1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arch specific cpu topology information 4 * 5 * Copyright (C) 2016, ARM Ltd. 6 * Written by: Juri Lelli, ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/cpu.h> 11 #include <linux/cpufreq.h> 12 #include <linux/device.h> 13 #include <linux/of.h> 14 #include <linux/slab.h> 15 #include <linux/sched/topology.h> 16 #include <linux/cpuset.h> 17 #include <linux/cpumask.h> 18 #include <linux/init.h> 19 #include <linux/rcupdate.h> 20 #include <linux/sched.h> 21 22 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); 23 static struct cpumask scale_freq_counters_mask; 24 static bool scale_freq_invariant; 25 static DEFINE_PER_CPU(u32, freq_factor) = 1; 26 27 static bool supports_scale_freq_counters(const struct cpumask *cpus) 28 { 29 return cpumask_subset(cpus, &scale_freq_counters_mask); 30 } 31 32 bool topology_scale_freq_invariant(void) 33 { 34 return cpufreq_supports_freq_invariance() || 35 supports_scale_freq_counters(cpu_online_mask); 36 } 37 38 static void update_scale_freq_invariant(bool status) 39 { 40 if (scale_freq_invariant == status) 41 return; 42 43 /* 44 * Task scheduler behavior depends on frequency invariance support, 45 * either cpufreq or counter driven. If the support status changes as 46 * a result of counter initialisation and use, retrigger the build of 47 * scheduling domains to ensure the information is propagated properly. 48 */ 49 if (topology_scale_freq_invariant() == status) { 50 scale_freq_invariant = status; 51 rebuild_sched_domains_energy(); 52 } 53 } 54 55 void topology_set_scale_freq_source(struct scale_freq_data *data, 56 const struct cpumask *cpus) 57 { 58 struct scale_freq_data *sfd; 59 int cpu; 60 61 /* 62 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is 63 * supported by cpufreq. 64 */ 65 if (cpumask_empty(&scale_freq_counters_mask)) 66 scale_freq_invariant = topology_scale_freq_invariant(); 67 68 rcu_read_lock(); 69 70 for_each_cpu(cpu, cpus) { 71 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 72 73 /* Use ARCH provided counters whenever possible */ 74 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { 75 rcu_assign_pointer(per_cpu(sft_data, cpu), data); 76 cpumask_set_cpu(cpu, &scale_freq_counters_mask); 77 } 78 } 79 80 rcu_read_unlock(); 81 82 update_scale_freq_invariant(true); 83 } 84 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); 85 86 void topology_clear_scale_freq_source(enum scale_freq_source source, 87 const struct cpumask *cpus) 88 { 89 struct scale_freq_data *sfd; 90 int cpu; 91 92 rcu_read_lock(); 93 94 for_each_cpu(cpu, cpus) { 95 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 96 97 if (sfd && sfd->source == source) { 98 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); 99 cpumask_clear_cpu(cpu, &scale_freq_counters_mask); 100 } 101 } 102 103 rcu_read_unlock(); 104 105 /* 106 * Make sure all references to previous sft_data are dropped to avoid 107 * use-after-free races. 108 */ 109 synchronize_rcu(); 110 111 update_scale_freq_invariant(false); 112 } 113 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); 114 115 void topology_scale_freq_tick(void) 116 { 117 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); 118 119 if (sfd) 120 sfd->set_freq_scale(); 121 } 122 123 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; 124 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); 125 126 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, 127 unsigned long max_freq) 128 { 129 unsigned long scale; 130 int i; 131 132 if (WARN_ON_ONCE(!cur_freq || !max_freq)) 133 return; 134 135 /* 136 * If the use of counters for FIE is enabled, just return as we don't 137 * want to update the scale factor with information from CPUFREQ. 