1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Front panel driver for Linux 4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu> 5 * Copyright (C) 2016-2017 Glider bvba 6 * 7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad) 8 * connected to a parallel printer port. 9 * 10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit 11 * serial module compatible with Samsung's KS0074. The pins may be connected in 12 * any combination, everything is programmable. 13 * 14 * The keypad consists in a matrix of push buttons connecting input pins to 15 * data output pins or to the ground. The combinations have to be hard-coded 16 * in the driver, though several profiles exist and adding new ones is easy. 17 * 18 * Several profiles are provided for commonly found LCD+keypad modules on the 19 * market, such as those found in Nexcom's appliances. 20 * 21 * FIXME: 22 * - the initialization/deinitialization process is very dirty and should 23 * be rewritten. It may even be buggy. 24 * 25 * TODO: 26 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs) 27 * - make the LCD a part of a virtual screen of Vx*Vy 28 * - make the inputs list smp-safe 29 * - change the keyboard to a double mapping : signals -> key_id -> values 30 * so that applications can change values without knowing signals 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/module.h> 37 38 #include <linux/types.h> 39 #include <linux/errno.h> 40 #include <linux/signal.h> 41 #include <linux/sched.h> 42 #include <linux/spinlock.h> 43 #include <linux/interrupt.h> 44 #include <linux/miscdevice.h> 45 #include <linux/slab.h> 46 #include <linux/ioport.h> 47 #include <linux/fcntl.h> 48 #include <linux/init.h> 49 #include <linux/delay.h> 50 #include <linux/kernel.h> 51 #include <linux/ctype.h> 52 #include <linux/parport.h> 53 #include <linux/list.h> 54 55 #include <linux/io.h> 56 #include <linux/uaccess.h> 57 58 #include "charlcd.h" 59 60 #define LCD_MAXBYTES 256 /* max burst write */ 61 62 #define KEYPAD_BUFFER 64 63 64 /* poll the keyboard this every second */ 65 #define INPUT_POLL_TIME (HZ / 50) 66 /* a key starts to repeat after this times INPUT_POLL_TIME */ 67 #define KEYPAD_REP_START (10) 68 /* a key repeats this times INPUT_POLL_TIME */ 69 #define KEYPAD_REP_DELAY (2) 70 71 /* converts an r_str() input to an active high, bits string : 000BAOSE */ 72 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3) 73 74 #define PNL_PBUSY 0x80 /* inverted input, active low */ 75 #define PNL_PACK 0x40 /* direct input, active low */ 76 #define PNL_POUTPA 0x20 /* direct input, active high */ 77 #define PNL_PSELECD 0x10 /* direct input, active high */ 78 #define PNL_PERRORP 0x08 /* direct input, active low */ 79 80 #define PNL_PBIDIR 0x20 /* bi-directional ports */ 81 /* high to read data in or-ed with data out */ 82 #define PNL_PINTEN 0x10 83 #define PNL_PSELECP 0x08 /* inverted output, active low */ 84 #define PNL_PINITP 0x04 /* direct output, active low */ 85 #define PNL_PAUTOLF 0x02 /* inverted output, active low */ 86 #define PNL_PSTROBE 0x01 /* inverted output */ 87 88 #define PNL_PD0 0x01 89 #define PNL_PD1 0x02 90 #define PNL_PD2 0x04 91 #define PNL_PD3 0x08 92 #define PNL_PD4 0x10 93 #define PNL_PD5 0x20 94 #define PNL_PD6 0x40 95 #define PNL_PD7 0x80 96 97 #define PIN_NONE 0 98 #define PIN_STROBE 1 99 #define PIN_D0 2 100 #define PIN_D1 3 101 #define PIN_D2 4 102 #define PIN_D3 5 103 #define PIN_D4 6 104 #define PIN_D5 7 105 #define PIN_D6 8 106 #define PIN_D7 9 107 #define PIN_AUTOLF 14 108 #define PIN_INITP 16 109 #define PIN_SELECP 17 110 #define PIN_NOT_SET 127 111 112 #define NOT_SET -1 113 114 /* macros to simplify use of the parallel port */ 115 #define r_ctr(x) (parport_read_control((x)->port)) 116 #define r_dtr(x) (parport_read_data((x)->port)) 117 #define r_str(x) (parport_read_status((x)->port)) 118 #define w_ctr(x, y) (parport_write_control((x)->port, (y))) 119 #define w_dtr(x, y) (parport_write_data((x)->port, (y))) 120 121 /* this defines which bits are to be used and which ones to be ignored */ 122 /* logical or of the output bits involved in the scan matrix */ 123 static __u8 scan_mask_o; 124 /* logical or of the input bits involved in the scan matrix */ 125 static __u8 scan_mask_i; 126 127 enum input_type { 128 INPUT_TYPE_STD, 129 INPUT_TYPE_KBD, 130 }; 131 132 enum input_state { 133 INPUT_ST_LOW, 134 INPUT_ST_RISING, 135 INPUT_ST_HIGH, 136 INPUT_ST_FALLING, 137 }; 138 139 struct logical_input { 140 struct list_head list; 141 __u64 mask; 142 __u64 value; 143 enum input_type type; 144 enum input_state state; 145 __u8 rise_time, fall_time; 146 __u8 rise_timer, fall_timer, high_timer; 147 148 union { 149 struct { /* valid when type == INPUT_TYPE_STD */ 150 void (*press_fct)(int); 151 void (*release_fct)(int); 152 int press_data; 153 int release_data; 154 } std; 155 struct { /* valid when type == INPUT_TYPE_KBD */ 156 char press_str[sizeof(void *) + sizeof(int)] __nonstring; 157 char repeat_str[sizeof(void *) + sizeof(int)] __nonstring; 158 char release_str[sizeof(void *) + sizeof(int)] __nonstring; 159 } kbd; 160 } u; 161 }; 162 163 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */ 164 165 /* physical contacts history 166 * Physical contacts are a 45 bits string of 9 groups of 5 bits each. 167 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group 168 * corresponds to the ground. 169 * Within each group, bits are stored in the same order as read on the port : 170 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0). 171 * So, each __u64 is represented like this : 172 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE 173 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00> 174 */ 175 176 /* what has just been read from the I/O ports */ 177 static __u64 phys_read; 178 /* previous phys_read */ 179 static __u64 phys_read_prev; 180 /* stabilized phys_read (phys_read|phys_read_prev) */ 181 static __u64 phys_curr; 182 /* previous phys_curr */ 183 static __u64 phys_prev; 184 /* 0 means that at least one logical signal needs be computed */ 185 static char inputs_stable; 186 187 /* these variables are specific to the keypad */ 188 static struct { 189 bool enabled; 190 } keypad; 191 192 static char keypad_buffer[KEYPAD_BUFFER]; 193 static int keypad_buflen; 194 static int keypad_start; 195 static char keypressed; 196 static wait_queue_head_t keypad_read_wait; 197 198 /* lcd-specific variables */ 199 static struct { 200 bool enabled; 201 bool initialized; 202 203 int charset; 204 int proto; 205 206 /* TODO: use union here? */ 207 struct { 208 int e; 209 int rs; 210 int rw; 211 int cl; 212 int da; 213 int bl; 214 } pins; 215 216 struct charlcd *charlcd; 217 } lcd; 218 219 /* Needed only for init */ 220 static int selected_lcd_type = NOT_SET; 221 222 /* 223 * Bit masks to convert LCD signals to parallel port outputs. 