1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Front panel driver for Linux 4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu> 5 * Copyright (C) 2016-2017 Glider bvba 6 * 7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad) 8 * connected to a parallel printer port. 9 * 10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit 11 * serial module compatible with Samsung's KS0074. The pins may be connected in 12 * any combination, everything is programmable. 13 * 14 * The keypad consists in a matrix of push buttons connecting input pins to 15 * data output pins or to the ground. The combinations have to be hard-coded 16 * in the driver, though several profiles exist and adding new ones is easy. 17 * 18 * Several profiles are provided for commonly found LCD+keypad modules on the 19 * market, such as those found in Nexcom's appliances. 20 * 21 * FIXME: 22 * - the initialization/deinitialization process is very dirty and should 23 * be rewritten. It may even be buggy. 24 * 25 * TODO: 26 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs) 27 * - make the LCD a part of a virtual screen of Vx*Vy 28 * - make the inputs list smp-safe 29 * - change the keyboard to a double mapping : signals -> key_id -> values 30 * so that applications can change values without knowing signals 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/module.h> 37 38 #include <linux/types.h> 39 #include <linux/errno.h> 40 #include <linux/signal.h> 41 #include <linux/sched.h> 42 #include <linux/spinlock.h> 43 #include <linux/interrupt.h> 44 #include <linux/miscdevice.h> 45 #include <linux/slab.h> 46 #include <linux/ioport.h> 47 #include <linux/fcntl.h> 48 #include <linux/init.h> 49 #include <linux/delay.h> 50 #include <linux/kernel.h> 51 #include <linux/ctype.h> 52 #include <linux/parport.h> 53 #include <linux/list.h> 54 55 #include <linux/io.h> 56 #include <linux/uaccess.h> 57 58 #include "charlcd.h" 59 #include "hd44780_common.h" 60 61 #define LCD_MAXBYTES 256 /* max burst write */ 62 63 #define KEYPAD_BUFFER 64 64 65 /* poll the keyboard this every second */ 66 #define INPUT_POLL_TIME (HZ / 50) 67 /* a key starts to repeat after this times INPUT_POLL_TIME */ 68 #define KEYPAD_REP_START (10) 69 /* a key repeats this times INPUT_POLL_TIME */ 70 #define KEYPAD_REP_DELAY (2) 71 72 /* converts an r_str() input to an active high, bits string : 000BAOSE */ 73 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3) 74 75 #define PNL_PBUSY 0x80 /* inverted input, active low */ 76 #define PNL_PACK 0x40 /* direct input, active low */ 77 #define PNL_POUTPA 0x20 /* direct input, active high */ 78 #define PNL_PSELECD 0x10 /* direct input, active high */ 79 #define PNL_PERRORP 0x08 /* direct input, active low */ 80 81 #define PNL_PBIDIR 0x20 /* bi-directional ports */ 82 /* high to read data in or-ed with data out */ 83 #define PNL_PINTEN 0x10 84 #define PNL_PSELECP 0x08 /* inverted output, active low */ 85 #define PNL_PINITP 0x04 /* direct output, active low */ 86 #define PNL_PAUTOLF 0x02 /* inverted output, active low */ 87 #define PNL_PSTROBE 0x01 /* inverted output */ 88 89 #define PNL_PD0 0x01 90 #define PNL_PD1 0x02 91 #define PNL_PD2 0x04 92 #define PNL_PD3 0x08 93 #define PNL_PD4 0x10 94 #define PNL_PD5 0x20 95 #define PNL_PD6 0x40 96 #define PNL_PD7 0x80 97 98 #define PIN_NONE 0 99 #define PIN_STROBE 1 100 #define PIN_D0 2 101 #define PIN_D1 3 102 #define PIN_D2 4 103 #define PIN_D3 5 104 #define PIN_D4 6 105 #define PIN_D5 7 106 #define PIN_D6 8 107 #define PIN_D7 9 108 #define PIN_AUTOLF 14 109 #define PIN_INITP 16 110 #define PIN_SELECP 17 111 #define PIN_NOT_SET 127 112 113 #define NOT_SET -1 114 115 /* macros to simplify use of the parallel port */ 116 #define r_ctr(x) (parport_read_control((x)->port)) 117 #define r_dtr(x) (parport_read_data((x)->port)) 118 #define r_str(x) (parport_read_status((x)->port)) 119 #define w_ctr(x, y) (parport_write_control((x)->port, (y))) 120 #define w_dtr(x, y) (parport_write_data((x)->port, (y))) 121 122 /* this defines which bits are to be used and which ones to be ignored */ 123 /* logical or of the output bits involved in the scan matrix */ 124 static __u8 scan_mask_o; 125 /* logical or of the input bits involved in the scan matrix */ 126 static __u8 scan_mask_i; 127 128 enum input_type { 129 INPUT_TYPE_STD, 130 INPUT_TYPE_KBD, 131 }; 132 133 enum input_state { 134 INPUT_ST_LOW, 135 INPUT_ST_RISING, 136 INPUT_ST_HIGH, 137 INPUT_ST_FALLING, 138 }; 139 140 struct logical_input { 141 struct list_head list; 142 __u64 mask; 143 __u64 value; 144 enum input_type type; 145 enum input_state state; 146 __u8 rise_time, fall_time; 147 __u8 rise_timer, fall_timer, high_timer; 148 149 union { 150 struct { /* valid when type == INPUT_TYPE_STD */ 151 void (*press_fct)(int); 152 void (*release_fct)(int); 153 int press_data; 154 int release_data; 155 } std; 156 struct { /* valid when type == INPUT_TYPE_KBD */ 157 char press_str[sizeof(void *) + sizeof(int)] __nonstring; 158 char repeat_str[sizeof(void *) + sizeof(int)] __nonstring; 159 char release_str[sizeof(void *) + sizeof(int)] __nonstring; 160 } kbd; 161 } u; 162 }; 163 164 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */ 165 166 /* physical contacts history 167 * Physical contacts are a 45 bits string of 9 groups of 5 bits each. 168 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group 169 * corresponds to the ground. 170 * Within each group, bits are stored in the same order as read on the port : 171 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0). 172 * So, each __u64 is represented like this : 173 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE 174 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00> 175 */ 176 177 /* what has just been read from the I/O ports */ 178 static __u64 phys_read; 179 /* previous phys_read */ 180 static __u64 phys_read_prev; 181 /* stabilized phys_read (phys_read|phys_read_prev) */ 182 static __u64 phys_curr; 183 /* previous phys_curr */ 184 static __u64 phys_prev; 185 /* 0 means that at least one logical signal needs be computed */ 186 static char inputs_stable; 187 188 /* these variables are specific to the keypad */ 189 static struct { 190 bool enabled; 191 } keypad; 192 193 static char keypad_buffer[KEYPAD_BUFFER]; 194 static int keypad_buflen; 195 static int keypad_start; 196 static char keypressed; 197 static wait_queue_head_t keypad_read_wait; 198 199 /* lcd-specific variables */ 200 static struct { 201 bool enabled; 202 bool initialized; 203 204 int charset; 205 int proto; 206 207 /* TODO: use union here? */ 208 struct { 209 int e; 210 int rs; 211 int rw; 212 int cl; 213 int da; 214 int bl; 215 } pins; 216 217 struct charlcd *charlcd; 218 } lcd; 219 220 /* Needed only for init */ 221 static int selected_lcd_type = NOT_SET; 222 223 /* 224 * Bit masks to convert LCD signals to parallel port outputs. 