return false; 3315 3316 sp = class_to_subsys(dev->class); 3317 if (!sp) 3318 return false; 3319 3320 if (kobj->kset == &sp->glue_dirs) 3321 retval = true; 3322 else 3323 retval = false; 3324 3325 subsys_put(sp); 3326 return retval; 3327 } 3328 3329 static inline struct kobject *get_glue_dir(struct device *dev) 3330 { 3331 return dev->kobj.parent; 3332 } 3333 3334 /** 3335 * kobject_has_children - Returns whether a kobject has children. 3336 * @kobj: the object to test 3337 * 3338 * This will return whether a kobject has other kobjects as children. 3339 * 3340 * It does NOT account for the presence of attribute files, only sub 3341 * directories. It also assumes there is no concurrent addition or 3342 * removal of such children, and thus relies on external locking. 3343 */ 3344 static inline bool kobject_has_children(struct kobject *kobj) 3345 { 3346 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3347 3348 return kobj->sd && kobj->sd->dir.subdirs; 3349 } 3350 3351 /* 3352 * make sure cleaning up dir as the last step, we need to make 3353 * sure .release handler of kobject is run with holding the 3354 * global lock 3355 */ 3356 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3357 { 3358 unsigned int ref; 3359 3360 /* see if we live in a "glue" directory */ 3361 if (!live_in_glue_dir(glue_dir, dev)) 3362 return; 3363 3364 mutex_lock(&gdp_mutex); 3365 /** 3366 * There is a race condition between removing glue directory 3367 * and adding a new device under the glue directory. 3368 * 3369 * CPU1: CPU2: 3370 * 3371 * device_add() 3372 * get_device_parent() 3373 * class_dir_create_and_add() 3374 * kobject_add_internal() 3375 * create_dir() // create glue_dir 3376 * 3377 * device_add() 3378 * get_device_parent() 3379 * kobject_get() // get glue_dir 3380 * 3381 * device_del() 3382 * cleanup_glue_dir() 3383 * kobject_del(glue_dir) 3384 * 3385 * kobject_add() 3386 * kobject_add_internal() 3387 * create_dir() // in glue_dir 3388 * sysfs_create_dir_ns() 3389 * kernfs_create_dir_ns(sd) 3390 * 3391 * sysfs_remove_dir() // glue_dir->sd=NULL 3392 * sysfs_put() // free glue_dir->sd 3393 * 3394 * // sd is freed 3395 * kernfs_new_node(sd) 3396 * kernfs_get(glue_dir) 3397 * kernfs_add_one() 3398 * kernfs_put() 3399 * 3400 * Before CPU1 remove last child device under glue dir, if CPU2 add 3401 * a new device under glue dir, the glue_dir kobject reference count 3402 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3403 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3404 * and sysfs_put(). This result in glue_dir->sd is freed. 3405 * 3406 * Then the CPU2 will see a stale "empty" but still potentially used 3407 * glue dir around in kernfs_new_node(). 3408 * 3409 * In order to avoid this happening, we also should make sure that 3410 * kernfs_node for glue_dir is released in CPU1 only when refcount 3411 * for glue_dir kobj is 1. 3412 */ 3413 ref = kref_read(&glue_dir->kref); 3414 if (!kobject_has_children(glue_dir) && !--ref) 3415 kobject_del(glue_dir); 3416 kobject_put(glue_dir); 3417 mutex_unlock(&gdp_mutex); 3418 } 3419 3420 static int device_add_class_symlinks(struct device *dev) 3421 { 3422 struct device_node *of_node = dev_of_node(dev); 3423 struct subsys_private *sp; 3424 int error; 3425 3426 if (of_node) { 3427 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3428 if (error) 3429 dev_warn(dev, "Error %d creating of_node link\n",error); 3430 /* An error here doesn't warrant bringing down the device */ 3431 } 3432 3433 sp = class_to_subsys(dev->class); 3434 if (!sp) 3435 return 0; 3436 3437 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3438 if (error) 3439 goto out_devnode; 3440 3441 if (dev->parent && device_is_not_partition(dev)) { 3442 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3443 "device"); 3444 if (error) 3445 goto out_subsys; 3446 } 3447 3448 /* link in the class directory pointing to the device */ 3449 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3450 if (error) 3451 goto out_device; 3452 goto exit; 3453 3454 out_device: 3455 sysfs_remove_link(&dev->kobj, "device"); 3456 out_subsys: 3457 sysfs_remove_link(&dev->kobj, "subsystem"); 3458 out_devnode: 3459 sysfs_remove_link(&dev->kobj, "of_node"); 3460 exit: 3461 subsys_put(sp); 3462 return error; 3463 } 3464 3465 static void device_remove_class_symlinks(struct device *dev) 3466 { 3467 struct subsys_private *sp = class_to_subsys(dev->class); 3468 3469 if (dev_of_node(dev)) 3470 sysfs_remove_link(&dev->kobj, "of_node"); 3471 3472 if (!sp) 3473 return; 3474 3475 if (dev->parent && device_is_not_partition(dev)) 3476 sysfs_remove_link(&dev->kobj, "device"); 3477 sysfs_remove_link(&dev->kobj, "subsystem"); 3478 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3479 subsys_put(sp); 3480 } 3481 3482 /** 3483 * dev_set_name - set a device name 3484 * @dev: device 3485 * @fmt: format string for the device's name 3486 */ 3487 int dev_set_name(struct device *dev, const char *fmt, ...) 3488 { 3489 va_list vargs; 3490 int err; 3491 3492 va_start(vargs, fmt); 3493 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3494 va_end(vargs); 3495 return err; 3496 } 3497 EXPORT_SYMBOL_GPL(dev_set_name); 3498 3499 /* select a /sys/dev/ directory for the device */ 3500 static struct kobject *device_to_dev_kobj(struct device *dev) 3501 { 3502 if (is_blockdev(dev)) 3503 return sysfs_dev_block_kobj; 3504 else 3505 return sysfs_dev_char_kobj; 3506 } 3507 3508 static int device_create_sys_dev_entry(struct device *dev) 3509 { 3510 struct kobject *kobj = device_to_dev_kobj(dev); 3511 int error = 0; 3512 char devt_str[15]; 3513 3514 if (kobj) { 3515 format_dev_t(devt_str, dev->devt); 3516 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3517 } 3518 3519 return error; 3520 } 3521 3522 static void device_remove_sys_dev_entry(struct device *dev) 3523 { 3524 struct kobject *kobj = device_to_dev_kobj(dev); 3525 char devt_str[15]; 3526 3527 if (kobj) { 3528 format_dev_t(devt_str, dev->devt); 3529 sysfs_remove_link(kobj, devt_str); 3530 } 3531 } 3532 3533 static int device_private_init(struct device *dev) 3534 { 3535 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3536 if (!dev->p) 3537 return -ENOMEM; 3538 dev->p->device = dev; 3539 klist_init(&dev->p->klist_children, klist_children_get, 3540 klist_children_put); 3541 INIT_LIST_HEAD(&dev->p->deferred_probe); 3542 return 0; 3543 } 3544 3545 /** 3546 * device_add - add device to device hierarchy. 3547 * @dev: device. 3548 * 3549 * This is part 2 of device_register(), though may be called 3550 * separately _iff_ device_initialize() has been called separately. 3551 * 3552 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3553 * to the global and sibling lists for the device, then 3554 * adds it to the other relevant subsystems of the driver model. 3555 * 3556 * Do not call this routine or device_register() more than once for 3557 * any device structure. The driver model core is not designed to work 3558 * with devices that get unregistered and then spring back to life. 3559 * (Among other things, it's very hard to guarantee that all references 3560 * to the previous incarnation of @dev have been dropped.) Allocate 3561 * and register a fresh new struct device instead. 3562 * 3563 * NOTE: _Never_ directly free @dev after calling this function, even 3564 * if it returned an error! Always use put_device() to give up your 3565 * reference instead. 