xref: /linux/drivers/base/component.c (revision 88a8e278ff0b6b461bf39d4ace17384e976a3f3f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Componentized device handling.
4  *
5  * This is work in progress.  We gather up the component devices into a list,
6  * and bind them when instructed.  At the moment, we're specific to the DRM
7  * subsystem, and only handles one master device, but this doesn't have to be
8  * the case.
9  */
10 #include <linux/component.h>
11 #include <linux/device.h>
12 #include <linux/kref.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/slab.h>
16 #include <linux/debugfs.h>
17 
18 /**
19  * DOC: overview
20  *
21  * The component helper allows drivers to collect a pile of sub-devices,
22  * including their bound drivers, into an aggregate driver. Various subsystems
23  * already provide functions to get hold of such components, e.g.
24  * of_clk_get_by_name(). The component helper can be used when such a
25  * subsystem-specific way to find a device is not available: The component
26  * helper fills the niche of aggregate drivers for specific hardware, where
27  * further standardization into a subsystem would not be practical. The common
28  * example is when a logical device (e.g. a DRM display driver) is spread around
29  * the SoC on various components (scanout engines, blending blocks, transcoders
30  * for various outputs and so on).
31  *
32  * The component helper also doesn't solve runtime dependencies, e.g. for system
33  * suspend and resume operations. See also :ref:`device links<device_link>`.
34  *
35  * Components are registered using component_add() and unregistered with
36  * component_del(), usually from the driver's probe and disconnect functions.
37  *
38  * Aggregate drivers first assemble a component match list of what they need
39  * using component_match_add(). This is then registered as an aggregate driver
40  * using component_master_add_with_match(), and unregistered using
41  * component_master_del().
42  */
43 
44 struct component;
45 
46 struct component_match_array {
47 	void *data;
48 	int (*compare)(struct device *, void *);
49 	int (*compare_typed)(struct device *, int, void *);
50 	void (*release)(struct device *, void *);
51 	struct component *component;
52 	bool duplicate;
53 };
54 
55 struct component_match {
56 	size_t alloc;
57 	size_t num;
58 	struct component_match_array *compare;
59 };
60 
61 struct master {
62 	struct list_head node;
63 	bool bound;
64 
65 	const struct component_master_ops *ops;
66 	struct device *dev;
67 	struct component_match *match;
68 	struct dentry *dentry;
69 };
70 
71 struct component {
72 	struct list_head node;
73 	struct master *master;
74 	bool bound;
75 
76 	const struct component_ops *ops;
77 	int subcomponent;
78 	struct device *dev;
79 };
80 
81 static DEFINE_MUTEX(component_mutex);
82 static LIST_HEAD(component_list);
83 static LIST_HEAD(masters);
84 
85 #ifdef CONFIG_DEBUG_FS
86 
87 static struct dentry *component_debugfs_dir;
88 
89 static int component_devices_show(struct seq_file *s, void *data)
90 {
91 	struct master *m = s->private;
92 	struct component_match *match = m->match;
93 	size_t i;
94 
95 	mutex_lock(&component_mutex);
96 	seq_printf(s, "%-40s %20s\n", "master name", "status");
97 	seq_puts(s, "-------------------------------------------------------------\n");
98 	seq_printf(s, "%-40s %20s\n\n",
99 		   dev_name(m->dev), m->bound ? "bound" : "not bound");
100 
101 	seq_printf(s, "%-40s %20s\n", "device name", "status");
