1 /* 2 * nicstar.c 3 * 4 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards. 5 * 6 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME. 7 * It was taken from the frle-0.22 device driver. 8 * As the file doesn't have a copyright notice, in the file 9 * nicstarmac.copyright I put the copyright notice from the 10 * frle-0.22 device driver. 11 * Some code is based on the nicstar driver by M. Welsh. 12 * 13 * Author: Rui Prior (rprior@inescn.pt) 14 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999 15 * 16 * 17 * (C) INESC 1999 18 */ 19 20 /* 21 * IMPORTANT INFORMATION 22 * 23 * There are currently three types of spinlocks: 24 * 25 * 1 - Per card interrupt spinlock (to protect structures and such) 26 * 2 - Per SCQ scq spinlock 27 * 3 - Per card resource spinlock (to access registers, etc.) 28 * 29 * These must NEVER be grabbed in reverse order. 30 * 31 */ 32 33 /* Header files */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/skbuff.h> 38 #include <linux/atmdev.h> 39 #include <linux/atm.h> 40 #include <linux/pci.h> 41 #include <linux/dma-mapping.h> 42 #include <linux/types.h> 43 #include <linux/string.h> 44 #include <linux/delay.h> 45 #include <linux/init.h> 46 #include <linux/sched.h> 47 #include <linux/timer.h> 48 #include <linux/interrupt.h> 49 #include <linux/bitops.h> 50 #include <linux/slab.h> 51 #include <linux/idr.h> 52 #include <asm/io.h> 53 #include <asm/uaccess.h> 54 #include <linux/atomic.h> 55 #include <linux/etherdevice.h> 56 #include "nicstar.h" 57 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 58 #include "suni.h" 59 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 60 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 61 #include "idt77105.h" 62 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 63 64 /* Additional code */ 65 66 #include "nicstarmac.c" 67 68 /* Configurable parameters */ 69 70 #undef PHY_LOOPBACK 71 #undef TX_DEBUG 72 #undef RX_DEBUG 73 #undef GENERAL_DEBUG 74 #undef EXTRA_DEBUG 75 76 #undef NS_USE_DESTRUCTORS /* For now keep this undefined unless you know 77 you're going to use only raw ATM */ 78 79 /* Do not touch these */ 80 81 #ifdef TX_DEBUG 82 #define TXPRINTK(args...) printk(args) 83 #else 84 #define TXPRINTK(args...) 85 #endif /* TX_DEBUG */ 86 87 #ifdef RX_DEBUG 88 #define RXPRINTK(args...) printk(args) 89 #else 90 #define RXPRINTK(args...) 91 #endif /* RX_DEBUG */ 92 93 #ifdef GENERAL_DEBUG 94 #define PRINTK(args...) printk(args) 95 #else 96 #define PRINTK(args...) 97 #endif /* GENERAL_DEBUG */ 98 99 #ifdef EXTRA_DEBUG 100 #define XPRINTK(args...) printk(args) 101 #else 102 #define XPRINTK(args...) 103 #endif /* EXTRA_DEBUG */ 104 105 /* Macros */ 106 107 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ) 108 109 #define NS_DELAY mdelay(1) 110 111 #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b))) 112 113 #ifndef ATM_SKB 114 #define ATM_SKB(s) (&(s)->atm) 115 #endif 116 117 #define scq_virt_to_bus(scq, p) \ 118 (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org)) 119 120 /* Function declarations */ 121 122 static u32 ns_read_sram(ns_dev * card, u32 sram_address); 123 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 124 int count); 125 static int ns_init_card(int i, struct pci_dev *pcidev); 126 static void ns_init_card_error(ns_dev * card, int error); 127 static scq_info *get_scq(ns_dev *card, int size, u32 scd); 128 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc); 129 static void push_rxbufs(ns_dev *, struct sk_buff *); 130 static irqreturn_t ns_irq_handler(int irq, void *dev_id); 131 static int ns_open(struct atm_vcc *vcc); 132 static void ns_close(struct atm_vcc *vcc); 133 static void fill_tst(ns_dev * card, int n, vc_map * vc); 134 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb); 135 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 136 struct sk_buff *skb); 137 static void process_tsq(ns_dev * card); 138 static void drain_scq(ns_dev * card, scq_info * scq, int pos); 139 static void process_rsq(ns_dev * card); 140 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe); 141 #ifdef NS_USE_DESTRUCTORS 142 static void ns_sb_destructor(struct sk_buff *sb); 143 static void ns_lb_destructor(struct sk_buff *lb); 144 static void ns_hb_destructor(struct sk_buff *hb); 145 #endif /* NS_USE_DESTRUCTORS */ 146 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb); 147 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count); 148 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb); 149 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb); 150 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb); 151 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page); 152 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg); 153 #ifdef EXTRA_DEBUG 154 static void which_list(ns_dev * card, struct sk_buff *skb); 155 #endif 156 static void ns_poll(unsigned long arg); 157 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 158 unsigned long addr); 159 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr); 160 161 /* Global variables */ 162 163 static struct ns_dev *cards[NS_MAX_CARDS]; 164 static unsigned num_cards; 165 static struct atmdev_ops atm_ops = { 166 .open = ns_open, 167 .close = ns_close, 168 .ioctl = ns_ioctl, 169 .send = ns_send, 170 .phy_put = ns_phy_put, 171 .phy_get = ns_phy_get, 172 .proc_read = ns_proc_read, 173 .owner = THIS_MODULE, 174 }; 175 176 static struct timer_list ns_timer; 177 static char *mac[NS_MAX_CARDS]; 178 module_param_array(mac, charp, NULL, 0); 179 MODULE_LICENSE("GPL"); 180 181 /* Functions */ 182 183 static int nicstar_init_one(struct pci_dev *pcidev, 184 const struct pci_device_id *ent) 185 { 186 static int index = -1; 187 unsigned int error; 188 189 index++; 190 cards[index] = NULL; 191 192 error = ns_init_card(index, pcidev); 193 if (error) { 194 cards[index--] = NULL; /* don't increment index */ 195 goto err_out; 196 } 197 198 return 0; 199 err_out: 200 return -ENODEV; 201 } 202 203 static void nicstar_remove_one(struct pci_dev *pcidev) 204 { 205 int i, j; 206 ns_dev *card = pci_get_drvdata(pcidev); 207 struct sk_buff *hb; 208 struct sk_buff *iovb; 209 struct sk_buff *lb; 210 struct sk_buff *sb; 211 212 i = card->index; 213 214 if (cards[i] == NULL) 215 return; 216 217 if (card->atmdev->phy && card->atmdev->phy->stop) 218 card->atmdev->phy->stop(card->atmdev); 219 220 /* Stop everything */ 221 writel(0x00000000, card->membase + CFG); 222 223 /* De-register device */ 224 atm_dev_deregister(card->atmdev); 225 226 /* Disable PCI device */ 227 pci_disable_device(pcidev); 228 229 /* Free up resources */ 230 j = 0; 231 PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count); 232 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) { 233 dev_kfree_skb_any(hb); 234 j++; 235 } 236 PRINTK("nicstar%d: %d huge buffers freed.\n", i, j); 237 j = 0; 238 PRINTK("nicstar%d: freeing %d iovec buffers.\n", i, 239 card->iovpool.count); 240 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) { 241 dev_kfree_skb_any(iovb); 242 j++; 243 } 244 PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j); 245 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 246 dev_kfree_skb_any(lb); 247 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 248 dev_kfree_skb_any(sb); 249 free_scq(card, card->scq0, NULL); 250 for (j = 0; j < NS_FRSCD_NUM; j++) { 251 if (card->scd2vc[j] != NULL) 252 free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc); 253 } 254 idr_destroy(&card->idr); 255 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, 256 card->rsq.org, card->rsq.dma); 257 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, 258 card->tsq.org, card->tsq.dma); 259 free_irq(card->pcidev->irq, card); 260 iounmap(card->membase); 261 kfree(card); 262 } 263 264 static struct pci_device_id nicstar_pci_tbl[] = { 265 { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 }, 266 {0,} /* terminate list */ 267 }; 268 269 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl); 270 271 static struct pci_driver nicstar_driver = { 272 .name = "nicstar", 273 .id_table = nicstar_pci_tbl, 274 .probe = nicstar_init_one, 275 .remove = nicstar_remove_one, 276 }; 277 278 static int __init nicstar_init(void) 279 { 280 unsigned error = 0; /* Initialized to remove compile warning */ 281 282 XPRINTK("nicstar: nicstar_init() called.\n"); 283 284 error = pci_register_driver(&nicstar_driver); 285 286 TXPRINTK("nicstar: TX debug enabled.\n"); 287 RXPRINTK("nicstar: RX debug enabled.\n"); 288 PRINTK("nicstar: General debug enabled.\n"); 289 #ifdef PHY_LOOPBACK 290 printk("nicstar: using PHY loopback.\n"); 291 #endif /* PHY_LOOPBACK */ 292 XPRINTK("nicstar: nicstar_init() returned.\n"); 293 294 if (!error) { 295 init_timer(&ns_timer); 296 ns_timer.expires = jiffies + NS_POLL_PERIOD; 297 ns_timer.data = 0UL; 298 ns_timer.function = ns_poll; 299 add_timer(&ns_timer); 300 } 301 302 return error; 303 } 304 305 static void __exit nicstar_cleanup(void) 306 { 307 XPRINTK("nicstar: nicstar_cleanup() called.\n"); 308 309 del_timer(&ns_timer); 310 311 pci_unregister_driver(&nicstar_driver); 312 313 XPRINTK("nicstar: nicstar_cleanup() returned.