xref: /linux/drivers/base/core.c (revision 05e35bd07d56780f0a5119973995b97a16843579)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35 
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39 
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49 
50 /**
51  * __fwnode_link_add - Create a link between two fwnode_handles.
52  * @con: Consumer end of the link.
53  * @sup: Supplier end of the link.
54  * @flags: Link flags.
55  *
56  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57  * represents the detail that the firmware lists @sup fwnode as supplying a
58  * resource to @con.
59  *
60  * The driver core will use the fwnode link to create a device link between the
61  * two device objects corresponding to @con and @sup when they are created. The
62  * driver core will automatically delete the fwnode link between @con and @sup
63  * after doing that.
64  *
65  * Attempts to create duplicate links between the same pair of fwnode handles
66  * are ignored and there is no reference counting.
67  */
68 static int __fwnode_link_add(struct fwnode_handle *con,
69 			     struct fwnode_handle *sup, u8 flags)
70 {
71 	struct fwnode_link *link;
72 
73 	list_for_each_entry(link, &sup->consumers, s_hook)
74 		if (link->consumer == con) {
75 			link->flags |= flags;
76 			return 0;
77 		}
78 
79 	link = kzalloc(sizeof(*link), GFP_KERNEL);
80 	if (!link)
81 		return -ENOMEM;
82 
83 	link->supplier = sup;
84 	INIT_LIST_HEAD(&link->s_hook);
85 	link->consumer = con;
86 	INIT_LIST_HEAD(&link->c_hook);
87 	link->flags = flags;
88 
89 	list_add(&link->s_hook, &sup->consumers);
90 	list_add(&link->c_hook, &con->suppliers);
91 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 		 con, sup);
93 
94 	return 0;
95 }
96 
97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 		    u8 flags)
99 {
100 	guard(mutex)(&fwnode_link_lock);
101 
102 	return __fwnode_link_add(con, sup, flags);
103 }
104 
105 /**
106  * __fwnode_link_del - Delete a link between two fwnode_handles.
107  * @link: the fwnode_link to be deleted
108  *
109  * The fwnode_link_lock needs to be held when this function is called.
110  */
111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 		 link->consumer, link->supplier);
115 	list_del(&link->s_hook);
116 	list_del(&link->c_hook);
117 	kfree(link);
118 }
119 
120 /**
121  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122  * @link: the fwnode_link to be marked
123  *
124  * The fwnode_link_lock needs to be held when this function is called.
125  */
126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 		 link->consumer, link->supplier);
130 	link->flags |= FWLINK_FLAG_CYCLE;
131 }
132 
133 /**
134  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135  * @fwnode: fwnode whose supplier links need to be deleted
136  *
137  * Deletes all supplier links connecting directly to @fwnode.
138  */
139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 	struct fwnode_link *link, *tmp;
142 
143 	guard(mutex)(&fwnode_link_lock);
144 
145 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 		__fwnode_link_del(link);
147 }
148 
149 /**
150  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151  * @fwnode: fwnode whose consumer links need to be deleted
152  *
153  * Deletes all consumer links connecting directly to @fwnode.
154  */
155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 	struct fwnode_link *link, *tmp;
158 
159 	guard(mutex)(&fwnode_link_lock);
160 
161 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 		__fwnode_link_del(link);
163 }
164 
165 /**
166  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167  * @fwnode: fwnode whose links needs to be deleted
168  *
169  * Deletes all links connecting directly to a fwnode.
170  */
171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 	fwnode_links_purge_suppliers(fwnode);
174 	fwnode_links_purge_consumers(fwnode);
175 }
176 
177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 	struct fwnode_handle *child;
180 
181 	/* Don't purge consumer links of an added child */
182 	if (fwnode->dev)
183 		return;
184 
185 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 	fwnode_links_purge_consumers(fwnode);
187 
188 	fwnode_for_each_available_child_node(fwnode, child)
189 		fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192 
193 /**
194  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195  * @from: move consumers away from this fwnode
196  * @to: move consumers to this fwnode
197  *
198  * Move all consumer links from @from fwnode to @to fwnode.
199  */
200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 					  struct fwnode_handle *to)
202 {
203 	struct fwnode_link *link, *tmp;
204 
205 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 		__fwnode_link_add(link->consumer, to, link->flags);
207 		__fwnode_link_del(link);
208 	}
209 }
210 
211 /**
212  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213  * @fwnode: fwnode from which to pick up dangling consumers
214  * @new_sup: fwnode of new supplier
215  *
216  * If the @fwnode has a corresponding struct device and the device supports
217  * probing (that is, added to a bus), then we want to let fw_devlink create
218  * MANAGED device links to this device, so leave @fwnode and its descendant's
219  * fwnode links alone.
220  *
221  * Otherwise, move its consumers to the new supplier @new_sup.
222  */
223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 						   struct fwnode_handle *new_sup)
225 {
226 	struct fwnode_handle *child;
227 
228 	if (fwnode->dev && fwnode->dev->bus)
229 		return;
230 
231 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 	__fwnode_links_move_consumers(fwnode, new_sup);
233 
234 	fwnode_for_each_available_child_node(fwnode, child)
235 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237 
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240 
241 static inline void device_links_write_lock(void)
242 {
243 	mutex_lock(&device_links_lock);
244 }
245 
246 static inline void device_links_write_unlock(void)
247 {
248 	mutex_unlock(&device_links_lock);
249 }
250 
251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 	return srcu_read_lock(&device_links_srcu);
254 }
255 
256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 	srcu_read_unlock(&device_links_srcu, idx);
259 }
260 
261 int device_links_read_lock_held(void)
262 {
263 	return srcu_read_lock_held(&device_links_srcu);
264 }
265 
266 static void device_link_synchronize_removal(void)
267 {
268 	synchronize_srcu(&device_links_srcu);
269 }
270 
271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 	list_del_rcu(&link->s_node);
274 	list_del_rcu(&link->c_node);
275 }
276 
277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 	while (target->parent) {
280 		target = target->parent;
281 		if (dev == target)
282 			return true;
283 	}
284 	return false;
285 }
286 
287 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
288 				 DL_FLAG_CYCLE | \
289 				 DL_FLAG_MANAGED)
290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294 
295 /**
296  * device_is_dependent - Check if one device depends on another one
297  * @dev: Device to check dependencies for.
298  * @target: Device to check against.
299  *
300  * Check if @target depends on @dev or any device dependent on it (its child or
301  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
302  */
303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 	struct device_link *link;
306 	int ret;
307 
308 	/*
309 	 * The "ancestors" check is needed to catch the case when the target
310 	 * device has not been completely initialized yet and it is still
311 	 * missing from the list of children of its parent device.
312 	 */
313 	if (dev == target || device_is_ancestor(dev, target))
314 		return 1;
315 
316 	ret = device_for_each_child(dev, target, device_is_dependent);
317 	if (ret)
318 		return ret;
319 
320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
321 		if (device_link_flag_is_sync_state_only(link->flags))
322 			continue;
323 
324 		if (link->consumer == target)
325 			return 1;
326 
327 		ret = device_is_dependent(link->consumer, target);
328 		if (ret)
329 			break;
330 	}
331 	return ret;
332 }
333 
334 static void device_link_init_status(struct device_link *link,
335 				    struct device *consumer,
336 				    struct device *supplier)
337 {
338 	switch (supplier->links.status) {
339 	case DL_DEV_PROBING:
340 		switch (consumer->links.status) {
341 		case DL_DEV_PROBING:
342 			/*
343 			 * A consumer driver can create a link to a supplier
344 			 * that has not completed its probing yet as long as it
345 			 * knows that the supplier is already functional (for
346 			 * example, it has just acquired some resources from the
347 			 * supplier).
348 			 */
349 			link->status = DL_STATE_CONSUMER_PROBE;
350 			break;
351 		default:
352 			link->status = DL_STATE_DORMANT;
353 			break;
354 		}
355 		break;
356 	case DL_DEV_DRIVER_BOUND:
357 		switch (consumer->links.status) {
358 		case DL_DEV_PROBING:
359 			link->status = DL_STATE_CONSUMER_PROBE;
360 			break;
361 		case DL_DEV_DRIVER_BOUND:
362 			link->status = DL_STATE_ACTIVE;
363 			break;
364 		default:
365 			link->status = DL_STATE_AVAILABLE;
366 			break;
367 		}
368 		break;
369 	case DL_DEV_UNBINDING:
370 		link->status = DL_STATE_SUPPLIER_UNBIND;
371 		break;
372 	default:
373 		link->status = DL_STATE_DORMANT;
374 		break;
375 	}
376 }
377 
378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 	struct device_link *link;
381 
382 	/*
383 	 * Devices that have not been registered yet will be put to the ends
384 	 * of the lists during the registration, so skip them here.
385 	 */
386 	if (device_is_registered(dev))
387 		devices_kset_move_last(dev);
388 
389 	if (device_pm_initialized(dev))
390 		device_pm_move_last(dev);
391 
392 	device_for_each_child(dev, NULL, device_reorder_to_tail);
393 	list_for_each_entry(link, &dev->links.consumers, s_node) {
394 		if (device_link_flag_is_sync_state_only(link->flags))
395 			continue;
396 		device_reorder_to_tail(link->consumer, NULL);
397 	}
398 
399 	return 0;
400 }
401 
402 /**
403  * device_pm_move_to_tail - Move set of devices to the end of device lists
404  * @dev: Device to move
405  *
406  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407  *
408  * It moves the @dev along with all of its children and all of its consumers
409  * to the ends of the device_kset and dpm_list, recursively.
410  */
411 void device_pm_move_to_tail(struct device *dev)
412 {
413 	int idx;
414 
415 	idx = device_links_read_lock();
416 	device_pm_lock();
417 	device_reorder_to_tail(dev, NULL);
418 	device_pm_unlock();
419 	device_links_read_unlock(idx);
420 }
421 
422 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
423 
424 static ssize_t status_show(struct device *dev,
425 			   struct device_attribute *attr, char *buf)
426 {
427 	const char *output;
428 
429 	switch (to_devlink(dev)->status) {
430 	case DL_STATE_NONE:
431 		output = "not tracked";
432 		break;
433 	case DL_STATE_DORMANT:
434 		output = "dormant";
435 		break;
436 	case DL_STATE_AVAILABLE:
437 		output = "available";
438 		break;
439 	case DL_STATE_CONSUMER_PROBE:
440 		output = "consumer probing";
441 		break;
442 	case DL_STATE_ACTIVE:
443 		output = "active";
444 		break;
445 	case DL_STATE_SUPPLIER_UNBIND:
446 		output = "supplier unbinding";
447 		break;
448 	default:
449 		output = "unknown";
450 		break;
451 	}
452 
453 	return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456 
457 static ssize_t auto_remove_on_show(struct device *dev,
458 				   struct device_attribute *attr, char *buf)
459 {
460 	struct device_link *link = to_devlink(dev);
461 	const char *output;
462 
463 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 		output = "supplier unbind";
465 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 		output = "consumer unbind";
467 	else
468 		output = "never";
469 
470 	return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473 
474 static ssize_t runtime_pm_show(struct device *dev,
475 			       struct device_attribute *attr, char *buf)
476 {
477 	struct device_link *link = to_devlink(dev);
478 
479 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482 
483 static ssize_t sync_state_only_show(struct device *dev,
484 				    struct device_attribute *attr, char *buf)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	return sysfs_emit(buf, "%d\n",
489 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492 
493 static struct attribute *devlink_attrs[] = {
494 	&dev_attr_status.attr,
495 	&dev_attr_auto_remove_on.attr,
496 	&dev_attr_runtime_pm.attr,
497 	&dev_attr_sync_state_only.attr,
498 	NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501 
502 static void device_link_release_fn(struct work_struct *work)
503 {
504 	struct device_link *link = container_of(work, struct device_link, rm_work);
505 
506 	/* Ensure that all references to the link object have been dropped. */
507 	device_link_synchronize_removal();
508 
509 	pm_runtime_release_supplier(link);
510 	/*
511 	 * If supplier_preactivated is set, the link has been dropped between
512 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 	 * in __driver_probe_device().  In that case, drop the supplier's
514 	 * PM-runtime usage counter to remove the reference taken by
515 	 * pm_runtime_get_suppliers().
516 	 */
517 	if (link->supplier_preactivated)
518 		pm_runtime_put_noidle(link->supplier);
519 
520 	pm_request_idle(link->supplier);
521 
522 	put_device(link->consumer);
523 	put_device(link->supplier);
524 	kfree(link);
525 }
526 
527 static void devlink_dev_release(struct device *dev)
528 {
529 	struct device_link *link = to_devlink(dev);
530 
531 	INIT_WORK(&link->rm_work, device_link_release_fn);
532 	/*
533 	 * It may take a while to complete this work because of the SRCU
534 	 * synchronization in device_link_release_fn() and if the consumer or
535 	 * supplier devices get deleted when it runs, so put it into the
536 	 * dedicated workqueue.
537 	 */
538 	queue_work(device_link_wq, &link->rm_work);
539 }
540 
541 /**
542  * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543  */
544 void device_link_wait_removal(void)
545 {
546 	/*
547 	 * devlink removal jobs are queued in the dedicated work queue.
548 	 * To be sure that all removal jobs are terminated, ensure that any
549 	 * scheduled work has run to completion.
550 	 */
551 	flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554 
555 static const struct class devlink_class = {
556 	.name = "devlink",
557 	.dev_groups = devlink_groups,
558 	.dev_release = devlink_dev_release,
559 };
560 
561 static int devlink_add_symlinks(struct device *dev)
562 {
563 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
564 	int ret;
565 	struct device_link *link = to_devlink(dev);
566 	struct device *sup = link->supplier;
567 	struct device *con = link->consumer;
568 
569 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
570 	if (ret)
571 		goto out;
572 
573 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
574 	if (ret)
575 		goto err_con;
576 
577 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
578 	if (!buf_con) {
579 		ret = -ENOMEM;
580 		goto err_con_dev;
581 	}
582 
583 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
584 	if (ret)
585 		goto err_con_dev;
586 
587 	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
588 	if (!buf_sup) {
589 		ret = -ENOMEM;
590 		goto err_sup_dev;
591 	}
592 
593 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
594 	if (ret)
595 		goto err_sup_dev;
596 
597 	goto out;
598 
599 err_sup_dev:
600 	sysfs_remove_link(&sup->kobj, buf_con);
601 err_con_dev:
602 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 	return ret;
607 }
608 
609 static void devlink_remove_symlinks(struct device *dev)
610 {
611 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
612 	struct device_link *link = to_devlink(dev);
613 	struct device *sup = link->supplier;
614 	struct device *con = link->consumer;
615 
616 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
617 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
618 
619 	if (device_is_registered(con)) {
620 		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
621 		if (!buf_sup)
622 			goto out;
623 		sysfs_remove_link(&con->kobj, buf_sup);
624 	}
625 
626 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 	if (!buf_con)
628 		goto out;
629 	sysfs_remove_link(&sup->kobj, buf_con);
630 
631 	return;
632 
633 out:
634 	WARN(1, "Unable to properly free device link symlinks!\n");
635 }
636 
637 static struct class_interface devlink_class_intf = {
638 	.class = &devlink_class,
639 	.add_dev = devlink_add_symlinks,
640 	.remove_dev = devlink_remove_symlinks,
641 };
642 
643 static int __init devlink_class_init(void)
644 {
645 	int ret;
646 
647 	ret = class_register(&devlink_class);
648 	if (ret)
649 		return ret;
650 
651 	ret = class_interface_register(&devlink_class_intf);
652 	if (ret)
653 		class_unregister(&devlink_class);
654 
655 	return ret;
656 }
657 postcore_initcall(devlink_class_init);
658 
659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
660 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
661 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
662 			       DL_FLAG_SYNC_STATE_ONLY | \
663 			       DL_FLAG_INFERRED | \
664 			       DL_FLAG_CYCLE)
665 
666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
667 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
668 
669 /**
670  * device_link_add - Create a link between two devices.
671  * @consumer: Consumer end of the link.
672  * @supplier: Supplier end of the link.
673  * @flags: Link flags.
674  *
675  * Return: On success, a device_link struct will be returned.
676  *         On error or invalid flag settings, NULL will be returned.
677  *
678  * The caller is responsible for the proper synchronization of the link creation
679  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680  * runtime PM framework to take the link into account.  Second, if the
681  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682  * be forced into the active meta state and reference-counted upon the creation
683  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684  * ignored.
685  *
686  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687  * expected to release the link returned by it directly with the help of either
688  * device_link_del() or device_link_remove().
689  *
690  * If that flag is not set, however, the caller of this function is handing the
691  * management of the link over to the driver core entirely and its return value
692  * can only be used to check whether or not the link is present.  In that case,
693  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694  * flags can be used to indicate to the driver core when the link can be safely
695  * deleted.  Namely, setting one of them in @flags indicates to the driver core
696  * that the link is not going to be used (by the given caller of this function)
697  * after unbinding the consumer or supplier driver, respectively, from its
698  * device, so the link can be deleted at that point.  If none of them is set,
699  * the link will be maintained until one of the devices pointed to by it (either
700  * the consumer or the supplier) is unregistered.
701  *
702  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705  * be used to request the driver core to automatically probe for a consumer
706  * driver after successfully binding a driver to the supplier device.
707  *
708  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710  * the same time is invalid and will cause NULL to be returned upfront.
711  * However, if a device link between the given @consumer and @supplier pair
712  * exists already when this function is called for them, the existing link will
713  * be returned regardless of its current type and status (the link's flags may
714  * be modified then).  The caller of this function is then expected to treat
715  * the link as though it has just been created, so (in particular) if
716  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717  * explicitly when not needed any more (as stated above).
718  *
719  * A side effect of the link creation is re-ordering of dpm_list and the
720  * devices_kset list by moving the consumer device and all devices depending
721  * on it to the ends of these lists (that does not happen to devices that have
722  * not been registered when this function is called).
723  *
724  * The supplier device is required to be registered when this function is called
725  * and NULL will be returned if that is not the case.  The consumer device need
726  * not be registered, however.
727  */
728 struct device_link *device_link_add(struct device *consumer,
729 				    struct device *supplier, u32 flags)
730 {
731 	struct device_link *link;
732 
733 	if (!consumer || !supplier || consumer == supplier ||
734 	    flags & ~DL_ADD_VALID_FLAGS ||
735 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 		return NULL;
740 
741 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 		if (pm_runtime_get_sync(supplier) < 0) {
743 			pm_runtime_put_noidle(supplier);
744 			return NULL;
745 		}
746 	}
747 
748 	if (!(flags & DL_FLAG_STATELESS))
749 		flags |= DL_FLAG_MANAGED;
750 
751 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 	    !device_link_flag_is_sync_state_only(flags))
753 		return NULL;
754 
755 	device_links_write_lock();
756 	device_pm_lock();
757 
758 	/*
759 	 * If the supplier has not been fully registered yet or there is a
760 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 	 * the supplier already in the graph, return NULL. If the link is a
762 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 	 * because it only affects sync_state() callbacks.
764 	 */
765 	if (!device_pm_initialized(supplier)
766 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 		  device_is_dependent(consumer, supplier))) {
768 		link = NULL;
769 		goto out;
770 	}
771 
772 	/*
773 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 	 * So, only create it if the consumer hasn't probed yet.
775 	 */
776 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 	    consumer->links.status != DL_DEV_NO_DRIVER &&
778 	    consumer->links.status != DL_DEV_PROBING) {
779 		link = NULL;
780 		goto out;
781 	}
782 
783 	/*
784 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 	 */
788 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790 
791 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 		if (link->consumer != consumer)
793 			continue;
794 
795 		if (link->flags & DL_FLAG_INFERRED &&
796 		    !(flags & DL_FLAG_INFERRED))
797 			link->flags &= ~DL_FLAG_INFERRED;
798 
799 		if (flags & DL_FLAG_PM_RUNTIME) {
800 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 				pm_runtime_new_link(consumer);
802 				link->flags |= DL_FLAG_PM_RUNTIME;
803 			}
804 			if (flags & DL_FLAG_RPM_ACTIVE)
805 				refcount_inc(&link->rpm_active);
806 		}
807 
808 		if (flags & DL_FLAG_STATELESS) {
809 			kref_get(&link->kref);
810 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 			    !(link->flags & DL_FLAG_STATELESS)) {
812 				link->flags |= DL_FLAG_STATELESS;
813 				goto reorder;
814 			} else {
815 				link->flags |= DL_FLAG_STATELESS;
816 				goto out;
817 			}
818 		}
819 
820 		/*
821 		 * If the life time of the link following from the new flags is
822 		 * longer than indicated by the flags of the existing link,
823 		 * update the existing link to stay around longer.
