1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arch specific cpu topology information 4 * 5 * Copyright (C) 2016, ARM Ltd. 6 * Written by: Juri Lelli, ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/cacheinfo.h> 11 #include <linux/cpu.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/sched/topology.h> 17 #include <linux/cpuset.h> 18 #include <linux/cpumask.h> 19 #include <linux/init.h> 20 #include <linux/rcupdate.h> 21 #include <linux/sched.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/thermal_pressure.h> 25 26 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); 27 static struct cpumask scale_freq_counters_mask; 28 static bool scale_freq_invariant; 29 static DEFINE_PER_CPU(u32, freq_factor) = 1; 30 31 static bool supports_scale_freq_counters(const struct cpumask *cpus) 32 { 33 return cpumask_subset(cpus, &scale_freq_counters_mask); 34 } 35 36 bool topology_scale_freq_invariant(void) 37 { 38 return cpufreq_supports_freq_invariance() || 39 supports_scale_freq_counters(cpu_online_mask); 40 } 41 42 static void update_scale_freq_invariant(bool status) 43 { 44 if (scale_freq_invariant == status) 45 return; 46 47 /* 48 * Task scheduler behavior depends on frequency invariance support, 49 * either cpufreq or counter driven. If the support status changes as 50 * a result of counter initialisation and use, retrigger the build of 51 * scheduling domains to ensure the information is propagated properly. 52 */ 53 if (topology_scale_freq_invariant() == status) { 54 scale_freq_invariant = status; 55 rebuild_sched_domains_energy(); 56 } 57 } 58 59 void topology_set_scale_freq_source(struct scale_freq_data *data, 60 const struct cpumask *cpus) 61 { 62 struct scale_freq_data *sfd; 63 int cpu; 64 65 /* 66 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is 67 * supported by cpufreq. 68 */ 69 if (cpumask_empty(&scale_freq_counters_mask)) 70 scale_freq_invariant = topology_scale_freq_invariant(); 71 72 rcu_read_lock(); 73 74 for_each_cpu(cpu, cpus) { 75 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 76 77 /* Use ARCH provided counters whenever possible */ 78 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { 79 rcu_assign_pointer(per_cpu(sft_data, cpu), data); 80 cpumask_set_cpu(cpu, &scale_freq_counters_mask); 81 } 82 } 83 84 rcu_read_unlock(); 85 86 update_scale_freq_invariant(true); 87 } 88 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); 89 90 void topology_clear_scale_freq_source(enum scale_freq_source source, 91 const struct cpumask *cpus) 92 { 93 struct scale_freq_data *sfd; 94 int cpu; 95 96 rcu_read_lock(); 97 98 for_each_cpu(cpu, cpus) { 99 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 100 101 if (sfd && sfd->source == source) { 102 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); 103 cpumask_clear_cpu(cpu, &scale_freq_counters_mask); 104 } 105 } 106 107 rcu_read_unlock(); 108 109 /* 110 * Make sure all references to previous sft_data are dropped to avoid 111 * use-after-free races. 112 */ 113 synchronize_rcu(); 114 115 update_scale_freq_invariant(false); 116 } 117 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); 118 119 void topology_scale_freq_tick(void) 120 { 121 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); 122 123 if (sfd) 124 sfd->set_freq_scale(); 125 } 126 127 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; 128 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); 129 130 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, 131 unsigned long max_freq) 132 { 133 unsigned long scale; 134 int i; 135 136 if (WARN_ON_ONCE(!cur_freq || !max_freq)) 137 return; 138 139 /* 140 * If the use of counters for FIE is enabled, just return as we don't 141 * want to update the scale factor with information from CPUFREQ. 