\n"); 314 } 315 316 static u32 ns_read_sram(ns_dev * card, u32 sram_address) 317 { 318 unsigned long flags; 319 u32 data; 320 sram_address <<= 2; 321 sram_address &= 0x0007FFFC; /* address must be dword aligned */ 322 sram_address |= 0x50000000; /* SRAM read command */ 323 spin_lock_irqsave(&card->res_lock, flags); 324 while (CMD_BUSY(card)) ; 325 writel(sram_address, card->membase + CMD); 326 while (CMD_BUSY(card)) ; 327 data = readl(card->membase + DR0); 328 spin_unlock_irqrestore(&card->res_lock, flags); 329 return data; 330 } 331 332 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 333 int count) 334 { 335 unsigned long flags; 336 int i, c; 337 count--; /* count range now is 0..3 instead of 1..4 */ 338 c = count; 339 c <<= 2; /* to use increments of 4 */ 340 spin_lock_irqsave(&card->res_lock, flags); 341 while (CMD_BUSY(card)) ; 342 for (i = 0; i <= c; i += 4) 343 writel(*(value++), card->membase + i); 344 /* Note: DR# registers are the first 4 dwords in nicstar's memspace, 345 so card->membase + DR0 == card->membase */ 346 sram_address <<= 2; 347 sram_address &= 0x0007FFFC; 348 sram_address |= (0x40000000 | count); 349 writel(sram_address, card->membase + CMD); 350 spin_unlock_irqrestore(&card->res_lock, flags); 351 } 352 353 static int ns_init_card(int i, struct pci_dev *pcidev) 354 { 355 int j; 356 struct ns_dev *card = NULL; 357 unsigned char pci_latency; 358 unsigned error; 359 u32 data; 360 u32 u32d[4]; 361 u32 ns_cfg_rctsize; 362 int bcount; 363 unsigned long membase; 364 365 error = 0; 366 367 if (pci_enable_device(pcidev)) { 368 printk("nicstar%d: can't enable PCI device\n", i); 369 error = 2; 370 ns_init_card_error(card, error); 371 return error; 372 } 373 if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) { 374 printk(KERN_WARNING 375 "nicstar%d: No suitable DMA available.\n", i); 376 error = 2; 377 ns_init_card_error(card, error); 378 return error; 379 } 380 381 if ((card = kmalloc(sizeof(ns_dev), GFP_KERNEL)) == NULL) { 382 printk 383 ("nicstar%d: can't allocate memory for device structure.\n", 384 i); 385 error = 2; 386 ns_init_card_error(card, error); 387 return error; 388 } 389 cards[i] = card; 390 spin_lock_init(&card->int_lock); 391 spin_lock_init(&card->res_lock); 392 393 pci_set_drvdata(pcidev, card); 394 395 card->index = i; 396 card->atmdev = NULL; 397 card->pcidev = pcidev; 398 membase = pci_resource_start(pcidev, 1); 399 card->membase = ioremap(membase, NS_IOREMAP_SIZE); 400 if (!card->membase) { 401 printk("nicstar%d: can't ioremap() membase.\n", i); 402 error = 3; 403 ns_init_card_error(card, error); 404 return error; 405 } 406 PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase); 407 408 pci_set_master(pcidev); 409 410 if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) { 411 printk("nicstar%d: can't read PCI latency timer.\n", i); 412 error = 6; 413 ns_init_card_error(card, error); 414 return error; 415 } 416 #ifdef NS_PCI_LATENCY 417 if (pci_latency < NS_PCI_LATENCY) { 418 PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i, 419 NS_PCI_LATENCY); 420 for (j = 1; j < 4; j++) { 421 if (pci_write_config_byte 422 (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0) 423 break; 424 } 425 if (j == 4) { 426 printk 427 ("nicstar%d: can't set PCI latency timer to %d.\n", 428 i, NS_PCI_LATENCY); 429 error = 7; 430 ns_init_card_error(card, error); 431 return error; 432 } 433 } 434 #endif /* NS_PCI_LATENCY */ 435 436 /* Clear timer overflow */ 437 data = readl(card->membase + STAT); 438 if (data & NS_STAT_TMROF) 439 writel(NS_STAT_TMROF, card->membase + STAT); 440 441 /* Software reset */ 442 writel(NS_CFG_SWRST, card->membase + CFG); 443 NS_DELAY; 444 writel(0x00000000, card->membase + CFG); 445 446 /* PHY reset */ 447 writel(0x00000008, card->membase + GP); 448 NS_DELAY; 449 writel(0x00000001, card->membase + GP); 450 NS_DELAY; 451 while (CMD_BUSY(card)) ; 452 writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */ 453 NS_DELAY; 454 455 /* Detect PHY type */ 456 while (CMD_BUSY(card)) ; 457 writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD); 458 while (CMD_BUSY(card)) ; 459 data = readl(card->membase + DR0); 460 switch (data) { 461 case 0x00000009: 462 printk("nicstar%d: PHY seems to be 25 Mbps.\n", i); 463 card->max_pcr = ATM_25_PCR; 464 while (CMD_BUSY(card)) ; 465 writel(0x00000008, card->membase + DR0); 466 writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD); 467 /* Clear an eventual pending interrupt */ 468 writel(NS_STAT_SFBQF, card->membase + STAT); 469 #ifdef PHY_LOOPBACK 470 while (CMD_BUSY(card)) ; 471 writel(0x00000022, card->membase + DR0); 472 writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD); 473 #endif /* PHY_LOOPBACK */ 474 break; 475 case 0x00000030: 476 case 0x00000031: 477 printk("nicstar%d: PHY seems to be 155 Mbps.\n", i); 478 card->max_pcr = ATM_OC3_PCR; 479 #ifdef PHY_LOOPBACK 480 while (CMD_BUSY(card)) ; 481 writel(0x00000002, card->membase + DR0); 482 writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD); 483 #endif /* PHY_LOOPBACK */ 484 break; 485 default: 486 printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data); 487 error = 8; 488 ns_init_card_error(card, error); 489 return error; 490 } 491 writel(0x00000000, card->membase + GP); 492 493 /* Determine SRAM size */ 494 data = 0x76543210; 495 ns_write_sram(card, 0x1C003, &data, 1); 496 data = 0x89ABCDEF; 497 ns_write_sram(card, 0x14003, &data, 1); 498 if (ns_read_sram(card, 0x14003) == 0x89ABCDEF && 499 ns_read_sram(card, 0x1C003) == 0x76543210) 500 card->sram_size = 128; 501 else 502 card->sram_size = 32; 503 PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size); 504 505 card->rct_size = NS_MAX_RCTSIZE; 506 507 #if (NS_MAX_RCTSIZE == 4096) 508 if (card->sram_size == 128) 509 printk 510 ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n", 511 i); 512 #elif (NS_MAX_RCTSIZE == 16384) 513 if (card->sram_size == 32) { 514 printk 515 ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n", 516 i); 517 card->rct_size = 4096; 518 } 519 #else 520 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c 521 #endif 522 523 card->vpibits = NS_VPIBITS; 524 if (card->rct_size == 4096) 525 card->vcibits = 12 - NS_VPIBITS; 526 else /* card->rct_size == 16384 */ 527 card->vcibits = 14 - NS_VPIBITS; 528 529 /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */ 530 if (mac[i] == NULL) 531 nicstar_init_eprom(card->membase); 532 533 /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */ 534 writel(0x00000000, card->membase + VPM); 535 536 /* Initialize TSQ */ 537 card->tsq.org = dma_alloc_coherent(&card->pcidev->dev, 538 NS_TSQSIZE + NS_TSQ_ALIGNMENT, 539 &card->tsq.dma, GFP_KERNEL); 540 if (card->tsq.org == NULL) { 541 printk("nicstar%d: can't allocate TSQ.\n", i); 542 error = 10; 543 ns_init_card_error(card, error); 544 return error; 545 } 546 card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT); 547 card->tsq.next = card->tsq.base; 548 card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1); 549 for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++) 550 ns_tsi_init(card->tsq.base + j); 551 writel(0x00000000, card->membase + TSQH); 552 writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB); 553 PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base); 554 555 /* Initialize RSQ */ 556 card->rsq.org = dma_alloc_coherent(&card->pcidev->dev, 557 NS_RSQSIZE + NS_RSQ_ALIGNMENT, 558 &card->rsq.dma, GFP_KERNEL); 559 if (card->rsq.org == NULL) { 560 printk("nicstar%d: can't allocate RSQ.\n", i); 561 error = 11; 562 ns_init_card_error(card, error); 563 return error; 564 } 565 card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT); 566 card->rsq.next = card->rsq.base; 567 card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1); 568 for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++) 569 ns_rsqe_init(card->rsq.base + j); 570 writel(0x00000000, card->membase + RSQH); 571 writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB); 572 PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base); 573 574 /* Initialize SCQ0, the only VBR SCQ used */ 575 card->scq1 = NULL; 576 card->scq2 = NULL; 577 card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0); 578 if (card->scq0 == NULL) { 579 printk("nicstar%d: can't get SCQ0.\n", i); 580 error = 12; 581 ns_init_card_error(card, error); 582 return error; 583 } 584 u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base); 585 u32d[1] = (u32) 0x00000000; 586 u32d[2] = (u32) 0xffffffff; 587 u32d[3] = (u32) 0x00000000; 588 ns_write_sram(card, NS_VRSCD0, u32d, 4); 589 ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */ 590 ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */ 591 card->scq0->scd = NS_VRSCD0; 592 PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base); 593 594 /* Initialize TSTs */ 595 card->tst_addr = NS_TST0; 596 card->tst_free_entries = NS_TST_NUM_ENTRIES; 597 data = NS_TST_OPCODE_VARIABLE; 598 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 599 ns_write_sram(card, NS_TST0 + j, &data, 1); 600 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0); 601 ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1); 602 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 603 ns_write_sram(card, NS_TST1 + j, &data, 1); 604 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1); 605 ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1); 606 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 607 card->tste2vc[j] = NULL; 608 writel(NS_TST0 << 2, card->membase + TSTB); 609 610 /* Initialize RCT. AAL type is set on opening the VC. */ 611 #ifdef RCQ_SUPPORT 612 u32d[0] = NS_RCTE_RAWCELLINTEN; 613 #else 614 u32d[0] = 0x00000000; 615 #endif /* RCQ_SUPPORT */ 616 u32d[1] = 0x00000000; 617 u32d[2] = 0x00000000; 618 u32d[3] = 0xFFFFFFFF; 619 for (j = 0; j < card->rct_size; j++) 620 ns_write_sram(card, j * 4, u32d, 4); 621 622 memset(card->vcmap, 0, NS_MAX_RCTSIZE * sizeof(vc_map)); 623 624 for (j = 0; j < NS_FRSCD_NUM; j++) 625 card->scd2vc[j] = NULL; 626 627 /* Initialize buffer levels */ 628 card->sbnr.min = MIN_SB; 629 card->sbnr.init = NUM_SB; 630 card->sbnr.max = MAX_SB; 631 card->lbnr.min = MIN_LB; 632 card->lbnr.init = NUM_LB; 633 card->lbnr.max = MAX_LB; 634 card->iovnr.min = MIN_IOVB; 635 card->iovnr.init = NUM_IOVB; 636 card->iovnr.max = MAX_IOVB; 637 card->hbnr.min = MIN_HB; 638 card->hbnr.init = NUM_HB; 639 card->hbnr.max = MAX_HB; 640 641 card->sm_handle = NULL; 642 card->sm_addr = 0x00000000; 643 card->lg_handle = NULL; 644 card->lg_addr = 0x00000000; 645 646 card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */ 647 648 idr_init(&card->idr); 649 650 /* Pre-allocate some huge buffers */ 651 skb_queue_head_init(&card->hbpool.queue); 652 card->hbpool.count = 0; 653 for (j = 0; j < NUM_HB; j++) { 654 struct sk_buff *hb; 655 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 656 if (hb == NULL) { 657 printk 658 ("nicstar%d: can't allocate %dth of %d huge buffers.