225 * _d_ are values for data port, _c_ are for control port. 226 * [0] = signal OFF, [1] = signal ON, [2] = mask 227 */ 228 #define BIT_CLR 0 229 #define BIT_SET 1 230 #define BIT_MSK 2 231 #define BIT_STATES 3 232 /* 233 * one entry for each bit on the LCD 234 */ 235 #define LCD_BIT_E 0 236 #define LCD_BIT_RS 1 237 #define LCD_BIT_RW 2 238 #define LCD_BIT_BL 3 239 #define LCD_BIT_CL 4 240 #define LCD_BIT_DA 5 241 #define LCD_BITS 6 242 243 /* 244 * each bit can be either connected to a DATA or CTRL port 245 */ 246 #define LCD_PORT_C 0 247 #define LCD_PORT_D 1 248 #define LCD_PORTS 2 249 250 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES]; 251 252 /* 253 * LCD protocols 254 */ 255 #define LCD_PROTO_PARALLEL 0 256 #define LCD_PROTO_SERIAL 1 257 #define LCD_PROTO_TI_DA8XX_LCD 2 258 259 /* 260 * LCD character sets 261 */ 262 #define LCD_CHARSET_NORMAL 0 263 #define LCD_CHARSET_KS0074 1 264 265 /* 266 * LCD types 267 */ 268 #define LCD_TYPE_NONE 0 269 #define LCD_TYPE_CUSTOM 1 270 #define LCD_TYPE_OLD 2 271 #define LCD_TYPE_KS0074 3 272 #define LCD_TYPE_HANTRONIX 4 273 #define LCD_TYPE_NEXCOM 5 274 275 /* 276 * keypad types 277 */ 278 #define KEYPAD_TYPE_NONE 0 279 #define KEYPAD_TYPE_OLD 1 280 #define KEYPAD_TYPE_NEW 2 281 #define KEYPAD_TYPE_NEXCOM 3 282 283 /* 284 * panel profiles 285 */ 286 #define PANEL_PROFILE_CUSTOM 0 287 #define PANEL_PROFILE_OLD 1 288 #define PANEL_PROFILE_NEW 2 289 #define PANEL_PROFILE_HANTRONIX 3 290 #define PANEL_PROFILE_NEXCOM 4 291 #define PANEL_PROFILE_LARGE 5 292 293 /* 294 * Construct custom config from the kernel's configuration 295 */ 296 #define DEFAULT_PARPORT 0 297 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE 298 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD 299 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD 300 #define DEFAULT_LCD_HEIGHT 2 301 #define DEFAULT_LCD_WIDTH 40 302 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL 303 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL 304 305 #define DEFAULT_LCD_PIN_E PIN_AUTOLF 306 #define DEFAULT_LCD_PIN_RS PIN_SELECP 307 #define DEFAULT_LCD_PIN_RW PIN_INITP 308 #define DEFAULT_LCD_PIN_SCL PIN_STROBE 309 #define DEFAULT_LCD_PIN_SDA PIN_D0 310 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET 311 312 #ifdef CONFIG_PANEL_PARPORT 313 #undef DEFAULT_PARPORT 314 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT 315 #endif 316 317 #ifdef CONFIG_PANEL_PROFILE 318 #undef DEFAULT_PROFILE 319 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE 320 #endif 321 322 #if DEFAULT_PROFILE == 0 /* custom */ 323 #ifdef CONFIG_PANEL_KEYPAD 324 #undef DEFAULT_KEYPAD_TYPE 325 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD 326 #endif 327 328 #ifdef CONFIG_PANEL_LCD 329 #undef DEFAULT_LCD_TYPE 330 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD 331 #endif 332 333 #ifdef CONFIG_PANEL_LCD_HEIGHT 334 #undef DEFAULT_LCD_HEIGHT 335 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT 336 #endif 337 338 #ifdef CONFIG_PANEL_LCD_WIDTH 339 #undef DEFAULT_LCD_WIDTH 340 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH 341 #endif 342 343 #ifdef CONFIG_PANEL_LCD_BWIDTH 344 #undef DEFAULT_LCD_BWIDTH 345 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH 346 #endif 347 348 #ifdef CONFIG_PANEL_LCD_HWIDTH 349 #undef DEFAULT_LCD_HWIDTH 350 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH 351 #endif 352 353 #ifdef CONFIG_PANEL_LCD_CHARSET 354 #undef DEFAULT_LCD_CHARSET 355 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET 356 #endif 357 358 #ifdef CONFIG_PANEL_LCD_PROTO 359 #undef DEFAULT_LCD_PROTO 360 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO 361 #endif 362 363 #ifdef CONFIG_PANEL_LCD_PIN_E 364 #undef DEFAULT_LCD_PIN_E 365 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E 366 #endif 367 368 #ifdef CONFIG_PANEL_LCD_PIN_RS 369 #undef DEFAULT_LCD_PIN_RS 370 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS 371 #endif 372 373 #ifdef CONFIG_PANEL_LCD_PIN_RW 374 #undef DEFAULT_LCD_PIN_RW 375 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW 376 #endif 377 378 #ifdef CONFIG_PANEL_LCD_PIN_SCL 379 #undef DEFAULT_LCD_PIN_SCL 380 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL 381 #endif 382 383 #ifdef CONFIG_PANEL_LCD_PIN_SDA 384 #undef DEFAULT_LCD_PIN_SDA 385 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA 386 #endif 387 388 #ifdef CONFIG_PANEL_LCD_PIN_BL 389 #undef DEFAULT_LCD_PIN_BL 390 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL 391 #endif 392 393 #endif /* DEFAULT_PROFILE == 0 */ 394 395 /* global variables */ 396 397 /* Device single-open policy control */ 398 static atomic_t keypad_available = ATOMIC_INIT(1); 399 400 static struct pardevice *pprt; 401 402 static int keypad_initialized; 403 404 static DEFINE_SPINLOCK(pprt_lock); 405 static struct timer_list scan_timer; 406 407 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver"); 408 409 static int parport = DEFAULT_PARPORT; 410 module_param(parport, int, 0000); 411 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)"); 412 413 static int profile = DEFAULT_PROFILE; 414 module_param(profile, int, 0000); 415 MODULE_PARM_DESC(profile, 416 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; " 417 "4=16x2 nexcom; default=40x2, old kp"); 418 419 static int keypad_type = NOT_SET; 420 module_param(keypad_type, int, 0000); 421 MODULE_PARM_DESC(keypad_type, 422 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys"); 423 424 static int lcd_type = NOT_SET; 425 module_param(lcd_type, int, 0000); 426 MODULE_PARM_DESC(lcd_type, 427 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom"); 428 429 static int lcd_height = NOT_SET; 430 module_param(lcd_height, int, 0000); 431 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD"); 432 433 static int lcd_width = NOT_SET; 434 module_param(lcd_width, int, 0000); 435 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD"); 436 437 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */ 438 module_param(lcd_bwidth, int, 0000); 439 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)"); 440 441 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */ 442 module_param(lcd_hwidth, int, 0000); 443 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)"); 444 445 static int lcd_charset = NOT_SET; 446 module_param(lcd_charset, int, 0000); 447 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074"); 448 449 static int lcd_proto = NOT_SET; 450 module_param(lcd_proto, int, 0000); 451 MODULE_PARM_DESC(lcd_proto, 452 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface"); 453 454 /* 455 * These are the parallel port pins the LCD control signals are connected to. 456 * Set this to 0 if the signal is not used. Set it to its opposite value 457 * (negative) if the signal is negated. -MAXINT is used to indicate that the 458 * pin has not been explicitly specified. 