3566 * 3567 * Rule of thumb is: if device_add() succeeds, you should call 3568 * device_del() when you want to get rid of it. If device_add() has 3569 * *not* succeeded, use *only* put_device() to drop the reference 3570 * count. 3571 */ 3572 int device_add(struct device *dev) 3573 { 3574 struct subsys_private *sp; 3575 struct device *parent; 3576 struct kobject *kobj; 3577 struct class_interface *class_intf; 3578 int error = -EINVAL; 3579 struct kobject *glue_dir = NULL; 3580 3581 dev = get_device(dev); 3582 if (!dev) 3583 goto done; 3584 3585 if (!dev->p) { 3586 error = device_private_init(dev); 3587 if (error) 3588 goto done; 3589 } 3590 3591 /* 3592 * for statically allocated devices, which should all be converted 3593 * some day, we need to initialize the name. We prevent reading back 3594 * the name, and force the use of dev_name() 3595 */ 3596 if (dev->init_name) { 3597 error = dev_set_name(dev, "%s", dev->init_name); 3598 dev->init_name = NULL; 3599 } 3600 3601 if (dev_name(dev)) 3602 error = 0; 3603 /* subsystems can specify simple device enumeration */ 3604 else if (dev->bus && dev->bus->dev_name) 3605 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3606 else 3607 error = -EINVAL; 3608 if (error) 3609 goto name_error; 3610 3611 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3612 3613 parent = get_device(dev->parent); 3614 kobj = get_device_parent(dev, parent); 3615 if (IS_ERR(kobj)) { 3616 error = PTR_ERR(kobj); 3617 goto parent_error; 3618 } 3619 if (kobj) 3620 dev->kobj.parent = kobj; 3621 3622 /* use parent numa_node */ 3623 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3624 set_dev_node(dev, dev_to_node(parent)); 3625 3626 /* first, register with generic layer. */ 3627 /* we require the name to be set before, and pass NULL */ 3628 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3629 if (error) { 3630 glue_dir = kobj; 3631 goto Error; 3632 } 3633 3634 /* notify platform of device entry */ 3635 device_platform_notify(dev); 3636 3637 error = device_create_file(dev, &dev_attr_uevent); 3638 if (error) 3639 goto attrError; 3640 3641 error = device_add_class_symlinks(dev); 3642 if (error) 3643 goto SymlinkError; 3644 error = device_add_attrs(dev); 3645 if (error) 3646 goto AttrsError; 3647 error = bus_add_device(dev); 3648 if (error) 3649 goto BusError; 3650 error = dpm_sysfs_add(dev); 3651 if (error) 3652 goto DPMError; 3653 device_pm_add(dev); 3654 3655 if (MAJOR(dev->devt)) { 3656 error = device_create_file(dev, &dev_attr_dev); 3657 if (error) 3658 goto DevAttrError; 3659 3660 error = device_create_sys_dev_entry(dev); 3661 if (error) 3662 goto SysEntryError; 3663 3664 devtmpfs_create_node(dev); 3665 } 3666 3667 /* Notify clients of device addition. This call must come 3668 * after dpm_sysfs_add() and before kobject_uevent(). 3669 */ 3670 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3671 kobject_uevent(&dev->kobj, KOBJ_ADD); 3672 3673 /* 3674 * Check if any of the other devices (consumers) have been waiting for 3675 * this device (supplier) to be added so that they can create a device 3676 * link to it. 3677 * 3678 * This needs to happen after device_pm_add() because device_link_add() 3679 * requires the supplier be registered before it's called. 3680 * 3681 * But this also needs to happen before bus_probe_device() to make sure 3682 * waiting consumers can link to it before the driver is bound to the 3683 * device and the driver sync_state callback is called for this device. 3684 */ 3685 if (dev->fwnode && !dev->fwnode->dev) { 3686 dev->fwnode->dev = dev; 3687 fw_devlink_link_device(dev); 3688 } 3689 3690 bus_probe_device(dev); 3691 3692 /* 3693 * If all driver registration is done and a newly added device doesn't 3694 * match with any driver, don't block its consumers from probing in 3695 * case the consumer device is able to operate without this supplier. 3696 */ 3697 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3698 fw_devlink_unblock_consumers(dev); 3699 3700 if (parent) 3701 klist_add_tail(&dev->p->knode_parent, 3702 &parent->p->klist_children); 3703 3704 sp = class_to_subsys(dev->class); 3705 if (sp) { 3706 mutex_lock(&sp->mutex); 3707 /* tie the class to the device */ 3708 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3709 3710 /* notify any interfaces that the device is here */ 3711 list_for_each_entry(class_intf, &sp->interfaces, node) 3712 if (class_intf->add_dev) 3713 class_intf->add_dev(dev); 3714 mutex_unlock(&sp->mutex); 3715 subsys_put(sp); 3716 } 3717 done: 3718 put_device(dev); 3719 return error; 3720 SysEntryError: 3721 if (MAJOR(dev->devt)) 3722 device_remove_file(dev, &dev_attr_dev); 3723 DevAttrError: 3724 device_pm_remove(dev); 3725 dpm_sysfs_remove(dev); 3726 DPMError: 3727 device_set_driver(dev, NULL); 3728 bus_remove_device(dev); 3729 BusError: 3730 device_remove_attrs(dev); 3731 AttrsError: 3732 device_remove_class_symlinks(dev); 3733 SymlinkError: 3734 device_remove_file(dev, &dev_attr_uevent); 3735 attrError: 3736 device_platform_notify_remove(dev); 3737 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3738 glue_dir = get_glue_dir(dev); 3739 kobject_del(&dev->kobj); 3740 Error: 3741 cleanup_glue_dir(dev, glue_dir); 3742 parent_error: 3743 put_device(parent); 3744 name_error: 3745 kfree(dev->p); 3746 dev->p = NULL; 3747 goto done; 3748 } 3749 EXPORT_SYMBOL_GPL(device_add); 3750 3751 /** 3752 * device_register - register a device with the system. 3753 * @dev: pointer to the device structure 3754 * 3755 * This happens in two clean steps - initialize the device 3756 * and add it to the system. The two steps can be called 3757 * separately, but this is the easiest and most common. 3758 * I.e. you should only call the two helpers separately if 3759 * have a clearly defined need to use and refcount the device 3760 * before it is added to the hierarchy. 3761 * 3762 * For more information, see the kerneldoc for device_initialize() 3763 * and device_add(). 3764 * 3765 * NOTE: _Never_ directly free @dev after calling this function, even 3766 * if it returned an error! Always use put_device() to give up the 3767 * reference initialized in this function instead. 3768 */ 3769 int device_register(struct device *dev) 3770 { 3771 device_initialize(dev); 3772 return device_add(dev); 3773 } 3774 EXPORT_SYMBOL_GPL(device_register); 3775 3776 /** 3777 * get_device - increment reference count for device. 3778 * @dev: device. 3779 * 3780 * This simply forwards the call to kobject_get(), though 3781 * we do take care to provide for the case that we get a NULL 3782 * pointer passed in. 3783 */ 3784 struct device *get_device(struct device *dev) 3785 { 3786 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3787 } 3788 EXPORT_SYMBOL_GPL(get_device); 3789 3790 /** 3791 * put_device - decrement reference count. 3792 * @dev: device in question. 3793 */ 3794 void put_device(struct device *dev) 3795 { 3796 /* might_sleep(); */ 3797 if (dev) 3798 kobject_put(&dev->kobj); 3799 } 3800 EXPORT_SYMBOL_GPL(put_device); 3801 3802 bool kill_device(struct device *dev) 3803 { 3804 /* 3805 * Require the device lock and set the "dead" flag to guarantee that 3806 * the update behavior is consistent with the other bitfields near 3807 * it and that we cannot have an asynchronous probe routine trying 3808 * to run while we are tearing out the bus/class/sysfs from 3809 * underneath the device. 3810 */ 3811 device_lock_assert(dev); 3812 3813 if (dev->p->dead) 3814 return false; 3815 dev->p->dead = true; 3816 return true; 3817 } 3818 EXPORT_SYMBOL_GPL(kill_device); 3819 3820 /** 3821 * device_del - delete device from system. 