1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arch specific cpu topology information 4 * 5 * Copyright (C) 2016, ARM Ltd. 6 * Written by: Juri Lelli, ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/cacheinfo.h> 11 #include <linux/cpu.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/sched/topology.h> 17 #include <linux/cpuset.h> 18 #include <linux/cpumask.h> 19 #include <linux/init.h> 20 #include <linux/rcupdate.h> 21 #include <linux/sched.h> 22 #include <linux/units.h> 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/thermal_pressure.h> 26 27 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); 28 static struct cpumask scale_freq_counters_mask; 29 static bool scale_freq_invariant; 30 DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1; 31 EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref); 32 33 static bool supports_scale_freq_counters(const struct cpumask *cpus) 34 { 35 return cpumask_subset(cpus, &scale_freq_counters_mask); 36 } 37 38 bool topology_scale_freq_invariant(void) 39 { 40 return cpufreq_supports_freq_invariance() || 41 supports_scale_freq_counters(cpu_online_mask); 42 } 43 44 static void update_scale_freq_invariant(bool status) 45 { 46 if (scale_freq_invariant == status) 47 return; 48 49 /* 50 * Task scheduler behavior depends on frequency invariance support, 51 * either cpufreq or counter driven. If the support status changes as 52 * a result of counter initialisation and use, retrigger the build of 53 * scheduling domains to ensure the information is propagated properly. 54 */ 55 if (topology_scale_freq_invariant() == status) { 56 scale_freq_invariant = status; 57 rebuild_sched_domains_energy(); 58 } 59 } 60 61 void topology_set_scale_freq_source(struct scale_freq_data *data, 62 const struct cpumask *cpus) 63 { 64 struct scale_freq_data *sfd; 65 int cpu; 66 67 /* 68 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is 69 * supported by cpufreq. 70 */ 71 if (cpumask_empty(&scale_freq_counters_mask)) 72 scale_freq_invariant = topology_scale_freq_invariant(); 73 74 rcu_read_lock(); 75 76 for_each_cpu(cpu, cpus) { 77 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 78 79 /* Use ARCH provided counters whenever possible */ 80 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { 81 rcu_assign_pointer(per_cpu(sft_data, cpu), data); 82 cpumask_set_cpu(cpu, &scale_freq_counters_mask); 83 } 84 } 85 86 rcu_read_unlock(); 87 88 update_scale_freq_invariant(true); 89 } 90 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); 91 92 void topology_clear_scale_freq_source(enum scale_freq_source source, 93 const struct cpumask *cpus) 94 { 95 struct scale_freq_data *sfd; 96 int cpu; 97 98 rcu_read_lock(); 99 100 for_each_cpu(cpu, cpus) { 101 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 102 103 if (sfd && sfd->source == source) { 104 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); 105 cpumask_clear_cpu(cpu, &scale_freq_counters_mask); 106 } 107 } 108 109 rcu_read_unlock(); 110 111 /* 112 * Make sure all references to previous sft_data are dropped to avoid 113 * use-after-free races. 114 */ 115 synchronize_rcu(); 116 117 update_scale_freq_invariant(false); 118 } 119 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); 120 121 void topology_scale_freq_tick(void) 122 { 123 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); 124 125 if (sfd) 126 sfd->set_freq_scale(); 127 } 128 129 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; 130 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); 131 132 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, 133 unsigned long max_freq) 134 { 135 unsigned long scale; 136 int i; 137 138 if (WARN_ON_ONCE(!cur_freq || !max_freq)) 139 return; 140 141 /* 142 * If the use of counters for FIE is enabled, just return as we don't 143 * want to update the scale factor with information from CPUFREQ. 