824 		 */
825 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 			}
830 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 		}
834 		if (!(link->flags & DL_FLAG_MANAGED)) {
835 			kref_get(&link->kref);
836 			link->flags |= DL_FLAG_MANAGED;
837 			device_link_init_status(link, consumer, supplier);
838 		}
839 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 			goto reorder;
843 		}
844 
845 		goto out;
846 	}
847 
848 	link = kzalloc(sizeof(*link), GFP_KERNEL);
849 	if (!link)
850 		goto out;
851 
852 	refcount_set(&link->rpm_active, 1);
853 
854 	get_device(supplier);
855 	link->supplier = supplier;
856 	INIT_LIST_HEAD(&link->s_node);
857 	get_device(consumer);
858 	link->consumer = consumer;
859 	INIT_LIST_HEAD(&link->c_node);
860 	link->flags = flags;
861 	kref_init(&link->kref);
862 
863 	link->link_dev.class = &devlink_class;
864 	device_set_pm_not_required(&link->link_dev);
865 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 		     dev_bus_name(supplier), dev_name(supplier),
867 		     dev_bus_name(consumer), dev_name(consumer));
868 	if (device_register(&link->link_dev)) {
869 		put_device(&link->link_dev);
870 		link = NULL;
871 		goto out;
872 	}
873 
874 	if (flags & DL_FLAG_PM_RUNTIME) {
875 		if (flags & DL_FLAG_RPM_ACTIVE)
876 			refcount_inc(&link->rpm_active);
877 
878 		pm_runtime_new_link(consumer);
879 	}
880 
881 	/* Determine the initial link state. */
882 	if (flags & DL_FLAG_STATELESS)
883 		link->status = DL_STATE_NONE;
884 	else
885 		device_link_init_status(link, consumer, supplier);
886 
887 	/*
888 	 * Some callers expect the link creation during consumer driver probe to
889 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 	 */
891 	if (link->status == DL_STATE_CONSUMER_PROBE &&
892 	    flags & DL_FLAG_PM_RUNTIME)
893 		pm_runtime_resume(supplier);
894 
895 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897 
898 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 		dev_dbg(consumer,
900 			"Linked as a sync state only consumer to %s\n",
901 			dev_name(supplier));
902 		goto out;
903 	}
904 
905 reorder:
906 	/*
907 	 * Move the consumer and all of the devices depending on it to the end
908 	 * of dpm_list and the devices_kset list.
909 	 *
910 	 * It is necessary to hold dpm_list locked throughout all that or else
911 	 * we may end up suspending with a wrong ordering of it.
912 	 */
913 	device_reorder_to_tail(consumer, NULL);
914 
915 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916 
917 out:
918 	device_pm_unlock();
919 	device_links_write_unlock();
920 
921 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 		pm_runtime_put(supplier);
923 
924 	return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927 
928 static void __device_link_del(struct kref *kref)
929 {
930 	struct device_link *link = container_of(kref, struct device_link, kref);
931 
932 	dev_dbg(link->consumer, "Dropping the link to %s\n",
933 		dev_name(link->supplier));
934 
935 	pm_runtime_drop_link(link);
936 
937 	device_link_remove_from_lists(link);
938 	device_unregister(&link->link_dev);
939 }
940 
941 static void device_link_put_kref(struct device_link *link)
942 {
943 	if (link->flags & DL_FLAG_STATELESS)
944 		kref_put(&link->kref, __device_link_del);
945 	else if (!device_is_registered(link->consumer))
946 		__device_link_del(&link->kref);
947 	else
948 		WARN(1, "Unable to drop a managed device link reference\n");
949 }
950 
951 /**
952  * device_link_del - Delete a stateless link between two devices.
953  * @link: Device link to delete.
954  *
955  * The caller must ensure proper synchronization of this function with runtime
956  * PM.  If the link was added multiple times, it needs to be deleted as often.
957  * Care is required for hotplugged devices:  Their links are purged on removal
958  * and calling device_link_del() is then no longer allowed.
959  */
960 void device_link_del(struct device_link *link)
961 {
962 	device_links_write_lock();
963 	device_link_put_kref(link);
964 	device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967 
968 /**
969  * device_link_remove - Delete a stateless link between two devices.
970  * @consumer: Consumer end of the link.
971  * @supplier: Supplier end of the link.
972  *
973  * The caller must ensure proper synchronization of this function with runtime
974  * PM.
975  */
976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 	struct device_link *link;
979 
980 	if (WARN_ON(consumer == supplier))
981 		return;
982 
983 	device_links_write_lock();
984 
985 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 		if (link->consumer == consumer) {
987 			device_link_put_kref(link);
988 			break;
989 		}
990 	}
991 
992 	device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995 
996 static void device_links_missing_supplier(struct device *dev)
997 {
998 	struct device_link *link;
999 
1000 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 		if (link->status != DL_STATE_CONSUMER_PROBE)
1002 			continue;
1003 
1004 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 		} else {
1007 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 		}
1010 	}
1011 }
1012 
1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 	return (fw_devlink_best_effort && dev->can_match) ||
1016 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018 
1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 						struct fwnode_handle *fwnode)
1021 {
1022 	struct fwnode_link *link;
1023 
1024 	if (!fwnode || fw_devlink_is_permissive())
1025 		return NULL;
1026 
1027 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 		if (!(link->flags &
1029 		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 			return link->supplier;
1031 
1032 	return NULL;
1033 }
1034 
1035 /**
1036  * device_links_check_suppliers - Check presence of supplier drivers.
1037  * @dev: Consumer device.
1038  *
1039  * Check links from this device to any suppliers.  Walk the list of the device's
1040  * links to suppliers and see if all of them are available.  If not, simply
1041  * return -EPROBE_DEFER.
1042  *
1043  * We need to guarantee that the supplier will not go away after the check has
1044  * been positive here.  It only can go away in __device_release_driver() and
1045  * that function  checks the device's links to consumers.  This means we need to
1046  * mark the link as "consumer probe in progress" to make the supplier removal
1047  * wait for us to complete (or bad things may happen).
1048  *
1049  * Links without the DL_FLAG_MANAGED flag set are ignored.
1050  */
1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 	struct device_link *link;
1054 	int ret = 0, fwnode_ret = 0;
1055 	struct fwnode_handle *sup_fw;
1056 
1057 	/*
1058 	 * Device waiting for supplier to become available is not allowed to
1059 	 * probe.
1060 	 */
1061 	scoped_guard(mutex, &fwnode_link_lock) {
1062 		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 		if (sup_fw) {
1064 			if (dev_is_best_effort(dev))
1065 				fwnode_ret = -EAGAIN;
1066 			else
1067 				return dev_err_probe(dev, -EPROBE_DEFER,
1068 						     "wait for supplier %pfwf\n", sup_fw);
1069 		}
1070 	}
1071 
1072 	device_links_write_lock();
1073 
1074 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075 		if (!(link->flags & DL_FLAG_MANAGED))
1076 			continue;
1077 
1078 		if (link->status != DL_STATE_AVAILABLE &&
1079 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080 
1081 			if (dev_is_best_effort(dev) &&
1082 			    link->flags & DL_FLAG_INFERRED &&
1083 			    !link->supplier->can_match) {
1084 				ret = -EAGAIN;
1085 				continue;
1086 			}
1087 
1088 			device_links_missing_supplier(dev);
1089 			ret = dev_err_probe(dev, -EPROBE_DEFER,
1090 					    "supplier %s not ready\n", dev_name(link->supplier));
1091 			break;
1092 		}
1093 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094 	}
1095 	dev->links.status = DL_DEV_PROBING;
1096 
1097 	device_links_write_unlock();
1098 
1099 	return ret ? ret : fwnode_ret;
1100 }
1101 
1102 /**
1103  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104  * @dev: Device to call sync_state() on
1105  * @list: List head to queue the @dev on
1106  *
1107  * Queues a device for a sync_state() callback when the device links write lock
1108  * isn't held. This allows the sync_state() execution flow to use device links
1109  * APIs.  The caller must ensure this function is called with
1110  * device_links_write_lock() held.
1111  *
1112  * This function does a get_device() to make sure the device is not freed while
1113  * on this list.
1114  *
1115  * So the caller must also ensure that device_links_flush_sync_list() is called
1116  * as soon as the caller releases device_links_write_lock().  This is necessary
1117  * to make sure the sync_state() is called in a timely fashion and the
1118  * put_device() is called on this device.
1119  */
1120 static void __device_links_queue_sync_state(struct device *dev,
1121 					    struct list_head *list)
1122 {
1123 	struct device_link *link;
1124 
1125 	if (!dev_has_sync_state(dev))
1126 		return;
1127 	if (dev->state_synced)
1128 		return;
1129 
1130 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1131 		if (!(link->flags & DL_FLAG_MANAGED))
1132 			continue;
1133 		if (link->status != DL_STATE_ACTIVE)
1134 			return;
1135 	}
1136 
1137 	/*
1138 	 * Set the flag here to avoid adding the same device to a list more
1139 	 * than once. This can happen if new consumers get added to the device
1140 	 * and probed before the list is flushed.
1141 	 */
1142 	dev->state_synced = true;
1143 
1144 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145 		return;
1146 
1147 	get_device(dev);
1148 	list_add_tail(&dev->links.defer_sync, list);
1149 }
1150 
1151 /**
1152  * device_links_flush_sync_list - Call sync_state() on a list of devices
1153  * @list: List of devices to call sync_state() on
1154  * @dont_lock_dev: Device for which lock is already held by the caller
1155  *
1156  * Calls sync_state() on all the devices that have been queued for it. This
1157  * function is used in conjunction with __device_links_queue_sync_state(). The
1158  * @dont_lock_dev parameter is useful when this function is called from a
1159  * context where a device lock is already held.
1160  */
1161 static void device_links_flush_sync_list(struct list_head *list,
1162 					 struct device *dont_lock_dev)
1163 {
1164 	struct device *dev, *tmp;
1165 
1166 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167 		list_del_init(&dev->links.defer_sync);
1168 
1169 		if (dev != dont_lock_dev)
1170 			device_lock(dev);
1171 
1172 		dev_sync_state(dev);
1173 
1174 		if (dev != dont_lock_dev)
1175 			device_unlock(dev);
1176 
1177 		put_device(dev);
1178 	}
1179 }
1180 
1181 void device_links_supplier_sync_state_pause(void)
1182 {
1183 	device_links_write_lock();
1184 	defer_sync_state_count++;
1185 	device_links_write_unlock();
1186 }
1187 
1188 void device_links_supplier_sync_state_resume(void)
1189 {
1190 	struct device *dev, *tmp;
1191 	LIST_HEAD(sync_list);
1192 
1193 	device_links_write_lock();
1194 	if (!defer_sync_state_count) {
1195 		WARN(true, "Unmatched sync_state pause/resume!");
1196 		goto out;
1197 	}
1198 	defer_sync_state_count--;
1199 	if (defer_sync_state_count)
1200 		goto out;
1201 
1202 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203 		/*
1204 		 * Delete from deferred_sync list before queuing it to
1205 		 * sync_list because defer_sync is used for both lists.
1206 		 */
1207 		list_del_init(&dev->links.defer_sync);
1208 		__device_links_queue_sync_state(dev, &sync_list);
1209 	}
1210 out:
1211 	device_links_write_unlock();
1212 
1213 	device_links_flush_sync_list(&sync_list, NULL);
1214 }
1215 
1216 static int sync_state_resume_initcall(void)
1217 {
1218 	device_links_supplier_sync_state_resume();
1219 	return 0;
1220 }
1221 late_initcall(sync_state_resume_initcall);
1222 
1223 static void __device_links_supplier_defer_sync(struct device *sup)
1224 {
1225 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227 }
1228 
1229 static void device_link_drop_managed(struct device_link *link)
1230 {
1231 	link->flags &= ~DL_FLAG_MANAGED;
1232 	WRITE_ONCE(link->status, DL_STATE_NONE);
1233 	kref_put(&link->kref, __device_link_del);
1234 }
1235 
1236 static ssize_t waiting_for_supplier_show(struct device *dev,
1237 					 struct device_attribute *attr,
1238 					 char *buf)
1239 {
1240 	bool val;
1241 
1242 	device_lock(dev);
1243 	scoped_guard(mutex, &fwnode_link_lock)
1244 		val = !!fwnode_links_check_suppliers(dev->fwnode);
1245 	device_unlock(dev);
1246 	return sysfs_emit(buf, "%u\n", val);
1247 }
1248 static DEVICE_ATTR_RO(waiting_for_supplier);
1249 
1250 /**
1251  * device_links_force_bind - Prepares device to be force bound
1252  * @dev: Consumer device.
1253  *
1254  * device_bind_driver() force binds a device to a driver without calling any
1255  * driver probe functions. So the consumer really isn't going to wait for any
1256  * supplier before it's bound to the driver. We still want the device link
1257  * states to be sensible when this happens.
1258  *
1259  * In preparation for device_bind_driver(), this function goes through each
1260  * supplier device links and checks if the supplier is bound. If it is, then
1261  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263  */
1264 void device_links_force_bind(struct device *dev)
1265 {
1266 	struct device_link *link, *ln;
1267 
1268 	device_links_write_lock();
1269 
1270 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271 		if (!(link->flags & DL_FLAG_MANAGED))
1272 			continue;
1273 
1274 		if (link->status != DL_STATE_AVAILABLE) {
1275 			device_link_drop_managed(link);
1276 			continue;
1277 		}
1278 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279 	}
1280 	dev->links.status = DL_DEV_PROBING;
1281 
1282 	device_links_write_unlock();
1283 }
1284 
1285 /**
1286  * device_links_driver_bound - Update device links after probing its driver.
1287  * @dev: Device to update the links for.
1288  *
1289  * The probe has been successful, so update links from this device to any
1290  * consumers by changing their status to "available".
1291  *
1292  * Also change the status of @dev's links to suppliers to "active".
1293  *
1294  * Links without the DL_FLAG_MANAGED flag set are ignored.
1295  */
1296 void device_links_driver_bound(struct device *dev)
1297 {
1298 	struct device_link *link, *ln;
1299 	LIST_HEAD(sync_list);
1300 
1301 	/*
1302 	 * If a device binds successfully, it's expected to have created all
1303 	 * the device links it needs to or make new device links as it needs
1304 	 * them. So, fw_devlink no longer needs to create device links to any
1305 	 * of the device's suppliers.
1306 	 *
1307 	 * Also, if a child firmware node of this bound device is not added as a
1308 	 * device by now, assume it is never going to be added. Make this bound
1309 	 * device the fallback supplier to the dangling consumers of the child
1310 	 * firmware node because this bound device is probably implementing the
1311 	 * child firmware node functionality and we don't want the dangling
1312 	 * consumers to defer probe indefinitely waiting for a device for the
1313 	 * child firmware node.
1314 	 */
1315 	if (dev->fwnode && dev->fwnode->dev == dev) {
1316 		struct fwnode_handle *child;
1317 
1318 		fwnode_links_purge_suppliers(dev->fwnode);
1319 
1320 		guard(mutex)(&fwnode_link_lock);
1321 
1322 		fwnode_for_each_available_child_node(dev->fwnode, child)
1323 			__fw_devlink_pickup_dangling_consumers(child,
1324 							       dev->fwnode);
1325 		__fw_devlink_link_to_consumers(dev);
1326 	}
1327 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328 
1329 	device_links_write_lock();
1330 
1331 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1332 		if (!(link->flags & DL_FLAG_MANAGED))
1333 			continue;
1334 
1335 		/*
1336 		 * Links created during consumer probe may be in the "consumer
1337 		 * probe" state to start with if the supplier is still probing
1338 		 * when they are created and they may become "active" if the
1339 		 * consumer probe returns first.  Skip them here.
1340 		 */
1341 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1342 		    link->status == DL_STATE_ACTIVE)
1343 			continue;
1344 
1345 		WARN_ON(link->status != DL_STATE_DORMANT);
1346 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347 
1348 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349 			driver_deferred_probe_add(link->consumer);
1350 	}
1351 
1352 	if (defer_sync_state_count)
1353 		__device_links_supplier_defer_sync(dev);
1354 	else
1355 		__device_links_queue_sync_state(dev, &sync_list);
1356 
1357 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358 		struct device *supplier;
1359 
1360 		if (!(link->flags & DL_FLAG_MANAGED))
1361 			continue;
1362 
1363 		supplier = link->supplier;
1364 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365 			/*
1366 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368 			 * save to drop the managed link completely.
1369 			 */
1370 			device_link_drop_managed(link);
1371 		} else if (dev_is_best_effort(dev) &&
1372 			   link->flags & DL_FLAG_INFERRED &&
1373 			   link->status != DL_STATE_CONSUMER_PROBE &&
1374 			   !link->supplier->can_match) {
1375 			/*
1376 			 * When dev_is_best_effort() is true, we ignore device
1377 			 * links to suppliers that don't have a driver.  If the
1378 			 * consumer device still managed to probe, there's no
1379 			 * point in maintaining a device link in a weird state
1380 			 * (consumer probed before supplier). So delete it.
1381 			 */
1382 			device_link_drop_managed(link);
1383 		} else {
1384 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386 		}
1387 
1388 		/*
1389 		 * This needs to be done even for the deleted
1390 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391 		 * device link that was preventing the supplier from getting a
1392 		 * sync_state() call.
1393 		 */
1394 		if (defer_sync_state_count)
1395 			__device_links_supplier_defer_sync(supplier);
1396 		else
1397 			__device_links_queue_sync_state(supplier, &sync_list);
1398 	}
1399 
1400 	dev->links.status = DL_DEV_DRIVER_BOUND;
1401 
1402 	device_links_write_unlock();
1403 
1404 	device_links_flush_sync_list(&sync_list, dev);
1405 }
1406 
1407 /**
1408  * __device_links_no_driver - Update links of a device without a driver.
1409  * @dev: Device without a drvier.
1410  *
1411  * Delete all non-persistent links from this device to any suppliers.
1412  *
1413  * Persistent links stay around, but their status is changed to "available",
1414  * unless they already are in the "supplier unbind in progress" state in which
1415  * case they need not be updated.
1416  *
1417  * Links without the DL_FLAG_MANAGED flag set are ignored.
1418  */
1419 static void __device_links_no_driver(struct device *dev)
1420 {
1421 	struct device_link *link, *ln;
1422 
1423 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424 		if (!(link->flags & DL_FLAG_MANAGED))
1425 			continue;
1426 
1427 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428 			device_link_drop_managed(link);
1429 			continue;
1430 		}
1431 
1432 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1433 		    link->status != DL_STATE_ACTIVE)
1434 			continue;
1435 
1436 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438 		} else {
1439 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441 		}
1442 	}
1443 
1444 	dev->links.status = DL_DEV_NO_DRIVER;
1445 }
1446 
1447 /**
1448  * device_links_no_driver - Update links after failing driver probe.
1449  * @dev: Device whose driver has just failed to probe.
1450  *
1451  * Clean up leftover links to consumers for @dev and invoke
1452  * %__device_links_no_driver() to update links to suppliers for it as
1453  * appropriate.
1454  *
1455  * Links without the DL_FLAG_MANAGED flag set are ignored.
1456  */
1457 void device_links_no_driver(struct device *dev)
1458 {
1459 	struct device_link *link;
1460 
1461 	device_links_write_lock();
1462 
1463 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1464 		if (!(link->flags & DL_FLAG_MANAGED))
1465 			continue;
1466 
1467 		/*
1468 		 * The probe has failed, so if the status of the link is
1469 		 * "consumer probe" or "active", it must have been added by
1470 		 * a probing consumer while this device was still probing.
1471 		 * Change its state to "dormant", as it represents a valid
1472 		 * relationship, but it is not functionally meaningful.
