xref: /linux/drivers/atm/nicstar.c (revision ca853314e78b0a65c20b6a889a23c31f918d4aa2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * nicstar.c
4  *
5  * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
6  *
7  * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
8  *            It was taken from the frle-0.22 device driver.
9  *            As the file doesn't have a copyright notice, in the file
10  *            nicstarmac.copyright I put the copyright notice from the
11  *            frle-0.22 device driver.
12  *            Some code is based on the nicstar driver by M. Welsh.
13  *
14  * Author: Rui Prior (rprior@inescn.pt)
15  * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
16  *
17  *
18  * (C) INESC 1999
19  */
20 
21 /*
22  * IMPORTANT INFORMATION
23  *
24  * There are currently three types of spinlocks:
25  *
26  * 1 - Per card interrupt spinlock (to protect structures and such)
27  * 2 - Per SCQ scq spinlock
28  * 3 - Per card resource spinlock (to access registers, etc.)
29  *
30  * These must NEVER be grabbed in reverse order.
31  *
32  */
33 
34 /* Header files */
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/skbuff.h>
39 #include <linux/atmdev.h>
40 #include <linux/atm.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/types.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/sched.h>
48 #include <linux/timer.h>
49 #include <linux/interrupt.h>
50 #include <linux/bitops.h>
51 #include <linux/slab.h>
52 #include <linux/idr.h>
53 #include <asm/io.h>
54 #include <linux/uaccess.h>
55 #include <linux/atomic.h>
56 #include <linux/etherdevice.h>
57 #include "nicstar.h"
58 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
59 #include "suni.h"
60 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
61 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
62 #include "idt77105.h"
63 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
64 
65 /* Additional code */
66 
67 #include "nicstarmac.c"
68 
69 /* Configurable parameters */
70 
71 #undef PHY_LOOPBACK
72 #undef TX_DEBUG
73 #undef RX_DEBUG
74 #undef GENERAL_DEBUG
75 #undef EXTRA_DEBUG
76 
77 /* Do not touch these */
78 
79 #ifdef TX_DEBUG
80 #define TXPRINTK(args...) printk(args)
81 #else
82 #define TXPRINTK(args...)
83 #endif /* TX_DEBUG */
84 
85 #ifdef RX_DEBUG
86 #define RXPRINTK(args...) printk(args)
87 #else
88 #define RXPRINTK(args...)
89 #endif /* RX_DEBUG */
90 
91 #ifdef GENERAL_DEBUG
92 #define PRINTK(args...) printk(args)
93 #else
94 #define PRINTK(args...) do {} while (0)
95 #endif /* GENERAL_DEBUG */
96 
97 #ifdef EXTRA_DEBUG
98 #define XPRINTK(args...) printk(args)
99 #else
100 #define XPRINTK(args...)
101 #endif /* EXTRA_DEBUG */
102 
103 /* Macros */
104 
105 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
106 
107 #define NS_DELAY mdelay(1)
108 
109 #define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))
110 
111 #ifndef ATM_SKB
112 #define ATM_SKB(s) (&(s)->atm)
113 #endif
114 
115 #define scq_virt_to_bus(scq, p) \
116 		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
117 
118 /* Function declarations */
119 
120 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
121 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
122 			  int count);
123 static int ns_init_card(int i, struct pci_dev *pcidev);
124 static void ns_init_card_error(ns_dev * card, int error);
125 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
126 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
127 static void push_rxbufs(ns_dev *, struct sk_buff *);
128 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
129 static int ns_open(struct atm_vcc *vcc);
130 static void ns_close(struct atm_vcc *vcc);
131 static void fill_tst(ns_dev * card, int n, vc_map * vc);
132 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
133 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
134 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
135 		     struct sk_buff *skb, bool may_sleep);
136 static void process_tsq(ns_dev * card);
137 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
138 static void process_rsq(ns_dev * card);
139 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
140 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
141 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
142 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
143 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
144 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
145 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
146 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
147 #ifdef EXTRA_DEBUG
148 static void which_list(ns_dev * card, struct sk_buff *skb);
149 #endif
150 static void ns_poll(struct timer_list *unused);
151 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
152 		       unsigned long addr);
153 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
154 
155 /* Global variables */
156 
157 static struct ns_dev *cards[NS_MAX_CARDS];
158 static unsigned num_cards;
159 static const struct atmdev_ops atm_ops = {
160 	.open = ns_open,
161 	.close = ns_close,
162 	.ioctl = ns_ioctl,
163 	.send = ns_send,
164 	.send_bh = ns_send_bh,
165 	.phy_put = ns_phy_put,
166 	.phy_get = ns_phy_get,
167 	.proc_read = ns_proc_read,
168 	.owner = THIS_MODULE,
169 };
170 
171 static struct timer_list ns_timer;
172 static char *mac[NS_MAX_CARDS];
173 module_param_array(mac, charp, NULL, 0);
174 MODULE_LICENSE("GPL");
175 
176 /* Functions */
177 
178 static int nicstar_init_one(struct pci_dev *pcidev,
179 			    const struct pci_device_id *ent)
180 {
181 	static int index = -1;
182 	unsigned int error;
183 
184 	index++;
185 	cards[index] = NULL;
186 
187 	error = ns_init_card(index, pcidev);
188 	if (error) {
189 		cards[index--] = NULL;	/* don't increment index */
190 		goto err_out;
191 	}
192 
193 	return 0;
194 err_out:
195 	return -ENODEV;
196 }
197 
198 static void nicstar_remove_one(struct pci_dev *pcidev)
199 {
200 	int i, j;
201 	ns_dev *card = pci_get_drvdata(pcidev);
202 	struct sk_buff *hb;
203 	struct sk_buff *iovb;
204 	struct sk_buff *lb;
205 	struct sk_buff *sb;
206 
207 	i = card->index;
208 
209 	if (cards[i] == NULL)
210 		return;
211 
212 	if (card->atmdev->phy && card->atmdev->phy->stop)
213 		card->atmdev->phy->stop(card->atmdev);
214 
215 	/* Stop everything */
216 	writel(0x00000000, card->membase + CFG);
217 
218 	/* De-register device */
219 	atm_dev_deregister(card->atmdev);
220 
221 	/* Disable PCI device */
222 	pci_disable_device(pcidev);
223 
224 	/* Free up resources */
225 	j = 0;
226 	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
227 	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
228 		dev_kfree_skb_any(hb);
229 		j++;
230 	}
231 	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
232 	j = 0;
233 	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
234 	       card->iovpool.count);
235 	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
236 		dev_kfree_skb_any(iovb);
237 		j++;
238 	}
239 	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
240 	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
241 		dev_kfree_skb_any(lb);
242 	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
243 		dev_kfree_skb_any(sb);
244 	free_scq(card, card->scq0, NULL);
245 	for (j = 0; j < NS_FRSCD_NUM; j++) {
246 		if (card->scd2vc[j] != NULL)
247 			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
248 	}
249 	idr_destroy(&card->idr);
250 	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
251 			  card->rsq.org, card->rsq.dma);
252 	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
253 			  card->tsq.org, card->tsq.dma);
254 	free_irq(card->pcidev->irq, card);
255 	iounmap(card->membase);
256 	kfree(card);
257 }
258 
259 static const struct pci_device_id nicstar_pci_tbl[] = {
260 	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
261 	{0,}			/* terminate list */
262 };
263 
264 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
265 
266 static struct pci_driver nicstar_driver = {
267 	.name = "nicstar",
268 	.id_table = nicstar_pci_tbl,
269 	.probe = nicstar_init_one,
270 	.remove = nicstar_remove_one,
271 };
272 
273 static int __init nicstar_init(void)
274 {
275 	unsigned error = 0;	/* Initialized to remove compile warning */
276 
277 	XPRINTK("nicstar: nicstar_init() called.\n");
278 
279 	error = pci_register_driver(&nicstar_driver);
280 
281 	TXPRINTK("nicstar: TX debug enabled.\n");
282 	RXPRINTK("nicstar: RX debug enabled.\n");
283 	PRINTK("nicstar: General debug enabled.\n");
284 #ifdef PHY_LOOPBACK
285 	printk("nicstar: using PHY loopback.\n");
286 #endif /* PHY_LOOPBACK */
287 	XPRINTK("nicstar: nicstar_init() returned.\n");
288 
289 	if (!error) {
290 		timer_setup(&ns_timer, ns_poll, 0);
291 		ns_timer.expires = jiffies + NS_POLL_PERIOD;
292 		add_timer(&ns_timer);
293 	}
294 
295 	return error;
296 }
297 
298 static void __exit nicstar_cleanup(void)
299 {
300 	XPRINTK("nicstar: nicstar_cleanup() called.\n");
301 
302 	del_timer(&ns_timer);
303 
304 	pci_unregister_driver(&nicstar_driver);
305 
306 	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
307 }
308 
309 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
310 {
311 	unsigned long flags;
312 	u32 data;
313 	sram_address <<= 2;
314 	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
315 	sram_address |= 0x50000000;	/* SRAM read command */
316 	spin_lock_irqsave(&card->res_lock, flags);
317 	while (CMD_BUSY(card)) ;
318 	writel(sram_address, card->membase + CMD);
319 	while (CMD_BUSY(card)) ;
320 	data = readl(card->membase + DR0);
321 	spin_unlock_irqrestore(&card->res_lock, flags);
322 	return data;
323 }
324 
325 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
326 			  int count)
327 {
328 	unsigned long flags;
329 	int i, c;
330 	count--;		/* count range now is 0..3 instead of 1..4 */
331 	c = count;
332 	c <<= 2;		/* to use increments of 4 */
333 	spin_lock_irqsave(&card->res_lock, flags);
334 	while (CMD_BUSY(card)) ;
335 	for (i = 0; i <= c; i += 4)
336 		writel(*(value++), card->membase + i);
337 	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
338 	   so card->membase + DR0 == card->membase */
339 	sram_address <<= 2;
340 	sram_address &= 0x0007FFFC;
341 	sram_address |= (0x40000000 | count);
342 	writel(sram_address, card->membase + CMD);
343 	spin_unlock_irqrestore(&card->res_lock, flags);
344 }
345 
346 static int ns_init_card(int i, struct pci_dev *pcidev)
347 {
348 	int j;
349 	struct ns_dev *card = NULL;
350 	unsigned char pci_latency;
351 	unsigned error;
352 	u32 data;
353 	u32 u32d[4];
354 	u32 ns_cfg_rctsize;
355 	int bcount;
356 	unsigned long membase;
357 
358 	error = 0;
359 
360 	if (pci_enable_device(pcidev)) {
361 		printk("nicstar%d: can't enable PCI device\n", i);
