xref: /linux/drivers/base/arch_topology.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/rcupdate.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 
25 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
26 static struct cpumask scale_freq_counters_mask;
27 static bool scale_freq_invariant;
28 
29 static bool supports_scale_freq_counters(const struct cpumask *cpus)
30 {
31 	return cpumask_subset(cpus, &scale_freq_counters_mask);
32 }
33 
34 bool topology_scale_freq_invariant(void)
35 {
36 	return cpufreq_supports_freq_invariance() ||
37 	       supports_scale_freq_counters(cpu_online_mask);
38 }
39 
40 static void update_scale_freq_invariant(bool status)
41 {
42 	if (scale_freq_invariant == status)
43 		return;
44 
45 	/*
46 	 * Task scheduler behavior depends on frequency invariance support,
47 	 * either cpufreq or counter driven. If the support status changes as
48 	 * a result of counter initialisation and use, retrigger the build of
49 	 * scheduling domains to ensure the information is propagated properly.
50 	 */
51 	if (topology_scale_freq_invariant() == status) {
52 		scale_freq_invariant = status;
53 		rebuild_sched_domains_energy();
54 	}
55 }
56 
57 void topology_set_scale_freq_source(struct scale_freq_data *data,
58 				    const struct cpumask *cpus)
59 {
60 	struct scale_freq_data *sfd;
61 	int cpu;
62 
63 	/*
64 	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
65 	 * supported by cpufreq.
66 	 */
67 	if (cpumask_empty(&scale_freq_counters_mask))
68 		scale_freq_invariant = topology_scale_freq_invariant();
69 
70 	rcu_read_lock();
71 
72 	for_each_cpu(cpu, cpus) {
73 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
74 
75 		/* Use ARCH provided counters whenever possible */
76 		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
77 			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
78 			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
79 		}
80 	}
81 
82 	rcu_read_unlock();
83 
84 	update_scale_freq_invariant(true);
85 }
86 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
87 
88 void topology_clear_scale_freq_source(enum scale_freq_source source,
89 				      const struct cpumask *cpus)
90 {
91 	struct scale_freq_data *sfd;
92 	int cpu;
93 
94 	rcu_read_lock();
95 
96 	for_each_cpu(cpu, cpus) {
97 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
98 
99 		if (sfd && sfd->source == source) {
100 			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
101 			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
102 		}
103 	}
104 
105 	rcu_read_unlock();
106 
107 	/*
108 	 * Make sure all references to previous sft_data are dropped to avoid
109 	 * use-after-free races.
110 	 */
111 	synchronize_rcu();
112 
113 	update_scale_freq_invariant(false);
114 }
115 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
116 
117 void topology_scale_freq_tick(void)
118 {
119 	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
120 
121 	if (sfd)
122 		sfd->set_freq_scale();
123 }
124 
125 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
126 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
127 
128 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
129 			     unsigned long max_freq)
130 {
131 	unsigned long scale;
132 	int i;
133 
134 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
135 		return;
136 
137 	/*
138 	 * If the use of counters for FIE is enabled, just return as we don't
139 	 * want to update the scale factor with information from CPUFREQ.
140 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
141 	 */
142 	if (supports_scale_freq_counters(cpus))
143 		return;
144 
145 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
146 
147 	for_each_cpu(i, cpus)
148 		per_cpu(arch_freq_scale, i) = scale;
149 }
150 
151 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
152 
153 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
154 {
155 	per_cpu(cpu_scale, cpu) = capacity;
156 }
157 
158 DEFINE_PER_CPU(unsigned long, thermal_pressure);
159 
160 void topology_set_thermal_pressure(const struct cpumask *cpus,
161 			       unsigned long th_pressure)
162 {
163 	int cpu;
164 
165 	for_each_cpu(cpu, cpus)
166 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
167 }
168 
169 static ssize_t cpu_capacity_show(struct device *dev,
170 				 struct device_attribute *attr,
171 				 char *buf)
172 {
173 	struct cpu *cpu = container_of(dev, struct cpu, dev);
174 
175 	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
176 }
177 
178 static void update_topology_flags_workfn(struct work_struct *work);
179 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
180 
181 static DEVICE_ATTR_RO(cpu_capacity);
182 
183 static int register_cpu_capacity_sysctl(void)
184 {
185 	int i;
186 	struct device *cpu;
187 
188 	for_each_possible_cpu(i) {
189 		cpu = get_cpu_device(i);
190 		if (!cpu) {
191 			pr_err("%s: too early to get CPU%d device!\n",
192 			       __func__, i);
193 			continue;
194 		}
195 		device_create_file(cpu, &dev_attr_cpu_capacity);
196 	}
197 
198 	return 0;
199 }
200 subsys_initcall(register_cpu_capacity_sysctl);
201 
202 static int update_topology;
203 
204 int topology_update_cpu_topology(void)
205 {
206 	return update_topology;
207 }
208 
209 /*
210  * Updating the sched_domains can't be done directly from cpufreq callbacks
211  * due to locking, so queue the work for later.
