1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Front panel driver for Linux 4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu> 5 * Copyright (C) 2016-2017 Glider bvba 6 * 7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad) 8 * connected to a parallel printer port. 9 * 10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit 11 * serial module compatible with Samsung's KS0074. The pins may be connected in 12 * any combination, everything is programmable. 13 * 14 * The keypad consists in a matrix of push buttons connecting input pins to 15 * data output pins or to the ground. The combinations have to be hard-coded 16 * in the driver, though several profiles exist and adding new ones is easy. 17 * 18 * Several profiles are provided for commonly found LCD+keypad modules on the 19 * market, such as those found in Nexcom's appliances. 20 * 21 * FIXME: 22 * - the initialization/deinitialization process is very dirty and should 23 * be rewritten. It may even be buggy. 24 * 25 * TODO: 26 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs) 27 * - make the LCD a part of a virtual screen of Vx*Vy 28 * - make the inputs list smp-safe 29 * - change the keyboard to a double mapping : signals -> key_id -> values 30 * so that applications can change values without knowing signals 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/module.h> 37 38 #include <linux/types.h> 39 #include <linux/errno.h> 40 #include <linux/signal.h> 41 #include <linux/sched.h> 42 #include <linux/spinlock.h> 43 #include <linux/interrupt.h> 44 #include <linux/miscdevice.h> 45 #include <linux/slab.h> 46 #include <linux/ioport.h> 47 #include <linux/fcntl.h> 48 #include <linux/init.h> 49 #include <linux/delay.h> 50 #include <linux/kernel.h> 51 #include <linux/ctype.h> 52 #include <linux/parport.h> 53 #include <linux/list.h> 54 55 #include <linux/io.h> 56 #include <linux/uaccess.h> 57 58 #include "charlcd.h" 59 #include "hd44780_common.h" 60 61 #define LCD_MAXBYTES 256 /* max burst write */ 62 63 #define KEYPAD_BUFFER 64 64 65 /* poll the keyboard this every second */ 66 #define INPUT_POLL_TIME (HZ / 50) 67 /* a key starts to repeat after this times INPUT_POLL_TIME */ 68 #define KEYPAD_REP_START (10) 69 /* a key repeats this times INPUT_POLL_TIME */ 70 #define KEYPAD_REP_DELAY (2) 71 72 /* converts an r_str() input to an active high, bits string : 000BAOSE */ 73 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3) 74 75 #define PNL_PBUSY 0x80 /* inverted input, active low */ 76 #define PNL_PACK 0x40 /* direct input, active low */ 77 #define PNL_POUTPA 0x20 /* direct input, active high */ 78 #define PNL_PSELECD 0x10 /* direct input, active high */ 79 #define PNL_PERRORP 0x08 /* direct input, active low */ 80 81 #define PNL_PBIDIR 0x20 /* bi-directional ports */ 82 /* high to read data in or-ed with data out */ 83 #define PNL_PINTEN 0x10 84 #define PNL_PSELECP 0x08 /* inverted output, active low */ 85 #define PNL_PINITP 0x04 /* direct output, active low */ 86 #define PNL_PAUTOLF 0x02 /* inverted output, active low */ 87 #define PNL_PSTROBE 0x01 /* inverted output */ 88 89 #define PNL_PD0 0x01 90 #define PNL_PD1 0x02 91 #define PNL_PD2 0x04 92 #define PNL_PD3 0x08 93 #define PNL_PD4 0x10 94 #define PNL_PD5 0x20 95 #define PNL_PD6 0x40 96 #define PNL_PD7 0x80 97 98 #define PIN_NONE 0 99 #define PIN_STROBE 1 100 #define PIN_D0 2 101 #define PIN_D1 3 102 #define PIN_D2 4 103 #define PIN_D3 5 104 #define PIN_D4 6 105 #define PIN_D5 7 106 #define PIN_D6 8 107 #define PIN_D7 9 108 #define PIN_AUTOLF 14 109 #define PIN_INITP 16 110 #define PIN_SELECP 17 111 #define PIN_NOT_SET 127 112 113 #define NOT_SET -1 114 115 /* macros to simplify use of the parallel port */ 116 #define r_ctr(x) (parport_read_control((x)->port)) 117 #define r_dtr(x) (parport_read_data((x)->port)) 118 #define r_str(x) (parport_read_status((x)->port)) 119 #define w_ctr(x, y) (parport_write_control((x)->port, (y))) 120 #define w_dtr(x, y) (parport_write_data((x)->port, (y))) 121 122 /* this defines which bits are to be used and which ones to be ignored */ 123 /* logical or of the output bits involved in the scan matrix */ 124 static __u8 scan_mask_o; 125 /* logical or of the input bits involved in the scan matrix */ 126 static __u8 scan_mask_i; 127 128 enum input_type { 129 INPUT_TYPE_STD, 130 INPUT_TYPE_KBD, 131 }; 132 133 enum input_state { 134 INPUT_ST_LOW, 135 INPUT_ST_RISING, 136 INPUT_ST_HIGH, 137 INPUT_ST_FALLING, 138 }; 139 140 struct logical_input { 141 struct list_head list; 142 __u64 mask; 143 __u64 value; 144 enum input_type type; 145 enum input_state state; 146 __u8 rise_time, fall_time; 147 __u8 rise_timer, fall_timer, high_timer; 148 149 union { 150 struct { /* valid when type == INPUT_TYPE_STD */ 151 void (*press_fct)(int); 152 void (*release_fct)(int); 153 int press_data; 154 int release_data; 155 } std; 156 struct { /* valid when type == INPUT_TYPE_KBD */ 157 char press_str[sizeof(void *) + sizeof(int)] __nonstring; 158 char repeat_str[sizeof(void *) + sizeof(int)] __nonstring; 159 char release_str[sizeof(void *) + sizeof(int)] __nonstring; 160 } kbd; 161 } u; 162 }; 163 164 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */ 165 166 /* physical contacts history 167 * Physical contacts are a 45 bits string of 9 groups of 5 bits each. 168 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group 169 * corresponds to the ground. 170 * Within each group, bits are stored in the same order as read on the port : 171 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0). 172 * So, each __u64 is represented like this : 173 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE 174 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00> 175 */ 176 177 /* what has just been read from the I/O ports */ 178 static __u64 phys_read; 179 /* previous phys_read */ 180 static __u64 phys_read_prev; 181 /* stabilized phys_read (phys_read|phys_read_prev) */ 182 static __u64 phys_curr; 183 /* previous phys_curr */ 184 static __u64 phys_prev; 185 /* 0 means that at least one logical signal needs be computed */ 186 static char inputs_stable; 187 188 /* these variables are specific to the keypad */ 189 static struct { 190 bool enabled; 191 } keypad; 192 193 static char keypad_buffer[KEYPAD_BUFFER]; 194 static int keypad_buflen; 195 static int keypad_start; 196 static char keypressed; 197 static wait_queue_head_t keypad_read_wait; 198 199 /* lcd-specific variables */ 200 static struct { 201 bool enabled; 202 bool initialized; 203 204 int charset; 205 int proto; 206 207 /* TODO: use union here? */ 208 struct { 209 int e; 210 int rs; 211 int rw; 212 int cl; 213 int da; 214 int bl; 215 } pins; 216 217 struct charlcd *charlcd; 218 } lcd; 219 220 /* Needed only for init */ 221 static int selected_lcd_type = NOT_SET; 222 223 /* 224 * Bit masks to convert LCD signals to parallel port outputs. 