144 * Instead the scale factor will be updated from arch_scale_freq_tick. 145 */ 146 if (supports_scale_freq_counters(cpus)) 147 return; 148 149 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; 150 151 for_each_cpu(i, cpus) 152 per_cpu(arch_freq_scale, i) = scale; 153 } 154 155 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; 156 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale); 157 158 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) 159 { 160 per_cpu(cpu_scale, cpu) = capacity; 161 } 162 163 DEFINE_PER_CPU(unsigned long, thermal_pressure); 164 165 /** 166 * topology_update_thermal_pressure() - Update thermal pressure for CPUs 167 * @cpus : The related CPUs for which capacity has been reduced 168 * @capped_freq : The maximum allowed frequency that CPUs can run at 169 * 170 * Update the value of thermal pressure for all @cpus in the mask. The 171 * cpumask should include all (online+offline) affected CPUs, to avoid 172 * operating on stale data when hot-plug is used for some CPUs. The 173 * @capped_freq reflects the currently allowed max CPUs frequency due to 174 * thermal capping. It might be also a boost frequency value, which is bigger 175 * than the internal 'capacity_freq_ref' max frequency. In such case the 176 * pressure value should simply be removed, since this is an indication that 177 * there is no thermal throttling. The @capped_freq must be provided in kHz. 178 */ 179 void topology_update_thermal_pressure(const struct cpumask *cpus, 180 unsigned long capped_freq) 181 { 182 unsigned long max_capacity, capacity, th_pressure; 183 u32 max_freq; 184 int cpu; 185 186 cpu = cpumask_first(cpus); 187 max_capacity = arch_scale_cpu_capacity(cpu); 188 max_freq = arch_scale_freq_ref(cpu); 189 190 /* 191 * Handle properly the boost frequencies, which should simply clean 192 * the thermal pressure value. 193 */ 194 if (max_freq <= capped_freq) 195 capacity = max_capacity; 196 else 197 capacity = mult_frac(max_capacity, capped_freq, max_freq); 198 199 th_pressure = max_capacity - capacity; 200 201 trace_thermal_pressure_update(cpu, th_pressure); 202 203 for_each_cpu(cpu, cpus) 204 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 205 } 206 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure); 207 208 static ssize_t cpu_capacity_show(struct device *dev, 209 struct device_attribute *attr, 210 char *buf) 211 { 212 struct cpu *cpu = container_of(dev, struct cpu, dev); 213 214 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); 215 } 216 217 static void update_topology_flags_workfn(struct work_struct *work); 218 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); 219 220 static DEVICE_ATTR_RO(cpu_capacity); 221 222 static int cpu_capacity_sysctl_add(unsigned int cpu) 223 { 224 struct device *cpu_dev = get_cpu_device(cpu); 225 226 if (!cpu_dev) 227 return -ENOENT; 228 229 device_create_file(cpu_dev, &dev_attr_cpu_capacity); 230 231 return 0; 232 } 233 234 static int cpu_capacity_sysctl_remove(unsigned int cpu) 235 { 236 struct device *cpu_dev = get_cpu_device(cpu); 237 238 if (!cpu_dev) 239 return -ENOENT; 240 241 device_remove_file(cpu_dev, &dev_attr_cpu_capacity); 242 243 return 0; 244 } 245 246 static int register_cpu_capacity_sysctl(void) 247 { 248 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity", 249 cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove); 250 251 return 0; 252 } 253 subsys_initcall(register_cpu_capacity_sysctl); 254 255 static int update_topology; 256 257 int topology_update_cpu_topology(void) 258 { 259 return update_topology; 260 } 261 262 /* 263 * Updating the sched_domains can't be done directly from cpufreq callbacks 264 * due to locking, so queue the work for later. 265 */ 266 static void update_topology_flags_workfn(struct work_struct *work) 267 { 268 update_topology = 1; 269 rebuild_sched_domains(); 270 pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); 271 update_topology = 0; 272 } 273 274 static u32 *raw_capacity; 275 276 static int free_raw_capacity(void) 277 { 278 kfree(raw_capacity); 279 raw_capacity = NULL; 280 281 return 0; 282 } 283 284 void topology_normalize_cpu_scale(void) 285 { 286 u64 capacity; 287 u64 capacity_scale; 288 int cpu; 289 290 if (!raw_capacity) 291 return; 292 293 capacity_scale = 1; 294 for_each_possible_cpu(cpu) { 295 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu); 