212  */
213 static void update_topology_flags_workfn(struct work_struct *work)
214 {
215 	update_topology = 1;
216 	rebuild_sched_domains();
217 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
218 	update_topology = 0;
219 }
220 
221 static DEFINE_PER_CPU(u32, freq_factor) = 1;
222 static u32 *raw_capacity;
223 
224 static int free_raw_capacity(void)
225 {
226 	kfree(raw_capacity);
227 	raw_capacity = NULL;
228 
229 	return 0;
230 }
231 
232 void topology_normalize_cpu_scale(void)
233 {
234 	u64 capacity;
235 	u64 capacity_scale;
236 	int cpu;
237 
238 	if (!raw_capacity)
239 		return;
240 
241 	capacity_scale = 1;
242 	for_each_possible_cpu(cpu) {
243 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
244 		capacity_scale = max(capacity, capacity_scale);
245 	}
246 
247 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
248 	for_each_possible_cpu(cpu) {
249 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
250 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
251 			capacity_scale);
252 		topology_set_cpu_scale(cpu, capacity);
253 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
254 			cpu, topology_get_cpu_scale(cpu));
255 	}
256 }
257 
258 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
259 {
260 	struct clk *cpu_clk;
261 	static bool cap_parsing_failed;
262 	int ret;
263 	u32 cpu_capacity;
264 
265 	if (cap_parsing_failed)
266 		return false;
267 
268 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
269 				   &cpu_capacity);
270 	if (!ret) {
271 		if (!raw_capacity) {
272 			raw_capacity = kcalloc(num_possible_cpus(),
273 					       sizeof(*raw_capacity),
274 					       GFP_KERNEL);
275 			if (!raw_capacity) {
276 				cap_parsing_failed = true;
277 				return false;
278 			}
279 		}
280 		raw_capacity[cpu] = cpu_capacity;
281 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
282 			cpu_node, raw_capacity[cpu]);
283 
284 		/*
285 		 * Update freq_factor for calculating early boot cpu capacities.
286 		 * For non-clk CPU DVFS mechanism, there's no way to get the
287 		 * frequency value now, assuming they are running at the same
288 		 * frequency (by keeping the initial freq_factor value).
289 		 */
290 		cpu_clk = of_clk_get(cpu_node, 0);
291 		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
292 			per_cpu(freq_factor, cpu) =
293 				clk_get_rate(cpu_clk) / 1000;
294 			clk_put(cpu_clk);
295 		}
296 	} else {
297 		if (raw_capacity) {
298 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
299 				cpu_node);
300 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
301 		}
302 		cap_parsing_failed = true;
303 		free_raw_capacity();
304 	}
305 
306 	return !ret;
307 }
308 
309 #ifdef CONFIG_CPU_FREQ
310 static cpumask_var_t cpus_to_visit;
311 static void parsing_done_workfn(struct work_struct *work);
312 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
313 
314 static int
315 init_cpu_capacity_callback(struct notifier_block *nb,
316 			   unsigned long val,
317 			   void *data)
318 {
319 	struct cpufreq_policy *policy = data;
320 	int cpu;
321 
322 	if (!raw_capacity)
323 		return 0;
324 
325 	if (val != CPUFREQ_CREATE_POLICY)
326 		return 0;
327 
328 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
329 		 cpumask_pr_args(policy->related_cpus),
330 		 cpumask_pr_args(cpus_to_visit));
331 
332 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
333 
334 	for_each_cpu(cpu, policy->related_cpus)
335 		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
336 
337 	if (cpumask_empty(cpus_to_visit)) {
338 		topology_normalize_cpu_scale();
339 		schedule_work(&update_topology_flags_work);
340 		free_raw_capacity();
341 		pr_debug("cpu_capacity: parsing done\n");
342 		schedule_work(&parsing_done_work);
343 	}
344 
345 	return 0;
346 }
347 
348 static struct notifier_block init_cpu_capacity_notifier = {
349 	.notifier_call = init_cpu_capacity_callback,
350 };
351 
352 static int __init register_cpufreq_notifier(void)
353 {
354 	int ret;
355 
356 	/*
357 	 * on ACPI-based systems we need to use the default cpu capacity
358 	 * until we have the necessary code to parse the cpu capacity, so
359 	 * skip registering cpufreq notifier.
