1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arch specific cpu topology information 4 * 5 * Copyright (C) 2016, ARM Ltd. 6 * Written by: Juri Lelli, ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/cpu.h> 11 #include <linux/cpufreq.h> 12 #include <linux/device.h> 13 #include <linux/of.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/sched/topology.h> 17 #include <linux/cpuset.h> 18 #include <linux/cpumask.h> 19 #include <linux/init.h> 20 #include <linux/percpu.h> 21 #include <linux/rcupdate.h> 22 #include <linux/sched.h> 23 #include <linux/smp.h> 24 25 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); 26 static struct cpumask scale_freq_counters_mask; 27 static bool scale_freq_invariant; 28 29 static bool supports_scale_freq_counters(const struct cpumask *cpus) 30 { 31 return cpumask_subset(cpus, &scale_freq_counters_mask); 32 } 33 34 bool topology_scale_freq_invariant(void) 35 { 36 return cpufreq_supports_freq_invariance() || 37 supports_scale_freq_counters(cpu_online_mask); 38 } 39 40 static void update_scale_freq_invariant(bool status) 41 { 42 if (scale_freq_invariant == status) 43 return; 44 45 /* 46 * Task scheduler behavior depends on frequency invariance support, 47 * either cpufreq or counter driven. If the support status changes as 48 * a result of counter initialisation and use, retrigger the build of 49 * scheduling domains to ensure the information is propagated properly. 50 */ 51 if (topology_scale_freq_invariant() == status) { 52 scale_freq_invariant = status; 53 rebuild_sched_domains_energy(); 54 } 55 } 56 57 void topology_set_scale_freq_source(struct scale_freq_data *data, 58 const struct cpumask *cpus) 59 { 60 struct scale_freq_data *sfd; 61 int cpu; 62 63 /* 64 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is 65 * supported by cpufreq. 66 */ 67 if (cpumask_empty(&scale_freq_counters_mask)) 68 scale_freq_invariant = topology_scale_freq_invariant(); 69 70 rcu_read_lock(); 71 72 for_each_cpu(cpu, cpus) { 73 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 74 75 /* Use ARCH provided counters whenever possible */ 76 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { 77 rcu_assign_pointer(per_cpu(sft_data, cpu), data); 78 cpumask_set_cpu(cpu, &scale_freq_counters_mask); 79 } 80 } 81 82 rcu_read_unlock(); 83 84 update_scale_freq_invariant(true); 85 } 86 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); 87 88 void topology_clear_scale_freq_source(enum scale_freq_source source, 89 const struct cpumask *cpus) 90 { 91 struct scale_freq_data *sfd; 92 int cpu; 93 94 rcu_read_lock(); 95 96 for_each_cpu(cpu, cpus) { 97 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 98 99 if (sfd && sfd->source == source) { 100 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); 101 cpumask_clear_cpu(cpu, &scale_freq_counters_mask); 102 } 103 } 104 105 rcu_read_unlock(); 106 107 /* 108 * Make sure all references to previous sft_data are dropped to avoid 109 * use-after-free races. 110 */ 111 synchronize_rcu(); 112 113 update_scale_freq_invariant(false); 114 } 115 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); 116 117 void topology_scale_freq_tick(void) 118 { 119 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); 120 121 if (sfd) 122 sfd->set_freq_scale(); 123 } 124 125 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; 126 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); 127 128 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, 129 unsigned long max_freq) 130 { 131 unsigned long scale; 132 int i; 133 134 if (WARN_ON_ONCE(!cur_freq || !max_freq)) 135 return; 136 137 /* 138 * If the use of counters for FIE is enabled, just return as we don't 139 * want to update the scale factor with information from CPUFREQ. 140 * Instead the scale factor will be updated from arch_scale_freq_tick. 141 */ 142 if (supports_scale_freq_counters(cpus)) 143 return; 144 145 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; 146 147 for_each_cpu(i, cpus) 148 per_cpu(arch_freq_scale, i) = scale; 149 } 150 151 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; 152 153 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) 154 { 155 per_cpu(cpu_scale, cpu) = capacity; 156 } 157 158 DEFINE_PER_CPU(unsigned long, thermal_pressure); 159 160 void topology_set_thermal_pressure(const struct cpumask *cpus, 161 unsigned long th_pressure) 162 { 163 int cpu; 164 165 for_each_cpu(cpu, cpus) 166 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 167 } 168 169 static ssize_t cpu_capacity_show(struct device *dev, 170 struct device_attribute *attr, 171 char *buf) 172 { 173 struct cpu *cpu = container_of(dev, struct cpu, dev); 174 175 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); 176 } 177 178 static void update_topology_flags_workfn(struct work_struct *work); 179 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); 180 181 static DEVICE_ATTR_RO(cpu_capacity); 182 183 static int register_cpu_capacity_sysctl(void) 184 { 185 int i; 186 struct device *cpu; 187 188 for_each_possible_cpu(i) { 189 cpu = get_cpu_device(i); 190 if (!cpu) { 191 pr_err("%s: too early to get CPU%d device!