296 capacity_scale = max(capacity, capacity_scale); 297 } 298 299 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); 300 for_each_possible_cpu(cpu) { 301 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu); 302 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 303 capacity_scale); 304 topology_set_cpu_scale(cpu, capacity); 305 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 306 cpu, topology_get_cpu_scale(cpu)); 307 } 308 } 309 310 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) 311 { 312 struct clk *cpu_clk; 313 static bool cap_parsing_failed; 314 int ret; 315 u32 cpu_capacity; 316 317 if (cap_parsing_failed) 318 return false; 319 320 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", 321 &cpu_capacity); 322 if (!ret) { 323 if (!raw_capacity) { 324 raw_capacity = kcalloc(num_possible_cpus(), 325 sizeof(*raw_capacity), 326 GFP_KERNEL); 327 if (!raw_capacity) { 328 cap_parsing_failed = true; 329 return false; 330 } 331 } 332 raw_capacity[cpu] = cpu_capacity; 333 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", 334 cpu_node, raw_capacity[cpu]); 335 336 /* 337 * Update capacity_freq_ref for calculating early boot CPU capacities. 338 * For non-clk CPU DVFS mechanism, there's no way to get the 339 * frequency value now, assuming they are running at the same 340 * frequency (by keeping the initial capacity_freq_ref value). 341 */ 342 cpu_clk = of_clk_get(cpu_node, 0); 343 if (!PTR_ERR_OR_ZERO(cpu_clk)) { 344 per_cpu(capacity_freq_ref, cpu) = 345 clk_get_rate(cpu_clk) / HZ_PER_KHZ; 346 clk_put(cpu_clk); 347 } 348 } else { 349 if (raw_capacity) { 350 pr_err("cpu_capacity: missing %pOF raw capacity\n", 351 cpu_node); 352 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 353 } 354 cap_parsing_failed = true; 355 free_raw_capacity(); 356 } 357 358 return !ret; 359 } 360 361 void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate) 362 { 363 } 364 365 #ifdef CONFIG_ACPI_CPPC_LIB 366 #include <acpi/cppc_acpi.h> 367 368 void topology_init_cpu_capacity_cppc(void) 369 { 370 u64 capacity, capacity_scale = 0; 371 struct cppc_perf_caps perf_caps; 372 int cpu; 373 374 if (likely(!acpi_cpc_valid())) 375 return; 376 377 raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), 378 GFP_KERNEL); 379 if (!raw_capacity) 380 return; 381 382 for_each_possible_cpu(cpu) { 383 if (!cppc_get_perf_caps(cpu, &perf_caps) && 384 (perf_caps.highest_perf >= perf_caps.nominal_perf) && 385 (perf_caps.highest_perf >= perf_caps.lowest_perf)) { 386 raw_capacity[cpu] = perf_caps.highest_perf; 387 capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]); 388 389 per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]); 390 391 pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n", 392 cpu, raw_capacity[cpu]); 393 continue; 394 } 395 396 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu); 397 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 398 goto exit; 399 } 400 401 for_each_possible_cpu(cpu) { 402 freq_inv_set_max_ratio(cpu, 403 per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ); 404 405 capacity = raw_capacity[cpu]; 406 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 407 capacity_scale); 408 topology_set_cpu_scale(cpu, capacity); 409 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 410 cpu, topology_get_cpu_scale(cpu)); 411 } 412 413 schedule_work(&update_topology_flags_work); 414 pr_debug("cpu_capacity: cpu_capacity initialization done\n"); 415 416 exit: 417 free_raw_capacity(); 418 } 419 #endif 420 421 #ifdef CONFIG_CPU_FREQ 422 static cpumask_var_t cpus_to_visit; 423 static void parsing_done_workfn(struct work_struct *work); 424 static DECLARE_WORK(parsing_done_work, parsing_done_workfn); 425 426 static int 427 init_cpu_capacity_callback(struct notifier_block *nb, 428 unsigned long val, 429 void *data) 430 { 431 struct cpufreq_policy *policy = data; 432 int cpu; 433 434 if (!raw_capacity) 435 return 0; 436 437 if (val != CPUFREQ_CREATE_POLICY) 438 return 0; 439 440 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", 441 cpumask_pr_args(policy->related_cpus), 