xref: /linux/drivers/base/component.c (revision ae99fb8baafc881b35aa0b79d7ac0178a7c40c89)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Componentized device handling.
4  *
5  * This is work in progress.  We gather up the component devices into a list,
6  * and bind them when instructed.  At the moment, we're specific to the DRM
7  * subsystem, and only handles one master device, but this doesn't have to be
8  * the case.
9  */
10 #include <linux/component.h>
11 #include <linux/device.h>
12 #include <linux/kref.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/slab.h>
16 #include <linux/debugfs.h>
17 
18 /**
19  * DOC: overview
20  *
21  * The component helper allows drivers to collect a pile of sub-devices,
22  * including their bound drivers, into an aggregate driver. Various subsystems
23  * already provide functions to get hold of such components, e.g.
24  * of_clk_get_by_name(). The component helper can be used when such a
25  * subsystem-specific way to find a device is not available: The component
26  * helper fills the niche of aggregate drivers for specific hardware, where
27  * further standardization into a subsystem would not be practical. The common
28  * example is when a logical device (e.g. a DRM display driver) is spread around
29  * the SoC on various components (scanout engines, blending blocks, transcoders
30  * for various outputs and so on).
31  *
32  * The component helper also doesn't solve runtime dependencies, e.g. for system
33  * suspend and resume operations. See also :ref:`device links<device_link>`.
34  *
35  * Components are registered using component_add() and unregistered with
36  * component_del(), usually from the driver's probe and disconnect functions.
37  *
38  * Aggregate drivers first assemble a component match list of what they need
39  * using component_match_add(). This is then registered as an aggregate driver
40  * using component_master_add_with_match(), and unregistered using
41  * component_master_del().
42  */
43 
44 struct component;
45 
46 struct component_match_array {
47 	void *data;
48 	int (*compare)(struct device *, void *);
49 	int (*compare_typed)(struct device *, int, void *);
50 	void (*release)(struct device *, void *);
51 	struct component *component;
52 	bool duplicate;
53 };
54 
55 struct component_match {
56 	size_t alloc;
57 	size_t num;
58 	struct component_match_array *compare;
59 };
60 
61 struct master {
62 	struct list_head node;
63 	bool bound;
64 
65 	const struct component_master_ops *ops;
66 	struct device *dev;
67 	struct component_match *match;
68 	struct dentry *dentry;
69 };
70 
71 struct component {
72 	struct list_head node;
73 	struct master *master;
74 	bool bound;
75 
76 	const struct component_ops *ops;
77 	int subcomponent;
78 	struct device *dev;
79 };
80 
81 static DEFINE_MUTEX(component_mutex);
82 static LIST_HEAD(component_list);
83 static LIST_HEAD(masters);
84 
85 #ifdef CONFIG_DEBUG_FS
86 
87 static struct dentry *component_debugfs_dir;
88 
89 static int component_devices_show(struct seq_file *s, void *data)
90 {
91 	struct master *m = s->private;
92 	struct component_match *match = m->match;
93 	size_t i;
94 
95 	mutex_lock(&component_mutex);
96 	seq_printf(s, "%-40s %20s\n", "master name", "status");
97 	seq_puts(s, "-------------------------------------------------------------\n");
98 	seq_printf(s, "%-40s %20s\n\n",
99 		   dev_name(m->dev), m->bound ? "bound" : "not bound");
100 
101 	seq_printf(s, "%-40s %20s\n", "device name", "status");