362 		error = 2;
363 		ns_init_card_error(card, error);
364 		return error;
365 	}
366         if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
367                 printk(KERN_WARNING
368 		       "nicstar%d: No suitable DMA available.\n", i);
369 		error = 2;
370 		ns_init_card_error(card, error);
371 		return error;
372         }
373 
374 	card = kmalloc(sizeof(*card), GFP_KERNEL);
375 	if (!card) {
376 		printk
377 		    ("nicstar%d: can't allocate memory for device structure.\n",
378 		     i);
379 		error = 2;
380 		ns_init_card_error(card, error);
381 		return error;
382 	}
383 	cards[i] = card;
384 	spin_lock_init(&card->int_lock);
385 	spin_lock_init(&card->res_lock);
386 
387 	pci_set_drvdata(pcidev, card);
388 
389 	card->index = i;
390 	card->atmdev = NULL;
391 	card->pcidev = pcidev;
392 	membase = pci_resource_start(pcidev, 1);
393 	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
394 	if (!card->membase) {
395 		printk("nicstar%d: can't ioremap() membase.\n", i);
396 		error = 3;
397 		ns_init_card_error(card, error);
398 		return error;
399 	}
400 	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
401 
402 	pci_set_master(pcidev);
403 
404 	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
405 		printk("nicstar%d: can't read PCI latency timer.\n", i);
406 		error = 6;
407 		ns_init_card_error(card, error);
408 		return error;
409 	}
410 #ifdef NS_PCI_LATENCY
411 	if (pci_latency < NS_PCI_LATENCY) {
412 		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
413 		       NS_PCI_LATENCY);
414 		for (j = 1; j < 4; j++) {
415 			if (pci_write_config_byte
416 			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
417 				break;
418 		}
419 		if (j == 4) {
420 			printk
421 			    ("nicstar%d: can't set PCI latency timer to %d.\n",
422 			     i, NS_PCI_LATENCY);
423 			error = 7;
424 			ns_init_card_error(card, error);
425 			return error;
426 		}
427 	}
428 #endif /* NS_PCI_LATENCY */
429 
430 	/* Clear timer overflow */
431 	data = readl(card->membase + STAT);
432 	if (data & NS_STAT_TMROF)
433 		writel(NS_STAT_TMROF, card->membase + STAT);
434 
435 	/* Software reset */
436 	writel(NS_CFG_SWRST, card->membase + CFG);
437 	NS_DELAY;
438 	writel(0x00000000, card->membase + CFG);
439 
440 	/* PHY reset */
441 	writel(0x00000008, card->membase + GP);
442 	NS_DELAY;
443 	writel(0x00000001, card->membase + GP);
444 	NS_DELAY;
445 	while (CMD_BUSY(card)) ;
446 	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
447 	NS_DELAY;
448 
449 	/* Detect PHY type */
450 	while (CMD_BUSY(card)) ;
451 	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
452 	while (CMD_BUSY(card)) ;
453 	data = readl(card->membase + DR0);
454 	switch (data) {
455 	case 0x00000009:
456 		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
457 		card->max_pcr = ATM_25_PCR;
458 		while (CMD_BUSY(card)) ;
459 		writel(0x00000008, card->membase + DR0);
460 		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
461 		/* Clear an eventual pending interrupt */
462 		writel(NS_STAT_SFBQF, card->membase + STAT);
463 #ifdef PHY_LOOPBACK
464 		while (CMD_BUSY(card)) ;
465 		writel(0x00000022, card->membase + DR0);
466 		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
467 #endif /* PHY_LOOPBACK */
468 		break;
469 	case 0x00000030:
470 	case 0x00000031:
471 		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
472 		card->max_pcr = ATM_OC3_PCR;
473 #ifdef PHY_LOOPBACK
474 		while (CMD_BUSY(card)) ;
475 		writel(0x00000002, card->membase + DR0);
476 		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
477 #endif /* PHY_LOOPBACK */
478 		break;
479 	default:
480 		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
481 		error = 8;
482 		ns_init_card_error(card, error);
483 		return error;
484 	}
485 	writel(0x00000000, card->membase + GP);
486 
487 	/* Determine SRAM size */
488 	data = 0x76543210;
489 	ns_write_sram(card, 0x1C003, &data, 1);
490 	data = 0x89ABCDEF;
491 	ns_write_sram(card, 0x14003, &data, 1);
492 	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
493 	    ns_read_sram(card, 0x1C003) == 0x76543210)
494 		card->sram_size = 128;
495 	else
496 		card->sram_size = 32;
497 	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
498 
499 	card->rct_size = NS_MAX_RCTSIZE;
500 
501 #if (NS_MAX_RCTSIZE == 4096)
502 	if (card->sram_size == 128)
503 		printk
504 		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
505 		     i);
506 #elif (NS_MAX_RCTSIZE == 16384)
507 	if (card->sram_size == 32) {
508 		printk
509 		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
510 		     i);
511 		card->rct_size = 4096;
512 	}
513 #else
514 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
515 #endif
516 
517 	card->vpibits = NS_VPIBITS;
518 	if (card->rct_size == 4096)
519 		card->vcibits = 12 - NS_VPIBITS;
520 	else			/* card->rct_size == 16384 */
521 		card->vcibits = 14 - NS_VPIBITS;
522 
523 	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
524 	if (mac[i] == NULL)
525 		nicstar_init_eprom(card->membase);
526 
527 	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
528 	writel(0x00000000, card->membase + VPM);
529 
530 	/* Initialize TSQ */
531 	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
532 					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
533 					   &card->tsq.dma, GFP_KERNEL);
534 	if (card->tsq.org == NULL) {
535 		printk("nicstar%d: can't allocate TSQ.\n", i);
536 		error = 10;
537 		ns_init_card_error(card, error);
538 		return error;
539 	}
540 	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
541 	card->tsq.next = card->tsq.base;
542 	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
543 	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
544 		ns_tsi_init(card->tsq.base + j);
545 	writel(0x00000000, card->membase + TSQH);
546 	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
547 	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
548 
549 	/* Initialize RSQ */
550 	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
551 					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
552 					   &card->rsq.dma, GFP_KERNEL);
553 	if (card->rsq.org == NULL) {
554 		printk("nicstar%d: can't allocate RSQ.\n", i);
555 		error = 11;
556 		ns_init_card_error(card, error);
557 		return error;
558 	}
559 	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
560 	card->rsq.next = card->rsq.base;
561 	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
562 	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
563 		ns_rsqe_init(card->rsq.base + j);
564 	writel(0x00000000, card->membase + RSQH);
565 	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
566 	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
567 
568 	/* Initialize SCQ0, the only VBR SCQ used */
569 	card->scq1 = NULL;
570 	card->scq2 = NULL;
571 	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
572 	if (card->scq0 == NULL) {
573 		printk("nicstar%d: can't get SCQ0.\n", i);
574 		error = 12;
575 		ns_init_card_error(card, error);
576 		return error;
577 	}
578 	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
579 	u32d[1] = (u32) 0x00000000;
580 	u32d[2] = (u32) 0xffffffff;
581 	u32d[3] = (u32) 0x00000000;
582 	ns_write_sram(card, NS_VRSCD0, u32d, 4);
583 	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
584 	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
585 	card->scq0->scd = NS_VRSCD0;
586 	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
587 
588 	/* Initialize TSTs */
589 	card->tst_addr = NS_TST0;
590 	card->tst_free_entries = NS_TST_NUM_ENTRIES;
591 	data = NS_TST_OPCODE_VARIABLE;
592 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
593 		ns_write_sram(card, NS_TST0 + j, &data, 1);
594 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
595 	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
596 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
597 		ns_write_sram(card, NS_TST1 + j, &data, 1);
598 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
599 	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
600 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
601 		card->tste2vc[j] = NULL;
602 	writel(NS_TST0 << 2, card->membase + TSTB);
603 
604 	/* Initialize RCT. AAL type is set on opening the VC. */
605 #ifdef RCQ_SUPPORT
606 	u32d[0] = NS_RCTE_RAWCELLINTEN;
607 #else
608 	u32d[0] = 0x00000000;
609 #endif /* RCQ_SUPPORT */
610 	u32d[1] = 0x00000000;
611 	u32d[2] = 0x00000000;
612 	u32d[3] = 0xFFFFFFFF;
613 	for (j = 0; j < card->rct_size; j++)
614 		ns_write_sram(card, j * 4, u32d, 4);
615 
616 	memset(card->vcmap, 0, sizeof(card->vcmap));
617 
618 	for (j = 0; j < NS_FRSCD_NUM; j++)
619 		card->scd2vc[j] = NULL;
620 
621 	/* Initialize buffer levels */
622 	card->sbnr.min = MIN_SB;
623 	card->sbnr.init = NUM_SB;
624 	card->sbnr.max = MAX_SB;
625 	card->lbnr.min = MIN_LB;
626 	card->lbnr.init = NUM_LB;
627 	card->lbnr.max = MAX_LB;
628 	card->iovnr.min = MIN_IOVB;
629 	card->iovnr.init = NUM_IOVB;
630 	card->iovnr.max = MAX_IOVB;
631 	card->hbnr.min = MIN_HB;
632 	card->hbnr.init = NUM_HB;
633 	card->hbnr.max = MAX_HB;
634 
635 	card->sm_handle = NULL;
636 	card->sm_addr = 0x00000000;
637 	card->lg_handle = NULL;
638 	card->lg_addr = 0x00000000;
639 
640 	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */
641 
642 	idr_init(&card->idr);
643 
644 	/* Pre-allocate some huge buffers */
645 	skb_queue_head_init(&card->hbpool.queue);
646 	card->hbpool.count = 0;
647 	for (j = 0; j < NUM_HB; j++) {
648 		struct sk_buff *hb;
649 		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
650 		if (hb == NULL) {
651 			printk
652 			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
653 			     i, j, NUM_HB);
654 			error = 13;
655 			ns_init_card_error(card, error);
656 			return error;
657 		}
658 		NS_PRV_BUFTYPE(hb) = BUF_NONE;
659 		skb_queue_tail(&card->hbpool.queue, hb);
660 		card->hbpool.count++;
661 	}
662 
663 	/* Allocate large buffers */
664 	skb_queue_head_init(&card->lbpool.queue);
665 	card->lbpool.count = 0;	/* Not used */
666 	for (j = 0; j < NUM_LB; j++) {
667 		struct sk_buff *lb;
668 		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
669 		if (lb == NULL) {
670 			printk
671 			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
672 			     i, j, NUM_LB);
673 			error = 14;
674 			ns_init_card_error(card, error);
675 			return error;
676 		}
677 		NS_PRV_BUFTYPE(lb) = BUF_LG;
678 		skb_queue_tail(&card->lbpool.queue, lb);
679 		skb_reserve(lb, NS_SMBUFSIZE);
680 		push_rxbufs(card, lb);
681 		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
682 		if (j == 1) {
683 			card->rcbuf = lb;
684 			card->rawcell = (struct ns_rcqe *) lb->data;
685 			card->rawch = NS_PRV_DMA(lb);
686 		}
687 	}
688 	/* Test for strange behaviour which leads to crashes */