442 cpumask_pr_args(cpus_to_visit)); 443 444 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); 445 446 for_each_cpu(cpu, policy->related_cpus) { 447 per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq; 448 freq_inv_set_max_ratio(cpu, 449 per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ); 450 } 451 452 if (cpumask_empty(cpus_to_visit)) { 453 topology_normalize_cpu_scale(); 454 schedule_work(&update_topology_flags_work); 455 free_raw_capacity(); 456 pr_debug("cpu_capacity: parsing done\n"); 457 schedule_work(&parsing_done_work); 458 } 459 460 return 0; 461 } 462 463 static struct notifier_block init_cpu_capacity_notifier = { 464 .notifier_call = init_cpu_capacity_callback, 465 }; 466 467 static int __init register_cpufreq_notifier(void) 468 { 469 int ret; 470 471 /* 472 * On ACPI-based systems skip registering cpufreq notifier as cpufreq 473 * information is not needed for cpu capacity initialization. 474 */ 475 if (!acpi_disabled || !raw_capacity) 476 return -EINVAL; 477 478 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) 479 return -ENOMEM; 480 481 cpumask_copy(cpus_to_visit, cpu_possible_mask); 482 483 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, 484 CPUFREQ_POLICY_NOTIFIER); 485 486 if (ret) 487 free_cpumask_var(cpus_to_visit); 488 489 return ret; 490 } 491 core_initcall(register_cpufreq_notifier); 492 493 static void parsing_done_workfn(struct work_struct *work) 494 { 495 cpufreq_unregister_notifier(&init_cpu_capacity_notifier, 496 CPUFREQ_POLICY_NOTIFIER); 497 free_cpumask_var(cpus_to_visit); 498 } 499 500 #else 501 core_initcall(free_raw_capacity); 502 #endif 503 504 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 505 /* 506 * This function returns the logic cpu number of the node. 507 * There are basically three kinds of return values: 508 * (1) logic cpu number which is > 0. 509 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but 510 * there is no possible logical CPU in the kernel to match. This happens 511 * when CONFIG_NR_CPUS is configure to be smaller than the number of 512 * CPU nodes in DT. We need to just ignore this case. 513 * (3) -1 if the node does not exist in the device tree 514 */ 515 static int __init get_cpu_for_node(struct device_node *node) 516 { 517 struct device_node *cpu_node; 518 int cpu; 519 520 cpu_node = of_parse_phandle(node, "cpu", 0); 521 if (!cpu_node) 522 return -1; 523 524 cpu = of_cpu_node_to_id(cpu_node); 525 if (cpu >= 0) 526 topology_parse_cpu_capacity(cpu_node, cpu); 527 else 528 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", 529 cpu_node, cpumask_pr_args(cpu_possible_mask)); 530 531 of_node_put(cpu_node); 532 return cpu; 533 } 534 535 static int __init parse_core(struct device_node *core, int package_id, 536 int cluster_id, int core_id) 537 { 538 char name[20]; 539 bool leaf = true; 540 int i = 0; 541 int cpu; 542 struct device_node *t; 543 544 do { 545 snprintf(name, sizeof(name), "thread%d", i); 546 t = of_get_child_by_name(core, name); 547 if (t) { 548 leaf = false; 549 cpu = get_cpu_for_node(t); 550 if (cpu >= 0) { 551 cpu_topology[cpu].package_id = package_id; 552 cpu_topology[cpu].cluster_id = cluster_id; 553 cpu_topology[cpu].core_id = core_id; 554 cpu_topology[cpu].thread_id = i; 555 } else if (cpu != -ENODEV) { 556 pr_err("%pOF: Can't get CPU for thread\n", t); 557 of_node_put(t); 558 return -EINVAL; 559 } 560 of_node_put(t); 561 } 562 i++; 563 } while (t); 564 565 cpu = get_cpu_for_node(core); 566 if (cpu >= 0) { 567 if (!leaf) { 568 pr_err("%pOF: Core has both threads and CPU\n", 569 core); 570 return -EINVAL; 571 } 572 573 cpu_topology[cpu].package_id = package_id; 574 cpu_topology[cpu].cluster_id = cluster_id; 575 cpu_topology[cpu].core_id = core_id; 576 } else if (leaf && cpu != -ENODEV) { 577 pr_err("%pOF: Can't get CPU for leaf core\n", core); 578 return -EINVAL; 579 } 580 581 return 0; 582 } 583 584 static int __init parse_cluster(struct device_node *cluster, int package_id, 585 int cluster_id, int depth) 586 { 587 char name[20]; 588 bool leaf = true; 589 bool has_cores = false; 590 struct device_node *c; 591 