224 * _d_ are values for data port, _c_ are for control port. 225 * [0] = signal OFF, [1] = signal ON, [2] = mask 226 */ 227 #define BIT_CLR 0 228 #define BIT_SET 1 229 #define BIT_MSK 2 230 #define BIT_STATES 3 231 /* 232 * one entry for each bit on the LCD 233 */ 234 #define LCD_BIT_E 0 235 #define LCD_BIT_RS 1 236 #define LCD_BIT_RW 2 237 #define LCD_BIT_BL 3 238 #define LCD_BIT_CL 4 239 #define LCD_BIT_DA 5 240 #define LCD_BITS 6 241 242 /* 243 * each bit can be either connected to a DATA or CTRL port 244 */ 245 #define LCD_PORT_C 0 246 #define LCD_PORT_D 1 247 #define LCD_PORTS 2 248 249 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES]; 250 251 /* 252 * LCD protocols 253 */ 254 #define LCD_PROTO_PARALLEL 0 255 #define LCD_PROTO_SERIAL 1 256 #define LCD_PROTO_TI_DA8XX_LCD 2 257 258 /* 259 * LCD character sets 260 */ 261 #define LCD_CHARSET_NORMAL 0 262 #define LCD_CHARSET_KS0074 1 263 264 /* 265 * LCD types 266 */ 267 #define LCD_TYPE_NONE 0 268 #define LCD_TYPE_CUSTOM 1 269 #define LCD_TYPE_OLD 2 270 #define LCD_TYPE_KS0074 3 271 #define LCD_TYPE_HANTRONIX 4 272 #define LCD_TYPE_NEXCOM 5 273 274 /* 275 * keypad types 276 */ 277 #define KEYPAD_TYPE_NONE 0 278 #define KEYPAD_TYPE_OLD 1 279 #define KEYPAD_TYPE_NEW 2 280 #define KEYPAD_TYPE_NEXCOM 3 281 282 /* 283 * panel profiles 284 */ 285 #define PANEL_PROFILE_CUSTOM 0 286 #define PANEL_PROFILE_OLD 1 287 #define PANEL_PROFILE_NEW 2 288 #define PANEL_PROFILE_HANTRONIX 3 289 #define PANEL_PROFILE_NEXCOM 4 290 #define PANEL_PROFILE_LARGE 5 291 292 /* 293 * Construct custom config from the kernel's configuration 294 */ 295 #define DEFAULT_PARPORT 0 296 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE 297 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD 298 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD 299 #define DEFAULT_LCD_HEIGHT 2 300 #define DEFAULT_LCD_WIDTH 40 301 #define DEFAULT_LCD_BWIDTH 40 302 #define DEFAULT_LCD_HWIDTH 64 303 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL 304 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL 305 306 #define DEFAULT_LCD_PIN_E PIN_AUTOLF 307 #define DEFAULT_LCD_PIN_RS PIN_SELECP 308 #define DEFAULT_LCD_PIN_RW PIN_INITP 309 #define DEFAULT_LCD_PIN_SCL PIN_STROBE 310 #define DEFAULT_LCD_PIN_SDA PIN_D0 311 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET 312 313 #ifdef CONFIG_PANEL_PARPORT 314 #undef DEFAULT_PARPORT 315 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT 316 #endif 317 318 #ifdef CONFIG_PANEL_PROFILE 319 #undef DEFAULT_PROFILE 320 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE 321 #endif 322 323 #if DEFAULT_PROFILE == 0 /* custom */ 324 #ifdef CONFIG_PANEL_KEYPAD 325 #undef DEFAULT_KEYPAD_TYPE 326 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD 327 #endif 328 329 #ifdef CONFIG_PANEL_LCD 330 #undef DEFAULT_LCD_TYPE 331 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD 332 #endif 333 334 #ifdef CONFIG_PANEL_LCD_HEIGHT 335 #undef DEFAULT_LCD_HEIGHT 336 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT 337 #endif 338 339 #ifdef CONFIG_PANEL_LCD_WIDTH 340 #undef DEFAULT_LCD_WIDTH 341 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH 342 #endif 343 344 #ifdef CONFIG_PANEL_LCD_BWIDTH 345 #undef DEFAULT_LCD_BWIDTH 346 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH 347 #endif 348 349 #ifdef CONFIG_PANEL_LCD_HWIDTH 350 #undef DEFAULT_LCD_HWIDTH 351 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH 352 #endif 353 354 #ifdef CONFIG_PANEL_LCD_CHARSET 355 #undef DEFAULT_LCD_CHARSET 356 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET 357 #endif 358 359 #ifdef CONFIG_PANEL_LCD_PROTO 360 #undef DEFAULT_LCD_PROTO 361 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO 362 #endif 363 364 #ifdef CONFIG_PANEL_LCD_PIN_E 365 #undef DEFAULT_LCD_PIN_E 366 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E 367 #endif 368 369 #ifdef CONFIG_PANEL_LCD_PIN_RS 370 #undef DEFAULT_LCD_PIN_RS 371 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS 372 #endif 373 374 #ifdef CONFIG_PANEL_LCD_PIN_RW 375 #undef DEFAULT_LCD_PIN_RW 376 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW 377 #endif 378 379 #ifdef CONFIG_PANEL_LCD_PIN_SCL 380 #undef DEFAULT_LCD_PIN_SCL 381 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL 382 #endif 383 384 #ifdef CONFIG_PANEL_LCD_PIN_SDA 385 #undef DEFAULT_LCD_PIN_SDA 386 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA 387 #endif 388 389 #ifdef CONFIG_PANEL_LCD_PIN_BL 390 #undef DEFAULT_LCD_PIN_BL 391 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL 392 #endif 393 394 #endif /* DEFAULT_PROFILE == 0 */ 395 396 /* global variables */ 397 398 /* Device single-open policy control */ 399 static atomic_t keypad_available = ATOMIC_INIT(1); 400 401 static struct pardevice *pprt; 402 403 static int keypad_initialized; 404 405 static DEFINE_SPINLOCK(pprt_lock); 406 static struct timer_list scan_timer; 407 408 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver"); 409 410 static int parport = DEFAULT_PARPORT; 411 module_param(parport, int, 0000); 412 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)"); 413 414 static int profile = DEFAULT_PROFILE; 415 module_param(profile, int, 0000); 416 MODULE_PARM_DESC(profile, 417 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; " 418 "4=16x2 nexcom; default=40x2, old kp"); 419 420 static int keypad_type = NOT_SET; 421 module_param(keypad_type, int, 0000); 422 MODULE_PARM_DESC(keypad_type, 423 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys"); 424 425 static int lcd_type = NOT_SET; 426 module_param(lcd_type, int, 0000); 427 MODULE_PARM_DESC(lcd_type, 428 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom"); 429 430 static int lcd_height = NOT_SET; 431 module_param(lcd_height, int, 0000); 432 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD"); 433 434 static int lcd_width = NOT_SET; 435 module_param(lcd_width, int, 0000); 436 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD"); 437 438 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */ 439 module_param(lcd_bwidth, int, 0000); 440 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)"); 441 442 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */ 443 module_param(lcd_hwidth, int, 0000); 444 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)"); 445 446 static int lcd_charset = NOT_SET; 447 module_param(lcd_charset, int, 0000); 448 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074"); 449 450 static int lcd_proto = NOT_SET; 451 module_param(lcd_proto, int, 0000); 452 MODULE_PARM_DESC(lcd_proto, 453 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface"); 454 455 /* 456 * These are the parallel port pins the LCD control signals are connected to. 457 * Set this to 0 if the signal is not used. Set it to its opposite value 458 * (negative) if the signal is negated. -MAXINT is used to indicate that the 459 * pin has not been explicitly specified. 