225 * _d_ are values for data port, _c_ are for control port. 226 * [0] = signal OFF, [1] = signal ON, [2] = mask 227 */ 228 #define BIT_CLR 0 229 #define BIT_SET 1 230 #define BIT_MSK 2 231 #define BIT_STATES 3 232 /* 233 * one entry for each bit on the LCD 234 */ 235 #define LCD_BIT_E 0 236 #define LCD_BIT_RS 1 237 #define LCD_BIT_RW 2 238 #define LCD_BIT_BL 3 239 #define LCD_BIT_CL 4 240 #define LCD_BIT_DA 5 241 #define LCD_BITS 6 242 243 /* 244 * each bit can be either connected to a DATA or CTRL port 245 */ 246 #define LCD_PORT_C 0 247 #define LCD_PORT_D 1 248 #define LCD_PORTS 2 249 250 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES]; 251 252 /* 253 * LCD protocols 254 */ 255 #define LCD_PROTO_PARALLEL 0 256 #define LCD_PROTO_SERIAL 1 257 #define LCD_PROTO_TI_DA8XX_LCD 2 258 259 /* 260 * LCD character sets 261 */ 262 #define LCD_CHARSET_NORMAL 0 263 #define LCD_CHARSET_KS0074 1 264 265 /* 266 * LCD types 267 */ 268 #define LCD_TYPE_NONE 0 269 #define LCD_TYPE_CUSTOM 1 270 #define LCD_TYPE_OLD 2 271 #define LCD_TYPE_KS0074 3 272 #define LCD_TYPE_HANTRONIX 4 273 #define LCD_TYPE_NEXCOM 5 274 275 /* 276 * keypad types 277 */ 278 #define KEYPAD_TYPE_NONE 0 279 #define KEYPAD_TYPE_OLD 1 280 #define KEYPAD_TYPE_NEW 2 281 #define KEYPAD_TYPE_NEXCOM 3 282 283 /* 284 * panel profiles 285 */ 286 #define PANEL_PROFILE_CUSTOM 0 287 #define PANEL_PROFILE_OLD 1 288 #define PANEL_PROFILE_NEW 2 289 #define PANEL_PROFILE_HANTRONIX 3 290 #define PANEL_PROFILE_NEXCOM 4 291 #define PANEL_PROFILE_LARGE 5 292 293 /* 294 * Construct custom config from the kernel's configuration 295 */ 296 #define DEFAULT_PARPORT 0 297 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE 298 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD 299 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD 300 #define DEFAULT_LCD_HEIGHT 2 301 #define DEFAULT_LCD_WIDTH 40 302 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL 303 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL 304 305 #define DEFAULT_LCD_PIN_E PIN_AUTOLF 306 #define DEFAULT_LCD_PIN_RS PIN_SELECP 307 #define DEFAULT_LCD_PIN_RW PIN_INITP 308 #define DEFAULT_LCD_PIN_SCL PIN_STROBE 309 #define DEFAULT_LCD_PIN_SDA PIN_D0 310 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET 311 312 #ifdef CONFIG_PANEL_PARPORT 313 #undef DEFAULT_PARPORT 314 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT 315 #endif 316 317 #ifdef CONFIG_PANEL_PROFILE 318 #undef DEFAULT_PROFILE 319 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE 320 #endif 321 322 #if DEFAULT_PROFILE == 0 /* custom */ 323 #ifdef CONFIG_PANEL_KEYPAD 324 #undef DEFAULT_KEYPAD_TYPE 325 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD 326 #endif 327 328 #ifdef CONFIG_PANEL_LCD 329 #undef DEFAULT_LCD_TYPE 330 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD 331 #endif 332 333 #ifdef CONFIG_PANEL_LCD_HEIGHT 334 #undef DEFAULT_LCD_HEIGHT 335 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT 336 #endif 337 338 #ifdef CONFIG_PANEL_LCD_WIDTH 339 #undef DEFAULT_LCD_WIDTH 340 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH 341 #endif 342 343 #ifdef CONFIG_PANEL_LCD_BWIDTH 344 #undef DEFAULT_LCD_BWIDTH 345 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH 346 #endif 347 348 #ifdef CONFIG_PANEL_LCD_HWIDTH 349 #undef DEFAULT_LCD_HWIDTH 350 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH 351 #endif 352 353 #ifdef CONFIG_PANEL_LCD_CHARSET 354 #undef DEFAULT_LCD_CHARSET 355 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET 356 #endif 357 358 #ifdef CONFIG_PANEL_LCD_PROTO 359 #undef DEFAULT_LCD_PROTO 360 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO 361 #endif 362 363 #ifdef CONFIG_PANEL_LCD_PIN_E 364 #undef DEFAULT_LCD_PIN_E 365 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E 366 #endif 367 368 #ifdef CONFIG_PANEL_LCD_PIN_RS 369 #undef DEFAULT_LCD_PIN_RS 370 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS 371 #endif 372 373 #ifdef CONFIG_PANEL_LCD_PIN_RW 374 #undef DEFAULT_LCD_PIN_RW 375 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW 376 #endif 377 378 #ifdef CONFIG_PANEL_LCD_PIN_SCL 379 #undef DEFAULT_LCD_PIN_SCL 380 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL 381 #endif 382 383 #ifdef CONFIG_PANEL_LCD_PIN_SDA 384 #undef DEFAULT_LCD_PIN_SDA 385 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA 386 #endif 387 388 #ifdef CONFIG_PANEL_LCD_PIN_BL 389 #undef DEFAULT_LCD_PIN_BL 390 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL 391 #endif 392 393 #endif /* DEFAULT_PROFILE == 0 */ 394 395 /* global variables */ 396 397 /* Device single-open policy control */ 398 static atomic_t keypad_available = ATOMIC_INIT(1); 399 400 static struct pardevice *pprt; 401 402 static int keypad_initialized; 403 404 static DEFINE_SPINLOCK(pprt_lock); 405 static struct timer_list scan_timer; 406 407 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver"); 408 409 static int parport = DEFAULT_PARPORT; 410 module_param(parport, int, 0000); 411 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)"); 412 413 static int profile = DEFAULT_PROFILE; 414 module_param(profile, int, 0000); 415 MODULE_PARM_DESC(profile, 416 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; " 417 "4=16x2 nexcom; default=40x2, old kp"); 418 419 static int keypad_type = NOT_SET; 420 module_param(keypad_type, int, 0000); 421 MODULE_PARM_DESC(keypad_type, 422 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys"); 423 424 static int lcd_type = NOT_SET; 425 module_param(lcd_type, int, 0000); 426 MODULE_PARM_DESC(lcd_type, 427 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom"); 428 429 static int lcd_height = NOT_SET; 430 module_param(lcd_height, int, 0000); 431 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD"); 432 433 