138 * Instead the scale factor will be updated from arch_scale_freq_tick. 139 */ 140 if (supports_scale_freq_counters(cpus)) 141 return; 142 143 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; 144 145 for_each_cpu(i, cpus) 146 per_cpu(arch_freq_scale, i) = scale; 147 } 148 149 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; 150 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale); 151 152 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) 153 { 154 per_cpu(cpu_scale, cpu) = capacity; 155 } 156 157 DEFINE_PER_CPU(unsigned long, thermal_pressure); 158 159 /** 160 * topology_update_thermal_pressure() - Update thermal pressure for CPUs 161 * @cpus : The related CPUs for which capacity has been reduced 162 * @capped_freq : The maximum allowed frequency that CPUs can run at 163 * 164 * Update the value of thermal pressure for all @cpus in the mask. The 165 * cpumask should include all (online+offline) affected CPUs, to avoid 166 * operating on stale data when hot-plug is used for some CPUs. The 167 * @capped_freq reflects the currently allowed max CPUs frequency due to 168 * thermal capping. It might be also a boost frequency value, which is bigger 169 * than the internal 'freq_factor' max frequency. In such case the pressure 170 * value should simply be removed, since this is an indication that there is 171 * no thermal throttling. The @capped_freq must be provided in kHz. 172 */ 173 void topology_update_thermal_pressure(const struct cpumask *cpus, 174 unsigned long capped_freq) 175 { 176 unsigned long max_capacity, capacity, th_pressure; 177 u32 max_freq; 178 int cpu; 179 180 cpu = cpumask_first(cpus); 181 max_capacity = arch_scale_cpu_capacity(cpu); 182 max_freq = per_cpu(freq_factor, cpu); 183 184 /* Convert to MHz scale which is used in 'freq_factor' */ 185 capped_freq /= 1000; 186 187 /* 188 * Handle properly the boost frequencies, which should simply clean 189 * the thermal pressure value. 190 */ 191 if (max_freq <= capped_freq) 192 capacity = max_capacity; 193 else 194 capacity = mult_frac(max_capacity, capped_freq, max_freq); 195 196 th_pressure = max_capacity - capacity; 197 198 for_each_cpu(cpu, cpus) 199 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 200 } 201 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure); 202 203 static ssize_t cpu_capacity_show(struct device *dev, 204 struct device_attribute *attr, 205 char *buf) 206 { 207 struct cpu *cpu = container_of(dev, struct cpu, dev); 208 209 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); 210 } 211 212 static void update_topology_flags_workfn(struct work_struct *work); 213 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); 214 215 static DEVICE_ATTR_RO(cpu_capacity); 216 217 static int register_cpu_capacity_sysctl(void) 218 { 219 int i; 220 struct device *cpu; 221 222 for_each_possible_cpu(i) { 223 cpu = get_cpu_device(i); 224 if (!cpu) { 225 pr_err("%s: too early to get CPU%d device!\n", 226 __func__, i); 227 continue; 228 } 229 device_create_file(cpu, &dev_attr_cpu_capacity); 230 } 231 232 return 0; 233 } 234 subsys_initcall(register_cpu_capacity_sysctl); 235 236 static int update_topology; 237 238 int topology_update_cpu_topology(void) 239 { 240 return update_topology; 241 } 242 243 /* 244 * Updating the sched_domains can't be done directly from cpufreq callbacks 245 * due to locking, so queue the work for later. 246 */ 247 static void update_topology_flags_workfn(struct work_struct *work) 248 { 249 update_topology = 1; 250 rebuild_sched_domains(); 251 pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); 252 update_topology = 0; 253 } 254 255 static u32 *raw_capacity; 256 257 static int free_raw_capacity(void) 258 { 259 kfree(raw_capacity); 260 raw_capacity = NULL; 261 262 return 0; 263 } 264 265 void topology_normalize_cpu_scale(void) 266 { 267 u64 capacity; 268 u64 capacity_scale; 269 int cpu; 270 271 if (!raw_capacity) 272 return; 273 274 capacity_scale = 1; 275 for_each_possible_cpu(cpu) { 276 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); 277 capacity_scale = max(capacity, capacity_scale); 278 } 279 280 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); 281 for_each_possible_cpu(cpu) { 282 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); 283 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 284 capacity_scale); 285 topology_set_cpu_scale(cpu, capacity); 286 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 287 cpu, topology_get_cpu_scale(cpu)); 288 } 289 } 290 291 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) 292 { 293 struct clk *cpu_clk; 294 static bool cap_parsing_failed; 295 int ret; 296 u32 cpu_capacity; 297 298 if (cap_parsing_failed) 299 return false; 300 301 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", 302 &cpu_capacity); 303 if (!ret) { 304 if (!raw_capacity) { 305 raw_capacity = kcalloc(num_possible_cpus(), 306 sizeof(*raw_capacity), 307 GFP_KERNEL); 308 if (!raw_capacity) { 309 cap_parsing_failed = true; 310 return false; 311 } 312 } 313 raw_capacity[cpu] = cpu_capacity; 314 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", 315 cpu_node, raw_capacity[cpu]); 316 317 /* 318 * Update freq_factor for calculating early boot cpu capacities. 