\n", 659 i, j, NUM_HB); 660 error = 13; 661 ns_init_card_error(card, error); 662 return error; 663 } 664 NS_PRV_BUFTYPE(hb) = BUF_NONE; 665 skb_queue_tail(&card->hbpool.queue, hb); 666 card->hbpool.count++; 667 } 668 669 /* Allocate large buffers */ 670 skb_queue_head_init(&card->lbpool.queue); 671 card->lbpool.count = 0; /* Not used */ 672 for (j = 0; j < NUM_LB; j++) { 673 struct sk_buff *lb; 674 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 675 if (lb == NULL) { 676 printk 677 ("nicstar%d: can't allocate %dth of %d large buffers.\n", 678 i, j, NUM_LB); 679 error = 14; 680 ns_init_card_error(card, error); 681 return error; 682 } 683 NS_PRV_BUFTYPE(lb) = BUF_LG; 684 skb_queue_tail(&card->lbpool.queue, lb); 685 skb_reserve(lb, NS_SMBUFSIZE); 686 push_rxbufs(card, lb); 687 /* Due to the implementation of push_rxbufs() this is 1, not 0 */ 688 if (j == 1) { 689 card->rcbuf = lb; 690 card->rawcell = (struct ns_rcqe *) lb->data; 691 card->rawch = NS_PRV_DMA(lb); 692 } 693 } 694 /* Test for strange behaviour which leads to crashes */ 695 if ((bcount = 696 ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) { 697 printk 698 ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n", 699 i, j, bcount); 700 error = 14; 701 ns_init_card_error(card, error); 702 return error; 703 } 704 705 /* Allocate small buffers */ 706 skb_queue_head_init(&card->sbpool.queue); 707 card->sbpool.count = 0; /* Not used */ 708 for (j = 0; j < NUM_SB; j++) { 709 struct sk_buff *sb; 710 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 711 if (sb == NULL) { 712 printk 713 ("nicstar%d: can't allocate %dth of %d small buffers.\n", 714 i, j, NUM_SB); 715 error = 15; 716 ns_init_card_error(card, error); 717 return error; 718 } 719 NS_PRV_BUFTYPE(sb) = BUF_SM; 720 skb_queue_tail(&card->sbpool.queue, sb); 721 skb_reserve(sb, NS_AAL0_HEADER); 722 push_rxbufs(card, sb); 723 } 724 /* Test for strange behaviour which leads to crashes */ 725 if ((bcount = 726 ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) { 727 printk 728 ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n", 729 i, j, bcount); 730 error = 15; 731 ns_init_card_error(card, error); 732 return error; 733 } 734 735 /* Allocate iovec buffers */ 736 skb_queue_head_init(&card->iovpool.queue); 737 card->iovpool.count = 0; 738 for (j = 0; j < NUM_IOVB; j++) { 739 struct sk_buff *iovb; 740 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 741 if (iovb == NULL) { 742 printk 743 ("nicstar%d: can't allocate %dth of %d iovec buffers.\n", 744 i, j, NUM_IOVB); 745 error = 16; 746 ns_init_card_error(card, error); 747 return error; 748 } 749 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 750 skb_queue_tail(&card->iovpool.queue, iovb); 751 card->iovpool.count++; 752 } 753 754 /* Configure NICStAR */ 755 if (card->rct_size == 4096) 756 ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES; 757 else /* (card->rct_size == 16384) */ 758 ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES; 759 760 card->efbie = 1; 761 762 card->intcnt = 0; 763 if (request_irq 764 (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) { 765 printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq); 766 error = 9; 767 ns_init_card_error(card, error); 768 return error; 769 } 770 771 /* Register device */ 772 card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops, 773 -1, NULL); 774 if (card->atmdev == NULL) { 775 printk("nicstar%d: can't register device.\n", i); 776 error = 17; 777 ns_init_card_error(card, error); 778 return error; 779 } 780 781 if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) { 782 nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET, 783 card->atmdev->esi, 6); 784 if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) { 785 nicstar_read_eprom(card->membase, 786 NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT, 787 card->atmdev->esi, 6); 788 } 789 } 790 791 printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi); 792 793 card->atmdev->dev_data = card; 794 card->atmdev->ci_range.vpi_bits = card->vpibits; 795 card->atmdev->ci_range.vci_bits = card->vcibits; 796 card->atmdev->link_rate = card->max_pcr; 797 card->atmdev->phy = NULL; 798 799 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 800 if (card->max_pcr == ATM_OC3_PCR) 801 suni_init(card->atmdev); 802 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 803 804 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 805 if (card->max_pcr == ATM_25_PCR) 806 idt77105_init(card->atmdev); 807 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 808 809 if (card->atmdev->phy && card->atmdev->phy->start) 810 card->atmdev->phy->start(card->atmdev); 811 812 writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */ 813 NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */ 814 NS_CFG_PHYIE, card->membase + CFG); 815 816 num_cards++; 817 818 return error; 819 } 820 821 static void ns_init_card_error(ns_dev *card, int error) 822 { 823 if (error >= 17) { 824 writel(0x00000000, card->membase + CFG); 825 } 826 if (error >= 16) { 827 struct sk_buff *iovb; 828 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) 829 dev_kfree_skb_any(iovb); 830 } 831 if (error >= 15) { 832 struct sk_buff *sb; 833 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 834 dev_kfree_skb_any(sb); 835 free_scq(card, card->scq0, NULL); 836 } 837 if (error >= 14) { 838 struct sk_buff *lb; 839 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 840 dev_kfree_skb_any(lb); 841 } 842 if (error >= 13) { 843 struct sk_buff *hb; 844 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) 845 dev_kfree_skb_any(hb); 846 } 847 if (error >= 12) { 848 kfree(card->rsq.org); 849 } 850 if (error >= 11) { 851 kfree(card->tsq.org); 852 } 853 if (error >= 10) { 854 free_irq(card->pcidev->irq, card); 855 } 856 if (error >= 4) { 857 iounmap(card->membase); 858 } 859 if (error >= 3) { 860 pci_disable_device(card->pcidev); 861 kfree(card); 862 } 863 } 864 865 static scq_info *get_scq(ns_dev *card, int size, u32 scd) 866 { 867 scq_info *scq; 868 int i; 869 870 if (size != VBR_SCQSIZE && size != CBR_SCQSIZE) 871 return NULL; 872 873 scq = kmalloc(sizeof(scq_info), GFP_KERNEL); 874 if (!scq) 875 return NULL; 876 scq->org = dma_alloc_coherent(&card->pcidev->dev, 877 2 * size, &scq->dma, GFP_KERNEL); 878 if (!scq->org) { 879 kfree(scq); 880 return NULL; 881 } 882 scq->skb = kmalloc(sizeof(struct sk_buff *) * 883 (size / NS_SCQE_SIZE), GFP_KERNEL); 884 if (!scq->skb) { 885 kfree(scq->org); 886 kfree(scq); 887 return NULL; 888 } 889 scq->num_entries = size / NS_SCQE_SIZE; 890 scq->base = PTR_ALIGN(scq->org, size); 891 scq->next = scq->base; 892 scq->last = scq->base + (scq->num_entries - 1); 893 scq->tail = scq->last; 894 scq->scd = scd; 895 scq->num_entries = size / NS_SCQE_SIZE; 896 scq->tbd_count = 0; 897 init_waitqueue_head(&scq->scqfull_waitq); 898 scq->full = 0; 899 spin_lock_init(&scq->lock); 900 901 for (i = 0; i < scq->num_entries; i++) 902 scq->skb[i] = NULL; 903 904 return scq; 905 } 906 907 /* For variable rate SCQ vcc must be NULL */ 908 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc) 909 { 910 int i; 911 912 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) 913 for (i = 0; i < scq->num_entries; i++) { 914 if (scq->skb[i] != NULL) { 915 vcc = ATM_SKB(scq->skb[i])->vcc; 916 if (vcc->pop != NULL) 917 vcc->pop(vcc, scq->skb[i]); 918 else 919 dev_kfree_skb_any(scq->skb[i]); 920 } 921 } else { /* vcc must be != NULL */ 922 923 if (vcc == NULL) { 924 printk 925 ("nicstar: free_scq() called with vcc == NULL for fixed rate scq."); 926 for (i = 0; i < scq->num_entries; i++) 927 dev_kfree_skb_any(scq->skb[i]); 928 } else 929 for (i = 0; i < scq->num_entries; i++) { 930 if (scq->skb[i] != NULL) { 931 if (vcc->pop != NULL) 932 vcc->pop(vcc, scq->skb[i]); 933 else 934 dev_kfree_skb_any(scq->skb[i]); 935 } 936 } 937 } 938 kfree(scq->skb); 939 dma_free_coherent(&card->pcidev->dev, 940 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ? 