460 * 461 * WARNING! no check will be performed about collisions with keypad ! 462 */ 463 464 static int lcd_e_pin = PIN_NOT_SET; 465 module_param(lcd_e_pin, int, 0000); 466 MODULE_PARM_DESC(lcd_e_pin, 467 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)"); 468 469 static int lcd_rs_pin = PIN_NOT_SET; 470 module_param(lcd_rs_pin, int, 0000); 471 MODULE_PARM_DESC(lcd_rs_pin, 472 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)"); 473 474 static int lcd_rw_pin = PIN_NOT_SET; 475 module_param(lcd_rw_pin, int, 0000); 476 MODULE_PARM_DESC(lcd_rw_pin, 477 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)"); 478 479 static int lcd_cl_pin = PIN_NOT_SET; 480 module_param(lcd_cl_pin, int, 0000); 481 MODULE_PARM_DESC(lcd_cl_pin, 482 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)"); 483 484 static int lcd_da_pin = PIN_NOT_SET; 485 module_param(lcd_da_pin, int, 0000); 486 MODULE_PARM_DESC(lcd_da_pin, 487 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)"); 488 489 static int lcd_bl_pin = PIN_NOT_SET; 490 module_param(lcd_bl_pin, int, 0000); 491 MODULE_PARM_DESC(lcd_bl_pin, 492 "# of the // port pin connected to LCD backlight, with polarity (-17..17)"); 493 494 /* Deprecated module parameters - consider not using them anymore */ 495 496 static int lcd_enabled = NOT_SET; 497 module_param(lcd_enabled, int, 0000); 498 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead"); 499 500 static int keypad_enabled = NOT_SET; 501 module_param(keypad_enabled, int, 0000); 502 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead"); 503 504 /* for some LCD drivers (ks0074) we need a charset conversion table. */ 505 static const unsigned char lcd_char_conv_ks0074[256] = { 506 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */ 507 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 508 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 509 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 510 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 511 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27, 512 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 513 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 514 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 515 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 516 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 517 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 518 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4, 519 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 520 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 521 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 522 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20, 523 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 524 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 525 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 526 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 527 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f, 528 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96, 529 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd, 530 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60, 531 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9, 532 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3, 533 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78, 534 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe, 535 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8, 536 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69, 537 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25, 538 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79, 539 }; 540 541 static const char old_keypad_profile[][4][9] = { 542 {"S0", "Left\n", "Left\n", ""}, 543 {"S1", "Down\n", "Down\n", ""}, 544 {"S2", "Up\n", "Up\n", ""}, 545 {"S3", "Right\n", "Right\n", ""}, 546 {"S4", "Esc\n", "Esc\n", ""}, 547 {"S5", "Ret\n", "Ret\n", ""}, 548 {"", "", "", ""} 549 }; 550 551 /* signals, press, repeat, release */ 552 static const char new_keypad_profile[][4][9] = { 553 {"S0", "Left\n", "Left\n", ""}, 554 {"S1", "Down\n", "Down\n", ""}, 555 {"S2", "Up\n", "Up\n", ""}, 556 {"S3", "Right\n", "Right\n", ""}, 557 {"S4s5", "", "Esc\n", "Esc\n"}, 558 {"s4S5", "", "Ret\n", "Ret\n"}, 559 {"S4S5", "Help\n", "", ""}, 560 /* add new signals above this line */ 561 {"", "", "", ""} 562 }; 563 564 /* signals, press, repeat, release */ 565 static const char nexcom_keypad_profile[][4][9] = { 566 {"a-p-e-", "Down\n", "Down\n", ""}, 567 {"a-p-E-", "Ret\n", "Ret\n", ""}, 568 {"a-P-E-", "Esc\n", "Esc\n", ""}, 569 {"a-P-e-", "Up\n", "Up\n", ""}, 570 /* add new signals above this line */ 571 {"", "", "", ""} 572 }; 573 574 static const char (*keypad_profile)[4][9] = old_keypad_profile; 575 576 static DECLARE_BITMAP(bits, LCD_BITS); 577 578 static void lcd_get_bits(unsigned int port, int *val) 579 { 580 unsigned int bit, state; 581 582 for (bit = 0; bit < LCD_BITS; bit++) { 583 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR; 584 *val &= lcd_bits[port][bit][BIT_MSK]; 585 *val |= lcd_bits[port][bit][state]; 586 } 587 } 588 589 /* sets data port bits according to current signals values */ 590 static int set_data_bits(void) 591 { 592 int val; 593 594 val = r_dtr(pprt); 595 lcd_get_bits(LCD_PORT_D, &val); 596 w_dtr(pprt, val); 597 return val; 598 } 599 600 /* sets ctrl port bits according to current signals values */ 601 static int set_ctrl_bits(void) 602 { 603 int val; 604 605 val = r_ctr(pprt); 606 lcd_get_bits(LCD_PORT_C, &val); 607 w_ctr(pprt, val); 608 return val; 609 } 610 611 /* sets ctrl & data port bits according to current signals values */ 612 static void panel_set_bits(void) 613 { 614 set_data_bits(); 615 set_ctrl_bits(); 616 } 617 618 /* 619 * Converts a parallel port pin (from -25 to 25) to data and control ports 620 * masks, and data and control port bits. The signal will be considered 621 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25). 