3822 * @dev: device. 3823 * 3824 * This is the first part of the device unregistration 3825 * sequence. This removes the device from the lists we control 3826 * from here, has it removed from the other driver model 3827 * subsystems it was added to in device_add(), and removes it 3828 * from the kobject hierarchy. 3829 * 3830 * NOTE: this should be called manually _iff_ device_add() was 3831 * also called manually. 3832 */ 3833 void device_del(struct device *dev) 3834 { 3835 struct subsys_private *sp; 3836 struct device *parent = dev->parent; 3837 struct kobject *glue_dir = NULL; 3838 struct class_interface *class_intf; 3839 unsigned int noio_flag; 3840 3841 device_lock(dev); 3842 kill_device(dev); 3843 device_unlock(dev); 3844 3845 if (dev->fwnode && dev->fwnode->dev == dev) 3846 dev->fwnode->dev = NULL; 3847 3848 /* Notify clients of device removal. This call must come 3849 * before dpm_sysfs_remove(). 3850 */ 3851 noio_flag = memalloc_noio_save(); 3852 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3853 3854 dpm_sysfs_remove(dev); 3855 if (parent) 3856 klist_del(&dev->p->knode_parent); 3857 if (MAJOR(dev->devt)) { 3858 devtmpfs_delete_node(dev); 3859 device_remove_sys_dev_entry(dev); 3860 device_remove_file(dev, &dev_attr_dev); 3861 } 3862 3863 sp = class_to_subsys(dev->class); 3864 if (sp) { 3865 device_remove_class_symlinks(dev); 3866 3867 mutex_lock(&sp->mutex); 3868 /* notify any interfaces that the device is now gone */ 3869 list_for_each_entry(class_intf, &sp->interfaces, node) 3870 if (class_intf->remove_dev) 3871 class_intf->remove_dev(dev); 3872 /* remove the device from the class list */ 3873 klist_del(&dev->p->knode_class); 3874 mutex_unlock(&sp->mutex); 3875 subsys_put(sp); 3876 } 3877 device_remove_file(dev, &dev_attr_uevent); 3878 device_remove_attrs(dev); 3879 bus_remove_device(dev); 3880 device_pm_remove(dev); 3881 driver_deferred_probe_del(dev); 3882 device_platform_notify_remove(dev); 3883 device_links_purge(dev); 3884 3885 /* 3886 * If a device does not have a driver attached, we need to clean 3887 * up any managed resources. We do this in device_release(), but 3888 * it's never called (and we leak the device) if a managed 3889 * resource holds a reference to the device. So release all 3890 * managed resources here, like we do in driver_detach(). We 3891 * still need to do so again in device_release() in case someone 3892 * adds a new resource after this point, though. 3893 */ 3894 devres_release_all(dev); 3895 3896 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3897 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3898 glue_dir = get_glue_dir(dev); 3899 kobject_del(&dev->kobj); 3900 cleanup_glue_dir(dev, glue_dir); 3901 memalloc_noio_restore(noio_flag); 3902 put_device(parent); 3903 } 3904 EXPORT_SYMBOL_GPL(device_del); 3905 3906 /** 3907 * device_unregister - unregister device from system. 3908 * @dev: device going away. 3909 * 3910 * We do this in two parts, like we do device_register(). First, 3911 * we remove it from all the subsystems with device_del(), then 3912 * we decrement the reference count via put_device(). If that 3913 * is the final reference count, the device will be cleaned up 3914 * via device_release() above. Otherwise, the structure will 3915 * stick around until the final reference to the device is dropped. 3916 */ 3917 void device_unregister(struct device *dev) 3918 { 3919 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3920 device_del(dev); 3921 put_device(dev); 3922 } 3923 EXPORT_SYMBOL_GPL(device_unregister); 3924 3925 static struct device *prev_device(struct klist_iter *i) 3926 { 3927 struct klist_node *n = klist_prev(i); 3928 struct device *dev = NULL; 3929 struct device_private *p; 3930 3931 if (n) { 3932 p = to_device_private_parent(n); 3933 dev = p->device; 3934 } 3935 return dev; 3936 } 3937 3938 static struct device *next_device(struct klist_iter *i) 3939 { 3940 struct klist_node *n = klist_next(i); 3941 struct device *dev = NULL; 3942 struct device_private *p; 3943 3944 if (n) { 3945 p = to_device_private_parent(n); 3946 dev = p->device; 3947 } 3948 return dev; 3949 } 3950 3951 /** 3952 * device_get_devnode - path of device node file 3953 * @dev: device 3954 * @mode: returned file access mode 3955 * @uid: returned file owner 3956 * @gid: returned file group 3957 * @tmp: possibly allocated string 3958 * 3959 * Return the relative path of a possible device node. 3960 * Non-default names may need to allocate a memory to compose 3961 * a name. This memory is returned in tmp and needs to be 3962 * freed by the caller. 3963 */ 3964 const char *device_get_devnode(const struct device *dev, 3965 umode_t *mode, kuid_t *uid, kgid_t *gid, 3966 const char **tmp) 3967 { 3968 char *s; 3969 3970 *tmp = NULL; 3971 3972 /* the device type may provide a specific name */ 3973 if (dev->type && dev->type->devnode) 3974 *tmp = dev->type->devnode(dev, mode, uid, gid); 3975 if (*tmp) 3976 return *tmp; 3977 3978 /* the class may provide a specific name */ 3979 if (dev->class && dev->class->devnode) 3980 *tmp = dev->class->devnode(dev, mode); 3981 if (*tmp) 3982 return *tmp; 3983 3984 /* return name without allocation, tmp == NULL */ 3985 if (strchr(dev_name(dev), '!') == NULL) 3986 return dev_name(dev); 3987 3988 /* replace '!' in the name with '/' */ 3989 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3990 if (!s) 3991 return NULL; 3992 return *tmp = s; 3993 } 3994 3995 /** 3996 * device_for_each_child - device child iterator. 3997 * @parent: parent struct device. 3998 * @fn: function to be called for each device. 3999 * @data: data for the callback. 4000 * 4001 * Iterate over @parent's child devices, and call @fn for each, 4002 * passing it @data. 4003 * 4004 * We check the return of @fn each time. If it returns anything 4005 * other than 0, we break out and return that value. 4006 */ 4007 int device_for_each_child(struct device *parent, void *data, 4008 device_iter_t fn) 4009 { 4010 struct klist_iter i; 4011 struct device *child; 4012 int error = 0; 4013 4014 if (!parent || !parent->p) 4015 return 0; 4016 4017 klist_iter_init(&parent->p->klist_children, &i); 4018 while (!error && (child = next_device(&i))) 4019 error = fn(child, data); 4020 klist_iter_exit(&i); 4021 return error; 4022 } 4023 EXPORT_SYMBOL_GPL(device_for_each_child); 4024 4025 /** 4026 * device_for_each_child_reverse - device child iterator in reversed order. 4027 * @parent: parent struct device. 4028 * @fn: function to be called for each device. 4029 * @data: data for the callback. 4030 * 4031 * Iterate over @parent's child devices, and call @fn for each, 4032 * passing it @data. 4033 * 4034 * We check the return of @fn each time. If it returns anything 4035 * other than 0, we break out and return that value. 4036 */ 4037 int device_for_each_child_reverse(struct device *parent, void *data, 4038 device_iter_t fn) 4039 { 4040 struct klist_iter i; 4041 struct device *child; 4042 int error = 0; 4043 4044 if (!parent || !parent->p) 4045 return 0; 4046 4047 klist_iter_init(&parent->p->klist_children, &i); 4048 while ((child = prev_device(&i)) && !error) 4049 error = fn(child, data); 4050 klist_iter_exit(&i); 4051 return error; 4052 } 4053 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4054 4055 /** 4056 * device_for_each_child_reverse_from - device child iterator in reversed order. 4057 * @parent: parent struct device. 4058 * @from: optional starting point in child list 4059 * @fn: function to be called for each device. 