941 VBR_SCQSIZE : CBR_SCQSIZE), 942 scq->org, scq->dma); 943 kfree(scq); 944 } 945 946 /* The handles passed must be pointers to the sk_buff containing the small 947 or large buffer(s) cast to u32. */ 948 static void push_rxbufs(ns_dev * card, struct sk_buff *skb) 949 { 950 struct sk_buff *handle1, *handle2; 951 int id1, id2; 952 u32 addr1, addr2; 953 u32 stat; 954 unsigned long flags; 955 956 /* *BARF* */ 957 handle2 = NULL; 958 addr2 = 0; 959 handle1 = skb; 960 addr1 = dma_map_single(&card->pcidev->dev, 961 skb->data, 962 (NS_PRV_BUFTYPE(skb) == BUF_SM 963 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 964 DMA_TO_DEVICE); 965 NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */ 966 967 #ifdef GENERAL_DEBUG 968 if (!addr1) 969 printk("nicstar%d: push_rxbufs called with addr1 = 0.\n", 970 card->index); 971 #endif /* GENERAL_DEBUG */ 972 973 stat = readl(card->membase + STAT); 974 card->sbfqc = ns_stat_sfbqc_get(stat); 975 card->lbfqc = ns_stat_lfbqc_get(stat); 976 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 977 if (!addr2) { 978 if (card->sm_addr) { 979 addr2 = card->sm_addr; 980 handle2 = card->sm_handle; 981 card->sm_addr = 0x00000000; 982 card->sm_handle = NULL; 983 } else { /* (!sm_addr) */ 984 985 card->sm_addr = addr1; 986 card->sm_handle = handle1; 987 } 988 } 989 } else { /* buf_type == BUF_LG */ 990 991 if (!addr2) { 992 if (card->lg_addr) { 993 addr2 = card->lg_addr; 994 handle2 = card->lg_handle; 995 card->lg_addr = 0x00000000; 996 card->lg_handle = NULL; 997 } else { /* (!lg_addr) */ 998 999 card->lg_addr = addr1; 1000 card->lg_handle = handle1; 1001 } 1002 } 1003 } 1004 1005 if (addr2) { 1006 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 1007 if (card->sbfqc >= card->sbnr.max) { 1008 skb_unlink(handle1, &card->sbpool.queue); 1009 dev_kfree_skb_any(handle1); 1010 skb_unlink(handle2, &card->sbpool.queue); 1011 dev_kfree_skb_any(handle2); 1012 return; 1013 } else 1014 card->sbfqc += 2; 1015 } else { /* (buf_type == BUF_LG) */ 1016 1017 if (card->lbfqc >= card->lbnr.max) { 1018 skb_unlink(handle1, &card->lbpool.queue); 1019 dev_kfree_skb_any(handle1); 1020 skb_unlink(handle2, &card->lbpool.queue); 1021 dev_kfree_skb_any(handle2); 1022 return; 1023 } else 1024 card->lbfqc += 2; 1025 } 1026 1027 id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC); 1028 if (id1 < 0) 1029 goto out; 1030 1031 id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC); 1032 if (id2 < 0) 1033 goto out; 1034 1035 spin_lock_irqsave(&card->res_lock, flags); 1036 while (CMD_BUSY(card)) ; 1037 writel(addr2, card->membase + DR3); 1038 writel(id2, card->membase + DR2); 1039 writel(addr1, card->membase + DR1); 1040 writel(id1, card->membase + DR0); 1041 writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb), 1042 card->membase + CMD); 1043 spin_unlock_irqrestore(&card->res_lock, flags); 1044 1045 XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n", 1046 card->index, 1047 (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"), 1048 addr1, addr2); 1049 } 1050 1051 if (!card->efbie && card->sbfqc >= card->sbnr.min && 1052 card->lbfqc >= card->lbnr.min) { 1053 card->efbie = 1; 1054 writel((readl(card->membase + CFG) | NS_CFG_EFBIE), 1055 card->membase + CFG); 1056 } 1057 1058 out: 1059 return; 1060 } 1061 1062 static irqreturn_t ns_irq_handler(int irq, void *dev_id) 1063 { 1064 u32 stat_r; 1065 ns_dev *card; 1066 struct atm_dev *dev; 1067 unsigned long flags; 1068 1069 card = (ns_dev *) dev_id; 1070 dev = card->atmdev; 1071 card->intcnt++; 1072 1073 PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index); 1074 1075 spin_lock_irqsave(&card->int_lock, flags); 1076 1077 stat_r = readl(card->membase + STAT); 1078 1079 /* Transmit Status Indicator has been written to T. S. Queue */ 1080 if (stat_r & NS_STAT_TSIF) { 1081 TXPRINTK("nicstar%d: TSI interrupt\n", card->index); 1082 process_tsq(card); 1083 writel(NS_STAT_TSIF, card->membase + STAT); 1084 } 1085 1086 /* Incomplete CS-PDU has been transmitted */ 1087 if (stat_r & NS_STAT_TXICP) { 1088 writel(NS_STAT_TXICP, card->membase + STAT); 1089 TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n", 1090 card->index); 1091 } 1092 1093 /* Transmit Status Queue 7/8 full */ 1094 if (stat_r & NS_STAT_TSQF) { 1095 writel(NS_STAT_TSQF, card->membase + STAT); 1096 PRINTK("nicstar%d: TSQ full.\n", card->index); 1097 process_tsq(card); 1098 } 1099 1100 /* Timer overflow */ 1101 if (stat_r & NS_STAT_TMROF) { 1102 writel(NS_STAT_TMROF, card->membase + STAT); 1103 PRINTK("nicstar%d: Timer overflow.\n", card->index); 1104 } 1105 1106 /* PHY device interrupt signal active */ 1107 if (stat_r & NS_STAT_PHYI) { 1108 writel(NS_STAT_PHYI, card->membase + STAT); 1109 PRINTK("nicstar%d: PHY interrupt.\n", card->index); 1110 if (dev->phy && dev->phy->interrupt) { 1111 dev->phy->interrupt(dev); 1112 } 1113 } 1114 1115 /* Small Buffer Queue is full */ 1116 if (stat_r & NS_STAT_SFBQF) { 1117 writel(NS_STAT_SFBQF, card->membase + STAT); 1118 printk("nicstar%d: Small free buffer queue is full.\n", 1119 card->index); 1120 } 1121 1122 /* Large Buffer Queue is full */ 1123 if (stat_r & NS_STAT_LFBQF) { 1124 writel(NS_STAT_LFBQF, card->membase + STAT); 1125 printk("nicstar%d: Large free buffer queue is full.\n", 1126 card->index); 1127 } 1128 1129 /* Receive Status Queue is full */ 1130 if (stat_r & NS_STAT_RSQF) { 1131 writel(NS_STAT_RSQF, card->membase + STAT); 1132 printk("nicstar%d: RSQ full.\n", card->index); 1133 process_rsq(card); 1134 } 1135 1136 /* Complete CS-PDU received */ 1137 if (stat_r & NS_STAT_EOPDU) { 1138 RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index); 1139 process_rsq(card); 1140 writel(NS_STAT_EOPDU, card->membase + STAT); 1141 } 1142 1143 /* Raw cell received */ 1144 if (stat_r & NS_STAT_RAWCF) { 1145 writel(NS_STAT_RAWCF, card->membase + STAT); 1146 #ifndef RCQ_SUPPORT 1147 printk("nicstar%d: Raw cell received and no support yet...\n", 1148 card->index); 1149 #endif /* RCQ_SUPPORT */ 1150 /* NOTE: the following procedure may keep a raw cell pending until the 1151 next interrupt. As this preliminary support is only meant to 1152 avoid buffer leakage, this is not an issue. */ 1153 while (readl(card->membase + RAWCT) != card->rawch) { 1154 1155 if (ns_rcqe_islast(card->rawcell)) { 1156 struct sk_buff *oldbuf; 1157 1158 oldbuf = card->rcbuf; 1159 card->rcbuf = idr_find(&card->idr, 1160 ns_rcqe_nextbufhandle(card->rawcell)); 1161 card->rawch = NS_PRV_DMA(card->rcbuf); 1162 card->rawcell = (struct ns_rcqe *) 1163 card->rcbuf->data; 1164 recycle_rx_buf(card, oldbuf); 1165 } else { 1166 card->rawch += NS_RCQE_SIZE; 1167 card->rawcell++; 1168 } 1169 } 1170 } 1171 1172 /* Small buffer queue is empty */ 1173 if (stat_r & NS_STAT_SFBQE) { 1174 int i; 1175 struct sk_buff *sb; 1176 1177 writel(NS_STAT_SFBQE, card->membase + STAT); 1178 printk("nicstar%d: Small free buffer queue empty.\n", 1179 card->index); 1180 for (i = 0; i < card->sbnr.min; i++) { 1181 sb = dev_alloc_skb(NS_SMSKBSIZE); 1182 if (sb == NULL) { 1183 writel(readl(card->membase + CFG) & 1184 ~NS_CFG_EFBIE, card->membase + CFG); 1185 card->efbie = 0; 1186 break; 1187 } 1188 NS_PRV_BUFTYPE(sb) = BUF_SM; 1189 skb_queue_tail(&card->sbpool.queue, sb); 1190 skb_reserve(sb, NS_AAL0_HEADER); 1191 push_rxbufs(card, sb); 1192 } 1193 card->sbfqc = i; 1194 process_rsq(card); 1195 } 1196 1197 /* Large buffer queue empty */ 1198 if (stat_r & NS_STAT_LFBQE) { 1199 int i; 1200 struct sk_buff *lb; 1201 1202 writel(NS_STAT_LFBQE, card->membase + STAT); 1203 printk("nicstar%d: Large free buffer queue empty.\n", 1204 card->index); 1205 for (i = 0; i < card->lbnr.min; i++) { 1206 lb = dev_alloc_skb(NS_LGSKBSIZE); 1207 if (lb == NULL) { 1208 writel(readl(card->membase + CFG) & 1209 ~NS_CFG_EFBIE, card->membase + CFG); 1210 card->efbie = 0; 1211 break; 1212 } 1213 NS_PRV_BUFTYPE(lb) = BUF_LG; 1214 skb_queue_tail(&card->lbpool.queue, lb); 1215 skb_reserve(lb, NS_SMBUFSIZE); 1216 push_rxbufs(card, lb); 1217 } 1218 card->lbfqc = i; 1219 process_rsq(card); 1220 } 1221 1222 /* Receive Status Queue is 7/8 full */ 1223 if (stat_r & NS_STAT_RSQAF) { 1224 writel(NS_STAT_RSQAF, card->membase + STAT); 1225 RXPRINTK("nicstar%d: RSQ almost full.\n", card->index); 1226 process_rsq(card); 1227 } 1228 1229 spin_unlock_irqrestore(&card->int_lock, flags); 1230 PRINTK("nicstar%d: end of interrupt service\n", card->index); 1231 return IRQ_HANDLED; 1232 } 1233 1234 static int ns_open(struct atm_vcc *vcc) 1235 { 1236 ns_dev *card; 1237 vc_map *vc; 1238 unsigned long tmpl, modl; 1239 int tcr, tcra; /* target cell rate, and absolute value */ 1240 int n = 0; /* Number of entries in the TST. Initialized to remove 1241 the compiler warning. */ 1242 u32 u32d[4]; 1243 int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler 1244 warning. How I wish compilers were clever enough to 1245 tell which variables can truly be used 1246 uninitialized... */ 1247 int inuse; /* tx or rx vc already in use by another vcc */ 1248 short vpi = vcc->vpi; 1249 int vci = vcc->vci; 1250 1251 card = (ns_dev *) vcc->dev->dev_data; 1252 PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi, 1253 vci); 1254 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1255 PRINTK("nicstar%d: unsupported AAL.\n", card->index); 1256 return -EINVAL; 1257 } 1258 1259 vc = &(card->vcmap[vpi << card->vcibits | vci]); 1260 vcc->dev_data = vc; 1261 1262 inuse = 0; 1263 if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx) 1264 inuse = 1; 1265 if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx) 1266 inuse += 2; 1267 if (inuse) { 1268 printk("nicstar%d: %s vci already in use.