1473 		 */
1474 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1475 		    link->status == DL_STATE_ACTIVE)
1476 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477 	}
1478 
1479 	__device_links_no_driver(dev);
1480 
1481 	device_links_write_unlock();
1482 }
1483 
1484 /**
1485  * device_links_driver_cleanup - Update links after driver removal.
1486  * @dev: Device whose driver has just gone away.
1487  *
1488  * Update links to consumers for @dev by changing their status to "dormant" and
1489  * invoke %__device_links_no_driver() to update links to suppliers for it as
1490  * appropriate.
1491  *
1492  * Links without the DL_FLAG_MANAGED flag set are ignored.
1493  */
1494 void device_links_driver_cleanup(struct device *dev)
1495 {
1496 	struct device_link *link, *ln;
1497 
1498 	device_links_write_lock();
1499 
1500 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501 		if (!(link->flags & DL_FLAG_MANAGED))
1502 			continue;
1503 
1504 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506 
1507 		/*
1508 		 * autoremove the links between this @dev and its consumer
1509 		 * devices that are not active, i.e. where the link state
1510 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511 		 */
1512 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514 			device_link_drop_managed(link);
1515 
1516 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517 	}
1518 
1519 	list_del_init(&dev->links.defer_sync);
1520 	__device_links_no_driver(dev);
1521 
1522 	device_links_write_unlock();
1523 }
1524 
1525 /**
1526  * device_links_busy - Check if there are any busy links to consumers.
1527  * @dev: Device to check.
1528  *
1529  * Check each consumer of the device and return 'true' if its link's status
1530  * is one of "consumer probe" or "active" (meaning that the given consumer is
1531  * probing right now or its driver is present).  Otherwise, change the link
1532  * state to "supplier unbind" to prevent the consumer from being probed
1533  * successfully going forward.
1534  *
1535  * Return 'false' if there are no probing or active consumers.
1536  *
1537  * Links without the DL_FLAG_MANAGED flag set are ignored.
1538  */
1539 bool device_links_busy(struct device *dev)
1540 {
1541 	struct device_link *link;
1542 	bool ret = false;
1543 
1544 	device_links_write_lock();
1545 
1546 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1547 		if (!(link->flags & DL_FLAG_MANAGED))
1548 			continue;
1549 
1550 		if (link->status == DL_STATE_CONSUMER_PROBE
1551 		    || link->status == DL_STATE_ACTIVE) {
1552 			ret = true;
1553 			break;
1554 		}
1555 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556 	}
1557 
1558 	dev->links.status = DL_DEV_UNBINDING;
1559 
1560 	device_links_write_unlock();
1561 	return ret;
1562 }
1563 
1564 /**
1565  * device_links_unbind_consumers - Force unbind consumers of the given device.
1566  * @dev: Device to unbind the consumers of.
1567  *
1568  * Walk the list of links to consumers for @dev and if any of them is in the
1569  * "consumer probe" state, wait for all device probes in progress to complete
1570  * and start over.
1571  *
1572  * If that's not the case, change the status of the link to "supplier unbind"
1573  * and check if the link was in the "active" state.  If so, force the consumer
1574  * driver to unbind and start over (the consumer will not re-probe as we have
1575  * changed the state of the link already).
1576  *
1577  * Links without the DL_FLAG_MANAGED flag set are ignored.
1578  */
1579 void device_links_unbind_consumers(struct device *dev)
1580 {
1581 	struct device_link *link;
1582 
1583  start:
1584 	device_links_write_lock();
1585 
1586 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1587 		enum device_link_state status;
1588 
1589 		if (!(link->flags & DL_FLAG_MANAGED) ||
1590 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591 			continue;
1592 
1593 		status = link->status;
1594 		if (status == DL_STATE_CONSUMER_PROBE) {
1595 			device_links_write_unlock();
1596 
1597 			wait_for_device_probe();
1598 			goto start;
1599 		}
1600 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601 		if (status == DL_STATE_ACTIVE) {
1602 			struct device *consumer = link->consumer;
1603 
1604 			get_device(consumer);
1605 
1606 			device_links_write_unlock();
1607 
1608 			device_release_driver_internal(consumer, NULL,
1609 						       consumer->parent);
1610 			put_device(consumer);
1611 			goto start;
1612 		}
1613 	}
1614 
1615 	device_links_write_unlock();
1616 }
1617 
1618 /**
1619  * device_links_purge - Delete existing links to other devices.
1620  * @dev: Target device.
1621  */
1622 static void device_links_purge(struct device *dev)
1623 {
1624 	struct device_link *link, *ln;
1625 
1626 	if (dev->class == &devlink_class)
1627 		return;
1628 
1629 	/*
1630 	 * Delete all of the remaining links from this device to any other
1631 	 * devices (either consumers or suppliers).
1632 	 */
1633 	device_links_write_lock();
1634 
1635 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636 		WARN_ON(link->status == DL_STATE_ACTIVE);
1637 		__device_link_del(&link->kref);
1638 	}
1639 
1640 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641 		WARN_ON(link->status != DL_STATE_DORMANT &&
1642 			link->status != DL_STATE_NONE);
1643 		__device_link_del(&link->kref);
1644 	}
1645 
1646 	device_links_write_unlock();
1647 }
1648 
1649 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1650 					 DL_FLAG_SYNC_STATE_ONLY)
1651 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1652 					 DL_FLAG_AUTOPROBE_CONSUMER)
1653 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1654 					 DL_FLAG_PM_RUNTIME)
1655 
1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1657 static int __init fw_devlink_setup(char *arg)
1658 {
1659 	if (!arg)
1660 		return -EINVAL;
1661 
1662 	if (strcmp(arg, "off") == 0) {
1663 		fw_devlink_flags = 0;
1664 	} else if (strcmp(arg, "permissive") == 0) {
1665 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666 	} else if (strcmp(arg, "on") == 0) {
1667 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668 	} else if (strcmp(arg, "rpm") == 0) {
1669 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670 	}
1671 	return 0;
1672 }
1673 early_param("fw_devlink", fw_devlink_setup);
1674 
1675 static bool fw_devlink_strict;
1676 static int __init fw_devlink_strict_setup(char *arg)
1677 {
1678 	return kstrtobool(arg, &fw_devlink_strict);
1679 }
1680 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681 
1682 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1684 
1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686 static int fw_devlink_sync_state;
1687 #else
1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689 #endif
1690 
1691 static int __init fw_devlink_sync_state_setup(char *arg)
1692 {
1693 	if (!arg)
1694 		return -EINVAL;
1695 
1696 	if (strcmp(arg, "strict") == 0) {
1697 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698 		return 0;
1699 	} else if (strcmp(arg, "timeout") == 0) {
1700 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701 		return 0;
1702 	}
1703 	return -EINVAL;
1704 }
1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706 
1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708 {
1709 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711 
1712 	return fw_devlink_flags;
1713 }
1714 
1715 static bool fw_devlink_is_permissive(void)
1716 {
1717 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718 }
1719 
1720 bool fw_devlink_is_strict(void)
1721 {
1722 	return fw_devlink_strict && !fw_devlink_is_permissive();
1723 }
1724 
1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726 {
1727 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728 		return;
1729 
1730 	fwnode_call_int_op(fwnode, add_links);
1731 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732 }
1733 
1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735 {
1736 	struct fwnode_handle *child = NULL;
1737 
1738 	fw_devlink_parse_fwnode(fwnode);
1739 
1740 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741 		fw_devlink_parse_fwtree(child);
1742 }
1743 
1744 static void fw_devlink_relax_link(struct device_link *link)
1745 {
1746 	if (!(link->flags & DL_FLAG_INFERRED))
1747 		return;
1748 
1749 	if (device_link_flag_is_sync_state_only(link->flags))
1750 		return;
1751 
1752 	pm_runtime_drop_link(link);
1753 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1755 		dev_name(link->supplier));
1756 }
1757 
1758 static int fw_devlink_no_driver(struct device *dev, void *data)
1759 {
1760 	struct device_link *link = to_devlink(dev);
1761 
1762 	if (!link->supplier->can_match)
1763 		fw_devlink_relax_link(link);
1764 
1765 	return 0;
1766 }
1767 
1768 void fw_devlink_drivers_done(void)
1769 {
1770 	fw_devlink_drv_reg_done = true;
1771 	device_links_write_lock();
1772 	class_for_each_device(&devlink_class, NULL, NULL,
1773 			      fw_devlink_no_driver);
1774 	device_links_write_unlock();
1775 }
1776 
1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778 {
1779 	struct device_link *link = to_devlink(dev);
1780 	struct device *sup = link->supplier;
1781 
1782 	if (!(link->flags & DL_FLAG_MANAGED) ||
1783 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784 	    !dev_has_sync_state(sup))
1785 		return 0;
1786 
1787 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788 		dev_warn(sup, "sync_state() pending due to %s\n",
1789 			 dev_name(link->consumer));
1790 		return 0;
1791 	}
1792 
1793 	if (!list_empty(&sup->links.defer_sync))
1794 		return 0;
1795 
1796 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797 	sup->state_synced = true;
1798 	get_device(sup);
1799 	list_add_tail(&sup->links.defer_sync, data);
1800 
1801 	return 0;
1802 }
1803 
1804 void fw_devlink_probing_done(void)
1805 {
1806 	LIST_HEAD(sync_list);
1807 
1808 	device_links_write_lock();
1809 	class_for_each_device(&devlink_class, NULL, &sync_list,
1810 			      fw_devlink_dev_sync_state);
1811 	device_links_write_unlock();
1812 	device_links_flush_sync_list(&sync_list, NULL);
1813 }
1814 
1815 /**
1816  * wait_for_init_devices_probe - Try to probe any device needed for init
1817  *
1818  * Some devices might need to be probed and bound successfully before the kernel
1819  * boot sequence can finish and move on to init/userspace. For example, a
1820  * network interface might need to be bound to be able to mount a NFS rootfs.
1821  *
1822  * With fw_devlink=on by default, some of these devices might be blocked from
1823  * probing because they are waiting on a optional supplier that doesn't have a
1824  * driver. While fw_devlink will eventually identify such devices and unblock
1825  * the probing automatically, it might be too late by the time it unblocks the
1826  * probing of devices. For example, the IP4 autoconfig might timeout before
1827  * fw_devlink unblocks probing of the network interface.
1828  *
1829  * This function is available to temporarily try and probe all devices that have
1830  * a driver even if some of their suppliers haven't been added or don't have
1831  * drivers.
1832  *
1833  * The drivers can then decide which of the suppliers are optional vs mandatory
1834  * and probe the device if possible. By the time this function returns, all such
1835  * "best effort" probes are guaranteed to be completed. If a device successfully
1836  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837  * device where the supplier hasn't yet probed successfully because they have to
1838  * be optional dependencies.
1839  *
1840  * Any devices that didn't successfully probe go back to being treated as if
1841  * this function was never called.
1842  *
1843  * This also means that some devices that aren't needed for init and could have
1844  * waited for their optional supplier to probe (when the supplier's module is
1845  * loaded later on) would end up probing prematurely with limited functionality.
1846  * So call this function only when boot would fail without it.
1847  */
1848 void __init wait_for_init_devices_probe(void)
1849 {
1850 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1851 		return;
1852 
1853 	/*
1854 	 * Wait for all ongoing probes to finish so that the "best effort" is
1855 	 * only applied to devices that can't probe otherwise.
1856 	 */
1857 	wait_for_device_probe();
1858 
1859 	pr_info("Trying to probe devices needed for running init ...\n");
1860 	fw_devlink_best_effort = true;
1861 	driver_deferred_probe_trigger();
1862 
1863 	/*
1864 	 * Wait for all "best effort" probes to finish before going back to
1865 	 * normal enforcement.
1866 	 */
1867 	wait_for_device_probe();
1868 	fw_devlink_best_effort = false;
1869 }
1870 
1871 static void fw_devlink_unblock_consumers(struct device *dev)
1872 {
1873 	struct device_link *link;
1874 
1875 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1876 		return;
1877 
1878 	device_links_write_lock();
1879 	list_for_each_entry(link, &dev->links.consumers, s_node)
1880 		fw_devlink_relax_link(link);
1881 	device_links_write_unlock();
1882 }
1883 
1884 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1885 {
1886 	struct device *dev;
1887 	bool ret;
1888 
1889 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1890 		return false;
1891 
1892 	dev = get_dev_from_fwnode(fwnode);
1893 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1894 	put_device(dev);
1895 
1896 	return ret;
1897 }
1898 
1899 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1900 {
1901 	struct fwnode_handle *parent;
1902 
1903 	fwnode_for_each_parent_node(fwnode, parent) {
1904 		if (fwnode_init_without_drv(parent)) {
1905 			fwnode_handle_put(parent);
1906 			return true;
1907 		}
1908 	}
1909 
1910 	return false;
1911 }
1912 
1913 /**
1914  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1915  * @ancestor: Firmware which is tested for being an ancestor
1916  * @child: Firmware which is tested for being the child
1917  *
1918  * A node is considered an ancestor of itself too.
1919  *
1920  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1921  */
1922 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1923 				  const struct fwnode_handle *child)
1924 {
1925 	struct fwnode_handle *parent;
1926 
1927 	if (IS_ERR_OR_NULL(ancestor))
1928 		return false;
1929 
1930 	if (child == ancestor)
1931 		return true;
1932 
1933 	fwnode_for_each_parent_node(child, parent) {
1934 		if (parent == ancestor) {
1935 			fwnode_handle_put(parent);
1936 			return true;
1937 		}
1938 	}
1939 	return false;
1940 }
1941 
1942 /**
1943  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1944  * @fwnode: firmware node
1945  *
1946  * Given a firmware node (@fwnode), this function finds its closest ancestor
1947  * firmware node that has a corresponding struct device and returns that struct
1948  * device.
1949  *
1950  * The caller is responsible for calling put_device() on the returned device
1951  * pointer.
1952  *
1953  * Return: a pointer to the device of the @fwnode's closest ancestor.
1954  */
1955 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1956 {
1957 	struct fwnode_handle *parent;
1958 	struct device *dev;
1959 
1960 	fwnode_for_each_parent_node(fwnode, parent) {
1961 		dev = get_dev_from_fwnode(parent);
1962 		if (dev) {
1963 			fwnode_handle_put(parent);
1964 			return dev;
1965 		}
1966 	}
1967 	return NULL;
1968 }
1969 
1970 /**
1971  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1972  * @con_handle: Potential consumer device fwnode.
1973  * @sup_handle: Potential supplier's fwnode.
1974  *
1975  * Needs to be called with fwnode_lock and device link lock held.
1976  *
1977  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1978  * depend on @con. This function can detect multiple cyles between @sup_handle
1979  * and @con. When such dependency cycles are found, convert all device links
1980  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1981  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1982  * converted into a device link in the future, they are created as
1983  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1984  * fw_devlink=permissive just between the devices in the cycle. We need to do
1985  * this because, at this point, fw_devlink can't tell which of these
1986  * dependencies is not a real dependency.
1987  *
1988  * Return true if one or more cycles were found. Otherwise, return false.
1989  */
1990 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1991 				 struct fwnode_handle *sup_handle)
1992 {
1993 	struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1994 	struct fwnode_link *link;
1995 	struct device_link *dev_link;
1996 	bool ret = false;
1997 
1998 	if (!sup_handle)
1999 		return false;
2000 
2001 	/*
2002 	 * We aren't trying to find all cycles. Just a cycle between con and
2003 	 * sup_handle.
2004 	 */
2005 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2006 		return false;
2007 
2008 	sup_handle->flags |= FWNODE_FLAG_VISITED;
2009 
2010 	/* Termination condition. */
2011 	if (sup_handle == con_handle) {
2012 		pr_debug("----- cycle: start -----\n");
2013 		ret = true;
2014 		goto out;
2015 	}
2016 
2017 	sup_dev = get_dev_from_fwnode(sup_handle);
2018 	con_dev = get_dev_from_fwnode(con_handle);
2019 	/*
2020 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2021 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2022 	 * further.
2023 	 */
2024 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2025 	    con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2026 		ret = false;
2027 		goto out;
2028 	}
2029 
2030 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2031 		if (link->flags & FWLINK_FLAG_IGNORE)
2032 			continue;
2033 
2034 		if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2035 			__fwnode_link_cycle(link);
2036 			ret = true;
2037 		}
2038 	}
2039 
2040 	/*
2041 	 * Give priority to device parent over fwnode parent to account for any
2042 	 * quirks in how fwnodes are converted to devices.
2043 	 */
2044 	if (sup_dev)
2045 		par_dev = get_device(sup_dev->parent);
2046 	else
2047 		par_dev = fwnode_get_next_parent_dev(sup_handle);
2048 
2049 	if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2050 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2051 			 par_dev->fwnode);
2052 		ret = true;
2053 	}
2054 
2055 	if (!sup_dev)
2056 		goto out;
2057 
2058 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2059 		/*
2060 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2061 		 * such due to a cycle.
2062 		 */
2063 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2064 		    !(dev_link->flags & DL_FLAG_CYCLE))
2065 			continue;
2066 
2067 		if (__fw_devlink_relax_cycles(con_handle,
2068 					      dev_link->supplier->fwnode)) {
2069 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2070 				 dev_link->supplier->fwnode);
2071 			fw_devlink_relax_link(dev_link);
2072 			dev_link->flags |= DL_FLAG_CYCLE;
2073 			ret = true;
2074 		}
2075 	}
2076 
2077 out:
2078 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2079 	put_device(sup_dev);
2080 	put_device(con_dev);
2081 	put_device(par_dev);
2082 	return ret;
2083 }
2084 
2085 /**
2086  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2087  * @con: consumer device for the device link
2088  * @sup_handle: fwnode handle of supplier
2089  * @link: fwnode link that's being converted to a device link
2090  *
2091  * This function will try to create a device link between the consumer device
2092  * @con and the supplier device represented by @sup_handle.
2093  *
2094  * The supplier has to be provided as a fwnode because incorrect cycles in
2095  * fwnode links can sometimes cause the supplier device to never be created.
2096  * This function detects such cases and returns an error if it cannot create a
2097  * device link from the consumer to a missing supplier.
2098  *
2099  * Returns,
2100  * 0 on successfully creating a device link
2101  * -EINVAL if the device link cannot be created as expected
2102  * -EAGAIN if the device link cannot be created right now, but it may be
2103  *  possible to do that in the future
2104  */
2105 static int fw_devlink_create_devlink(struct device *con,
2106 				     struct fwnode_handle *sup_handle,
2107 				     struct fwnode_link *link)
2108 {
2109 	struct device *sup_dev;
2110 	int ret = 0;
2111 	u32 flags;
2112 
2113 	if (link->flags & FWLINK_FLAG_IGNORE)
2114 		return 0;
2115 
2116 	/*
2117 	 * In some cases, a device P might also be a supplier to its child node
2118 	 * C. However, this would defer the probe of C until the probe of P
2119 	 * completes successfully. This is perfectly fine in the device driver
2120 	 * model. device_add() doesn't guarantee probe completion of the device
2121 	 * by the time it returns.
2122 	 *
2123 	 * However, there are a few drivers that assume C will finish probing
2124 	 * as soon as it's added and before P finishes probing. So, we provide
2125 	 * a flag to let fw_devlink know not to delay the probe of C until the
2126 	 * probe of P completes successfully.
2127 	 *
2128 	 * When such a flag is set, we can't create device links where P is the
2129 	 * supplier of C as that would delay the probe of C.
2130 	 */
2131 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2132 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2133 		return -EINVAL;
2134 
2135 	/*
2136 	 * Don't try to optimize by not calling the cycle detection logic under
2137 	 * certain conditions. There's always some corner case that won't get
2138 	 * detected.
2139 	 */
2140 	device_links_write_lock();
2141 	if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2142 		__fwnode_link_cycle(link);
2143 		pr_debug("----- cycle: end -----\n");
2144 		pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2145 			link->consumer, sup_handle);
2146 	}
2147 	device_links_write_unlock();
2148 
2149 	if (con->fwnode == link->consumer)
2150 		flags = fw_devlink_get_flags(link->flags);
2151 	else
2152 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2153 
2154 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2155 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2156 	else
2157 		sup_dev = get_dev_from_fwnode(sup_handle);
2158 
2159 	if (sup_dev) {
2160 		/*
2161 		 * If it's one of those drivers that don't actually bind to
2162 		 * their device using driver core, then don't wait on this
2163 		 * supplier device indefinitely.