static int lcd_width = NOT_SET; 434 module_param(lcd_width, int, 0000); 435 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD"); 436 437 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */ 438 module_param(lcd_bwidth, int, 0000); 439 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)"); 440 441 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */ 442 module_param(lcd_hwidth, int, 0000); 443 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)"); 444 445 static int lcd_charset = NOT_SET; 446 module_param(lcd_charset, int, 0000); 447 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074"); 448 449 static int lcd_proto = NOT_SET; 450 module_param(lcd_proto, int, 0000); 451 MODULE_PARM_DESC(lcd_proto, 452 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface"); 453 454 /* 455 * These are the parallel port pins the LCD control signals are connected to. 456 * Set this to 0 if the signal is not used. Set it to its opposite value 457 * (negative) if the signal is negated. -MAXINT is used to indicate that the 458 * pin has not been explicitly specified. 459 * 460 * WARNING! no check will be performed about collisions with keypad ! 461 */ 462 463 static int lcd_e_pin = PIN_NOT_SET; 464 module_param(lcd_e_pin, int, 0000); 465 MODULE_PARM_DESC(lcd_e_pin, 466 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)"); 467 468 static int lcd_rs_pin = PIN_NOT_SET; 469 module_param(lcd_rs_pin, int, 0000); 470 MODULE_PARM_DESC(lcd_rs_pin, 471 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)"); 472 473 static int lcd_rw_pin = PIN_NOT_SET; 474 module_param(lcd_rw_pin, int, 0000); 475 MODULE_PARM_DESC(lcd_rw_pin, 476 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)"); 477 478 static int lcd_cl_pin = PIN_NOT_SET; 479 module_param(lcd_cl_pin, int, 0000); 480 MODULE_PARM_DESC(lcd_cl_pin, 481 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)"); 482 483 static int lcd_da_pin = PIN_NOT_SET; 484 module_param(lcd_da_pin, int, 0000); 485 MODULE_PARM_DESC(lcd_da_pin, 486 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)"); 487 488 static int lcd_bl_pin = PIN_NOT_SET; 489 module_param(lcd_bl_pin, int, 0000); 490 MODULE_PARM_DESC(lcd_bl_pin, 491 "# of the // port pin connected to LCD backlight, with polarity (-17..17)"); 492 493 /* Deprecated module parameters - consider not using them anymore */ 494 495 static int lcd_enabled = NOT_SET; 496 module_param(lcd_enabled, int, 0000); 497 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead"); 498 499 static int keypad_enabled = NOT_SET; 500 module_param(keypad_enabled, int, 0000); 501 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead"); 502 503 /* for some LCD drivers (ks0074) we need a charset conversion table. */ 504 static const unsigned char lcd_char_conv_ks0074[256] = { 505 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */ 506 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 507 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 508 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 509 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 510 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27, 511 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 512 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 513 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 514 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 515 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 516 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 517 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4, 518 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 519 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 520 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 521 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20, 522 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 523 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 524 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 525 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 526 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f, 527 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96, 528 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd, 529 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60, 530 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9, 531 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3, 532 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78, 533 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe, 534 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8, 535 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69, 536 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25, 537 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79, 538 }; 539 540 static const char old_keypad_profile[][4][9] = { 541 {"S0", "Left\n", "Left\n", ""}, 542 {"S1", "Down\n", "Down\n", ""}, 543 {"S2", "Up\n", "Up\n", ""}, 544 {"S3", "Right\n", "Right\n", ""}, 545 {"S4", "Esc\n", "Esc\n", ""}, 546 {"S5", "Ret\n", "Ret\n", ""}, 547 {"", "", "", ""} 548 }; 549 550 /* signals, press, repeat, release */ 551 static const char new_keypad_profile[][4][9] = { 552 {"S0", "Left\n", "Left\n", ""}, 553 {"S1", "Down\n", "Down\n", ""}, 554 {"S2", "Up\n", "Up\n", ""}, 555 {"S3", "Right\n", "Right\n", ""}, 556 {"S4s5", "", "Esc\n", "Esc\n"}, 557 {"s4S5", "", "Ret\n", "Ret\n"}, 558 {"S4S5", "Help\n", "", ""}, 559 /* add new signals above this line */ 560 {"", "", "", ""} 561 }; 562 563 /* signals, press, repeat, release */ 564 static const char nexcom_keypad_profile[][4][9] = { 565 {"a-p-e-", "Down\n", "Down\n", ""}, 566 {"a-p-E-", "Ret\n", "Ret\n", ""}, 567 {"a-P-E-", "Esc\n", "Esc\n", ""}, 568 {"a-P-e-", "Up\n", "Up\n", ""}, 569 /* add new signals above this line */ 570 {"", "", "", ""} 571 }; 572 573 static const char (*keypad_profile)[4][9] = old_keypad_profile; 574 575 static DECLARE_BITMAP(bits, LCD_BITS); 576 577 static void lcd_get_bits(unsigned int port, int *val) 578 { 579 unsigned int bit, state; 580 581 for (bit = 0; bit < LCD_BITS; bit++) { 582 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR; 583 *val &= lcd_bits[port][bit][BIT_MSK]; 584 *val |= lcd_bits[port][bit][state]; 585 } 586 } 587 588 /* sets data port bits according to current signals values */ 589 static int set_data_bits(void) 590 { 591 int val; 592 593 val = r_dtr(pprt); 594 lcd_get_bits(LCD_PORT_D, &val); 595 w_dtr(pprt, val); 596 return val; 597 } 598 599 /* sets ctrl port bits according to current signals values */ 600 static int set_ctrl_bits(void) 601 { 602 int val; 603 604 val = r_ctr(pprt); 605 lcd_get_bits(LCD_PORT_C, &val); 606 w_ctr(pprt, val); 607 return val; 608 } 609 610 /* sets ctrl & data port bits according to current signals values */ 611 static void panel_set_bits(void) 612 { 613 set_data_bits(); 614 set_ctrl_bits(); 615 } 616 617 /* 618 * Converts a parallel port pin (from -25 to 25) to data and control ports 619 * masks, and data and control port bits. The signal will be considered 620 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25). 