459 * 460 * WARNING! no check will be performed about collisions with keypad ! 461 */ 462 463 static int lcd_e_pin = PIN_NOT_SET; 464 module_param(lcd_e_pin, int, 0000); 465 MODULE_PARM_DESC(lcd_e_pin, 466 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)"); 467 468 static int lcd_rs_pin = PIN_NOT_SET; 469 module_param(lcd_rs_pin, int, 0000); 470 MODULE_PARM_DESC(lcd_rs_pin, 471 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)"); 472 473 static int lcd_rw_pin = PIN_NOT_SET; 474 module_param(lcd_rw_pin, int, 0000); 475 MODULE_PARM_DESC(lcd_rw_pin, 476 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)"); 477 478 static int lcd_cl_pin = PIN_NOT_SET; 479 module_param(lcd_cl_pin, int, 0000); 480 MODULE_PARM_DESC(lcd_cl_pin, 481 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)"); 482 483 static int lcd_da_pin = PIN_NOT_SET; 484 module_param(lcd_da_pin, int, 0000); 485 MODULE_PARM_DESC(lcd_da_pin, 486 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)"); 487 488 static int lcd_bl_pin = PIN_NOT_SET; 489 module_param(lcd_bl_pin, int, 0000); 490 MODULE_PARM_DESC(lcd_bl_pin, 491 "# of the // port pin connected to LCD backlight, with polarity (-17..17)"); 492 493 /* Deprecated module parameters - consider not using them anymore */ 494 495 static int lcd_enabled = NOT_SET; 496 module_param(lcd_enabled, int, 0000); 497 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead"); 498 499 static int keypad_enabled = NOT_SET; 500 module_param(keypad_enabled, int, 0000); 501 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead"); 502 503 /* for some LCD drivers (ks0074) we need a charset conversion table. */ 504 static const unsigned char lcd_char_conv_ks0074[256] = { 505 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */ 506 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 507 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 508 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 509 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 510 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27, 511 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 512 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 513 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 514 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 515 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 516 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 517 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4, 518 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 519 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 520 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 521 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20, 522 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 523 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 524 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 525 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 526 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f, 527 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96, 528 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd, 529 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60, 530 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9, 531 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3, 532 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78, 533 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe, 534 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8, 535 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69, 536 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25, 537 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79, 538 }; 539 540 static const char old_keypad_profile[][4][9] = { 541 {"S0", "Left\n", "Left\n", ""}, 542 {"S1", "Down\n", "Down\n", ""}, 543 {"S2", "Up\n", "Up\n", ""}, 544 {"S3", "Right\n", "Right\n", ""}, 545 {"S4", "Esc\n", "Esc\n", ""}, 546 {"S5", "Ret\n", "Ret\n", ""}, 547 {"", "", "", ""} 548 }; 549 550 /* signals, press, repeat, release */ 551 static const char new_keypad_profile[][4][9] = { 552 {"S0", "Left\n", "Left\n", ""}, 553 {"S1", "Down\n", "Down\n", ""}, 554 {"S2", "Up\n", "Up\n", ""}, 555 {"S3", "Right\n", "Right\n", ""}, 556 {"S4s5", "", "Esc\n", "Esc\n"}, 557 {"s4S5", "", "Ret\n", "Ret\n"}, 558 {"S4S5", "Help\n", "", ""}, 559 /* add new signals above this line */ 560 {"", "", "", ""} 561 }; 562 563 /* signals, press, repeat, release */ 564 static const char nexcom_keypad_profile[][4][9] = { 565 {"a-p-e-", "Down\n", "Down\n", ""}, 566 {"a-p-E-", "Ret\n", "Ret\n", ""}, 567 {"a-P-E-", "Esc\n", "Esc\n", ""}, 568 {"a-P-e-", "Up\n", "Up\n", ""}, 569 /* add new signals above this line */ 570 {"", "", "", ""} 571 }; 572 573 static const char (*keypad_profile)[4][9] = old_keypad_profile; 574 575 static DECLARE_BITMAP(bits, LCD_BITS); 576 577 static void lcd_get_bits(unsigned int port, int *val) 578 { 579 unsigned int bit, state; 580 581 for (bit = 0; bit < LCD_BITS; bit++) { 582 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR; 583 *val &= lcd_bits[port][bit][BIT_MSK]; 584 *val |= lcd_bits[port][bit][state]; 585 } 586 } 587 588 /* sets data port bits according to current signals values */ 589 static int set_data_bits(void) 590 { 591 int val; 592 593 val = r_dtr(pprt); 594 lcd_get_bits(LCD_PORT_D, &val); 595 w_dtr(pprt, val); 596 return val; 597 } 598 599 /* sets ctrl port bits according to current signals values */ 600 static int set_ctrl_bits(void) 601 { 602 int val; 603 604 val = r_ctr(pprt); 605 lcd_get_bits(LCD_PORT_C, &val); 606 w_ctr(pprt, val); 607 return val; 608 } 609 610 /* sets ctrl & data port bits according to current signals values */ 611 static void panel_set_bits(void) 612 { 613 set_data_bits(); 614 set_ctrl_bits(); 615 } 616 617 /* 618 * Converts a parallel port pin (from -25 to 25) to data and control ports 619 * masks, and data and control port bits. The signal will be considered 620 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25). 