102 	seq_puts(s, "-------------------------------------------------------------\n");
103 	for (i = 0; i < match->num; i++) {
104 		struct component *component = match->compare[i].component;
105 
106 		seq_printf(s, "%-40s %20s\n",
107 			   component ? dev_name(component->dev) : "(unknown)",
108 			   component ? (component->bound ? "bound" : "not bound") : "not registered");
109 	}
110 	mutex_unlock(&component_mutex);
111 
112 	return 0;
113 }
114 
115 DEFINE_SHOW_ATTRIBUTE(component_devices);
116 
117 static int __init component_debug_init(void)
118 {
119 	component_debugfs_dir = debugfs_create_dir("device_component", NULL);
120 
121 	return 0;
122 }
123 
124 core_initcall(component_debug_init);
125 
126 static void component_master_debugfs_add(struct master *m)
127 {
128 	m->dentry = debugfs_create_file(dev_name(m->dev), 0444,
129 					component_debugfs_dir,
130 					m, &component_devices_fops);
131 }
132 
133 static void component_master_debugfs_del(struct master *m)
134 {
135 	debugfs_remove(m->dentry);
136 	m->dentry = NULL;
137 }
138 
139 #else
140 
141 static void component_master_debugfs_add(struct master *m)
142 { }
143 
144 static void component_master_debugfs_del(struct master *m)
145 { }
146 
147 #endif
148 
149 static struct master *__master_find(struct device *dev,
150 	const struct component_master_ops *ops)
151 {
152 	struct master *m;
153 
154 	list_for_each_entry(m, &masters, node)
155 		if (m->dev == dev && (!ops || m->ops == ops))
156 			return m;
157 
158 	return NULL;
159 }
160 
161 static struct component *find_component(struct master *master,
162 	struct component_match_array *mc)
163 {
164 	struct component *c;
165 
166 	list_for_each_entry(c, &component_list, node) {
167 		if (c->master && c->master != master)
168 			continue;
169 
170 		if (mc->compare && mc->compare(c->dev, mc->data))
171 			return c;
172 
173 		if (mc->compare_typed &&
174 		    mc->compare_typed(c->dev, c->subcomponent, mc->data))
175 			return c;
176 	}
177 
178 	return NULL;
179 }
180 
181 static int find_components(struct master *master)
182 {
183 	struct component_match *match = master->match;
184 	size_t i;
185 	int ret = 0;
186 
187 	/*
188 	 * Scan the array of match functions and attach
189 	 * any components which are found to this master.
190 	 */
191 	for (i = 0; i < match->num; i++) {
192 		struct component_match_array *mc = &match->compare[i];
193 		struct component *c;
194 
195 		dev_dbg(master->dev, "Looking for component %zu\n", i);
196 
197 		if (match->compare[i].component)
198 			continue;
199 
200 		c = find_component(master, mc);
201 		if (!c) {
202 			ret = -ENXIO;
203 			break;
204 		}
205 
206 		dev_dbg(master->dev, "found component %s, duplicate %u\n", dev_name(c->dev), !!c->master);
207 
208 		/* Attach this component to the master */
209 		match->compare[i].duplicate = !!c->master;
210 		match->compare[i].component = c;
211 		c->master = master;
212 	}
213 	return ret;
214 }
215 
216 /* Detach component from associated master */
217 static void remove_component(struct master *master, struct component *c)
218 {
219 	size_t i;
220 
221 	/* Detach the component from this master. */
222 	for (i = 0; i < master->match->num; i++)
223 		if (master->match->compare[i].component == c)
224 			master->match->compare[i].component = NULL;
225 }
226 
227 /*
228  * Try to bring up a master.  If component is NULL, we're interested in
229  * this master, otherwise it's a component which must be present to try
230  * and bring up the master.
231  *
232  * Returns 1 for successful bringup, 0 if not ready, or -ve errno.