622 * 623 * Result will be used this way : 624 * out(dport, in(dport) & d_val[2] | d_val[signal_state]) 625 * out(cport, in(cport) & c_val[2] | c_val[signal_state]) 626 */ 627 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val) 628 { 629 int d_bit, c_bit, inv; 630 631 d_val[0] = 0; 632 c_val[0] = 0; 633 d_val[1] = 0; 634 c_val[1] = 0; 635 d_val[2] = 0xFF; 636 c_val[2] = 0xFF; 637 638 if (pin == 0) 639 return; 640 641 inv = (pin < 0); 642 if (inv) 643 pin = -pin; 644 645 d_bit = 0; 646 c_bit = 0; 647 648 switch (pin) { 649 case PIN_STROBE: /* strobe, inverted */ 650 c_bit = PNL_PSTROBE; 651 inv = !inv; 652 break; 653 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */ 654 d_bit = 1 << (pin - 2); 655 break; 656 case PIN_AUTOLF: /* autofeed, inverted */ 657 c_bit = PNL_PAUTOLF; 658 inv = !inv; 659 break; 660 case PIN_INITP: /* init, direct */ 661 c_bit = PNL_PINITP; 662 break; 663 case PIN_SELECP: /* select_in, inverted */ 664 c_bit = PNL_PSELECP; 665 inv = !inv; 666 break; 667 default: /* unknown pin, ignore */ 668 break; 669 } 670 671 if (c_bit) { 672 c_val[2] &= ~c_bit; 673 c_val[!inv] = c_bit; 674 } else if (d_bit) { 675 d_val[2] &= ~d_bit; 676 d_val[!inv] = d_bit; 677 } 678 } 679 680 /* 681 * send a serial byte to the LCD panel. The caller is responsible for locking 682 * if needed. 683 */ 684 static void lcd_send_serial(int byte) 685 { 686 int bit; 687 688 /* 689 * the data bit is set on D0, and the clock on STROBE. 690 * LCD reads D0 on STROBE's rising edge. 691 */ 692 for (bit = 0; bit < 8; bit++) { 693 clear_bit(LCD_BIT_CL, bits); /* CLK low */ 694 panel_set_bits(); 695 if (byte & 1) { 696 set_bit(LCD_BIT_DA, bits); 697 } else { 698 clear_bit(LCD_BIT_DA, bits); 699 } 700 701 panel_set_bits(); 702 udelay(2); /* maintain the data during 2 us before CLK up */ 703 set_bit(LCD_BIT_CL, bits); /* CLK high */ 704 panel_set_bits(); 705 udelay(1); /* maintain the strobe during 1 us */ 706 byte >>= 1; 707 } 708 } 709 710 /* turn the backlight on or off */ 711 static void lcd_backlight(struct charlcd *charlcd, int on) 712 { 713 if (lcd.pins.bl == PIN_NONE) 714 return; 715 716 /* The backlight is activated by setting the AUTOFEED line to +5V */ 717 spin_lock_irq(&pprt_lock); 718 if (on) 719 set_bit(LCD_BIT_BL, bits); 720 else 721 clear_bit(LCD_BIT_BL, bits); 722 panel_set_bits(); 723 spin_unlock_irq(&pprt_lock); 724 } 725 726 /* send a command to the LCD panel in serial mode */ 727 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd) 728 { 729 spin_lock_irq(&pprt_lock); 730 lcd_send_serial(0x1F); /* R/W=W, RS=0 */ 731 lcd_send_serial(cmd & 0x0F); 732 lcd_send_serial((cmd >> 4) & 0x0F); 733 udelay(40); /* the shortest command takes at least 40 us */ 734 spin_unlock_irq(&pprt_lock); 735 } 736 737 /* send data to the LCD panel in serial mode */ 738 static void lcd_write_data_s(struct charlcd *charlcd, int data) 739 { 740 spin_lock_irq(&pprt_lock); 741 lcd_send_serial(0x5F); /* R/W=W, RS=1 */ 742 lcd_send_serial(data & 0x0F); 743 lcd_send_serial((data >> 4) & 0x0F); 744 udelay(40); /* the shortest data takes at least 40 us */ 745 spin_unlock_irq(&pprt_lock); 746 } 747 748 /* send a command to the LCD panel in 8 bits parallel mode */ 749 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd) 750 { 751 spin_lock_irq(&pprt_lock); 752 /* present the data to the data port */ 753 w_dtr(pprt, cmd); 754 udelay(20); /* maintain the data during 20 us before the strobe */ 755 756 set_bit(LCD_BIT_E, bits); 757 clear_bit(LCD_BIT_RS, bits); 758 clear_bit(LCD_BIT_RW, bits); 759 set_ctrl_bits(); 760 761 udelay(40); /* maintain the strobe during 40 us */ 762 763 clear_bit(LCD_BIT_E, bits); 764 set_ctrl_bits(); 765 766 udelay(120); /* the shortest command takes at least 120 us */ 767 spin_unlock_irq(&pprt_lock); 768 } 769 770 /* send data to the LCD panel in 8 bits parallel mode */ 771 static void lcd_write_data_p8(struct charlcd *charlcd, int data) 772 { 773 spin_lock_irq(&pprt_lock); 774 /* present the data to the data port */ 775 w_dtr(pprt, data); 776 udelay(20); /* maintain the data during 20 us before the strobe */ 777 778 set_bit(LCD_BIT_E, bits); 779 set_bit(LCD_BIT_RS, bits); 780 clear_bit(LCD_BIT_RW, bits); 781 set_ctrl_bits(); 782 783 udelay(40); /* maintain the strobe during 40 us */ 784 785 clear_bit(LCD_BIT_E, bits); 786 set_ctrl_bits(); 787 788 udelay(45); /* the shortest data takes at least 45 us */ 789 spin_unlock_irq(&pprt_lock); 790 } 791 792 /* send a command to the TI LCD panel */ 793 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd) 794 { 795 spin_lock_irq(&pprt_lock); 796 /* present the data to the control port */ 797 w_ctr(pprt, cmd); 798 udelay(60); 799 spin_unlock_irq(&pprt_lock); 800 } 801 802 /* send data to the TI LCD panel */ 803 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data) 804 { 805 spin_lock_irq(&pprt_lock); 806 /* present the data to the data port */ 807 w_dtr(pprt, data); 808 udelay(60); 809 spin_unlock_irq(&pprt_lock); 810 } 811 812 /* fills the display with spaces and resets X/Y */ 813 static void lcd_clear_fast_s(struct charlcd *charlcd) 814 { 815 int pos; 816 817 spin_lock_irq(&pprt_lock); 818 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) { 819 lcd_send_serial(0x5F); /* R/W=W, RS=1 */ 820 lcd_send_serial(' ' & 0x0F); 821 lcd_send_serial((' ' >> 4) & 0x0F); 822 /* the shortest data takes at least 40 us */ 823 udelay(40); 824 } 825 spin_unlock_irq(&pprt_lock); 826 } 827 828 /* fills the display with spaces and resets X/Y */ 829 static void lcd_clear_fast_p8(struct charlcd *charlcd) 830 { 831 int pos; 832 833 spin_lock_irq(&pprt_lock); 834 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) { 835 /* present the data to the data port */ 836 w_dtr(pprt, ' '); 837 838 /* maintain the data during 20 us before the strobe */ 839 udelay(20); 840 841 set_bit(LCD_BIT_E, bits); 842 set_bit(LCD_BIT_RS, bits); 843 clear_bit(LCD_BIT_RW, bits); 844 set_ctrl_bits(); 845 846 /* maintain the strobe during 40 us */ 847 udelay(40); 848 849 clear_bit(LCD_BIT_E, bits); 850 set_ctrl_bits(); 851 852 /* the shortest data takes at least 45 us */ 853 udelay(45); 854 } 855 spin_unlock_irq(&pprt_lock); 856 } 857 858 /* fills the display with spaces and resets X/Y */ 859 static void lcd_clear_fast_tilcd(struct charlcd *charlcd) 860 { 861 int pos; 862 863 spin_lock_irq(&pprt_lock); 864 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) { 865 /* present the data to the data port */ 866 w_dtr(pprt, ' '); 867 udelay(60); 868 } 869 870 spin_unlock_irq(&pprt_lock); 871 } 872 873 static const struct charlcd_ops charlcd_serial_ops = { 874 .write_cmd = lcd_write_cmd_s, 875 .write_data = lcd_write_data_s, 876 .clear_fast = lcd_clear_fast_s, 877 .backlight = lcd_backlight, 878 }; 879 880 static const struct charlcd_ops charlcd_parallel_ops = { 881 .write_cmd = lcd_write_cmd_p8, 882 .write_data = lcd_write_data_p8, 883 .clear_fast = lcd_clear_fast_p8, 884 .backlight = lcd_backlight, 885 }; 886 887 static const struct charlcd_ops charlcd_tilcd_ops = { 888 .write_cmd = lcd_write_cmd_tilcd, 889 .write_data = lcd_write_data_tilcd, 890 .clear_fast = lcd_clear_fast_tilcd, 891 .backlight = lcd_backlight, 892 }; 893 894 /* initialize the LCD driver */ 895 static void lcd_init(void) 896 { 897 struct charlcd *charlcd; 898 899 charlcd = charlcd_alloc(0); 900 if (!charlcd) 901 return; 902 903 /* 904 * Init lcd struct with load-time values to preserve exact 905 * current functionality (at least for now). 