\n", 192 __func__, i); 193 continue; 194 } 195 device_create_file(cpu, &dev_attr_cpu_capacity); 196 } 197 198 return 0; 199 } 200 subsys_initcall(register_cpu_capacity_sysctl); 201 202 static int update_topology; 203 204 int topology_update_cpu_topology(void) 205 { 206 return update_topology; 207 } 208 209 /* 210 * Updating the sched_domains can't be done directly from cpufreq callbacks 211 * due to locking, so queue the work for later. 212 */ 213 static void update_topology_flags_workfn(struct work_struct *work) 214 { 215 update_topology = 1; 216 rebuild_sched_domains(); 217 pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); 218 update_topology = 0; 219 } 220 221 static DEFINE_PER_CPU(u32, freq_factor) = 1; 222 static u32 *raw_capacity; 223 224 static int free_raw_capacity(void) 225 { 226 kfree(raw_capacity); 227 raw_capacity = NULL; 228 229 return 0; 230 } 231 232 void topology_normalize_cpu_scale(void) 233 { 234 u64 capacity; 235 u64 capacity_scale; 236 int cpu; 237 238 if (!raw_capacity) 239 return; 240 241 capacity_scale = 1; 242 for_each_possible_cpu(cpu) { 243 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); 244 capacity_scale = max(capacity, capacity_scale); 245 } 246 247 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); 248 for_each_possible_cpu(cpu) { 249 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); 250 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 251 capacity_scale); 252 topology_set_cpu_scale(cpu, capacity); 253 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 254 cpu, topology_get_cpu_scale(cpu)); 255 } 256 } 257 258 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) 259 { 260 struct clk *cpu_clk; 261 static bool cap_parsing_failed; 262 int ret; 263 u32 cpu_capacity; 264 265 if (cap_parsing_failed) 266 return false; 267 268 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", 269 &cpu_capacity); 270 if (!ret) { 271 if (!raw_capacity) { 272 raw_capacity = kcalloc(num_possible_cpus(), 273 sizeof(*raw_capacity), 274 GFP_KERNEL); 275 if (!raw_capacity) { 276 cap_parsing_failed = true; 277 return false; 278 } 279 } 280 raw_capacity[cpu] = cpu_capacity; 281 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", 282 cpu_node, raw_capacity[cpu]); 283 284 /* 285 * Update freq_factor for calculating early boot cpu capacities. 286 * For non-clk CPU DVFS mechanism, there's no way to get the 287 * frequency value now, assuming they are running at the same 288 * frequency (by keeping the initial freq_factor value). 289 */ 290 cpu_clk = of_clk_get(cpu_node, 0); 291 if (!PTR_ERR_OR_ZERO(cpu_clk)) { 292 per_cpu(freq_factor, cpu) = 293 clk_get_rate(cpu_clk) / 1000; 294 clk_put(cpu_clk); 295 } 296 } else { 297 if (raw_capacity) { 298 pr_err("cpu_capacity: missing %pOF raw capacity\n", 299 cpu_node); 300 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 301 } 302 cap_parsing_failed = true; 303 free_raw_capacity(); 304 } 305 306 return !ret; 307 } 308 309 #ifdef CONFIG_CPU_FREQ 310 static cpumask_var_t cpus_to_visit; 311 static void parsing_done_workfn(struct work_struct *work); 312 static DECLARE_WORK(parsing_done_work, parsing_done_workfn); 313 314 static int 315 init_cpu_capacity_callback(struct notifier_block *nb, 316 unsigned long val, 317 void *data) 318 { 319 struct cpufreq_policy *policy = data; 320 int cpu; 321 322 if (!raw_capacity) 323 return 0; 324 325 if (val != CPUFREQ_CREATE_POLICY) 326 return 0; 327 328 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", 329 cpumask_pr_args(policy->related_cpus), 330 cpumask_pr_args(cpus_to_visit)); 331 332 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); 333 334 for_each_cpu(cpu, policy->related_cpus) 335 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000; 336 337 if (cpumask_empty(cpus_to_visit)) { 338 topology_normalize_cpu_scale(); 339 schedule_work(&update_topology_flags_work); 340 free_raw_capacity(); 341 pr_debug("cpu_capacity: parsing done\n"); 342 schedule_work(&parsing_done_work); 343 } 344 345 return 0; 346 } 347 348 static struct notifier_block init_cpu_capacity_notifier = { 349 .notifier_call = init_cpu_capacity_callback, 350 }; 351 352 static int __init register_cpufreq_notifier(void) 353 { 354 int ret; 355 356 /* 357 * on ACPI-based systems we need to use the default cpu capacity 358 * until we have the necessary code to parse the cpu capacity, so 359 * skip registering cpufreq notifier. 