233  */
234 static int try_to_bring_up_master(struct master *master,
235 	struct component *component)
236 {
237 	int ret;
238 
239 	dev_dbg(master->dev, "trying to bring up master\n");
240 
241 	if (find_components(master)) {
242 		dev_dbg(master->dev, "master has incomplete components\n");
243 		return 0;
244 	}
245 
246 	if (component && component->master != master) {
247 		dev_dbg(master->dev, "master is not for this component (%s)\n",
248 			dev_name(component->dev));
249 		return 0;
250 	}
251 
252 	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
253 		return -ENOMEM;
254 
255 	/* Found all components */
256 	ret = master->ops->bind(master->dev);
257 	if (ret < 0) {
258 		devres_release_group(master->dev, NULL);
259 		dev_info(master->dev, "master bind failed: %d\n", ret);
260 		return ret;
261 	}
262 
263 	master->bound = true;
264 	return 1;
265 }
266 
267 static int try_to_bring_up_masters(struct component *component)
268 {
269 	struct master *m;
270 	int ret = 0;
271 
272 	list_for_each_entry(m, &masters, node) {
273 		if (!m->bound) {
274 			ret = try_to_bring_up_master(m, component);
275 			if (ret != 0)
276 				break;
277 		}
278 	}
279 
280 	return ret;
281 }
282 
283 static void take_down_master(struct master *master)
284 {
285 	if (master->bound) {
286 		master->ops->unbind(master->dev);
287 		devres_release_group(master->dev, NULL);
288 		master->bound = false;
289 	}
290 }
291 
292 static void component_match_release(struct device *master,
293 	struct component_match *match)
294 {
295 	unsigned int i;
296 
297 	for (i = 0; i < match->num; i++) {
298 		struct component_match_array *mc = &match->compare[i];
299 
300 		if (mc->release)
301 			mc->release(master, mc->data);
302 	}
303 
304 	kfree(match->compare);
305 }
306 
307 static void devm_component_match_release(struct device *dev, void *res)
308 {
309 	component_match_release(dev, res);
310 }
311 
312 static int component_match_realloc(struct device *dev,
313 	struct component_match *match, size_t num)
314 {
315 	struct component_match_array *new;
316 
317 	if (match->alloc == num)
318 		return 0;
319 
320 	new = kmalloc_array(num, sizeof(*new), GFP_KERNEL);
321 	if (!new)
322 		return -ENOMEM;
323 
324 	if (match->compare) {
325 		memcpy(new, match->compare, sizeof(*new) *
326 					    min(match->num, num));
327 		kfree(match->compare);
328 	}
329 	match->compare = new;
330 	match->alloc = num;
331 
332 	return 0;
333 }
334 
335 static void __component_match_add(struct device *master,
336 	struct component_match **matchptr,
337 	void (*release)(struct device *, void *),
338 	int (*compare)(struct device *, void *),
339 	int (*compare_typed)(struct device *, int, void *),
340 	void *compare_data)
341 {
342 	struct component_match *match = *matchptr;
343 
344 	if (IS_ERR(match))
345 		return;
346 
347 	if (!match) {
348 		match = devres_alloc(devm_component_match_release,
349 				     sizeof(*match), GFP_KERNEL);
350 		if (!match) {
351 			*matchptr = ERR_PTR(-ENOMEM);
352 			return;
353 		}
354 
355 		devres_add(master, match);
356 
357 		*matchptr = match;
358 	}
359 
360 	if (match->num == match->alloc) {
361 		size_t new_size = match->alloc + 16;
362 		int ret;
363 
364 		ret = component_match_realloc(master, match, new_size);
365 		if (ret) {
366 			*matchptr = ERR_PTR(ret);
367 			return;
368 		}
369 	}
370 
371 	match->compare[match->num].compare = compare;
372 	match->compare[match->num].compare_typed = compare_typed;
373 	match->compare[match->num].release = release;
374 	match->compare[match->num].data = compare_data;
375 	match->compare[match->num].component = NULL;
376 	match->num++;
377 }
378 
379 /**
380  * component_match_add_release - add a component match entry with release callback
381  * @master: device with the aggregate driver
382  * @matchptr: pointer to the list of component matches
383  * @release: release function for @compare_data
384  * @compare: compare function to match against all components
385  * @compare_data: opaque pointer passed to the @compare function
386  *
387  * Adds a new component match to the list stored in @matchptr, which the @master
388  * aggregate driver needs to function. The list of component matches pointed to
389  * by @matchptr must be initialized to NULL before adding the first match. This
390  * only matches against components added with component_add().
391  *
392  * The allocated match list in @matchptr is automatically released using devm
393  * actions, where upon @release will be called to free any references held by
394  * @compare_data, e.g. when @compare_data is a &device_node that must be
395  * released with of_node_put().
396  *
397  * See also component_match_add() and component_match_add_typed().