4060 * @data: data for the callback. 4061 * 4062 * Iterate over @parent's child devices, starting at @from, and call @fn 4063 * for each, passing it @data. This helper is identical to 4064 * device_for_each_child_reverse() when @from is NULL. 4065 * 4066 * @fn is checked each iteration. If it returns anything other than 0, 4067 * iteration stop and that value is returned to the caller of 4068 * device_for_each_child_reverse_from(); 4069 */ 4070 int device_for_each_child_reverse_from(struct device *parent, 4071 struct device *from, void *data, 4072 device_iter_t fn) 4073 { 4074 struct klist_iter i; 4075 struct device *child; 4076 int error = 0; 4077 4078 if (!parent || !parent->p) 4079 return 0; 4080 4081 klist_iter_init_node(&parent->p->klist_children, &i, 4082 (from ? &from->p->knode_parent : NULL)); 4083 while ((child = prev_device(&i)) && !error) 4084 error = fn(child, data); 4085 klist_iter_exit(&i); 4086 return error; 4087 } 4088 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from); 4089 4090 /** 4091 * device_find_child - device iterator for locating a particular device. 4092 * @parent: parent struct device 4093 * @match: Callback function to check device 4094 * @data: Data to pass to match function 4095 * 4096 * This is similar to the device_for_each_child() function above, but it 4097 * returns a reference to a device that is 'found' for later use, as 4098 * determined by the @match callback. 4099 * 4100 * The callback should return 0 if the device doesn't match and non-zero 4101 * if it does. If the callback returns non-zero and a reference to the 4102 * current device can be obtained, this function will return to the caller 4103 * and not iterate over any more devices. 4104 * 4105 * NOTE: you will need to drop the reference with put_device() after use. 4106 */ 4107 struct device *device_find_child(struct device *parent, const void *data, 4108 device_match_t match) 4109 { 4110 struct klist_iter i; 4111 struct device *child; 4112 4113 if (!parent || !parent->p) 4114 return NULL; 4115 4116 klist_iter_init(&parent->p->klist_children, &i); 4117 while ((child = next_device(&i))) { 4118 if (match(child, data)) { 4119 get_device(child); 4120 break; 4121 } 4122 } 4123 klist_iter_exit(&i); 4124 return child; 4125 } 4126 EXPORT_SYMBOL_GPL(device_find_child); 4127 4128 int __init devices_init(void) 4129 { 4130 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4131 if (!devices_kset) 4132 return -ENOMEM; 4133 dev_kobj = kobject_create_and_add("dev", NULL); 4134 if (!dev_kobj) 4135 goto dev_kobj_err; 4136 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4137 if (!sysfs_dev_block_kobj) 4138 goto block_kobj_err; 4139 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4140 if (!sysfs_dev_char_kobj) 4141 goto char_kobj_err; 4142 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4143 if (!device_link_wq) 4144 goto wq_err; 4145 4146 return 0; 4147 4148 wq_err: 4149 kobject_put(sysfs_dev_char_kobj); 4150 char_kobj_err: 4151 kobject_put(sysfs_dev_block_kobj); 4152 block_kobj_err: 4153 kobject_put(dev_kobj); 4154 dev_kobj_err: 4155 kset_unregister(devices_kset); 4156 return -ENOMEM; 4157 } 4158 4159 static int device_check_offline(struct device *dev, void *not_used) 4160 { 4161 int ret; 4162 4163 ret = device_for_each_child(dev, NULL, device_check_offline); 4164 if (ret) 4165 return ret; 4166 4167 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4168 } 4169 4170 /** 4171 * device_offline - Prepare the device for hot-removal. 4172 * @dev: Device to be put offline. 4173 * 4174 * Execute the device bus type's .offline() callback, if present, to prepare 4175 * the device for a subsequent hot-removal. If that succeeds, the device must 4176 * not be used until either it is removed or its bus type's .online() callback 4177 * is executed. 4178 * 4179 * Call under device_hotplug_lock. 4180 */ 4181 int device_offline(struct device *dev) 4182 { 4183 int ret; 4184 4185 if (dev->offline_disabled) 4186 return -EPERM; 4187 4188 ret = device_for_each_child(dev, NULL, device_check_offline); 4189 if (ret) 4190 return ret; 4191 4192 device_lock(dev); 4193 if (device_supports_offline(dev)) { 4194 if (dev->offline) { 4195 ret = 1; 4196 } else { 4197 ret = dev->bus->offline(dev); 4198 if (!ret) { 4199 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4200 dev->offline = true; 4201 } 4202 } 4203 } 4204 device_unlock(dev); 4205 4206 return ret; 4207 } 4208 4209 /** 4210 * device_online - Put the device back online after successful device_offline(). 4211 * @dev: Device to be put back online. 4212 * 4213 * If device_offline() has been successfully executed for @dev, but the device 4214 * has not been removed subsequently, execute its bus type's .online() callback 4215 * to indicate that the device can be used again. 4216 * 4217 * Call under device_hotplug_lock. 4218 */ 4219 int device_online(struct device *dev) 4220 { 4221 int ret = 0; 4222 4223 device_lock(dev); 4224 if (device_supports_offline(dev)) { 4225 if (dev->offline) { 4226 ret = dev->bus->online(dev); 4227 if (!ret) { 4228 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4229 dev->offline = false; 4230 } 4231 } else { 4232 ret = 1; 4233 } 4234 } 4235 device_unlock(dev); 4236 4237 return ret; 4238 } 4239 4240 struct root_device { 4241 struct device dev; 4242 struct module *owner; 4243 }; 4244 4245 static inline struct root_device *to_root_device(struct device *d) 4246 { 4247 return container_of(d, struct root_device, dev); 4248 } 4249 4250 static void root_device_release(struct device *dev) 4251 { 4252 kfree(to_root_device(dev)); 4253 } 4254 4255 /** 4256 * __root_device_register - allocate and register a root device 4257 * @name: root device name 4258 * @owner: owner module of the root device, usually THIS_MODULE 4259 * 4260 * This function allocates a root device and registers it 4261 * using device_register(). In order to free the returned 4262 * device, use root_device_unregister(). 4263 * 4264 * Root devices are dummy devices which allow other devices 4265 * to be grouped under /sys/devices. Use this function to 4266 * allocate a root device and then use it as the parent of 4267 * any device which should appear under /sys/devices/{name} 4268 * 4269 * The /sys/devices/{name} directory will also contain a 4270 * 'module' symlink which points to the @owner directory 4271 * in sysfs. 4272 * 4273 * Returns &struct device pointer on success, or ERR_PTR() on error. 4274 * 4275 * Note: You probably want to use root_device_register(). 4276 */ 4277 struct device *__root_device_register(const char *name, struct module *owner) 4278 { 4279 struct root_device *root; 4280 int err = -ENOMEM; 4281 4282 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4283 if (!root) 4284 return ERR_PTR(err); 4285 4286 err = dev_set_name(&root->dev, "%s", name); 4287 if (err) { 4288 kfree(root); 4289 return ERR_PTR(err); 4290 } 4291 4292 root->dev.release = root_device_release; 4293 4294 err = device_register(&root->dev); 4295 if (err) { 4296 put_device(&root->dev); 4297 return ERR_PTR(err); 4298 } 4299 4300 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4301 if (owner) { 4302 struct module_kobject *mk = &owner->mkobj; 4303 4304 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4305 if (err) { 4306 device_unregister(&root->dev); 4307 return ERR_PTR(err); 4308 } 4309 root->owner = owner; 4310 } 4311 #endif 4312 4313 return &root->dev; 4314 } 4315 EXPORT_SYMBOL_GPL(__root_device_register); 4316 4317 /** 4318 * root_device_unregister - unregister and free a root device 4319 * @dev: device going away 4320 * 4321 * This function unregisters and cleans up a device that was created by 4322 * root_device_register(). 