142 * Instead the scale factor will be updated from arch_scale_freq_tick. 143 */ 144 if (supports_scale_freq_counters(cpus)) 145 return; 146 147 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; 148 149 for_each_cpu(i, cpus) 150 per_cpu(arch_freq_scale, i) = scale; 151 } 152 153 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; 154 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale); 155 156 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) 157 { 158 per_cpu(cpu_scale, cpu) = capacity; 159 } 160 161 DEFINE_PER_CPU(unsigned long, thermal_pressure); 162 163 /** 164 * topology_update_thermal_pressure() - Update thermal pressure for CPUs 165 * @cpus : The related CPUs for which capacity has been reduced 166 * @capped_freq : The maximum allowed frequency that CPUs can run at 167 * 168 * Update the value of thermal pressure for all @cpus in the mask. The 169 * cpumask should include all (online+offline) affected CPUs, to avoid 170 * operating on stale data when hot-plug is used for some CPUs. The 171 * @capped_freq reflects the currently allowed max CPUs frequency due to 172 * thermal capping. It might be also a boost frequency value, which is bigger 173 * than the internal 'freq_factor' max frequency. In such case the pressure 174 * value should simply be removed, since this is an indication that there is 175 * no thermal throttling. The @capped_freq must be provided in kHz. 176 */ 177 void topology_update_thermal_pressure(const struct cpumask *cpus, 178 unsigned long capped_freq) 179 { 180 unsigned long max_capacity, capacity, th_pressure; 181 u32 max_freq; 182 int cpu; 183 184 cpu = cpumask_first(cpus); 185 max_capacity = arch_scale_cpu_capacity(cpu); 186 max_freq = per_cpu(freq_factor, cpu); 187 188 /* Convert to MHz scale which is used in 'freq_factor' */ 189 capped_freq /= 1000; 190 191 /* 192 * Handle properly the boost frequencies, which should simply clean 193 * the thermal pressure value. 194 */ 195 if (max_freq <= capped_freq) 196 capacity = max_capacity; 197 else 198 capacity = mult_frac(max_capacity, capped_freq, max_freq); 199 200 th_pressure = max_capacity - capacity; 201 202 trace_thermal_pressure_update(cpu, th_pressure); 203 204 for_each_cpu(cpu, cpus) 205 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 206 } 207 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure); 208 209 static ssize_t cpu_capacity_show(struct device *dev, 210 struct device_attribute *attr, 211 char *buf) 212 { 213 struct cpu *cpu = container_of(dev, struct cpu, dev); 214 215 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); 216 } 217 218 static void update_topology_flags_workfn(struct work_struct *work); 219 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); 220 221 static DEVICE_ATTR_RO(cpu_capacity); 222 223 static int register_cpu_capacity_sysctl(void) 224 { 225 int i; 226 struct device *cpu; 227 228 for_each_possible_cpu(i) { 229 cpu = get_cpu_device(i); 230 if (!cpu) { 231 pr_err("%s: too early to get CPU%d device!\n", 232 __func__, i); 233 continue; 234 } 235 device_create_file(cpu, &dev_attr_cpu_capacity); 236 } 237 238 return 0; 239 } 240 subsys_initcall(register_cpu_capacity_sysctl); 241 242 static int update_topology; 243 244 int topology_update_cpu_topology(void) 245 { 246 return update_topology; 247 } 248 249 /* 250 * Updating the sched_domains can't be done directly from cpufreq callbacks 251 * due to locking, so queue the work for later. 252 */ 253 static void update_topology_flags_workfn(struct work_struct *work) 254 { 255 update_topology = 1; 256 rebuild_sched_domains(); 257 pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); 258 update_topology = 0; 259 } 260 261 static u32 *raw_capacity; 262 263 static int free_raw_capacity(void) 264 { 265 kfree(raw_capacity); 266 raw_capacity = NULL; 267 268 return 0; 269 } 270 271 void topology_normalize_cpu_scale(void) 272 { 273 u64 capacity; 274 u64 capacity_scale; 275 int cpu; 276 277 if (!raw_capacity) 278 return; 279 280 capacity_scale = 1; 281 for_each_possible_cpu(cpu) { 282 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); 