360 	 */
361 	if (!acpi_disabled || !raw_capacity)
362 		return -EINVAL;
363 
364 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
365 		return -ENOMEM;
366 
367 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
368 
369 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
370 					CPUFREQ_POLICY_NOTIFIER);
371 
372 	if (ret)
373 		free_cpumask_var(cpus_to_visit);
374 
375 	return ret;
376 }
377 core_initcall(register_cpufreq_notifier);
378 
379 static void parsing_done_workfn(struct work_struct *work)
380 {
381 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
382 					 CPUFREQ_POLICY_NOTIFIER);
383 	free_cpumask_var(cpus_to_visit);
384 }
385 
386 #else
387 core_initcall(free_raw_capacity);
388 #endif
389 
390 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
391 /*
392  * This function returns the logic cpu number of the node.
393  * There are basically three kinds of return values:
394  * (1) logic cpu number which is > 0.
395  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
396  * there is no possible logical CPU in the kernel to match. This happens
397  * when CONFIG_NR_CPUS is configure to be smaller than the number of
398  * CPU nodes in DT. We need to just ignore this case.
399  * (3) -1 if the node does not exist in the device tree
400  */
401 static int __init get_cpu_for_node(struct device_node *node)
402 {
403 	struct device_node *cpu_node;
404 	int cpu;
405 
406 	cpu_node = of_parse_phandle(node, "cpu", 0);
407 	if (!cpu_node)
408 		return -1;
409 
410 	cpu = of_cpu_node_to_id(cpu_node);
411 	if (cpu >= 0)
412 		topology_parse_cpu_capacity(cpu_node, cpu);
413 	else
414 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
415 			cpu_node, cpumask_pr_args(cpu_possible_mask));
416 
417 	of_node_put(cpu_node);
418 	return cpu;
419 }
420 
421 static int __init parse_core(struct device_node *core, int package_id,
422 			     int core_id)
423 {
424 	char name[20];
425 	bool leaf = true;
426 	int i = 0;
427 	int cpu;
428 	struct device_node *t;
429 
430 	do {
431 		snprintf(name, sizeof(name), "thread%d", i);
432 		t = of_get_child_by_name(core, name);
433 		if (t) {
434 			leaf = false;
435 			cpu = get_cpu_for_node(t);
436 			if (cpu >= 0) {
437 				cpu_topology[cpu].package_id = package_id;
438 				cpu_topology[cpu].core_id = core_id;
439 				cpu_topology[cpu].thread_id = i;
440 			} else if (cpu != -ENODEV) {
441 				pr_err("%pOF: Can't get CPU for thread\n", t);
442 				of_node_put(t);
443 				return -EINVAL;
444 			}
445 			of_node_put(t);
446 		}
447 		i++;
448 	} while (t);
449 
450 	cpu = get_cpu_for_node(core);
451 	if (cpu >= 0) {
452 		if (!leaf) {
453 			pr_err("%pOF: Core has both threads and CPU\n",
454 			       core);
455 			return -EINVAL;
456 		}
457 
458 		cpu_topology[cpu].package_id = package_id;
459 		cpu_topology[cpu].core_id = core_id;
460 	} else if (leaf && cpu != -ENODEV) {
461 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
462 		return -EINVAL;
463 	}
464 
465 	return 0;
466 }
467 
468 static int __init parse_cluster(struct device_node *cluster, int depth)
469 {
470 	char name[20];
471 	bool leaf = true;
472 	bool has_cores = false;
473 	struct device_node *c;
474 	static int package_id __initdata;
475 	int core_id = 0;
476 	int i, ret;
477 
478 	/*
479 	 * First check for child clusters; we currently ignore any
480 	 * information about the nesting of clusters and present the
481 	 * scheduler with a flat list of them.