689 	if ((bcount =
690 	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
691 		printk
692 		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
693 		     i, j, bcount);
694 		error = 14;
695 		ns_init_card_error(card, error);
696 		return error;
697 	}
698 
699 	/* Allocate small buffers */
700 	skb_queue_head_init(&card->sbpool.queue);
701 	card->sbpool.count = 0;	/* Not used */
702 	for (j = 0; j < NUM_SB; j++) {
703 		struct sk_buff *sb;
704 		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
705 		if (sb == NULL) {
706 			printk
707 			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
708 			     i, j, NUM_SB);
709 			error = 15;
710 			ns_init_card_error(card, error);
711 			return error;
712 		}
713 		NS_PRV_BUFTYPE(sb) = BUF_SM;
714 		skb_queue_tail(&card->sbpool.queue, sb);
715 		skb_reserve(sb, NS_AAL0_HEADER);
716 		push_rxbufs(card, sb);
717 	}
718 	/* Test for strange behaviour which leads to crashes */
719 	if ((bcount =
720 	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
721 		printk
722 		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
723 		     i, j, bcount);
724 		error = 15;
725 		ns_init_card_error(card, error);
726 		return error;
727 	}
728 
729 	/* Allocate iovec buffers */
730 	skb_queue_head_init(&card->iovpool.queue);
731 	card->iovpool.count = 0;
732 	for (j = 0; j < NUM_IOVB; j++) {
733 		struct sk_buff *iovb;
734 		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
735 		if (iovb == NULL) {
736 			printk
737 			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
738 			     i, j, NUM_IOVB);
739 			error = 16;
740 			ns_init_card_error(card, error);
741 			return error;
742 		}
743 		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
744 		skb_queue_tail(&card->iovpool.queue, iovb);
745 		card->iovpool.count++;
746 	}
747 
748 	/* Configure NICStAR */
749 	if (card->rct_size == 4096)
750 		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
751 	else			/* (card->rct_size == 16384) */
752 		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
753 
754 	card->efbie = 1;
755 
756 	card->intcnt = 0;
757 	if (request_irq
758 	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
759 		printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
760 		error = 9;
761 		ns_init_card_error(card, error);
762 		return error;
763 	}
764 
765 	/* Register device */
766 	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
767 					-1, NULL);
768 	if (card->atmdev == NULL) {
769 		printk("nicstar%d: can't register device.\n", i);
770 		error = 17;
771 		ns_init_card_error(card, error);
772 		return error;
773 	}
774 
775 	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
776 		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
777 				   card->atmdev->esi, 6);
778 		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
779 			nicstar_read_eprom(card->membase,
780 					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
781 					   card->atmdev->esi, 6);
782 		}
783 	}
784 
785 	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
786 
787 	card->atmdev->dev_data = card;
788 	card->atmdev->ci_range.vpi_bits = card->vpibits;
789 	card->atmdev->ci_range.vci_bits = card->vcibits;
790 	card->atmdev->link_rate = card->max_pcr;
791 	card->atmdev->phy = NULL;
792 
793 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
794 	if (card->max_pcr == ATM_OC3_PCR)
795 		suni_init(card->atmdev);
796 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
797 
798 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
799 	if (card->max_pcr == ATM_25_PCR)
800 		idt77105_init(card->atmdev);
801 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
802 
803 	if (card->atmdev->phy && card->atmdev->phy->start)
804 		card->atmdev->phy->start(card->atmdev);
805 
806 	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
807 	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
808 	       NS_CFG_PHYIE, card->membase + CFG);
809 
810 	num_cards++;
811 
812 	return error;
813 }
814 
815 static void ns_init_card_error(ns_dev *card, int error)
816 {
817 	if (error >= 17) {
818 		writel(0x00000000, card->membase + CFG);
819 	}
820 	if (error >= 16) {
821 		struct sk_buff *iovb;
822 		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
823 			dev_kfree_skb_any(iovb);
824 	}
825 	if (error >= 15) {
826 		struct sk_buff *sb;
827 		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
828 			dev_kfree_skb_any(sb);
829 		free_scq(card, card->scq0, NULL);
830 	}
831 	if (error >= 14) {
832 		struct sk_buff *lb;
833 		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
834 			dev_kfree_skb_any(lb);
835 	}
836 	if (error >= 13) {
837 		struct sk_buff *hb;
838 		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
839 			dev_kfree_skb_any(hb);
840 	}
841 	if (error >= 12) {
842 		kfree(card->rsq.org);
843 	}
844 	if (error >= 11) {
845 		kfree(card->tsq.org);
846 	}
847 	if (error >= 10) {
848 		free_irq(card->pcidev->irq, card);
849 	}
850 	if (error >= 4) {
851 		iounmap(card->membase);
852 	}
853 	if (error >= 3) {
854 		pci_disable_device(card->pcidev);
855 		kfree(card);
856 	}
857 }
858 
859 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
860 {
861 	scq_info *scq;
862 	int i;
863 
864 	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
865 		return NULL;
866 
867 	scq = kmalloc(sizeof(*scq), GFP_KERNEL);
868 	if (!scq)
869 		return NULL;
870         scq->org = dma_alloc_coherent(&card->pcidev->dev,
871 				      2 * size,  &scq->dma, GFP_KERNEL);
872 	if (!scq->org) {
873 		kfree(scq);
874 		return NULL;
875 	}
876 	scq->skb = kmalloc_array(size / NS_SCQE_SIZE,
877 				 sizeof(*scq->skb),
878 				 GFP_KERNEL);
879 	if (!scq->skb) {
880 		dma_free_coherent(&card->pcidev->dev,
881 				  2 * size, scq->org, scq->dma);
882 		kfree(scq);
883 		return NULL;
884 	}
885 	scq->num_entries = size / NS_SCQE_SIZE;
886 	scq->base = PTR_ALIGN(scq->org, size);
887 	scq->next = scq->base;
888 	scq->last = scq->base + (scq->num_entries - 1);
889 	scq->tail = scq->last;
890 	scq->scd = scd;
891 	scq->num_entries = size / NS_SCQE_SIZE;
892 	scq->tbd_count = 0;
893 	init_waitqueue_head(&scq->scqfull_waitq);
894 	scq->full = 0;
895 	spin_lock_init(&scq->lock);
896 
897 	for (i = 0; i < scq->num_entries; i++)
898 		scq->skb[i] = NULL;
899 
900 	return scq;
901 }
902 
903 /* For variable rate SCQ vcc must be NULL */
904 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
905 {
906 	int i;
907 
908 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
909 		for (i = 0; i < scq->num_entries; i++) {
910 			if (scq->skb[i] != NULL) {
911 				vcc = ATM_SKB(scq->skb[i])->vcc;
912 				if (vcc->pop != NULL)
913 					vcc->pop(vcc, scq->skb[i]);
914 				else
915 					dev_kfree_skb_any(scq->skb[i]);
916 			}
917 	} else {		/* vcc must be != NULL */
918 
919 		if (vcc == NULL) {
920 			printk
921 			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
922 			for (i = 0; i < scq->num_entries; i++)
923 				dev_kfree_skb_any(scq->skb[i]);
924 		} else
925 			for (i = 0; i < scq->num_entries; i++) {
926 				if (scq->skb[i] != NULL) {
927 					if (vcc->pop != NULL)
928 						vcc->pop(vcc, scq->skb[i]);
929 					else
930 						dev_kfree_skb_any(scq->skb[i]);
931 				}
932 			}
933 	}
934 	kfree(scq->skb);
935 	dma_free_coherent(&card->pcidev->dev,
936 			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
937 			       VBR_SCQSIZE : CBR_SCQSIZE),
938 			  scq->org, scq->dma);
939 	kfree(scq);
940 }
941 
942 /* The handles passed must be pointers to the sk_buff containing the small
943    or large buffer(s) cast to u32. */
944 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
945 {
946 	struct sk_buff *handle1, *handle2;
947 	int id1, id2;
948 	u32 addr1, addr2;
949 	u32 stat;
950 	unsigned long flags;
951 
952 	/* *BARF* */
953 	handle2 = NULL;
954 	addr2 = 0;
955 	handle1 = skb;
956 	addr1 = dma_map_single(&card->pcidev->dev,
957 			       skb->data,
958 			       (NS_PRV_BUFTYPE(skb) == BUF_SM
959 				? NS_SMSKBSIZE : NS_LGSKBSIZE),
960 			       DMA_TO_DEVICE);
961 	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
962 
963 #ifdef GENERAL_DEBUG
964 	if (!addr1)
965 		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
966 		       card->index);
967 #endif /* GENERAL_DEBUG */
968 
969 	stat = readl(card->membase + STAT);
970 	card->sbfqc = ns_stat_sfbqc_get(stat);
971 	card->lbfqc = ns_stat_lfbqc_get(stat);
972 	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
973 		if (!addr2) {
974 			if (card->sm_addr) {
975 				addr2 = card->sm_addr;
976 				handle2 = card->sm_handle;
977 				card->sm_addr = 0x00000000;
978 				card->sm_handle = NULL;
979 			} else {	/* (!sm_addr) */
980 
981 				card->sm_addr = addr1;
982 				card->sm_handle = handle1;
983 			}
984 		}
985 	} else {		/* buf_type == BUF_LG */
986 
987 		if (!addr2) {
988 			if (card->lg_addr) {
989 				addr2 = card->lg_addr;
990 				handle2 = card->lg_handle;
991 				card->lg_addr = 0x00000000;
992 				card->lg_handle = NULL;
993 			} else {	/* (!lg_addr) */
994 
995 				card->lg_addr = addr1;
996 				card->lg_handle = handle1;
997 			}
998 		}
999 	}
1000 
1001 	if (addr2) {
1002 		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1003 			if (card->sbfqc >= card->sbnr.max) {
1004 				skb_unlink(handle1, &card->sbpool.queue);
1005 				dev_kfree_skb_any(handle1);
1006 				skb_unlink(handle2, &card->sbpool.queue);
1007 				dev_kfree_skb_any(handle2);
1008 				return;
1009 			} else
1010 				card->sbfqc += 2;
1011 		} else {	/* (buf_type == BUF_LG) */
1012 
1013 			if (card->lbfqc >= card->lbnr.max) {
1014 				skb_unlink(handle1, &card->lbpool.queue);
1015 				dev_kfree_skb_any(handle1);
1016 				skb_unlink(handle2, &card->lbpool.queue);
1017 				dev_kfree_skb_any(handle2);
1018 				return;
1019 			} else
1020 				card->lbfqc += 2;
1021 		}
1022 
1023 		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1024 		if (id1 < 0)
1025 			goto out;
1026 
1027 		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1028 		if (id2 < 0)
1029 			goto out;
1030 
1031 		spin_lock_irqsave(&card->res_lock, flags);
1032 		while (CMD_BUSY(card)) ;
1033 		writel(addr2, card->membase + DR3);
1034 		writel(id2, card->membase + DR2);
1035 		writel(addr1, card->membase + DR1);
1036 		writel(id1, card->membase + DR0);
1037 		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1038 		       card->membase + CMD);
1039 		spin_unlock_irqrestore(&card->res_lock, flags);
1040 
1041 		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1042 			card->index,
1043 			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1044 			addr1, addr2);
1045 	}
1046 
1047 	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1048 	    card->lbfqc >= card->lbnr.min) {
1049 		card->efbie = 1;