906 */ 907 charlcd->height = lcd_height; 908 charlcd->width = lcd_width; 909 charlcd->bwidth = lcd_bwidth; 910 charlcd->hwidth = lcd_hwidth; 911 912 switch (selected_lcd_type) { 913 case LCD_TYPE_OLD: 914 /* parallel mode, 8 bits */ 915 lcd.proto = LCD_PROTO_PARALLEL; 916 lcd.charset = LCD_CHARSET_NORMAL; 917 lcd.pins.e = PIN_STROBE; 918 lcd.pins.rs = PIN_AUTOLF; 919 920 charlcd->width = 40; 921 charlcd->bwidth = 40; 922 charlcd->hwidth = 64; 923 charlcd->height = 2; 924 break; 925 case LCD_TYPE_KS0074: 926 /* serial mode, ks0074 */ 927 lcd.proto = LCD_PROTO_SERIAL; 928 lcd.charset = LCD_CHARSET_KS0074; 929 lcd.pins.bl = PIN_AUTOLF; 930 lcd.pins.cl = PIN_STROBE; 931 lcd.pins.da = PIN_D0; 932 933 charlcd->width = 16; 934 charlcd->bwidth = 40; 935 charlcd->hwidth = 16; 936 charlcd->height = 2; 937 break; 938 case LCD_TYPE_NEXCOM: 939 /* parallel mode, 8 bits, generic */ 940 lcd.proto = LCD_PROTO_PARALLEL; 941 lcd.charset = LCD_CHARSET_NORMAL; 942 lcd.pins.e = PIN_AUTOLF; 943 lcd.pins.rs = PIN_SELECP; 944 lcd.pins.rw = PIN_INITP; 945 946 charlcd->width = 16; 947 charlcd->bwidth = 40; 948 charlcd->hwidth = 64; 949 charlcd->height = 2; 950 break; 951 case LCD_TYPE_CUSTOM: 952 /* customer-defined */ 953 lcd.proto = DEFAULT_LCD_PROTO; 954 lcd.charset = DEFAULT_LCD_CHARSET; 955 /* default geometry will be set later */ 956 break; 957 case LCD_TYPE_HANTRONIX: 958 /* parallel mode, 8 bits, hantronix-like */ 959 default: 960 lcd.proto = LCD_PROTO_PARALLEL; 961 lcd.charset = LCD_CHARSET_NORMAL; 962 lcd.pins.e = PIN_STROBE; 963 lcd.pins.rs = PIN_SELECP; 964 965 charlcd->width = 16; 966 charlcd->bwidth = 40; 967 charlcd->hwidth = 64; 968 charlcd->height = 2; 969 break; 970 } 971 972 /* Overwrite with module params set on loading */ 973 if (lcd_height != NOT_SET) 974 charlcd->height = lcd_height; 975 if (lcd_width != NOT_SET) 976 charlcd->width = lcd_width; 977 if (lcd_bwidth != NOT_SET) 978 charlcd->bwidth = lcd_bwidth; 979 if (lcd_hwidth != NOT_SET) 980 charlcd->hwidth = lcd_hwidth; 981 if (lcd_charset != NOT_SET) 982 lcd.charset = lcd_charset; 983 if (lcd_proto != NOT_SET) 984 lcd.proto = lcd_proto; 985 if (lcd_e_pin != PIN_NOT_SET) 986 lcd.pins.e = lcd_e_pin; 987 if (lcd_rs_pin != PIN_NOT_SET) 988 lcd.pins.rs = lcd_rs_pin; 989 if (lcd_rw_pin != PIN_NOT_SET) 990 lcd.pins.rw = lcd_rw_pin; 991 if (lcd_cl_pin != PIN_NOT_SET) 992 lcd.pins.cl = lcd_cl_pin; 993 if (lcd_da_pin != PIN_NOT_SET) 994 lcd.pins.da = lcd_da_pin; 995 if (lcd_bl_pin != PIN_NOT_SET) 996 lcd.pins.bl = lcd_bl_pin; 997 998 /* this is used to catch wrong and default values */ 999 if (charlcd->width <= 0) 1000 charlcd->width = DEFAULT_LCD_WIDTH; 1001 if (charlcd->bwidth <= 0) 1002 charlcd->bwidth = DEFAULT_LCD_BWIDTH; 1003 if (charlcd->hwidth <= 0) 1004 charlcd->hwidth = DEFAULT_LCD_HWIDTH; 1005 if (charlcd->height <= 0) 1006 charlcd->height = DEFAULT_LCD_HEIGHT; 1007 1008 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */ 1009 charlcd->ops = &charlcd_serial_ops; 1010 1011 if (lcd.pins.cl == PIN_NOT_SET) 1012 lcd.pins.cl = DEFAULT_LCD_PIN_SCL; 1013 if (lcd.pins.da == PIN_NOT_SET) 1014 lcd.pins.da = DEFAULT_LCD_PIN_SDA; 1015 1016 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */ 1017 charlcd->ops = &charlcd_parallel_ops; 1018 1019 if (lcd.pins.e == PIN_NOT_SET) 1020 lcd.pins.e = DEFAULT_LCD_PIN_E; 1021 if (lcd.pins.rs == PIN_NOT_SET) 1022 lcd.pins.rs = DEFAULT_LCD_PIN_RS; 1023 if (lcd.pins.rw == PIN_NOT_SET) 1024 lcd.pins.rw = DEFAULT_LCD_PIN_RW; 1025 } else { 1026 charlcd->ops = &charlcd_tilcd_ops; 1027 } 1028 1029 if (lcd.pins.bl == PIN_NOT_SET) 1030 lcd.pins.bl = DEFAULT_LCD_PIN_BL; 1031 1032 if (lcd.pins.e == PIN_NOT_SET) 1033 lcd.pins.e = PIN_NONE; 1034 if (lcd.pins.rs == PIN_NOT_SET) 1035 lcd.pins.rs = PIN_NONE; 1036 if (lcd.pins.rw == PIN_NOT_SET) 1037 lcd.pins.rw = PIN_NONE; 1038 if (lcd.pins.bl == PIN_NOT_SET) 1039 lcd.pins.bl = PIN_NONE; 1040 if (lcd.pins.cl == PIN_NOT_SET) 1041 lcd.pins.cl = PIN_NONE; 1042 if (lcd.pins.da == PIN_NOT_SET) 1043 lcd.pins.da = PIN_NONE; 1044 1045 if (lcd.charset == NOT_SET) 1046 lcd.charset = DEFAULT_LCD_CHARSET; 1047 1048 if (lcd.charset == LCD_CHARSET_KS0074) 1049 charlcd->char_conv = lcd_char_conv_ks0074; 1050 else 1051 charlcd->char_conv = NULL; 1052 1053 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E], 1054 lcd_bits[LCD_PORT_C][LCD_BIT_E]); 1055 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS], 1056 lcd_bits[LCD_PORT_C][LCD_BIT_RS]); 1057 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW], 1058 lcd_bits[LCD_PORT_C][LCD_BIT_RW]); 1059 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL], 1060 lcd_bits[LCD_PORT_C][LCD_BIT_BL]); 1061 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL], 1062 lcd_bits[LCD_PORT_C][LCD_BIT_CL]); 1063 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA], 1064 lcd_bits[LCD_PORT_C][LCD_BIT_DA]); 1065 1066 lcd.charlcd = charlcd; 1067 lcd.initialized = true; 1068 } 1069 1070 /* 1071 * These are the file operation function for user access to /dev/keypad 1072 */ 1073 1074 static ssize_t keypad_read(struct file *file, 1075 char __user *buf, size_t count, loff_t *ppos) 1076 { 1077 unsigned i = *ppos; 1078 char __user *tmp = buf; 1079 1080 if (keypad_buflen == 0) { 1081 if (file->f_flags & O_NONBLOCK) 1082 return -EAGAIN; 1083 1084 if (wait_event_interruptible(keypad_read_wait, 1085 keypad_buflen != 0)) 1086 return -EINTR; 1087 } 1088 1089 for (; count-- > 0 && (keypad_buflen > 0); 1090 ++i, ++tmp, --keypad_buflen) { 1091 put_user(keypad_buffer[keypad_start], tmp); 1092 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER; 1093 } 1094 *ppos = i; 1095 1096 return tmp - buf; 1097 } 1098 1099 static