319 * For non-clk CPU DVFS mechanism, there's no way to get the 320 * frequency value now, assuming they are running at the same 321 * frequency (by keeping the initial freq_factor value). 322 */ 323 cpu_clk = of_clk_get(cpu_node, 0); 324 if (!PTR_ERR_OR_ZERO(cpu_clk)) { 325 per_cpu(freq_factor, cpu) = 326 clk_get_rate(cpu_clk) / 1000; 327 clk_put(cpu_clk); 328 } 329 } else { 330 if (raw_capacity) { 331 pr_err("cpu_capacity: missing %pOF raw capacity\n", 332 cpu_node); 333 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 334 } 335 cap_parsing_failed = true; 336 free_raw_capacity(); 337 } 338 339 return !ret; 340 } 341 342 #ifdef CONFIG_ACPI_CPPC_LIB 343 #include <acpi/cppc_acpi.h> 344 345 void topology_init_cpu_capacity_cppc(void) 346 { 347 struct cppc_perf_caps perf_caps; 348 int cpu; 349 350 if (likely(acpi_disabled || !acpi_cpc_valid())) 351 return; 352 353 raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), 354 GFP_KERNEL); 355 if (!raw_capacity) 356 return; 357 358 for_each_possible_cpu(cpu) { 359 if (!cppc_get_perf_caps(cpu, &perf_caps) && 360 (perf_caps.highest_perf >= perf_caps.nominal_perf) && 361 (perf_caps.highest_perf >= perf_caps.lowest_perf)) { 362 raw_capacity[cpu] = perf_caps.highest_perf; 363 pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n", 364 cpu, raw_capacity[cpu]); 365 continue; 366 } 367 368 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu); 369 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 370 goto exit; 371 } 372 373 topology_normalize_cpu_scale(); 374 schedule_work(&update_topology_flags_work); 375 pr_debug("cpu_capacity: cpu_capacity initialization done\n"); 376 377 exit: 378 free_raw_capacity(); 379 } 380 #endif 381 382 #ifdef CONFIG_CPU_FREQ 383 static cpumask_var_t cpus_to_visit; 384 static void parsing_done_workfn(struct work_struct *work); 385 static DECLARE_WORK(parsing_done_work, parsing_done_workfn); 386 387 static int 388 init_cpu_capacity_callback(struct notifier_block *nb, 389 unsigned long val, 390 void *data) 391 { 392 struct cpufreq_policy *policy = data; 393 int cpu; 394 395 if (!raw_capacity) 396 return 0; 397 398 if (val != CPUFREQ_CREATE_POLICY) 399 return 0; 400 401 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", 402 cpumask_pr_args(policy->related_cpus), 403 cpumask_pr_args(cpus_to_visit)); 404 405 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); 406 407 for_each_cpu(cpu, policy->related_cpus) 408 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000; 409 410 if (cpumask_empty(cpus_to_visit)) { 411 topology_normalize_cpu_scale(); 412 schedule_work(&update_topology_flags_work); 413 free_raw_capacity(); 414 pr_debug("cpu_capacity: parsing done\n"); 415 schedule_work(&parsing_done_work); 416 } 417 418 return 0; 419 } 420 421 static struct notifier_block init_cpu_capacity_notifier = { 422 .notifier_call = init_cpu_capacity_callback, 423 }; 424 425 static int __init register_cpufreq_notifier(void) 426 { 427 int ret; 428 429 /* 430 * On ACPI-based systems skip registering cpufreq notifier as cpufreq 431 * information is not needed for cpu capacity initialization. 432 */ 433 if (!acpi_disabled || !raw_capacity) 434 return -EINVAL; 435 436 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) 437 return -ENOMEM; 438 439 cpumask_copy(cpus_to_visit, cpu_possible_mask); 440 441 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, 442 CPUFREQ_POLICY_NOTIFIER); 443 444 if (ret) 445 free_cpumask_var(cpus_to_visit); 446 447 return ret; 448 } 449 core_initcall(register_cpufreq_notifier); 450 451 static void parsing_done_workfn(struct work_struct *work) 452 { 453 cpufreq_unregister_notifier(&init_cpu_capacity_notifier, 454 CPUFREQ_POLICY_NOTIFIER); 455 free_cpumask_var(cpus_to_visit); 456 } 457 458 #else 459 core_initcall(free_raw_capacity); 460 #endif 461 462 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 463 /* 464 * This function returns the logic cpu number of the node. 465 * There are basically three kinds of return values: 466 * (1) logic cpu number which is > 0. 