2164 		 */
2165 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2166 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2167 			dev_dbg(con,
2168 				"Not linking %pfwf - dev might never probe\n",
2169 				sup_handle);
2170 			ret = -EINVAL;
2171 			goto out;
2172 		}
2173 
2174 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2175 			dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2176 				flags, dev_name(sup_dev), link->consumer);
2177 			ret = -EINVAL;
2178 		}
2179 
2180 		goto out;
2181 	}
2182 
2183 	/*
2184 	 * Supplier or supplier's ancestor already initialized without a struct
2185 	 * device or being probed by a driver.
2186 	 */
2187 	if (fwnode_init_without_drv(sup_handle) ||
2188 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2189 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2190 			sup_handle);
2191 		return -EINVAL;
2192 	}
2193 
2194 	ret = -EAGAIN;
2195 out:
2196 	put_device(sup_dev);
2197 	return ret;
2198 }
2199 
2200 /**
2201  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2202  * @dev: Device that needs to be linked to its consumers
2203  *
2204  * This function looks at all the consumer fwnodes of @dev and creates device
2205  * links between the consumer device and @dev (supplier).
2206  *
2207  * If the consumer device has not been added yet, then this function creates a
2208  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2209  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2210  * sync_state() callback before the real consumer device gets to be added and
2211  * then probed.
2212  *
2213  * Once device links are created from the real consumer to @dev (supplier), the
2214  * fwnode links are deleted.
2215  */
2216 static void __fw_devlink_link_to_consumers(struct device *dev)
2217 {
2218 	struct fwnode_handle *fwnode = dev->fwnode;
2219 	struct fwnode_link *link, *tmp;
2220 
2221 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2222 		struct device *con_dev;
2223 		bool own_link = true;
2224 		int ret;
2225 
2226 		con_dev = get_dev_from_fwnode(link->consumer);
2227 		/*
2228 		 * If consumer device is not available yet, make a "proxy"
2229 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2230 		 * the supplier device. This is necessary to make sure the
2231 		 * supplier doesn't get a sync_state() callback before the real
2232 		 * consumer can create a device link to the supplier.
2233 		 *
2234 		 * This proxy link step is needed to handle the case where the
2235 		 * consumer's parent device is added before the supplier.
2236 		 */
2237 		if (!con_dev) {
2238 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2239 			/*
2240 			 * However, if the consumer's parent device is also the
2241 			 * parent of the supplier, don't create a
2242 			 * consumer-supplier link from the parent to its child
2243 			 * device. Such a dependency is impossible.
2244 			 */
2245 			if (con_dev &&
2246 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2247 				put_device(con_dev);
2248 				con_dev = NULL;
2249 			} else {
2250 				own_link = false;
2251 			}
2252 		}
2253 
2254 		if (!con_dev)
2255 			continue;
2256 
2257 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2258 		put_device(con_dev);
2259 		if (!own_link || ret == -EAGAIN)
2260 			continue;
2261 
2262 		__fwnode_link_del(link);
2263 	}
2264 }
2265 
2266 /**
2267  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2268  * @dev: The consumer device that needs to be linked to its suppliers
2269  * @fwnode: Root of the fwnode tree that is used to create device links
2270  *
2271  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2272  * @fwnode and creates device links between @dev (consumer) and all the
2273  * supplier devices of the entire fwnode tree at @fwnode.
2274  *
2275  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2276  * and the real suppliers of @dev. Once these device links are created, the
2277  * fwnode links are deleted.
2278  *
2279  * In addition, it also looks at all the suppliers of the entire fwnode tree
2280  * because some of the child devices of @dev that have not been added yet
2281  * (because @dev hasn't probed) might already have their suppliers added to
2282  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2283  * @dev (consumer) and these suppliers to make sure they don't execute their
2284  * sync_state() callbacks before these child devices have a chance to create
2285  * their device links. The fwnode links that correspond to the child devices
2286  * aren't delete because they are needed later to create the device links
2287  * between the real consumer and supplier devices.
2288  */
2289 static void __fw_devlink_link_to_suppliers(struct device *dev,
2290 					   struct fwnode_handle *fwnode)
2291 {
2292 	bool own_link = (dev->fwnode == fwnode);
2293 	struct fwnode_link *link, *tmp;
2294 	struct fwnode_handle *child = NULL;
2295 
2296 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2297 		int ret;
2298 		struct fwnode_handle *sup = link->supplier;
2299 
2300 		ret = fw_devlink_create_devlink(dev, sup, link);
2301 		if (!own_link || ret == -EAGAIN)
2302 			continue;
2303 
2304 		__fwnode_link_del(link);
2305 	}
2306 
2307 	/*
2308 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2309 	 * all the descendants. This proxy link step is needed to handle the
2310 	 * case where the supplier is added before the consumer's parent device
2311 	 * (@dev).
2312 	 */
2313 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2314 		__fw_devlink_link_to_suppliers(dev, child);
2315 }
2316 
2317 static void fw_devlink_link_device(struct device *dev)
2318 {
2319 	struct fwnode_handle *fwnode = dev->fwnode;
2320 
2321 	if (!fw_devlink_flags)
2322 		return;
2323 
2324 	fw_devlink_parse_fwtree(fwnode);
2325 
2326 	guard(mutex)(&fwnode_link_lock);
2327 
2328 	__fw_devlink_link_to_consumers(dev);
2329 	__fw_devlink_link_to_suppliers(dev, fwnode);
2330 }
2331 
2332 /* Device links support end. */
2333 
2334 static struct kobject *dev_kobj;
2335 
2336 /* /sys/dev/char */
2337 static struct kobject *sysfs_dev_char_kobj;
2338 
2339 /* /sys/dev/block */
2340 static struct kobject *sysfs_dev_block_kobj;
2341 
2342 static DEFINE_MUTEX(device_hotplug_lock);
2343 
2344 void lock_device_hotplug(void)
2345 {
2346 	mutex_lock(&device_hotplug_lock);
2347 }
2348 
2349 void unlock_device_hotplug(void)
2350 {
2351 	mutex_unlock(&device_hotplug_lock);
2352 }
2353 
2354 int lock_device_hotplug_sysfs(void)
2355 {
2356 	if (mutex_trylock(&device_hotplug_lock))
2357 		return 0;
2358 
2359 	/* Avoid busy looping (5 ms of sleep should do). */
2360 	msleep(5);
2361 	return restart_syscall();
2362 }
2363 
2364 #ifdef CONFIG_BLOCK
2365 static inline int device_is_not_partition(struct device *dev)
2366 {
2367 	return !(dev->type == &part_type);
2368 }
2369 #else
2370 static inline int device_is_not_partition(struct device *dev)
2371 {
2372 	return 1;
2373 }
2374 #endif
2375 
2376 static void device_platform_notify(struct device *dev)
2377 {
2378 	acpi_device_notify(dev);
2379 
2380 	software_node_notify(dev);
2381 }
2382 
2383 static void device_platform_notify_remove(struct device *dev)
2384 {
2385 	software_node_notify_remove(dev);
2386 
2387 	acpi_device_notify_remove(dev);
2388 }
2389 
2390 /**
2391  * dev_driver_string - Return a device's driver name, if at all possible
2392  * @dev: struct device to get the name of
2393  *
2394  * Will return the device's driver's name if it is bound to a device.  If
2395  * the device is not bound to a driver, it will return the name of the bus
2396  * it is attached to.  If it is not attached to a bus either, an empty
2397  * string will be returned.
2398  */
2399 const char *dev_driver_string(const struct device *dev)
2400 {
2401 	struct device_driver *drv;
2402 
2403 	/* dev->driver can change to NULL underneath us because of unbinding,
2404 	 * so be careful about accessing it.  dev->bus and dev->class should
2405 	 * never change once they are set, so they don't need special care.
2406 	 */
2407 	drv = READ_ONCE(dev->driver);
2408 	return drv ? drv->name : dev_bus_name(dev);
2409 }
2410 EXPORT_SYMBOL(dev_driver_string);
2411 
2412 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2413 
2414 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2415 			     char *buf)
2416 {
2417 	struct device_attribute *dev_attr = to_dev_attr(attr);
2418 	struct device *dev = kobj_to_dev(kobj);
2419 	ssize_t ret = -EIO;
2420 
2421 	if (dev_attr->show)
2422 		ret = dev_attr->show(dev, dev_attr, buf);
2423 	if (ret >= (ssize_t)PAGE_SIZE) {
2424 		printk("dev_attr_show: %pS returned bad count\n",
2425 				dev_attr->show);
2426 	}
2427 	return ret;
2428 }
2429 
2430 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2431 			      const char *buf, size_t count)
2432 {
2433 	struct device_attribute *dev_attr = to_dev_attr(attr);
2434 	struct device *dev = kobj_to_dev(kobj);
2435 	ssize_t ret = -EIO;
2436 
2437 	if (dev_attr->store)
2438 		ret = dev_attr->store(dev, dev_attr, buf, count);
2439 	return ret;
2440 }
2441 
2442 static const struct sysfs_ops dev_sysfs_ops = {
2443 	.show	= dev_attr_show,
2444 	.store	= dev_attr_store,
2445 };
2446 
2447 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2448 
2449 ssize_t device_store_ulong(struct device *dev,
2450 			   struct device_attribute *attr,
2451 			   const char *buf, size_t size)
2452 {
2453 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2454 	int ret;
2455 	unsigned long new;
2456 
2457 	ret = kstrtoul(buf, 0, &new);
2458 	if (ret)
2459 		return ret;
2460 	*(unsigned long *)(ea->var) = new;
2461 	/* Always return full write size even if we didn't consume all */
2462 	return size;
2463 }
2464 EXPORT_SYMBOL_GPL(device_store_ulong);
2465 
2466 ssize_t device_show_ulong(struct device *dev,
2467 			  struct device_attribute *attr,
2468 			  char *buf)
2469 {
2470 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2471 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2472 }
2473 EXPORT_SYMBOL_GPL(device_show_ulong);
2474 
2475 ssize_t device_store_int(struct device *dev,
2476 			 struct device_attribute *attr,
2477 			 const char *buf, size_t size)
2478 {
2479 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2480 	int ret;
2481 	long new;
2482 
2483 	ret = kstrtol(buf, 0, &new);
2484 	if (ret)
2485 		return ret;
2486 
2487 	if (new > INT_MAX || new < INT_MIN)
2488 		return -EINVAL;
2489 	*(int *)(ea->var) = new;
2490 	/* Always return full write size even if we didn't consume all */
2491 	return size;
2492 }
2493 EXPORT_SYMBOL_GPL(device_store_int);
2494 
2495 ssize_t device_show_int(struct device *dev,
2496 			struct device_attribute *attr,
2497 			char *buf)
2498 {
2499 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2500 
2501 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2502 }
2503 EXPORT_SYMBOL_GPL(device_show_int);
2504 
2505 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2506 			  const char *buf, size_t size)
2507 {
2508 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2509 
2510 	if (kstrtobool(buf, ea->var) < 0)
2511 		return -EINVAL;
2512 
2513 	return size;
2514 }
2515 EXPORT_SYMBOL_GPL(device_store_bool);
2516 
2517 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2518 			 char *buf)
2519 {
2520 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2521 
2522 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2523 }
2524 EXPORT_SYMBOL_GPL(device_show_bool);
2525 
2526 ssize_t device_show_string(struct device *dev,
2527 			   struct device_attribute *attr, char *buf)
2528 {
2529 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2530 
2531 	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2532 }
2533 EXPORT_SYMBOL_GPL(device_show_string);
2534 
2535 /**
2536  * device_release - free device structure.
2537  * @kobj: device's kobject.
2538  *
2539  * This is called once the reference count for the object
2540  * reaches 0. We forward the call to the device's release
2541  * method, which should handle actually freeing the structure.
2542  */
2543 static void device_release(struct kobject *kobj)
2544 {
2545 	struct device *dev = kobj_to_dev(kobj);
2546 	struct device_private *p = dev->p;
2547 
2548 	/*
2549 	 * Some platform devices are driven without driver attached
2550 	 * and managed resources may have been acquired.  Make sure
2551 	 * all resources are released.
2552 	 *
2553 	 * Drivers still can add resources into device after device
2554 	 * is deleted but alive, so release devres here to avoid
2555 	 * possible memory leak.
2556 	 */
2557 	devres_release_all(dev);
2558 
2559 	kfree(dev->dma_range_map);
2560 
2561 	if (dev->release)
2562 		dev->release(dev);
2563 	else if (dev->type && dev->type->release)
2564 		dev->type->release(dev);
2565 	else if (dev->class && dev->class->dev_release)
2566 		dev->class->dev_release(dev);
2567 	else
2568 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2569 			dev_name(dev));
2570 	kfree(p);
2571 }
2572 
2573 static const void *device_namespace(const struct kobject *kobj)
2574 {
2575 	const struct device *dev = kobj_to_dev(kobj);
2576 	const void *ns = NULL;
2577 
2578 	if (dev->class && dev->class->namespace)
2579 		ns = dev->class->namespace(dev);
2580 
2581 	return ns;
2582 }
2583 
2584 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2585 {
2586 	const struct device *dev = kobj_to_dev(kobj);
2587 
2588 	if (dev->class && dev->class->get_ownership)
2589 		dev->class->get_ownership(dev, uid, gid);
2590 }
2591 
2592 static const struct kobj_type device_ktype = {
2593 	.release	= device_release,
2594 	.sysfs_ops	= &dev_sysfs_ops,
2595 	.namespace	= device_namespace,
2596 	.get_ownership	= device_get_ownership,
2597 };
2598 
2599 
2600 static int dev_uevent_filter(const struct kobject *kobj)
2601 {
2602 	const struct kobj_type *ktype = get_ktype(kobj);
2603 
2604 	if (ktype == &device_ktype) {
2605 		const struct device *dev = kobj_to_dev(kobj);
2606 		if (dev->bus)
2607 			return 1;
2608 		if (dev->class)
2609 			return 1;
2610 	}
2611 	return 0;
2612 }
2613 
2614 static const char *dev_uevent_name(const struct kobject *kobj)
2615 {
2616 	const struct device *dev = kobj_to_dev(kobj);
2617 
2618 	if (dev->bus)
2619 		return dev->bus->name;
2620 	if (dev->class)
2621 		return dev->class->name;
2622 	return NULL;
2623 }
2624 
2625 /*
2626  * Try filling "DRIVER=<name>" uevent variable for a device. Because this
2627  * function may race with binding and unbinding the device from a driver,
2628  * we need to be careful. Binding is generally safe, at worst we miss the
2629  * fact that the device is already bound to a driver (but the driver
2630  * information that is delivered through uevents is best-effort, it may
2631  * become obsolete as soon as it is generated anyways). Unbinding is more
2632  * risky as driver pointer is transitioning to NULL, so READ_ONCE() should
2633  * be used to make sure we are dealing with the same pointer, and to
2634  * ensure that driver structure is not going to disappear from under us
2635  * we take bus' drivers klist lock. The assumption that only registered
2636  * driver can be bound to a device, and to unregister a driver bus code
2637  * will take the same lock.
2638  */
2639 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env)
2640 {
2641 	struct subsys_private *sp = bus_to_subsys(dev->bus);
2642 
2643 	if (sp) {
2644 		scoped_guard(spinlock, &sp->klist_drivers.k_lock) {
2645 			struct device_driver *drv = READ_ONCE(dev->driver);
2646 			if (drv)
2647 				add_uevent_var(env, "DRIVER=%s", drv->name);
2648 		}
2649 
2650 		subsys_put(sp);
2651 	}
2652 }
2653 
2654 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2655 {
2656 	const struct device *dev = kobj_to_dev(kobj);
2657 	int retval = 0;
2658 
2659 	/* add device node properties if present */
2660 	if (MAJOR(dev->devt)) {
2661 		const char *tmp;
2662 		const char *name;
2663 		umode_t mode = 0;
2664 		kuid_t uid = GLOBAL_ROOT_UID;
2665 		kgid_t gid = GLOBAL_ROOT_GID;
2666 
2667 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2668 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2669 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2670 		if (name) {
2671 			add_uevent_var(env, "DEVNAME=%s", name);
2672 			if (mode)
2673 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2674 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2675 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2676 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2677 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2678 			kfree(tmp);
2679 		}
2680 	}
2681 
2682 	if (dev->type && dev->type->name)
2683 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2684 
2685 	/* Add "DRIVER=%s" variable if the device is bound to a driver */
2686 	dev_driver_uevent(dev, env);
2687 
2688 	/* Add common DT information about the device */
2689 	of_device_uevent(dev, env);
2690 
2691 	/* have the bus specific function add its stuff */
2692 	if (dev->bus && dev->bus->uevent) {
2693 		retval = dev->bus->uevent(dev, env);
2694 		if (retval)
2695 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2696 				 dev_name(dev), __func__, retval);
2697 	}
2698 
2699 	/* have the class specific function add its stuff */
2700 	if (dev->class && dev->class->dev_uevent) {
2701 		retval = dev->class->dev_uevent(dev, env);
2702 		if (retval)
2703 			pr_debug("device: '%s': %s: class uevent() "
2704 				 "returned %d\n", dev_name(dev),
2705 				 __func__, retval);
2706 	}
2707 
2708 	/* have the device type specific function add its stuff */
2709 	if (dev->type && dev->type->uevent) {
2710 		retval = dev->type->uevent(dev, env);
2711 		if (retval)
2712 			pr_debug("device: '%s': %s: dev_type uevent() "
2713 				 "returned %d\n", dev_name(dev),
2714 				 __func__, retval);
2715 	}
2716 
2717 	return retval;
2718 }
2719 
2720 static const struct kset_uevent_ops device_uevent_ops = {
2721 	.filter =	dev_uevent_filter,
2722 	.name =		dev_uevent_name,
2723 	.uevent =	dev_uevent,
2724 };
2725 
2726 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2727 			   char *buf)
2728 {
2729 	struct kobject *top_kobj;
2730 	struct kset *kset;
2731 	struct kobj_uevent_env *env = NULL;
2732 	int i;
2733 	int len = 0;
2734 	int retval;
2735 
2736 	/* search the kset, the device belongs to */
2737 	top_kobj = &dev->kobj;
2738 	while (!top_kobj->kset && top_kobj->parent)
2739 		top_kobj = top_kobj->parent;
2740 	if (!top_kobj->kset)
2741 		goto out;
2742 
2743 	kset = top_kobj->kset;
2744 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2745 		goto out;
2746 
2747 	/* respect filter */
2748 	if (kset->uevent_ops && kset->uevent_ops->filter)
2749 		if (!kset->uevent_ops->filter(&dev->kobj))
2750 			goto out;
2751 
2752 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2753 	if (!env)
2754 		return -ENOMEM;
2755 
2756 	/* let the kset specific function add its keys */
2757 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2758 	if (retval)
2759 		goto out;
2760 
2761 	/* copy keys to file */
2762 	for (i = 0; i < env->envp_idx; i++)
2763 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2764 out:
2765 	kfree(env);
2766 	return len;
2767 }
2768 
2769 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2770 			    const char *buf, size_t count)
2771 {
2772 	int rc;
2773 
2774 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2775 
2776 	if (rc) {
2777 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2778 		return rc;
2779 	}
2780 
2781 	return count;
2782 }
2783 static DEVICE_ATTR_RW(uevent);
2784 
2785 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2786 			   char *buf)
2787 {
2788 	bool val;
2789 
2790 	device_lock(dev);
2791 	val = !dev->offline;
2792 	device_unlock(dev);
2793 	return sysfs_emit(buf, "%u\n", val);
2794 }
2795 
2796 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2797 			    const char *buf, size_t count)
2798 {
2799 	bool val;
2800 	int ret;
2801 
2802 	ret = kstrtobool(buf, &val);
2803 	if (ret < 0)
2804 		return ret;
2805 
2806 	ret = lock_device_hotplug_sysfs();
2807 	if (ret)
2808 		return ret;
2809 
2810 	ret = val ? device_online(dev) : device_offline(dev);
2811 	unlock_device_hotplug();
2812 	return ret < 0 ? ret : count;
2813 }
2814 static DEVICE_ATTR_RW(online);
2815 
2816 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2817 			      char *buf)
2818 {
2819 	const char *loc;
2820 
2821 	switch (dev->removable) {
2822 	case DEVICE_REMOVABLE:
2823 		loc = "removable";
2824 		break;
2825 	case DEVICE_FIXED:
2826 		loc = "fixed";
2827 		break;
2828 	default:
2829 		loc = "unknown";
2830 	}
2831 	return sysfs_emit(buf, "%s\n", loc);
2832 }
2833 static DEVICE_ATTR_RO(removable);
2834 
2835 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2836 {
2837 	return sysfs_create_groups(&dev->kobj, groups);
2838 }
2839 EXPORT_SYMBOL_GPL(device_add_groups);
2840 
2841 void device_remove_groups(struct device *dev,
2842 			  const struct attribute_group **groups)
2843 {
2844 	sysfs_remove_groups(&dev->kobj, groups);
2845 }
2846 EXPORT_SYMBOL_GPL(device_remove_groups);
2847 
2848 union device_attr_group_devres {
2849 	const struct attribute_group *group;
2850 	const struct attribute_group **groups;
2851 };
2852 
2853 static void devm_attr_group_remove(struct device *dev, void *res)
2854 {
2855 	union device_attr_group_devres *devres = res;
2856 	const struct attribute_group *group = devres->group;
2857 
2858 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2859 	sysfs_remove_group(&dev->kobj, group);
2860 }
2861 
2862 /**
2863  * devm_device_add_group - given a device, create a managed attribute group
2864  * @dev:	The device to create the group for
2865  * @grp:	The attribute group to create
2866  *
2867  * This function creates a group for the first time.  It will explicitly
2868  * warn and error if any of the attribute files being created already exist.