398  */
399 void component_match_add_release(struct device *master,
400 	struct component_match **matchptr,
401 	void (*release)(struct device *, void *),
402 	int (*compare)(struct device *, void *), void *compare_data)
403 {
404 	__component_match_add(master, matchptr, release, compare, NULL,
405 			      compare_data);
406 }
407 EXPORT_SYMBOL(component_match_add_release);
408 
409 /**
410  * component_match_add_typed - add a component match entry for a typed component
411  * @master: device with the aggregate driver
412  * @matchptr: pointer to the list of component matches
413  * @compare_typed: compare function to match against all typed components
414  * @compare_data: opaque pointer passed to the @compare function
415  *
416  * Adds a new component match to the list stored in @matchptr, which the @master
417  * aggregate driver needs to function. The list of component matches pointed to
418  * by @matchptr must be initialized to NULL before adding the first match. This
419  * only matches against components added with component_add_typed().
420  *
421  * The allocated match list in @matchptr is automatically released using devm
422  * actions.
423  *
424  * See also component_match_add_release() and component_match_add_typed().
425  */
426 void component_match_add_typed(struct device *master,
427 	struct component_match **matchptr,
428 	int (*compare_typed)(struct device *, int, void *), void *compare_data)
429 {
430 	__component_match_add(master, matchptr, NULL, NULL, compare_typed,
431 			      compare_data);
432 }
433 EXPORT_SYMBOL(component_match_add_typed);
434 
435 static void free_master(struct master *master)
436 {
437 	struct component_match *match = master->match;
438 	int i;
439 
440 	component_master_debugfs_del(master);
441 	list_del(&master->node);
442 
443 	if (match) {
444 		for (i = 0; i < match->num; i++) {
445 			struct component *c = match->compare[i].component;
446 			if (c)
447 				c->master = NULL;
448 		}
449 	}
450 
451 	kfree(master);
452 }
453 
454 /**
455  * component_master_add_with_match - register an aggregate driver
456  * @dev: device with the aggregate driver
457  * @ops: callbacks for the aggregate driver
458  * @match: component match list for the aggregate driver
459  *
460  * Registers a new aggregate driver consisting of the components added to @match
461  * by calling one of the component_match_add() functions. Once all components in
462  * @match are available, it will be assembled by calling
463  * &component_master_ops.bind from @ops. Must be unregistered by calling
464  * component_master_del().
465  */
466 int component_master_add_with_match(struct device *dev,
467 	const struct component_master_ops *ops,
468 	struct component_match *match)
469 {
470 	struct master *master;
471 	int ret;
472 
473 	/* Reallocate the match array for its true size */
474 	ret = component_match_realloc(dev, match, match->num);
475 	if (ret)
476 		return ret;
477 
478 	master = kzalloc(sizeof(*master), GFP_KERNEL);
479 	if (!master)
480 		return -ENOMEM;
481 
482 	master->dev = dev;
483 	master->ops = ops;
484 	master->match = match;
485 
486 	component_master_debugfs_add(master);
487 	/* Add to the list of available masters. */
488 	mutex_lock(&component_mutex);
489 	list_add(&master->node, &masters);
490 
491 	ret = try_to_bring_up_master(master, NULL);
492 
493 	if (ret < 0)
494 		free_master(master);
495 
496 	mutex_unlock(&component_mutex);
497 
498 	return ret < 0 ? ret : 0;
499 }
500 EXPORT_SYMBOL_GPL(component_master_add_with_match);
501 
502 /**
503  * component_master_del - unregister an aggregate driver
504  * @dev: device with the aggregate driver
505  * @ops: callbacks for the aggregate driver
506  *
507  * Unregisters an aggregate driver registered with
508  * component_master_add_with_match(). If necessary the aggregate driver is first
509  * disassembled by calling &component_master_ops.unbind from @ops.