4323 */ 4324 void root_device_unregister(struct device *dev) 4325 { 4326 struct root_device *root = to_root_device(dev); 4327 4328 if (root->owner) 4329 sysfs_remove_link(&root->dev.kobj, "module"); 4330 4331 device_unregister(dev); 4332 } 4333 EXPORT_SYMBOL_GPL(root_device_unregister); 4334 4335 4336 static void device_create_release(struct device *dev) 4337 { 4338 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4339 kfree(dev); 4340 } 4341 4342 static __printf(6, 0) struct device * 4343 device_create_groups_vargs(const struct class *class, struct device *parent, 4344 dev_t devt, void *drvdata, 4345 const struct attribute_group **groups, 4346 const char *fmt, va_list args) 4347 { 4348 struct device *dev = NULL; 4349 int retval = -ENODEV; 4350 4351 if (IS_ERR_OR_NULL(class)) 4352 goto error; 4353 4354 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4355 if (!dev) { 4356 retval = -ENOMEM; 4357 goto error; 4358 } 4359 4360 device_initialize(dev); 4361 dev->devt = devt; 4362 dev->class = class; 4363 dev->parent = parent; 4364 dev->groups = groups; 4365 dev->release = device_create_release; 4366 dev_set_drvdata(dev, drvdata); 4367 4368 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4369 if (retval) 4370 goto error; 4371 4372 retval = device_add(dev); 4373 if (retval) 4374 goto error; 4375 4376 return dev; 4377 4378 error: 4379 put_device(dev); 4380 return ERR_PTR(retval); 4381 } 4382 4383 /** 4384 * device_create - creates a device and registers it with sysfs 4385 * @class: pointer to the struct class that this device should be registered to 4386 * @parent: pointer to the parent struct device of this new device, if any 4387 * @devt: the dev_t for the char device to be added 4388 * @drvdata: the data to be added to the device for callbacks 4389 * @fmt: string for the device's name 4390 * 4391 * This function can be used by char device classes. A struct device 4392 * will be created in sysfs, registered to the specified class. 4393 * 4394 * A "dev" file will be created, showing the dev_t for the device, if 4395 * the dev_t is not 0,0. 4396 * If a pointer to a parent struct device is passed in, the newly created 4397 * struct device will be a child of that device in sysfs. 4398 * The pointer to the struct device will be returned from the call. 4399 * Any further sysfs files that might be required can be created using this 4400 * pointer. 4401 * 4402 * Returns &struct device pointer on success, or ERR_PTR() on error. 4403 */ 4404 struct device *device_create(const struct class *class, struct device *parent, 4405 dev_t devt, void *drvdata, const char *fmt, ...) 4406 { 4407 va_list vargs; 4408 struct device *dev; 4409 4410 va_start(vargs, fmt); 4411 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4412 fmt, vargs); 4413 va_end(vargs); 4414 return dev; 4415 } 4416 EXPORT_SYMBOL_GPL(device_create); 4417 4418 /** 4419 * device_create_with_groups - creates a device and registers it with sysfs 4420 * @class: pointer to the struct class that this device should be registered to 4421 * @parent: pointer to the parent struct device of this new device, if any 4422 * @devt: the dev_t for the char device to be added 4423 * @drvdata: the data to be added to the device for callbacks 4424 * @groups: NULL-terminated list of attribute groups to be created 4425 * @fmt: string for the device's name 4426 * 4427 * This function can be used by char device classes. A struct device 4428 * will be created in sysfs, registered to the specified class. 4429 * Additional attributes specified in the groups parameter will also 4430 * be created automatically. 4431 * 4432 * A "dev" file will be created, showing the dev_t for the device, if 4433 * the dev_t is not 0,0. 4434 * If a pointer to a parent struct device is passed in, the newly created 4435 * struct device will be a child of that device in sysfs. 4436 * The pointer to the struct device will be returned from the call. 4437 * Any further sysfs files that might be required can be created using this 4438 * pointer. 4439 * 4440 * Returns &struct device pointer on success, or ERR_PTR() on error. 4441 */ 4442 struct device *device_create_with_groups(const struct class *class, 4443 struct device *parent, dev_t devt, 4444 void *drvdata, 4445 const struct attribute_group **groups, 4446 const char *fmt, ...) 4447 { 4448 va_list vargs; 4449 struct device *dev; 4450 4451 va_start(vargs, fmt); 4452 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4453 fmt, vargs); 4454 va_end(vargs); 4455 return dev; 4456 } 4457 EXPORT_SYMBOL_GPL(device_create_with_groups); 4458 4459 /** 4460 * device_destroy - removes a device that was created with device_create() 4461 * @class: pointer to the struct class that this device was registered with 4462 * @devt: the dev_t of the device that was previously registered 4463 * 4464 * This call unregisters and cleans up a device that was created with a 4465 * call to device_create(). 4466 */ 4467 void device_destroy(const struct class *class, dev_t devt) 4468 { 4469 struct device *dev; 4470 4471 dev = class_find_device_by_devt(class, devt); 4472 if (dev) { 4473 put_device(dev); 4474 device_unregister(dev); 4475 } 4476 } 4477 EXPORT_SYMBOL_GPL(device_destroy); 4478 4479 /** 4480 * device_rename - renames a device 4481 * @dev: the pointer to the struct device to be renamed 4482 * @new_name: the new name of the device 4483 * 4484 * It is the responsibility of the caller to provide mutual 4485 * exclusion between two different calls of device_rename 4486 * on the same device to ensure that new_name is valid and 4487 * won't conflict with other devices. 4488 * 4489 * Note: given that some subsystems (networking and infiniband) use this 4490 * function, with no immediate plans for this to change, we cannot assume or 4491 * require that this function not be called at all. 4492 * 4493 * However, if you're writing new code, do not call this function. The following 4494 * text from Kay Sievers offers some insight: 4495 * 4496 * Renaming devices is racy at many levels, symlinks and other stuff are not 4497 * replaced atomically, and you get a "move" uevent, but it's not easy to 4498 * connect the event to the old and new device. Device nodes are not renamed at 4499 * all, there isn't even support for that in the kernel now. 4500 * 4501 * In the meantime, during renaming, your target name might be taken by another 4502 * driver, creating conflicts. Or the old name is taken directly after you 4503 * renamed it -- then you get events for the same DEVPATH, before you even see 4504 * the "move" event. It's just a mess, and nothing new should ever rely on 4505 * kernel device renaming. Besides that, it's not even implemented now for 4506 * other things than (driver-core wise very simple) network devices. 