621 * 622 * Result will be used this way : 623 * out(dport, in(dport) & d_val[2] | d_val[signal_state]) 624 * out(cport, in(cport) & c_val[2] | c_val[signal_state]) 625 */ 626 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val) 627 { 628 int d_bit, c_bit, inv; 629 630 d_val[0] = 0; 631 c_val[0] = 0; 632 d_val[1] = 0; 633 c_val[1] = 0; 634 d_val[2] = 0xFF; 635 c_val[2] = 0xFF; 636 637 if (pin == 0) 638 return; 639 640 inv = (pin < 0); 641 if (inv) 642 pin = -pin; 643 644 d_bit = 0; 645 c_bit = 0; 646 647 switch (pin) { 648 case PIN_STROBE: /* strobe, inverted */ 649 c_bit = PNL_PSTROBE; 650 inv = !inv; 651 break; 652 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */ 653 d_bit = 1 << (pin - 2); 654 break; 655 case PIN_AUTOLF: /* autofeed, inverted */ 656 c_bit = PNL_PAUTOLF; 657 inv = !inv; 658 break; 659 case PIN_INITP: /* init, direct */ 660 c_bit = PNL_PINITP; 661 break; 662 case PIN_SELECP: /* select_in, inverted */ 663 c_bit = PNL_PSELECP; 664 inv = !inv; 665 break; 666 default: /* unknown pin, ignore */ 667 break; 668 } 669 670 if (c_bit) { 671 c_val[2] &= ~c_bit; 672 c_val[!inv] = c_bit; 673 } else if (d_bit) { 674 d_val[2] &= ~d_bit; 675 d_val[!inv] = d_bit; 676 } 677 } 678 679 /* 680 * send a serial byte to the LCD panel. The caller is responsible for locking 681 * if needed. 682 */ 683 static void lcd_send_serial(int byte) 684 { 685 int bit; 686 687 /* 688 * the data bit is set on D0, and the clock on STROBE. 689 * LCD reads D0 on STROBE's rising edge. 690 */ 691 for (bit = 0; bit < 8; bit++) { 692 clear_bit(LCD_BIT_CL, bits); /* CLK low */ 693 panel_set_bits(); 694 if (byte & 1) { 695 set_bit(LCD_BIT_DA, bits); 696 } else { 697 clear_bit(LCD_BIT_DA, bits); 698 } 699 700 panel_set_bits(); 701 udelay(2); /* maintain the data during 2 us before CLK up */ 702 set_bit(LCD_BIT_CL, bits); /* CLK high */ 703 panel_set_bits(); 704 udelay(1); /* maintain the strobe during 1 us */ 705 byte >>= 1; 706 } 707 } 708 709 /* turn the backlight on or off */ 710 static void lcd_backlight(struct charlcd *charlcd, enum charlcd_onoff on) 711 { 712 if (lcd.pins.bl == PIN_NONE) 713 return; 714 715 /* The backlight is activated by setting the AUTOFEED line to +5V */ 716 spin_lock_irq(&pprt_lock); 717 if (on) 718 set_bit(LCD_BIT_BL, bits); 719 else 720 clear_bit(LCD_BIT_BL, bits); 721 panel_set_bits(); 722 spin_unlock_irq(&pprt_lock); 723 } 724 725 /* send a command to the LCD panel in serial mode */ 726 static void lcd_write_cmd_s(struct hd44780_common *hdc, int cmd) 727 { 728 spin_lock_irq(&pprt_lock); 729 lcd_send_serial(0x1F); /* R/W=W, RS=0 */ 730 lcd_send_serial(cmd & 0x0F); 731 lcd_send_serial((cmd >> 4) & 0x0F); 732 udelay(40); /* the shortest command takes at least 40 us */ 733 spin_unlock_irq(&pprt_lock); 734 } 735 736 /* send data to the LCD panel in serial mode */ 737 static void lcd_write_data_s(struct hd44780_common *hdc, int data) 738 { 739 spin_lock_irq(&pprt_lock); 740 lcd_send_serial(0x5F); /* R/W=W, RS=1 */ 741 lcd_send_serial(data & 0x0F); 742 lcd_send_serial((data >> 4) & 0x0F); 743 udelay(40); /* the shortest data takes at least 40 us */ 744 spin_unlock_irq(&pprt_lock); 745 } 746 747 /* send a command to the LCD panel in 8 bits parallel mode */ 748 static void lcd_write_cmd_p8(struct hd44780_common *hdc, int cmd) 749 { 750 spin_lock_irq(&pprt_lock); 751 /* present the data to the data port */ 752 w_dtr(pprt, cmd); 753 udelay(20); /* maintain the data during 20 us before the strobe */ 754 755 set_bit(LCD_BIT_E, bits); 756 clear_bit(LCD_BIT_RS, bits); 757 clear_bit(LCD_BIT_RW, bits); 758 set_ctrl_bits(); 759 760 udelay(40); /* maintain the strobe during 40 us */ 761 762 clear_bit(LCD_BIT_E, bits); 763 set_ctrl_bits(); 764 765 udelay(120); /* the shortest command takes at least 120 us */ 766 spin_unlock_irq(&pprt_lock); 767 } 768 769 /* send data to the LCD panel in 8 bits parallel mode */ 770 static void lcd_write_data_p8(struct hd44780_common *hdc, int data) 771 { 772 spin_lock_irq(&pprt_lock); 773 /* present the data to the data port */ 774 w_dtr(pprt, data); 775 udelay(20); /* maintain the data during 20 us before the strobe */ 776 777 set_bit(LCD_BIT_E, bits); 778 set_bit(LCD_BIT_RS, bits); 779 clear_bit(LCD_BIT_RW, bits); 780 set_ctrl_bits(); 781 782 udelay(40); /* maintain the strobe during 40 us */ 783 784 clear_bit(LCD_BIT_E, bits); 785 set_ctrl_bits(); 786 787 udelay(45); /* the shortest data takes at least 45 us */ 788 spin_unlock_irq(&pprt_lock); 789 } 790 791 /* send a command to the TI LCD panel */ 792 static void lcd_write_cmd_tilcd(struct hd44780_common *hdc, int cmd) 793 { 794 spin_lock_irq(&pprt_lock); 795 /* present the data to the control port */ 796 w_ctr(pprt, cmd); 797 udelay(60); 798 spin_unlock_irq(&pprt_lock); 799 } 800 801 /* send data to the TI LCD panel */ 802 static void lcd_write_data_tilcd(struct hd44780_common *hdc, int data) 803 { 804 spin_lock_irq(&pprt_lock); 805 /* present the data to the data port */ 806 w_dtr(pprt, data); 807 udelay(60); 808 spin_unlock_irq(&pprt_lock); 809 } 810 811 static const struct charlcd_ops charlcd_ops = { 812 .backlight = lcd_backlight, 813 .print = hd44780_common_print, 814 .gotoxy = hd44780_common_gotoxy, 815 .home = hd44780_common_home, 816 .clear_display = hd44780_common_clear_display, 817 .init_display = hd44780_common_init_display, 818 .shift_cursor = hd44780_common_shift_cursor, 819 .shift_display = hd44780_common_shift_display, 820 .display = hd44780_common_display, 821 .cursor = hd44780_common_cursor, 822 .blink = hd44780_common_blink, 823 .fontsize = hd44780_common_fontsize, 824 .lines = hd44780_common_lines, 825 .redefine_char = hd44780_common_redefine_char, 826 }; 827 828 /* initialize the LCD driver */ 829 static void lcd_init(void) 830 { 831 struct charlcd *charlcd; 832 struct hd44780_common *hdc; 833 834 hdc = hd44780_common_alloc(); 835 if (!hdc) 836 return; 837 838 charlcd = charlcd_alloc(); 839 if (!charlcd) { 840 kfree(hdc); 841 return; 842 } 843 844 hdc->hd44780 = &lcd; 845 charlcd->drvdata = hdc; 846 847 /* 848 * Init lcd struct with load-time values to preserve exact 849 * current functionality (at least for now). 