\n", card->index, 1269 inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx"); 1270 return -EINVAL; 1271 } 1272 1273 set_bit(ATM_VF_ADDR, &vcc->flags); 1274 1275 /* NOTE: You are not allowed to modify an open connection's QOS. To change 1276 that, remove the ATM_VF_PARTIAL flag checking. There may be other changes 1277 needed to do that. */ 1278 if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) { 1279 scq_info *scq; 1280 1281 set_bit(ATM_VF_PARTIAL, &vcc->flags); 1282 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1283 /* Check requested cell rate and availability of SCD */ 1284 if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0 1285 && vcc->qos.txtp.min_pcr == 0) { 1286 PRINTK 1287 ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n", 1288 card->index); 1289 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1290 clear_bit(ATM_VF_ADDR, &vcc->flags); 1291 return -EINVAL; 1292 } 1293 1294 tcr = atm_pcr_goal(&(vcc->qos.txtp)); 1295 tcra = tcr >= 0 ? tcr : -tcr; 1296 1297 PRINTK("nicstar%d: target cell rate = %d.\n", 1298 card->index, vcc->qos.txtp.max_pcr); 1299 1300 tmpl = 1301 (unsigned long)tcra *(unsigned long) 1302 NS_TST_NUM_ENTRIES; 1303 modl = tmpl % card->max_pcr; 1304 1305 n = (int)(tmpl / card->max_pcr); 1306 if (tcr > 0) { 1307 if (modl > 0) 1308 n++; 1309 } else if (tcr == 0) { 1310 if ((n = 1311 (card->tst_free_entries - 1312 NS_TST_RESERVED)) <= 0) { 1313 PRINTK 1314 ("nicstar%d: no CBR bandwidth free.\n", 1315 card->index); 1316 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1317 clear_bit(ATM_VF_ADDR, &vcc->flags); 1318 return -EINVAL; 1319 } 1320 } 1321 1322 if (n == 0) { 1323 printk 1324 ("nicstar%d: selected bandwidth < granularity.\n", 1325 card->index); 1326 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1327 clear_bit(ATM_VF_ADDR, &vcc->flags); 1328 return -EINVAL; 1329 } 1330 1331 if (n > (card->tst_free_entries - NS_TST_RESERVED)) { 1332 PRINTK 1333 ("nicstar%d: not enough free CBR bandwidth.\n", 1334 card->index); 1335 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1336 clear_bit(ATM_VF_ADDR, &vcc->flags); 1337 return -EINVAL; 1338 } else 1339 card->tst_free_entries -= n; 1340 1341 XPRINTK("nicstar%d: writing %d tst entries.\n", 1342 card->index, n); 1343 for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) { 1344 if (card->scd2vc[frscdi] == NULL) { 1345 card->scd2vc[frscdi] = vc; 1346 break; 1347 } 1348 } 1349 if (frscdi == NS_FRSCD_NUM) { 1350 PRINTK 1351 ("nicstar%d: no SCD available for CBR channel.\n", 1352 card->index); 1353 card->tst_free_entries += n; 1354 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1355 clear_bit(ATM_VF_ADDR, &vcc->flags); 1356 return -EBUSY; 1357 } 1358 1359 vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE; 1360 1361 scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd); 1362 if (scq == NULL) { 1363 PRINTK("nicstar%d: can't get fixed rate SCQ.\n", 1364 card->index); 1365 card->scd2vc[frscdi] = NULL; 1366 card->tst_free_entries += n; 1367 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1368 clear_bit(ATM_VF_ADDR, &vcc->flags); 1369 return -ENOMEM; 1370 } 1371 vc->scq = scq; 1372 u32d[0] = scq_virt_to_bus(scq, scq->base); 1373 u32d[1] = (u32) 0x00000000; 1374 u32d[2] = (u32) 0xffffffff; 1375 u32d[3] = (u32) 0x00000000; 1376 ns_write_sram(card, vc->cbr_scd, u32d, 4); 1377 1378 fill_tst(card, n, vc); 1379 } else if (vcc->qos.txtp.traffic_class == ATM_UBR) { 1380 vc->cbr_scd = 0x00000000; 1381 vc->scq = card->scq0; 1382 } 1383 1384 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1385 vc->tx = 1; 1386 vc->tx_vcc = vcc; 1387 vc->tbd_count = 0; 1388 } 1389 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1390 u32 status; 1391 1392 vc->rx = 1; 1393 vc->rx_vcc = vcc; 1394 vc->rx_iov = NULL; 1395 1396 /* Open the connection in hardware */ 1397 if (vcc->qos.aal == ATM_AAL5) 1398 status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN; 1399 else /* vcc->qos.aal == ATM_AAL0 */ 1400 status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN; 1401 #ifdef RCQ_SUPPORT 1402 status |= NS_RCTE_RAWCELLINTEN; 1403 #endif /* RCQ_SUPPORT */ 1404 ns_write_sram(card, 1405 NS_RCT + 1406 (vpi << card->vcibits | vci) * 1407 NS_RCT_ENTRY_SIZE, &status, 1); 1408 } 1409 1410 } 1411 1412 set_bit(ATM_VF_READY, &vcc->flags); 1413 return 0; 1414 } 1415 1416 static void ns_close(struct atm_vcc *vcc) 1417 { 1418 vc_map *vc; 1419 ns_dev *card; 1420 u32 data; 1421 int i; 1422 1423 vc = vcc->dev_data; 1424 card = vcc->dev->dev_data; 1425 PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index, 1426 (int)vcc->vpi, vcc->vci); 1427 1428 clear_bit(ATM_VF_READY, &vcc->flags); 1429 1430 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1431 u32 addr; 1432 unsigned long flags; 1433 1434 addr = 1435 NS_RCT + 1436 (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE; 1437 spin_lock_irqsave(&card->res_lock, flags); 1438 while (CMD_BUSY(card)) ; 1439 writel(NS_CMD_CLOSE_CONNECTION | addr << 2, 1440 card->membase + CMD); 1441 spin_unlock_irqrestore(&card->res_lock, flags); 1442 1443 vc->rx = 0; 1444 if (vc->rx_iov != NULL) { 1445 struct sk_buff *iovb; 1446 u32 stat; 1447 1448 stat = readl(card->membase + STAT); 1449 card->sbfqc = ns_stat_sfbqc_get(stat); 1450 card->lbfqc = ns_stat_lfbqc_get(stat); 1451 1452 PRINTK 1453 ("nicstar%d: closing a VC with pending rx buffers.\n", 1454 card->index); 1455 iovb = vc->rx_iov; 1456 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 1457 NS_PRV_IOVCNT(iovb)); 1458 NS_PRV_IOVCNT(iovb) = 0; 1459 spin_lock_irqsave(&card->int_lock, flags); 1460 recycle_iov_buf(card, iovb); 1461 spin_unlock_irqrestore(&card->int_lock, flags); 1462 vc->rx_iov = NULL; 1463 } 1464 } 1465 1466 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1467 vc->tx = 0; 1468 } 1469 1470 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1471 unsigned long flags; 1472 ns_scqe *scqep; 1473 scq_info *scq; 1474 1475 scq = vc->scq; 1476 1477 for (;;) { 1478 spin_lock_irqsave(&scq->lock, flags); 1479 scqep = scq->next; 1480 if (scqep == scq->base) 1481 scqep = scq->last; 1482 else 1483 scqep--; 1484 if (scqep == scq->tail) { 1485 spin_unlock_irqrestore(&scq->lock, flags); 1486 break; 1487 } 1488 /* If the last entry is not a TSR, place one in the SCQ in order to 1489 be able to completely drain it and then close. */ 1490 if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) { 1491 ns_scqe tsr; 1492 u32 scdi, scqi; 1493 u32 data; 1494 int index; 1495 1496 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1497 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1498 scqi = scq->next - scq->base; 1499 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1500 tsr.word_3 = 0x00000000; 1501 tsr.word_4 = 0x00000000; 1502 *scq->next = tsr; 1503 index = (int)scqi; 1504 scq->skb[index] = NULL; 1505 if (scq->next == scq->last) 1506 scq->next = scq->base; 1507 else 1508 scq->next++; 1509 data = scq_virt_to_bus(scq, scq->next); 1510 ns_write_sram(card, scq->scd, &data, 1); 1511 } 1512 spin_unlock_irqrestore(&scq->lock, flags); 1513 schedule(); 1514 } 1515 1516 /* Free all TST entries */ 1517 data = NS_TST_OPCODE_VARIABLE; 1518 for (i = 0; i < NS_TST_NUM_ENTRIES; i++) { 1519 if (card->tste2vc[i] == vc) { 1520 ns_write_sram(card, card->tst_addr + i, &data, 1521 1); 1522 card->tste2vc[i] = NULL; 1523 card->tst_free_entries++; 1524 } 1525 } 1526 1527 card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL; 1528 free_scq(card, vc->scq, vcc); 1529 } 1530 1531 /* remove all references to vcc before deleting it */ 1532 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1533 unsigned long flags; 1534 scq_info *scq = card->scq0; 1535 1536 spin_lock_irqsave(&scq->lock, flags); 1537 1538 for (i = 0; i < scq->num_entries; i++) { 1539 if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) { 1540 ATM_SKB(scq->skb[i])->vcc = NULL; 1541 atm_return(vcc, scq->skb[i]->truesize); 1542 PRINTK 1543 ("nicstar: deleted pending vcc mapping\n"); 1544 } 1545 } 1546 1547 spin_unlock_irqrestore(&scq->lock, flags); 1548 } 1549 1550 vcc->dev_data = NULL; 1551 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1552 clear_bit(ATM_VF_ADDR, &vcc->flags); 1553 1554 #ifdef RX_DEBUG 1555 { 1556 u32 stat, cfg; 1557 stat = readl(card->membase + STAT); 1558 cfg = readl(card->membase + CFG); 1559 printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg); 1560 printk 1561 ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n", 1562 card->tsq.base, card->tsq.next, 1563 card->tsq.last, readl(card->membase + TSQT)); 1564 printk 1565 ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n", 1566 card->rsq.base, card->rsq.next, 1567 card->rsq.last, readl(card->membase + RSQT)); 1568 printk("Empty free buffer queue interrupt %s \n", 1569 card->efbie ? "enabled" : "disabled"); 1570 printk("SBCNT = %d count = %d LBCNT = %d count = %d \n", 1571 ns_stat_sfbqc_get(stat), card->sbpool.count, 1572 ns_stat_lfbqc_get(stat), card->lbpool.count); 1573 printk("hbpool.count = %d iovpool.count = %d \n", 1574 card->hbpool.count, card->iovpool.count); 1575 } 1576 #endif /* RX_DEBUG */ 1577 } 1578 1579 static void fill_tst(ns_dev * card, int n, vc_map * vc) 1580 { 1581 u32 new_tst; 1582 unsigned long cl; 1583 int e, r; 1584 u32 data; 1585 1586 /* It would be very complicated to keep the two TSTs synchronized while 1587 assuring that writes are only made to the inactive TST. So, for now I 1588 will use only one TST. If problems occur, I will change this again */ 1589 1590 new_tst = card->tst_addr; 1591 1592 /* Fill procedure */ 1593 1594 for (e = 0; e < NS_TST_NUM_ENTRIES; e++) { 1595 if (card->tste2vc[e] == NULL) 1596 break; 1597 } 1598 if (e == NS_TST_NUM_ENTRIES) { 1599 printk("nicstar%d: No free TST entries found. \n", card->index); 1600 return; 1601 } 1602 1603 r = n; 1604 cl = NS_TST_NUM_ENTRIES; 1605 data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd); 1606 1607 while (r > 0) { 1608 if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) { 1609 card->tste2vc[e] = vc; 1610 ns_write_sram(card, new_tst + e, &data, 1); 1611 cl -= NS_TST_NUM_ENTRIES; 1612 r--; 1613 } 1614 1615 if (++e == NS_TST_NUM_ENTRIES) { 1616 e = 0; 1617 } 1618 cl += n; 1619 } 1620 1621 /* End of fill procedure */ 1622 1623 data = ns_tste_make(NS_TST_OPCODE_END, new_tst); 1624 ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1); 1625 ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1); 1626 card->tst_addr = new_tst; 1627 } 1628 1629 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb) 1630 { 1631 ns_dev *card; 1632 vc_map *vc; 1633 scq_info *scq; 1634 unsigned long buflen; 1635 ns_scqe scqe; 1636 u32 flags; /* TBD flags, not CPU flags */ 1637 1638 card = vcc->dev->dev_data; 1639 TXPRINTK("nicstar%d: ns_send() called.