467 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but 468 * there is no possible logical CPU in the kernel to match. This happens 469 * when CONFIG_NR_CPUS is configure to be smaller than the number of 470 * CPU nodes in DT. We need to just ignore this case. 471 * (3) -1 if the node does not exist in the device tree 472 */ 473 static int __init get_cpu_for_node(struct device_node *node) 474 { 475 struct device_node *cpu_node; 476 int cpu; 477 478 cpu_node = of_parse_phandle(node, "cpu", 0); 479 if (!cpu_node) 480 return -1; 481 482 cpu = of_cpu_node_to_id(cpu_node); 483 if (cpu >= 0) 484 topology_parse_cpu_capacity(cpu_node, cpu); 485 else 486 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", 487 cpu_node, cpumask_pr_args(cpu_possible_mask)); 488 489 of_node_put(cpu_node); 490 return cpu; 491 } 492 493 static int __init parse_core(struct device_node *core, int package_id, 494 int core_id) 495 { 496 char name[20]; 497 bool leaf = true; 498 int i = 0; 499 int cpu; 500 struct device_node *t; 501 502 do { 503 snprintf(name, sizeof(name), "thread%d", i); 504 t = of_get_child_by_name(core, name); 505 if (t) { 506 leaf = false; 507 cpu = get_cpu_for_node(t); 508 if (cpu >= 0) { 509 cpu_topology[cpu].package_id = package_id; 510 cpu_topology[cpu].core_id = core_id; 511 cpu_topology[cpu].thread_id = i; 512 } else if (cpu != -ENODEV) { 513 pr_err("%pOF: Can't get CPU for thread\n", t); 514 of_node_put(t); 515 return -EINVAL; 516 } 517 of_node_put(t); 518 } 519 i++; 520 } while (t); 521 522 cpu = get_cpu_for_node(core); 523 if (cpu >= 0) { 524 if (!leaf) { 525 pr_err("%pOF: Core has both threads and CPU\n", 526 core); 527 return -EINVAL; 528 } 529 530 cpu_topology[cpu].package_id = package_id; 531 cpu_topology[cpu].core_id = core_id; 532 } else if (leaf && cpu != -ENODEV) { 533 pr_err("%pOF: Can't get CPU for leaf core\n", core); 534 return -EINVAL; 535 } 536 537 return 0; 538 } 539 540 static int __init parse_cluster(struct device_node *cluster, int depth) 541 { 542 char name[20]; 543 bool leaf = true; 544 bool has_cores = false; 545 struct device_node *c; 546 static int package_id __initdata; 547 int core_id = 0; 548 int i, ret; 549 550 /* 551 * First check for child clusters; we currently ignore any 552 * information about the nesting of clusters and present the 553 * scheduler with a flat list of them. 554 */ 555 i = 0; 556 do { 557 snprintf(name, sizeof(name), "cluster%d", i); 558 c = of_get_child_by_name(cluster, name); 559 if (c) { 560 leaf = false; 561 ret = parse_cluster(c, depth + 1); 562 of_node_put(c); 563 if (ret != 0) 564 return ret; 565 } 566 i++; 567 } while (c); 568 569 /* Now check for cores */ 570 i = 0; 571 do { 572 snprintf(name, sizeof(name), "core%d", i); 573 c = of_get_child_by_name(cluster, name); 574 if (c) { 575 has_cores = true; 576 577 if (depth == 0) { 578 pr_err("%pOF: cpu-map children should be clusters\n", 579 c); 580 of_node_put(c); 581 return -EINVAL; 582 } 583 584 if (leaf) { 585 ret = parse_core(c, package_id, core_id++); 586 } else { 587 pr_err("%pOF: Non-leaf cluster with core %s\n", 588 cluster, name); 589 ret = -EINVAL; 590 } 591 592 of_node_put(c); 593 if (ret != 0) 594 return ret; 595 } 596 i++; 597 } while (c); 598 599 if (leaf && !has_cores) 600 pr_warn("%pOF: empty cluster\n", cluster); 601 602 if (leaf) 603 package_id++; 604 605 return 0; 606 } 607 608 static int __init parse_dt_topology(void) 609 { 610 struct device_node *cn, *map; 611 int ret = 0; 612 int cpu; 613 614 cn = of_find_node_by_path("/cpus"); 615 if (!cn) { 616 pr_err("No CPU information found in DT\n"); 617 return 0; 618 } 619 620 /* 621 * When topology is provided cpu-map is essentially a root 622 * cluster with restricted subnodes. 623 */ 624 map = of_get_child_by_name(cn, "cpu-map"); 625 if (!map) 626 goto out; 627 628 ret = parse_cluster(map, 0); 629 if (ret != 0) 630 goto out_map; 631 632 topology_normalize_cpu_scale(); 633 634 /* 635 * Check that all cores are in the topology; the SMP code will 636 * only mark cores described in the DT as possible. 