int core_id = 0; 592 int i, ret; 593 594 /* 595 * First check for child clusters; we currently ignore any 596 * information about the nesting of clusters and present the 597 * scheduler with a flat list of them. 598 */ 599 i = 0; 600 do { 601 snprintf(name, sizeof(name), "cluster%d", i); 602 c = of_get_child_by_name(cluster, name); 603 if (c) { 604 leaf = false; 605 ret = parse_cluster(c, package_id, i, depth + 1); 606 if (depth > 0) 607 pr_warn("Topology for clusters of clusters not yet supported\n"); 608 of_node_put(c); 609 if (ret != 0) 610 return ret; 611 } 612 i++; 613 } while (c); 614 615 /* Now check for cores */ 616 i = 0; 617 do { 618 snprintf(name, sizeof(name), "core%d", i); 619 c = of_get_child_by_name(cluster, name); 620 if (c) { 621 has_cores = true; 622 623 if (depth == 0) { 624 pr_err("%pOF: cpu-map children should be clusters\n", 625 c); 626 of_node_put(c); 627 return -EINVAL; 628 } 629 630 if (leaf) { 631 ret = parse_core(c, package_id, cluster_id, 632 core_id++); 633 } else { 634 pr_err("%pOF: Non-leaf cluster with core %s\n", 635 cluster, name); 636 ret = -EINVAL; 637 } 638 639 of_node_put(c); 640 if (ret != 0) 641 return ret; 642 } 643 i++; 644 } while (c); 645 646 if (leaf && !has_cores) 647 pr_warn("%pOF: empty cluster\n", cluster); 648 649 return 0; 650 } 651 652 static int __init parse_socket(struct device_node *socket) 653 { 654 char name[20]; 655 struct device_node *c; 656 bool has_socket = false; 657 int package_id = 0, ret; 658 659 do { 660 snprintf(name, sizeof(name), "socket%d", package_id); 661 c = of_get_child_by_name(socket, name); 662 if (c) { 663 has_socket = true; 664 ret = parse_cluster(c, package_id, -1, 0); 665 of_node_put(c); 666 if (ret != 0) 667 return ret; 668 } 669 package_id++; 670 } while (c); 671 672 if (!has_socket) 673 ret = parse_cluster(socket, 0, -1, 0); 674 675 return ret; 676 } 677 678 static int __init parse_dt_topology(void) 679 { 680 struct device_node *cn, *map; 681 int ret = 0; 682 int cpu; 683 684 cn = of_find_node_by_path("/cpus"); 685 if (!cn) { 686 pr_err("No CPU information found in DT\n"); 687 return 0; 688 } 689 690 /* 691 * When topology is provided cpu-map is essentially a root 692 * cluster with restricted subnodes. 693 */ 694 map = of_get_child_by_name(cn, "cpu-map"); 695 if (!map) 696 goto out; 697 698 ret = parse_socket(map); 699 if (ret != 0) 700 goto out_map; 701 702 topology_normalize_cpu_scale(); 703 704 /* 705 * Check that all cores are in the topology; the SMP code will 706 * only mark cores described in the DT as possible. 707 */ 708 for_each_possible_cpu(cpu) 709 if (cpu_topology[cpu].package_id < 0) { 710 ret = -EINVAL; 711 break; 712 } 713 714 out_map: 715 of_node_put(map); 716 out: 717 of_node_put(cn); 718 return ret; 719 } 720 #endif 721 722 /* 723 * cpu topology table 724 */ 725 struct cpu_topology cpu_topology[NR_CPUS]; 726 EXPORT_SYMBOL_GPL(cpu_topology); 727 728 const struct cpumask *cpu_coregroup_mask(int cpu) 729 { 730 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); 731 732 /* Find the smaller of NUMA, core or LLC siblings */ 733 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { 734 /* not numa in package, lets use the package siblings */ 735 core_mask = &cpu_topology[cpu].core_sibling; 736 } 737 738 if (last_level_cache_is_valid(cpu)) { 739 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) 740 core_mask = &cpu_topology[cpu].llc_sibling; 741 } 742 743 /* 744 * For systems with no shared cpu-side LLC but with clusters defined, 745 * extend core_mask to cluster_siblings. The sched domain builder will 746 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled. 747 */ 748 if (IS_ENABLED(CONFIG_SCHED_CLUSTER) && 749 cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling)) 750 core_mask = &cpu_topology[cpu].cluster_sibling; 751 752 return core_mask; 753 } 754 755 const struct cpumask *cpu_clustergroup_mask(int cpu) 756 { 757 /* 758 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as 759 * cpu_coregroup_mask(). 