xref: /linux/drivers/base/arch_topology.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/sched/topology.h>
16 #include <linux/cpuset.h>
17 #include <linux/cpumask.h>
18 #include <linux/init.h>
19 #include <linux/rcupdate.h>
20 #include <linux/sched.h>
21 
22 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
23 static struct cpumask scale_freq_counters_mask;
24 static bool scale_freq_invariant;
25 static DEFINE_PER_CPU(u32, freq_factor) = 1;
26 
27 static bool supports_scale_freq_counters(const struct cpumask *cpus)
28 {
29 	return cpumask_subset(cpus, &scale_freq_counters_mask);
30 }
31 
32 bool topology_scale_freq_invariant(void)
33 {
34 	return cpufreq_supports_freq_invariance() ||
35 	       supports_scale_freq_counters(cpu_online_mask);
36 }
37 
38 static void update_scale_freq_invariant(bool status)
39 {
40 	if (scale_freq_invariant == status)
41 		return;
42 
43 	/*
44 	 * Task scheduler behavior depends on frequency invariance support,
45 	 * either cpufreq or counter driven. If the support status changes as
46 	 * a result of counter initialisation and use, retrigger the build of
47 	 * scheduling domains to ensure the information is propagated properly.
48 	 */
49 	if (topology_scale_freq_invariant() == status) {
50 		scale_freq_invariant = status;
51 		rebuild_sched_domains_energy();
52 	}
53 }
54 
55 void topology_set_scale_freq_source(struct scale_freq_data *data,
56 				    const struct cpumask *cpus)
57 {
58 	struct scale_freq_data *sfd;
59 	int cpu;
60 
61 	/*
62 	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
63 	 * supported by cpufreq.
64 	 */
65 	if (cpumask_empty(&scale_freq_counters_mask))
66 		scale_freq_invariant = topology_scale_freq_invariant();
67 
68 	rcu_read_lock();
69 
70 	for_each_cpu(cpu, cpus) {
71 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
72 
73 		/* Use ARCH provided counters whenever possible */
74 		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
75 			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
76 			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
77 		}
78 	}
79 
80 	rcu_read_unlock();
81 
82 	update_scale_freq_invariant(true);
83 }
84 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
85 
86 void topology_clear_scale_freq_source(enum scale_freq_source source,
87 				      const struct cpumask *cpus)
88 {
89 	struct scale_freq_data *sfd;
90 	int cpu;
91 
92 	rcu_read_lock();
93 
94 	for_each_cpu(cpu, cpus) {
95 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
96 
97 		if (sfd && sfd->source == source) {
98 			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
99 			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
100 		}
101 	}
102 
103 	rcu_read_unlock();
104 
105 	/*
106 	 * Make sure all references to previous sft_data are dropped to avoid
107 	 * use-after-free races.
108 	 */
109 	synchronize_rcu();
110 
111 	update_scale_freq_invariant(false);
112 }
113 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
114 
115 void topology_scale_freq_tick(void)
116 {
117 	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
118 
119 	if (sfd)
120 		sfd->set_freq_scale();
121 }
122 
123 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
124 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
125 
126 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
127 			     unsigned long max_freq)
128 {
129 	unsigned long scale;
130 	int i;
131 
132 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
133 		return;
134 
135 	/*
136 	 * If the use of counters for FIE is enabled, just return as we don't
137 	 * want to update the scale factor with information from CPUFREQ.
138 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
139 	 */
140 	if (supports_scale_freq_counters(cpus))
141 		return;
142 
143 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
144 
145 	for_each_cpu(i, cpus)
146 		per_cpu(arch_freq_scale, i) = scale;
147 }
148 
149 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
150 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
151 
152 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
153 {
154 	per_cpu(cpu_scale, cpu) = capacity;
155 }
156 
157 DEFINE_PER_CPU(unsigned long, thermal_pressure);
158 
159 /**
160  * topology_update_thermal_pressure() - Update thermal pressure for CPUs
161  * @cpus        : The related CPUs for which capacity has been reduced
162  * @capped_freq : The maximum allowed frequency that CPUs can run at
163  *
164  * Update the value of thermal pressure for all @cpus in the mask. The
165  * cpumask should include all (online+offline) affected CPUs, to avoid
166  * operating on stale data when hot-plug is used for some CPUs. The
167  * @capped_freq reflects the currently allowed max CPUs frequency due to
168  * thermal capping. It might be also a boost frequency value, which is bigger
169  * than the internal 'freq_factor' max frequency. In such case the pressure
170  * value should simply be removed, since this is an indication that there is
171  * no thermal throttling. The @capped_freq must be provided in kHz.