2869  *
2870  * Returns 0 on success or error code on failure.
2871  */
2872 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2873 {
2874 	union device_attr_group_devres *devres;
2875 	int error;
2876 
2877 	devres = devres_alloc(devm_attr_group_remove,
2878 			      sizeof(*devres), GFP_KERNEL);
2879 	if (!devres)
2880 		return -ENOMEM;
2881 
2882 	error = sysfs_create_group(&dev->kobj, grp);
2883 	if (error) {
2884 		devres_free(devres);
2885 		return error;
2886 	}
2887 
2888 	devres->group = grp;
2889 	devres_add(dev, devres);
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL_GPL(devm_device_add_group);
2893 
2894 static int device_add_attrs(struct device *dev)
2895 {
2896 	const struct class *class = dev->class;
2897 	const struct device_type *type = dev->type;
2898 	int error;
2899 
2900 	if (class) {
2901 		error = device_add_groups(dev, class->dev_groups);
2902 		if (error)
2903 			return error;
2904 	}
2905 
2906 	if (type) {
2907 		error = device_add_groups(dev, type->groups);
2908 		if (error)
2909 			goto err_remove_class_groups;
2910 	}
2911 
2912 	error = device_add_groups(dev, dev->groups);
2913 	if (error)
2914 		goto err_remove_type_groups;
2915 
2916 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2917 		error = device_create_file(dev, &dev_attr_online);
2918 		if (error)
2919 			goto err_remove_dev_groups;
2920 	}
2921 
2922 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2923 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2924 		if (error)
2925 			goto err_remove_dev_online;
2926 	}
2927 
2928 	if (dev_removable_is_valid(dev)) {
2929 		error = device_create_file(dev, &dev_attr_removable);
2930 		if (error)
2931 			goto err_remove_dev_waiting_for_supplier;
2932 	}
2933 
2934 	if (dev_add_physical_location(dev)) {
2935 		error = device_add_group(dev,
2936 			&dev_attr_physical_location_group);
2937 		if (error)
2938 			goto err_remove_dev_removable;
2939 	}
2940 
2941 	return 0;
2942 
2943  err_remove_dev_removable:
2944 	device_remove_file(dev, &dev_attr_removable);
2945  err_remove_dev_waiting_for_supplier:
2946 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2947  err_remove_dev_online:
2948 	device_remove_file(dev, &dev_attr_online);
2949  err_remove_dev_groups:
2950 	device_remove_groups(dev, dev->groups);
2951  err_remove_type_groups:
2952 	if (type)
2953 		device_remove_groups(dev, type->groups);
2954  err_remove_class_groups:
2955 	if (class)
2956 		device_remove_groups(dev, class->dev_groups);
2957 
2958 	return error;
2959 }
2960 
2961 static void device_remove_attrs(struct device *dev)
2962 {
2963 	const struct class *class = dev->class;
2964 	const struct device_type *type = dev->type;
2965 
2966 	if (dev->physical_location) {
2967 		device_remove_group(dev, &dev_attr_physical_location_group);
2968 		kfree(dev->physical_location);
2969 	}
2970 
2971 	device_remove_file(dev, &dev_attr_removable);
2972 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2973 	device_remove_file(dev, &dev_attr_online);
2974 	device_remove_groups(dev, dev->groups);
2975 
2976 	if (type)
2977 		device_remove_groups(dev, type->groups);
2978 
2979 	if (class)
2980 		device_remove_groups(dev, class->dev_groups);
2981 }
2982 
2983 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2984 			char *buf)
2985 {
2986 	return print_dev_t(buf, dev->devt);
2987 }
2988 static DEVICE_ATTR_RO(dev);
2989 
2990 /* /sys/devices/ */
2991 struct kset *devices_kset;
2992 
2993 /**
2994  * devices_kset_move_before - Move device in the devices_kset's list.
2995  * @deva: Device to move.
2996  * @devb: Device @deva should come before.
2997  */
2998 static void devices_kset_move_before(struct device *deva, struct device *devb)
2999 {
3000 	if (!devices_kset)
3001 		return;
3002 	pr_debug("devices_kset: Moving %s before %s\n",
3003 		 dev_name(deva), dev_name(devb));
3004 	spin_lock(&devices_kset->list_lock);
3005 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3006 	spin_unlock(&devices_kset->list_lock);
3007 }
3008 
3009 /**
3010  * devices_kset_move_after - Move device in the devices_kset's list.
3011  * @deva: Device to move
3012  * @devb: Device @deva should come after.
3013  */
3014 static void devices_kset_move_after(struct device *deva, struct device *devb)
3015 {
3016 	if (!devices_kset)
3017 		return;
3018 	pr_debug("devices_kset: Moving %s after %s\n",
3019 		 dev_name(deva), dev_name(devb));
3020 	spin_lock(&devices_kset->list_lock);
3021 	list_move(&deva->kobj.entry, &devb->kobj.entry);
3022 	spin_unlock(&devices_kset->list_lock);
3023 }
3024 
3025 /**
3026  * devices_kset_move_last - move the device to the end of devices_kset's list.
3027  * @dev: device to move
3028  */
3029 void devices_kset_move_last(struct device *dev)
3030 {
3031 	if (!devices_kset)
3032 		return;
3033 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3034 	spin_lock(&devices_kset->list_lock);
3035 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3036 	spin_unlock(&devices_kset->list_lock);
3037 }
3038 
3039 /**
3040  * device_create_file - create sysfs attribute file for device.
3041  * @dev: device.
3042  * @attr: device attribute descriptor.
3043  */
3044 int device_create_file(struct device *dev,
3045 		       const struct device_attribute *attr)
3046 {
3047 	int error = 0;
3048 
3049 	if (dev) {
3050 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3051 			"Attribute %s: write permission without 'store'\n",
3052 			attr->attr.name);
3053 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3054 			"Attribute %s: read permission without 'show'\n",
3055 			attr->attr.name);
3056 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3057 	}
3058 
3059 	return error;
3060 }
3061 EXPORT_SYMBOL_GPL(device_create_file);
3062 
3063 /**
3064  * device_remove_file - remove sysfs attribute file.
3065  * @dev: device.
3066  * @attr: device attribute descriptor.
3067  */
3068 void device_remove_file(struct device *dev,
3069 			const struct device_attribute *attr)
3070 {
3071 	if (dev)
3072 		sysfs_remove_file(&dev->kobj, &attr->attr);
3073 }
3074 EXPORT_SYMBOL_GPL(device_remove_file);
3075 
3076 /**
3077  * device_remove_file_self - remove sysfs attribute file from its own method.
3078  * @dev: device.
3079  * @attr: device attribute descriptor.
3080  *
3081  * See kernfs_remove_self() for details.
3082  */
3083 bool device_remove_file_self(struct device *dev,
3084 			     const struct device_attribute *attr)
3085 {
3086 	if (dev)
3087 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3088 	else
3089 		return false;
3090 }
3091 EXPORT_SYMBOL_GPL(device_remove_file_self);
3092 
3093 /**
3094  * device_create_bin_file - create sysfs binary attribute file for device.
3095  * @dev: device.
3096  * @attr: device binary attribute descriptor.
3097  */
3098 int device_create_bin_file(struct device *dev,
3099 			   const struct bin_attribute *attr)
3100 {
3101 	int error = -EINVAL;
3102 	if (dev)
3103 		error = sysfs_create_bin_file(&dev->kobj, attr);
3104 	return error;
3105 }
3106 EXPORT_SYMBOL_GPL(device_create_bin_file);
3107 
3108 /**
3109  * device_remove_bin_file - remove sysfs binary attribute file
3110  * @dev: device.
3111  * @attr: device binary attribute descriptor.
3112  */
3113 void device_remove_bin_file(struct device *dev,
3114 			    const struct bin_attribute *attr)
3115 {
3116 	if (dev)
3117 		sysfs_remove_bin_file(&dev->kobj, attr);
3118 }
3119 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3120 
3121 static void klist_children_get(struct klist_node *n)
3122 {
3123 	struct device_private *p = to_device_private_parent(n);
3124 	struct device *dev = p->device;
3125 
3126 	get_device(dev);
3127 }
3128 
3129 static void klist_children_put(struct klist_node *n)
3130 {
3131 	struct device_private *p = to_device_private_parent(n);
3132 	struct device *dev = p->device;
3133 
3134 	put_device(dev);
3135 }
3136 
3137 /**
3138  * device_initialize - init device structure.
3139  * @dev: device.
3140  *
3141  * This prepares the device for use by other layers by initializing
3142  * its fields.
3143  * It is the first half of device_register(), if called by
3144  * that function, though it can also be called separately, so one
3145  * may use @dev's fields. In particular, get_device()/put_device()
3146  * may be used for reference counting of @dev after calling this
3147  * function.
3148  *
3149  * All fields in @dev must be initialized by the caller to 0, except
3150  * for those explicitly set to some other value.  The simplest
3151  * approach is to use kzalloc() to allocate the structure containing
3152  * @dev.
3153  *
3154  * NOTE: Use put_device() to give up your reference instead of freeing
3155  * @dev directly once you have called this function.
3156  */
3157 void device_initialize(struct device *dev)
3158 {
3159 	dev->kobj.kset = devices_kset;
3160 	kobject_init(&dev->kobj, &device_ktype);
3161 	INIT_LIST_HEAD(&dev->dma_pools);
3162 	mutex_init(&dev->mutex);
3163 	lockdep_set_novalidate_class(&dev->mutex);
3164 	spin_lock_init(&dev->devres_lock);
3165 	INIT_LIST_HEAD(&dev->devres_head);
3166 	device_pm_init(dev);
3167 	set_dev_node(dev, NUMA_NO_NODE);
3168 	INIT_LIST_HEAD(&dev->links.consumers);
3169 	INIT_LIST_HEAD(&dev->links.suppliers);
3170 	INIT_LIST_HEAD(&dev->links.defer_sync);
3171 	dev->links.status = DL_DEV_NO_DRIVER;
3172 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3173     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3174     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3175 	dev->dma_coherent = dma_default_coherent;
3176 #endif
3177 	swiotlb_dev_init(dev);
3178 }
3179 EXPORT_SYMBOL_GPL(device_initialize);
3180 
3181 struct kobject *virtual_device_parent(void)
3182 {
3183 	static struct kobject *virtual_dir = NULL;
3184 
3185 	if (!virtual_dir)
3186 		virtual_dir = kobject_create_and_add("virtual",
3187 						     &devices_kset->kobj);
3188 
3189 	return virtual_dir;
3190 }
3191 
3192 struct class_dir {
3193 	struct kobject kobj;
3194 	const struct class *class;
3195 };
3196 
3197 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3198 
3199 static void class_dir_release(struct kobject *kobj)
3200 {
3201 	struct class_dir *dir = to_class_dir(kobj);
3202 	kfree(dir);
3203 }
3204 
3205 static const
3206 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3207 {
3208 	const struct class_dir *dir = to_class_dir(kobj);
3209 	return dir->class->ns_type;
3210 }
3211 
3212 static const struct kobj_type class_dir_ktype = {
3213 	.release	= class_dir_release,
3214 	.sysfs_ops	= &kobj_sysfs_ops,
3215 	.child_ns_type	= class_dir_child_ns_type
3216 };
3217 
3218 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3219 						struct kobject *parent_kobj)
3220 {
3221 	struct class_dir *dir;
3222 	int retval;
3223 
3224 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3225 	if (!dir)
3226 		return ERR_PTR(-ENOMEM);
3227 
3228 	dir->class = sp->class;
3229 	kobject_init(&dir->kobj, &class_dir_ktype);
3230 
3231 	dir->kobj.kset = &sp->glue_dirs;
3232 
3233 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3234 	if (retval < 0) {
3235 		kobject_put(&dir->kobj);
3236 		return ERR_PTR(retval);
3237 	}
3238 	return &dir->kobj;
3239 }
3240 
3241 static DEFINE_MUTEX(gdp_mutex);
3242 
3243 static struct kobject *get_device_parent(struct device *dev,
3244 					 struct device *parent)
3245 {
3246 	struct subsys_private *sp = class_to_subsys(dev->class);
3247 	struct kobject *kobj = NULL;
3248 
3249 	if (sp) {
3250 		struct kobject *parent_kobj;
3251 		struct kobject *k;
3252 
3253 		/*
3254 		 * If we have no parent, we live in "virtual".
3255 		 * Class-devices with a non class-device as parent, live
3256 		 * in a "glue" directory to prevent namespace collisions.
3257 		 */
3258 		if (parent == NULL)
3259 			parent_kobj = virtual_device_parent();
3260 		else if (parent->class && !dev->class->ns_type) {
3261 			subsys_put(sp);
3262 			return &parent->kobj;
3263 		} else {
3264 			parent_kobj = &parent->kobj;
3265 		}
3266 
3267 		mutex_lock(&gdp_mutex);
3268 
3269 		/* find our class-directory at the parent and reference it */
3270 		spin_lock(&sp->glue_dirs.list_lock);
3271 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3272 			if (k->parent == parent_kobj) {
3273 				kobj = kobject_get(k);
3274 				break;
3275 			}
3276 		spin_unlock(&sp->glue_dirs.list_lock);
3277 		if (kobj) {
3278 			mutex_unlock(&gdp_mutex);
3279 			subsys_put(sp);
3280 			return kobj;
3281 		}
3282 
3283 		/* or create a new class-directory at the parent device */
3284 		k = class_dir_create_and_add(sp, parent_kobj);
3285 		/* do not emit an uevent for this simple "glue" directory */
3286 		mutex_unlock(&gdp_mutex);
3287 		subsys_put(sp);
3288 		return k;
3289 	}
3290 
3291 	/* subsystems can specify a default root directory for their devices */
3292 	if (!parent && dev->bus) {
3293 		struct device *dev_root = bus_get_dev_root(dev->bus);
3294 
3295 		if (dev_root) {
3296 			kobj = &dev_root->kobj;
3297 			put_device(dev_root);
3298 			return kobj;
3299 		}
3300 	}
3301 
3302 	if (parent)
3303 		return &parent->kobj;
3304 	return NULL;
3305 }
3306 
3307 static inline bool live_in_glue_dir(struct kobject *kobj,
3308 				    struct device *dev)
3309 {
3310 	struct subsys_private *sp;
3311 	bool retval;
3312 
3313 	if (!kobj || !dev->class)
3314 		return false;
3315 
3316 	sp = class_to_subsys(dev->class);
3317 	if (!sp)
3318 		return false;
3319 
3320 	if (kobj->kset == &sp->glue_dirs)
3321 		retval = true;
3322 	else
3323 		retval = false;
3324 
3325 	subsys_put(sp);
3326 	return retval;
3327 }
3328 
3329 static inline struct kobject *get_glue_dir(struct device *dev)
3330 {
3331 	return dev->kobj.parent;
3332 }
3333 
3334 /**
3335  * kobject_has_children - Returns whether a kobject has children.
3336  * @kobj: the object to test
3337  *
3338  * This will return whether a kobject has other kobjects as children.
3339  *
3340  * It does NOT account for the presence of attribute files, only sub
3341  * directories. It also assumes there is no concurrent addition or
3342  * removal of such children, and thus relies on external locking.
3343  */
3344 static inline bool kobject_has_children(struct kobject *kobj)
3345 {
3346 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3347 
3348 	return kobj->sd && kobj->sd->dir.subdirs;
3349 }
3350 
3351 /*
3352  * make sure cleaning up dir as the last step, we need to make
3353  * sure .release handler of kobject is run with holding the
3354  * global lock
3355  */
3356 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3357 {
3358 	unsigned int ref;
3359 
3360 	/* see if we live in a "glue" directory */
3361 	if (!live_in_glue_dir(glue_dir, dev))
3362 		return;
3363 
3364 	mutex_lock(&gdp_mutex);
3365 	/**
3366 	 * There is a race condition between removing glue directory
3367 	 * and adding a new device under the glue directory.
3368 	 *
3369 	 * CPU1:                                         CPU2:
3370 	 *
3371 	 * device_add()
3372 	 *   get_device_parent()
3373 	 *     class_dir_create_and_add()
3374 	 *       kobject_add_internal()
3375 	 *         create_dir()    // create glue_dir
3376 	 *
3377 	 *                                               device_add()
3378 	 *                                                 get_device_parent()
3379 	 *                                                   kobject_get() // get glue_dir
3380 	 *
3381 	 * device_del()
3382 	 *   cleanup_glue_dir()
3383 	 *     kobject_del(glue_dir)
3384 	 *
3385 	 *                                               kobject_add()
3386 	 *                                                 kobject_add_internal()
3387 	 *                                                   create_dir() // in glue_dir
3388 	 *                                                     sysfs_create_dir_ns()
3389 	 *                                                       kernfs_create_dir_ns(sd)
3390 	 *
3391 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3392 	 *       sysfs_put()        // free glue_dir->sd
3393 	 *
3394 	 *                                                         // sd is freed
3395 	 *                                                         kernfs_new_node(sd)
3396 	 *                                                           kernfs_get(glue_dir)
3397 	 *                                                           kernfs_add_one()
3398 	 *                                                           kernfs_put()
3399 	 *
3400 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3401 	 * a new device under glue dir, the glue_dir kobject reference count
3402 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3403 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3404 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3405 	 *
3406 	 * Then the CPU2 will see a stale "empty" but still potentially used
3407 	 * glue dir around in kernfs_new_node().
3408 	 *
3409 	 * In order to avoid this happening, we also should make sure that
3410 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3411 	 * for glue_dir kobj is 1.
3412 	 */
3413 	ref = kref_read(&glue_dir->kref);
3414 	if (!kobject_has_children(glue_dir) && !--ref)
3415 		kobject_del(glue_dir);
3416 	kobject_put(glue_dir);
3417 	mutex_unlock(&gdp_mutex);
3418 }
3419 
3420 static int device_add_class_symlinks(struct device *dev)
3421 {
3422 	struct device_node *of_node = dev_of_node(dev);
3423 	struct subsys_private *sp;
3424 	int error;
3425 
3426 	if (of_node) {
3427 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3428 		if (error)
3429 			dev_warn(dev, "Error %d creating of_node link\n",error);
3430 		/* An error here doesn't warrant bringing down the device */
3431 	}
3432 
3433 	sp = class_to_subsys(dev->class);
3434 	if (!sp)
3435 		return 0;
3436 
3437 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3438 	if (error)
3439 		goto out_devnode;
3440 
3441 	if (dev->parent && device_is_not_partition(dev)) {
3442 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3443 					  "device");
3444 		if (error)
3445 			goto out_subsys;
3446 	}
3447 
3448 	/* link in the class directory pointing to the device */
3449 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3450 	if (error)
3451 		goto out_device;
3452 	goto exit;
3453 
3454 out_device:
3455 	sysfs_remove_link(&dev->kobj, "device");
3456 out_subsys:
3457 	sysfs_remove_link(&dev->kobj, "subsystem");
3458 out_devnode:
3459 	sysfs_remove_link(&dev->kobj, "of_node");
3460 exit:
3461 	subsys_put(sp);
3462 	return error;
3463 }
3464 
3465 static void device_remove_class_symlinks(struct device *dev)
3466 {
3467 	struct subsys_private *sp = class_to_subsys(dev->class);
3468 
3469 	if (dev_of_node(dev))
3470 		sysfs_remove_link(&dev->kobj, "of_node");
3471 
3472 	if (!sp)
3473 		return;
3474 
3475 	if (dev->parent && device_is_not_partition(dev))
3476 		sysfs_remove_link(&dev->kobj, "device");
3477 	sysfs_remove_link(&dev->kobj, "subsystem");
3478 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3479 	subsys_put(sp);
3480 }
3481 
3482 /**
3483  * dev_set_name - set a device name
3484  * @dev: device
3485  * @fmt: format string for the device's name
3486  */
3487 int dev_set_name(struct device *dev, const char *fmt, ...)