360 */ 361 if (!acpi_disabled || !raw_capacity) 362 return -EINVAL; 363 364 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) 365 return -ENOMEM; 366 367 cpumask_copy(cpus_to_visit, cpu_possible_mask); 368 369 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, 370 CPUFREQ_POLICY_NOTIFIER); 371 372 if (ret) 373 free_cpumask_var(cpus_to_visit); 374 375 return ret; 376 } 377 core_initcall(register_cpufreq_notifier); 378 379 static void parsing_done_workfn(struct work_struct *work) 380 { 381 cpufreq_unregister_notifier(&init_cpu_capacity_notifier, 382 CPUFREQ_POLICY_NOTIFIER); 383 free_cpumask_var(cpus_to_visit); 384 } 385 386 #else 387 core_initcall(free_raw_capacity); 388 #endif 389 390 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 391 /* 392 * This function returns the logic cpu number of the node. 393 * There are basically three kinds of return values: 394 * (1) logic cpu number which is > 0. 395 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but 396 * there is no possible logical CPU in the kernel to match. This happens 397 * when CONFIG_NR_CPUS is configure to be smaller than the number of 398 * CPU nodes in DT. We need to just ignore this case. 399 * (3) -1 if the node does not exist in the device tree 400 */ 401 static int __init get_cpu_for_node(struct device_node *node) 402 { 403 struct device_node *cpu_node; 404 int cpu; 405 406 cpu_node = of_parse_phandle(node, "cpu", 0); 407 if (!cpu_node) 408 return -1; 409 410 cpu = of_cpu_node_to_id(cpu_node); 411 if (cpu >= 0) 412 topology_parse_cpu_capacity(cpu_node, cpu); 413 else 414 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", 415 cpu_node, cpumask_pr_args(cpu_possible_mask)); 416 417 of_node_put(cpu_node); 418 return cpu; 419 } 420 421 static int __init parse_core(struct device_node *core, int package_id, 422 int core_id) 423 { 424 char name[20]; 425 bool leaf = true; 426 int i = 0; 427 int cpu; 428 struct device_node *t; 429 430 do { 431 snprintf(name, sizeof(name), "thread%d", i); 432 t = of_get_child_by_name(core, name); 433 if (t) { 434 leaf = false; 435 cpu = get_cpu_for_node(t); 436 if (cpu >= 0) { 437 cpu_topology[cpu].package_id = package_id; 438 cpu_topology[cpu].core_id = core_id; 439 cpu_topology[cpu].thread_id = i; 440 } else if (cpu != -ENODEV) { 441 pr_err("%pOF: Can't get CPU for thread\n", t); 442 of_node_put(t); 443 return -EINVAL; 444 } 445 of_node_put(t); 446 } 447 i++; 448 } while (t); 449 450 cpu = get_cpu_for_node(core); 451 if (cpu >= 0) { 452 if (!leaf) { 453 pr_err("%pOF: Core has both threads and CPU\n", 454 core); 455 return -EINVAL; 456 } 457 458 cpu_topology[cpu].package_id = package_id; 459 cpu_topology[cpu].core_id = core_id; 460 } else if (leaf && cpu != -ENODEV) { 461 pr_err("%pOF: Can't get CPU for leaf core\n", core); 462 return -EINVAL; 463 } 464 465 return 0; 466 } 467 468 static int __init parse_cluster(struct device_node *cluster, int depth) 469 { 470 char name[20]; 471 bool leaf = true; 472 bool has_cores = false; 473 struct device_node *c; 474 static int package_id __initdata; 475 int core_id = 0; 476 int i, ret; 477 478 /* 479 * First check for child clusters; we currently ignore any 480 * information about the nesting of clusters and present the 481 * scheduler with a flat list of them. 482 */ 483 i = 0; 484 do { 485 snprintf(name, sizeof(name), "cluster%d", i); 486 c = of_get_child_by_name(cluster, name); 487 if (c) { 488 leaf = false; 489 ret = parse_cluster(c, depth + 1); 490 of_node_put(c); 491 if (ret != 0) 492 return ret; 493 } 494 i++; 495 } while (c); 496 497 /* Now check for cores */ 498 i = 0; 499 do { 500 snprintf(name, sizeof(name), "core%d", i); 501 c = of_get_child_by_name(cluster, name); 502 if (c) { 503 has_cores = true; 504 505 if (depth == 0) { 506 pr_err("%pOF: cpu-map children should be clusters\n", 507 c); 508 of_node_put(c); 509 return -EINVAL; 510 } 511 512 if (leaf) { 513 ret = parse_core(c, package_id, core_id++); 514 } else { 515 pr_err("%pOF: Non-leaf cluster with core %s\n", 516 cluster, name); 517 ret = -EINVAL; 518 } 519 520 of_node_put(c); 521 if (ret != 0) 522 return ret; 523 } 524 i++; 525 } while (c); 526 527 if (leaf && !has_cores) 528 pr_warn("%pOF: empty cluster\n", cluster); 529 530 if (leaf) 531 package_id++; 532 533 return 0; 534 } 535 536 static int __init parse_dt_topology(void) 537 { 538 struct device_node *cn, *map; 539 int ret = 0; 540 int cpu; 541 542 cn = of_find_node_by_path("/cpus"); 543 if (!cn) { 544 pr_err("No CPU information found in DT\n"); 545 return 0; 546 } 547 548 /* 549 * When topology is provided cpu-map is essentially a root 550 * cluster with restricted subnodes. 551 */ 552 map = of_get_child_by_name(cn, "cpu-map"); 553 if (!map) 554 goto out; 555 556 ret = parse_cluster(map, 0); 557 if (ret != 0) 558 goto out_map; 559 560 topology_normalize_cpu_scale(); 561 562 /* 563 * Check that all cores are in the topology; the SMP code will 564 * only mark cores described in the DT as possible. 565 */ 566 for_each_possible_cpu(cpu) 567 if (cpu_topology[cpu].package_id == -1) 568 ret = -EINVAL; 569 570 out_map: 571 of_node_put(map); 572 out: 573 of_node_put(cn); 574 return ret; 575 } 576 #endif 577 578 /* 579 * cpu topology table 580 */ 581 struct cpu_topology cpu_topology[NR_CPUS]; 582 EXPORT_SYMBOL_GPL(cpu_topology); 583 584 const struct cpumask *cpu_coregroup_mask(int cpu) 585 { 586 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); 587 588 /* Find the smaller of NUMA, core or LLC siblings */ 589 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { 590 /* not numa in package, lets use the package siblings */ 591 core_mask = &cpu_topology[cpu].core_sibling; 592 } 593 if (cpu_topology[cpu].llc_id != -1) { 594 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) 595 core_mask = &cpu_topology[cpu].llc_sibling; 596 } 597 598 return core_mask; 599 } 600 601 void update_siblings_masks(unsigned int cpuid) 602 { 603 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 604 int cpu; 605 606 /* update core and thread sibling masks */ 607 for_each_online_cpu(cpu) { 608 cpu_topo = &cpu_topology[cpu]; 609 610 if (cpuid_topo->llc_id == cpu_topo->llc_id) { 611 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); 612 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); 613 } 614 615 if (cpuid_topo->package_id != cpu_topo->package_id) 616 continue; 617 618 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 619 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 620 621 if (cpuid_topo->core_id != cpu_topo->core_id) 622 continue; 623 624 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 625 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 626 } 627 } 628 629 static void clear_cpu_topology(int cpu) 630 { 631 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 632 633 cpumask_clear(&cpu_topo->llc_sibling); 634 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); 635 636 cpumask_clear(&cpu_topo->core_sibling); 637 cpumask_set_cpu(cpu, &cpu_topo->core_sibling); 638 cpumask_clear(&cpu_topo->thread_sibling); 639 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); 640 } 641 642 void __init reset_cpu_topology(void) 643 { 644 unsigned int cpu; 645 646 for_each_possible_cpu(cpu) { 647 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 648 649 cpu_topo->thread_id = -1; 650 cpu_topo->core_id = -1; 651 cpu_topo->package_id = -1; 652 cpu_topo->llc_id = -1; 653 654 clear_cpu_topology(cpu); 655 } 656 } 657 658 void remove_cpu_topology(unsigned int cpu) 659 { 660 int sibling; 661 662 for_each_cpu(sibling, topology_core_cpumask(cpu)) 663 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 664 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 665 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 666 for_each_cpu(sibling, topology_llc_cpumask(cpu)) 667 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); 668 669 clear_cpu_topology(cpu); 670 } 671 672 __weak int __init parse_acpi_topology(void) 673 { 674 return 0; 675 } 676 677 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 678 void __init init_cpu_topology(void) 679 { 680 reset_cpu_topology(); 681 682 /* 683 * Discard anything that was parsed if we hit an error so we 684 * don't use partial information. 685 */ 686 if (parse_acpi_topology()) 687 reset_cpu_topology(); 688 else if (of_have_populated_dt() && parse_dt_topology()) 689 reset_cpu_topology(); 690 } 691 #endif 692