850 */ 851 charlcd->height = lcd_height; 852 charlcd->width = lcd_width; 853 hdc->bwidth = lcd_bwidth; 854 hdc->hwidth = lcd_hwidth; 855 856 switch (selected_lcd_type) { 857 case LCD_TYPE_OLD: 858 /* parallel mode, 8 bits */ 859 lcd.proto = LCD_PROTO_PARALLEL; 860 lcd.charset = LCD_CHARSET_NORMAL; 861 lcd.pins.e = PIN_STROBE; 862 lcd.pins.rs = PIN_AUTOLF; 863 864 charlcd->width = 40; 865 hdc->bwidth = 40; 866 hdc->hwidth = 64; 867 charlcd->height = 2; 868 break; 869 case LCD_TYPE_KS0074: 870 /* serial mode, ks0074 */ 871 lcd.proto = LCD_PROTO_SERIAL; 872 lcd.charset = LCD_CHARSET_KS0074; 873 lcd.pins.bl = PIN_AUTOLF; 874 lcd.pins.cl = PIN_STROBE; 875 lcd.pins.da = PIN_D0; 876 877 charlcd->width = 16; 878 hdc->bwidth = 40; 879 hdc->hwidth = 16; 880 charlcd->height = 2; 881 break; 882 case LCD_TYPE_NEXCOM: 883 /* parallel mode, 8 bits, generic */ 884 lcd.proto = LCD_PROTO_PARALLEL; 885 lcd.charset = LCD_CHARSET_NORMAL; 886 lcd.pins.e = PIN_AUTOLF; 887 lcd.pins.rs = PIN_SELECP; 888 lcd.pins.rw = PIN_INITP; 889 890 charlcd->width = 16; 891 hdc->bwidth = 40; 892 hdc->hwidth = 64; 893 charlcd->height = 2; 894 break; 895 case LCD_TYPE_CUSTOM: 896 /* customer-defined */ 897 lcd.proto = DEFAULT_LCD_PROTO; 898 lcd.charset = DEFAULT_LCD_CHARSET; 899 /* default geometry will be set later */ 900 break; 901 case LCD_TYPE_HANTRONIX: 902 /* parallel mode, 8 bits, hantronix-like */ 903 default: 904 lcd.proto = LCD_PROTO_PARALLEL; 905 lcd.charset = LCD_CHARSET_NORMAL; 906 lcd.pins.e = PIN_STROBE; 907 lcd.pins.rs = PIN_SELECP; 908 909 charlcd->width = 16; 910 hdc->bwidth = 40; 911 hdc->hwidth = 64; 912 charlcd->height = 2; 913 break; 914 } 915 916 /* Overwrite with module params set on loading */ 917 if (lcd_height != NOT_SET) 918 charlcd->height = lcd_height; 919 if (lcd_width != NOT_SET) 920 charlcd->width = lcd_width; 921 if (lcd_bwidth != NOT_SET) 922 hdc->bwidth = lcd_bwidth; 923 if (lcd_hwidth != NOT_SET) 924 hdc->hwidth = lcd_hwidth; 925 if (lcd_charset != NOT_SET) 926 lcd.charset = lcd_charset; 927 if (lcd_proto != NOT_SET) 928 lcd.proto = lcd_proto; 929 if (lcd_e_pin != PIN_NOT_SET) 930 lcd.pins.e = lcd_e_pin; 931 if (lcd_rs_pin != PIN_NOT_SET) 932 lcd.pins.rs = lcd_rs_pin; 933 if (lcd_rw_pin != PIN_NOT_SET) 934 lcd.pins.rw = lcd_rw_pin; 935 if (lcd_cl_pin != PIN_NOT_SET) 936 lcd.pins.cl = lcd_cl_pin; 937 if (lcd_da_pin != PIN_NOT_SET) 938 lcd.pins.da = lcd_da_pin; 939 if (lcd_bl_pin != PIN_NOT_SET) 940 lcd.pins.bl = lcd_bl_pin; 941 942 /* this is used to catch wrong and default values */ 943 if (charlcd->width <= 0) 944 charlcd->width = DEFAULT_LCD_WIDTH; 945 if (hdc->bwidth <= 0) 946 hdc->bwidth = DEFAULT_LCD_BWIDTH; 947 if (hdc->hwidth <= 0) 948 hdc->hwidth = DEFAULT_LCD_HWIDTH; 949 if (charlcd->height <= 0) 950 charlcd->height = DEFAULT_LCD_HEIGHT; 951 952 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */ 953 charlcd->ops = &charlcd_ops; 954 hdc->write_data = lcd_write_data_s; 955 hdc->write_cmd = lcd_write_cmd_s; 956 957 if (lcd.pins.cl == PIN_NOT_SET) 958 lcd.pins.cl = DEFAULT_LCD_PIN_SCL; 959 if (lcd.pins.da == PIN_NOT_SET) 960 lcd.pins.da = DEFAULT_LCD_PIN_SDA; 961 962 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */ 963 charlcd->ops = &charlcd_ops; 964 hdc->write_data = lcd_write_data_p8; 965 hdc->write_cmd = lcd_write_cmd_p8; 966 967 if (lcd.pins.e == PIN_NOT_SET) 968 lcd.pins.e = DEFAULT_LCD_PIN_E; 969 if (lcd.pins.rs == PIN_NOT_SET) 970 lcd.pins.rs = DEFAULT_LCD_PIN_RS; 971 if (lcd.pins.rw == PIN_NOT_SET) 972 lcd.pins.rw = DEFAULT_LCD_PIN_RW; 973 } else { 974 charlcd->ops = &charlcd_ops; 975 hdc->write_data = lcd_write_data_tilcd; 976 hdc->write_cmd = lcd_write_cmd_tilcd; 977 } 978 979 if (lcd.pins.bl == PIN_NOT_SET) 980 lcd.pins.bl = DEFAULT_LCD_PIN_BL; 981 982 if (lcd.pins.e == PIN_NOT_SET) 983 lcd.pins.e = PIN_NONE; 984 if (lcd.pins.rs == PIN_NOT_SET) 985 lcd.pins.rs = PIN_NONE; 986 if (lcd.pins.rw == PIN_NOT_SET) 987 lcd.pins.rw = PIN_NONE; 988 if (lcd.pins.bl == PIN_NOT_SET) 989 lcd.pins.bl = PIN_NONE; 990 if (lcd.pins.cl == PIN_NOT_SET) 991 lcd.pins.cl = PIN_NONE; 992 if (lcd.pins.da == PIN_NOT_SET) 993 lcd.pins.da = PIN_NONE; 994 995 if (lcd.charset == NOT_SET) 996 lcd.charset = DEFAULT_LCD_CHARSET; 997 998 if (lcd.charset == LCD_CHARSET_KS0074) 999 charlcd->char_conv = lcd_char_conv_ks0074; 1000 else 1001 charlcd->char_conv = NULL; 1002 1003 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E], 1004 lcd_bits[LCD_PORT_C][LCD_BIT_E]); 1005 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS], 1006 lcd_bits[LCD_PORT_C][LCD_BIT_RS]); 1007 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW], 1008 lcd_bits[LCD_PORT_C][LCD_BIT_RW]); 1009 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL], 1010 lcd_bits[LCD_PORT_C][LCD_BIT_BL]); 1011 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL], 1012 lcd_bits[LCD_PORT_C][LCD_BIT_CL]); 1013 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA], 1014 lcd_bits[LCD_PORT_C][LCD_BIT_DA]); 1015 1016 lcd.charlcd = charlcd; 1017 lcd.initialized = true; 1018 } 1019 1020 /* 1021 * These are the file operation function for user access to /dev/keypad 1022 */ 1023 1024 static ssize_t keypad_read(struct file *file, 1025 char __user *buf, size_t count, loff_t *ppos) 1026 { 1027 unsigned i = *ppos; 1028 char __user *tmp = buf; 1029 1030 if (keypad_buflen == 0) { 1031 if (file->f_flags & O_NONBLOCK) 1032 return -EAGAIN; 1033 1034 if (wait_event_interruptible(keypad_read_wait, 1035 keypad_buflen != 0)) 1036 return -EINTR; 1037 } 1038 1039 for (; count-- > 0 && (keypad_buflen > 0); 1040 ++i, ++tmp, --keypad_buflen) { 1041 put_user(keypad_buffer[keypad_start], tmp); 1042 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER; 1043 } 1044 *ppos = i; 1045 1046 return tmp - buf; 1047 } 1048 1049 static int