510  */
511 void component_master_del(struct device *dev,
512 	const struct component_master_ops *ops)
513 {
514 	struct master *master;
515 
516 	mutex_lock(&component_mutex);
517 	master = __master_find(dev, ops);
518 	if (master) {
519 		take_down_master(master);
520 		free_master(master);
521 	}
522 	mutex_unlock(&component_mutex);
523 }
524 EXPORT_SYMBOL_GPL(component_master_del);
525 
526 static void component_unbind(struct component *component,
527 	struct master *master, void *data)
528 {
529 	WARN_ON(!component->bound);
530 
531 	component->ops->unbind(component->dev, master->dev, data);
532 	component->bound = false;
533 
534 	/* Release all resources claimed in the binding of this component */
535 	devres_release_group(component->dev, component);
536 }
537 
538 /**
539  * component_unbind_all - unbind all components of an aggregate driver
540  * @master_dev: device with the aggregate driver
541  * @data: opaque pointer, passed to all components
542  *
543  * Unbinds all components of the aggregate @dev by passing @data to their
544  * &component_ops.unbind functions. Should be called from
545  * &component_master_ops.unbind.
546  */
547 void component_unbind_all(struct device *master_dev, void *data)
548 {
549 	struct master *master;
550 	struct component *c;
551 	size_t i;
552 
553 	WARN_ON(!mutex_is_locked(&component_mutex));
554 
555 	master = __master_find(master_dev, NULL);
556 	if (!master)
557 		return;
558 
559 	/* Unbind components in reverse order */
560 	for (i = master->match->num; i--; )
561 		if (!master->match->compare[i].duplicate) {
562 			c = master->match->compare[i].component;
563 			component_unbind(c, master, data);
564 		}
565 }
566 EXPORT_SYMBOL_GPL(component_unbind_all);
567 
568 static int component_bind(struct component *component, struct master *master,
569 	void *data)
570 {
571 	int ret;
572 
573 	/*
574 	 * Each component initialises inside its own devres group.
575 	 * This allows us to roll-back a failed component without
576 	 * affecting anything else.
577 	 */
578 	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
579 		return -ENOMEM;
580 
581 	/*
582 	 * Also open a group for the device itself: this allows us
583 	 * to release the resources claimed against the sub-device
584 	 * at the appropriate moment.
585 	 */
586 	if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
587 		devres_release_group(master->dev, NULL);
588 		return -ENOMEM;
589 	}
590 
591 	dev_dbg(master->dev, "binding %s (ops %ps)\n",
592 		dev_name(component->dev), component->ops);
593 
594 	ret = component->ops->bind(component->dev, master->dev, data);
595 	if (!ret) {
596 		component->bound = true;
597 
598 		/*
599 		 * Close the component device's group so that resources
600 		 * allocated in the binding are encapsulated for removal
601 		 * at unbind.  Remove the group on the DRM device as we
602 		 * can clean those resources up independently.
603 		 */
604 		devres_close_group(component->dev, NULL);
605 		devres_remove_group(master->dev, NULL);
606 
607 		dev_info(master->dev, "bound %s (ops %ps)\n",
608 			 dev_name(component->dev), component->ops);
609 	} else {
610 		devres_release_group(component->dev, NULL);
611 		devres_release_group(master->dev, NULL);
612 
613 		dev_err(master->dev, "failed to bind %s (ops %ps): %d\n",
614 			dev_name(component->dev), component->ops, ret);
615 	}
616 
617 	return ret;
618 }
619 
620 /**
621  * component_bind_all - bind all components of an aggregate driver
622  * @master_dev: device with the aggregate driver
623  * @data: opaque pointer, passed to all components
624  *
625  * Binds all components of the aggregate @dev by passing @data to their
626  * &component_ops.bind functions. Should be called from
627  * &component_master_ops.bind.