3488 {
3489 	va_list vargs;
3490 	int err;
3491 
3492 	va_start(vargs, fmt);
3493 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3494 	va_end(vargs);
3495 	return err;
3496 }
3497 EXPORT_SYMBOL_GPL(dev_set_name);
3498 
3499 /* select a /sys/dev/ directory for the device */
3500 static struct kobject *device_to_dev_kobj(struct device *dev)
3501 {
3502 	if (is_blockdev(dev))
3503 		return sysfs_dev_block_kobj;
3504 	else
3505 		return sysfs_dev_char_kobj;
3506 }
3507 
3508 static int device_create_sys_dev_entry(struct device *dev)
3509 {
3510 	struct kobject *kobj = device_to_dev_kobj(dev);
3511 	int error = 0;
3512 	char devt_str[15];
3513 
3514 	if (kobj) {
3515 		format_dev_t(devt_str, dev->devt);
3516 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3517 	}
3518 
3519 	return error;
3520 }
3521 
3522 static void device_remove_sys_dev_entry(struct device *dev)
3523 {
3524 	struct kobject *kobj = device_to_dev_kobj(dev);
3525 	char devt_str[15];
3526 
3527 	if (kobj) {
3528 		format_dev_t(devt_str, dev->devt);
3529 		sysfs_remove_link(kobj, devt_str);
3530 	}
3531 }
3532 
3533 static int device_private_init(struct device *dev)
3534 {
3535 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3536 	if (!dev->p)
3537 		return -ENOMEM;
3538 	dev->p->device = dev;
3539 	klist_init(&dev->p->klist_children, klist_children_get,
3540 		   klist_children_put);
3541 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3542 	return 0;
3543 }
3544 
3545 /**
3546  * device_add - add device to device hierarchy.
3547  * @dev: device.
3548  *
3549  * This is part 2 of device_register(), though may be called
3550  * separately _iff_ device_initialize() has been called separately.
3551  *
3552  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3553  * to the global and sibling lists for the device, then
3554  * adds it to the other relevant subsystems of the driver model.
3555  *
3556  * Do not call this routine or device_register() more than once for
3557  * any device structure.  The driver model core is not designed to work
3558  * with devices that get unregistered and then spring back to life.
3559  * (Among other things, it's very hard to guarantee that all references
3560  * to the previous incarnation of @dev have been dropped.)  Allocate
3561  * and register a fresh new struct device instead.
3562  *
3563  * NOTE: _Never_ directly free @dev after calling this function, even
3564  * if it returned an error! Always use put_device() to give up your
3565  * reference instead.
3566  *
3567  * Rule of thumb is: if device_add() succeeds, you should call
3568  * device_del() when you want to get rid of it. If device_add() has
3569  * *not* succeeded, use *only* put_device() to drop the reference
3570  * count.
3571  */
3572 int device_add(struct device *dev)
3573 {
3574 	struct subsys_private *sp;
3575 	struct device *parent;
3576 	struct kobject *kobj;
3577 	struct class_interface *class_intf;
3578 	int error = -EINVAL;
3579 	struct kobject *glue_dir = NULL;
3580 
3581 	dev = get_device(dev);
3582 	if (!dev)
3583 		goto done;
3584 
3585 	if (!dev->p) {
3586 		error = device_private_init(dev);
3587 		if (error)
3588 			goto done;
3589 	}
3590 
3591 	/*
3592 	 * for statically allocated devices, which should all be converted
3593 	 * some day, we need to initialize the name. We prevent reading back
3594 	 * the name, and force the use of dev_name()
3595 	 */
3596 	if (dev->init_name) {
3597 		error = dev_set_name(dev, "%s", dev->init_name);
3598 		dev->init_name = NULL;
3599 	}
3600 
3601 	if (dev_name(dev))
3602 		error = 0;
3603 	/* subsystems can specify simple device enumeration */
3604 	else if (dev->bus && dev->bus->dev_name)
3605 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3606 	else
3607 		error = -EINVAL;
3608 	if (error)
3609 		goto name_error;
3610 
3611 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3612 
3613 	parent = get_device(dev->parent);
3614 	kobj = get_device_parent(dev, parent);
3615 	if (IS_ERR(kobj)) {
3616 		error = PTR_ERR(kobj);
3617 		goto parent_error;
3618 	}
3619 	if (kobj)
3620 		dev->kobj.parent = kobj;
3621 
3622 	/* use parent numa_node */
3623 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3624 		set_dev_node(dev, dev_to_node(parent));
3625 
3626 	/* first, register with generic layer. */
3627 	/* we require the name to be set before, and pass NULL */
3628 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3629 	if (error) {
3630 		glue_dir = kobj;
3631 		goto Error;
3632 	}
3633 
3634 	/* notify platform of device entry */
3635 	device_platform_notify(dev);
3636 
3637 	error = device_create_file(dev, &dev_attr_uevent);
3638 	if (error)
3639 		goto attrError;
3640 
3641 	error = device_add_class_symlinks(dev);
3642 	if (error)
3643 		goto SymlinkError;
3644 	error = device_add_attrs(dev);
3645 	if (error)
3646 		goto AttrsError;
3647 	error = bus_add_device(dev);
3648 	if (error)
3649 		goto BusError;
3650 	error = dpm_sysfs_add(dev);
3651 	if (error)
3652 		goto DPMError;
3653 	device_pm_add(dev);
3654 
3655 	if (MAJOR(dev->devt)) {
3656 		error = device_create_file(dev, &dev_attr_dev);
3657 		if (error)
3658 			goto DevAttrError;
3659 
3660 		error = device_create_sys_dev_entry(dev);
3661 		if (error)
3662 			goto SysEntryError;
3663 
3664 		devtmpfs_create_node(dev);
3665 	}
3666 
3667 	/* Notify clients of device addition.  This call must come
3668 	 * after dpm_sysfs_add() and before kobject_uevent().
3669 	 */
3670 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3671 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3672 
3673 	/*
3674 	 * Check if any of the other devices (consumers) have been waiting for
3675 	 * this device (supplier) to be added so that they can create a device
3676 	 * link to it.
3677 	 *
3678 	 * This needs to happen after device_pm_add() because device_link_add()
3679 	 * requires the supplier be registered before it's called.
3680 	 *
3681 	 * But this also needs to happen before bus_probe_device() to make sure
3682 	 * waiting consumers can link to it before the driver is bound to the
3683 	 * device and the driver sync_state callback is called for this device.
3684 	 */
3685 	if (dev->fwnode && !dev->fwnode->dev) {
3686 		dev->fwnode->dev = dev;
3687 		fw_devlink_link_device(dev);
3688 	}
3689 
3690 	bus_probe_device(dev);
3691 
3692 	/*
3693 	 * If all driver registration is done and a newly added device doesn't
3694 	 * match with any driver, don't block its consumers from probing in
3695 	 * case the consumer device is able to operate without this supplier.
3696 	 */
3697 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3698 		fw_devlink_unblock_consumers(dev);
3699 
3700 	if (parent)
3701 		klist_add_tail(&dev->p->knode_parent,
3702 			       &parent->p->klist_children);
3703 
3704 	sp = class_to_subsys(dev->class);
3705 	if (sp) {
3706 		mutex_lock(&sp->mutex);
3707 		/* tie the class to the device */
3708 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3709 
3710 		/* notify any interfaces that the device is here */
3711 		list_for_each_entry(class_intf, &sp->interfaces, node)
3712 			if (class_intf->add_dev)
3713 				class_intf->add_dev(dev);
3714 		mutex_unlock(&sp->mutex);
3715 		subsys_put(sp);
3716 	}
3717 done:
3718 	put_device(dev);
3719 	return error;
3720  SysEntryError:
3721 	if (MAJOR(dev->devt))
3722 		device_remove_file(dev, &dev_attr_dev);
3723  DevAttrError:
3724 	device_pm_remove(dev);
3725 	dpm_sysfs_remove(dev);
3726  DPMError:
3727 	device_set_driver(dev, NULL);
3728 	bus_remove_device(dev);
3729  BusError:
3730 	device_remove_attrs(dev);
3731  AttrsError:
3732 	device_remove_class_symlinks(dev);
3733  SymlinkError:
3734 	device_remove_file(dev, &dev_attr_uevent);
3735  attrError:
3736 	device_platform_notify_remove(dev);
3737 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3738 	glue_dir = get_glue_dir(dev);
3739 	kobject_del(&dev->kobj);
3740  Error:
3741 	cleanup_glue_dir(dev, glue_dir);
3742 parent_error:
3743 	put_device(parent);
3744 name_error:
3745 	kfree(dev->p);
3746 	dev->p = NULL;
3747 	goto done;
3748 }
3749 EXPORT_SYMBOL_GPL(device_add);
3750 
3751 /**
3752  * device_register - register a device with the system.
3753  * @dev: pointer to the device structure
3754  *
3755  * This happens in two clean steps - initialize the device
3756  * and add it to the system. The two steps can be called
3757  * separately, but this is the easiest and most common.
3758  * I.e. you should only call the two helpers separately if
3759  * have a clearly defined need to use and refcount the device
3760  * before it is added to the hierarchy.
3761  *
3762  * For more information, see the kerneldoc for device_initialize()
3763  * and device_add().
3764  *
3765  * NOTE: _Never_ directly free @dev after calling this function, even
3766  * if it returned an error! Always use put_device() to give up the
3767  * reference initialized in this function instead.
3768  */
3769 int device_register(struct device *dev)
3770 {
3771 	device_initialize(dev);
3772 	return device_add(dev);
3773 }
3774 EXPORT_SYMBOL_GPL(device_register);
3775 
3776 /**
3777  * get_device - increment reference count for device.
3778  * @dev: device.
3779  *
3780  * This simply forwards the call to kobject_get(), though
3781  * we do take care to provide for the case that we get a NULL
3782  * pointer passed in.
3783  */
3784 struct device *get_device(struct device *dev)
3785 {
3786 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3787 }
3788 EXPORT_SYMBOL_GPL(get_device);
3789 
3790 /**
3791  * put_device - decrement reference count.
3792  * @dev: device in question.
3793  */
3794 void put_device(struct device *dev)
3795 {
3796 	/* might_sleep(); */
3797 	if (dev)
3798 		kobject_put(&dev->kobj);
3799 }
3800 EXPORT_SYMBOL_GPL(put_device);
3801 
3802 bool kill_device(struct device *dev)
3803 {
3804 	/*
3805 	 * Require the device lock and set the "dead" flag to guarantee that
3806 	 * the update behavior is consistent with the other bitfields near
3807 	 * it and that we cannot have an asynchronous probe routine trying
3808 	 * to run while we are tearing out the bus/class/sysfs from
3809 	 * underneath the device.
3810 	 */
3811 	device_lock_assert(dev);
3812 
3813 	if (dev->p->dead)
3814 		return false;
3815 	dev->p->dead = true;
3816 	return true;
3817 }
3818 EXPORT_SYMBOL_GPL(kill_device);
3819 
3820 /**
3821  * device_del - delete device from system.
3822  * @dev: device.
3823  *
3824  * This is the first part of the device unregistration
3825  * sequence. This removes the device from the lists we control
3826  * from here, has it removed from the other driver model
3827  * subsystems it was added to in device_add(), and removes it
3828  * from the kobject hierarchy.
3829  *
3830  * NOTE: this should be called manually _iff_ device_add() was
3831  * also called manually.
3832  */
3833 void device_del(struct device *dev)
3834 {
3835 	struct subsys_private *sp;
3836 	struct device *parent = dev->parent;
3837 	struct kobject *glue_dir = NULL;
3838 	struct class_interface *class_intf;
3839 	unsigned int noio_flag;
3840 
3841 	device_lock(dev);
3842 	kill_device(dev);
3843 	device_unlock(dev);
3844 
3845 	if (dev->fwnode && dev->fwnode->dev == dev)
3846 		dev->fwnode->dev = NULL;
3847 
3848 	/* Notify clients of device removal.  This call must come
3849 	 * before dpm_sysfs_remove().
3850 	 */
3851 	noio_flag = memalloc_noio_save();
3852 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3853 
3854 	dpm_sysfs_remove(dev);
3855 	if (parent)
3856 		klist_del(&dev->p->knode_parent);
3857 	if (MAJOR(dev->devt)) {
3858 		devtmpfs_delete_node(dev);
3859 		device_remove_sys_dev_entry(dev);
3860 		device_remove_file(dev, &dev_attr_dev);
3861 	}
3862 
3863 	sp = class_to_subsys(dev->class);
3864 	if (sp) {
3865 		device_remove_class_symlinks(dev);
3866 
3867 		mutex_lock(&sp->mutex);
3868 		/* notify any interfaces that the device is now gone */
3869 		list_for_each_entry(class_intf, &sp->interfaces, node)
3870 			if (class_intf->remove_dev)
3871 				class_intf->remove_dev(dev);
3872 		/* remove the device from the class list */
3873 		klist_del(&dev->p->knode_class);
3874 		mutex_unlock(&sp->mutex);
3875 		subsys_put(sp);
3876 	}
3877 	device_remove_file(dev, &dev_attr_uevent);
3878 	device_remove_attrs(dev);
3879 	bus_remove_device(dev);
3880 	device_pm_remove(dev);
3881 	driver_deferred_probe_del(dev);
3882 	device_platform_notify_remove(dev);
3883 	device_links_purge(dev);
3884 
3885 	/*
3886 	 * If a device does not have a driver attached, we need to clean
3887 	 * up any managed resources. We do this in device_release(), but
3888 	 * it's never called (and we leak the device) if a managed
3889 	 * resource holds a reference to the device. So release all
3890 	 * managed resources here, like we do in driver_detach(). We
3891 	 * still need to do so again in device_release() in case someone
3892 	 * adds a new resource after this point, though.
3893 	 */
3894 	devres_release_all(dev);
3895 
3896 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3897 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3898 	glue_dir = get_glue_dir(dev);
3899 	kobject_del(&dev->kobj);
3900 	cleanup_glue_dir(dev, glue_dir);
3901 	memalloc_noio_restore(noio_flag);
3902 	put_device(parent);
3903 }
3904 EXPORT_SYMBOL_GPL(device_del);
3905 
3906 /**
3907  * device_unregister - unregister device from system.
3908  * @dev: device going away.
3909  *
3910  * We do this in two parts, like we do device_register(). First,
3911  * we remove it from all the subsystems with device_del(), then
3912  * we decrement the reference count via put_device(). If that
3913  * is the final reference count, the device will be cleaned up
3914  * via device_release() above. Otherwise, the structure will
3915  * stick around until the final reference to the device is dropped.
3916  */
3917 void device_unregister(struct device *dev)
3918 {
3919 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3920 	device_del(dev);
3921 	put_device(dev);
3922 }
3923 EXPORT_SYMBOL_GPL(device_unregister);
3924 
3925 static struct device *prev_device(struct klist_iter *i)
3926 {
3927 	struct klist_node *n = klist_prev(i);
3928 	struct device *dev = NULL;
3929 	struct device_private *p;
3930 
3931 	if (n) {
3932 		p = to_device_private_parent(n);
3933 		dev = p->device;
3934 	}
3935 	return dev;
3936 }
3937 
3938 static struct device *next_device(struct klist_iter *i)
3939 {
3940 	struct klist_node *n = klist_next(i);
3941 	struct device *dev = NULL;
3942 	struct device_private *p;
3943 
3944 	if (n) {
3945 		p = to_device_private_parent(n);
3946 		dev = p->device;
3947 	}
3948 	return dev;
3949 }
3950 
3951 /**
3952  * device_get_devnode - path of device node file
3953  * @dev: device
3954  * @mode: returned file access mode
3955  * @uid: returned file owner
3956  * @gid: returned file group
3957  * @tmp: possibly allocated string
3958  *
3959  * Return the relative path of a possible device node.
3960  * Non-default names may need to allocate a memory to compose
3961  * a name. This memory is returned in tmp and needs to be
3962  * freed by the caller.
3963  */
3964 const char *device_get_devnode(const struct device *dev,
3965 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3966 			       const char **tmp)
3967 {
3968 	char *s;
3969 
3970 	*tmp = NULL;
3971 
3972 	/* the device type may provide a specific name */
3973 	if (dev->type && dev->type->devnode)
3974 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3975 	if (*tmp)
3976 		return *tmp;
3977 
3978 	/* the class may provide a specific name */
3979 	if (dev->class && dev->class->devnode)
3980 		*tmp = dev->class->devnode(dev, mode);
3981 	if (*tmp)
3982 		return *tmp;
3983 
3984 	/* return name without allocation, tmp == NULL */
3985 	if (strchr(dev_name(dev), '!') == NULL)
3986 		return dev_name(dev);
3987 
3988 	/* replace '!' in the name with '/' */
3989 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3990 	if (!s)
3991 		return NULL;
3992 	return *tmp = s;
3993 }
3994 
3995 /**
3996  * device_for_each_child - device child iterator.
3997  * @parent: parent struct device.
3998  * @fn: function to be called for each device.
3999  * @data: data for the callback.
4000  *
4001  * Iterate over @parent's child devices, and call @fn for each,
4002  * passing it @data.
4003  *
4004  * We check the return of @fn each time. If it returns anything
4005  * other than 0, we break out and return that value.
4006  */
4007 int device_for_each_child(struct device *parent, void *data,
4008 			  device_iter_t fn)
4009 {
4010 	struct klist_iter i;
4011 	struct device *child;
4012 	int error = 0;
4013 
4014 	if (!parent || !parent->p)
4015 		return 0;
4016 
4017 	klist_iter_init(&parent->p->klist_children, &i);
4018 	while (!error && (child = next_device(&i)))
4019 		error = fn(child, data);
4020 	klist_iter_exit(&i);
4021 	return error;
4022 }
4023 EXPORT_SYMBOL_GPL(device_for_each_child);
4024 
4025 /**
4026  * device_for_each_child_reverse - device child iterator in reversed order.
4027  * @parent: parent struct device.
4028  * @fn: function to be called for each device.
4029  * @data: data for the callback.
4030  *
4031  * Iterate over @parent's child devices, and call @fn for each,
4032  * passing it @data.
4033  *
4034  * We check the return of @fn each time. If it returns anything
4035  * other than 0, we break out and return that value.
4036  */
4037 int device_for_each_child_reverse(struct device *parent, void *data,
4038 				  device_iter_t fn)
4039 {
4040 	struct klist_iter i;
4041 	struct device *child;
4042 	int error = 0;
4043 
4044 	if (!parent || !parent->p)
4045 		return 0;
4046 
4047 	klist_iter_init(&parent->p->klist_children, &i);
4048 	while ((child = prev_device(&i)) && !error)
4049 		error = fn(child, data);
4050 	klist_iter_exit(&i);
4051 	return error;
4052 }
4053 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4054 
4055 /**
4056  * device_for_each_child_reverse_from - device child iterator in reversed order.
4057  * @parent: parent struct device.
4058  * @from: optional starting point in child list
4059  * @fn: function to be called for each device.
4060  * @data: data for the callback.
4061  *
4062  * Iterate over @parent's child devices, starting at @from, and call @fn
4063  * for each, passing it @data. This helper is identical to
4064  * device_for_each_child_reverse() when @from is NULL.