keypad_open(struct inode *inode, struct file *file) 1050 { 1051 int ret; 1052 1053 ret = -EBUSY; 1054 if (!atomic_dec_and_test(&keypad_available)) 1055 goto fail; /* open only once at a time */ 1056 1057 ret = -EPERM; 1058 if (file->f_mode & FMODE_WRITE) /* device is read-only */ 1059 goto fail; 1060 1061 keypad_buflen = 0; /* flush the buffer on opening */ 1062 return 0; 1063 fail: 1064 atomic_inc(&keypad_available); 1065 return ret; 1066 } 1067 1068 static int keypad_release(struct inode *inode, struct file *file) 1069 { 1070 atomic_inc(&keypad_available); 1071 return 0; 1072 } 1073 1074 static const struct file_operations keypad_fops = { 1075 .read = keypad_read, /* read */ 1076 .open = keypad_open, /* open */ 1077 .release = keypad_release, /* close */ 1078 .llseek = default_llseek, 1079 }; 1080 1081 static struct miscdevice keypad_dev = { 1082 .minor = KEYPAD_MINOR, 1083 .name = "keypad", 1084 .fops = &keypad_fops, 1085 }; 1086 1087 static void keypad_send_key(const char *string, int max_len) 1088 { 1089 /* send the key to the device only if a process is attached to it. */ 1090 if (!atomic_read(&keypad_available)) { 1091 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) { 1092 keypad_buffer[(keypad_start + keypad_buflen++) % 1093 KEYPAD_BUFFER] = *string++; 1094 } 1095 wake_up_interruptible(&keypad_read_wait); 1096 } 1097 } 1098 1099 /* this function scans all the bits involving at least one logical signal, 1100 * and puts the results in the bitfield "phys_read" (one bit per established 1101 * contact), and sets "phys_read_prev" to "phys_read". 1102 * 1103 * Note: to debounce input signals, we will only consider as switched a signal 1104 * which is stable across 2 measures. Signals which are different between two 1105 * reads will be kept as they previously were in their logical form (phys_prev). 1106 * A signal which has just switched will have a 1 in 1107 * (phys_read ^ phys_read_prev). 1108 */ 1109 static void phys_scan_contacts(void) 1110 { 1111 int bit, bitval; 1112 char oldval; 1113 char bitmask; 1114 char gndmask; 1115 1116 phys_prev = phys_curr; 1117 phys_read_prev = phys_read; 1118 phys_read = 0; /* flush all signals */ 1119 1120 /* keep track of old value, with all outputs disabled */ 1121 oldval = r_dtr(pprt) | scan_mask_o; 1122 /* activate all keyboard outputs (active low) */ 1123 w_dtr(pprt, oldval & ~scan_mask_o); 1124 1125 /* will have a 1 for each bit set to gnd */ 1126 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; 1127 /* disable all matrix signals */ 1128 w_dtr(pprt, oldval); 1129 1130 /* now that all outputs are cleared, the only active input bits are 1131 * directly connected to the ground 1132 */ 1133 1134 /* 1 for each grounded input */ 1135 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; 1136 1137 /* grounded inputs are signals 40-44 */ 1138 phys_read |= (__u64)gndmask << 40; 1139 1140 if (bitmask != gndmask) { 1141 /* 1142 * since clearing the outputs changed some inputs, we know 1143 * that some input signals are currently tied to some outputs. 1144 * So we'll scan them. 1145 */ 1146 for (bit = 0; bit < 8; bit++) { 1147 bitval = BIT(bit); 1148 1149 if (!(scan_mask_o & bitval)) /* skip unused bits */ 1150 continue; 1151 1152 w_dtr(pprt, oldval & ~bitval); /* enable this output */ 1153 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask; 1154 phys_read |= (__u64)bitmask << (5 * bit); 1155 } 1156 w_dtr(pprt, oldval); /* disable all outputs */ 1157 } 1158 /* 1159 * this is easy: use old bits when they are flapping, 1160 * use new ones when stable 1161 */ 1162 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) | 1163 (phys_read & ~(phys_read ^ phys_read_prev)); 1164 } 1165 1166 static inline int input_state_high(struct logical_input *input) 1167 { 1168 #if 0 1169 /* FIXME: 1170 * this is an invalid test. It tries to catch 1171 * transitions from single-key to multiple-key, but 1172 * doesn't take into account the contacts polarity. 1173 * The only solution to the problem is to parse keys 1174 * from the most complex to the simplest combinations, 1175 * and mark them as 'caught' once a combination 1176 * matches, then unmatch it for all other ones. 1177 */ 1178 1179 /* try to catch dangerous transitions cases : 1180 * someone adds a bit, so this signal was a false 1181 * positive resulting from a transition. We should 1182 * invalidate the signal immediately and not call the 1183 * release function. 1184 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release. 1185 */ 1186 if (((phys_prev & input->mask) == input->value) && 1187 ((phys_curr & input->mask) > input->value)) { 1188 input->state = INPUT_ST_LOW; /* invalidate */ 1189 return 1; 1190 } 1191 #endif 1192 1193 if ((phys_curr & input->mask) == input->value) { 1194 if ((input->type == INPUT_TYPE_STD) && 1195 (input->high_timer == 0)) { 1196 input->high_timer++; 1197 if (input->u.std.press_fct) 1198 input->u.std.press_fct(input->u.std.press_data); 1199 } else if (input->type == INPUT_TYPE_KBD) { 1200 /* will turn on the light */ 1201 keypressed = 1; 1202 1203 if (input->high_timer == 0) { 1204 char *press_str = input->u.kbd.press_str; 1205 1206 if (press_str[0]) { 1207 int s = sizeof(input->u.kbd.press_str); 1208 1209 keypad_send_key(press_str, s); 1210 } 1211 } 1212 1213 if (input->u.kbd.repeat_str[0]) { 1214 char *repeat_str = input->u.kbd.repeat_str; 1215 1216 if (input->high_timer >= KEYPAD_REP_START) { 1217 int s = sizeof(input->u.kbd.repeat_str); 1218 1219 input->high_timer -= KEYPAD_REP_DELAY; 1220 keypad_send_key(repeat_str, s); 1221 } 1222 /* we will need to come back here soon */ 1223 inputs_stable = 0; 1224 } 1225 1226 if (input->high_timer < 255) 1227 input->high_timer++; 1228 } 1229 return 1; 1230 } 1231 1232 /* else signal falling down. Let's fall through. */ 1233 input->state = INPUT_ST_FALLING; 1234 input->fall_timer = 0; 1235 1236 return 0; 1237 } 1238 1239 static inline void input_state_falling(struct logical_input *input) 1240 { 1241 #if 0 1242 /* FIXME !!! same comment as in input_state_high */ 1243 if (((phys_prev & input->mask) == input->value) && 1244 ((phys_curr & input->mask) > input->value)) { 1245 input->state = INPUT_ST_LOW; /* invalidate */ 1246 return; 1247 } 1248 #endif 1249 1250 if ((phys_curr & input->mask) == input->value) { 1251 if (input->type == INPUT_TYPE_KBD) { 