1050 		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1051 		       card->membase + CFG);
1052 	}
1053 
1054 out:
1055 	return;
1056 }
1057 
1058 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1059 {
1060 	u32 stat_r;
1061 	ns_dev *card;
1062 	struct atm_dev *dev;
1063 	unsigned long flags;
1064 
1065 	card = (ns_dev *) dev_id;
1066 	dev = card->atmdev;
1067 	card->intcnt++;
1068 
1069 	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1070 
1071 	spin_lock_irqsave(&card->int_lock, flags);
1072 
1073 	stat_r = readl(card->membase + STAT);
1074 
1075 	/* Transmit Status Indicator has been written to T. S. Queue */
1076 	if (stat_r & NS_STAT_TSIF) {
1077 		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1078 		process_tsq(card);
1079 		writel(NS_STAT_TSIF, card->membase + STAT);
1080 	}
1081 
1082 	/* Incomplete CS-PDU has been transmitted */
1083 	if (stat_r & NS_STAT_TXICP) {
1084 		writel(NS_STAT_TXICP, card->membase + STAT);
1085 		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1086 			 card->index);
1087 	}
1088 
1089 	/* Transmit Status Queue 7/8 full */
1090 	if (stat_r & NS_STAT_TSQF) {
1091 		writel(NS_STAT_TSQF, card->membase + STAT);
1092 		PRINTK("nicstar%d: TSQ full.\n", card->index);
1093 		process_tsq(card);
1094 	}
1095 
1096 	/* Timer overflow */
1097 	if (stat_r & NS_STAT_TMROF) {
1098 		writel(NS_STAT_TMROF, card->membase + STAT);
1099 		PRINTK("nicstar%d: Timer overflow.\n", card->index);
1100 	}
1101 
1102 	/* PHY device interrupt signal active */
1103 	if (stat_r & NS_STAT_PHYI) {
1104 		writel(NS_STAT_PHYI, card->membase + STAT);
1105 		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1106 		if (dev->phy && dev->phy->interrupt) {
1107 			dev->phy->interrupt(dev);
1108 		}
1109 	}
1110 
1111 	/* Small Buffer Queue is full */
1112 	if (stat_r & NS_STAT_SFBQF) {
1113 		writel(NS_STAT_SFBQF, card->membase + STAT);
1114 		printk("nicstar%d: Small free buffer queue is full.\n",
1115 		       card->index);
1116 	}
1117 
1118 	/* Large Buffer Queue is full */
1119 	if (stat_r & NS_STAT_LFBQF) {
1120 		writel(NS_STAT_LFBQF, card->membase + STAT);
1121 		printk("nicstar%d: Large free buffer queue is full.\n",
1122 		       card->index);
1123 	}
1124 
1125 	/* Receive Status Queue is full */
1126 	if (stat_r & NS_STAT_RSQF) {
1127 		writel(NS_STAT_RSQF, card->membase + STAT);
1128 		printk("nicstar%d: RSQ full.\n", card->index);
1129 		process_rsq(card);
1130 	}
1131 
1132 	/* Complete CS-PDU received */
1133 	if (stat_r & NS_STAT_EOPDU) {
1134 		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1135 		process_rsq(card);
1136 		writel(NS_STAT_EOPDU, card->membase + STAT);
1137 	}
1138 
1139 	/* Raw cell received */
1140 	if (stat_r & NS_STAT_RAWCF) {
1141 		writel(NS_STAT_RAWCF, card->membase + STAT);
1142 #ifndef RCQ_SUPPORT
1143 		printk("nicstar%d: Raw cell received and no support yet...\n",
1144 		       card->index);
1145 #endif /* RCQ_SUPPORT */
1146 		/* NOTE: the following procedure may keep a raw cell pending until the
1147 		   next interrupt. As this preliminary support is only meant to
1148 		   avoid buffer leakage, this is not an issue. */
1149 		while (readl(card->membase + RAWCT) != card->rawch) {
1150 
1151 			if (ns_rcqe_islast(card->rawcell)) {
1152 				struct sk_buff *oldbuf;
1153 
1154 				oldbuf = card->rcbuf;
1155 				card->rcbuf = idr_find(&card->idr,
1156 						       ns_rcqe_nextbufhandle(card->rawcell));
1157 				card->rawch = NS_PRV_DMA(card->rcbuf);
1158 				card->rawcell = (struct ns_rcqe *)
1159 						card->rcbuf->data;
1160 				recycle_rx_buf(card, oldbuf);
1161 			} else {
1162 				card->rawch += NS_RCQE_SIZE;
1163 				card->rawcell++;
1164 			}
1165 		}
1166 	}
1167 
1168 	/* Small buffer queue is empty */
1169 	if (stat_r & NS_STAT_SFBQE) {
1170 		int i;
1171 		struct sk_buff *sb;
1172 
1173 		writel(NS_STAT_SFBQE, card->membase + STAT);
1174 		printk("nicstar%d: Small free buffer queue empty.\n",
1175 		       card->index);
1176 		for (i = 0; i < card->sbnr.min; i++) {
1177 			sb = dev_alloc_skb(NS_SMSKBSIZE);
1178 			if (sb == NULL) {
1179 				writel(readl(card->membase + CFG) &
1180 				       ~NS_CFG_EFBIE, card->membase + CFG);
1181 				card->efbie = 0;
1182 				break;
1183 			}
1184 			NS_PRV_BUFTYPE(sb) = BUF_SM;
1185 			skb_queue_tail(&card->sbpool.queue, sb);
1186 			skb_reserve(sb, NS_AAL0_HEADER);
1187 			push_rxbufs(card, sb);
1188 		}
1189 		card->sbfqc = i;
1190 		process_rsq(card);
1191 	}
1192 
1193 	/* Large buffer queue empty */
1194 	if (stat_r & NS_STAT_LFBQE) {
1195 		int i;
1196 		struct sk_buff *lb;
1197 
1198 		writel(NS_STAT_LFBQE, card->membase + STAT);
1199 		printk("nicstar%d: Large free buffer queue empty.\n",
1200 		       card->index);
1201 		for (i = 0; i < card->lbnr.min; i++) {
1202 			lb = dev_alloc_skb(NS_LGSKBSIZE);
1203 			if (lb == NULL) {
1204 				writel(readl(card->membase + CFG) &
1205 				       ~NS_CFG_EFBIE, card->membase + CFG);
1206 				card->efbie = 0;
1207 				break;
1208 			}
1209 			NS_PRV_BUFTYPE(lb) = BUF_LG;
1210 			skb_queue_tail(&card->lbpool.queue, lb);
1211 			skb_reserve(lb, NS_SMBUFSIZE);
1212 			push_rxbufs(card, lb);
1213 		}
1214 		card->lbfqc = i;
1215 		process_rsq(card);
1216 	}
1217 
1218 	/* Receive Status Queue is 7/8 full */
1219 	if (stat_r & NS_STAT_RSQAF) {
1220 		writel(NS_STAT_RSQAF, card->membase + STAT);
1221 		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1222 		process_rsq(card);
1223 	}
1224 
1225 	spin_unlock_irqrestore(&card->int_lock, flags);
1226 	PRINTK("nicstar%d: end of interrupt service\n", card->index);
1227 	return IRQ_HANDLED;
1228 }
1229 
1230 static int ns_open(struct atm_vcc *vcc)
1231 {
1232 	ns_dev *card;
1233 	vc_map *vc;
1234 	unsigned long tmpl, modl;
1235 	int tcr, tcra;		/* target cell rate, and absolute value */
1236 	int n = 0;		/* Number of entries in the TST. Initialized to remove
1237 				   the compiler warning. */
1238 	u32 u32d[4];
1239 	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
1240 				   warning. How I wish compilers were clever enough to
1241 				   tell which variables can truly be used
1242 				   uninitialized... */
1243 	int inuse;		/* tx or rx vc already in use by another vcc */
1244 	short vpi = vcc->vpi;
1245 	int vci = vcc->vci;
1246 
1247 	card = (ns_dev *) vcc->dev->dev_data;
1248 	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1249 	       vci);
1250 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1251 		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1252 		return -EINVAL;
1253 	}
1254 
1255 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
1256 	vcc->dev_data = vc;
1257 
1258 	inuse = 0;
1259 	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1260 		inuse = 1;
1261 	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1262 		inuse += 2;
1263 	if (inuse) {
1264 		printk("nicstar%d: %s vci already in use.\n", card->index,
1265 		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1266 		return -EINVAL;
1267 	}
1268 
1269 	set_bit(ATM_VF_ADDR, &vcc->flags);
1270 
1271 	/* NOTE: You are not allowed to modify an open connection's QOS. To change
1272 	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1273 	   needed to do that. */
1274 	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1275 		scq_info *scq;
1276 
1277 		set_bit(ATM_VF_PARTIAL, &vcc->flags);
1278 		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1279 			/* Check requested cell rate and availability of SCD */
1280 			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1281 			    && vcc->qos.txtp.min_pcr == 0) {
1282 				PRINTK
1283 				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1284 				     card->index);
1285 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1286 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1287 				return -EINVAL;
1288 			}
1289 
1290 			tcr = atm_pcr_goal(&(vcc->qos.txtp));
1291 			tcra = tcr >= 0 ? tcr : -tcr;
1292 
1293 			PRINTK("nicstar%d: target cell rate = %d.\n",
1294 			       card->index, vcc->qos.txtp.max_pcr);
1295 
1296 			tmpl =
1297 			    (unsigned long)tcra *(unsigned long)
1298 			    NS_TST_NUM_ENTRIES;
1299 			modl = tmpl % card->max_pcr;
1300 
1301 			n = (int)(tmpl / card->max_pcr);
1302 			if (tcr > 0) {
1303 				if (modl > 0)
1304 					n++;
1305 			} else if (tcr == 0) {
1306 				if ((n =
1307 				     (card->tst_free_entries -
1308 				      NS_TST_RESERVED)) <= 0) {
1309 					PRINTK
1310 					    ("nicstar%d: no CBR bandwidth free.\n",
1311 					     card->index);
1312 					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1313 					clear_bit(ATM_VF_ADDR, &vcc->flags);
1314 					return -EINVAL;
1315 				}
1316 			}
1317 
1318 			if (n == 0) {
1319 				printk
1320 				    ("nicstar%d: selected bandwidth < granularity.\n",
1321 				     card->index);
1322 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1323 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1324 				return -EINVAL;
1325 			}
1326 
1327 			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1328 				PRINTK
1329 				    ("nicstar%d: not enough free CBR bandwidth.\n",
1330 				     card->index);
1331 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1332 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1333 				return -EINVAL;
1334 			} else
1335 				card->tst_free_entries -= n;
1336 
1337 			XPRINTK("nicstar%d: writing %d tst entries.\n",
1338 				card->index, n);
1339 			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1340 				if (card->scd2vc[frscdi] == NULL) {
1341 					card->scd2vc[frscdi] = vc;
1342 					break;
1343 				}
1344 			}
1345 			if (frscdi == NS_FRSCD_NUM) {
1346 				PRINTK
1347 				    ("nicstar%d: no SCD available for CBR channel.\n",
1348 				     card->index);
1349 				card->tst_free_entries += n;
1350 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1351 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1352 				return -EBUSY;
1353 			}
1354 
1355 			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1356 
1357 			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1358 			if (scq == NULL) {
1359 				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1360 				       card->index);
1361 				card->scd2vc[frscdi] = NULL;
1362 				card->tst_free_entries += n;
1363 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1364 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1365 				return -ENOMEM;
1366 			}
1367 			vc->scq = scq;
1368 			u32d[0] = scq_virt_to_bus(scq, scq->base);
1369 			u32d[1] = (u32) 0x00000000;
1370 			u32d[2] = (u32) 0xffffffff;
1371 			u32d[3] = (u32) 0x00000000;
1372 			ns_write_sram(card, vc->cbr_scd, u32d, 4);
1373 
1374 			fill_tst(card, n, vc);
1375 		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1376 			vc->cbr_scd = 0x00000000;