283 capacity_scale = max(capacity, capacity_scale); 284 } 285 286 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); 287 for_each_possible_cpu(cpu) { 288 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); 289 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 290 capacity_scale); 291 topology_set_cpu_scale(cpu, capacity); 292 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 293 cpu, topology_get_cpu_scale(cpu)); 294 } 295 } 296 297 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) 298 { 299 struct clk *cpu_clk; 300 static bool cap_parsing_failed; 301 int ret; 302 u32 cpu_capacity; 303 304 if (cap_parsing_failed) 305 return false; 306 307 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", 308 &cpu_capacity); 309 if (!ret) { 310 if (!raw_capacity) { 311 raw_capacity = kcalloc(num_possible_cpus(), 312 sizeof(*raw_capacity), 313 GFP_KERNEL); 314 if (!raw_capacity) { 315 cap_parsing_failed = true; 316 return false; 317 } 318 } 319 raw_capacity[cpu] = cpu_capacity; 320 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", 321 cpu_node, raw_capacity[cpu]); 322 323 /* 324 * Update freq_factor for calculating early boot cpu capacities. 325 * For non-clk CPU DVFS mechanism, there's no way to get the 326 * frequency value now, assuming they are running at the same 327 * frequency (by keeping the initial freq_factor value). 328 */ 329 cpu_clk = of_clk_get(cpu_node, 0); 330 if (!PTR_ERR_OR_ZERO(cpu_clk)) { 331 per_cpu(freq_factor, cpu) = 332 clk_get_rate(cpu_clk) / 1000; 333 clk_put(cpu_clk); 334 } 335 } else { 336 if (raw_capacity) { 337 pr_err("cpu_capacity: missing %pOF raw capacity\n", 338 cpu_node); 339 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 340 } 341 cap_parsing_failed = true; 342 free_raw_capacity(); 343 } 344 345 return !ret; 346 } 347 348 #ifdef CONFIG_ACPI_CPPC_LIB 349 #include <acpi/cppc_acpi.h> 350 351 void topology_init_cpu_capacity_cppc(void) 352 { 353 struct cppc_perf_caps perf_caps; 354 int cpu; 355 356 if (likely(!acpi_cpc_valid())) 357 return; 358 359 raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), 360 GFP_KERNEL); 361 if (!raw_capacity) 362 return; 363 364 for_each_possible_cpu(cpu) { 365 if (!cppc_get_perf_caps(cpu, &perf_caps) && 366 (perf_caps.highest_perf >= perf_caps.nominal_perf) && 367 (perf_caps.highest_perf >= perf_caps.lowest_perf)) { 368 raw_capacity[cpu] = perf_caps.highest_perf; 369 pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n", 370 cpu, raw_capacity[cpu]); 371 continue; 372 } 373 374 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu); 375 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 376 goto exit; 377 } 378 379 topology_normalize_cpu_scale(); 380 schedule_work(&update_topology_flags_work); 381 pr_debug("cpu_capacity: cpu_capacity initialization done\n"); 382 383 exit: 384 free_raw_capacity(); 385 } 386 #endif 387 388 #ifdef CONFIG_CPU_FREQ 389 static cpumask_var_t cpus_to_visit; 390 static void parsing_done_workfn(struct work_struct *work); 391 static DECLARE_WORK(parsing_done_work, parsing_done_workfn); 392 393 static int 394 init_cpu_capacity_callback(struct notifier_block *nb, 395 unsigned long val, 396 void *data) 397 { 398 struct cpufreq_policy *policy = data; 399 int cpu; 400 401 if (!raw_capacity) 402 return 0; 403 404 if (val != CPUFREQ_CREATE_POLICY) 405 return 0; 406 407 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", 408 cpumask_pr_args(policy->related_cpus), 409 cpumask_pr_args(cpus_to_visit)); 410 411 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); 412 413 for_each_cpu(cpu, policy->related_cpus) 414 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000; 415 416 if (cpumask_empty(cpus_to_visit)) { 417 topology_normalize_cpu_scale(); 418 schedule_work(&update_topology_flags_work); 419 free_raw_capacity(); 420 pr_debug("cpu_capacity: parsing done\n"); 421 schedule_work(&parsing_done_work); 422 } 423 424 return 0; 425 } 426 427 static struct notifier_block init_cpu_capacity_notifier = { 428 .notifier_call = init_cpu_capacity_callback, 429 }; 430 431 static int __init register_cpufreq_notifier(void) 432 { 433 int ret; 434 435 /* 436 * On ACPI-based systems skip registering cpufreq notifier as cpufreq 437 * information is not needed for cpu capacity initialization. 