4507 * 4508 * Make up a "real" name in the driver before you register anything, or add 4509 * some other attributes for userspace to find the device, or use udev to add 4510 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4511 * don't even want to get into that and try to implement the missing pieces in 4512 * the core. We really have other pieces to fix in the driver core mess. :) 4513 */ 4514 int device_rename(struct device *dev, const char *new_name) 4515 { 4516 struct subsys_private *sp = NULL; 4517 struct kobject *kobj = &dev->kobj; 4518 char *old_device_name = NULL; 4519 int error; 4520 bool is_link_renamed = false; 4521 4522 dev = get_device(dev); 4523 if (!dev) 4524 return -EINVAL; 4525 4526 dev_dbg(dev, "renaming to %s\n", new_name); 4527 4528 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4529 if (!old_device_name) { 4530 error = -ENOMEM; 4531 goto out; 4532 } 4533 4534 if (dev->class) { 4535 sp = class_to_subsys(dev->class); 4536 4537 if (!sp) { 4538 error = -EINVAL; 4539 goto out; 4540 } 4541 4542 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4543 new_name, kobject_namespace(kobj)); 4544 if (error) 4545 goto out; 4546 4547 is_link_renamed = true; 4548 } 4549 4550 error = kobject_rename(kobj, new_name); 4551 out: 4552 if (error && is_link_renamed) 4553 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4554 old_device_name, kobject_namespace(kobj)); 4555 subsys_put(sp); 4556 4557 put_device(dev); 4558 4559 kfree(old_device_name); 4560 4561 return error; 4562 } 4563 EXPORT_SYMBOL_GPL(device_rename); 4564 4565 static int device_move_class_links(struct device *dev, 4566 struct device *old_parent, 4567 struct device *new_parent) 4568 { 4569 int error = 0; 4570 4571 if (old_parent) 4572 sysfs_remove_link(&dev->kobj, "device"); 4573 if (new_parent) 4574 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4575 "device"); 4576 return error; 4577 } 4578 4579 /** 4580 * device_move - moves a device to a new parent 4581 * @dev: the pointer to the struct device to be moved 4582 * @new_parent: the new parent of the device (can be NULL) 4583 * @dpm_order: how to reorder the dpm_list 4584 */ 4585 int device_move(struct device *dev, struct device *new_parent, 4586 enum dpm_order dpm_order) 4587 { 4588 int error; 4589 struct device *old_parent; 4590 struct kobject *new_parent_kobj; 4591 4592 dev = get_device(dev); 4593 if (!dev) 4594 return -EINVAL; 4595 4596 device_pm_lock(); 4597 new_parent = get_device(new_parent); 4598 new_parent_kobj = get_device_parent(dev, new_parent); 4599 if (IS_ERR(new_parent_kobj)) { 4600 error = PTR_ERR(new_parent_kobj); 4601 put_device(new_parent); 4602 goto out; 4603 } 4604 4605 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4606 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4607 error = kobject_move(&dev->kobj, new_parent_kobj); 4608 if (error) { 4609 cleanup_glue_dir(dev, new_parent_kobj); 4610 put_device(new_parent); 4611 goto out; 4612 } 4613 old_parent = dev->parent; 4614 dev->parent = new_parent; 4615 if (old_parent) 4616 klist_remove(&dev->p->knode_parent); 4617 if (new_parent) { 4618 klist_add_tail(&dev->p->knode_parent, 4619 &new_parent->p->klist_children); 4620 set_dev_node(dev, dev_to_node(new_parent)); 4621 } 4622 4623 if (dev->class) { 4624 error = device_move_class_links(dev, old_parent, new_parent); 4625 if (error) { 4626 /* We ignore errors on cleanup since we're hosed anyway... */ 4627 device_move_class_links(dev, new_parent, old_parent); 4628 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4629 if (new_parent) 4630 klist_remove(&dev->p->knode_parent); 4631 dev->parent = old_parent; 4632 if (old_parent) { 4633 klist_add_tail(&dev->p->knode_parent, 4634 &old_parent->p->klist_children); 4635 set_dev_node(dev, dev_to_node(old_parent)); 4636 } 4637 } 4638 cleanup_glue_dir(dev, new_parent_kobj); 4639 put_device(new_parent); 4640 goto out; 4641 } 4642 } 4643 switch (dpm_order) { 4644 case DPM_ORDER_NONE: 4645 break; 4646 case DPM_ORDER_DEV_AFTER_PARENT: 4647 device_pm_move_after(dev, new_parent); 4648 devices_kset_move_after(dev, new_parent); 4649 break; 4650 case DPM_ORDER_PARENT_BEFORE_DEV: 4651 device_pm_move_before(new_parent, dev); 4652 devices_kset_move_before(new_parent, dev); 4653 break; 4654 case DPM_ORDER_DEV_LAST: 4655 device_pm_move_last(dev); 4656 devices_kset_move_last(dev); 4657 break; 4658 } 4659 4660 put_device(old_parent); 4661 out: 4662 device_pm_unlock(); 4663 put_device(dev); 4664 return error; 4665 } 4666 EXPORT_SYMBOL_GPL(device_move); 4667 4668 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4669 kgid_t kgid) 4670 { 4671 struct kobject *kobj = &dev->kobj; 4672 const struct class *class = dev->class; 4673 const struct device_type *type = dev->type; 4674 int error; 4675 4676 if (class) { 4677 /* 4678 * Change the device groups of the device class for @dev to 4679 * @kuid/@kgid. 4680 */ 4681 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4682 kgid); 4683 if (error) 4684 return error; 4685 } 4686 4687 if (type) { 4688 /* 4689 * Change the device groups of the device type for @dev to 4690 * @kuid/@kgid. 4691 */ 4692 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4693 kgid); 4694 if (error) 4695 return error; 4696 } 4697 4698 /* Change the device groups of @dev to @kuid/@kgid. */ 4699 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4700 if (error) 4701 return error; 4702 4703 if (device_supports_offline(dev) && !dev->offline_disabled) { 4704 /* Change online device attributes of @dev to @kuid/@kgid. */ 4705 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4706 kuid, kgid); 4707 if (error) 4708 return error; 4709 } 4710 4711 return 0; 4712 } 4713 4714 /** 4715 * device_change_owner - change the owner of an existing device. 4716 * @dev: device. 4717 * @kuid: new owner's kuid 4718 * @kgid: new owner's kgid 4719 * 4720 * This changes the owner of @dev and its corresponding sysfs entries to 4721 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4722 * core. 4723 * 4724 * Returns 0 on success or error code on failure. 4725 */ 4726 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4727 { 4728 int error; 4729 struct kobject *kobj = &dev->kobj; 4730 struct subsys_private *sp; 4731 4732 dev = get_device(dev); 4733 if (!dev) 4734 return -EINVAL; 4735 4736 /* 4737 * Change the kobject and the default attributes and groups of the 4738 * ktype associated with it to @kuid/@kgid. 4739 */ 4740 error = sysfs_change_owner(kobj, kuid, kgid); 4741 if (error) 4742 goto out; 4743 4744 /* 4745 * Change the uevent file for @dev to the new owner. The uevent file 4746 * was created in a separate step when @dev got added and we mirror 4747 * that step here. 4748 */ 4749 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4750 kgid); 4751 if (error) 4752 goto out; 4753 4754 /* 4755 * Change the device groups, the device groups associated with the 4756 * device class, and the groups associated with the device type of @dev 4757 * to @kuid/@kgid. 4758 */ 4759 error = device_attrs_change_owner(dev, kuid, kgid); 4760 if (error) 4761 goto out; 4762 4763 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4764 if (error) 4765 goto out; 4766 4767 /* 4768 * Change the owner of the symlink located in the class directory of 4769 * the device class associated with @dev which points to the actual 4770 * directory entry for @dev to @kuid/@kgid. This ensures that the 4771 * symlink shows the same permissions as its target. 4772 */ 4773 sp = class_to_subsys(dev->class); 4774 if (!sp) { 4775 error = -EINVAL; 4776 goto out; 4777 } 4778 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4779 subsys_put(sp); 4780 4781 out: 4782 put_device(dev); 4783 return error; 4784 } 4785 EXPORT_SYMBOL_GPL(device_change_owner); 4786 4787 /** 4788 * device_shutdown - call ->shutdown() on each device to shutdown. 