1377 			vc->scq = card->scq0;
1378 		}
1379 
1380 		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1381 			vc->tx = 1;
1382 			vc->tx_vcc = vcc;
1383 			vc->tbd_count = 0;
1384 		}
1385 		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1386 			u32 status;
1387 
1388 			vc->rx = 1;
1389 			vc->rx_vcc = vcc;
1390 			vc->rx_iov = NULL;
1391 
1392 			/* Open the connection in hardware */
1393 			if (vcc->qos.aal == ATM_AAL5)
1394 				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1395 			else	/* vcc->qos.aal == ATM_AAL0 */
1396 				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1397 #ifdef RCQ_SUPPORT
1398 			status |= NS_RCTE_RAWCELLINTEN;
1399 #endif /* RCQ_SUPPORT */
1400 			ns_write_sram(card,
1401 				      NS_RCT +
1402 				      (vpi << card->vcibits | vci) *
1403 				      NS_RCT_ENTRY_SIZE, &status, 1);
1404 		}
1405 
1406 	}
1407 
1408 	set_bit(ATM_VF_READY, &vcc->flags);
1409 	return 0;
1410 }
1411 
1412 static void ns_close(struct atm_vcc *vcc)
1413 {
1414 	vc_map *vc;
1415 	ns_dev *card;
1416 	u32 data;
1417 	int i;
1418 
1419 	vc = vcc->dev_data;
1420 	card = vcc->dev->dev_data;
1421 	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1422 	       (int)vcc->vpi, vcc->vci);
1423 
1424 	clear_bit(ATM_VF_READY, &vcc->flags);
1425 
1426 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1427 		u32 addr;
1428 		unsigned long flags;
1429 
1430 		addr =
1431 		    NS_RCT +
1432 		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1433 		spin_lock_irqsave(&card->res_lock, flags);
1434 		while (CMD_BUSY(card)) ;
1435 		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1436 		       card->membase + CMD);
1437 		spin_unlock_irqrestore(&card->res_lock, flags);
1438 
1439 		vc->rx = 0;
1440 		if (vc->rx_iov != NULL) {
1441 			struct sk_buff *iovb;
1442 			u32 stat;
1443 
1444 			stat = readl(card->membase + STAT);
1445 			card->sbfqc = ns_stat_sfbqc_get(stat);
1446 			card->lbfqc = ns_stat_lfbqc_get(stat);
1447 
1448 			PRINTK
1449 			    ("nicstar%d: closing a VC with pending rx buffers.\n",
1450 			     card->index);
1451 			iovb = vc->rx_iov;
1452 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1453 					      NS_PRV_IOVCNT(iovb));
1454 			NS_PRV_IOVCNT(iovb) = 0;
1455 			spin_lock_irqsave(&card->int_lock, flags);
1456 			recycle_iov_buf(card, iovb);
1457 			spin_unlock_irqrestore(&card->int_lock, flags);
1458 			vc->rx_iov = NULL;
1459 		}
1460 	}
1461 
1462 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1463 		vc->tx = 0;
1464 	}
1465 
1466 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1467 		unsigned long flags;
1468 		ns_scqe *scqep;
1469 		scq_info *scq;
1470 
1471 		scq = vc->scq;
1472 
1473 		for (;;) {
1474 			spin_lock_irqsave(&scq->lock, flags);
1475 			scqep = scq->next;
1476 			if (scqep == scq->base)
1477 				scqep = scq->last;
1478 			else
1479 				scqep--;
1480 			if (scqep == scq->tail) {
1481 				spin_unlock_irqrestore(&scq->lock, flags);
1482 				break;
1483 			}
1484 			/* If the last entry is not a TSR, place one in the SCQ in order to
1485 			   be able to completely drain it and then close. */
1486 			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1487 				ns_scqe tsr;
1488 				u32 scdi, scqi;
1489 				u32 data;
1490 				int index;
1491 
1492 				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1493 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1494 				scqi = scq->next - scq->base;
1495 				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1496 				tsr.word_3 = 0x00000000;
1497 				tsr.word_4 = 0x00000000;
1498 				*scq->next = tsr;
1499 				index = (int)scqi;
1500 				scq->skb[index] = NULL;
1501 				if (scq->next == scq->last)
1502 					scq->next = scq->base;
1503 				else
1504 					scq->next++;
1505 				data = scq_virt_to_bus(scq, scq->next);
1506 				ns_write_sram(card, scq->scd, &data, 1);
1507 			}
1508 			spin_unlock_irqrestore(&scq->lock, flags);
1509 			schedule();
1510 		}
1511 
1512 		/* Free all TST entries */
1513 		data = NS_TST_OPCODE_VARIABLE;
1514 		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1515 			if (card->tste2vc[i] == vc) {
1516 				ns_write_sram(card, card->tst_addr + i, &data,
1517 					      1);
1518 				card->tste2vc[i] = NULL;
1519 				card->tst_free_entries++;
1520 			}
1521 		}
1522 
1523 		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1524 		free_scq(card, vc->scq, vcc);
1525 	}
1526 
1527 	/* remove all references to vcc before deleting it */
1528 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1529 		unsigned long flags;
1530 		scq_info *scq = card->scq0;
1531 
1532 		spin_lock_irqsave(&scq->lock, flags);
1533 
1534 		for (i = 0; i < scq->num_entries; i++) {
1535 			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1536 				ATM_SKB(scq->skb[i])->vcc = NULL;
1537 				atm_return(vcc, scq->skb[i]->truesize);
1538 				PRINTK
1539 				    ("nicstar: deleted pending vcc mapping\n");
1540 			}
1541 		}
1542 
1543 		spin_unlock_irqrestore(&scq->lock, flags);
1544 	}
1545 
1546 	vcc->dev_data = NULL;
1547 	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1548 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1549 
1550 #ifdef RX_DEBUG
1551 	{
1552 		u32 stat, cfg;
1553 		stat = readl(card->membase + STAT);
1554 		cfg = readl(card->membase + CFG);
1555 		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
1556 		printk
1557 		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
1558 		     card->tsq.base, card->tsq.next,
1559 		     card->tsq.last, readl(card->membase + TSQT));
1560 		printk
1561 		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
1562 		     card->rsq.base, card->rsq.next,
1563 		     card->rsq.last, readl(card->membase + RSQT));
1564 		printk("Empty free buffer queue interrupt %s \n",
1565 		       card->efbie ? "enabled" : "disabled");
1566 		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
1567 		       ns_stat_sfbqc_get(stat), card->sbpool.count,
1568 		       ns_stat_lfbqc_get(stat), card->lbpool.count);
1569 		printk("hbpool.count = %d  iovpool.count = %d \n",
1570 		       card->hbpool.count, card->iovpool.count);
1571 	}
1572 #endif /* RX_DEBUG */
1573 }
1574 
1575 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1576 {
1577 	u32 new_tst;
1578 	unsigned long cl;
1579 	int e, r;
1580 	u32 data;
1581 
1582 	/* It would be very complicated to keep the two TSTs synchronized while
1583 	   assuring that writes are only made to the inactive TST. So, for now I
1584 	   will use only one TST. If problems occur, I will change this again */
1585 
1586 	new_tst = card->tst_addr;
1587 
1588 	/* Fill procedure */
1589 
1590 	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1591 		if (card->tste2vc[e] == NULL)
1592 			break;
1593 	}
1594 	if (e == NS_TST_NUM_ENTRIES) {
1595 		printk("nicstar%d: No free TST entries found. \n", card->index);
1596 		return;
1597 	}
1598 
1599 	r = n;
1600 	cl = NS_TST_NUM_ENTRIES;
1601 	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1602 
1603 	while (r > 0) {
1604 		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1605 			card->tste2vc[e] = vc;
1606 			ns_write_sram(card, new_tst + e, &data, 1);
1607 			cl -= NS_TST_NUM_ENTRIES;
1608 			r--;
1609 		}
1610 
1611 		if (++e == NS_TST_NUM_ENTRIES) {
1612 			e = 0;
1613 		}
1614 		cl += n;
1615 	}
1616 
1617 	/* End of fill procedure */
1618 
1619 	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1620 	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1621 	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1622 	card->tst_addr = new_tst;
1623 }
1624 
1625 static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
1626 {
1627 	ns_dev *card;
1628 	vc_map *vc;
1629 	scq_info *scq;
1630 	unsigned long buflen;
1631 	ns_scqe scqe;
1632 	u32 flags;		/* TBD flags, not CPU flags */
1633 
1634 	card = vcc->dev->dev_data;
1635 	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1636 	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1637 		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1638 		       card->index);
1639 		atomic_inc(&vcc->stats->tx_err);
1640 		dev_kfree_skb_any(skb);
1641 		return -EINVAL;
1642 	}
1643 
1644 	if (!vc->tx) {
1645 		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1646 		       card->index);
1647 		atomic_inc(&vcc->stats->tx_err);
1648 		dev_kfree_skb_any(skb);
1649 		return -EINVAL;
1650 	}
1651 
1652 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1653 		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1654 		       card->index);
1655 		atomic_inc(&vcc->stats->tx_err);
1656 		dev_kfree_skb_any(skb);
1657 		return -EINVAL;
1658 	}
1659 
1660 	if (skb_shinfo(skb)->nr_frags != 0) {
1661 		printk("nicstar%d: No scatter-gather yet.\n", card->index);
1662 		atomic_inc(&vcc->stats->tx_err);
1663 		dev_kfree_skb_any(skb);
1664 		return -EINVAL;
1665 	}
1666 
1667 	ATM_SKB(skb)->vcc = vcc;
1668 
1669 	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1670 					 skb->len, DMA_TO_DEVICE);
1671 
1672 	if (vcc->qos.aal == ATM_AAL5) {
1673 		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
1674 		flags = NS_TBD_AAL5;
1675 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1676 		scqe.word_3 = cpu_to_le32(skb->len);
1677 		scqe.word_4 =
1678 		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1679 				    ATM_SKB(skb)->
1680 				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1681 		flags |= NS_TBD_EOPDU;
1682 	} else {		/* (vcc->qos.aal == ATM_AAL0) */
1683 
1684 		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
1685 		flags = NS_TBD_AAL0;
1686 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1687 		scqe.word_3 = cpu_to_le32(0x00000000);
1688 		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
1689 			flags |= NS_TBD_EOPDU;
1690 		scqe.word_4 =
1691 		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1692 		/* Force the VPI/VCI to be the same as in VCC struct */
1693 		scqe.word_4 |=
1694 		    cpu_to_le32((((u32) vcc->
1695 				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1696 							      vci) <<
1697 				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1698 	}
1699 
1700 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1701 		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1702 		scq = ((vc_map *) vcc->dev_data)->scq;
1703 	} else {
1704 		scqe.word_1 =
1705 		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1706 		scq = card->scq0;
1707 	}
1708 
1709 	if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
1710 		atomic_inc(&vcc->stats->tx_err);
1711 		dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
1712 				 DMA_TO_DEVICE);
1713 		dev_kfree_skb_any(skb);
1714 		return -EIO;
1715 	}
1716 	atomic_inc(&vcc->stats->tx);
1717 
1718 	return 0;
1719 }
1720 
1721 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1722 {