4065  *
4066  * @fn is checked each iteration. If it returns anything other than 0,
4067  * iteration stop and that value is returned to the caller of
4068  * device_for_each_child_reverse_from();
4069  */
4070 int device_for_each_child_reverse_from(struct device *parent,
4071 				       struct device *from, void *data,
4072 				       device_iter_t fn)
4073 {
4074 	struct klist_iter i;
4075 	struct device *child;
4076 	int error = 0;
4077 
4078 	if (!parent || !parent->p)
4079 		return 0;
4080 
4081 	klist_iter_init_node(&parent->p->klist_children, &i,
4082 			     (from ? &from->p->knode_parent : NULL));
4083 	while ((child = prev_device(&i)) && !error)
4084 		error = fn(child, data);
4085 	klist_iter_exit(&i);
4086 	return error;
4087 }
4088 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4089 
4090 /**
4091  * device_find_child - device iterator for locating a particular device.
4092  * @parent: parent struct device
4093  * @match: Callback function to check device
4094  * @data: Data to pass to match function
4095  *
4096  * This is similar to the device_for_each_child() function above, but it
4097  * returns a reference to a device that is 'found' for later use, as
4098  * determined by the @match callback.
4099  *
4100  * The callback should return 0 if the device doesn't match and non-zero
4101  * if it does.  If the callback returns non-zero and a reference to the
4102  * current device can be obtained, this function will return to the caller
4103  * and not iterate over any more devices.
4104  *
4105  * NOTE: you will need to drop the reference with put_device() after use.
4106  */
4107 struct device *device_find_child(struct device *parent, const void *data,
4108 				 device_match_t match)
4109 {
4110 	struct klist_iter i;
4111 	struct device *child;
4112 
4113 	if (!parent || !parent->p)
4114 		return NULL;
4115 
4116 	klist_iter_init(&parent->p->klist_children, &i);
4117 	while ((child = next_device(&i))) {
4118 		if (match(child, data)) {
4119 			get_device(child);
4120 			break;
4121 		}
4122 	}
4123 	klist_iter_exit(&i);
4124 	return child;
4125 }
4126 EXPORT_SYMBOL_GPL(device_find_child);
4127 
4128 int __init devices_init(void)
4129 {
4130 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4131 	if (!devices_kset)
4132 		return -ENOMEM;
4133 	dev_kobj = kobject_create_and_add("dev", NULL);
4134 	if (!dev_kobj)
4135 		goto dev_kobj_err;
4136 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4137 	if (!sysfs_dev_block_kobj)
4138 		goto block_kobj_err;
4139 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4140 	if (!sysfs_dev_char_kobj)
4141 		goto char_kobj_err;
4142 	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4143 	if (!device_link_wq)
4144 		goto wq_err;
4145 
4146 	return 0;
4147 
4148  wq_err:
4149 	kobject_put(sysfs_dev_char_kobj);
4150  char_kobj_err:
4151 	kobject_put(sysfs_dev_block_kobj);
4152  block_kobj_err:
4153 	kobject_put(dev_kobj);
4154  dev_kobj_err:
4155 	kset_unregister(devices_kset);
4156 	return -ENOMEM;
4157 }
4158 
4159 static int device_check_offline(struct device *dev, void *not_used)
4160 {
4161 	int ret;
4162 
4163 	ret = device_for_each_child(dev, NULL, device_check_offline);
4164 	if (ret)
4165 		return ret;
4166 
4167 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4168 }
4169 
4170 /**
4171  * device_offline - Prepare the device for hot-removal.
4172  * @dev: Device to be put offline.
4173  *
4174  * Execute the device bus type's .offline() callback, if present, to prepare
4175  * the device for a subsequent hot-removal.  If that succeeds, the device must
4176  * not be used until either it is removed or its bus type's .online() callback
4177  * is executed.
4178  *
4179  * Call under device_hotplug_lock.
4180  */
4181 int device_offline(struct device *dev)
4182 {
4183 	int ret;
4184 
4185 	if (dev->offline_disabled)
4186 		return -EPERM;
4187 
4188 	ret = device_for_each_child(dev, NULL, device_check_offline);
4189 	if (ret)
4190 		return ret;
4191 
4192 	device_lock(dev);
4193 	if (device_supports_offline(dev)) {
4194 		if (dev->offline) {
4195 			ret = 1;
4196 		} else {
4197 			ret = dev->bus->offline(dev);
4198 			if (!ret) {
4199 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4200 				dev->offline = true;
4201 			}
4202 		}
4203 	}
4204 	device_unlock(dev);
4205 
4206 	return ret;
4207 }
4208 
4209 /**
4210  * device_online - Put the device back online after successful device_offline().
4211  * @dev: Device to be put back online.
4212  *
4213  * If device_offline() has been successfully executed for @dev, but the device
4214  * has not been removed subsequently, execute its bus type's .online() callback
4215  * to indicate that the device can be used again.
4216  *
4217  * Call under device_hotplug_lock.
4218  */
4219 int device_online(struct device *dev)
4220 {
4221 	int ret = 0;
4222 
4223 	device_lock(dev);
4224 	if (device_supports_offline(dev)) {
4225 		if (dev->offline) {
4226 			ret = dev->bus->online(dev);
4227 			if (!ret) {
4228 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4229 				dev->offline = false;
4230 			}
4231 		} else {
4232 			ret = 1;
4233 		}
4234 	}
4235 	device_unlock(dev);
4236 
4237 	return ret;
4238 }
4239 
4240 struct root_device {
4241 	struct device dev;
4242 	struct module *owner;
4243 };
4244 
4245 static inline struct root_device *to_root_device(struct device *d)
4246 {
4247 	return container_of(d, struct root_device, dev);
4248 }
4249 
4250 static void root_device_release(struct device *dev)
4251 {
4252 	kfree(to_root_device(dev));
4253 }
4254 
4255 /**
4256  * __root_device_register - allocate and register a root device
4257  * @name: root device name
4258  * @owner: owner module of the root device, usually THIS_MODULE
4259  *
4260  * This function allocates a root device and registers it
4261  * using device_register(). In order to free the returned
4262  * device, use root_device_unregister().
4263  *
4264  * Root devices are dummy devices which allow other devices
4265  * to be grouped under /sys/devices. Use this function to
4266  * allocate a root device and then use it as the parent of
4267  * any device which should appear under /sys/devices/{name}
4268  *
4269  * The /sys/devices/{name} directory will also contain a
4270  * 'module' symlink which points to the @owner directory
4271  * in sysfs.
4272  *
4273  * Returns &struct device pointer on success, or ERR_PTR() on error.
4274  *
4275  * Note: You probably want to use root_device_register().
4276  */
4277 struct device *__root_device_register(const char *name, struct module *owner)
4278 {
4279 	struct root_device *root;
4280 	int err = -ENOMEM;
4281 
4282 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4283 	if (!root)
4284 		return ERR_PTR(err);
4285 
4286 	err = dev_set_name(&root->dev, "%s", name);
4287 	if (err) {
4288 		kfree(root);
4289 		return ERR_PTR(err);
4290 	}
4291 
4292 	root->dev.release = root_device_release;
4293 
4294 	err = device_register(&root->dev);
4295 	if (err) {
4296 		put_device(&root->dev);
4297 		return ERR_PTR(err);
4298 	}
4299 
4300 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4301 	if (owner) {
4302 		struct module_kobject *mk = &owner->mkobj;
4303 
4304 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4305 		if (err) {
4306 			device_unregister(&root->dev);
4307 			return ERR_PTR(err);
4308 		}
4309 		root->owner = owner;
4310 	}
4311 #endif
4312 
4313 	return &root->dev;
4314 }
4315 EXPORT_SYMBOL_GPL(__root_device_register);
4316 
4317 /**
4318  * root_device_unregister - unregister and free a root device
4319  * @dev: device going away
4320  *
4321  * This function unregisters and cleans up a device that was created by
4322  * root_device_register().
4323  */
4324 void root_device_unregister(struct device *dev)
4325 {
4326 	struct root_device *root = to_root_device(dev);
4327 
4328 	if (root->owner)
4329 		sysfs_remove_link(&root->dev.kobj, "module");
4330 
4331 	device_unregister(dev);
4332 }
4333 EXPORT_SYMBOL_GPL(root_device_unregister);
4334 
4335 
4336 static void device_create_release(struct device *dev)
4337 {
4338 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4339 	kfree(dev);
4340 }
4341 
4342 static __printf(6, 0) struct device *
4343 device_create_groups_vargs(const struct class *class, struct device *parent,
4344 			   dev_t devt, void *drvdata,
4345 			   const struct attribute_group **groups,
4346 			   const char *fmt, va_list args)
4347 {
4348 	struct device *dev = NULL;
4349 	int retval = -ENODEV;
4350 
4351 	if (IS_ERR_OR_NULL(class))
4352 		goto error;
4353 
4354 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4355 	if (!dev) {
4356 		retval = -ENOMEM;
4357 		goto error;
4358 	}
4359 
4360 	device_initialize(dev);
4361 	dev->devt = devt;
4362 	dev->class = class;
4363 	dev->parent = parent;
4364 	dev->groups = groups;
4365 	dev->release = device_create_release;
4366 	dev_set_drvdata(dev, drvdata);
4367 
4368 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4369 	if (retval)
4370 		goto error;
4371 
4372 	retval = device_add(dev);
4373 	if (retval)
4374 		goto error;
4375 
4376 	return dev;
4377 
4378 error:
4379 	put_device(dev);
4380 	return ERR_PTR(retval);
4381 }
4382 
4383 /**
4384  * device_create - creates a device and registers it with sysfs
4385  * @class: pointer to the struct class that this device should be registered to
4386  * @parent: pointer to the parent struct device of this new device, if any
4387  * @devt: the dev_t for the char device to be added
4388  * @drvdata: the data to be added to the device for callbacks
4389  * @fmt: string for the device's name
4390  *
4391  * This function can be used by char device classes.  A struct device
4392  * will be created in sysfs, registered to the specified class.
4393  *
4394  * A "dev" file will be created, showing the dev_t for the device, if
4395  * the dev_t is not 0,0.
4396  * If a pointer to a parent struct device is passed in, the newly created
4397  * struct device will be a child of that device in sysfs.
4398  * The pointer to the struct device will be returned from the call.
4399  * Any further sysfs files that might be required can be created using this
4400  * pointer.
4401  *
4402  * Returns &struct device pointer on success, or ERR_PTR() on error.
4403  */
4404 struct device *device_create(const struct class *class, struct device *parent,
4405 			     dev_t devt, void *drvdata, const char *fmt, ...)
4406 {
4407 	va_list vargs;
4408 	struct device *dev;
4409 
4410 	va_start(vargs, fmt);
4411 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4412 					  fmt, vargs);
4413 	va_end(vargs);
4414 	return dev;
4415 }
4416 EXPORT_SYMBOL_GPL(device_create);
4417 
4418 /**
4419  * device_create_with_groups - creates a device and registers it with sysfs
4420  * @class: pointer to the struct class that this device should be registered to
4421  * @parent: pointer to the parent struct device of this new device, if any
4422  * @devt: the dev_t for the char device to be added
4423  * @drvdata: the data to be added to the device for callbacks
4424  * @groups: NULL-terminated list of attribute groups to be created
4425  * @fmt: string for the device's name
4426  *
4427  * This function can be used by char device classes.  A struct device
4428  * will be created in sysfs, registered to the specified class.
4429  * Additional attributes specified in the groups parameter will also
4430  * be created automatically.
4431  *
4432  * A "dev" file will be created, showing the dev_t for the device, if
4433  * the dev_t is not 0,0.
4434  * If a pointer to a parent struct device is passed in, the newly created
4435  * struct device will be a child of that device in sysfs.
4436  * The pointer to the struct device will be returned from the call.
4437  * Any further sysfs files that might be required can be created using this
4438  * pointer.
4439  *
4440  * Returns &struct device pointer on success, or ERR_PTR() on error.
4441  */
4442 struct device *device_create_with_groups(const struct class *class,
4443 					 struct device *parent, dev_t devt,
4444 					 void *drvdata,
4445 					 const struct attribute_group **groups,
4446 					 const char *fmt, ...)
4447 {
4448 	va_list vargs;
4449 	struct device *dev;
4450 
4451 	va_start(vargs, fmt);
4452 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4453 					 fmt, vargs);
4454 	va_end(vargs);
4455 	return dev;
4456 }
4457 EXPORT_SYMBOL_GPL(device_create_with_groups);
4458 
4459 /**
4460  * device_destroy - removes a device that was created with device_create()
4461  * @class: pointer to the struct class that this device was registered with
4462  * @devt: the dev_t of the device that was previously registered
4463  *
4464  * This call unregisters and cleans up a device that was created with a
4465  * call to device_create().
4466  */
4467 void device_destroy(const struct class *class, dev_t devt)
4468 {
4469 	struct device *dev;
4470 
4471 	dev = class_find_device_by_devt(class, devt);
4472 	if (dev) {
4473 		put_device(dev);
4474 		device_unregister(dev);
4475 	}
4476 }
4477 EXPORT_SYMBOL_GPL(device_destroy);
4478 
4479 /**
4480  * device_rename - renames a device
4481  * @dev: the pointer to the struct device to be renamed
4482  * @new_name: the new name of the device
4483  *
4484  * It is the responsibility of the caller to provide mutual
4485  * exclusion between two different calls of device_rename
4486  * on the same device to ensure that new_name is valid and
4487  * won't conflict with other devices.
4488  *
4489  * Note: given that some subsystems (networking and infiniband) use this
4490  * function, with no immediate plans for this to change, we cannot assume or
4491  * require that this function not be called at all.
4492  *
4493  * However, if you're writing new code, do not call this function. The following
4494  * text from Kay Sievers offers some insight:
4495  *
4496  * Renaming devices is racy at many levels, symlinks and other stuff are not
4497  * replaced atomically, and you get a "move" uevent, but it's not easy to
4498  * connect the event to the old and new device. Device nodes are not renamed at
4499  * all, there isn't even support for that in the kernel now.
4500  *
4501  * In the meantime, during renaming, your target name might be taken by another
4502  * driver, creating conflicts. Or the old name is taken directly after you
4503  * renamed it -- then you get events for the same DEVPATH, before you even see
4504  * the "move" event. It's just a mess, and nothing new should ever rely on
4505  * kernel device renaming. Besides that, it's not even implemented now for
4506  * other things than (driver-core wise very simple) network devices.
4507  *
4508  * Make up a "real" name in the driver before you register anything, or add
4509  * some other attributes for userspace to find the device, or use udev to add
4510  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4511  * don't even want to get into that and try to implement the missing pieces in
4512  * the core. We really have other pieces to fix in the driver core mess. :)
4513  */
4514 int device_rename(struct device *dev, const char *new_name)
4515 {
4516 	struct subsys_private *sp = NULL;
4517 	struct kobject *kobj = &dev->kobj;
4518 	char *old_device_name = NULL;
4519 	int error;
4520 	bool is_link_renamed = false;
4521 
4522 	dev = get_device(dev);
4523 	if (!dev)
4524 		return -EINVAL;
4525 
4526 	dev_dbg(dev, "renaming to %s\n", new_name);
4527 
4528 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4529 	if (!old_device_name) {
4530 		error = -ENOMEM;
4531 		goto out;
4532 	}
4533 
4534 	if (dev->class) {
4535 		sp = class_to_subsys(dev->class);
4536 
4537 		if (!sp) {
4538 			error = -EINVAL;
4539 			goto out;
4540 		}
4541 
4542 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4543 					     new_name, kobject_namespace(kobj));
4544 		if (error)
4545 			goto out;
4546 
4547 		is_link_renamed = true;
4548 	}
4549 
4550 	error = kobject_rename(kobj, new_name);
4551 out:
4552 	if (error && is_link_renamed)
4553 		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4554 				     old_device_name, kobject_namespace(kobj));
4555 	subsys_put(sp);
4556 
4557 	put_device(dev);
4558 
4559 	kfree(old_device_name);
4560 
4561 	return error;
4562 }
4563 EXPORT_SYMBOL_GPL(device_rename);
4564 
4565 static int device_move_class_links(struct device *dev,
4566 				   struct device *old_parent,
4567 				   struct device *new_parent)
4568 {
4569 	int error = 0;
4570 
4571 	if (old_parent)
4572 		sysfs_remove_link(&dev->kobj, "device");
4573 	if (new_parent)
4574 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4575 					  "device");
4576 	return error;
4577 }
4578 
4579 /**
4580  * device_move - moves a device to a new parent
4581  * @dev: the pointer to the struct device to be moved
4582  * @new_parent: the new parent of the device (can be NULL)
4583  * @dpm_order: how to reorder the dpm_list
4584  */
4585 int device_move(struct device *dev, struct device *new_parent,
4586 		enum dpm_order dpm_order)
4587 {
4588 	int error;
4589 	struct device *old_parent;
4590 	struct kobject *new_parent_kobj;
4591 
4592 	dev = get_device(dev);
4593 	if (!dev)
4594 		return -EINVAL;
4595 
4596 	device_pm_lock();
4597 	new_parent = get_device(new_parent);
4598 	new_parent_kobj = get_device_parent(dev, new_parent);
4599 	if (IS_ERR(new_parent_kobj)) {
4600 		error = PTR_ERR(new_parent_kobj);
4601 		put_device(new_parent);
4602 		goto out;
4603 	}
4604 
4605 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4606 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4607 	error = kobject_move(&dev->kobj, new_parent_kobj);
4608 	if (error) {
4609 		cleanup_glue_dir(dev, new_parent_kobj);
4610 		put_device(new_parent);
4611 		goto out;
4612 	}
4613 	old_parent = dev->parent;
4614 	dev->parent = new_parent;
4615 	if (old_parent)
4616 		klist_remove(&dev->p->knode_parent);
4617 	if (new_parent) {
4618 		klist_add_tail(&dev->p->knode_parent,
4619 			       &new_parent->p->klist_children);
4620 		set_dev_node(dev, dev_to_node(new_parent));
4621 	}
4622 
4623 	if (dev->class) {
4624 		error = device_move_class_links(dev, old_parent, new_parent);
4625 		if (error) {
4626 			/* We ignore errors on cleanup since we're hosed anyway... */
4627 			device_move_class_links(dev, new_parent, old_parent);
4628 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4629 				if (new_parent)
4630 					klist_remove(&dev->p->knode_parent);
4631 				dev->parent = old_parent;
4632 				if (old_parent) {
4633 					klist_add_tail(&dev->p->knode_parent,
4634 						       &old_parent->p->klist_children);
4635 					set_dev_node(dev, dev_to_node(old_parent));
4636 				}
4637 			}
4638 			cleanup_glue_dir(dev, new_parent_kobj);
4639 			put_device(new_parent);
4640 			goto out;
4641 		}
4642 	}
4643 	switch (dpm_order) {
4644 	case DPM_ORDER_NONE:
4645 		break;
4646 	case DPM_ORDER_DEV_AFTER_PARENT:
4647 		device_pm_move_after(dev, new_parent);
4648 		devices_kset_move_after(dev, new_parent);
4649 		break;
4650 	case DPM_ORDER_PARENT_BEFORE_DEV:
4651 		device_pm_move_before(new_parent, dev);
4652 		devices_kset_move_before(new_parent, dev);
4653 		break;
4654 	case DPM_ORDER_DEV_LAST:
4655 		device_pm_move_last(dev);
4656 		devices_kset_move_last(dev);
4657 		break;
4658 	}
4659 
4660 	put_device(old_parent);
4661 out:
4662 	device_pm_unlock();
4663 	put_device(dev);
4664 	return error;
4665 }
4666 EXPORT_SYMBOL_GPL(device_move);
4667 
4668 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4669 				     kgid_t kgid)
4670 {
4671 	struct kobject *kobj = &dev->kobj;
4672 	const struct class *class = dev->class;
4673 	const struct device_type *type = dev->type;
4674 	int error;
4675 
4676 	if (class) {
4677 		/*
4678 		 * Change the device groups of the device class for @dev to
4679 		 * @kuid/@kgid.
4680 		 */
4681 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4682 						  kgid);
4683 		if (error)
4684 			return error;
4685 	}
4686 
4687 	if (type) {
4688 		/*
4689 		 * Change the device groups of the device type for @dev to
4690 		 * @kuid/@kgid.