4789 */ 4790 void device_shutdown(void) 4791 { 4792 struct device *dev, *parent; 4793 4794 wait_for_device_probe(); 4795 device_block_probing(); 4796 4797 cpufreq_suspend(); 4798 4799 spin_lock(&devices_kset->list_lock); 4800 /* 4801 * Walk the devices list backward, shutting down each in turn. 4802 * Beware that device unplug events may also start pulling 4803 * devices offline, even as the system is shutting down. 4804 */ 4805 while (!list_empty(&devices_kset->list)) { 4806 dev = list_entry(devices_kset->list.prev, struct device, 4807 kobj.entry); 4808 4809 /* 4810 * hold reference count of device's parent to 4811 * prevent it from being freed because parent's 4812 * lock is to be held 4813 */ 4814 parent = get_device(dev->parent); 4815 get_device(dev); 4816 /* 4817 * Make sure the device is off the kset list, in the 4818 * event that dev->*->shutdown() doesn't remove it. 4819 */ 4820 list_del_init(&dev->kobj.entry); 4821 spin_unlock(&devices_kset->list_lock); 4822 4823 /* hold lock to avoid race with probe/release */ 4824 if (parent) 4825 device_lock(parent); 4826 device_lock(dev); 4827 4828 /* Don't allow any more runtime suspends */ 4829 pm_runtime_get_noresume(dev); 4830 pm_runtime_barrier(dev); 4831 4832 if (dev->class && dev->class->shutdown_pre) { 4833 if (initcall_debug) 4834 dev_info(dev, "shutdown_pre\n"); 4835 dev->class->shutdown_pre(dev); 4836 } 4837 if (dev->bus && dev->bus->shutdown) { 4838 if (initcall_debug) 4839 dev_info(dev, "shutdown\n"); 4840 dev->bus->shutdown(dev); 4841 } else if (dev->driver && dev->driver->shutdown) { 4842 if (initcall_debug) 4843 dev_info(dev, "shutdown\n"); 4844 dev->driver->shutdown(dev); 4845 } 4846 4847 device_unlock(dev); 4848 if (parent) 4849 device_unlock(parent); 4850 4851 put_device(dev); 4852 put_device(parent); 4853 4854 spin_lock(&devices_kset->list_lock); 4855 } 4856 spin_unlock(&devices_kset->list_lock); 4857 } 4858 4859 /* 4860 * Device logging functions 4861 */ 4862 4863 #ifdef CONFIG_PRINTK 4864 static void 4865 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4866 { 4867 const char *subsys; 4868 4869 memset(dev_info, 0, sizeof(*dev_info)); 4870 4871 if (dev->class) 4872 subsys = dev->class->name; 4873 else if (dev->bus) 4874 subsys = dev->bus->name; 4875 else 4876 return; 4877 4878 strscpy(dev_info->subsystem, subsys); 4879 4880 /* 4881 * Add device identifier DEVICE=: 4882 * b12:8 block dev_t 4883 * c127:3 char dev_t 4884 * n8 netdev ifindex 4885 * +sound:card0 subsystem:devname 4886 */ 4887 if (MAJOR(dev->devt)) { 4888 char c; 4889 4890 if (strcmp(subsys, "block") == 0) 4891 c = 'b'; 4892 else 4893 c = 'c'; 4894 4895 snprintf(dev_info->device, sizeof(dev_info->device), 4896 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4897 } else if (strcmp(subsys, "net") == 0) { 4898 struct net_device *net = to_net_dev(dev); 4899 4900 snprintf(dev_info->device, sizeof(dev_info->device), 4901 "n%u", net->ifindex); 4902 } else { 4903 snprintf(dev_info->device, sizeof(dev_info->device), 4904 "+%s:%s", subsys, dev_name(dev)); 4905 } 4906 } 4907 4908 int dev_vprintk_emit(int level, const struct device *dev, 4909 const char *fmt, va_list args) 4910 { 4911 struct dev_printk_info dev_info; 4912 4913 set_dev_info(dev, &dev_info); 4914 4915 return vprintk_emit(0, level, &dev_info, fmt, args); 4916 } 4917 EXPORT_SYMBOL(dev_vprintk_emit); 4918 4919 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4920 { 4921 va_list args; 4922 int r; 4923 4924 va_start(args, fmt); 4925 4926 r = dev_vprintk_emit(level, dev, fmt, args); 4927 4928 va_end(args); 4929 4930 return r; 4931 } 4932 EXPORT_SYMBOL(dev_printk_emit); 4933 4934 static void __dev_printk(const char *level, const struct device *dev, 4935 struct va_format *vaf) 4936 { 4937 if (dev) 4938 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4939 dev_driver_string(dev), dev_name(dev), vaf); 4940 else 4941 printk("%s(NULL device *): %pV", level, vaf); 4942 } 4943 4944 void _dev_printk(const char *level, const struct device *dev, 4945 const char *fmt, ...) 4946 { 4947 struct va_format vaf; 4948 va_list args; 4949 4950 va_start(args, fmt); 4951 4952 vaf.fmt = fmt; 4953 vaf.va = &args; 4954 4955 __dev_printk(level, dev, &vaf); 4956 4957 va_end(args); 4958 } 4959 EXPORT_SYMBOL(_dev_printk); 4960 4961 #define define_dev_printk_level(func, kern_level) \ 4962 void func(const struct device *dev, const char *fmt, ...) \ 4963 { \ 4964 struct va_format vaf; \ 4965 va_list args; \ 4966 \ 4967 va_start(args, fmt); \ 4968 \ 4969 vaf.fmt = fmt; \ 4970 vaf.va = &args; \ 4971 \ 4972 __dev_printk(kern_level, dev, &vaf); \ 4973 \ 4974 va_end(args); \ 4975 } \ 4976 EXPORT_SYMBOL(func); 4977 4978 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4979 define_dev_printk_level(_dev_alert, KERN_ALERT); 4980 define_dev_printk_level(_dev_crit, KERN_CRIT); 4981 define_dev_printk_level(_dev_err, KERN_ERR); 4982 define_dev_printk_level(_dev_warn, KERN_WARNING); 4983 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4984 define_dev_printk_level(_dev_info, KERN_INFO); 4985 4986 #endif 4987 4988 static void __dev_probe_failed(const struct device *dev, int err, bool fatal, 4989 const char *fmt, va_list vargsp) 4990 { 4991 struct va_format vaf; 4992 va_list vargs; 4993 4994 /* 4995 * On x86_64 and possibly on other architectures, va_list is actually a 4996 * size-1 array containing a structure. As a result, function parameter 4997 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than 4998 * T(*)[1], which is expected by its assignment to vaf.va below. 4999 * 5000 * One standard way to solve this mess is by creating a copy in a local 5001 * variable of type va_list and then using a pointer to that local copy 5002 * instead, which is the approach employed here. 5003 */ 5004 va_copy(vargs, vargsp); 5005 5006 vaf.fmt = fmt; 5007 vaf.va = &vargs; 5008 5009 switch (err) { 5010 case -EPROBE_DEFER: 5011 device_set_deferred_probe_reason(dev, &vaf); 5012 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5013 break; 5014 5015 case -ENOMEM: 5016 /* Don't print anything on -ENOMEM, there's already enough output */ 5017 break; 5018 5019 default: 5020 /* Log fatal final failures as errors, otherwise produce warnings */ 5021 if (fatal) 5022 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5023 else 5024 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5025 break; 5026 } 5027 5028 va_end(vargs); 5029 } 5030 5031 /** 5032 * dev_err_probe - probe error check and log helper 5033 * @dev: the pointer to the struct device 5034 * @err: error value to test 5035 * @fmt: printf-style format string 5036 * @...: arguments as specified in the format string 5037 * 5038 * This helper implements common pattern present in probe functions for error 5039 * checking: print debug or error message depending if the error value is 5040 * -EPROBE_DEFER and propagate error upwards. 5041 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5042 * checked later by reading devices_deferred debugfs attribute. 5043 * It replaces the following code sequence:: 5044 * 5045 * if (err != -EPROBE_DEFER) 5046 * dev_err(dev, ...); 5047 * else 5048 * dev_dbg(dev, ...); 5049 * return err; 5050 * 5051 * with:: 5052 * 5053 * return dev_err_probe(dev, err, ...); 5054 * 5055 * Using this helper in your probe function is totally fine even if @err 5056 * is known to never be -EPROBE_DEFER. 5057 * The benefit compared to a normal dev_err() is the standardized format 5058 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5059 * instead of "-35"), and having the error code returned allows more 5060 * compact error paths. 