1723 	return _ns_send(vcc, skb, true);
1724 }
1725 
1726 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
1727 {
1728 	return _ns_send(vcc, skb, false);
1729 }
1730 
1731 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1732 		     struct sk_buff *skb, bool may_sleep)
1733 {
1734 	unsigned long flags;
1735 	ns_scqe tsr;
1736 	u32 scdi, scqi;
1737 	int scq_is_vbr;
1738 	u32 data;
1739 	int index;
1740 
1741 	spin_lock_irqsave(&scq->lock, flags);
1742 	while (scq->tail == scq->next) {
1743 		if (!may_sleep) {
1744 			spin_unlock_irqrestore(&scq->lock, flags);
1745 			printk("nicstar%d: Error pushing TBD.\n", card->index);
1746 			return 1;
1747 		}
1748 
1749 		scq->full = 1;
1750 		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1751 							  scq->tail != scq->next,
1752 							  scq->lock,
1753 							  SCQFULL_TIMEOUT);
1754 
1755 		if (scq->full) {
1756 			spin_unlock_irqrestore(&scq->lock, flags);
1757 			printk("nicstar%d: Timeout pushing TBD.\n",
1758 			       card->index);
1759 			return 1;
1760 		}
1761 	}
1762 	*scq->next = *tbd;
1763 	index = (int)(scq->next - scq->base);
1764 	scq->skb[index] = skb;
1765 	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1766 		card->index, skb, index);
1767 	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1768 		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1769 		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1770 		scq->next);
1771 	if (scq->next == scq->last)
1772 		scq->next = scq->base;
1773 	else
1774 		scq->next++;
1775 
1776 	vc->tbd_count++;
1777 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1778 		scq->tbd_count++;
1779 		scq_is_vbr = 1;
1780 	} else
1781 		scq_is_vbr = 0;
1782 
1783 	if (vc->tbd_count >= MAX_TBD_PER_VC
1784 	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1785 		int has_run = 0;
1786 
1787 		while (scq->tail == scq->next) {
1788 			if (!may_sleep) {
1789 				data = scq_virt_to_bus(scq, scq->next);
1790 				ns_write_sram(card, scq->scd, &data, 1);
1791 				spin_unlock_irqrestore(&scq->lock, flags);
1792 				printk("nicstar%d: Error pushing TSR.\n",
1793 				       card->index);
1794 				return 0;
1795 			}
1796 
1797 			scq->full = 1;
1798 			if (has_run++)
1799 				break;
1800 			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1801 								  scq->tail != scq->next,
1802 								  scq->lock,
1803 								  SCQFULL_TIMEOUT);
1804 		}
1805 
1806 		if (!scq->full) {
1807 			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1808 			if (scq_is_vbr)
1809 				scdi = NS_TSR_SCDISVBR;
1810 			else
1811 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1812 			scqi = scq->next - scq->base;
1813 			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1814 			tsr.word_3 = 0x00000000;
1815 			tsr.word_4 = 0x00000000;
1816 
1817 			*scq->next = tsr;
1818 			index = (int)scqi;
1819 			scq->skb[index] = NULL;
1820 			XPRINTK
1821 			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1822 			     card->index, le32_to_cpu(tsr.word_1),
1823 			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1824 			     le32_to_cpu(tsr.word_4), scq->next);
1825 			if (scq->next == scq->last)
1826 				scq->next = scq->base;
1827 			else
1828 				scq->next++;
1829 			vc->tbd_count = 0;
1830 			scq->tbd_count = 0;
1831 		} else
1832 			PRINTK("nicstar%d: Timeout pushing TSR.\n",
1833 			       card->index);
1834 	}
1835 	data = scq_virt_to_bus(scq, scq->next);
1836 	ns_write_sram(card, scq->scd, &data, 1);
1837 
1838 	spin_unlock_irqrestore(&scq->lock, flags);
1839 
1840 	return 0;
1841 }
1842 
1843 static void process_tsq(ns_dev * card)
1844 {
1845 	u32 scdi;
1846 	scq_info *scq;
1847 	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1848 	int serviced_entries;	/* flag indicating at least on entry was serviced */
1849 
1850 	serviced_entries = 0;
1851 
1852 	if (card->tsq.next == card->tsq.last)
1853 		one_ahead = card->tsq.base;
1854 	else
1855 		one_ahead = card->tsq.next + 1;
1856 
1857 	if (one_ahead == card->tsq.last)
1858 		two_ahead = card->tsq.base;
1859 	else
1860 		two_ahead = one_ahead + 1;
1861 
1862 	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1863 	       !ns_tsi_isempty(two_ahead))
1864 		/* At most two empty, as stated in the 77201 errata */
1865 	{
1866 		serviced_entries = 1;
1867 
1868 		/* Skip the one or two possible empty entries */
1869 		while (ns_tsi_isempty(card->tsq.next)) {
1870 			if (card->tsq.next == card->tsq.last)
1871 				card->tsq.next = card->tsq.base;
1872 			else
1873 				card->tsq.next++;
1874 		}
1875 
1876 		if (!ns_tsi_tmrof(card->tsq.next)) {
1877 			scdi = ns_tsi_getscdindex(card->tsq.next);
1878 			if (scdi == NS_TSI_SCDISVBR)
1879 				scq = card->scq0;
1880 			else {
1881 				if (card->scd2vc[scdi] == NULL) {
1882 					printk
1883 					    ("nicstar%d: could not find VC from SCD index.\n",
1884 					     card->index);
1885 					ns_tsi_init(card->tsq.next);
1886 					return;
1887 				}
1888 				scq = card->scd2vc[scdi]->scq;
1889 			}
1890 			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1891 			scq->full = 0;
1892 			wake_up_interruptible(&(scq->scqfull_waitq));
1893 		}
1894 
1895 		ns_tsi_init(card->tsq.next);
1896 		previous = card->tsq.next;
1897 		if (card->tsq.next == card->tsq.last)
1898 			card->tsq.next = card->tsq.base;
1899 		else
1900 			card->tsq.next++;
1901 
1902 		if (card->tsq.next == card->tsq.last)
1903 			one_ahead = card->tsq.base;
1904 		else
1905 			one_ahead = card->tsq.next + 1;
1906 
1907 		if (one_ahead == card->tsq.last)
1908 			two_ahead = card->tsq.base;
1909 		else
1910 			two_ahead = one_ahead + 1;
1911 	}
1912 
1913 	if (serviced_entries)
1914 		writel(PTR_DIFF(previous, card->tsq.base),
1915 		       card->membase + TSQH);
1916 }
1917 
1918 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1919 {
1920 	struct atm_vcc *vcc;
1921 	struct sk_buff *skb;
1922 	int i;
1923 	unsigned long flags;
1924 
1925 	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1926 		card->index, scq, pos);
1927 	if (pos >= scq->num_entries) {
1928 		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1929 		return;
1930 	}
1931 
1932 	spin_lock_irqsave(&scq->lock, flags);
1933 	i = (int)(scq->tail - scq->base);
1934 	if (++i == scq->num_entries)
1935 		i = 0;
1936 	while (i != pos) {
1937 		skb = scq->skb[i];
1938 		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1939 			card->index, skb, i);
1940 		if (skb != NULL) {
1941 			dma_unmap_single(&card->pcidev->dev,
1942 					 NS_PRV_DMA(skb),
1943 					 skb->len,
1944 					 DMA_TO_DEVICE);
1945 			vcc = ATM_SKB(skb)->vcc;
1946 			if (vcc && vcc->pop != NULL) {
1947 				vcc->pop(vcc, skb);
1948 			} else {
1949 				dev_kfree_skb_irq(skb);
1950 			}
1951 			scq->skb[i] = NULL;
1952 		}
1953 		if (++i == scq->num_entries)
1954 			i = 0;
1955 	}
1956 	scq->tail = scq->base + pos;
1957 	spin_unlock_irqrestore(&scq->lock, flags);
1958 }
1959 
1960 static void process_rsq(ns_dev * card)
1961 {
1962 	ns_rsqe *previous;
1963 
1964 	if (!ns_rsqe_valid(card->rsq.next))
1965 		return;
1966 	do {
1967 		dequeue_rx(card, card->rsq.next);
1968 		ns_rsqe_init(card->rsq.next);
1969 		previous = card->rsq.next;
1970 		if (card->rsq.next == card->rsq.last)
1971 			card->rsq.next = card->rsq.base;
1972 		else
1973 			card->rsq.next++;
1974 	} while (ns_rsqe_valid(card->rsq.next));
1975 	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1976 }
1977 
1978 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1979 {
1980 	u32 vpi, vci;
1981 	vc_map *vc;
1982 	struct sk_buff *iovb;
1983 	struct iovec *iov;
1984 	struct atm_vcc *vcc;
1985 	struct sk_buff *skb;
1986 	unsigned short aal5_len;
1987 	int len;
1988 	u32 stat;
1989 	u32 id;
1990 
1991 	stat = readl(card->membase + STAT);
1992 	card->sbfqc = ns_stat_sfbqc_get(stat);
1993 	card->lbfqc = ns_stat_lfbqc_get(stat);
1994 
1995 	id = le32_to_cpu(rsqe->buffer_handle);
1996 	skb = idr_remove(&card->idr, id);
1997 	if (!skb) {
1998 		RXPRINTK(KERN_ERR
1999 			 "nicstar%d: skb not found!\n", card->index);
2000 		return;
2001 	}
2002 	dma_sync_single_for_cpu(&card->pcidev->dev,
2003 				NS_PRV_DMA(skb),
2004 				(NS_PRV_BUFTYPE(skb) == BUF_SM
2005 				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2006 				DMA_FROM_DEVICE);
2007 	dma_unmap_single(&card->pcidev->dev,
2008 			 NS_PRV_DMA(skb),
2009 			 (NS_PRV_BUFTYPE(skb) == BUF_SM
2010 			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2011 			 DMA_FROM_DEVICE);
2012 	vpi = ns_rsqe_vpi(rsqe);
2013 	vci = ns_rsqe_vci(rsqe);
2014 	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2015 		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2016 		       card->index, vpi, vci);
2017 		recycle_rx_buf(card, skb);
2018 		return;
2019 	}
2020 
2021 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
2022 	if (!vc->rx) {
2023 		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2024 			 card->index, vpi, vci);
2025 		recycle_rx_buf(card, skb);
2026 		return;
2027 	}
2028 
2029 	vcc = vc->rx_vcc;
2030 
2031 	if (vcc->qos.aal == ATM_AAL0) {
2032 		struct sk_buff *sb;
2033 		unsigned char *cell;
2034 		int i;
2035 
2036 		cell = skb->data;
2037 		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2038 			sb = dev_alloc_skb(NS_SMSKBSIZE);
2039 			if (!sb) {
2040 				printk
2041 				    ("nicstar%d: Can't allocate buffers for aal0.\n",
2042 				     card->index);
2043 				atomic_add(i, &vcc->stats->rx_drop);
2044 				break;
2045 			}
2046 			if (!atm_charge(vcc, sb->truesize)) {
2047 				RXPRINTK
2048 				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2049 				     card->index);
2050 				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
2051 				dev_kfree_skb_any(sb);
2052 				break;
2053 			}
2054 			/* Rebuild the header */
2055 			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2056 			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2057 			if (i == 1 && ns_rsqe_eopdu(rsqe))
2058 				*((u32 *) sb->data) |= 0x00000002;
2059 			skb_put(sb, NS_AAL0_HEADER);
2060 			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2061 			skb_put(sb, ATM_CELL_PAYLOAD);
2062 			ATM_SKB(sb)->vcc = vcc;
2063 			__net_timestamp(sb);
2064 			vcc->push(vcc, sb);
2065 			atomic_inc(&vcc->stats->rx);
2066 			cell += ATM_CELL_PAYLOAD;
2067 		}
2068 
2069 		recycle_rx_buf(card, skb);
2070 		return;
2071 	}
2072 
2073 	/* To reach this point, the AAL layer can only be AAL5 */
2074 
2075 	if ((iovb = vc->rx_iov) == NULL) {
2076 		iovb = skb_dequeue(&(card->iovpool.queue));
2077 		if (iovb == NULL) {	/* No buffers in the queue */
2078 			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2079 			if (iovb == NULL) {
2080 				printk("nicstar%d: Out of iovec buffers.\n",
2081 				       card->index);
2082 				atomic_inc(&vcc->stats->rx_drop);