172  */
173 void topology_update_thermal_pressure(const struct cpumask *cpus,
174 				      unsigned long capped_freq)
175 {
176 	unsigned long max_capacity, capacity, th_pressure;
177 	u32 max_freq;
178 	int cpu;
179 
180 	cpu = cpumask_first(cpus);
181 	max_capacity = arch_scale_cpu_capacity(cpu);
182 	max_freq = per_cpu(freq_factor, cpu);
183 
184 	/* Convert to MHz scale which is used in 'freq_factor' */
185 	capped_freq /= 1000;
186 
187 	/*
188 	 * Handle properly the boost frequencies, which should simply clean
189 	 * the thermal pressure value.
190 	 */
191 	if (max_freq <= capped_freq)
192 		capacity = max_capacity;
193 	else
194 		capacity = mult_frac(max_capacity, capped_freq, max_freq);
195 
196 	th_pressure = max_capacity - capacity;
197 
198 	for_each_cpu(cpu, cpus)
199 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
200 }
201 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
202 
203 static ssize_t cpu_capacity_show(struct device *dev,
204 				 struct device_attribute *attr,
205 				 char *buf)
206 {
207 	struct cpu *cpu = container_of(dev, struct cpu, dev);
208 
209 	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
210 }
211 
212 static void update_topology_flags_workfn(struct work_struct *work);
213 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
214 
215 static DEVICE_ATTR_RO(cpu_capacity);
216 
217 static int register_cpu_capacity_sysctl(void)
218 {
219 	int i;
220 	struct device *cpu;
221 
222 	for_each_possible_cpu(i) {
223 		cpu = get_cpu_device(i);
224 		if (!cpu) {
225 			pr_err("%s: too early to get CPU%d device!\n",
226 			       __func__, i);
227 			continue;
228 		}
229 		device_create_file(cpu, &dev_attr_cpu_capacity);
230 	}
231 
232 	return 0;
233 }
234 subsys_initcall(register_cpu_capacity_sysctl);
235 
236 static int update_topology;
237 
238 int topology_update_cpu_topology(void)
239 {
240 	return update_topology;
241 }
242 
243 /*
244  * Updating the sched_domains can't be done directly from cpufreq callbacks
245  * due to locking, so queue the work for later.
246  */
247 static void update_topology_flags_workfn(struct work_struct *work)
248 {
249 	update_topology = 1;
250 	rebuild_sched_domains();
251 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
252 	update_topology = 0;
253 }
254 
255 static u32 *raw_capacity;
256 
257 static int free_raw_capacity(void)
258 {
259 	kfree(raw_capacity);
260 	raw_capacity = NULL;
261 
262 	return 0;
263 }
264 
265 void topology_normalize_cpu_scale(void)
266 {
267 	u64 capacity;
268 	u64 capacity_scale;
269 	int cpu;
270 
271 	if (!raw_capacity)
272 		return;
273 
274 	capacity_scale = 1;
275 	for_each_possible_cpu(cpu) {
276 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
277 		capacity_scale = max(capacity, capacity_scale);
278 	}
279 
280 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
281 	for_each_possible_cpu(cpu) {
282 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
283 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
284 			capacity_scale);
285 		topology_set_cpu_scale(cpu, capacity);
286 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
287 			cpu, topology_get_cpu_scale(cpu));
288 	}
289 }
290 
291 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
292 {
293 	struct clk *cpu_clk;
294 	static bool cap_parsing_failed;
295 	int ret;
296 	u32 cpu_capacity;
297 
298 	if (cap_parsing_failed)
299 		return false;
300 
301 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
302 				   &cpu_capacity);
303 	if (!ret) {
304 		if (!raw_capacity) {
305 			raw_capacity = kcalloc(num_possible_cpus(),
306 					       sizeof(*raw_capacity),
307 					       GFP_KERNEL);
308 			if (!raw_capacity) {
309 				cap_parsing_failed = true;
310 				return false;
311 			}
312 		}
313 		raw_capacity[cpu] = cpu_capacity;
314 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
315 			cpu_node, raw_capacity[cpu]);
316 
317 		/*
318 		 * Update freq_factor for calculating early boot cpu capacities.