621 * 622 * Result will be used this way : 623 * out(dport, in(dport) & d_val[2] | d_val[signal_state]) 624 * out(cport, in(cport) & c_val[2] | c_val[signal_state]) 625 */ 626 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val) 627 { 628 int d_bit, c_bit, inv; 629 630 d_val[0] = 0; 631 c_val[0] = 0; 632 d_val[1] = 0; 633 c_val[1] = 0; 634 d_val[2] = 0xFF; 635 c_val[2] = 0xFF; 636 637 if (pin == 0) 638 return; 639 640 inv = (pin < 0); 641 if (inv) 642 pin = -pin; 643 644 d_bit = 0; 645 c_bit = 0; 646 647 switch (pin) { 648 case PIN_STROBE: /* strobe, inverted */ 649 c_bit = PNL_PSTROBE; 650 inv = !inv; 651 break; 652 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */ 653 d_bit = 1 << (pin - 2); 654 break; 655 case PIN_AUTOLF: /* autofeed, inverted */ 656 c_bit = PNL_PAUTOLF; 657 inv = !inv; 658 break; 659 case PIN_INITP: /* init, direct */ 660 c_bit = PNL_PINITP; 661 break; 662 case PIN_SELECP: /* select_in, inverted */ 663 c_bit = PNL_PSELECP; 664 inv = !inv; 665 break; 666 default: /* unknown pin, ignore */ 667 break; 668 } 669 670 if (c_bit) { 671 c_val[2] &= ~c_bit; 672 c_val[!inv] = c_bit; 673 } else if (d_bit) { 674 d_val[2] &= ~d_bit; 675 d_val[!inv] = d_bit; 676 } 677 } 678 679 /* 680 * send a serial byte to the LCD panel. The caller is responsible for locking 681 * if needed. 682 */ 683 static void lcd_send_serial(int byte) 684 { 685 int bit; 686 687 /* 688 * the data bit is set on D0, and the clock on STROBE. 689 * LCD reads D0 on STROBE's rising edge. 690 */ 691 for (bit = 0; bit < 8; bit++) { 692 clear_bit(LCD_BIT_CL, bits); /* CLK low */ 693 panel_set_bits(); 694 if (byte & 1) { 695 set_bit(LCD_BIT_DA, bits); 696 } else { 697 clear_bit(LCD_BIT_DA, bits); 698 } 699 700 panel_set_bits(); 701 udelay(2); /* maintain the data during 2 us before CLK up */ 702 set_bit(LCD_BIT_CL, bits); /* CLK high */ 703 panel_set_bits(); 704 udelay(1); /* maintain the strobe during 1 us */ 705 byte >>= 1; 706 } 707 } 708 709 /* turn the backlight on or off */ 710 static void lcd_backlight(struct charlcd *charlcd, enum charlcd_onoff on) 711 { 712 if (lcd.pins.bl == PIN_NONE) 713 return; 714 715 /* The backlight is activated by setting the AUTOFEED line to +5V */ 716 spin_lock_irq(&pprt_lock); 717 if (on) 718 set_bit(LCD_BIT_BL, bits); 719 else 720 clear_bit(LCD_BIT_BL, bits); 721 panel_set_bits(); 722 spin_unlock_irq(&pprt_lock); 723 } 724 725 /* send a command to the LCD panel in serial mode */ 726 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd) 727 { 728 spin_lock_irq(&pprt_lock); 729 lcd_send_serial(0x1F); /* R/W=W, RS=0 */ 730 lcd_send_serial(cmd & 0x0F); 731 lcd_send_serial((cmd >> 4) & 0x0F); 732 udelay(40); /* the shortest command takes at least 40 us */ 733 spin_unlock_irq(&pprt_lock); 734 } 735 736 /* send data to the LCD panel in serial mode */ 737 static void lcd_write_data_s(struct charlcd *charlcd, int data) 738 { 739 spin_lock_irq(&pprt_lock); 740 lcd_send_serial(0x5F); /* R/W=W, RS=1 */ 741 lcd_send_serial(data & 0x0F); 742 lcd_send_serial((data >> 4) & 0x0F); 743 udelay(40); /* the shortest data takes at least 40 us */ 744 spin_unlock_irq(&pprt_lock); 745 } 746 747 /* send a command to the LCD panel in 8 bits parallel mode */ 748 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd) 749 { 750 spin_lock_irq(&pprt_lock); 751 /* present the data to the data port */ 752 w_dtr(pprt, cmd); 753 udelay(20); /* maintain the data during 20 us before the strobe */ 754 755 set_bit(LCD_BIT_E, bits); 756 clear_bit(LCD_BIT_RS, bits); 757 clear_bit(LCD_BIT_RW, bits); 758 set_ctrl_bits(); 759 760 udelay(40); /* maintain the strobe during 40 us */ 761 762 clear_bit(LCD_BIT_E, bits); 763 set_ctrl_bits(); 764 765 udelay(120); /* the shortest command takes at least 120 us */ 766 spin_unlock_irq(&pprt_lock); 767 } 768 769 /* send data to the LCD panel in 8 bits parallel mode */ 770 static void lcd_write_data_p8(struct charlcd *charlcd, int data) 771 { 772 spin_lock_irq(&pprt_lock); 773 /* present the data to the data port */ 774 w_dtr(pprt, data); 775 udelay(20); /* maintain the data during 20 us before the strobe */ 776 777 set_bit(LCD_BIT_E, bits); 778 set_bit(LCD_BIT_RS, bits); 779 clear_bit(LCD_BIT_RW, bits); 780 set_ctrl_bits(); 781 782 udelay(40); /* maintain the strobe during 40 us */ 783 784 clear_bit(LCD_BIT_E, bits); 785 set_ctrl_bits(); 786 787 udelay(45); /* the shortest data takes at least 45 us */ 788 spin_unlock_irq(&pprt_lock); 789 } 790 791 /* send a command to the TI LCD panel */ 792 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd) 793 { 794 spin_lock_irq(&pprt_lock); 795 /* present the data to the control port */ 796 w_ctr(pprt, cmd); 797 udelay(60); 798 spin_unlock_irq(&pprt_lock); 799 } 800 801 /* send data to the TI LCD panel */ 802 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data) 803 { 804 spin_lock_irq(&pprt_lock); 805 /* present the data to the data port */ 806 w_dtr(pprt, data); 807 udelay(60); 808 spin_unlock_irq(&pprt_lock); 809 } 810 811 /* fills the display with spaces and resets X/Y */ 812 static void lcd_clear_fast_s(struct charlcd *charlcd) 813 { 814 struct hd44780_common *hdc = charlcd->drvdata; 815 int pos; 816 817 spin_lock_irq(&pprt_lock); 818 for (pos = 0; pos < charlcd->height * hdc->hwidth; pos++) { 819 lcd_send_serial(0x5F); /* R/W=W, RS=1 */ 820 lcd_send_serial(' ' & 0x0F); 821 lcd_send_serial((' ' >> 4) & 0x0F); 822 /* the shortest data takes at least 40 us */ 823 udelay(40); 824 } 825 spin_unlock_irq(&pprt_lock); 826 } 827 828 /* fills the display with spaces and resets X/Y */ 829 static void lcd_clear_fast_p8(struct charlcd *charlcd) 830 { 831 struct hd44780_common *hdc = charlcd->drvdata; 832 int pos; 833 834 spin_lock_irq(&pprt_lock); 835 for (pos = 0; pos < charlcd->height * hdc->hwidth; pos++) { 836 /* present the data to the data port */ 837 w_dtr(pprt, ' '); 838 839 /* maintain the data during 20 us before the strobe */ 840 udelay(20); 841 842 set_bit(LCD_BIT_E, bits); 843 set_bit(LCD_BIT_RS, bits); 844 clear_bit(LCD_BIT_RW, bits); 845 set_ctrl_bits(); 846 847 /* maintain the strobe during 40 us */ 848 udelay(40); 849 850 clear_bit(LCD_BIT_E, bits); 851 set_ctrl_bits(); 852 853 /* the shortest data takes at least 45 us */ 854 udelay(45); 855 } 856 spin_unlock_irq(&pprt_lock); 857 } 858 859 /* fills the display with spaces and resets X/Y */ 860 static void lcd_clear_fast_tilcd(struct charlcd *charlcd) 861 { 862 struct hd44780_common *hdc = charlcd->drvdata; 863 int pos; 864 865 spin_lock_irq(&pprt_lock); 866 for (pos = 0; pos < charlcd->height * hdc->hwidth; pos++) { 867 /* present the data to the data port */ 868 w_dtr(pprt, ' '); 869 udelay(60); 870 } 871 872 spin_unlock_irq(&pprt_lock); 873 } 874 875 static const