438 */ 439 if (!acpi_disabled || !raw_capacity) 440 return -EINVAL; 441 442 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) 443 return -ENOMEM; 444 445 cpumask_copy(cpus_to_visit, cpu_possible_mask); 446 447 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, 448 CPUFREQ_POLICY_NOTIFIER); 449 450 if (ret) 451 free_cpumask_var(cpus_to_visit); 452 453 return ret; 454 } 455 core_initcall(register_cpufreq_notifier); 456 457 static void parsing_done_workfn(struct work_struct *work) 458 { 459 cpufreq_unregister_notifier(&init_cpu_capacity_notifier, 460 CPUFREQ_POLICY_NOTIFIER); 461 free_cpumask_var(cpus_to_visit); 462 } 463 464 #else 465 core_initcall(free_raw_capacity); 466 #endif 467 468 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 469 /* 470 * This function returns the logic cpu number of the node. 471 * There are basically three kinds of return values: 472 * (1) logic cpu number which is > 0. 473 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but 474 * there is no possible logical CPU in the kernel to match. This happens 475 * when CONFIG_NR_CPUS is configure to be smaller than the number of 476 * CPU nodes in DT. We need to just ignore this case. 477 * (3) -1 if the node does not exist in the device tree 478 */ 479 static int __init get_cpu_for_node(struct device_node *node) 480 { 481 struct device_node *cpu_node; 482 int cpu; 483 484 cpu_node = of_parse_phandle(node, "cpu", 0); 485 if (!cpu_node) 486 return -1; 487 488 cpu = of_cpu_node_to_id(cpu_node); 489 if (cpu >= 0) 490 topology_parse_cpu_capacity(cpu_node, cpu); 491 else 492 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", 493 cpu_node, cpumask_pr_args(cpu_possible_mask)); 494 495 of_node_put(cpu_node); 496 return cpu; 497 } 498 499 static int __init parse_core(struct device_node *core, int package_id, 500 int cluster_id, int core_id) 501 { 502 char name[20]; 503 bool leaf = true; 504 int i = 0; 505 int cpu; 506 struct device_node *t; 507 508 do { 509 snprintf(name, sizeof(name), "thread%d", i); 510 t = of_get_child_by_name(core, name); 511 if (t) { 512 leaf = false; 513 cpu = get_cpu_for_node(t); 514 if (cpu >= 0) { 515 cpu_topology[cpu].package_id = package_id; 516 cpu_topology[cpu].cluster_id = cluster_id; 517 cpu_topology[cpu].core_id = core_id; 518 cpu_topology[cpu].thread_id = i; 519 } else if (cpu != -ENODEV) { 520 pr_err("%pOF: Can't get CPU for thread\n", t); 521 of_node_put(t); 522 return -EINVAL; 523 } 524 of_node_put(t); 525 } 526 i++; 527 } while (t); 528 529 cpu = get_cpu_for_node(core); 530 if (cpu >= 0) { 531 if (!leaf) { 532 pr_err("%pOF: Core has both threads and CPU\n", 533 core); 534 return -EINVAL; 535 } 536 537 cpu_topology[cpu].package_id = package_id; 538 cpu_topology[cpu].cluster_id = cluster_id; 539 cpu_topology[cpu].core_id = core_id; 540 } else if (leaf && cpu != -ENODEV) { 541 pr_err("%pOF: Can't get CPU for leaf core\n", core); 542 return -EINVAL; 543 } 544 545 return 0; 546 } 547 548 static int __init parse_cluster(struct device_node *cluster, int package_id, 549 int cluster_id, int depth) 550 { 551 char name[20]; 552 bool leaf = true; 553 bool has_cores = false; 554 struct device_node *c; 555 int core_id = 0; 556 int i, ret; 557 558 /* 559 * First check for child clusters; we currently ignore any 560 * information about the nesting of clusters and present the 561 * scheduler with a flat list of them. 562 */ 563 i = 0; 564 do { 565 snprintf(name, sizeof(name), "cluster%d", i); 566 c = of_get_child_by_name(cluster, name); 567 if (c) { 568 leaf = false; 569 ret = parse_cluster(c, package_id, i, depth + 1); 570 if (depth > 0) 571 pr_warn("Topology for clusters of clusters not yet supported\n"); 572 of_node_put(c); 573 if (ret != 0) 574 return ret; 575 } 576 i++; 577 } while (c); 578 579 /* Now check for cores */ 580 i = 0; 581 do { 582 snprintf(name, sizeof(name), "core%d", i); 583 c = of_get_child_by_name(cluster, name); 584 if (c) { 585 has_cores = true; 586 587 if (depth == 0) { 588 pr_err("%pOF: cpu-map children should be clusters\n", 589 c); 590 of_node_put(c); 591 return -EINVAL; 592 } 593 594 if (leaf) { 595 ret = parse_core(c, package_id, cluster_id, 596 core_id++); 597 } else { 598 pr_err("%pOF: Non-leaf cluster with core %s\n", 599 cluster, name); 600 ret = -EINVAL; 601 } 602 603 of_node_put(c); 604 if (ret != 0) 605 return ret; 606 } 607 i++; 608 } while (c); 609 610 if (leaf && !has_cores) 611 pr_warn("%pOF: empty cluster\n", cluster); 612 613 return 0; 614 } 615 616 static int __init parse_socket(struct device_node *socket) 617 { 618 char name[20]; 619 struct device_node *c; 620 bool has_socket = false; 621 int package_id = 0, ret; 622 623 do { 624 snprintf(name, sizeof(name), "socket%d", package_id); 625 c = of_get_child_by_name(socket, name); 626 if (c) { 627 has_socket = true; 628 ret = parse_cluster(c, package_id, -1, 0); 629 of_node_put(c); 630 if (ret != 0) 631 return ret; 632 } 633 package_id++; 634 } while (c); 635 636 if (!has_socket) 637 ret = parse_cluster(socket, 0, -1, 0); 638 639 return ret; 640 } 641 642 static int __init parse_dt_topology(void) 643 { 644 struct device_node *cn, *map; 645 int ret = 0; 646 int cpu; 647 648 cn = of_find_node_by_path("/cpus"); 649 if (!cn) { 650 pr_err("No CPU information found in DT\n"); 651 return 0; 652 } 653 654 /* 655 * When topology is provided cpu-map is essentially a root 656 * cluster with restricted subnodes. 657 */ 658 map = of_get_child_by_name(cn, "cpu-map"); 659 if (!map) 660 goto out; 661 662 ret = parse_socket(map); 663 if (ret != 0) 664 goto out_map; 665 666 topology_normalize_cpu_scale(); 667 668 /* 669 * Check that all cores are in the topology; the SMP code will 670 * only mark cores described in the DT as possible. 671 */ 672 for_each_possible_cpu(cpu) 673 if (cpu_topology[cpu].package_id < 0) { 674 ret = -EINVAL; 675 break; 676 } 677 678 out_map: 679 of_node_put(map); 680 out: 681 of_node_put(cn); 682 return ret; 683 } 684 #endif 685 686 /* 687 * cpu topology table 688 */ 689 struct cpu_topology cpu_topology[NR_CPUS]; 690 EXPORT_SYMBOL_GPL(cpu_topology); 691 692 const struct cpumask *cpu_coregroup_mask(int cpu) 693 { 694 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); 695 696 /* Find the smaller of NUMA, core or LLC siblings */ 697 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { 698 /* not numa in package, lets use the package siblings */ 699 core_mask = &cpu_topology[cpu].core_sibling; 700 } 701 702 if (last_level_cache_is_valid(cpu)) { 703 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) 704 core_mask = &cpu_topology[cpu].llc_sibling; 705 } 706 707 /* 708 * For systems with no shared cpu-side LLC but with clusters defined, 709 * extend core_mask to cluster_siblings. The sched domain builder will 710 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled. 711 */ 712 if (IS_ENABLED(CONFIG_SCHED_CLUSTER) && 713 cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling)) 714 core_mask = &cpu_topology[cpu].cluster_sibling; 715 716 return core_mask; 717 } 718 719 const struct cpumask *cpu_clustergroup_mask(int cpu) 720 { 721 /* 722 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as 723 * cpu_coregroup_mask(). 