4691 		 */
4692 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4693 						  kgid);
4694 		if (error)
4695 			return error;
4696 	}
4697 
4698 	/* Change the device groups of @dev to @kuid/@kgid. */
4699 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4700 	if (error)
4701 		return error;
4702 
4703 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4704 		/* Change online device attributes of @dev to @kuid/@kgid. */
4705 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4706 						kuid, kgid);
4707 		if (error)
4708 			return error;
4709 	}
4710 
4711 	return 0;
4712 }
4713 
4714 /**
4715  * device_change_owner - change the owner of an existing device.
4716  * @dev: device.
4717  * @kuid: new owner's kuid
4718  * @kgid: new owner's kgid
4719  *
4720  * This changes the owner of @dev and its corresponding sysfs entries to
4721  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4722  * core.
4723  *
4724  * Returns 0 on success or error code on failure.
4725  */
4726 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4727 {
4728 	int error;
4729 	struct kobject *kobj = &dev->kobj;
4730 	struct subsys_private *sp;
4731 
4732 	dev = get_device(dev);
4733 	if (!dev)
4734 		return -EINVAL;
4735 
4736 	/*
4737 	 * Change the kobject and the default attributes and groups of the
4738 	 * ktype associated with it to @kuid/@kgid.
4739 	 */
4740 	error = sysfs_change_owner(kobj, kuid, kgid);
4741 	if (error)
4742 		goto out;
4743 
4744 	/*
4745 	 * Change the uevent file for @dev to the new owner. The uevent file
4746 	 * was created in a separate step when @dev got added and we mirror
4747 	 * that step here.
4748 	 */
4749 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4750 					kgid);
4751 	if (error)
4752 		goto out;
4753 
4754 	/*
4755 	 * Change the device groups, the device groups associated with the
4756 	 * device class, and the groups associated with the device type of @dev
4757 	 * to @kuid/@kgid.
4758 	 */
4759 	error = device_attrs_change_owner(dev, kuid, kgid);
4760 	if (error)
4761 		goto out;
4762 
4763 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4764 	if (error)
4765 		goto out;
4766 
4767 	/*
4768 	 * Change the owner of the symlink located in the class directory of
4769 	 * the device class associated with @dev which points to the actual
4770 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4771 	 * symlink shows the same permissions as its target.
4772 	 */
4773 	sp = class_to_subsys(dev->class);
4774 	if (!sp) {
4775 		error = -EINVAL;
4776 		goto out;
4777 	}
4778 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4779 	subsys_put(sp);
4780 
4781 out:
4782 	put_device(dev);
4783 	return error;
4784 }
4785 EXPORT_SYMBOL_GPL(device_change_owner);
4786 
4787 /**
4788  * device_shutdown - call ->shutdown() on each device to shutdown.
4789  */
4790 void device_shutdown(void)
4791 {
4792 	struct device *dev, *parent;
4793 
4794 	wait_for_device_probe();
4795 	device_block_probing();
4796 
4797 	cpufreq_suspend();
4798 
4799 	spin_lock(&devices_kset->list_lock);
4800 	/*
4801 	 * Walk the devices list backward, shutting down each in turn.
4802 	 * Beware that device unplug events may also start pulling
4803 	 * devices offline, even as the system is shutting down.
4804 	 */
4805 	while (!list_empty(&devices_kset->list)) {
4806 		dev = list_entry(devices_kset->list.prev, struct device,
4807 				kobj.entry);
4808 
4809 		/*
4810 		 * hold reference count of device's parent to
4811 		 * prevent it from being freed because parent's
4812 		 * lock is to be held
4813 		 */
4814 		parent = get_device(dev->parent);
4815 		get_device(dev);
4816 		/*
4817 		 * Make sure the device is off the kset list, in the
4818 		 * event that dev->*->shutdown() doesn't remove it.
4819 		 */
4820 		list_del_init(&dev->kobj.entry);
4821 		spin_unlock(&devices_kset->list_lock);
4822 
4823 		/* hold lock to avoid race with probe/release */
4824 		if (parent)
4825 			device_lock(parent);
4826 		device_lock(dev);
4827 
4828 		/* Don't allow any more runtime suspends */
4829 		pm_runtime_get_noresume(dev);
4830 		pm_runtime_barrier(dev);
4831 
4832 		if (dev->class && dev->class->shutdown_pre) {
4833 			if (initcall_debug)
4834 				dev_info(dev, "shutdown_pre\n");
4835 			dev->class->shutdown_pre(dev);
4836 		}
4837 		if (dev->bus && dev->bus->shutdown) {
4838 			if (initcall_debug)
4839 				dev_info(dev, "shutdown\n");
4840 			dev->bus->shutdown(dev);
4841 		} else if (dev->driver && dev->driver->shutdown) {
4842 			if (initcall_debug)
4843 				dev_info(dev, "shutdown\n");
4844 			dev->driver->shutdown(dev);
4845 		}
4846 
4847 		device_unlock(dev);
4848 		if (parent)
4849 			device_unlock(parent);
4850 
4851 		put_device(dev);
4852 		put_device(parent);
4853 
4854 		spin_lock(&devices_kset->list_lock);
4855 	}
4856 	spin_unlock(&devices_kset->list_lock);
4857 }
4858 
4859 /*
4860  * Device logging functions
4861  */
4862 
4863 #ifdef CONFIG_PRINTK
4864 static void
4865 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4866 {
4867 	const char *subsys;
4868 
4869 	memset(dev_info, 0, sizeof(*dev_info));
4870 
4871 	if (dev->class)
4872 		subsys = dev->class->name;
4873 	else if (dev->bus)
4874 		subsys = dev->bus->name;
4875 	else
4876 		return;
4877 
4878 	strscpy(dev_info->subsystem, subsys);
4879 
4880 	/*
4881 	 * Add device identifier DEVICE=:
4882 	 *   b12:8         block dev_t
4883 	 *   c127:3        char dev_t
4884 	 *   n8            netdev ifindex
4885 	 *   +sound:card0  subsystem:devname
4886 	 */
4887 	if (MAJOR(dev->devt)) {
4888 		char c;
4889 
4890 		if (strcmp(subsys, "block") == 0)
4891 			c = 'b';
4892 		else
4893 			c = 'c';
4894 
4895 		snprintf(dev_info->device, sizeof(dev_info->device),
4896 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4897 	} else if (strcmp(subsys, "net") == 0) {
4898 		struct net_device *net = to_net_dev(dev);
4899 
4900 		snprintf(dev_info->device, sizeof(dev_info->device),
4901 			 "n%u", net->ifindex);
4902 	} else {
4903 		snprintf(dev_info->device, sizeof(dev_info->device),
4904 			 "+%s:%s", subsys, dev_name(dev));
4905 	}
4906 }
4907 
4908 int dev_vprintk_emit(int level, const struct device *dev,
4909 		     const char *fmt, va_list args)
4910 {
4911 	struct dev_printk_info dev_info;
4912 
4913 	set_dev_info(dev, &dev_info);
4914 
4915 	return vprintk_emit(0, level, &dev_info, fmt, args);
4916 }
4917 EXPORT_SYMBOL(dev_vprintk_emit);
4918 
4919 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4920 {
4921 	va_list args;
4922 	int r;
4923 
4924 	va_start(args, fmt);
4925 
4926 	r = dev_vprintk_emit(level, dev, fmt, args);
4927 
4928 	va_end(args);
4929 
4930 	return r;
4931 }
4932 EXPORT_SYMBOL(dev_printk_emit);
4933 
4934 static void __dev_printk(const char *level, const struct device *dev,
4935 			struct va_format *vaf)
4936 {
4937 	if (dev)
4938 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4939 				dev_driver_string(dev), dev_name(dev), vaf);
4940 	else
4941 		printk("%s(NULL device *): %pV", level, vaf);
4942 }
4943 
4944 void _dev_printk(const char *level, const struct device *dev,
4945 		 const char *fmt, ...)
4946 {
4947 	struct va_format vaf;
4948 	va_list args;
4949 
4950 	va_start(args, fmt);
4951 
4952 	vaf.fmt = fmt;
4953 	vaf.va = &args;
4954 
4955 	__dev_printk(level, dev, &vaf);
4956 
4957 	va_end(args);
4958 }
4959 EXPORT_SYMBOL(_dev_printk);
4960 
4961 #define define_dev_printk_level(func, kern_level)		\
4962 void func(const struct device *dev, const char *fmt, ...)	\
4963 {								\
4964 	struct va_format vaf;					\
4965 	va_list args;						\
4966 								\
4967 	va_start(args, fmt);					\
4968 								\
4969 	vaf.fmt = fmt;						\
4970 	vaf.va = &args;						\
4971 								\
4972 	__dev_printk(kern_level, dev, &vaf);			\
4973 								\
4974 	va_end(args);						\
4975 }								\
4976 EXPORT_SYMBOL(func);
4977 
4978 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4979 define_dev_printk_level(_dev_alert, KERN_ALERT);
4980 define_dev_printk_level(_dev_crit, KERN_CRIT);
4981 define_dev_printk_level(_dev_err, KERN_ERR);
4982 define_dev_printk_level(_dev_warn, KERN_WARNING);
4983 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4984 define_dev_printk_level(_dev_info, KERN_INFO);
4985 
4986 #endif
4987 
4988 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
4989 			       const char *fmt, va_list vargsp)
4990 {
4991 	struct va_format vaf;
4992 	va_list vargs;
4993 
4994 	/*
4995 	 * On x86_64 and possibly on other architectures, va_list is actually a
4996 	 * size-1 array containing a structure.  As a result, function parameter
4997 	 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
4998 	 * T(*)[1], which is expected by its assignment to vaf.va below.
4999 	 *
5000 	 * One standard way to solve this mess is by creating a copy in a local
5001 	 * variable of type va_list and then using a pointer to that local copy
5002 	 * instead, which is the approach employed here.
5003 	 */
5004 	va_copy(vargs, vargsp);
5005 
5006 	vaf.fmt = fmt;
5007 	vaf.va = &vargs;
5008 
5009 	switch (err) {
5010 	case -EPROBE_DEFER:
5011 		device_set_deferred_probe_reason(dev, &vaf);
5012 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5013 		break;
5014 
5015 	case -ENOMEM:
5016 		/* Don't print anything on -ENOMEM, there's already enough output */
5017 		break;
5018 
5019 	default:
5020 		/* Log fatal final failures as errors, otherwise produce warnings */
5021 		if (fatal)
5022 			dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5023 		else
5024 			dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5025 		break;
5026 	}
5027 
5028 	va_end(vargs);
5029 }
5030 
5031 /**
5032  * dev_err_probe - probe error check and log helper
5033  * @dev: the pointer to the struct device
5034  * @err: error value to test
5035  * @fmt: printf-style format string
5036  * @...: arguments as specified in the format string
5037  *
5038  * This helper implements common pattern present in probe functions for error
5039  * checking: print debug or error message depending if the error value is
5040  * -EPROBE_DEFER and propagate error upwards.
5041  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5042  * checked later by reading devices_deferred debugfs attribute.
5043  * It replaces the following code sequence::
5044  *
5045  * 	if (err != -EPROBE_DEFER)
5046  * 		dev_err(dev, ...);
5047  * 	else
5048  * 		dev_dbg(dev, ...);
5049  * 	return err;
5050  *
5051  * with::
5052  *
5053  * 	return dev_err_probe(dev, err, ...);
5054  *
5055  * Using this helper in your probe function is totally fine even if @err
5056  * is known to never be -EPROBE_DEFER.
5057  * The benefit compared to a normal dev_err() is the standardized format
5058  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5059  * instead of "-35"), and having the error code returned allows more
5060  * compact error paths.
5061  *
5062  * Returns @err.
5063  */
5064 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5065 {
5066 	va_list vargs;
5067 
5068 	va_start(vargs, fmt);
5069 
5070 	/* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5071 	__dev_probe_failed(dev, err, true, fmt, vargs);
5072 
5073 	va_end(vargs);
5074 
5075 	return err;
5076 }
5077 EXPORT_SYMBOL_GPL(dev_err_probe);
5078 
5079 /**
5080  * dev_warn_probe - probe error check and log helper
5081  * @dev: the pointer to the struct device
5082  * @err: error value to test
5083  * @fmt: printf-style format string
5084  * @...: arguments as specified in the format string
5085  *
5086  * This helper implements common pattern present in probe functions for error
5087  * checking: print debug or warning message depending if the error value is
5088  * -EPROBE_DEFER and propagate error upwards.
5089  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5090  * checked later by reading devices_deferred debugfs attribute.
5091  * It replaces the following code sequence::
5092  *
5093  * 	if (err != -EPROBE_DEFER)
5094  * 		dev_warn(dev, ...);
5095  * 	else
5096  * 		dev_dbg(dev, ...);
5097  * 	return err;
5098  *
5099  * with::
5100  *
5101  * 	return dev_warn_probe(dev, err, ...);
5102  *
5103  * Using this helper in your probe function is totally fine even if @err
5104  * is known to never be -EPROBE_DEFER.
5105  * The benefit compared to a normal dev_warn() is the standardized format
5106  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5107  * instead of "-35"), and having the error code returned allows more
5108  * compact error paths.
5109  *
5110  * Returns @err.
5111  */
5112 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5113 {
5114 	va_list vargs;
5115 
5116 	va_start(vargs, fmt);
5117 
5118 	/* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5119 	__dev_probe_failed(dev, err, false, fmt, vargs);
5120 
5121 	va_end(vargs);
5122 
5123 	return err;
5124 }
5125 EXPORT_SYMBOL_GPL(dev_warn_probe);
5126 
5127 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5128 {
5129 	return fwnode && !IS_ERR(fwnode->secondary);
5130 }
5131 
5132 /**
5133  * set_primary_fwnode - Change the primary firmware node of a given device.
5134  * @dev: Device to handle.
5135  * @fwnode: New primary firmware node of the device.
5136  *
5137  * Set the device's firmware node pointer to @fwnode, but if a secondary
5138  * firmware node of the device is present, preserve it.
5139  *
5140  * Valid fwnode cases are:
5141  *  - primary --> secondary --> -ENODEV
5142  *  - primary --> NULL
5143  *  - secondary --> -ENODEV
5144  *  - NULL
5145  */
5146 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5147 {
5148 	struct device *parent = dev->parent;
5149 	struct fwnode_handle *fn = dev->fwnode;
5150 
5151 	if (fwnode) {
5152 		if (fwnode_is_primary(fn))
5153 			fn = fn->secondary;
5154 
5155 		if (fn) {
5156 			WARN_ON(fwnode->secondary);
5157 			fwnode->secondary = fn;
5158 		}
5159 		dev->fwnode = fwnode;
5160 	} else {
5161 		if (fwnode_is_primary(fn)) {
5162 			dev->fwnode = fn->secondary;
5163 
5164 			/* Skip nullifying fn->secondary if the primary is shared */
5165 			if (parent && fn == parent->fwnode)
5166 				return;
5167 
5168 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5169 			fn->secondary = NULL;
5170 		} else {
5171 			dev->fwnode = NULL;
5172 		}
5173 	}
5174 }
5175 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5176 
5177 /**
5178  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5179  * @dev: Device to handle.
5180  * @fwnode: New secondary firmware node of the device.
5181  *
5182  * If a primary firmware node of the device is present, set its secondary
5183  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5184  * @fwnode.
5185  */
5186 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5187 {
5188 	if (fwnode)
5189 		fwnode->secondary = ERR_PTR(-ENODEV);
5190 
5191 	if (fwnode_is_primary(dev->fwnode))
5192 		dev->fwnode->secondary = fwnode;
5193 	else
5194 		dev->fwnode = fwnode;
5195 }
5196 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5197 
5198 /**
5199  * device_remove_of_node - Remove an of_node from a device
5200  * @dev: device whose device tree node is being removed
5201  */
5202 void device_remove_of_node(struct device *dev)
5203 {
5204 	dev = get_device(dev);
5205 	if (!dev)
5206 		return;
5207 
5208 	if (!dev->of_node)
5209 		goto end;
5210 
5211 	if (dev->fwnode == of_fwnode_handle(dev->of_node))
5212 		dev->fwnode = NULL;
5213 
5214 	of_node_put(dev->of_node);
5215 	dev->of_node = NULL;
5216 
5217 end:
5218 	put_device(dev);
5219 }
5220 EXPORT_SYMBOL_GPL(device_remove_of_node);
5221 
5222 /**
5223  * device_add_of_node - Add an of_node to an existing device
5224  * @dev: device whose device tree node is being added
5225  * @of_node: of_node to add
5226  *
5227  * Return: 0 on success or error code on failure.
5228  */
5229 int device_add_of_node(struct device *dev, struct device_node *of_node)
5230 {
5231 	int ret;
5232 
5233 	if (!of_node)
5234 		return -EINVAL;
5235 
5236 	dev = get_device(dev);
5237 	if (!dev)
5238 		return -EINVAL;
5239 
5240 	if (dev->of_node) {
5241 		dev_err(dev, "Cannot replace node %pOF with %pOF\n",
5242 			dev->of_node, of_node);
5243 		ret = -EBUSY;
5244 		goto end;
5245 	}
5246 
5247 	dev->of_node = of_node_get(of_node);
5248 
5249 	if (!dev->fwnode)
5250 		dev->fwnode = of_fwnode_handle(of_node);
5251 
5252 	ret = 0;
5253 end:
5254 	put_device(dev);
5255 	return ret;
5256 }
5257 EXPORT_SYMBOL_GPL(device_add_of_node);
5258 
5259 /**
5260  * device_set_of_node_from_dev - reuse device-tree node of another device
5261  * @dev: device whose device-tree node is being set
5262  * @dev2: device whose device-tree node is being reused
5263  *
5264  * Takes another reference to the new device-tree node after first dropping
5265  * any reference held to the old node.
5266  */
5267 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5268 {
5269 	of_node_put(dev->of_node);
5270 	dev->of_node = of_node_get(dev2->of_node);
5271 	dev->of_node_reused = true;
5272 }
5273 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5274 
5275 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5276 {
5277 	dev->fwnode = fwnode;
5278 	dev->of_node = to_of_node(fwnode);
5279 }
5280 EXPORT_SYMBOL_GPL(device_set_node);
5281 
5282 struct device *get_dev_from_fwnode(struct fwnode_handle *fwnode)
5283 {
5284 	return get_device((fwnode)->dev);
5285 }
5286 EXPORT_SYMBOL_GPL(get_dev_from_fwnode);
5287 
5288 int device_match_name(struct device *dev, const void *name)
5289 {
5290 	return sysfs_streq(dev_name(dev), name);
5291 }
5292 EXPORT_SYMBOL_GPL(device_match_name);
5293 
5294 int device_match_type(struct device *dev, const void *type)
5295 {
5296 	return dev->type == type;
5297 }
5298 EXPORT_SYMBOL_GPL(device_match_type);
5299 
5300 int device_match_of_node(struct device *dev, const void *np)
5301 {
5302 	return np && dev->of_node == np;
5303 }
5304 EXPORT_SYMBOL_GPL(device_match_of_node);
5305 
5306 int device_match_fwnode(struct device *dev, const void *fwnode)
5307 {
5308 	return fwnode && dev_fwnode(dev) == fwnode;
5309 }
5310 EXPORT_SYMBOL_GPL(device_match_fwnode);
5311 
5312 int device_match_devt(struct device *dev, const void *pdevt)
5313 {
5314 	return dev->devt == *(dev_t *)pdevt;
5315 }
5316 EXPORT_SYMBOL_GPL(device_match_devt);
5317 
5318 int device_match_acpi_dev(struct device *dev, const void *adev)
5319 {
5320 	return adev && ACPI_COMPANION(dev) == adev;
5321 }
5322 EXPORT_SYMBOL(device_match_acpi_dev);
5323 
5324 int device_match_acpi_handle(struct device *dev, const void *handle)
5325 {
5326 	return handle && ACPI_HANDLE(dev) == handle;
5327 }
5328 EXPORT_SYMBOL(device_match_acpi_handle);
5329 
5330 int device_match_any(struct device *dev, const void *unused)
5331 {
5332 	return 1;
5333 }
5334 EXPORT_SYMBOL_GPL(device_match_any);
5335