struct charlcd_ops charlcd_serial_ops = { 876 .write_cmd = lcd_write_cmd_s, 877 .write_data = lcd_write_data_s, 878 .clear_fast = lcd_clear_fast_s, 879 .backlight = lcd_backlight, 880 }; 881 882 static const struct charlcd_ops charlcd_parallel_ops = { 883 .write_cmd = lcd_write_cmd_p8, 884 .write_data = lcd_write_data_p8, 885 .clear_fast = lcd_clear_fast_p8, 886 .backlight = lcd_backlight, 887 }; 888 889 static const struct charlcd_ops charlcd_tilcd_ops = { 890 .write_cmd = lcd_write_cmd_tilcd, 891 .write_data = lcd_write_data_tilcd, 892 .clear_fast = lcd_clear_fast_tilcd, 893 .backlight = lcd_backlight, 894 }; 895 896 /* initialize the LCD driver */ 897 static void lcd_init(void) 898 { 899 struct charlcd *charlcd; 900 struct hd44780_common *hdc; 901 902 hdc = hd44780_common_alloc(); 903 if (!hdc) 904 return; 905 906 charlcd = charlcd_alloc(); 907 if (!charlcd) { 908 kfree(hdc); 909 return; 910 } 911 912 hdc->hd44780 = &lcd; 913 charlcd->drvdata = hdc; 914 915 /* 916 * Init lcd struct with load-time values to preserve exact 917 * current functionality (at least for now). 918 */ 919 charlcd->height = lcd_height; 920 charlcd->width = lcd_width; 921 hdc->bwidth = lcd_bwidth; 922 hdc->hwidth = lcd_hwidth; 923 924 switch (selected_lcd_type) { 925 case LCD_TYPE_OLD: 926 /* parallel mode, 8 bits */ 927 lcd.proto = LCD_PROTO_PARALLEL; 928 lcd.charset = LCD_CHARSET_NORMAL; 929 lcd.pins.e = PIN_STROBE; 930 lcd.pins.rs = PIN_AUTOLF; 931 932 charlcd->width = 40; 933 hdc->bwidth = 40; 934 hdc->hwidth = 64; 935 charlcd->height = 2; 936 break; 937 case LCD_TYPE_KS0074: 938 /* serial mode, ks0074 */ 939 lcd.proto = LCD_PROTO_SERIAL; 940 lcd.charset = LCD_CHARSET_KS0074; 941 lcd.pins.bl = PIN_AUTOLF; 942 lcd.pins.cl = PIN_STROBE; 943 lcd.pins.da = PIN_D0; 944 945 charlcd->width = 16; 946 hdc->bwidth = 40; 947 hdc->hwidth = 16; 948 charlcd->height = 2; 949 break; 950 case LCD_TYPE_NEXCOM: 951 /* parallel mode, 8 bits, generic */ 952 lcd.proto = LCD_PROTO_PARALLEL; 953 lcd.charset = LCD_CHARSET_NORMAL; 954 lcd.pins.e = PIN_AUTOLF; 955 lcd.pins.rs = PIN_SELECP; 956 lcd.pins.rw = PIN_INITP; 957 958 charlcd->width = 16; 959 hdc->bwidth = 40; 960 hdc->hwidth = 64; 961 charlcd->height = 2; 962 break; 963 case LCD_TYPE_CUSTOM: 964 /* customer-defined */ 965 lcd.proto = DEFAULT_LCD_PROTO; 966 lcd.charset = DEFAULT_LCD_CHARSET; 967 /* default geometry will be set later */ 968 break; 969 case LCD_TYPE_HANTRONIX: 970 /* parallel mode, 8 bits, hantronix-like */ 971 default: 972 lcd.proto = LCD_PROTO_PARALLEL; 973 lcd.charset = LCD_CHARSET_NORMAL; 974 lcd.pins.e = PIN_STROBE; 975 lcd.pins.rs = PIN_SELECP; 976 977 charlcd->width = 16; 978 hdc->bwidth = 40; 979 hdc->hwidth = 64; 980 charlcd->height = 2; 981 break; 982 } 983 984 /* Overwrite with module params set on loading */ 985 if (lcd_height != NOT_SET) 986 charlcd->height = lcd_height; 987 if (lcd_width != NOT_SET) 988 charlcd->width = lcd_width; 989 if (lcd_bwidth != NOT_SET) 990 hdc->bwidth = lcd_bwidth; 991 if (lcd_hwidth != NOT_SET) 992 hdc->hwidth = lcd_hwidth; 993 if (lcd_charset != NOT_SET) 994 lcd.charset = lcd_charset; 995 if (lcd_proto != NOT_SET) 996 lcd.proto = lcd_proto; 997 if (lcd_e_pin != PIN_NOT_SET) 998 lcd.pins.e = lcd_e_pin; 999 if (lcd_rs_pin != PIN_NOT_SET) 1000 lcd.pins.rs = lcd_rs_pin; 1001 if (lcd_rw_pin != PIN_NOT_SET) 1002 lcd.pins.rw = lcd_rw_pin; 1003 if (lcd_cl_pin != PIN_NOT_SET) 1004 lcd.pins.cl = lcd_cl_pin; 1005 if (lcd_da_pin != PIN_NOT_SET) 1006 lcd.pins.da = lcd_da_pin; 1007 if (lcd_bl_pin != PIN_NOT_SET) 1008 lcd.pins.bl = lcd_bl_pin; 1009 1010 /* this is used to catch wrong and default values */ 1011 if (charlcd->width <= 0) 1012 charlcd->width = DEFAULT_LCD_WIDTH; 1013 if (hdc->bwidth <= 0) 1014 hdc->bwidth = DEFAULT_LCD_BWIDTH; 1015 if (hdc->hwidth <= 0) 1016 hdc->hwidth = DEFAULT_LCD_HWIDTH; 1017 if (charlcd->height <= 0) 1018 charlcd->height = DEFAULT_LCD_HEIGHT; 1019 1020 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */ 1021 charlcd->ops = &charlcd_serial_ops; 1022 1023 if (lcd.pins.cl == PIN_NOT_SET) 1024 lcd.pins.cl = DEFAULT_LCD_PIN_SCL; 1025 if (lcd.pins.da == PIN_NOT_SET) 1026 lcd.pins.da = DEFAULT_LCD_PIN_SDA; 1027 1028 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */ 1029 charlcd->ops = &charlcd_parallel_ops; 1030 1031 if (lcd.pins.e == PIN_NOT_SET) 1032 lcd.pins.e = DEFAULT_LCD_PIN_E; 1033 if (lcd.pins.rs == PIN_NOT_SET) 1034 lcd.pins.rs = DEFAULT_LCD_PIN_RS; 1035 if (lcd.pins.rw == PIN_NOT_SET) 1036 lcd.pins.rw = DEFAULT_LCD_PIN_RW; 1037 } else { 1038 charlcd->ops = &charlcd_tilcd_ops; 1039 } 1040 1041 if (lcd.pins.bl == PIN_NOT_SET) 1042 lcd.pins.bl = DEFAULT_LCD_PIN_BL; 1043 1044 if (lcd.pins.e == PIN_NOT_SET) 1045 lcd.pins.e = PIN_NONE; 1046 if (lcd.pins.rs == PIN_NOT_SET) 1047 lcd.pins.rs = PIN_NONE; 1048 if (lcd.pins.rw == PIN_NOT_SET) 1049 lcd.pins.rw = PIN_NONE; 1050 if (lcd.pins.bl == PIN_NOT_SET) 1051 lcd.pins.bl = PIN_NONE; 1052 if (lcd.pins.cl == PIN_NOT_SET) 1053 lcd.pins.cl = PIN_NONE; 1054 if (lcd.pins.da == PIN_NOT_SET) 1055 lcd.pins.da = PIN_NONE; 1056 1057 if (lcd.charset == NOT_SET) 1058 lcd.charset = DEFAULT_LCD_CHARSET; 1059 1060 if (lcd.charset == LCD_CHARSET_KS0074) 1061 charlcd->char_conv = lcd_char_conv_ks0074; 1062 else 1063 charlcd->char_conv = NULL; 1064 1065 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E], 1066 lcd_bits[LCD_PORT_C][LCD_BIT_E]); 1067 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS], 1068 lcd_bits[LCD_PORT_C][LCD_BIT_RS]); 1069 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW], 1070 lcd_bits[LCD_PORT_C][LCD_BIT_RW]); 1071 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL], 1072 lcd_bits[LCD_PORT_C][LCD_BIT_BL]); 1073 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL], 1074 lcd_bits[LCD_PORT_C][LCD_BIT_CL]); 1075 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA], 1076 lcd_bits[LCD_PORT_C][LCD_BIT_DA]); 1077 1078 lcd.charlcd = charlcd; 1079 lcd.initialized = true; 1080 } 1081 1082 /* 1083 * These are the file operation function for user access to /dev/keypad 1084 */ 1085 1086 static ssize_t keypad_read(struct file *file, 1087 char __user *buf, size_t count, loff_t *ppos) 1088 { 1089 unsigned i = *ppos; 1090 char __user *tmp = buf; 1091 1092 if (keypad_buflen == 0) { 1093 if (file->f_flags & O_NONBLOCK) 1094 return -EAGAIN; 1095 1096 if (wait_event_interruptible(keypad_read_wait, 1097 keypad_buflen != 0)) 1098 return -EINTR; 1099 } 1100 1101 for (; count-- > 0 && (keypad_buflen > 0); 1102 ++i, ++tmp, --keypad_buflen) { 1103 put_user(keypad_buffer[keypad_start], tmp); 1104 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER; 