724 */ 725 if (cpumask_subset(cpu_coregroup_mask(cpu), 726 &cpu_topology[cpu].cluster_sibling)) 727 return topology_sibling_cpumask(cpu); 728 729 return &cpu_topology[cpu].cluster_sibling; 730 } 731 732 void update_siblings_masks(unsigned int cpuid) 733 { 734 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 735 int cpu, ret; 736 737 ret = detect_cache_attributes(cpuid); 738 if (ret && ret != -ENOENT) 739 pr_info("Early cacheinfo allocation failed, ret = %d\n", ret); 740 741 /* update core and thread sibling masks */ 742 for_each_online_cpu(cpu) { 743 cpu_topo = &cpu_topology[cpu]; 744 745 if (last_level_cache_is_shared(cpu, cpuid)) { 746 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); 747 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); 748 } 749 750 if (cpuid_topo->package_id != cpu_topo->package_id) 751 continue; 752 753 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 754 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 755 756 if (cpuid_topo->cluster_id != cpu_topo->cluster_id) 757 continue; 758 759 if (cpuid_topo->cluster_id >= 0) { 760 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling); 761 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling); 762 } 763 764 if (cpuid_topo->core_id != cpu_topo->core_id) 765 continue; 766 767 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 768 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 769 } 770 } 771 772 static void clear_cpu_topology(int cpu) 773 { 774 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 775 776 cpumask_clear(&cpu_topo->llc_sibling); 777 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); 778 779 cpumask_clear(&cpu_topo->cluster_sibling); 780 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling); 781 782 cpumask_clear(&cpu_topo->core_sibling); 783 cpumask_set_cpu(cpu, &cpu_topo->core_sibling); 784 cpumask_clear(&cpu_topo->thread_sibling); 785 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); 786 } 787 788 void __init reset_cpu_topology(void) 789 { 790 unsigned int cpu; 791 792 for_each_possible_cpu(cpu) { 793 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 794 795 cpu_topo->thread_id = -1; 796 cpu_topo->core_id = -1; 797 cpu_topo->cluster_id = -1; 798 cpu_topo->package_id = -1; 799 800 clear_cpu_topology(cpu); 801 } 802 } 803 804 void remove_cpu_topology(unsigned int cpu) 805 { 806 int sibling; 807 808 for_each_cpu(sibling, topology_core_cpumask(cpu)) 809 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 810 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 811 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 812 for_each_cpu(sibling, topology_cluster_cpumask(cpu)) 813 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling)); 814 for_each_cpu(sibling, topology_llc_cpumask(cpu)) 815 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); 816 817 clear_cpu_topology(cpu); 818 } 819 820 __weak int __init parse_acpi_topology(void) 821 { 822 return 0; 823 } 824 825 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 826 void __init init_cpu_topology(void) 827 { 828 int cpu, ret; 829 830 reset_cpu_topology(); 831 ret = parse_acpi_topology(); 832 if (!ret) 833 ret = of_have_populated_dt() && parse_dt_topology(); 834 835 if (ret) { 836 /* 837 * Discard anything that was parsed if we hit an error so we 838 * don't use partial information. But do not return yet to give 839 * arch-specific early cache level detection a chance to run. 840 */ 841 reset_cpu_topology(); 842 } 843 844 for_each_possible_cpu(cpu) { 845 ret = fetch_cache_info(cpu); 846 if (!ret) 847 continue; 848 else if (ret != -ENOENT) 849 pr_err("Early cacheinfo failed, ret = %d\n", ret); 850 return; 851 } 852 } 853 854 void store_cpu_topology(unsigned int cpuid) 855 { 856 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; 857 858 if (cpuid_topo->package_id != -1) 859 goto topology_populated; 860 861 cpuid_topo->thread_id = -1; 862 cpuid_topo->core_id = cpuid; 863 cpuid_topo->package_id = cpu_to_node(cpuid); 864 865 pr_debug("CPU%u: package %d core %d thread %d\n", 866 cpuid, cpuid_topo->package_id, cpuid_topo->core_id, 867 cpuid_topo->thread_id); 868 869 topology_populated: 870 update_siblings_masks(cpuid); 871 } 872 #endif 873