int keypad_open(struct inode *inode, struct file *file) 1100 { 1101 int ret; 1102 1103 ret = -EBUSY; 1104 if (!atomic_dec_and_test(&keypad_available)) 1105 goto fail; /* open only once at a time */ 1106 1107 ret = -EPERM; 1108 if (file->f_mode & FMODE_WRITE) /* device is read-only */ 1109 goto fail; 1110 1111 keypad_buflen = 0; /* flush the buffer on opening */ 1112 return 0; 1113 fail: 1114 atomic_inc(&keypad_available); 1115 return ret; 1116 } 1117 1118 static int keypad_release(struct inode *inode, struct file *file) 1119 { 1120 atomic_inc(&keypad_available); 1121 return 0; 1122 } 1123 1124 static const struct file_operations keypad_fops = { 1125 .read = keypad_read, /* read */ 1126 .open = keypad_open, /* open */ 1127 .release = keypad_release, /* close */ 1128 .llseek = default_llseek, 1129 }; 1130 1131 static struct miscdevice keypad_dev = { 1132 .minor = KEYPAD_MINOR, 1133 .name = "keypad", 1134 .fops = &keypad_fops, 1135 }; 1136 1137 static void keypad_send_key(const char *string, int max_len) 1138 { 1139 /* send the key to the device only if a process is attached to it. */ 1140 if (!atomic_read(&keypad_available)) { 1141 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) { 1142 keypad_buffer[(keypad_start + keypad_buflen++) % 1143 KEYPAD_BUFFER] = *string++; 1144 } 1145 wake_up_interruptible(&keypad_read_wait); 1146 } 1147 } 1148 1149 /* this function scans all the bits involving at least one logical signal, 1150 * and puts the results in the bitfield "phys_read" (one bit per established 1151 * contact), and sets "phys_read_prev" to "phys_read". 1152 * 1153 * Note: to debounce input signals, we will only consider as switched a signal 1154 * which is stable across 2 measures. Signals which are different between two 1155 * reads will be kept as they previously were in their logical form (phys_prev). 1156 * A signal which has just switched will have a 1 in 1157 * (phys_read ^ phys_read_prev). 1158 */ 1159 static void phys_scan_contacts(void) 1160 { 1161 int bit, bitval; 1162 char oldval; 1163 char bitmask; 1164 char gndmask; 1165 1166 phys_prev = phys_curr; 1167 phys_read_prev = phys_read; 1168 phys_read = 0; /* flush all signals */ 1169 1170 /* keep track of old value, with all outputs disabled */ 1171 oldval = r_dtr(pprt) | scan_mask_o; 1172 /* activate all keyboard outputs (active low) */ 1173 w_dtr(pprt, oldval & ~scan_mask_o); 1174 1175 /* will have a 1 for each bit set to gnd */ 1176 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; 1177 /* disable all matrix signals */ 1178 w_dtr(pprt, oldval); 1179 1180 /* now that all outputs are cleared, the only active input bits are 1181 * directly connected to the ground 1182 */ 1183 1184 /* 1 for each grounded input */ 1185 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; 1186 1187 /* grounded inputs are signals 40-44 */ 1188 phys_read |= (__u64)gndmask << 40; 1189 1190 if (bitmask != gndmask) { 1191 /* 1192 * since clearing the outputs changed some inputs, we know 1193 * that some input signals are currently tied to some outputs. 1194 * So we'll scan them. 1195 */ 1196 for (bit = 0; bit < 8; bit++) { 1197 bitval = BIT(bit); 1198 1199 if (!(scan_mask_o & bitval)) /* skip unused bits */ 1200 continue; 1201 1202 w_dtr(pprt, oldval & ~bitval); /* enable this output */ 1203 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask; 1204 phys_read |= (__u64)bitmask << (5 * bit); 1205 } 1206 w_dtr(pprt, oldval); /* disable all outputs */ 1207 } 1208 /* 1209 * this is easy: use old bits when they are flapping, 1210 * use new ones when stable 1211 */ 1212 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) | 1213 (phys_read & ~(phys_read ^ phys_read_prev)); 1214 } 1215 1216 static inline int input_state_high(struct logical_input *input) 1217 { 1218 #if 0 1219 /* FIXME: 1220 * this is an invalid test. It tries to catch 1221 * transitions from single-key to multiple-key, but 1222 * doesn't take into account the contacts polarity. 1223 * The only solution to the problem is to parse keys 1224 * from the most complex to the simplest combinations, 1225 * and mark them as 'caught' once a combination 1226 * matches, then unmatch it for all other ones. 1227 */ 1228 1229 /* try to catch dangerous transitions cases : 1230 * someone adds a bit, so this signal was a false 1231 * positive resulting from a transition. We should 1232 * invalidate the signal immediately and not call the 1233 * release function. 1234 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release. 1235 */ 1236 if (((phys_prev & input->mask) == input->value) && 1237 ((phys_curr & input->mask) > input->value)) { 1238 input->state = INPUT_ST_LOW; /* invalidate */ 1239 return 1; 1240 } 1241 #endif 1242 1243 if ((phys_curr & input->mask) == input->value) { 1244 if ((input->type == INPUT_TYPE_STD) && 1245 (input->high_timer == 0)) { 1246 input->high_timer++; 1247 if (input->u.std.press_fct) 1248 input->u.std.press_fct(input->u.std.press_data); 1249 } else if (input->type == INPUT_TYPE_KBD) { 1250 /* will turn on the light */ 1251 keypressed = 1; 1252 1253 if (input->high_timer == 0) { 1254 char *press_str = input->u.kbd.press_str; 1255 1256 if (press_str[0]) { 1257 int s = sizeof(input->u.kbd.press_str); 1258 1259 keypad_send_key(press_str, s); 1260 } 1261 } 1262 1263 if (input->u.kbd.repeat_str[0]) { 1264 char *repeat_str = input->u.kbd.repeat_str; 1265 1266 if (input->high_timer >= KEYPAD_REP_START) { 1267 int s = sizeof(input->u.kbd.repeat_str); 1268 1269 input->high_timer -= KEYPAD_REP_DELAY; 1270 keypad_send_key(repeat_str, s); 1271 } 1272 /* we will need to come back here soon */ 1273 inputs_stable = 0; 1274 } 1275 1276 if (input->high_timer < 255) 1277 input->high_timer++; 1278 } 1279 return 1; 1280 } 1281 1282 /* else signal falling down. Let's fall through. */ 1283 input->state = INPUT_ST_FALLING; 1284 input->fall_timer = 0; 1285 1286 return 0; 1287 } 1288 1289 static inline void input_state_falling(struct logical_input *input) 1290 { 1291 #if 0 1292 /* FIXME !!! same comment as in input_state_high */ 1293 if (((phys_prev & input->mask) == input->value) && 1294 ((phys_curr & input->mask) > input->value)) { 1295 input->state = INPUT_ST_LOW; /* invalidate */ 1296 return; 1297 } 1298 #endif 1299 1300 if ((phys_curr & input->mask) == input->value) { 1301 if (input->type == INPUT_TYPE_KBD) { 1302 /* will turn on the light */ 1303 keypressed = 1; 1304 1305 if (input->u.kbd.repeat_str[0]) { 1306 char *repeat_str = input->u.kbd.repeat_str; 1307 1308 if (input->high_timer >= KEYPAD_REP_START) { 1309 int s = sizeof(input->u.kbd.repeat_str); 