1105 } 1106 *ppos = i; 1107 1108 return tmp - buf; 1109 } 1110 1111 static int keypad_open(struct inode *inode, struct file *file) 1112 { 1113 int ret; 1114 1115 ret = -EBUSY; 1116 if (!atomic_dec_and_test(&keypad_available)) 1117 goto fail; /* open only once at a time */ 1118 1119 ret = -EPERM; 1120 if (file->f_mode & FMODE_WRITE) /* device is read-only */ 1121 goto fail; 1122 1123 keypad_buflen = 0; /* flush the buffer on opening */ 1124 return 0; 1125 fail: 1126 atomic_inc(&keypad_available); 1127 return ret; 1128 } 1129 1130 static int keypad_release(struct inode *inode, struct file *file) 1131 { 1132 atomic_inc(&keypad_available); 1133 return 0; 1134 } 1135 1136 static const struct file_operations keypad_fops = { 1137 .read = keypad_read, /* read */ 1138 .open = keypad_open, /* open */ 1139 .release = keypad_release, /* close */ 1140 .llseek = default_llseek, 1141 }; 1142 1143 static struct miscdevice keypad_dev = { 1144 .minor = KEYPAD_MINOR, 1145 .name = "keypad", 1146 .fops = &keypad_fops, 1147 }; 1148 1149 static void keypad_send_key(const char *string, int max_len) 1150 { 1151 /* send the key to the device only if a process is attached to it. */ 1152 if (!atomic_read(&keypad_available)) { 1153 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) { 1154 keypad_buffer[(keypad_start + keypad_buflen++) % 1155 KEYPAD_BUFFER] = *string++; 1156 } 1157 wake_up_interruptible(&keypad_read_wait); 1158 } 1159 } 1160 1161 /* this function scans all the bits involving at least one logical signal, 1162 * and puts the results in the bitfield "phys_read" (one bit per established 1163 * contact), and sets "phys_read_prev" to "phys_read". 1164 * 1165 * Note: to debounce input signals, we will only consider as switched a signal 1166 * which is stable across 2 measures. Signals which are different between two 1167 * reads will be kept as they previously were in their logical form (phys_prev). 1168 * A signal which has just switched will have a 1 in 1169 * (phys_read ^ phys_read_prev). 1170 */ 1171 static void phys_scan_contacts(void) 1172 { 1173 int bit, bitval; 1174 char oldval; 1175 char bitmask; 1176 char gndmask; 1177 1178 phys_prev = phys_curr; 1179 phys_read_prev = phys_read; 1180 phys_read = 0; /* flush all signals */ 1181 1182 /* keep track of old value, with all outputs disabled */ 1183 oldval = r_dtr(pprt) | scan_mask_o; 1184 /* activate all keyboard outputs (active low) */ 1185 w_dtr(pprt, oldval & ~scan_mask_o); 1186 1187 /* will have a 1 for each bit set to gnd */ 1188 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; 1189 /* disable all matrix signals */ 1190 w_dtr(pprt, oldval); 1191 1192 /* now that all outputs are cleared, the only active input bits are 1193 * directly connected to the ground 1194 */ 1195 1196 /* 1 for each grounded input */ 1197 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; 1198 1199 /* grounded inputs are signals 40-44 */ 1200 phys_read |= (__u64)gndmask << 40; 1201 1202 if (bitmask != gndmask) { 1203 /* 1204 * since clearing the outputs changed some inputs, we know 1205 * that some input signals are currently tied to some outputs. 1206 * So we'll scan them. 1207 */ 1208 for (bit = 0; bit < 8; bit++) { 1209 bitval = BIT(bit); 1210 1211 if (!(scan_mask_o & bitval)) /* skip unused bits */ 1212 continue; 1213 1214 w_dtr(pprt, oldval & ~bitval); /* enable this output */ 1215 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask; 1216 phys_read |= (__u64)bitmask << (5 * bit); 1217 } 1218 w_dtr(pprt, oldval); /* disable all outputs */ 1219 } 1220 /* 1221 * this is easy: use old bits when they are flapping, 1222 * use new ones when stable 1223 */ 1224 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) | 1225 (phys_read & ~(phys_read ^ phys_read_prev)); 1226 } 1227 1228 static inline int input_state_high(struct logical_input *input) 1229 { 1230 #if 0 1231 /* FIXME: 1232 * this is an invalid test. It tries to catch 1233 * transitions from single-key to multiple-key, but 1234 * doesn't take into account the contacts polarity. 1235 * The only solution to the problem is to parse keys 1236 * from the most complex to the simplest combinations, 1237 * and mark them as 'caught' once a combination 1238 * matches, then unmatch it for all other ones. 1239 */ 1240 1241 /* try to catch dangerous transitions cases : 1242 * someone adds a bit, so this signal was a false 1243 * positive resulting from a transition. We should 1244 * invalidate the signal immediately and not call the 1245 * release function. 1246 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release. 1247 */ 1248 if (((phys_prev & input->mask) == input->value) && 1249 ((phys_curr & input->mask) > input->value)) { 1250 input->state = INPUT_ST_LOW; /* invalidate */ 1251 return 1; 1252 } 1253 #endif 1254 1255 if ((phys_curr & input->mask) == input->value) { 1256 if ((input->type == INPUT_TYPE_STD) && 1257 (input->high_timer == 0)) { 1258 input->high_timer++; 1259 if (input->u.std.press_fct) 1260 input->u.std.press_fct(input->u.std.press_data); 1261 } else if (input->type == INPUT_TYPE_KBD) { 1262 /* will turn on the light */ 1263 keypressed = 1; 1264 1265 if (input->high_timer == 0) { 1266 char *press_str = input->u.kbd.press_str; 1267 1268 if (press_str[0]) { 1269 int s = sizeof(input->u.kbd.press_str); 1270 1271 keypad_send_key(press_str, s); 1272 } 1273 } 1274 1275 if (input->u.kbd.repeat_str[0]) { 1276 char *repeat_str = input->u.kbd.repeat_str; 1277 1278 if (input->high_timer >= KEYPAD_REP_START) { 1279 int s = sizeof(input->u.kbd.repeat_str); 1280 1281 input->high_timer -= KEYPAD_REP_DELAY; 1282 keypad_send_key(repeat_str, s); 1283 } 1284 /* we will need to come back here soon */ 1285 inputs_stable = 0; 1286 } 1287 1288 if (input->high_timer < 255) 1289 input->high_timer++; 1290 } 1291 return 1; 1292 } 1293 1294 /* else signal falling down. Let's fall through. */ 1295 input->state = INPUT_ST_FALLING; 1296 input->fall_timer = 0; 1297 1298 return 0; 1299 } 1300 1301 static inline void input_state_falling(struct logical_input *input) 1302 { 1303 #if 0 1304 /* FIXME !!! same comment as in input_state_high */ 1305 if (((phys_prev & input->mask) == input->value) && 1306 ((phys_curr & input->mask) > input->value)) { 1307 input->state = INPUT_ST_LOW; /* invalidate */ 1308 return; 1309 } 1310 #endif 1311 1312 if ((phys_curr & input->mask) == input->value) { 1313 if (input->type == INPUT_TYPE_KBD) { 1314 /* will turn on the light */ 1315 keypressed = 1; 1316 1317 if (input->u.kbd.repeat_str[0]) { 1318 char *repeat_str = input->u.kbd.repeat_str; 1319 1320 if (input->high_timer >= KEYPAD_REP_START) { 1321 int s = sizeof(input->u.kbd.repeat_str); 1322 1323 input->high_timer -= KEYPAD_REP_DELAY; 1324 keypad_send_key(repeat_str, s); 1325 } 1326 /* we will need to come back here soon */ 1327 inputs_stable = 0; 1328 } 1329 1330 if (input->high_timer < 255) 1331 input->high_timer++; 1332 } 1333 input->state = INPUT_ST_HIGH; 1334 } else if (input->fall_timer >= input->fall_time) { 1335 /* call release event */ 1336 if (input->type == INPUT_TYPE_STD) { 1337 void (*release_fct)(int) = input->u.std.release_fct; 1338 1339 if (release_fct) 1340 release_fct(input->u.std.release_data); 1341 } else if (input->type == INPUT_TYPE_KBD) { 1342 char *release_str = input->u.kbd.release_str; 1343 1344 if (release_str[0]) { 1345 int s = sizeof(input->u.kbd.release_str); 1346 1347 keypad_send_key(release_str, s); 1348 } 1349 } 1350 1351 input->state = INPUT_ST_LOW; 1352 } else { 1353 input->fall_timer++; 1354 inputs_stable = 0; 1355 } 1356 } 1357 1358 static void panel_process_inputs(void) 1359 { 1360 struct logical_input *input; 1361 1362 keypressed = 0; 1363 inputs_stable = 1; 1364 list_for_each_entry(input, &logical_inputs, list) { 1365 switch (input->state) { 1366 case INPUT_ST_LOW: 1367 if ((phys_curr & input->mask) != input->value) 1368 break; 1369 /* if all needed ones were already set previously, 1370 * this means that this logical signal has been 1371 * activated by the releasing of another combined 1372 * signal, so we don't want to match. 1373 * eg: AB -(release B)-> A -(release A)-> 0 : 1374 * don't match A. 1375 */ 1376 if ((phys_prev & input->mask) == input->value) 1377 break; 1378 input->rise_timer = 0; 1379 input->state = INPUT_ST_RISING; 1380 fallthrough; 1381 case INPUT_ST_RISING: 1382 if ((phys_curr & input->mask) != input->value) { 1383 input->state = INPUT_ST_LOW; 1384 break; 1385 } 1386 if (input->rise_timer < input->rise_time) { 1387 inputs_stable = 0; 1388 input->rise_timer++; 1389 break; 1390 } 1391 input->high_timer = 0; 1392 input->state = INPUT_ST_HIGH; 1393 fallthrough; 1394 case INPUT_ST_HIGH: 1395 if (input_state_high(input)) 1396 break; 1397 fallthrough; 1398 case INPUT_ST_FALLING: 1399 input_state_falling(input); 1400 } 1401 } 1402 } 1403 1404 static void panel_scan_timer(struct timer_list *unused) 1405 { 1406 if (keypad.enabled && keypad_initialized) { 1407 if (spin_trylock_irq(&pprt_lock)) { 1408 phys_scan_contacts(); 1409 1410 /* no need for the parport anymore */ 1411 spin_unlock_irq(&pprt_lock); 1412 } 1413 1414 if (!inputs_stable || phys_curr != phys_prev) 1415 panel_process_inputs(); 1416 } 1417 1418 if (keypressed && lcd.enabled && lcd.initialized) 1419 charlcd_poke(lcd.charlcd); 1420 1421 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME); 1422 } 1423 1424 static void init_scan_timer(void) 1425 { 1426 if (scan_timer.function) 1427 return; /* already started */ 1428 1429 timer_setup(&scan_timer, panel_scan_timer, 0); 1430 scan_timer.expires = jiffies + INPUT_POLL_TIME; 1431 add_timer(&scan_timer); 1432 } 1433 1434 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits. 1435 * if <omask> or <imask> are non-null, they will be or'ed with the bits 1436 * corresponding to out and in bits respectively. 1437 * returns 1 if ok, 0 if error (in which case, nothing is written). 1438 */ 1439 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value, 1440 u8 *imask, u8 *omask) 1441 { 1442 const char sigtab[] = "EeSsPpAaBb"; 1443 u8 im, om; 1444 __u64 m, v; 1445 1446 om = 0; 1447 im = 0; 1448 m = 0ULL; 1449 v = 0ULL; 1450 while (*name) { 1451 int in, out, bit, neg; 1452 const char *idx; 1453 1454 idx = strchr(sigtab, *name); 1455 if (!idx) 1456 return 0; /* input name not found */ 1457 1458 in = idx - sigtab; 1459 neg = (in & 1); /* odd (lower) names are negated */ 1460 in >>= 1; 1461 im |= BIT(in); 1462 1463 name++; 1464 if (*name >= '0' && *name <= '7') { 1465 out = *name - '0'; 1466 om |= BIT(out); 1467 } else if (*name == '-') { 1468 out = 8; 1469 } else { 1470 return 0; /* unknown bit name */ 1471 } 1472 1473 bit = (out * 5) + in; 1474 1475 m |= 1ULL << bit; 1476 if (!neg) 1477 v |= 1ULL << bit; 1478 name++; 1479 } 1480 *mask = m; 1481 *value = v; 1482 if (imask) 1483 *imask |= im; 1484 if (omask) 1485 *omask |= om; 1486 return 1; 1487 } 1488 1489 /* tries to bind a key to the signal name <name>. The key will send the 1490 * strings <press>, <repeat>, <release> for these respective events. 1491 * Returns the pointer to the new key if ok, NULL if the key could not be bound. 1492 */ 1493 static struct logical_input *panel_bind_key(const char *name, const char *press, 1494 const char *repeat, 1495 const char *release) 1496 { 1497 struct logical_input *key; 1498 1499 key = kzalloc(sizeof(*key), GFP_KERNEL); 1500 if (!key) 1501 return NULL; 1502 1503 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i, 1504 &scan_mask_o)) { 1505 kfree(key); 1506 return NULL; 1507 } 1508 1509 key->type = INPUT_TYPE_KBD; 1510 key->state = INPUT_ST_LOW; 1511 key->rise_time = 1; 1512 key->fall_time = 1; 1513 1514 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str)); 1515 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str)); 1516 strncpy(key->u.kbd.release_str, release, 1517 sizeof(key->u.kbd.release_str)); 1518 list_add(&key->list, &logical_inputs); 1519 return key; 1520 } 1521 1522 #if 0 1523 /* tries to bind a callback function to the signal name <name>. The function 1524 * <press_fct> will be called with the <press_data> arg when the signal is 1525 * activated, and so on for <release_fct>/<release_data> 1526 * Returns the pointer to the new signal if ok, NULL if the signal could not 1527 * be bound. 1528 */ 1529 static struct logical_input *panel_bind_callback(char *name, 1530 void (*press_fct)(int), 1531 int press_data, 1532 void (*release_fct)(int), 1533 int release_data) 1534 { 1535 struct logical_input *callback; 1536 1537 callback = kmalloc(sizeof(*callback), GFP_KERNEL); 1538 if (!callback) 1539 return NULL; 1540 1541 memset(callback, 0, sizeof(struct logical_input)); 1542 if (!input_name2mask(name, &callback->mask, &callback->value, 1543 &scan_mask_i, &scan_mask_o)) 1544 return NULL; 1545 1546 callback->type = INPUT_TYPE_STD; 1547 callback->state = INPUT_ST_LOW; 1548 callback->rise_time = 1; 1549 callback->fall_time = 1; 1550 callback->u.std.press_fct = press_fct; 1551 callback->u.std.press_data = press_data; 1552 callback->u.std.release_fct = release_fct; 1553 callback->u.std.release_data = release_data; 1554 list_add(&callback->list, &logical_inputs); 1555 return callback; 1556 } 1557 #endif 1558 1559 static void keypad_init(void) 1560 { 1561 int keynum; 1562 1563 init_waitqueue_head(&keypad_read_wait); 1564 keypad_buflen = 0; /* flushes any eventual noisy keystroke */ 1565 1566 /* Let's create all known keys */ 1567 1568 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) { 1569 panel_bind_key(keypad_profile[keynum][0], 1570 keypad_profile[keynum][1], 1571 keypad_profile[keynum][2], 1572 keypad_profile[keynum][3]); 1573 } 1574 1575 init_scan_timer(); 1576 keypad_initialized = 1; 1577 } 1578 1579 /**************************************************/ 1580 /* device initialization */ 1581 /**************************************************/ 1582 1583 static void panel_attach(struct parport *port) 1584 { 1585 struct pardev_cb panel_cb; 1586 1587 if (port->number != parport) 1588 return; 1589 1590 if (pprt) { 1591 pr_err("%s: port->number=%d parport=%d, already registered!