\n", card->index); 1640 if ((vc = (vc_map *) vcc->dev_data) == NULL) { 1641 printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n", 1642 card->index); 1643 atomic_inc(&vcc->stats->tx_err); 1644 dev_kfree_skb_any(skb); 1645 return -EINVAL; 1646 } 1647 1648 if (!vc->tx) { 1649 printk("nicstar%d: Trying to transmit on a non-tx VC.\n", 1650 card->index); 1651 atomic_inc(&vcc->stats->tx_err); 1652 dev_kfree_skb_any(skb); 1653 return -EINVAL; 1654 } 1655 1656 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1657 printk("nicstar%d: Only AAL0 and AAL5 are supported.\n", 1658 card->index); 1659 atomic_inc(&vcc->stats->tx_err); 1660 dev_kfree_skb_any(skb); 1661 return -EINVAL; 1662 } 1663 1664 if (skb_shinfo(skb)->nr_frags != 0) { 1665 printk("nicstar%d: No scatter-gather yet.\n", card->index); 1666 atomic_inc(&vcc->stats->tx_err); 1667 dev_kfree_skb_any(skb); 1668 return -EINVAL; 1669 } 1670 1671 ATM_SKB(skb)->vcc = vcc; 1672 1673 NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data, 1674 skb->len, DMA_TO_DEVICE); 1675 1676 if (vcc->qos.aal == ATM_AAL5) { 1677 buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */ 1678 flags = NS_TBD_AAL5; 1679 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb)); 1680 scqe.word_3 = cpu_to_le32(skb->len); 1681 scqe.word_4 = 1682 ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0, 1683 ATM_SKB(skb)-> 1684 atm_options & ATM_ATMOPT_CLP ? 1 : 0); 1685 flags |= NS_TBD_EOPDU; 1686 } else { /* (vcc->qos.aal == ATM_AAL0) */ 1687 1688 buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */ 1689 flags = NS_TBD_AAL0; 1690 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER); 1691 scqe.word_3 = cpu_to_le32(0x00000000); 1692 if (*skb->data & 0x02) /* Payload type 1 - end of pdu */ 1693 flags |= NS_TBD_EOPDU; 1694 scqe.word_4 = 1695 cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK); 1696 /* Force the VPI/VCI to be the same as in VCC struct */ 1697 scqe.word_4 |= 1698 cpu_to_le32((((u32) vcc-> 1699 vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc-> 1700 vci) << 1701 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK); 1702 } 1703 1704 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1705 scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen); 1706 scq = ((vc_map *) vcc->dev_data)->scq; 1707 } else { 1708 scqe.word_1 = 1709 ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen); 1710 scq = card->scq0; 1711 } 1712 1713 if (push_scqe(card, vc, scq, &scqe, skb) != 0) { 1714 atomic_inc(&vcc->stats->tx_err); 1715 dev_kfree_skb_any(skb); 1716 return -EIO; 1717 } 1718 atomic_inc(&vcc->stats->tx); 1719 1720 return 0; 1721 } 1722 1723 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 1724 struct sk_buff *skb) 1725 { 1726 unsigned long flags; 1727 ns_scqe tsr; 1728 u32 scdi, scqi; 1729 int scq_is_vbr; 1730 u32 data; 1731 int index; 1732 1733 spin_lock_irqsave(&scq->lock, flags); 1734 while (scq->tail == scq->next) { 1735 if (in_interrupt()) { 1736 spin_unlock_irqrestore(&scq->lock, flags); 1737 printk("nicstar%d: Error pushing TBD.\n", card->index); 1738 return 1; 1739 } 1740 1741 scq->full = 1; 1742 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1743 scq->tail != scq->next, 1744 scq->lock, 1745 SCQFULL_TIMEOUT); 1746 1747 if (scq->full) { 1748 spin_unlock_irqrestore(&scq->lock, flags); 1749 printk("nicstar%d: Timeout pushing TBD.\n", 1750 card->index); 1751 return 1; 1752 } 1753 } 1754 *scq->next = *tbd; 1755 index = (int)(scq->next - scq->base); 1756 scq->skb[index] = skb; 1757 XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n", 1758 card->index, skb, index); 1759 XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1760 card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2), 1761 le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4), 1762 scq->next); 1763 if (scq->next == scq->last) 1764 scq->next = scq->base; 1765 else 1766 scq->next++; 1767 1768 vc->tbd_count++; 1769 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) { 1770 scq->tbd_count++; 1771 scq_is_vbr = 1; 1772 } else 1773 scq_is_vbr = 0; 1774 1775 if (vc->tbd_count >= MAX_TBD_PER_VC 1776 || scq->tbd_count >= MAX_TBD_PER_SCQ) { 1777 int has_run = 0; 1778 1779 while (scq->tail == scq->next) { 1780 if (in_interrupt()) { 1781 data = scq_virt_to_bus(scq, scq->next); 1782 ns_write_sram(card, scq->scd, &data, 1); 1783 spin_unlock_irqrestore(&scq->lock, flags); 1784 printk("nicstar%d: Error pushing TSR.\n", 1785 card->index); 1786 return 0; 1787 } 1788 1789 scq->full = 1; 1790 if (has_run++) 1791 break; 1792 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1793 scq->tail != scq->next, 1794 scq->lock, 1795 SCQFULL_TIMEOUT); 1796 } 1797 1798 if (!scq->full) { 1799 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1800 if (scq_is_vbr) 1801 scdi = NS_TSR_SCDISVBR; 1802 else 1803 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1804 scqi = scq->next - scq->base; 1805 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1806 tsr.word_3 = 0x00000000; 1807 tsr.word_4 = 0x00000000; 1808 1809 *scq->next = tsr; 1810 index = (int)scqi; 1811 scq->skb[index] = NULL; 1812 XPRINTK 1813 ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1814 card->index, le32_to_cpu(tsr.word_1), 1815 le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3), 1816 le32_to_cpu(tsr.word_4), scq->next); 1817 if (scq->next == scq->last) 1818 scq->next = scq->base; 1819 else 1820 scq->next++; 1821 vc->tbd_count = 0; 1822 scq->tbd_count = 0; 1823 } else 1824 PRINTK("nicstar%d: Timeout pushing TSR.\n", 1825 card->index); 1826 } 1827 data = scq_virt_to_bus(scq, scq->next); 1828 ns_write_sram(card, scq->scd, &data, 1); 1829 1830 spin_unlock_irqrestore(&scq->lock, flags); 1831 1832 return 0; 1833 } 1834 1835 static void process_tsq(ns_dev * card) 1836 { 1837 u32 scdi; 1838 scq_info *scq; 1839 ns_tsi *previous = NULL, *one_ahead, *two_ahead; 1840 int serviced_entries; /* flag indicating at least on entry was serviced */ 1841 1842 serviced_entries = 0; 1843 1844 if (card->tsq.next == card->tsq.last) 1845 one_ahead = card->tsq.base; 1846 else 1847 one_ahead = card->tsq.next + 1; 1848 1849 if (one_ahead == card->tsq.last) 1850 two_ahead = card->tsq.base; 1851 else 1852 two_ahead = one_ahead + 1; 1853 1854 while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) || 1855 !ns_tsi_isempty(two_ahead)) 1856 /* At most two empty, as stated in the 77201 errata */ 1857 { 1858 serviced_entries = 1; 1859 1860 /* Skip the one or two possible empty entries */ 1861 while (ns_tsi_isempty(card->tsq.next)) { 1862 if (card->tsq.next == card->tsq.last) 1863 card->tsq.next = card->tsq.base; 1864 else 1865 card->tsq.next++; 1866 } 1867 1868 if (!ns_tsi_tmrof(card->tsq.next)) { 1869 scdi = ns_tsi_getscdindex(card->tsq.next); 1870 if (scdi == NS_TSI_SCDISVBR) 1871 scq = card->scq0; 1872 else { 1873 if (card->scd2vc[scdi] == NULL) { 1874 printk 1875 ("nicstar%d: could not find VC from SCD index.\n", 1876 card->index); 1877 ns_tsi_init(card->tsq.next); 1878 return; 1879 } 1880 scq = card->scd2vc[scdi]->scq; 1881 } 1882 drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next)); 1883 scq->full = 0; 1884 wake_up_interruptible(&(scq->scqfull_waitq)); 1885 } 1886 1887 ns_tsi_init(card->tsq.next); 1888 previous = card->tsq.next; 1889 if (card->tsq.next == card->tsq.last) 1890 card->tsq.next = card->tsq.base; 1891 else 1892 card->tsq.next++; 1893 1894 if (card->tsq.next == card->tsq.last) 1895 one_ahead = card->tsq.base; 1896 else 1897 one_ahead = card->tsq.next + 1; 1898 1899 if (one_ahead == card->tsq.last) 1900 two_ahead = card->tsq.base; 1901 else 1902 two_ahead = one_ahead + 1; 1903 } 1904 1905 if (serviced_entries) 1906 writel(PTR_DIFF(previous, card->tsq.base), 1907 card->membase + TSQH); 1908 } 1909 1910 static void drain_scq(ns_dev * card, scq_info * scq, int pos) 1911 { 1912 struct atm_vcc *vcc; 1913 struct sk_buff *skb; 1914 int i; 1915 unsigned long flags; 1916 1917 XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n", 1918 card->index, scq, pos); 1919 if (pos >= scq->num_entries) { 1920 printk("nicstar%d: Bad index on drain_scq().