319 		 * For non-clk CPU DVFS mechanism, there's no way to get the
320 		 * frequency value now, assuming they are running at the same
321 		 * frequency (by keeping the initial freq_factor value).
322 		 */
323 		cpu_clk = of_clk_get(cpu_node, 0);
324 		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
325 			per_cpu(freq_factor, cpu) =
326 				clk_get_rate(cpu_clk) / 1000;
327 			clk_put(cpu_clk);
328 		}
329 	} else {
330 		if (raw_capacity) {
331 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
332 				cpu_node);
333 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
334 		}
335 		cap_parsing_failed = true;
336 		free_raw_capacity();
337 	}
338 
339 	return !ret;
340 }
341 
342 #ifdef CONFIG_ACPI_CPPC_LIB
343 #include <acpi/cppc_acpi.h>
344 
345 void topology_init_cpu_capacity_cppc(void)
346 {
347 	struct cppc_perf_caps perf_caps;
348 	int cpu;
349 
350 	if (likely(acpi_disabled || !acpi_cpc_valid()))
351 		return;
352 
353 	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
354 			       GFP_KERNEL);
355 	if (!raw_capacity)
356 		return;
357 
358 	for_each_possible_cpu(cpu) {
359 		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
360 		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
361 		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
362 			raw_capacity[cpu] = perf_caps.highest_perf;
363 			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
364 				 cpu, raw_capacity[cpu]);
365 			continue;
366 		}
367 
368 		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
369 		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
370 		goto exit;
371 	}
372 
373 	topology_normalize_cpu_scale();
374 	schedule_work(&update_topology_flags_work);
375 	pr_debug("cpu_capacity: cpu_capacity initialization done\n");
376 
377 exit:
378 	free_raw_capacity();
379 }
380 #endif
381 
382 #ifdef CONFIG_CPU_FREQ
383 static cpumask_var_t cpus_to_visit;
384 static void parsing_done_workfn(struct work_struct *work);
385 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
386 
387 static int
388 init_cpu_capacity_callback(struct notifier_block *nb,
389 			   unsigned long val,
390 			   void *data)
391 {
392 	struct cpufreq_policy *policy = data;
393 	int cpu;
394 
395 	if (!raw_capacity)
396 		return 0;
397 
398 	if (val != CPUFREQ_CREATE_POLICY)
399 		return 0;
400 
401 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
402 		 cpumask_pr_args(policy->related_cpus),
403 		 cpumask_pr_args(cpus_to_visit));
404 
405 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
406 
407 	for_each_cpu(cpu, policy->related_cpus)
408 		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
409 
410 	if (cpumask_empty(cpus_to_visit)) {
411 		topology_normalize_cpu_scale();
412 		schedule_work(&update_topology_flags_work);
413 		free_raw_capacity();
414 		pr_debug("cpu_capacity: parsing done\n");
415 		schedule_work(&parsing_done_work);
416 	}
417 
418 	return 0;
419 }
420 
421 static struct notifier_block init_cpu_capacity_notifier = {
422 	.notifier_call = init_cpu_capacity_callback,
423 };
424 
425 static int __init register_cpufreq_notifier(void)
426 {
427 	int ret;
428 
429 	/*
430 	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
431 	 * information is not needed for cpu capacity initialization.
432 	 */
433 	if (!acpi_disabled || !raw_capacity)
434 		return -EINVAL;
435 
436 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
437 		return -ENOMEM;
438 
439 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
440 
441 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
442 					CPUFREQ_POLICY_NOTIFIER);
443 
444 	if (ret)
445 		free_cpumask_var(cpus_to_visit);
446 
447 	return ret;
448 }
449 core_initcall(register_cpufreq_notifier);
450 
451 static void parsing_done_workfn(struct work_struct *work)
452 {
453 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
454 					 CPUFREQ_POLICY_NOTIFIER);
455 	free_cpumask_var(cpus_to_visit);
456 }
457 
458 #else
459 core_initcall(free_raw_capacity);
460 #endif
461 
462 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
463 /*
464  * This function returns the logic cpu number of the node.
465  * There are basically three kinds of return values:
466  * (1) logic cpu number which is > 0.
467  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
468  * there is no possible logical CPU in the kernel to match. This happens
469  * when CONFIG_NR_CPUS is configure to be smaller than the number of
470  * CPU nodes in DT. We need to just ignore this case.