1310 1311 input->high_timer -= KEYPAD_REP_DELAY; 1312 keypad_send_key(repeat_str, s); 1313 } 1314 /* we will need to come back here soon */ 1315 inputs_stable = 0; 1316 } 1317 1318 if (input->high_timer < 255) 1319 input->high_timer++; 1320 } 1321 input->state = INPUT_ST_HIGH; 1322 } else if (input->fall_timer >= input->fall_time) { 1323 /* call release event */ 1324 if (input->type == INPUT_TYPE_STD) { 1325 void (*release_fct)(int) = input->u.std.release_fct; 1326 1327 if (release_fct) 1328 release_fct(input->u.std.release_data); 1329 } else if (input->type == INPUT_TYPE_KBD) { 1330 char *release_str = input->u.kbd.release_str; 1331 1332 if (release_str[0]) { 1333 int s = sizeof(input->u.kbd.release_str); 1334 1335 keypad_send_key(release_str, s); 1336 } 1337 } 1338 1339 input->state = INPUT_ST_LOW; 1340 } else { 1341 input->fall_timer++; 1342 inputs_stable = 0; 1343 } 1344 } 1345 1346 static void panel_process_inputs(void) 1347 { 1348 struct logical_input *input; 1349 1350 keypressed = 0; 1351 inputs_stable = 1; 1352 list_for_each_entry(input, &logical_inputs, list) { 1353 switch (input->state) { 1354 case INPUT_ST_LOW: 1355 if ((phys_curr & input->mask) != input->value) 1356 break; 1357 /* if all needed ones were already set previously, 1358 * this means that this logical signal has been 1359 * activated by the releasing of another combined 1360 * signal, so we don't want to match. 1361 * eg: AB -(release B)-> A -(release A)-> 0 : 1362 * don't match A. 1363 */ 1364 if ((phys_prev & input->mask) == input->value) 1365 break; 1366 input->rise_timer = 0; 1367 input->state = INPUT_ST_RISING; 1368 fallthrough; 1369 case INPUT_ST_RISING: 1370 if ((phys_curr & input->mask) != input->value) { 1371 input->state = INPUT_ST_LOW; 1372 break; 1373 } 1374 if (input->rise_timer < input->rise_time) { 1375 inputs_stable = 0; 1376 input->rise_timer++; 1377 break; 1378 } 1379 input->high_timer = 0; 1380 input->state = INPUT_ST_HIGH; 1381 fallthrough; 1382 case INPUT_ST_HIGH: 1383 if (input_state_high(input)) 1384 break; 1385 fallthrough; 1386 case INPUT_ST_FALLING: 1387 input_state_falling(input); 1388 } 1389 } 1390 } 1391 1392 static void panel_scan_timer(struct timer_list *unused) 1393 { 1394 if (keypad.enabled && keypad_initialized) { 1395 if (spin_trylock_irq(&pprt_lock)) { 1396 phys_scan_contacts(); 1397 1398 /* no need for the parport anymore */ 1399 spin_unlock_irq(&pprt_lock); 1400 } 1401 1402 if (!inputs_stable || phys_curr != phys_prev) 1403 panel_process_inputs(); 1404 } 1405 1406 if (keypressed && lcd.enabled && lcd.initialized) 1407 charlcd_poke(lcd.charlcd); 1408 1409 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME); 1410 } 1411 1412 static void init_scan_timer(void) 1413 { 1414 if (scan_timer.function) 1415 return; /* already started */ 1416 1417 timer_setup(&scan_timer, panel_scan_timer, 0); 1418 scan_timer.expires = jiffies + INPUT_POLL_TIME; 1419 add_timer(&scan_timer); 1420 } 1421 1422 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits. 1423 * if <omask> or <imask> are non-null, they will be or'ed with the bits 1424 * corresponding to out and in bits respectively. 1425 * returns 1 if ok, 0 if error (in which case, nothing is written). 1426 */ 1427 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value, 1428 u8 *imask, u8 *omask) 1429 { 1430 const char sigtab[] = "EeSsPpAaBb"; 1431 u8 im, om; 1432 __u64 m, v; 1433 1434 om = 0; 1435 im = 0; 1436 m = 0ULL; 1437 v = 0ULL; 1438 while (*name) { 1439 int in, out, bit, neg; 1440 const char *idx; 1441 1442 idx = strchr(sigtab, *name); 1443 if (!idx) 1444 return 0; /* input name not found */ 1445 1446 in = idx - sigtab; 1447 neg = (in & 1); /* odd (lower) names are negated */ 1448 in >>= 1; 1449 im |= BIT(in); 1450 1451 name++; 1452 if (*name >= '0' && *name <= '7') { 1453 out = *name - '0'; 1454 om |= BIT(out); 1455 } else if (*name == '-') { 1456 out = 8; 1457 } else { 1458 return 0; /* unknown bit name */ 1459 } 1460 1461 bit = (out * 5) + in; 1462 1463 m |= 1ULL << bit; 1464 if (!neg) 1465 v |= 1ULL << bit; 1466 name++; 1467 } 1468 *mask = m; 1469 *value = v; 1470 if (imask) 1471 *imask |= im; 1472 if (omask) 1473 *omask |= om; 1474 return 1; 1475 } 1476 1477 /* tries to bind a key to the signal name <name>. The key will send the 1478 * strings <press>, <repeat>, <release> for these respective events. 1479 * Returns the pointer to the new key if ok, NULL if the key could not be bound. 1480 */ 1481 static struct logical_input *panel_bind_key(const char *name, const char *press, 1482 const char *repeat, 1483 const char *release) 1484 { 1485 struct logical_input *key; 1486 1487 key = kzalloc(sizeof(*key), GFP_KERNEL); 1488 if (!key) 1489 return NULL; 1490 1491 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i, 1492 &scan_mask_o)) { 1493 kfree(key); 1494 return NULL; 1495 } 1496 1497 key->type = INPUT_TYPE_KBD; 1498 key->state = INPUT_ST_LOW; 1499 key->rise_time = 1; 1500 key->fall_time = 1; 1501 1502 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str)); 1503 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str)); 1504 strncpy(key->u.kbd.release_str, release, 1505 sizeof(key->u.kbd.release_str)); 1506 list_add(&key->list, &logical_inputs); 1507 return key; 1508 } 1509 1510 #if 0 1511 /* tries to bind a callback function to the signal name <name>. The function 1512 * <press_fct> will be called with the <press_data> arg when the signal is 1513 * activated, and so on for <release_fct>/<release_data> 1514 * Returns the pointer to the new signal if ok, NULL if the signal could not 1515 * be bound. 1516 */ 1517 static struct logical_input *panel_bind_callback(char *name, 1518 void (*press_fct)(int), 1519 int press_data, 1520 void (*release_fct)(int), 1521 int release_data) 1522 { 1523 struct logical_input *callback; 1524 1525 callback = kmalloc(sizeof(*callback), GFP_KERNEL); 1526 if (!callback) 1527 return NULL; 1528 1529 memset(callback, 0, sizeof(struct logical_input)); 1530 if (!input_name2mask(name, &callback->mask, &callback->value, 1531 &scan_mask_i, &scan_mask_o)) 1532 return NULL; 1533 1534 callback->type = INPUT_TYPE_STD; 1535 callback->state = INPUT_ST_LOW; 1536 callback->rise_time = 1; 1537 callback->fall_time = 1; 1538 callback->u.std.press_fct = press_fct; 1539 callback->u.std.press_data = press_data; 1540 callback->u.std.release_fct = release_fct; 1541 callback->u.std.release_data = release_data; 1542 list_add(&callback->list, &logical_inputs); 1543 return callback; 1544 } 1545 #endif 1546 1547 static void keypad_init(void) 1548 { 1549 int keynum; 1550 1551 init_waitqueue_head(&keypad_read_wait); 1552 keypad_buflen = 0; /* flushes any eventual noisy keystroke */ 1553 1554 /* Let's create all known keys */ 1555 1556 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) { 1557 panel_bind_key(keypad_profile[keynum][0], 1558 keypad_profile[keynum][1], 1559 keypad_profile[keynum][2], 1560 keypad_profile[keynum][3]); 1561 } 1562 1563 init_scan_timer(); 1564 keypad_initialized = 1; 1565 } 1566 1567 /**************************************************/ 1568 /* device initialization */ 1569 /**************************************************/ 1570 1571 static void panel_attach(struct parport *port) 1572 { 1573 struct pardev_cb panel_cb; 1574 1575 if (port->number != parport) 1576 return; 1577 1578 if (pprt) { 1579 pr_err("%s: port->number=%d parport=%d, already registered!