482 	 */
483 	i = 0;
484 	do {
485 		snprintf(name, sizeof(name), "cluster%d", i);
486 		c = of_get_child_by_name(cluster, name);
487 		if (c) {
488 			leaf = false;
489 			ret = parse_cluster(c, depth + 1);
490 			of_node_put(c);
491 			if (ret != 0)
492 				return ret;
493 		}
494 		i++;
495 	} while (c);
496 
497 	/* Now check for cores */
498 	i = 0;
499 	do {
500 		snprintf(name, sizeof(name), "core%d", i);
501 		c = of_get_child_by_name(cluster, name);
502 		if (c) {
503 			has_cores = true;
504 
505 			if (depth == 0) {
506 				pr_err("%pOF: cpu-map children should be clusters\n",
507 				       c);
508 				of_node_put(c);
509 				return -EINVAL;
510 			}
511 
512 			if (leaf) {
513 				ret = parse_core(c, package_id, core_id++);
514 			} else {
515 				pr_err("%pOF: Non-leaf cluster with core %s\n",
516 				       cluster, name);
517 				ret = -EINVAL;
518 			}
519 
520 			of_node_put(c);
521 			if (ret != 0)
522 				return ret;
523 		}
524 		i++;
525 	} while (c);
526 
527 	if (leaf && !has_cores)
528 		pr_warn("%pOF: empty cluster\n", cluster);
529 
530 	if (leaf)
531 		package_id++;
532 
533 	return 0;
534 }
535 
536 static int __init parse_dt_topology(void)
537 {
538 	struct device_node *cn, *map;
539 	int ret = 0;
540 	int cpu;
541 
542 	cn = of_find_node_by_path("/cpus");
543 	if (!cn) {
544 		pr_err("No CPU information found in DT\n");
545 		return 0;
546 	}
547 
548 	/*
549 	 * When topology is provided cpu-map is essentially a root
550 	 * cluster with restricted subnodes.
551 	 */
552 	map = of_get_child_by_name(cn, "cpu-map");
553 	if (!map)
554 		goto out;
555 
556 	ret = parse_cluster(map, 0);
557 	if (ret != 0)
558 		goto out_map;
559 
560 	topology_normalize_cpu_scale();
561 
562 	/*
563 	 * Check that all cores are in the topology; the SMP code will
564 	 * only mark cores described in the DT as possible.
565 	 */
566 	for_each_possible_cpu(cpu)
567 		if (cpu_topology[cpu].package_id == -1)
568 			ret = -EINVAL;
569 
570 out_map:
571 	of_node_put(map);
572 out:
573 	of_node_put(cn);
574 	return ret;
575 }
576 #endif
577 
578 /*
579  * cpu topology table
580  */
581 struct cpu_topology cpu_topology[NR_CPUS];
582 EXPORT_SYMBOL_GPL(cpu_topology);
583 
584 const struct cpumask *cpu_coregroup_mask(int cpu)
585 {
586 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
587 
588 	/* Find the smaller of NUMA, core or LLC siblings */
589 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
590 		/* not numa in package, lets use the package siblings */
591 		core_mask = &cpu_topology[cpu].core_sibling;
592 	}
593 	if (cpu_topology[cpu].llc_id != -1) {
594 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
595 			core_mask = &cpu_topology[cpu].llc_sibling;
596 	}
597 
598 	return core_mask;
599 }
600 
601 void update_siblings_masks(unsigned int cpuid)
602 {
603 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
604 	int cpu;
605 
606 	/* update core and thread sibling masks */
607 	for_each_online_cpu(cpu) {
608 		cpu_topo = &cpu_topology[cpu];
609 
610 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
611 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
612 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
613 		}
614 
615 		if (cpuid_topo->package_id != cpu_topo->package_id)
616 			continue;
617 
618 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
619 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
620 
621 		if (cpuid_topo->core_id != cpu_topo->core_id)
622 			continue;
623 
624 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
625 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
626 	}
627 }
628 
629 static void clear_cpu_topology(int cpu)
630 {
631 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
632 
633 	cpumask_clear(&cpu_topo->llc_sibling);
634 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
635 
636 	cpumask_clear(&cpu_topo->core_sibling);
637 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
638 	cpumask_clear(&cpu_topo->thread_sibling);
639 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
640 }
641 
642 void __init reset_cpu_topology(void)
643 {
644 	unsigned int cpu;
645 
646 	for_each_possible_cpu(cpu) {
647 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
648 
649 		cpu_topo->thread_id = -1;
650 		cpu_topo->core_id = -1;
651 		cpu_topo->package_id = -1;
652 		cpu_topo->llc_id = -1;
653 
654 		clear_cpu_topology(cpu);
655 	}
656 }
657 
658 void remove_cpu_topology(unsigned int cpu)
659 {
660 	int sibling;
661 
662 	for_each_cpu(sibling, topology_core_cpumask(cpu))
663 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
664 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
665 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
666 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
667 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
668 
669 	clear_cpu_topology(cpu);
670 }
671 
672 __weak int __init parse_acpi_topology(void)
673 {
674 	return 0;
675 }
676 
677 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
678 void __init init_cpu_topology(void)
679 {
680 	reset_cpu_topology();
681 
682 	/*
683 	 * Discard anything that was parsed if we hit an error so we
684 	 * don't use partial information.
685 	 */
686 	if (parse_acpi_topology())
687 		reset_cpu_topology();
688 	else if (of_have_populated_dt() && parse_dt_topology())
689 		reset_cpu_topology();
690 }
691 #endif
692