1252 /* will turn on the light */ 1253 keypressed = 1; 1254 1255 if (input->u.kbd.repeat_str[0]) { 1256 char *repeat_str = input->u.kbd.repeat_str; 1257 1258 if (input->high_timer >= KEYPAD_REP_START) { 1259 int s = sizeof(input->u.kbd.repeat_str); 1260 1261 input->high_timer -= KEYPAD_REP_DELAY; 1262 keypad_send_key(repeat_str, s); 1263 } 1264 /* we will need to come back here soon */ 1265 inputs_stable = 0; 1266 } 1267 1268 if (input->high_timer < 255) 1269 input->high_timer++; 1270 } 1271 input->state = INPUT_ST_HIGH; 1272 } else if (input->fall_timer >= input->fall_time) { 1273 /* call release event */ 1274 if (input->type == INPUT_TYPE_STD) { 1275 void (*release_fct)(int) = input->u.std.release_fct; 1276 1277 if (release_fct) 1278 release_fct(input->u.std.release_data); 1279 } else if (input->type == INPUT_TYPE_KBD) { 1280 char *release_str = input->u.kbd.release_str; 1281 1282 if (release_str[0]) { 1283 int s = sizeof(input->u.kbd.release_str); 1284 1285 keypad_send_key(release_str, s); 1286 } 1287 } 1288 1289 input->state = INPUT_ST_LOW; 1290 } else { 1291 input->fall_timer++; 1292 inputs_stable = 0; 1293 } 1294 } 1295 1296 static void panel_process_inputs(void) 1297 { 1298 struct logical_input *input; 1299 1300 keypressed = 0; 1301 inputs_stable = 1; 1302 list_for_each_entry(input, &logical_inputs, list) { 1303 switch (input->state) { 1304 case INPUT_ST_LOW: 1305 if ((phys_curr & input->mask) != input->value) 1306 break; 1307 /* if all needed ones were already set previously, 1308 * this means that this logical signal has been 1309 * activated by the releasing of another combined 1310 * signal, so we don't want to match. 1311 * eg: AB -(release B)-> A -(release A)-> 0 : 1312 * don't match A. 1313 */ 1314 if ((phys_prev & input->mask) == input->value) 1315 break; 1316 input->rise_timer = 0; 1317 input->state = INPUT_ST_RISING; 1318 fallthrough; 1319 case INPUT_ST_RISING: 1320 if ((phys_curr & input->mask) != input->value) { 1321 input->state = INPUT_ST_LOW; 1322 break; 1323 } 1324 if (input->rise_timer < input->rise_time) { 1325 inputs_stable = 0; 1326 input->rise_timer++; 1327 break; 1328 } 1329 input->high_timer = 0; 1330 input->state = INPUT_ST_HIGH; 1331 fallthrough; 1332 case INPUT_ST_HIGH: 1333 if (input_state_high(input)) 1334 break; 1335 fallthrough; 1336 case INPUT_ST_FALLING: 1337 input_state_falling(input); 1338 } 1339 } 1340 } 1341 1342 static void panel_scan_timer(struct timer_list *unused) 1343 { 1344 if (keypad.enabled && keypad_initialized) { 1345 if (spin_trylock_irq(&pprt_lock)) { 1346 phys_scan_contacts(); 1347 1348 /* no need for the parport anymore */ 1349 spin_unlock_irq(&pprt_lock); 1350 } 1351 1352 if (!inputs_stable || phys_curr != phys_prev) 1353 panel_process_inputs(); 1354 } 1355 1356 if (keypressed && lcd.enabled && lcd.initialized) 1357 charlcd_poke(lcd.charlcd); 1358 1359 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME); 1360 } 1361 1362 static void init_scan_timer(void) 1363 { 1364 if (scan_timer.function) 1365 return; /* already started */ 1366 1367 timer_setup(&scan_timer, panel_scan_timer, 0); 1368 scan_timer.expires = jiffies + INPUT_POLL_TIME; 1369 add_timer(&scan_timer); 1370 } 1371 1372 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits. 1373 * if <omask> or <imask> are non-null, they will be or'ed with the bits 1374 * corresponding to out and in bits respectively. 1375 * returns 1 if ok, 0 if error (in which case, nothing is written). 1376 */ 1377 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value, 1378 u8 *imask, u8 *omask) 1379 { 1380 const char sigtab[] = "EeSsPpAaBb"; 1381 u8 im, om; 1382 __u64 m, v; 1383 1384 om = 0; 1385 im = 0; 1386 m = 0ULL; 1387 v = 0ULL; 1388 while (*name) { 1389 int in, out, bit, neg; 1390 const char *idx; 1391 1392 idx = strchr(sigtab, *name); 1393 if (!idx) 1394 return 0; /* input name not found */ 1395 1396 in = idx - sigtab; 1397 neg = (in & 1); /* odd (lower) names are negated */ 1398 in >>= 1; 1399 im |= BIT(in); 1400 1401 name++; 1402 if (*name >= '0' && *name <= '7') { 1403 out = *name - '0'; 1404 om |= BIT(out); 1405 } else if (*name == '-') { 1406 out = 8; 1407 } else { 1408 return 0; /* unknown bit name */ 1409 } 1410 1411 bit = (out * 5) + in; 1412 1413 m |= 1ULL << bit; 1414 if (!neg) 1415 v |= 1ULL << bit; 1416 name++; 1417 } 1418 *mask = m; 1419 *value = v; 1420 if (imask) 1421 *imask |= im; 1422 if (omask) 1423 *omask |= om; 1424 return 1; 1425 } 1426 1427 /* tries to bind a key to the signal name <name>. The key will send the 1428 * strings <press>, <repeat>, <release> for these respective events. 1429 * Returns the pointer to the new key if ok, NULL if the key could not be bound. 1430 */ 1431 static struct logical_input *panel_bind_key(const char *name, const char *press, 1432 const char *repeat, 1433 const char *release) 1434 { 1435 struct logical_input *key; 1436 1437 key = kzalloc(sizeof(*key), GFP_KERNEL); 1438 if (!key) 1439 return NULL; 1440 1441 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i, 1442 &scan_mask_o)) { 1443 kfree(key); 1444 return NULL; 1445 } 1446 1447 key->type = INPUT_TYPE_KBD; 1448 key->state = INPUT_ST_LOW; 1449 key->rise_time = 1; 1450 key->fall_time = 1; 1451 1452 strtomem_pad(key->u.kbd.press_str, press, '\0'); 1453 strtomem_pad(key->u.kbd.repeat_str, repeat, '\0'); 1454 strtomem_pad(key->u.kbd.release_str, release, '\0'); 1455 list_add(&key->list, &logical_inputs); 1456 return key; 1457 } 1458 1459 #if 0 1460 /* tries to bind a callback function to the signal name <name>. The function 1461 * <press_fct> will be called with the <press_data> arg when the signal is 1462 * activated, and so on for <release_fct>/<release_data> 1463 * Returns the pointer to the new signal if ok, NULL if the signal could not 1464 * be bound. 