2083 				recycle_rx_buf(card, skb);
2084 				return;
2085 			}
2086 			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2087 		} else if (--card->iovpool.count < card->iovnr.min) {
2088 			struct sk_buff *new_iovb;
2089 			if ((new_iovb =
2090 			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2091 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2092 				skb_queue_tail(&card->iovpool.queue, new_iovb);
2093 				card->iovpool.count++;
2094 			}
2095 		}
2096 		vc->rx_iov = iovb;
2097 		NS_PRV_IOVCNT(iovb) = 0;
2098 		iovb->len = 0;
2099 		iovb->data = iovb->head;
2100 		skb_reset_tail_pointer(iovb);
2101 		/* IMPORTANT: a pointer to the sk_buff containing the small or large
2102 		   buffer is stored as iovec base, NOT a pointer to the
2103 		   small or large buffer itself. */
2104 	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2105 		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2106 		atomic_inc(&vcc->stats->rx_err);
2107 		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2108 				      NS_MAX_IOVECS);
2109 		NS_PRV_IOVCNT(iovb) = 0;
2110 		iovb->len = 0;
2111 		iovb->data = iovb->head;
2112 		skb_reset_tail_pointer(iovb);
2113 	}
2114 	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2115 	iov->iov_base = (void *)skb;
2116 	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2117 	iovb->len += iov->iov_len;
2118 
2119 #ifdef EXTRA_DEBUG
2120 	if (NS_PRV_IOVCNT(iovb) == 1) {
2121 		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2122 			printk
2123 			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
2124 			     card->index);
2125 			which_list(card, skb);
2126 			atomic_inc(&vcc->stats->rx_err);
2127 			recycle_rx_buf(card, skb);
2128 			vc->rx_iov = NULL;
2129 			recycle_iov_buf(card, iovb);
2130 			return;
2131 		}
2132 	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */
2133 
2134 		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2135 			printk
2136 			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
2137 			     card->index);
2138 			which_list(card, skb);
2139 			atomic_inc(&vcc->stats->rx_err);
2140 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2141 					      NS_PRV_IOVCNT(iovb));
2142 			vc->rx_iov = NULL;
2143 			recycle_iov_buf(card, iovb);
2144 			return;
2145 		}
2146 	}
2147 #endif /* EXTRA_DEBUG */
2148 
2149 	if (ns_rsqe_eopdu(rsqe)) {
2150 		/* This works correctly regardless of the endianness of the host */
2151 		unsigned char *L1L2 = (unsigned char *)
2152 						(skb->data + iov->iov_len - 6);
2153 		aal5_len = L1L2[0] << 8 | L1L2[1];
2154 		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2155 		if (ns_rsqe_crcerr(rsqe) ||
2156 		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2157 			printk("nicstar%d: AAL5 CRC error", card->index);
2158 			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2159 				printk(" - PDU size mismatch.\n");
2160 			else
2161 				printk(".\n");
2162 			atomic_inc(&vcc->stats->rx_err);
2163 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2164 					      NS_PRV_IOVCNT(iovb));
2165 			vc->rx_iov = NULL;
2166 			recycle_iov_buf(card, iovb);
2167 			return;
2168 		}
2169 
2170 		/* By this point we (hopefully) have a complete SDU without errors. */
2171 
2172 		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
2173 			/* skb points to a small buffer */
2174 			if (!atm_charge(vcc, skb->truesize)) {
2175 				push_rxbufs(card, skb);
2176 				atomic_inc(&vcc->stats->rx_drop);
2177 			} else {
2178 				skb_put(skb, len);
2179 				dequeue_sm_buf(card, skb);
2180 				ATM_SKB(skb)->vcc = vcc;
2181 				__net_timestamp(skb);
2182 				vcc->push(vcc, skb);
2183 				atomic_inc(&vcc->stats->rx);
2184 			}
2185 		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
2186 			struct sk_buff *sb;
2187 
2188 			sb = (struct sk_buff *)(iov - 1)->iov_base;
2189 			/* skb points to a large buffer */
2190 
2191 			if (len <= NS_SMBUFSIZE) {
2192 				if (!atm_charge(vcc, sb->truesize)) {
2193 					push_rxbufs(card, sb);
2194 					atomic_inc(&vcc->stats->rx_drop);
2195 				} else {
2196 					skb_put(sb, len);
2197 					dequeue_sm_buf(card, sb);
2198 					ATM_SKB(sb)->vcc = vcc;
2199 					__net_timestamp(sb);
2200 					vcc->push(vcc, sb);
2201 					atomic_inc(&vcc->stats->rx);
2202 				}
2203 
2204 				push_rxbufs(card, skb);
2205 
2206 			} else {	/* len > NS_SMBUFSIZE, the usual case */
2207 
2208 				if (!atm_charge(vcc, skb->truesize)) {
2209 					push_rxbufs(card, skb);
2210 					atomic_inc(&vcc->stats->rx_drop);
2211 				} else {
2212 					dequeue_lg_buf(card, skb);
2213 					skb_push(skb, NS_SMBUFSIZE);
2214 					skb_copy_from_linear_data(sb, skb->data,
2215 								  NS_SMBUFSIZE);
2216 					skb_put(skb, len - NS_SMBUFSIZE);
2217 					ATM_SKB(skb)->vcc = vcc;
2218 					__net_timestamp(skb);
2219 					vcc->push(vcc, skb);
2220 					atomic_inc(&vcc->stats->rx);
2221 				}
2222 
2223 				push_rxbufs(card, sb);
2224 
2225 			}
2226 
2227 		} else {	/* Must push a huge buffer */
2228 
2229 			struct sk_buff *hb, *sb, *lb;
2230 			int remaining, tocopy;
2231 			int j;
2232 
2233 			hb = skb_dequeue(&(card->hbpool.queue));
2234 			if (hb == NULL) {	/* No buffers in the queue */
2235 
2236 				hb = dev_alloc_skb(NS_HBUFSIZE);
2237 				if (hb == NULL) {
2238 					printk
2239 					    ("nicstar%d: Out of huge buffers.\n",
2240 					     card->index);
2241 					atomic_inc(&vcc->stats->rx_drop);
2242 					recycle_iovec_rx_bufs(card,
2243 							      (struct iovec *)
2244 							      iovb->data,
2245 							      NS_PRV_IOVCNT(iovb));
2246 					vc->rx_iov = NULL;
2247 					recycle_iov_buf(card, iovb);
2248 					return;
2249 				} else if (card->hbpool.count < card->hbnr.min) {
2250 					struct sk_buff *new_hb;
2251 					if ((new_hb =
2252 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2253 					    NULL) {
2254 						skb_queue_tail(&card->hbpool.
2255 							       queue, new_hb);
2256 						card->hbpool.count++;
2257 					}
2258 				}
2259 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2260 			} else if (--card->hbpool.count < card->hbnr.min) {
2261 				struct sk_buff *new_hb;
2262 				if ((new_hb =
2263 				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2264 					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2265 					skb_queue_tail(&card->hbpool.queue,
2266 						       new_hb);
2267 					card->hbpool.count++;
2268 				}
2269 				if (card->hbpool.count < card->hbnr.min) {
2270 					if ((new_hb =
2271 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2272 					    NULL) {
2273 						NS_PRV_BUFTYPE(new_hb) =
2274 						    BUF_NONE;
2275 						skb_queue_tail(&card->hbpool.
2276 							       queue, new_hb);
2277 						card->hbpool.count++;
2278 					}
2279 				}
2280 			}
2281 
2282 			iov = (struct iovec *)iovb->data;
2283 
2284 			if (!atm_charge(vcc, hb->truesize)) {
2285 				recycle_iovec_rx_bufs(card, iov,
2286 						      NS_PRV_IOVCNT(iovb));
2287 				if (card->hbpool.count < card->hbnr.max) {
2288 					skb_queue_tail(&card->hbpool.queue, hb);
2289 					card->hbpool.count++;
2290 				} else
2291 					dev_kfree_skb_any(hb);
2292 				atomic_inc(&vcc->stats->rx_drop);
2293 			} else {
2294 				/* Copy the small buffer to the huge buffer */
2295 				sb = (struct sk_buff *)iov->iov_base;
2296 				skb_copy_from_linear_data(sb, hb->data,
2297 							  iov->iov_len);
2298 				skb_put(hb, iov->iov_len);
2299 				remaining = len - iov->iov_len;
2300 				iov++;
2301 				/* Free the small buffer */
2302 				push_rxbufs(card, sb);
2303 
2304 				/* Copy all large buffers to the huge buffer and free them */
2305 				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2306 					lb = (struct sk_buff *)iov->iov_base;
2307 					tocopy =
2308 					    min_t(int, remaining, iov->iov_len);
2309 					skb_copy_from_linear_data(lb,
2310 								  skb_tail_pointer
2311 								  (hb), tocopy);
2312 					skb_put(hb, tocopy);
2313 					iov++;
2314 					remaining -= tocopy;
2315 					push_rxbufs(card, lb);
2316 				}
2317 #ifdef EXTRA_DEBUG
2318 				if (remaining != 0 || hb->len != len)
2319 					printk
2320 					    ("nicstar%d: Huge buffer len mismatch.\n",
2321 					     card->index);
2322 #endif /* EXTRA_DEBUG */
2323 				ATM_SKB(hb)->vcc = vcc;
2324 				__net_timestamp(hb);
2325 				vcc->push(vcc, hb);
2326 				atomic_inc(&vcc->stats->rx);
2327 			}
2328 		}
2329 
2330 		vc->rx_iov = NULL;
2331 		recycle_iov_buf(card, iovb);
2332 	}
2333 
2334 }
2335 
2336 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2337 {
2338 	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2339 		printk("nicstar%d: What kind of rx buffer is this?\n",
2340 		       card->index);
2341 		dev_kfree_skb_any(skb);
2342 	} else
2343 		push_rxbufs(card, skb);
2344 }
2345 
2346 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2347 {
2348 	while (count-- > 0)
2349 		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2350 }
2351 
2352 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2353 {
2354 	if (card->iovpool.count < card->iovnr.max) {
2355 		skb_queue_tail(&card->iovpool.queue, iovb);
2356 		card->iovpool.count++;
2357 	} else
2358 		dev_kfree_skb_any(iovb);
2359 }
2360 
2361 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2362 {
2363 	skb_unlink(sb, &card->sbpool.queue);
2364 	if (card->sbfqc < card->sbnr.init) {
2365 		struct sk_buff *new_sb;
2366 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2367 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2368 			skb_queue_tail(&card->sbpool.queue, new_sb);
2369 			skb_reserve(new_sb, NS_AAL0_HEADER);
2370 			push_rxbufs(card, new_sb);
2371 		}
2372 	}
2373 	if (card->sbfqc < card->sbnr.init)
2374 	{
2375 		struct sk_buff *new_sb;
2376 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2377 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2378 			skb_queue_tail(&card->sbpool.queue, new_sb);
2379 			skb_reserve(new_sb, NS_AAL0_HEADER);
2380 			push_rxbufs(card, new_sb);
2381 		}
2382 	}
2383 }
2384 
2385 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2386 {
2387 	skb_unlink(lb, &card->lbpool.queue);
2388 	if (card->lbfqc < card->lbnr.init) {
2389 		struct sk_buff *new_lb;
2390 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2391 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2392 			skb_queue_tail(&card->lbpool.queue, new_lb);
2393 			skb_reserve(new_lb, NS_SMBUFSIZE);
2394 			push_rxbufs(card, new_lb);
2395 		}
2396 	}
2397 	if (card->lbfqc < card->lbnr.init)
2398 	{
2399 		struct sk_buff *new_lb;
2400 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2401 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2402 			skb_queue_tail(&card->lbpool.queue, new_lb);
2403 			skb_reserve(new_lb, NS_SMBUFSIZE);
2404 			push_rxbufs(card, new_lb);
2405 		}
2406 	}