628  */
629 int component_bind_all(struct device *master_dev, void *data)
630 {
631 	struct master *master;
632 	struct component *c;
633 	size_t i;
634 	int ret = 0;
635 
636 	WARN_ON(!mutex_is_locked(&component_mutex));
637 
638 	master = __master_find(master_dev, NULL);
639 	if (!master)
640 		return -EINVAL;
641 
642 	/* Bind components in match order */
643 	for (i = 0; i < master->match->num; i++)
644 		if (!master->match->compare[i].duplicate) {
645 			c = master->match->compare[i].component;
646 			ret = component_bind(c, master, data);
647 			if (ret)
648 				break;
649 		}
650 
651 	if (ret != 0) {
652 		for (; i > 0; i--)
653 			if (!master->match->compare[i - 1].duplicate) {
654 				c = master->match->compare[i - 1].component;
655 				component_unbind(c, master, data);
656 			}
657 	}
658 
659 	return ret;
660 }
661 EXPORT_SYMBOL_GPL(component_bind_all);
662 
663 static int __component_add(struct device *dev, const struct component_ops *ops,
664 	int subcomponent)
665 {
666 	struct component *component;
667 	int ret;
668 
669 	component = kzalloc(sizeof(*component), GFP_KERNEL);
670 	if (!component)
671 		return -ENOMEM;
672 
673 	component->ops = ops;
674 	component->dev = dev;
675 	component->subcomponent = subcomponent;
676 
677 	dev_dbg(dev, "adding component (ops %ps)\n", ops);
678 
679 	mutex_lock(&component_mutex);
680 	list_add_tail(&component->node, &component_list);
681 
682 	ret = try_to_bring_up_masters(component);
683 	if (ret < 0) {
684 		if (component->master)
685 			remove_component(component->master, component);
686 		list_del(&component->node);
687 
688 		kfree(component);
689 	}
690 	mutex_unlock(&component_mutex);
691 
692 	return ret < 0 ? ret : 0;
693 }
694 
695 /**
696  * component_add_typed - register a component
697  * @dev: component device
698  * @ops: component callbacks
699  * @subcomponent: nonzero identifier for subcomponents
700  *
701  * Register a new component for @dev. Functions in @ops will be call when the
702  * aggregate driver is ready to bind the overall driver by calling
703  * component_bind_all(). See also &struct component_ops.
704  *
705  * @subcomponent must be nonzero and is used to differentiate between multiple
706  * components registerd on the same device @dev. These components are match
707  * using component_match_add_typed().
708  *
709  * The component needs to be unregistered at driver unload/disconnect by
710  * calling component_del().
711  *
712  * See also component_add().
713  */
714 int component_add_typed(struct device *dev, const struct component_ops *ops,
715 	int subcomponent)
716 {
717 	if (WARN_ON(subcomponent == 0))
718 		return -EINVAL;
719 
720 	return __component_add(dev, ops, subcomponent);
721 }
722 EXPORT_SYMBOL_GPL(component_add_typed);
723 
724 /**
725  * component_add - register a component
726  * @dev: component device
727  * @ops: component callbacks
728  *
729  * Register a new component for @dev. Functions in @ops will be called when the
730  * aggregate driver is ready to bind the overall driver by calling
731  * component_bind_all(). See also &struct component_ops.
732  *
733  * The component needs to be unregistered at driver unload/disconnect by
734  * calling component_del().
735  *
736  * See also component_add_typed() for a variant that allows multipled different
737  * components on the same device.
738  */
739 int component_add(struct device *dev, const struct component_ops *ops)
740 {
741 	return __component_add(dev, ops, 0);
742 }
743 EXPORT_SYMBOL_GPL(component_add);
744 
745 /**
746  * component_del - unregister a component
747  * @dev: component device
748  * @ops: component callbacks
749  *
750  * Unregister a component added with component_add(). If the component is bound
751  * into an aggregate driver, this will force the entire aggregate driver, including
752  * all its components, to be unbound.
753  */
754 void component_del(struct device *dev, const struct component_ops *ops)
755 {
756 	struct component *c, *component = NULL;
757 
758 	mutex_lock(&component_mutex);
759 	list_for_each_entry(c, &component_list, node)
760 		if (c->dev == dev && c->ops == ops) {
761 			list_del(&c->node);
762 			component = c;
763 			break;
764 		}
765 
766 	if (component && component->master) {
767 		take_down_master(component->master);
768 		remove_component(component->master, component);
769 	}
770 
771 	mutex_unlock(&component_mutex);
772 
773 	WARN_ON(!component);
774 	kfree(component);
775 }
776 EXPORT_SYMBOL_GPL(component_del);
777