\n", 1580 __func__, port->number, parport); 1581 return; 1582 } 1583 1584 memset(&panel_cb, 0, sizeof(panel_cb)); 1585 panel_cb.private = &pprt; 1586 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */ 1587 1588 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0); 1589 if (!pprt) { 1590 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n", 1591 __func__, port->number, parport); 1592 return; 1593 } 1594 1595 if (parport_claim(pprt)) { 1596 pr_err("could not claim access to parport%d. Aborting.\n", 1597 parport); 1598 goto err_unreg_device; 1599 } 1600 1601 /* must init LCD first, just in case an IRQ from the keypad is 1602 * generated at keypad init 1603 */ 1604 if (lcd.enabled) { 1605 lcd_init(); 1606 if (!lcd.charlcd || charlcd_register(lcd.charlcd)) 1607 goto err_unreg_device; 1608 } 1609 1610 if (keypad.enabled) { 1611 keypad_init(); 1612 if (misc_register(&keypad_dev)) 1613 goto err_lcd_unreg; 1614 } 1615 return; 1616 1617 err_lcd_unreg: 1618 if (scan_timer.function) 1619 del_timer_sync(&scan_timer); 1620 if (lcd.enabled) 1621 charlcd_unregister(lcd.charlcd); 1622 err_unreg_device: 1623 charlcd_free(lcd.charlcd); 1624 lcd.charlcd = NULL; 1625 parport_unregister_device(pprt); 1626 pprt = NULL; 1627 } 1628 1629 static void panel_detach(struct parport *port) 1630 { 1631 if (port->number != parport) 1632 return; 1633 1634 if (!pprt) { 1635 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n", 1636 __func__, port->number, parport); 1637 return; 1638 } 1639 if (scan_timer.function) 1640 del_timer_sync(&scan_timer); 1641 1642 if (keypad.enabled) { 1643 misc_deregister(&keypad_dev); 1644 keypad_initialized = 0; 1645 } 1646 1647 if (lcd.enabled) { 1648 charlcd_unregister(lcd.charlcd); 1649 lcd.initialized = false; 1650 charlcd_free(lcd.charlcd); 1651 lcd.charlcd = NULL; 1652 } 1653 1654 /* TODO: free all input signals */ 1655 parport_release(pprt); 1656 parport_unregister_device(pprt); 1657 pprt = NULL; 1658 } 1659 1660 static struct parport_driver panel_driver = { 1661 .name = "panel", 1662 .match_port = panel_attach, 1663 .detach = panel_detach, 1664 .devmodel = true, 1665 }; 1666 1667 /* init function */ 1668 static int __init panel_init_module(void) 1669 { 1670 int selected_keypad_type = NOT_SET, err; 1671 1672 /* take care of an eventual profile */ 1673 switch (profile) { 1674 case PANEL_PROFILE_CUSTOM: 1675 /* custom profile */ 1676 selected_keypad_type = DEFAULT_KEYPAD_TYPE; 1677 selected_lcd_type = DEFAULT_LCD_TYPE; 1678 break; 1679 case PANEL_PROFILE_OLD: 1680 /* 8 bits, 2*16, old keypad */ 1681 selected_keypad_type = KEYPAD_TYPE_OLD; 1682 selected_lcd_type = LCD_TYPE_OLD; 1683 1684 /* TODO: This two are a little hacky, sort it out later */ 1685 if (lcd_width == NOT_SET) 1686 lcd_width = 16; 1687 if (lcd_hwidth == NOT_SET) 1688 lcd_hwidth = 16; 1689 break; 1690 case PANEL_PROFILE_NEW: 1691 /* serial, 2*16, new keypad */ 1692 selected_keypad_type = KEYPAD_TYPE_NEW; 1693 selected_lcd_type = LCD_TYPE_KS0074; 1694 break; 1695 case PANEL_PROFILE_HANTRONIX: 1696 /* 8 bits, 2*16 hantronix-like, no keypad */ 1697 selected_keypad_type = KEYPAD_TYPE_NONE; 1698 selected_lcd_type = LCD_TYPE_HANTRONIX; 1699 break; 1700 case PANEL_PROFILE_NEXCOM: 1701 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */ 1702 selected_keypad_type = KEYPAD_TYPE_NEXCOM; 1703 selected_lcd_type = LCD_TYPE_NEXCOM; 1704 break; 1705 case PANEL_PROFILE_LARGE: 1706 /* 8 bits, 2*40, old keypad */ 1707 selected_keypad_type = KEYPAD_TYPE_OLD; 1708 selected_lcd_type = LCD_TYPE_OLD; 1709 break; 1710 } 1711 1712 /* 1713 * Overwrite selection with module param values (both keypad and lcd), 1714 * where the deprecated params have lower prio. 1715 */ 1716 if (keypad_enabled != NOT_SET) 1717 selected_keypad_type = keypad_enabled; 1718 if (keypad_type != NOT_SET) 1719 selected_keypad_type = keypad_type; 1720 1721 keypad.enabled = (selected_keypad_type > 0); 1722 1723 if (lcd_enabled != NOT_SET) 1724 selected_lcd_type = lcd_enabled; 1725 if (lcd_type != NOT_SET) 1726 selected_lcd_type = lcd_type; 1727 1728 lcd.enabled = (selected_lcd_type > 0); 1729 1730 if (lcd.enabled) { 1731 /* 1732 * Init lcd struct with load-time values to preserve exact 1733 * current functionality (at least for now). 1734 */ 1735 lcd.charset = lcd_charset; 1736 lcd.proto = lcd_proto; 1737 lcd.pins.e = lcd_e_pin; 1738 lcd.pins.rs = lcd_rs_pin; 1739 lcd.pins.rw = lcd_rw_pin; 1740 lcd.pins.cl = lcd_cl_pin; 1741 lcd.pins.da = lcd_da_pin; 1742 lcd.pins.bl = lcd_bl_pin; 1743 } 1744 1745 switch (selected_keypad_type) { 1746 case KEYPAD_TYPE_OLD: 1747 keypad_profile = old_keypad_profile; 1748 break; 1749 case KEYPAD_TYPE_NEW: 1750 keypad_profile = new_keypad_profile; 1751 break; 1752 case KEYPAD_TYPE_NEXCOM: 1753 keypad_profile = nexcom_keypad_profile; 1754 break; 1755 default: 1756 keypad_profile = NULL; 1757 break; 1758 } 1759 1760 if (!lcd.enabled && !keypad.enabled) { 1761 /* no device enabled, let's exit */ 1762 pr_err("panel driver disabled.\n"); 1763 return -ENODEV; 1764 } 1765 1766 err = parport_register_driver(&panel_driver); 1767 if (err) { 1768 pr_err("could not register with parport. Aborting.\n"); 1769 return err; 1770 } 1771 1772 if (pprt) 1773 pr_info("panel driver registered on parport%d (io=0x%lx).\n", 1774 parport, pprt->port->base); 1775 else 1776 pr_info("panel driver not yet registered\n"); 1777 return 0; 1778 } 1779 1780 static void __exit panel_cleanup_module(void) 1781 { 1782 parport_unregister_driver(&panel_driver); 1783 } 1784 1785 module_init(panel_init_module); 1786 module_exit(panel_cleanup_module); 1787 MODULE_AUTHOR("Willy Tarreau"); 1788 MODULE_LICENSE("GPL"); 1789 1790 /* 1791 * Local variables: 1792 * c-indent-level: 4 1793 * tab-width: 8 1794 * End: 1795 */ 1796