2407 }
2408 
2409 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2410 {
2411 	u32 stat;
2412 	ns_dev *card;
2413 	int left;
2414 
2415 	left = (int)*pos;
2416 	card = (ns_dev *) dev->dev_data;
2417 	stat = readl(card->membase + STAT);
2418 	if (!left--)
2419 		return sprintf(page, "Pool   count    min   init    max \n");
2420 	if (!left--)
2421 		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
2422 			       ns_stat_sfbqc_get(stat), card->sbnr.min,
2423 			       card->sbnr.init, card->sbnr.max);
2424 	if (!left--)
2425 		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
2426 			       ns_stat_lfbqc_get(stat), card->lbnr.min,
2427 			       card->lbnr.init, card->lbnr.max);
2428 	if (!left--)
2429 		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
2430 			       card->hbpool.count, card->hbnr.min,
2431 			       card->hbnr.init, card->hbnr.max);
2432 	if (!left--)
2433 		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
2434 			       card->iovpool.count, card->iovnr.min,
2435 			       card->iovnr.init, card->iovnr.max);
2436 	if (!left--) {
2437 		int retval;
2438 		retval =
2439 		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2440 		card->intcnt = 0;
2441 		return retval;
2442 	}
2443 #if 0
2444 	/* Dump 25.6 Mbps PHY registers */
2445 	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2446 	   here just in case it's needed for debugging. */
2447 	if (card->max_pcr == ATM_25_PCR && !left--) {
2448 		u32 phy_regs[4];
2449 		u32 i;
2450 
2451 		for (i = 0; i < 4; i++) {
2452 			while (CMD_BUSY(card)) ;
2453 			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2454 			       card->membase + CMD);
2455 			while (CMD_BUSY(card)) ;
2456 			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2457 		}
2458 
2459 		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2460 			       phy_regs[0], phy_regs[1], phy_regs[2],
2461 			       phy_regs[3]);
2462 	}
2463 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2464 #if 0
2465 	/* Dump TST */
2466 	if (left-- < NS_TST_NUM_ENTRIES) {
2467 		if (card->tste2vc[left + 1] == NULL)
2468 			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2469 		else
2470 			return sprintf(page, "%5d - %d %d \n", left + 1,
2471 				       card->tste2vc[left + 1]->tx_vcc->vpi,
2472 				       card->tste2vc[left + 1]->tx_vcc->vci);
2473 	}
2474 #endif /* 0 */
2475 	return 0;
2476 }
2477 
2478 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2479 {
2480 	ns_dev *card;
2481 	pool_levels pl;
2482 	long btype;
2483 	unsigned long flags;
2484 
2485 	card = dev->dev_data;
2486 	switch (cmd) {
2487 	case NS_GETPSTAT:
2488 		if (get_user
2489 		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
2490 			return -EFAULT;
2491 		switch (pl.buftype) {
2492 		case NS_BUFTYPE_SMALL:
2493 			pl.count =
2494 			    ns_stat_sfbqc_get(readl(card->membase + STAT));
2495 			pl.level.min = card->sbnr.min;
2496 			pl.level.init = card->sbnr.init;
2497 			pl.level.max = card->sbnr.max;
2498 			break;
2499 
2500 		case NS_BUFTYPE_LARGE:
2501 			pl.count =
2502 			    ns_stat_lfbqc_get(readl(card->membase + STAT));
2503 			pl.level.min = card->lbnr.min;
2504 			pl.level.init = card->lbnr.init;
2505 			pl.level.max = card->lbnr.max;
2506 			break;
2507 
2508 		case NS_BUFTYPE_HUGE:
2509 			pl.count = card->hbpool.count;
2510 			pl.level.min = card->hbnr.min;
2511 			pl.level.init = card->hbnr.init;
2512 			pl.level.max = card->hbnr.max;
2513 			break;
2514 
2515 		case NS_BUFTYPE_IOVEC:
2516 			pl.count = card->iovpool.count;
2517 			pl.level.min = card->iovnr.min;
2518 			pl.level.init = card->iovnr.init;
2519 			pl.level.max = card->iovnr.max;
2520 			break;
2521 
2522 		default:
2523 			return -ENOIOCTLCMD;
2524 
2525 		}
2526 		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2527 			return (sizeof(pl));
2528 		else
2529 			return -EFAULT;
2530 
2531 	case NS_SETBUFLEV:
2532 		if (!capable(CAP_NET_ADMIN))
2533 			return -EPERM;
2534 		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2535 			return -EFAULT;
2536 		if (pl.level.min >= pl.level.init
2537 		    || pl.level.init >= pl.level.max)
2538 			return -EINVAL;
2539 		if (pl.level.min == 0)
2540 			return -EINVAL;
2541 		switch (pl.buftype) {
2542 		case NS_BUFTYPE_SMALL:
2543 			if (pl.level.max > TOP_SB)
2544 				return -EINVAL;
2545 			card->sbnr.min = pl.level.min;
2546 			card->sbnr.init = pl.level.init;
2547 			card->sbnr.max = pl.level.max;
2548 			break;
2549 
2550 		case NS_BUFTYPE_LARGE:
2551 			if (pl.level.max > TOP_LB)
2552 				return -EINVAL;
2553 			card->lbnr.min = pl.level.min;
2554 			card->lbnr.init = pl.level.init;
2555 			card->lbnr.max = pl.level.max;
2556 			break;
2557 
2558 		case NS_BUFTYPE_HUGE:
2559 			if (pl.level.max > TOP_HB)
2560 				return -EINVAL;
2561 			card->hbnr.min = pl.level.min;
2562 			card->hbnr.init = pl.level.init;
2563 			card->hbnr.max = pl.level.max;
2564 			break;
2565 
2566 		case NS_BUFTYPE_IOVEC:
2567 			if (pl.level.max > TOP_IOVB)
2568 				return -EINVAL;
2569 			card->iovnr.min = pl.level.min;
2570 			card->iovnr.init = pl.level.init;
2571 			card->iovnr.max = pl.level.max;
2572 			break;
2573 
2574 		default:
2575 			return -EINVAL;
2576 
2577 		}
2578 		return 0;
2579 
2580 	case NS_ADJBUFLEV:
2581 		if (!capable(CAP_NET_ADMIN))
2582 			return -EPERM;
2583 		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
2584 		switch (btype) {
2585 		case NS_BUFTYPE_SMALL:
2586 			while (card->sbfqc < card->sbnr.init) {
2587 				struct sk_buff *sb;
2588 
2589 				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2590 				if (sb == NULL)
2591 					return -ENOMEM;
2592 				NS_PRV_BUFTYPE(sb) = BUF_SM;
2593 				skb_queue_tail(&card->sbpool.queue, sb);
2594 				skb_reserve(sb, NS_AAL0_HEADER);
2595 				push_rxbufs(card, sb);
2596 			}
2597 			break;
2598 
2599 		case NS_BUFTYPE_LARGE:
2600 			while (card->lbfqc < card->lbnr.init) {
2601 				struct sk_buff *lb;
2602 
2603 				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2604 				if (lb == NULL)
2605 					return -ENOMEM;
2606 				NS_PRV_BUFTYPE(lb) = BUF_LG;
2607 				skb_queue_tail(&card->lbpool.queue, lb);
2608 				skb_reserve(lb, NS_SMBUFSIZE);
2609 				push_rxbufs(card, lb);
2610 			}
2611 			break;
2612 
2613 		case NS_BUFTYPE_HUGE:
2614 			while (card->hbpool.count > card->hbnr.init) {
2615 				struct sk_buff *hb;
2616 
2617 				spin_lock_irqsave(&card->int_lock, flags);
2618 				hb = skb_dequeue(&card->hbpool.queue);
2619 				card->hbpool.count--;
2620 				spin_unlock_irqrestore(&card->int_lock, flags);
2621 				if (hb == NULL)
2622 					printk
2623 					    ("nicstar%d: huge buffer count inconsistent.\n",
2624 					     card->index);
2625 				else
2626 					dev_kfree_skb_any(hb);
2627 
2628 			}
2629 			while (card->hbpool.count < card->hbnr.init) {
2630 				struct sk_buff *hb;
2631 
2632 				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2633 				if (hb == NULL)
2634 					return -ENOMEM;
2635 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2636 				spin_lock_irqsave(&card->int_lock, flags);
2637 				skb_queue_tail(&card->hbpool.queue, hb);
2638 				card->hbpool.count++;
2639 				spin_unlock_irqrestore(&card->int_lock, flags);
2640 			}
2641 			break;
2642 
2643 		case NS_BUFTYPE_IOVEC:
2644 			while (card->iovpool.count > card->iovnr.init) {
2645 				struct sk_buff *iovb;
2646 
2647 				spin_lock_irqsave(&card->int_lock, flags);
2648 				iovb = skb_dequeue(&card->iovpool.queue);
2649 				card->iovpool.count--;
2650 				spin_unlock_irqrestore(&card->int_lock, flags);
2651 				if (iovb == NULL)
2652 					printk
2653 					    ("nicstar%d: iovec buffer count inconsistent.\n",
2654 					     card->index);
2655 				else
2656 					dev_kfree_skb_any(iovb);
2657 
2658 			}
2659 			while (card->iovpool.count < card->iovnr.init) {
2660 				struct sk_buff *iovb;
2661 
2662 				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2663 				if (iovb == NULL)
2664 					return -ENOMEM;
2665 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2666 				spin_lock_irqsave(&card->int_lock, flags);
2667 				skb_queue_tail(&card->iovpool.queue, iovb);
2668 				card->iovpool.count++;
2669 				spin_unlock_irqrestore(&card->int_lock, flags);
2670 			}
2671 			break;
2672 
2673 		default:
2674 			return -EINVAL;
2675 
2676 		}
2677 		return 0;
2678 
2679 	default:
2680 		if (dev->phy && dev->phy->ioctl) {
2681 			return dev->phy->ioctl(dev, cmd, arg);
2682 		} else {
2683 			printk("nicstar%d: %s == NULL \n", card->index,
2684 			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
2685 			return -ENOIOCTLCMD;
2686 		}
2687 	}
2688 }
2689 
2690 #ifdef EXTRA_DEBUG
2691 static void which_list(ns_dev * card, struct sk_buff *skb)
2692 {
2693 	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2694 }
2695 #endif /* EXTRA_DEBUG */
2696 
2697 static void ns_poll(struct timer_list *unused)
2698 {
2699 	int i;
2700 	ns_dev *card;
2701 	unsigned long flags;
2702 	u32 stat_r, stat_w;
2703 
2704 	PRINTK("nicstar: Entering ns_poll().\n");
2705 	for (i = 0; i < num_cards; i++) {
2706 		card = cards[i];
2707 		if (!spin_trylock_irqsave(&card->int_lock, flags)) {
2708 			/* Probably it isn't worth spinning */
2709 			continue;
2710 		}
2711 
2712 		stat_w = 0;
2713 		stat_r = readl(card->membase + STAT);
2714 		if (stat_r & NS_STAT_TSIF)
2715 			stat_w |= NS_STAT_TSIF;
2716 		if (stat_r & NS_STAT_EOPDU)
2717 			stat_w |= NS_STAT_EOPDU;
2718 
2719 		process_tsq(card);
2720 		process_rsq(card);
2721 
2722 		writel(stat_w, card->membase + STAT);
2723 		spin_unlock_irqrestore(&card->int_lock, flags);
2724 	}
2725 	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2726 	PRINTK("nicstar: Leaving ns_poll().\n");
2727 }
2728 
2729 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2730 		       unsigned long addr)
2731 {
2732 	ns_dev *card;
2733 	unsigned long flags;
2734 
2735 	card = dev->dev_data;
2736 	spin_lock_irqsave(&card->res_lock, flags);
2737 	while (CMD_BUSY(card)) ;
2738 	writel((u32) value, card->membase + DR0);
2739 	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2740 	       card->membase + CMD);
2741 	spin_unlock_irqrestore(&card->res_lock, flags);
2742 }
2743 
2744 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2745 {
2746 	ns_dev *card;
2747 	unsigned long flags;
2748 	u32 data;
2749 
2750 	card = dev->dev_data;
2751 	spin_lock_irqsave(&card->res_lock, flags);
2752 	while (CMD_BUSY(card)) ;
2753 	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2754 	       card->membase + CMD);
2755 	while (CMD_BUSY(card)) ;
2756 	data = readl(card->membase + DR0) & 0x000000FF;
2757 	spin_unlock_irqrestore(&card->res_lock, flags);
2758 	return (unsigned char)data;
2759 }
2760 
2761 module_init(nicstar_init);
2762 module_exit(nicstar_cleanup);
2763