102 	seq_puts(s, "-------------------------------------------------------------\n");
103 	for (i = 0; i < match->num; i++) {
104 		struct component *component = match->compare[i].component;
105 
106 		seq_printf(s, "%-40s %20s\n",
107 			   component ? dev_name(component->dev) : "(unknown)",
108 			   component ? (component->bound ? "bound" : "not bound") : "not registered");
109 	}
110 	mutex_unlock(&component_mutex);
111 
112 	return 0;
113 }
114 
115 DEFINE_SHOW_ATTRIBUTE(component_devices);
116 
117 static int __init component_debug_init(void)
118 {
119 	component_debugfs_dir = debugfs_create_dir("device_component", NULL);
120 
121 	return 0;
122 }
123 
124 core_initcall(component_debug_init);
125 
126 static void component_master_debugfs_add(struct master *m)
127 {
128 	m->dentry = debugfs_create_file(dev_name(m->dev), 0444,
129 					component_debugfs_dir,
130 					m, &component_devices_fops);
131 }
132 
133 static void component_master_debugfs_del(struct master *m)
134 {
135 	debugfs_remove(m->dentry);
136 	m->dentry = NULL;
137 }
138 
139 #else
140 
141 static void component_master_debugfs_add(struct master *m)
142 { }
143 
144 static void component_master_debugfs_del(struct master *m)
145 { }
146 
147 #endif
148 
149 static struct master *__master_find(struct device *dev,
150 	const struct component_master_ops *ops)
151 {
152 	struct master *m;
153 
154 	list_for_each_entry(m, &masters, node)
155 		if (m->dev == dev && (!ops || m->ops == ops))
156 			return m;
157 
158 	return NULL;
159 }
160 
161 static struct component *find_component(struct master *master,
162 	struct component_match_array *mc)
163 {
164 	struct component *c;
165 
166 	list_for_each_entry(c, &component_list, node) {
167 		if (c->master && c->master != master)
168 			continue;
169 
170 		if (mc->compare && mc->compare(c->dev, mc->data))
171 			return c;
172 
173 		if (mc->compare_typed &&
174 		    mc->compare_typed(c->dev, c->subcomponent, mc->data))
175 			return c;
176 	}
177 
178 	return NULL;
179 }
180 
181 static int find_components(struct master *master)
182 {
183 	struct component_match *match = master->match;
184 	size_t i;
185 	int ret = 0;
186 
187 	/*
188 	 * Scan the array of match functions and attach
189 	 * any components which are found to this master.
190 	 */
191 	for (i = 0; i < match->num; i++) {
192 		struct component_match_array *mc = &match->compare[i];
193 		struct component *c;
194 
195 		dev_dbg(master->dev, "Looking for component %zu\n", i);
196 
197 		if (match->compare[i].component)
198 			continue;
199 
200 		c = find_component(master, mc);
201 		if (!c) {
202 			ret = -ENXIO;
203 			break;
204 		}
205 
206 		dev_dbg(master->dev, "found component %s, duplicate %u\n", dev_name(c->dev), !!c->master);
207 
208 		/* Attach this component to the master */
209 		match->compare[i].duplicate = !!c->master;
210 		match->compare[i].component = c;
211 		c->master = master;
212 	}
213 	return ret;
214 }
215 
216 /* Detach component from associated master */
217 static void remove_component(struct master *master, struct component *c)
218 {
219 	size_t i;
220 
221 	/* Detach the component from this master. */
222 	for (i = 0; i < master->match->num; i++)
223 		if (master->match->compare[i].component == c)
224 			master->match->compare[i].component = NULL;
225 }
226 
227 /*
228  * Try to bring up a master.  If component is NULL, we're interested in
229  * this master, otherwise it's a component which must be present to try
230  * and bring up the master.
231  *
232  * Returns 1 for successful bringup, 0 if not ready, or -ve errno.