760 */ 761 if (cpumask_subset(cpu_coregroup_mask(cpu), 762 &cpu_topology[cpu].cluster_sibling)) 763 return topology_sibling_cpumask(cpu); 764 765 return &cpu_topology[cpu].cluster_sibling; 766 } 767 768 void update_siblings_masks(unsigned int cpuid) 769 { 770 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 771 int cpu, ret; 772 773 ret = detect_cache_attributes(cpuid); 774 if (ret && ret != -ENOENT) 775 pr_info("Early cacheinfo allocation failed, ret = %d\n", ret); 776 777 /* update core and thread sibling masks */ 778 for_each_online_cpu(cpu) { 779 cpu_topo = &cpu_topology[cpu]; 780 781 if (last_level_cache_is_shared(cpu, cpuid)) { 782 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); 783 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); 784 } 785 786 if (cpuid_topo->package_id != cpu_topo->package_id) 787 continue; 788 789 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 790 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 791 792 if (cpuid_topo->cluster_id != cpu_topo->cluster_id) 793 continue; 794 795 if (cpuid_topo->cluster_id >= 0) { 796 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling); 797 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling); 798 } 799 800 if (cpuid_topo->core_id != cpu_topo->core_id) 801 continue; 802 803 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 804 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 805 } 806 } 807 808 static void clear_cpu_topology(int cpu) 809 { 810 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 811 812 cpumask_clear(&cpu_topo->llc_sibling); 813 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); 814 815 cpumask_clear(&cpu_topo->cluster_sibling); 816 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling); 817 818 cpumask_clear(&cpu_topo->core_sibling); 819 cpumask_set_cpu(cpu, &cpu_topo->core_sibling); 820 cpumask_clear(&cpu_topo->thread_sibling); 821 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); 822 } 823 824 void __init reset_cpu_topology(void) 825 { 826 unsigned int cpu; 827 828 for_each_possible_cpu(cpu) { 829 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 830 831 cpu_topo->thread_id = -1; 832 cpu_topo->core_id = -1; 833 cpu_topo->cluster_id = -1; 834 cpu_topo->package_id = -1; 835 836 clear_cpu_topology(cpu); 837 } 838 } 839 840 void remove_cpu_topology(unsigned int cpu) 841 { 842 int sibling; 843 844 for_each_cpu(sibling, topology_core_cpumask(cpu)) 845 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 846 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 847 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 848 for_each_cpu(sibling, topology_cluster_cpumask(cpu)) 849 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling)); 850 for_each_cpu(sibling, topology_llc_cpumask(cpu)) 851 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); 852 853 clear_cpu_topology(cpu); 854 } 855 856 __weak int __init parse_acpi_topology(void) 857 { 858 return 0; 859 } 860 861 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 862 void __init init_cpu_topology(void) 863 { 864 int cpu, ret; 865 866 reset_cpu_topology(); 867 ret = parse_acpi_topology(); 868 if (!ret) 869 ret = of_have_populated_dt() && parse_dt_topology(); 870 871 if (ret) { 872 /* 873 * Discard anything that was parsed if we hit an error so we 874 * don't use partial information. But do not return yet to give 875 * arch-specific early cache level detection a chance to run. 876 */ 877 reset_cpu_topology(); 878 } 879 880 for_each_possible_cpu(cpu) { 881 ret = fetch_cache_info(cpu); 882 if (!ret) 883 continue; 884 else if (ret != -ENOENT) 885 pr_err("Early cacheinfo failed, ret = %d\n", ret); 886 return; 887 } 888 } 889 890 void store_cpu_topology(unsigned int cpuid) 891 { 892 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; 893 894 if (cpuid_topo->package_id != -1) 895 goto topology_populated; 896 897 cpuid_topo->thread_id = -1; 898 cpuid_topo->core_id = cpuid; 899 cpuid_topo->package_id = cpu_to_node(cpuid); 900 901 pr_debug("CPU%u: package %d core %d thread %d\n", 902 cpuid, cpuid_topo->package_id, cpuid_topo->core_id, 903 cpuid_topo->thread_id); 904 905 topology_populated: 906 update_siblings_masks(cpuid); 907 } 908 #endif 909