471  * (3) -1 if the node does not exist in the device tree
472  */
473 static int __init get_cpu_for_node(struct device_node *node)
474 {
475 	struct device_node *cpu_node;
476 	int cpu;
477 
478 	cpu_node = of_parse_phandle(node, "cpu", 0);
479 	if (!cpu_node)
480 		return -1;
481 
482 	cpu = of_cpu_node_to_id(cpu_node);
483 	if (cpu >= 0)
484 		topology_parse_cpu_capacity(cpu_node, cpu);
485 	else
486 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
487 			cpu_node, cpumask_pr_args(cpu_possible_mask));
488 
489 	of_node_put(cpu_node);
490 	return cpu;
491 }
492 
493 static int __init parse_core(struct device_node *core, int package_id,
494 			     int core_id)
495 {
496 	char name[20];
497 	bool leaf = true;
498 	int i = 0;
499 	int cpu;
500 	struct device_node *t;
501 
502 	do {
503 		snprintf(name, sizeof(name), "thread%d", i);
504 		t = of_get_child_by_name(core, name);
505 		if (t) {
506 			leaf = false;
507 			cpu = get_cpu_for_node(t);
508 			if (cpu >= 0) {
509 				cpu_topology[cpu].package_id = package_id;
510 				cpu_topology[cpu].core_id = core_id;
511 				cpu_topology[cpu].thread_id = i;
512 			} else if (cpu != -ENODEV) {
513 				pr_err("%pOF: Can't get CPU for thread\n", t);
514 				of_node_put(t);
515 				return -EINVAL;
516 			}
517 			of_node_put(t);
518 		}
519 		i++;
520 	} while (t);
521 
522 	cpu = get_cpu_for_node(core);
523 	if (cpu >= 0) {
524 		if (!leaf) {
525 			pr_err("%pOF: Core has both threads and CPU\n",
526 			       core);
527 			return -EINVAL;
528 		}
529 
530 		cpu_topology[cpu].package_id = package_id;
531 		cpu_topology[cpu].core_id = core_id;
532 	} else if (leaf && cpu != -ENODEV) {
533 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
534 		return -EINVAL;
535 	}
536 
537 	return 0;
538 }
539 
540 static int __init parse_cluster(struct device_node *cluster, int depth)
541 {
542 	char name[20];
543 	bool leaf = true;
544 	bool has_cores = false;
545 	struct device_node *c;
546 	static int package_id __initdata;
547 	int core_id = 0;
548 	int i, ret;
549 
550 	/*
551 	 * First check for child clusters; we currently ignore any
552 	 * information about the nesting of clusters and present the
553 	 * scheduler with a flat list of them.
554 	 */
555 	i = 0;
556 	do {
557 		snprintf(name, sizeof(name), "cluster%d", i);
558 		c = of_get_child_by_name(cluster, name);
559 		if (c) {
560 			leaf = false;
561 			ret = parse_cluster(c, depth + 1);
562 			of_node_put(c);
563 			if (ret != 0)
564 				return ret;
565 		}
566 		i++;
567 	} while (c);
568 
569 	/* Now check for cores */
570 	i = 0;
571 	do {
572 		snprintf(name, sizeof(name), "core%d", i);
573 		c = of_get_child_by_name(cluster, name);
574 		if (c) {
575 			has_cores = true;
576 
577 			if (depth == 0) {
578 				pr_err("%pOF: cpu-map children should be clusters\n",
579 				       c);
580 				of_node_put(c);
581 				return -EINVAL;
582 			}
583 
584 			if (leaf) {
585 				ret = parse_core(c, package_id, core_id++);
586 			} else {
587 				pr_err("%pOF: Non-leaf cluster with core %s\n",
588 				       cluster, name);
589 				ret = -EINVAL;
590 			}
591 
592 			of_node_put(c);
593 			if (ret != 0)
594 				return ret;
595 		}
596 		i++;
597 	} while (c);
598 
599 	if (leaf && !has_cores)
600 		pr_warn("%pOF: empty cluster\n", cluster);
601 
602 	if (leaf)
603 		package_id++;
604 
605 	return 0;
606 }
607 
608 static int __init parse_dt_topology(void)
609 {
610 	struct device_node *cn, *map;
611 	int ret = 0;
612 	int cpu;
613 
614 	cn = of_find_node_by_path("/cpus");
615 	if (!cn) {
616 		pr_err("No CPU information found in DT\n");
617 		return 0;
618 	}
619 
620 	/*
621 	 * When topology is provided cpu-map is essentially a root
622 	 * cluster with restricted subnodes.