233  */
234 static int try_to_bring_up_master(struct master *master,
235 	struct component *component)
236 {
237 	int ret;
238 
239 	dev_dbg(master->dev, "trying to bring up master\n");
240 
241 	if (find_components(master)) {
242 		dev_dbg(master->dev, "master has incomplete components\n");
243 		return 0;
244 	}
245 
246 	if (component && component->master != master) {
247 		dev_dbg(master->dev, "master is not for this component (%s)\n",
248 			dev_name(component->dev));
249 		return 0;
250 	}
251 
252 	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
253 		return -ENOMEM;
254 
255 	/* Found all components */
256 	ret = master->ops->bind(master->dev);
257 	if (ret < 0) {
258 		devres_release_group(master->dev, NULL);
259 		if (ret != -EPROBE_DEFER)
260 			dev_info(master->dev, "master bind failed: %d\n", ret);
261 		return ret;
262 	}
263 
264 	master->bound = true;
265 	return 1;
266 }
267 
268 static int try_to_bring_up_masters(struct component *component)
269 {
270 	struct master *m;
271 	int ret = 0;
272 
273 	list_for_each_entry(m, &masters, node) {
274 		if (!m->bound) {
275 			ret = try_to_bring_up_master(m, component);
276 			if (ret != 0)
277 				break;
278 		}
279 	}
280 
281 	return ret;
282 }
283 
284 static void take_down_master(struct master *master)
285 {
286 	if (master->bound) {
287 		master->ops->unbind(master->dev);
288 		devres_release_group(master->dev, NULL);
289 		master->bound = false;
290 	}
291 }
292 
293 static void component_match_release(struct device *master,
294 	struct component_match *match)
295 {
296 	unsigned int i;
297 
298 	for (i = 0; i < match->num; i++) {
299 		struct component_match_array *mc = &match->compare[i];
300 
301 		if (mc->release)
302 			mc->release(master, mc->data);
303 	}
304 
305 	kfree(match->compare);
306 }
307 
308 static void devm_component_match_release(struct device *dev, void *res)
309 {
310 	component_match_release(dev, res);
311 }
312 
313 static int component_match_realloc(struct device *dev,
314 	struct component_match *match, size_t num)
315 {
316 	struct component_match_array *new;
317 
318 	if (match->alloc == num)
319 		return 0;
320 
321 	new = kmalloc_array(num, sizeof(*new), GFP_KERNEL);
322 	if (!new)
323 		return -ENOMEM;
324 
325 	if (match->compare) {
326 		memcpy(new, match->compare, sizeof(*new) *
327 					    min(match->num, num));
328 		kfree(match->compare);
329 	}
330 	match->compare = new;
331 	match->alloc = num;
332 
333 	return 0;
334 }
335 
336 static void __component_match_add(struct device *master,
337 	struct component_match **matchptr,
338 	void (*release)(struct device *, void *),
339 	int (*compare)(struct device *, void *),
340 	int (*compare_typed)(struct device *, int, void *),
341 	void *compare_data)
342 {
343 	struct component_match *match = *matchptr;
344 
345 	if (IS_ERR(match))
346 		return;
347 
348 	if (!match) {
349 		match = devres_alloc(devm_component_match_release,
350 				     sizeof(*match), GFP_KERNEL);
351 		if (!match) {
352 			*matchptr = ERR_PTR(-ENOMEM);
353 			return;
354 		}
355 
356 		devres_add(master, match);
357 
358 		*matchptr = match;
359 	}
360 
361 	if (match->num == match->alloc) {
362 		size_t new_size = match->alloc + 16;
363 		int ret;
364 
365 		ret = component_match_realloc(master, match, new_size);
366 		if (ret) {
367 			*matchptr = ERR_PTR(ret);
368 			return;
369 		}
370 	}
371 
372 	match->compare[match->num].compare = compare;
373 	match->compare[match->num].compare_typed = compare_typed;
374 	match->compare[match->num].release = release;
375 	match->compare[match->num].data = compare_data;
376 	match->compare[match->num].component = NULL;
377 	match->num++;
378 }
379 
380 /**
381  * component_match_add_release - add a component match entry with release callback
382  * @master: device with the aggregate driver
383  * @matchptr: pointer to the list of component matches
384  * @release: release function for @compare_data
385  * @compare: compare function to match against all components
386  * @compare_data: opaque pointer passed to the @compare function
387  *
388  * Adds a new component match to the list stored in @matchptr, which the @master
389  * aggregate driver needs to function. The list of component matches pointed to
390  * by @matchptr must be initialized to NULL before adding the first match. This
391  * only matches against components added with component_add().
392  *
393  * The allocated match list in @matchptr is automatically released using devm
394  * actions, where upon @release will be called to free any references held by
395  * @compare_data, e.g. when @compare_data is a &device_node that must be
396  * released with of_node_put().
397  *
398  * See also component_match_add() and component_match_add_typed().