5061 * 5062 * Returns @err. 5063 */ 5064 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5065 { 5066 va_list vargs; 5067 5068 va_start(vargs, fmt); 5069 5070 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */ 5071 __dev_probe_failed(dev, err, true, fmt, vargs); 5072 5073 va_end(vargs); 5074 5075 return err; 5076 } 5077 EXPORT_SYMBOL_GPL(dev_err_probe); 5078 5079 /** 5080 * dev_warn_probe - probe error check and log helper 5081 * @dev: the pointer to the struct device 5082 * @err: error value to test 5083 * @fmt: printf-style format string 5084 * @...: arguments as specified in the format string 5085 * 5086 * This helper implements common pattern present in probe functions for error 5087 * checking: print debug or warning message depending if the error value is 5088 * -EPROBE_DEFER and propagate error upwards. 5089 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5090 * checked later by reading devices_deferred debugfs attribute. 5091 * It replaces the following code sequence:: 5092 * 5093 * if (err != -EPROBE_DEFER) 5094 * dev_warn(dev, ...); 5095 * else 5096 * dev_dbg(dev, ...); 5097 * return err; 5098 * 5099 * with:: 5100 * 5101 * return dev_warn_probe(dev, err, ...); 5102 * 5103 * Using this helper in your probe function is totally fine even if @err 5104 * is known to never be -EPROBE_DEFER. 5105 * The benefit compared to a normal dev_warn() is the standardized format 5106 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5107 * instead of "-35"), and having the error code returned allows more 5108 * compact error paths. 5109 * 5110 * Returns @err. 5111 */ 5112 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...) 5113 { 5114 va_list vargs; 5115 5116 va_start(vargs, fmt); 5117 5118 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */ 5119 __dev_probe_failed(dev, err, false, fmt, vargs); 5120 5121 va_end(vargs); 5122 5123 return err; 5124 } 5125 EXPORT_SYMBOL_GPL(dev_warn_probe); 5126 5127 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5128 { 5129 return fwnode && !IS_ERR(fwnode->secondary); 5130 } 5131 5132 /** 5133 * set_primary_fwnode - Change the primary firmware node of a given device. 5134 * @dev: Device to handle. 5135 * @fwnode: New primary firmware node of the device. 5136 * 5137 * Set the device's firmware node pointer to @fwnode, but if a secondary 5138 * firmware node of the device is present, preserve it. 5139 * 5140 * Valid fwnode cases are: 5141 * - primary --> secondary --> -ENODEV 5142 * - primary --> NULL 5143 * - secondary --> -ENODEV 5144 * - NULL 5145 */ 5146 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5147 { 5148 struct device *parent = dev->parent; 5149 struct fwnode_handle *fn = dev->fwnode; 5150 5151 if (fwnode) { 5152 if (fwnode_is_primary(fn)) 5153 fn = fn->secondary; 5154 5155 if (fn) { 5156 WARN_ON(fwnode->secondary); 5157 fwnode->secondary = fn; 5158 } 5159 dev->fwnode = fwnode; 5160 } else { 5161 if (fwnode_is_primary(fn)) { 5162 dev->fwnode = fn->secondary; 5163 5164 /* Skip nullifying fn->secondary if the primary is shared */ 5165 if (parent && fn == parent->fwnode) 5166 return; 5167 5168 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5169 fn->secondary = NULL; 5170 } else { 5171 dev->fwnode = NULL; 5172 } 5173 } 5174 } 5175 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5176 5177 /** 5178 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5179 * @dev: Device to handle. 5180 * @fwnode: New secondary firmware node of the device. 5181 * 5182 * If a primary firmware node of the device is present, set its secondary 5183 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5184 * @fwnode. 5185 */ 5186 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5187 { 5188 if (fwnode) 5189 fwnode->secondary = ERR_PTR(-ENODEV); 5190 5191 if (fwnode_is_primary(dev->fwnode)) 5192 dev->fwnode->secondary = fwnode; 5193 else 5194 dev->fwnode = fwnode; 5195 } 5196 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5197 5198 /** 5199 * device_remove_of_node - Remove an of_node from a device 5200 * @dev: device whose device tree node is being removed 5201 */ 5202 void device_remove_of_node(struct device *dev) 5203 { 5204 dev = get_device(dev); 5205 if (!dev) 5206 return; 5207 5208 if (!dev->of_node) 5209 goto end; 5210 5211 if (dev->fwnode == of_fwnode_handle(dev->of_node)) 5212 dev->fwnode = NULL; 5213 5214 of_node_put(dev->of_node); 5215 dev->of_node = NULL; 5216 5217 end: 5218 put_device(dev); 5219 } 5220 EXPORT_SYMBOL_GPL(device_remove_of_node); 5221 5222 /** 5223 * device_add_of_node - Add an of_node to an existing device 5224 * @dev: device whose device tree node is being added 5225 * @of_node: of_node to add 5226 * 5227 * Return: 0 on success or error code on failure. 5228 */ 5229 int device_add_of_node(struct device *dev, struct device_node *of_node) 5230 { 5231 int ret; 5232 5233 if (!of_node) 5234 return -EINVAL; 5235 5236 dev = get_device(dev); 5237 if (!dev) 5238 return -EINVAL; 5239 5240 if (dev->of_node) { 5241 dev_err(dev, "Cannot replace node %pOF with %pOF\n", 5242 dev->of_node, of_node); 5243 ret = -EBUSY; 5244 goto end; 5245 } 5246 5247 dev->of_node = of_node_get(of_node); 5248 5249 if (!dev->fwnode) 5250 dev->fwnode = of_fwnode_handle(of_node); 5251 5252 ret = 0; 5253 end: 5254 put_device(dev); 5255 return ret; 5256 } 5257 EXPORT_SYMBOL_GPL(device_add_of_node); 5258 5259 /** 5260 * device_set_of_node_from_dev - reuse device-tree node of another device 5261 * @dev: device whose device-tree node is being set 5262 * @dev2: device whose device-tree node is being reused 5263 * 5264 * Takes another reference to the new device-tree node after first dropping 5265 * any reference held to the old node. 5266 */ 5267 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5268 { 5269 of_node_put(dev->of_node); 5270 dev->of_node = of_node_get(dev2->of_node); 5271 dev->of_node_reused = true; 5272 } 5273 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5274 5275 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5276 { 5277 dev->fwnode = fwnode; 5278 dev->of_node = to_of_node(fwnode); 5279 } 5280 EXPORT_SYMBOL_GPL(device_set_node); 5281 5282 struct device *get_dev_from_fwnode(struct fwnode_handle *fwnode) 5283 { 5284 return get_device((fwnode)->dev); 5285 } 5286 EXPORT_SYMBOL_GPL(get_dev_from_fwnode); 5287 5288 int device_match_name(struct device *dev, const void *name) 5289 { 5290 return sysfs_streq(dev_name(dev), name); 5291 } 5292 EXPORT_SYMBOL_GPL(device_match_name); 5293 5294 int device_match_type(struct device *dev, const void *type) 5295 { 5296 return dev->type == type; 5297 } 5298 EXPORT_SYMBOL_GPL(device_match_type); 5299 5300 int device_match_of_node(struct device *dev, const void *np) 5301 { 5302 return np && dev->of_node == np; 5303 } 5304 EXPORT_SYMBOL_GPL(device_match_of_node); 5305 5306 int device_match_fwnode(struct device *dev, const void *fwnode) 5307 { 5308 return fwnode && dev_fwnode(dev) == fwnode; 5309 } 5310 EXPORT_SYMBOL_GPL(device_match_fwnode); 5311 5312 int device_match_devt(struct device *dev, const void *pdevt) 5313 { 5314 return dev->devt == *(dev_t *)pdevt; 5315 } 5316 EXPORT_SYMBOL_GPL(device_match_devt); 5317 5318 int device_match_acpi_dev(struct device *dev, const void *adev) 5319 { 5320 return adev && ACPI_COMPANION(dev) == adev; 5321 } 5322 EXPORT_SYMBOL(device_match_acpi_dev); 5323 5324 int device_match_acpi_handle(struct device *dev, const void *handle) 5325 { 5326 return handle && ACPI_HANDLE(dev) == handle; 5327 } 5328 EXPORT_SYMBOL(device_match_acpi_handle); 5329 5330 int device_match_any(struct device *dev, const void *unused) 5331 { 5332 return 1; 5333 } 5334 EXPORT_SYMBOL_GPL(device_match_any); 5335