\n", 1592 __func__, port->number, parport); 1593 return; 1594 } 1595 1596 memset(&panel_cb, 0, sizeof(panel_cb)); 1597 panel_cb.private = &pprt; 1598 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */ 1599 1600 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0); 1601 if (!pprt) { 1602 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n", 1603 __func__, port->number, parport); 1604 return; 1605 } 1606 1607 if (parport_claim(pprt)) { 1608 pr_err("could not claim access to parport%d. Aborting.\n", 1609 parport); 1610 goto err_unreg_device; 1611 } 1612 1613 /* must init LCD first, just in case an IRQ from the keypad is 1614 * generated at keypad init 1615 */ 1616 if (lcd.enabled) { 1617 lcd_init(); 1618 if (!lcd.charlcd || charlcd_register(lcd.charlcd)) 1619 goto err_unreg_device; 1620 } 1621 1622 if (keypad.enabled) { 1623 keypad_init(); 1624 if (misc_register(&keypad_dev)) 1625 goto err_lcd_unreg; 1626 } 1627 return; 1628 1629 err_lcd_unreg: 1630 if (scan_timer.function) 1631 del_timer_sync(&scan_timer); 1632 if (lcd.enabled) 1633 charlcd_unregister(lcd.charlcd); 1634 err_unreg_device: 1635 kfree(lcd.charlcd); 1636 lcd.charlcd = NULL; 1637 parport_unregister_device(pprt); 1638 pprt = NULL; 1639 } 1640 1641 static void panel_detach(struct parport *port) 1642 { 1643 if (port->number != parport) 1644 return; 1645 1646 if (!pprt) { 1647 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n", 1648 __func__, port->number, parport); 1649 return; 1650 } 1651 if (scan_timer.function) 1652 del_timer_sync(&scan_timer); 1653 1654 if (keypad.enabled) { 1655 misc_deregister(&keypad_dev); 1656 keypad_initialized = 0; 1657 } 1658 1659 if (lcd.enabled) { 1660 charlcd_unregister(lcd.charlcd); 1661 lcd.initialized = false; 1662 kfree(lcd.charlcd->drvdata); 1663 kfree(lcd.charlcd); 1664 lcd.charlcd = NULL; 1665 } 1666 1667 /* TODO: free all input signals */ 1668 parport_release(pprt); 1669 parport_unregister_device(pprt); 1670 pprt = NULL; 1671 } 1672 1673 static struct parport_driver panel_driver = { 1674 .name = "panel", 1675 .match_port = panel_attach, 1676 .detach = panel_detach, 1677 .devmodel = true, 1678 }; 1679 1680 /* init function */ 1681 static int __init panel_init_module(void) 1682 { 1683 int selected_keypad_type = NOT_SET, err; 1684 1685 /* take care of an eventual profile */ 1686 switch (profile) { 1687 case PANEL_PROFILE_CUSTOM: 1688 /* custom profile */ 1689 selected_keypad_type = DEFAULT_KEYPAD_TYPE; 1690 selected_lcd_type = DEFAULT_LCD_TYPE; 1691 break; 1692 case PANEL_PROFILE_OLD: 1693 /* 8 bits, 2*16, old keypad */ 1694 selected_keypad_type = KEYPAD_TYPE_OLD; 1695 selected_lcd_type = LCD_TYPE_OLD; 1696 1697 /* TODO: This two are a little hacky, sort it out later */ 1698 if (lcd_width == NOT_SET) 1699 lcd_width = 16; 1700 if (lcd_hwidth == NOT_SET) 1701 lcd_hwidth = 16; 1702 break; 1703 case PANEL_PROFILE_NEW: 1704 /* serial, 2*16, new keypad */ 1705 selected_keypad_type = KEYPAD_TYPE_NEW; 1706 selected_lcd_type = LCD_TYPE_KS0074; 1707 break; 1708 case PANEL_PROFILE_HANTRONIX: 1709 /* 8 bits, 2*16 hantronix-like, no keypad */ 1710 selected_keypad_type = KEYPAD_TYPE_NONE; 1711 selected_lcd_type = LCD_TYPE_HANTRONIX; 1712 break; 1713 case PANEL_PROFILE_NEXCOM: 1714 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */ 1715 selected_keypad_type = KEYPAD_TYPE_NEXCOM; 1716 selected_lcd_type = LCD_TYPE_NEXCOM; 1717 break; 1718 case PANEL_PROFILE_LARGE: 1719 /* 8 bits, 2*40, old keypad */ 1720 selected_keypad_type = KEYPAD_TYPE_OLD; 1721 selected_lcd_type = LCD_TYPE_OLD; 1722 break; 1723 } 1724 1725 /* 1726 * Overwrite selection with module param values (both keypad and lcd), 1727 * where the deprecated params have lower prio. 1728 */ 1729 if (keypad_enabled != NOT_SET) 1730 selected_keypad_type = keypad_enabled; 1731 if (keypad_type != NOT_SET) 1732 selected_keypad_type = keypad_type; 1733 1734 keypad.enabled = (selected_keypad_type > 0); 1735 1736 if (lcd_enabled != NOT_SET) 1737 selected_lcd_type = lcd_enabled; 1738 if (lcd_type != NOT_SET) 1739 selected_lcd_type = lcd_type; 1740 1741 lcd.enabled = (selected_lcd_type > 0); 1742 1743 if (lcd.enabled) { 1744 /* 1745 * Init lcd struct with load-time values to preserve exact 1746 * current functionality (at least for now). 1747 */ 1748 lcd.charset = lcd_charset; 1749 lcd.proto = lcd_proto; 1750 lcd.pins.e = lcd_e_pin; 1751 lcd.pins.rs = lcd_rs_pin; 1752 lcd.pins.rw = lcd_rw_pin; 1753 lcd.pins.cl = lcd_cl_pin; 1754 lcd.pins.da = lcd_da_pin; 1755 lcd.pins.bl = lcd_bl_pin; 1756 } 1757 1758 switch (selected_keypad_type) { 1759 case KEYPAD_TYPE_OLD: 1760 keypad_profile = old_keypad_profile; 1761 break; 1762 case KEYPAD_TYPE_NEW: 1763 keypad_profile = new_keypad_profile; 1764 break; 1765 case KEYPAD_TYPE_NEXCOM: 1766 keypad_profile = nexcom_keypad_profile; 1767 break; 1768 default: 1769 keypad_profile = NULL; 1770 break; 1771 } 1772 1773 if (!lcd.enabled && !keypad.enabled) { 1774 /* no device enabled, let's exit */ 1775 pr_err("panel driver disabled.\n"); 1776 return -ENODEV; 1777 } 1778 1779 err = parport_register_driver(&panel_driver); 1780 if (err) { 1781 pr_err("could not register with parport. Aborting.\n"); 1782 return err; 1783 } 1784 1785 if (pprt) 1786 pr_info("panel driver registered on parport%d (io=0x%lx).\n", 1787 parport, pprt->port->base); 1788 else 1789 pr_info("panel driver not yet registered\n"); 1790 return 0; 1791 } 1792 1793 static void __exit panel_cleanup_module(void) 1794 { 1795 parport_unregister_driver(&panel_driver); 1796 } 1797 1798 module_init(panel_init_module); 1799 module_exit(panel_cleanup_module); 1800 MODULE_AUTHOR("Willy Tarreau"); 1801 MODULE_LICENSE("GPL"); 1802 1803 /* 1804 * Local variables: 1805 * c-indent-level: 4 1806 * tab-width: 8 1807 * End: 1808 */ 1809