1465 */ 1466 static struct logical_input *panel_bind_callback(char *name, 1467 void (*press_fct)(int), 1468 int press_data, 1469 void (*release_fct)(int), 1470 int release_data) 1471 { 1472 struct logical_input *callback; 1473 1474 callback = kmalloc(sizeof(*callback), GFP_KERNEL); 1475 if (!callback) 1476 return NULL; 1477 1478 memset(callback, 0, sizeof(struct logical_input)); 1479 if (!input_name2mask(name, &callback->mask, &callback->value, 1480 &scan_mask_i, &scan_mask_o)) 1481 return NULL; 1482 1483 callback->type = INPUT_TYPE_STD; 1484 callback->state = INPUT_ST_LOW; 1485 callback->rise_time = 1; 1486 callback->fall_time = 1; 1487 callback->u.std.press_fct = press_fct; 1488 callback->u.std.press_data = press_data; 1489 callback->u.std.release_fct = release_fct; 1490 callback->u.std.release_data = release_data; 1491 list_add(&callback->list, &logical_inputs); 1492 return callback; 1493 } 1494 #endif 1495 1496 static void keypad_init(void) 1497 { 1498 int keynum; 1499 1500 init_waitqueue_head(&keypad_read_wait); 1501 keypad_buflen = 0; /* flushes any eventual noisy keystroke */ 1502 1503 /* Let's create all known keys */ 1504 1505 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) { 1506 panel_bind_key(keypad_profile[keynum][0], 1507 keypad_profile[keynum][1], 1508 keypad_profile[keynum][2], 1509 keypad_profile[keynum][3]); 1510 } 1511 1512 init_scan_timer(); 1513 keypad_initialized = 1; 1514 } 1515 1516 /**************************************************/ 1517 /* device initialization */ 1518 /**************************************************/ 1519 1520 static void panel_attach(struct parport *port) 1521 { 1522 int selected_keypad_type = NOT_SET; 1523 struct pardev_cb panel_cb; 1524 1525 /* take care of an eventual profile */ 1526 switch (profile) { 1527 case PANEL_PROFILE_CUSTOM: 1528 /* custom profile */ 1529 selected_keypad_type = DEFAULT_KEYPAD_TYPE; 1530 selected_lcd_type = DEFAULT_LCD_TYPE; 1531 break; 1532 case PANEL_PROFILE_OLD: 1533 /* 8 bits, 2*16, old keypad */ 1534 selected_keypad_type = KEYPAD_TYPE_OLD; 1535 selected_lcd_type = LCD_TYPE_OLD; 1536 1537 /* TODO: This two are a little hacky, sort it out later */ 1538 if (lcd_width == NOT_SET) 1539 lcd_width = 16; 1540 if (lcd_hwidth == NOT_SET) 1541 lcd_hwidth = 16; 1542 break; 1543 case PANEL_PROFILE_NEW: 1544 /* serial, 2*16, new keypad */ 1545 selected_keypad_type = KEYPAD_TYPE_NEW; 1546 selected_lcd_type = LCD_TYPE_KS0074; 1547 break; 1548 case PANEL_PROFILE_HANTRONIX: 1549 /* 8 bits, 2*16 hantronix-like, no keypad */ 1550 selected_keypad_type = KEYPAD_TYPE_NONE; 1551 selected_lcd_type = LCD_TYPE_HANTRONIX; 1552 break; 1553 case PANEL_PROFILE_NEXCOM: 1554 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */ 1555 selected_keypad_type = KEYPAD_TYPE_NEXCOM; 1556 selected_lcd_type = LCD_TYPE_NEXCOM; 1557 break; 1558 case PANEL_PROFILE_LARGE: 1559 /* 8 bits, 2*40, old keypad */ 1560 selected_keypad_type = KEYPAD_TYPE_OLD; 1561 selected_lcd_type = LCD_TYPE_OLD; 1562 break; 1563 } 1564 1565 /* 1566 * Overwrite selection with module param values (both keypad and lcd), 1567 * where the deprecated params have lower prio. 1568 */ 1569 if (keypad_enabled != NOT_SET) 1570 selected_keypad_type = keypad_enabled; 1571 if (keypad_type != NOT_SET) 1572 selected_keypad_type = keypad_type; 1573 1574 keypad.enabled = (selected_keypad_type > 0); 1575 1576 if (lcd_enabled != NOT_SET) 1577 selected_lcd_type = lcd_enabled; 1578 if (lcd_type != NOT_SET) 1579 selected_lcd_type = lcd_type; 1580 1581 lcd.enabled = (selected_lcd_type > 0); 1582 1583 if (lcd.enabled) { 1584 /* 1585 * Init lcd struct with load-time values to preserve exact 1586 * current functionality (at least for now). 1587 */ 1588 lcd.charset = lcd_charset; 1589 lcd.proto = lcd_proto; 1590 lcd.pins.e = lcd_e_pin; 1591 lcd.pins.rs = lcd_rs_pin; 1592 lcd.pins.rw = lcd_rw_pin; 1593 lcd.pins.cl = lcd_cl_pin; 1594 lcd.pins.da = lcd_da_pin; 1595 lcd.pins.bl = lcd_bl_pin; 1596 } 1597 1598 switch (selected_keypad_type) { 1599 case KEYPAD_TYPE_OLD: 1600 keypad_profile = old_keypad_profile; 1601 break; 1602 case KEYPAD_TYPE_NEW: 1603 keypad_profile = new_keypad_profile; 1604 break; 1605 case KEYPAD_TYPE_NEXCOM: 1606 keypad_profile = nexcom_keypad_profile; 1607 break; 1608 default: 1609 keypad_profile = NULL; 1610 break; 1611 } 1612 1613 if (!lcd.enabled && !keypad.enabled) { 1614 /* no device enabled, let's exit */ 1615 pr_err("panel driver disabled.\n"); 1616 return; 1617 } 1618 1619 if (port->number != parport) 1620 return; 1621 1622 if (pprt) { 1623 pr_err("%s: port->number=%d parport=%d, already registered!\n", 1624 __func__, port->number, parport); 1625 return; 1626 } 1627 1628 memset(&panel_cb, 0, sizeof(panel_cb)); 1629 panel_cb.private = &pprt; 1630 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */ 1631 1632 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0); 1633 if (!pprt) { 1634 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n", 1635 __func__, port->number, parport); 1636 return; 1637 } 1638 1639 if (parport_claim(pprt)) { 1640 pr_err("could not claim access to parport%d. Aborting.\n", 1641 parport); 1642 goto err_unreg_device; 1643 } 1644 1645 /* must init LCD first, just in case an IRQ from the keypad is 1646 * generated at keypad init 1647 */ 1648 if (lcd.enabled) { 1649 lcd_init(); 1650 if (!lcd.charlcd || charlcd_register(lcd.charlcd)) 1651 goto err_unreg_device; 1652 } 1653 1654 if (keypad.enabled) { 1655 keypad_init(); 1656 if (misc_register(&keypad_dev)) 1657 goto err_lcd_unreg; 1658 } 1659 return; 1660 1661 err_lcd_unreg: 1662 if (scan_timer.function) 1663 del_timer_sync(&scan_timer); 1664 if (lcd.enabled) 1665 charlcd_unregister(lcd.charlcd); 1666 err_unreg_device: 1667 kfree(lcd.charlcd); 1668 lcd.charlcd = NULL; 1669 parport_unregister_device(pprt); 1670 pprt = NULL; 1671 } 1672 1673 static void panel_detach(struct parport *port) 1674 { 1675 if (port->number != parport) 1676 return; 1677 1678 if (!pprt) { 1679 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n", 1680 __func__, port->number, parport); 1681 return; 1682 } 1683 if (scan_timer.function) 1684 del_timer_sync(&scan_timer); 1685 1686 if (keypad.enabled) { 1687 misc_deregister(&keypad_dev); 1688 keypad_initialized = 0; 1689 } 1690 1691 if (lcd.enabled) { 1692 charlcd_unregister(lcd.charlcd); 1693 lcd.initialized = false; 1694 kfree(lcd.charlcd->drvdata); 1695 kfree(lcd.charlcd); 1696 lcd.charlcd = NULL; 1697 } 1698 1699 /* TODO: free all input signals */ 1700 parport_release(pprt); 1701 parport_unregister_device(pprt); 1702 pprt = NULL; 1703 } 1704 1705 static struct parport_driver panel_driver = { 1706 .name = "panel", 1707 .match_port = panel_attach, 1708 .detach = panel_detach, 1709 .devmodel = true, 1710 }; 1711 module_parport_driver(panel_driver); 1712 1713 MODULE_AUTHOR("Willy Tarreau"); 1714 MODULE_LICENSE("GPL"); 1715