399  */
400 void component_match_add_release(struct device *master,
401 	struct component_match **matchptr,
402 	void (*release)(struct device *, void *),
403 	int (*compare)(struct device *, void *), void *compare_data)
404 {
405 	__component_match_add(master, matchptr, release, compare, NULL,
406 			      compare_data);
407 }
408 EXPORT_SYMBOL(component_match_add_release);
409 
410 /**
411  * component_match_add_typed - add a component match entry for a typed component
412  * @master: device with the aggregate driver
413  * @matchptr: pointer to the list of component matches
414  * @compare_typed: compare function to match against all typed components
415  * @compare_data: opaque pointer passed to the @compare function
416  *
417  * Adds a new component match to the list stored in @matchptr, which the @master
418  * aggregate driver needs to function. The list of component matches pointed to
419  * by @matchptr must be initialized to NULL before adding the first match. This
420  * only matches against components added with component_add_typed().
421  *
422  * The allocated match list in @matchptr is automatically released using devm
423  * actions.
424  *
425  * See also component_match_add_release() and component_match_add_typed().
426  */
427 void component_match_add_typed(struct device *master,
428 	struct component_match **matchptr,
429 	int (*compare_typed)(struct device *, int, void *), void *compare_data)
430 {
431 	__component_match_add(master, matchptr, NULL, NULL, compare_typed,
432 			      compare_data);
433 }
434 EXPORT_SYMBOL(component_match_add_typed);
435 
436 static void free_master(struct master *master)
437 {
438 	struct component_match *match = master->match;
439 	int i;
440 
441 	component_master_debugfs_del(master);
442 	list_del(&master->node);
443 
444 	if (match) {
445 		for (i = 0; i < match->num; i++) {
446 			struct component *c = match->compare[i].component;
447 			if (c)
448 				c->master = NULL;
449 		}
450 	}
451 
452 	kfree(master);
453 }
454 
455 /**
456  * component_master_add_with_match - register an aggregate driver
457  * @dev: device with the aggregate driver
458  * @ops: callbacks for the aggregate driver
459  * @match: component match list for the aggregate driver
460  *
461  * Registers a new aggregate driver consisting of the components added to @match
462  * by calling one of the component_match_add() functions. Once all components in
463  * @match are available, it will be assembled by calling
464  * &component_master_ops.bind from @ops. Must be unregistered by calling
465  * component_master_del().
466  */
467 int component_master_add_with_match(struct device *dev,
468 	const struct component_master_ops *ops,
469 	struct component_match *match)
470 {
471 	struct master *master;
472 	int ret;
473 
474 	/* Reallocate the match array for its true size */
475 	ret = component_match_realloc(dev, match, match->num);
476 	if (ret)
477 		return ret;
478 
479 	master = kzalloc(sizeof(*master), GFP_KERNEL);
480 	if (!master)
481 		return -ENOMEM;
482 
483 	master->dev = dev;
484 	master->ops = ops;
485 	master->match = match;
486 
487 	component_master_debugfs_add(master);
488 	/* Add to the list of available masters. */
489 	mutex_lock(&component_mutex);
490 	list_add(&master->node, &masters);
491 
492 	ret = try_to_bring_up_master(master, NULL);
493 
494 	if (ret < 0)
495 		free_master(master);
496 
497 	mutex_unlock(&component_mutex);
498 
499 	return ret < 0 ? ret : 0;
500 }
501 EXPORT_SYMBOL_GPL(component_master_add_with_match);
502 
503 /**
504  * component_master_del - unregister an aggregate driver
505  * @dev: device with the aggregate driver
506  * @ops: callbacks for the aggregate driver
507  *
508  * Unregisters an aggregate driver registered with
509  * component_master_add_with_match(). If necessary the aggregate driver is first
510  * disassembled by calling &component_master_ops.unbind from @ops.