\n", card->index); 1921 return; 1922 } 1923 1924 spin_lock_irqsave(&scq->lock, flags); 1925 i = (int)(scq->tail - scq->base); 1926 if (++i == scq->num_entries) 1927 i = 0; 1928 while (i != pos) { 1929 skb = scq->skb[i]; 1930 XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n", 1931 card->index, skb, i); 1932 if (skb != NULL) { 1933 dma_unmap_single(&card->pcidev->dev, 1934 NS_PRV_DMA(skb), 1935 skb->len, 1936 DMA_TO_DEVICE); 1937 vcc = ATM_SKB(skb)->vcc; 1938 if (vcc && vcc->pop != NULL) { 1939 vcc->pop(vcc, skb); 1940 } else { 1941 dev_kfree_skb_irq(skb); 1942 } 1943 scq->skb[i] = NULL; 1944 } 1945 if (++i == scq->num_entries) 1946 i = 0; 1947 } 1948 scq->tail = scq->base + pos; 1949 spin_unlock_irqrestore(&scq->lock, flags); 1950 } 1951 1952 static void process_rsq(ns_dev * card) 1953 { 1954 ns_rsqe *previous; 1955 1956 if (!ns_rsqe_valid(card->rsq.next)) 1957 return; 1958 do { 1959 dequeue_rx(card, card->rsq.next); 1960 ns_rsqe_init(card->rsq.next); 1961 previous = card->rsq.next; 1962 if (card->rsq.next == card->rsq.last) 1963 card->rsq.next = card->rsq.base; 1964 else 1965 card->rsq.next++; 1966 } while (ns_rsqe_valid(card->rsq.next)); 1967 writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH); 1968 } 1969 1970 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe) 1971 { 1972 u32 vpi, vci; 1973 vc_map *vc; 1974 struct sk_buff *iovb; 1975 struct iovec *iov; 1976 struct atm_vcc *vcc; 1977 struct sk_buff *skb; 1978 unsigned short aal5_len; 1979 int len; 1980 u32 stat; 1981 u32 id; 1982 1983 stat = readl(card->membase + STAT); 1984 card->sbfqc = ns_stat_sfbqc_get(stat); 1985 card->lbfqc = ns_stat_lfbqc_get(stat); 1986 1987 id = le32_to_cpu(rsqe->buffer_handle); 1988 skb = idr_find(&card->idr, id); 1989 if (!skb) { 1990 RXPRINTK(KERN_ERR 1991 "nicstar%d: idr_find() failed!\n", card->index); 1992 return; 1993 } 1994 idr_remove(&card->idr, id); 1995 dma_sync_single_for_cpu(&card->pcidev->dev, 1996 NS_PRV_DMA(skb), 1997 (NS_PRV_BUFTYPE(skb) == BUF_SM 1998 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 1999 DMA_FROM_DEVICE); 2000 dma_unmap_single(&card->pcidev->dev, 2001 NS_PRV_DMA(skb), 2002 (NS_PRV_BUFTYPE(skb) == BUF_SM 2003 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 2004 DMA_FROM_DEVICE); 2005 vpi = ns_rsqe_vpi(rsqe); 2006 vci = ns_rsqe_vci(rsqe); 2007 if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) { 2008 printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n", 2009 card->index, vpi, vci); 2010 recycle_rx_buf(card, skb); 2011 return; 2012 } 2013 2014 vc = &(card->vcmap[vpi << card->vcibits | vci]); 2015 if (!vc->rx) { 2016 RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n", 2017 card->index, vpi, vci); 2018 recycle_rx_buf(card, skb); 2019 return; 2020 } 2021 2022 vcc = vc->rx_vcc; 2023 2024 if (vcc->qos.aal == ATM_AAL0) { 2025 struct sk_buff *sb; 2026 unsigned char *cell; 2027 int i; 2028 2029 cell = skb->data; 2030 for (i = ns_rsqe_cellcount(rsqe); i; i--) { 2031 if ((sb = dev_alloc_skb(NS_SMSKBSIZE)) == NULL) { 2032 printk 2033 ("nicstar%d: Can't allocate buffers for aal0.\n", 2034 card->index); 2035 atomic_add(i, &vcc->stats->rx_drop); 2036 break; 2037 } 2038 if (!atm_charge(vcc, sb->truesize)) { 2039 RXPRINTK 2040 ("nicstar%d: atm_charge() dropped aal0 packets.\n", 2041 card->index); 2042 atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */ 2043 dev_kfree_skb_any(sb); 2044 break; 2045 } 2046 /* Rebuild the header */ 2047 *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 | 2048 (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000); 2049 if (i == 1 && ns_rsqe_eopdu(rsqe)) 2050 *((u32 *) sb->data) |= 0x00000002; 2051 skb_put(sb, NS_AAL0_HEADER); 2052 memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD); 2053 skb_put(sb, ATM_CELL_PAYLOAD); 2054 ATM_SKB(sb)->vcc = vcc; 2055 __net_timestamp(sb); 2056 vcc->push(vcc, sb); 2057 atomic_inc(&vcc->stats->rx); 2058 cell += ATM_CELL_PAYLOAD; 2059 } 2060 2061 recycle_rx_buf(card, skb); 2062 return; 2063 } 2064 2065 /* To reach this point, the AAL layer can only be AAL5 */ 2066 2067 if ((iovb = vc->rx_iov) == NULL) { 2068 iovb = skb_dequeue(&(card->iovpool.queue)); 2069 if (iovb == NULL) { /* No buffers in the queue */ 2070 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC); 2071 if (iovb == NULL) { 2072 printk("nicstar%d: Out of iovec buffers.\n", 2073 card->index); 2074 atomic_inc(&vcc->stats->rx_drop); 2075 recycle_rx_buf(card, skb); 2076 return; 2077 } 2078 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2079 } else if (--card->iovpool.count < card->iovnr.min) { 2080 struct sk_buff *new_iovb; 2081 if ((new_iovb = 2082 alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) { 2083 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2084 skb_queue_tail(&card->iovpool.queue, new_iovb); 2085 card->iovpool.count++; 2086 } 2087 } 2088 vc->rx_iov = iovb; 2089 NS_PRV_IOVCNT(iovb) = 0; 2090 iovb->len = 0; 2091 iovb->data = iovb->head; 2092 skb_reset_tail_pointer(iovb); 2093 /* IMPORTANT: a pointer to the sk_buff containing the small or large 2094 buffer is stored as iovec base, NOT a pointer to the 2095 small or large buffer itself. */ 2096 } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) { 2097 printk("nicstar%d: received too big AAL5 SDU.\n", card->index); 2098 atomic_inc(&vcc->stats->rx_err); 2099 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2100 NS_MAX_IOVECS); 2101 NS_PRV_IOVCNT(iovb) = 0; 2102 iovb->len = 0; 2103 iovb->data = iovb->head; 2104 skb_reset_tail_pointer(iovb); 2105 } 2106 iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++]; 2107 iov->iov_base = (void *)skb; 2108 iov->iov_len = ns_rsqe_cellcount(rsqe) * 48; 2109 iovb->len += iov->iov_len; 2110 2111 #ifdef EXTRA_DEBUG 2112 if (NS_PRV_IOVCNT(iovb) == 1) { 2113 if (NS_PRV_BUFTYPE(skb) != BUF_SM) { 2114 printk 2115 ("nicstar%d: Expected a small buffer, and this is not one.\n", 2116 card->index); 2117 which_list(card, skb); 2118 atomic_inc(&vcc->stats->rx_err); 2119 recycle_rx_buf(card, skb); 2120 vc->rx_iov = NULL; 2121 recycle_iov_buf(card, iovb); 2122 return; 2123 } 2124 } else { /* NS_PRV_IOVCNT(iovb) >= 2 */ 2125 2126 if (NS_PRV_BUFTYPE(skb) != BUF_LG) { 2127 printk 2128 ("nicstar%d: Expected a large buffer, and this is not one.\n", 2129 card->index); 2130 which_list(card, skb); 2131 atomic_inc(&vcc->stats->rx_err); 2132 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2133 NS_PRV_IOVCNT(iovb)); 2134 vc->rx_iov = NULL; 2135 recycle_iov_buf(card, iovb); 2136 return; 2137 } 2138 } 2139 #endif /* EXTRA_DEBUG */ 2140 2141 if (ns_rsqe_eopdu(rsqe)) { 2142 /* This works correctly regardless of the endianness of the host */ 2143 unsigned char *L1L2 = (unsigned char *) 2144 (skb->data + iov->iov_len - 6); 2145 aal5_len = L1L2[0] << 8 | L1L2[1]; 2146 len = (aal5_len == 0x0000) ? 0x10000 : aal5_len; 2147 if (ns_rsqe_crcerr(rsqe) || 2148 len + 8 > iovb->len || len + (47 + 8) < iovb->len) { 2149 printk("nicstar%d: AAL5 CRC error", card->index); 2150 if (len + 8 > iovb->len || len + (47 + 8) < iovb->len) 2151 printk(" - PDU size mismatch.\n"); 2152 else 2153 printk(".\n"); 2154 atomic_inc(&vcc->stats->rx_err); 2155 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2156 NS_PRV_IOVCNT(iovb)); 2157 vc->rx_iov = NULL; 2158 recycle_iov_buf(card, iovb); 2159 return; 2160 } 2161 2162 /* By this point we (hopefully) have a complete SDU without errors. */ 2163 2164 if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */ 2165 /* skb points to a small buffer */ 2166 if (!atm_charge(vcc, skb->truesize)) { 2167 push_rxbufs(card, skb); 2168 atomic_inc(&vcc->stats->rx_drop); 2169 } else { 2170 skb_put(skb, len); 2171 dequeue_sm_buf(card, skb); 2172 #ifdef NS_USE_DESTRUCTORS 2173 skb->destructor = ns_sb_destructor; 2174 #endif /* NS_USE_DESTRUCTORS */ 2175 ATM_SKB(skb)->vcc = vcc; 2176 __net_timestamp(skb); 2177 vcc->push(vcc, skb); 2178 atomic_inc(&vcc->stats->rx); 2179 } 2180 } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */ 2181 struct sk_buff *sb; 2182 2183 sb = (struct sk_buff *)(iov - 1)->iov_base; 2184 /* skb points to a large buffer */ 2185 2186 if (len <= NS_SMBUFSIZE) { 2187 if (!atm_charge(vcc, sb->truesize)) { 2188 push_rxbufs(card, sb); 2189 atomic_inc(&vcc->stats->rx_drop); 2190 } else { 2191 skb_put(sb, len); 2192 dequeue_sm_buf(card, sb); 2193 #ifdef NS_USE_DESTRUCTORS 2194 sb->destructor = ns_sb_destructor; 2195 #endif /* NS_USE_DESTRUCTORS */ 2196 ATM_SKB(sb)->vcc = vcc; 2197 __net_timestamp(sb); 2198 vcc->push(vcc, sb); 2199 atomic_inc(&vcc->stats->rx); 2200 } 2201 2202 push_rxbufs(card, skb); 2203 2204 } else { /* len > NS_SMBUFSIZE, the usual case */ 2205 2206 if (!atm_charge(vcc, skb->truesize)) { 2207 push_rxbufs(card, skb); 2208 atomic_inc(&vcc->stats->rx_drop); 2209 } else { 2210 dequeue_lg_buf(card, skb); 2211 #ifdef NS_USE_DESTRUCTORS 2212 skb->destructor = ns_lb_destructor; 2213 #endif /* NS_USE_DESTRUCTORS */ 2214 skb_push(skb, NS_SMBUFSIZE); 2215 skb_copy_from_linear_data(sb, skb->data, 2216 NS_SMBUFSIZE); 2217 skb_put(skb, len - NS_SMBUFSIZE); 2218 ATM_SKB(skb)->vcc = vcc; 2219 __net_timestamp(skb); 2220 vcc->push(vcc, skb); 2221 atomic_inc(&vcc->stats->rx); 2222 } 2223 2224 push_rxbufs(card, sb); 2225 2226 } 2227 2228 } else { /* Must push a huge buffer */ 2229 2230 struct sk_buff *hb, *sb, *lb; 2231 int remaining, tocopy; 2232 int j; 2233 2234 hb = skb_dequeue(&(card->hbpool.queue)); 2235 if (hb == NULL) { /* No buffers in the queue */ 2236 2237 hb = dev_alloc_skb(NS_HBUFSIZE); 2238 if (hb == NULL) { 2239 printk 2240 ("nicstar%d: Out of huge buffers.