637 */ 638 for_each_possible_cpu(cpu) 639 if (cpu_topology[cpu].package_id == -1) 640 ret = -EINVAL; 641 642 out_map: 643 of_node_put(map); 644 out: 645 of_node_put(cn); 646 return ret; 647 } 648 #endif 649 650 /* 651 * cpu topology table 652 */ 653 struct cpu_topology cpu_topology[NR_CPUS]; 654 EXPORT_SYMBOL_GPL(cpu_topology); 655 656 const struct cpumask *cpu_coregroup_mask(int cpu) 657 { 658 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); 659 660 /* Find the smaller of NUMA, core or LLC siblings */ 661 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { 662 /* not numa in package, lets use the package siblings */ 663 core_mask = &cpu_topology[cpu].core_sibling; 664 } 665 if (cpu_topology[cpu].llc_id != -1) { 666 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) 667 core_mask = &cpu_topology[cpu].llc_sibling; 668 } 669 670 /* 671 * For systems with no shared cpu-side LLC but with clusters defined, 672 * extend core_mask to cluster_siblings. The sched domain builder will 673 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled. 674 */ 675 if (IS_ENABLED(CONFIG_SCHED_CLUSTER) && 676 cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling)) 677 core_mask = &cpu_topology[cpu].cluster_sibling; 678 679 return core_mask; 680 } 681 682 const struct cpumask *cpu_clustergroup_mask(int cpu) 683 { 684 return &cpu_topology[cpu].cluster_sibling; 685 } 686 687 void update_siblings_masks(unsigned int cpuid) 688 { 689 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 690 int cpu; 691 692 /* update core and thread sibling masks */ 693 for_each_online_cpu(cpu) { 694 cpu_topo = &cpu_topology[cpu]; 695 696 if (cpu_topo->llc_id != -1 && cpuid_topo->llc_id == cpu_topo->llc_id) { 697 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); 698 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); 699 } 700 701 if (cpuid_topo->package_id != cpu_topo->package_id) 702 continue; 703 704 if (cpuid_topo->cluster_id == cpu_topo->cluster_id && 705 cpuid_topo->cluster_id != -1) { 706 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling); 707 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling); 708 } 709 710 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 711 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 712 713 if (cpuid_topo->core_id != cpu_topo->core_id) 714 continue; 715 716 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 717 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 718 } 719 } 720 721 static void clear_cpu_topology(int cpu) 722 { 723 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 724 725 cpumask_clear(&cpu_topo->llc_sibling); 726 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); 727 728 cpumask_clear(&cpu_topo->cluster_sibling); 729 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling); 730 731 cpumask_clear(&cpu_topo->core_sibling); 732 cpumask_set_cpu(cpu, &cpu_topo->core_sibling); 733 cpumask_clear(&cpu_topo->thread_sibling); 734 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); 735 } 736 737 void __init reset_cpu_topology(void) 738 { 739 unsigned int cpu; 740 741 for_each_possible_cpu(cpu) { 742 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 743 744 cpu_topo->thread_id = -1; 745 cpu_topo->core_id = -1; 746 cpu_topo->cluster_id = -1; 747 cpu_topo->package_id = -1; 748 cpu_topo->llc_id = -1; 749 750 clear_cpu_topology(cpu); 751 } 752 } 753 754 void remove_cpu_topology(unsigned int cpu) 755 { 756 int sibling; 757 758 for_each_cpu(sibling, topology_core_cpumask(cpu)) 759 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 760 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 761 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 762 for_each_cpu(sibling, topology_cluster_cpumask(cpu)) 763 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling)); 764 for_each_cpu(sibling, topology_llc_cpumask(cpu)) 765 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); 766 767 clear_cpu_topology(cpu); 768 } 769 770 __weak int __init parse_acpi_topology(void) 771 { 772 return 0; 773 } 774 775 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 776 void __init init_cpu_topology(void) 777 { 778 reset_cpu_topology(); 779 780 /* 781 * Discard anything that was parsed if we hit an error so we 782 * don't use partial information. 783 */ 784 if (parse_acpi_topology()) 785 reset_cpu_topology(); 786 else if (of_have_populated_dt() && parse_dt_topology()) 787 reset_cpu_topology(); 788 } 789 #endif 790