511  */
512 void component_master_del(struct device *dev,
513 	const struct component_master_ops *ops)
514 {
515 	struct master *master;
516 
517 	mutex_lock(&component_mutex);
518 	master = __master_find(dev, ops);
519 	if (master) {
520 		take_down_master(master);
521 		free_master(master);
522 	}
523 	mutex_unlock(&component_mutex);
524 }
525 EXPORT_SYMBOL_GPL(component_master_del);
526 
527 static void component_unbind(struct component *component,
528 	struct master *master, void *data)
529 {
530 	WARN_ON(!component->bound);
531 
532 	if (component->ops && component->ops->unbind)
533 		component->ops->unbind(component->dev, master->dev, data);
534 	component->bound = false;
535 
536 	/* Release all resources claimed in the binding of this component */
537 	devres_release_group(component->dev, component);
538 }
539 
540 /**
541  * component_unbind_all - unbind all components of an aggregate driver
542  * @master_dev: device with the aggregate driver
543  * @data: opaque pointer, passed to all components
544  *
545  * Unbinds all components of the aggregate @dev by passing @data to their
546  * &component_ops.unbind functions. Should be called from
547  * &component_master_ops.unbind.
548  */
549 void component_unbind_all(struct device *master_dev, void *data)
550 {
551 	struct master *master;
552 	struct component *c;
553 	size_t i;
554 
555 	WARN_ON(!mutex_is_locked(&component_mutex));
556 
557 	master = __master_find(master_dev, NULL);
558 	if (!master)
559 		return;
560 
561 	/* Unbind components in reverse order */
562 	for (i = master->match->num; i--; )
563 		if (!master->match->compare[i].duplicate) {
564 			c = master->match->compare[i].component;
565 			component_unbind(c, master, data);
566 		}
567 }
568 EXPORT_SYMBOL_GPL(component_unbind_all);
569 
570 static int component_bind(struct component *component, struct master *master,
571 	void *data)
572 {
573 	int ret;
574 
575 	/*
576 	 * Each component initialises inside its own devres group.
577 	 * This allows us to roll-back a failed component without
578 	 * affecting anything else.
579 	 */
580 	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
581 		return -ENOMEM;
582 
583 	/*
584 	 * Also open a group for the device itself: this allows us
585 	 * to release the resources claimed against the sub-device
586 	 * at the appropriate moment.
587 	 */
588 	if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
589 		devres_release_group(master->dev, NULL);
590 		return -ENOMEM;
591 	}
592 
593 	dev_dbg(master->dev, "binding %s (ops %ps)\n",
594 		dev_name(component->dev), component->ops);
595 
596 	ret = component->ops->bind(component->dev, master->dev, data);
597 	if (!ret) {
598 		component->bound = true;
599 
600 		/*
601 		 * Close the component device's group so that resources
602 		 * allocated in the binding are encapsulated for removal
603 		 * at unbind.  Remove the group on the DRM device as we
604 		 * can clean those resources up independently.
605 		 */
606 		devres_close_group(component->dev, NULL);
607 		devres_remove_group(master->dev, NULL);
608 
609 		dev_info(master->dev, "bound %s (ops %ps)\n",
610 			 dev_name(component->dev), component->ops);
611 	} else {
612 		devres_release_group(component->dev, NULL);
613 		devres_release_group(master->dev, NULL);
614 
615 		if (ret != -EPROBE_DEFER)
616 			dev_err(master->dev, "failed to bind %s (ops %ps): %d\n",
617 				dev_name(component->dev), component->ops, ret);
618 	}
619 
620 	return ret;
621 }
622 
623 /**
624  * component_bind_all - bind all components of an aggregate driver
625  * @master_dev: device with the aggregate driver
626  * @data: opaque pointer, passed to all components
627  *
628  * Binds all components of the aggregate @dev by passing @data to their
629  * &component_ops.bind functions. Should be called from
630  * &component_master_ops.bind.