623 	 */
624 	map = of_get_child_by_name(cn, "cpu-map");
625 	if (!map)
626 		goto out;
627 
628 	ret = parse_cluster(map, 0);
629 	if (ret != 0)
630 		goto out_map;
631 
632 	topology_normalize_cpu_scale();
633 
634 	/*
635 	 * Check that all cores are in the topology; the SMP code will
636 	 * only mark cores described in the DT as possible.
637 	 */
638 	for_each_possible_cpu(cpu)
639 		if (cpu_topology[cpu].package_id == -1)
640 			ret = -EINVAL;
641 
642 out_map:
643 	of_node_put(map);
644 out:
645 	of_node_put(cn);
646 	return ret;
647 }
648 #endif
649 
650 /*
651  * cpu topology table
652  */
653 struct cpu_topology cpu_topology[NR_CPUS];
654 EXPORT_SYMBOL_GPL(cpu_topology);
655 
656 const struct cpumask *cpu_coregroup_mask(int cpu)
657 {
658 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
659 
660 	/* Find the smaller of NUMA, core or LLC siblings */
661 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
662 		/* not numa in package, lets use the package siblings */
663 		core_mask = &cpu_topology[cpu].core_sibling;
664 	}
665 	if (cpu_topology[cpu].llc_id != -1) {
666 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
667 			core_mask = &cpu_topology[cpu].llc_sibling;
668 	}
669 
670 	return core_mask;
671 }
672 
673 const struct cpumask *cpu_clustergroup_mask(int cpu)
674 {
675 	return &cpu_topology[cpu].cluster_sibling;
676 }
677 
678 void update_siblings_masks(unsigned int cpuid)
679 {
680 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
681 	int cpu;
682 
683 	/* update core and thread sibling masks */
684 	for_each_online_cpu(cpu) {
685 		cpu_topo = &cpu_topology[cpu];
686 
687 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
688 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
689 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
690 		}
691 
692 		if (cpuid_topo->package_id != cpu_topo->package_id)
693 			continue;
694 
695 		if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
696 		    cpuid_topo->cluster_id != -1) {
697 			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
698 			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
699 		}
700 
701 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
702 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
703 
704 		if (cpuid_topo->core_id != cpu_topo->core_id)
705 			continue;
706 
707 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
708 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
709 	}
710 }
711 
712 static void clear_cpu_topology(int cpu)
713 {
714 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
715 
716 	cpumask_clear(&cpu_topo->llc_sibling);
717 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
718 
719 	cpumask_clear(&cpu_topo->cluster_sibling);
720 	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
721 
722 	cpumask_clear(&cpu_topo->core_sibling);
723 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
724 	cpumask_clear(&cpu_topo->thread_sibling);
725 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
726 }
727 
728 void __init reset_cpu_topology(void)
729 {
730 	unsigned int cpu;
731 
732 	for_each_possible_cpu(cpu) {
733 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
734 
735 		cpu_topo->thread_id = -1;
736 		cpu_topo->core_id = -1;
737 		cpu_topo->cluster_id = -1;
738 		cpu_topo->package_id = -1;
739 		cpu_topo->llc_id = -1;
740 
741 		clear_cpu_topology(cpu);
742 	}
743 }
744 
745 void remove_cpu_topology(unsigned int cpu)
746 {
747 	int sibling;
748 
749 	for_each_cpu(sibling, topology_core_cpumask(cpu))
750 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
751 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
752 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
753 	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
754 		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
755 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
756 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
757 
758 	clear_cpu_topology(cpu);
759 }
760 
761 __weak int __init parse_acpi_topology(void)
762 {
763 	return 0;
764 }
765 
766 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
767 void __init init_cpu_topology(void)
768 {
769 	reset_cpu_topology();
770 
771 	/*
772 	 * Discard anything that was parsed if we hit an error so we
773 	 * don't use partial information.
774 	 */
775 	if (parse_acpi_topology())
776 		reset_cpu_topology();
777 	else if (of_have_populated_dt() && parse_dt_topology())
778 		reset_cpu_topology();
779 }
780 #endif
781