631  */
632 int component_bind_all(struct device *master_dev, void *data)
633 {
634 	struct master *master;
635 	struct component *c;
636 	size_t i;
637 	int ret = 0;
638 
639 	WARN_ON(!mutex_is_locked(&component_mutex));
640 
641 	master = __master_find(master_dev, NULL);
642 	if (!master)
643 		return -EINVAL;
644 
645 	/* Bind components in match order */
646 	for (i = 0; i < master->match->num; i++)
647 		if (!master->match->compare[i].duplicate) {
648 			c = master->match->compare[i].component;
649 			ret = component_bind(c, master, data);
650 			if (ret)
651 				break;
652 		}
653 
654 	if (ret != 0) {
655 		for (; i > 0; i--)
656 			if (!master->match->compare[i - 1].duplicate) {
657 				c = master->match->compare[i - 1].component;
658 				component_unbind(c, master, data);
659 			}
660 	}
661 
662 	return ret;
663 }
664 EXPORT_SYMBOL_GPL(component_bind_all);
665 
666 static int __component_add(struct device *dev, const struct component_ops *ops,
667 	int subcomponent)
668 {
669 	struct component *component;
670 	int ret;
671 
672 	component = kzalloc(sizeof(*component), GFP_KERNEL);
673 	if (!component)
674 		return -ENOMEM;
675 
676 	component->ops = ops;
677 	component->dev = dev;
678 	component->subcomponent = subcomponent;
679 
680 	dev_dbg(dev, "adding component (ops %ps)\n", ops);
681 
682 	mutex_lock(&component_mutex);
683 	list_add_tail(&component->node, &component_list);
684 
685 	ret = try_to_bring_up_masters(component);
686 	if (ret < 0) {
687 		if (component->master)
688 			remove_component(component->master, component);
689 		list_del(&component->node);
690 
691 		kfree(component);
692 	}
693 	mutex_unlock(&component_mutex);
694 
695 	return ret < 0 ? ret : 0;
696 }
697 
698 /**
699  * component_add_typed - register a component
700  * @dev: component device
701  * @ops: component callbacks
702  * @subcomponent: nonzero identifier for subcomponents
703  *
704  * Register a new component for @dev. Functions in @ops will be call when the
705  * aggregate driver is ready to bind the overall driver by calling
706  * component_bind_all(). See also &struct component_ops.
707  *
708  * @subcomponent must be nonzero and is used to differentiate between multiple
709  * components registerd on the same device @dev. These components are match
710  * using component_match_add_typed().
711  *
712  * The component needs to be unregistered at driver unload/disconnect by
713  * calling component_del().
714  *
715  * See also component_add().
716  */
717 int component_add_typed(struct device *dev, const struct component_ops *ops,
718 	int subcomponent)
719 {
720 	if (WARN_ON(subcomponent == 0))
721 		return -EINVAL;
722 
723 	return __component_add(dev, ops, subcomponent);
724 }
725 EXPORT_SYMBOL_GPL(component_add_typed);
726 
727 /**
728  * component_add - register a component
729  * @dev: component device
730  * @ops: component callbacks
731  *
732  * Register a new component for @dev. Functions in @ops will be called when the
733  * aggregate driver is ready to bind the overall driver by calling
734  * component_bind_all(). See also &struct component_ops.
735  *
736  * The component needs to be unregistered at driver unload/disconnect by
737  * calling component_del().
738  *
739  * See also component_add_typed() for a variant that allows multipled different
740  * components on the same device.
741  */
742 int component_add(struct device *dev, const struct component_ops *ops)
743 {
744 	return __component_add(dev, ops, 0);
745 }
746 EXPORT_SYMBOL_GPL(component_add);
747 
748 /**
749  * component_del - unregister a component
750  * @dev: component device
751  * @ops: component callbacks
752  *
753  * Unregister a component added with component_add(). If the component is bound
754  * into an aggregate driver, this will force the entire aggregate driver, including
755  * all its components, to be unbound.
756  */
757 void component_del(struct device *dev, const struct component_ops *ops)
758 {
759 	struct component *c, *component = NULL;
760 
761 	mutex_lock(&component_mutex);
762 	list_for_each_entry(c, &component_list, node)
763 		if (c->dev == dev && c->ops == ops) {
764 			list_del(&c->node);
765 			component = c;
766 			break;
767 		}
768 
769 	if (component && component->master) {
770 		take_down_master(component->master);
771 		remove_component(component->master, component);
772 	}
773 
774 	mutex_unlock(&component_mutex);
775 
776 	WARN_ON(!component);
777 	kfree(component);
778 }
779 EXPORT_SYMBOL_GPL(component_del);
780