\n", 2241 card->index); 2242 atomic_inc(&vcc->stats->rx_drop); 2243 recycle_iovec_rx_bufs(card, 2244 (struct iovec *) 2245 iovb->data, 2246 NS_PRV_IOVCNT(iovb)); 2247 vc->rx_iov = NULL; 2248 recycle_iov_buf(card, iovb); 2249 return; 2250 } else if (card->hbpool.count < card->hbnr.min) { 2251 struct sk_buff *new_hb; 2252 if ((new_hb = 2253 dev_alloc_skb(NS_HBUFSIZE)) != 2254 NULL) { 2255 skb_queue_tail(&card->hbpool. 2256 queue, new_hb); 2257 card->hbpool.count++; 2258 } 2259 } 2260 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2261 } else if (--card->hbpool.count < card->hbnr.min) { 2262 struct sk_buff *new_hb; 2263 if ((new_hb = 2264 dev_alloc_skb(NS_HBUFSIZE)) != NULL) { 2265 NS_PRV_BUFTYPE(new_hb) = BUF_NONE; 2266 skb_queue_tail(&card->hbpool.queue, 2267 new_hb); 2268 card->hbpool.count++; 2269 } 2270 if (card->hbpool.count < card->hbnr.min) { 2271 if ((new_hb = 2272 dev_alloc_skb(NS_HBUFSIZE)) != 2273 NULL) { 2274 NS_PRV_BUFTYPE(new_hb) = 2275 BUF_NONE; 2276 skb_queue_tail(&card->hbpool. 2277 queue, new_hb); 2278 card->hbpool.count++; 2279 } 2280 } 2281 } 2282 2283 iov = (struct iovec *)iovb->data; 2284 2285 if (!atm_charge(vcc, hb->truesize)) { 2286 recycle_iovec_rx_bufs(card, iov, 2287 NS_PRV_IOVCNT(iovb)); 2288 if (card->hbpool.count < card->hbnr.max) { 2289 skb_queue_tail(&card->hbpool.queue, hb); 2290 card->hbpool.count++; 2291 } else 2292 dev_kfree_skb_any(hb); 2293 atomic_inc(&vcc->stats->rx_drop); 2294 } else { 2295 /* Copy the small buffer to the huge buffer */ 2296 sb = (struct sk_buff *)iov->iov_base; 2297 skb_copy_from_linear_data(sb, hb->data, 2298 iov->iov_len); 2299 skb_put(hb, iov->iov_len); 2300 remaining = len - iov->iov_len; 2301 iov++; 2302 /* Free the small buffer */ 2303 push_rxbufs(card, sb); 2304 2305 /* Copy all large buffers to the huge buffer and free them */ 2306 for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) { 2307 lb = (struct sk_buff *)iov->iov_base; 2308 tocopy = 2309 min_t(int, remaining, iov->iov_len); 2310 skb_copy_from_linear_data(lb, 2311 skb_tail_pointer 2312 (hb), tocopy); 2313 skb_put(hb, tocopy); 2314 iov++; 2315 remaining -= tocopy; 2316 push_rxbufs(card, lb); 2317 } 2318 #ifdef EXTRA_DEBUG 2319 if (remaining != 0 || hb->len != len) 2320 printk 2321 ("nicstar%d: Huge buffer len mismatch.\n", 2322 card->index); 2323 #endif /* EXTRA_DEBUG */ 2324 ATM_SKB(hb)->vcc = vcc; 2325 #ifdef NS_USE_DESTRUCTORS 2326 hb->destructor = ns_hb_destructor; 2327 #endif /* NS_USE_DESTRUCTORS */ 2328 __net_timestamp(hb); 2329 vcc->push(vcc, hb); 2330 atomic_inc(&vcc->stats->rx); 2331 } 2332 } 2333 2334 vc->rx_iov = NULL; 2335 recycle_iov_buf(card, iovb); 2336 } 2337 2338 } 2339 2340 #ifdef NS_USE_DESTRUCTORS 2341 2342 static void ns_sb_destructor(struct sk_buff *sb) 2343 { 2344 ns_dev *card; 2345 u32 stat; 2346 2347 card = (ns_dev *) ATM_SKB(sb)->vcc->dev->dev_data; 2348 stat = readl(card->membase + STAT); 2349 card->sbfqc = ns_stat_sfbqc_get(stat); 2350 card->lbfqc = ns_stat_lfbqc_get(stat); 2351 2352 do { 2353 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 2354 if (sb == NULL) 2355 break; 2356 NS_PRV_BUFTYPE(sb) = BUF_SM; 2357 skb_queue_tail(&card->sbpool.queue, sb); 2358 skb_reserve(sb, NS_AAL0_HEADER); 2359 push_rxbufs(card, sb); 2360 } while (card->sbfqc < card->sbnr.min); 2361 } 2362 2363 static void ns_lb_destructor(struct sk_buff *lb) 2364 { 2365 ns_dev *card; 2366 u32 stat; 2367 2368 card = (ns_dev *) ATM_SKB(lb)->vcc->dev->dev_data; 2369 stat = readl(card->membase + STAT); 2370 card->sbfqc = ns_stat_sfbqc_get(stat); 2371 card->lbfqc = ns_stat_lfbqc_get(stat); 2372 2373 do { 2374 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 2375 if (lb == NULL) 2376 break; 2377 NS_PRV_BUFTYPE(lb) = BUF_LG; 2378 skb_queue_tail(&card->lbpool.queue, lb); 2379 skb_reserve(lb, NS_SMBUFSIZE); 2380 push_rxbufs(card, lb); 2381 } while (card->lbfqc < card->lbnr.min); 2382 } 2383 2384 static void ns_hb_destructor(struct sk_buff *hb) 2385 { 2386 ns_dev *card; 2387 2388 card = (ns_dev *) ATM_SKB(hb)->vcc->dev->dev_data; 2389 2390 while (card->hbpool.count < card->hbnr.init) { 2391 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 2392 if (hb == NULL) 2393 break; 2394 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2395 skb_queue_tail(&card->hbpool.queue, hb); 2396 card->hbpool.count++; 2397 } 2398 } 2399 2400 #endif /* NS_USE_DESTRUCTORS */ 2401 2402 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb) 2403 { 2404 if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) { 2405 printk("nicstar%d: What kind of rx buffer is this?\n", 2406 card->index); 2407 dev_kfree_skb_any(skb); 2408 } else 2409 push_rxbufs(card, skb); 2410 } 2411 2412 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count) 2413 { 2414 while (count-- > 0) 2415 recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base); 2416 } 2417 2418 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb) 2419 { 2420 if (card->iovpool.count < card->iovnr.max) { 2421 skb_queue_tail(&card->iovpool.queue, iovb); 2422 card->iovpool.count++; 2423 } else 2424 dev_kfree_skb_any(iovb); 2425 } 2426 2427 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb) 2428 { 2429 skb_unlink(sb, &card->sbpool.queue); 2430 #ifdef NS_USE_DESTRUCTORS 2431 if (card->sbfqc < card->sbnr.min) 2432 #else 2433 if (card->sbfqc < card->sbnr.init) { 2434 struct sk_buff *new_sb; 2435 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2436 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2437 skb_queue_tail(&card->sbpool.queue, new_sb); 2438 skb_reserve(new_sb, NS_AAL0_HEADER); 2439 push_rxbufs(card, new_sb); 2440 } 2441 } 2442 if (card->sbfqc < card->sbnr.init) 2443 #endif /* NS_USE_DESTRUCTORS */ 2444 { 2445 struct sk_buff *new_sb; 2446 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2447 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2448 skb_queue_tail(&card->sbpool.queue, new_sb); 2449 skb_reserve(new_sb, NS_AAL0_HEADER); 2450 push_rxbufs(card, new_sb); 2451 } 2452 } 2453 } 2454 2455 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb) 2456 { 2457 skb_unlink(lb, &card->lbpool.queue); 2458 #ifdef NS_USE_DESTRUCTORS 2459 if (card->lbfqc < card->lbnr.min) 2460 #else 2461 if (card->lbfqc < card->lbnr.init) { 2462 struct sk_buff *new_lb; 2463 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2464 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2465 skb_queue_tail(&card->lbpool.queue, new_lb); 2466 skb_reserve(new_lb, NS_SMBUFSIZE); 2467 push_rxbufs(card, new_lb); 2468 } 2469 } 2470 if (card->lbfqc < card->lbnr.init) 2471 #endif /* NS_USE_DESTRUCTORS */ 2472 { 2473 struct sk_buff *new_lb; 2474 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2475 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2476 skb_queue_tail(&card->lbpool.queue, new_lb); 2477 skb_reserve(new_lb, NS_SMBUFSIZE); 2478 push_rxbufs(card, new_lb); 2479 } 2480 } 2481 } 2482 2483 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page) 2484 { 2485 u32 stat; 2486 ns_dev *card; 2487 int left; 2488 2489 left = (int)*pos; 2490 card = (ns_dev *) dev->dev_data; 2491 stat = readl(card->membase + STAT); 2492 if (!left--) 2493 return sprintf(page, "Pool count min init max \n"); 2494 if (!left--) 2495 return sprintf(page, "Small %5d %5d %5d %5d \n", 2496 ns_stat_sfbqc_get(stat), card->sbnr.min, 2497 card->sbnr.init, card->sbnr.max); 2498 if (!left--) 2499 return sprintf(page, "Large %5d %5d %5d %5d \n", 2500 ns_stat_lfbqc_get(stat), card->lbnr.min, 2501 card->lbnr.init, card->lbnr.max); 2502 if (!left--) 2503 return sprintf(page, "Huge %5d %5d %5d %5d \n", 2504 card->hbpool.count, card->hbnr.min, 2505 card->hbnr.init, card->hbnr.max); 2506 if (!left--) 2507 return sprintf(page, "Iovec %5d %5d %5d %5d \n", 2508 card->iovpool.count, card->iovnr.min, 2509 card->iovnr.init, card->iovnr.max); 2510 if (!left--) { 2511 int retval; 2512 retval = 2513 sprintf(page, "Interrupt counter: %u \n", card->intcnt); 2514 card->intcnt = 0; 2515 return retval; 2516 } 2517 #if 0 2518 /* Dump 25.6 Mbps PHY registers */ 2519 /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it 2520 here just in case it's needed for debugging. */ 2521 if (card->max_pcr == ATM_25_PCR && !left--) { 2522 u32 phy_regs[4]; 2523 u32 i; 2524 2525 for (i = 0; i < 4; i++) { 2526 while (CMD_BUSY(card)) ; 2527 writel(NS_CMD_READ_UTILITY | 0x00000200 | i, 2528 card->membase + CMD); 2529 while (CMD_BUSY(card)) ; 2530 phy_regs[i] = readl(card->membase + DR0) & 0x000000FF; 2531 } 2532 2533 return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n", 2534 phy_regs[0], phy_regs[1], phy_regs[2], 2535 phy_regs[3]); 2536 } 2537 #endif /* 0 - Dump 25.6 Mbps PHY registers */ 2538 #if 0 2539 /* Dump TST */ 2540 if (left-- < NS_TST_NUM_ENTRIES) { 2541 if (card->tste2vc[left + 1] == NULL) 2542 return sprintf(page, "%5d - VBR/UBR \n", left + 1); 2543 else 2544 return sprintf(page, "%5d - %d %d \n", left + 1, 2545 card->tste2vc[left + 1]->tx_vcc->vpi, 2546 card->tste2vc[left + 1]->tx_vcc->vci); 2547 } 2548 #endif /* 0 */ 2549 return 0; 2550 } 2551 2552 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg) 2553 { 2554 ns_dev *card; 2555 pool_levels pl; 2556 long btype; 2557 unsigned long flags; 2558 2559 card = dev->dev_data; 2560 switch (cmd) { 2561 case NS_GETPSTAT: 2562 if (get_user 2563 (pl.buftype, &((pool_levels __user *) arg)->buftype)) 2564 return -EFAULT; 2565 switch (pl.buftype) { 2566 case NS_BUFTYPE_SMALL: 2567 pl.count = 2568 ns_stat_sfbqc_get(readl(card->membase + STAT)); 2569 pl.level.min = card->sbnr.min; 2570 pl.level.init = card->sbnr.init; 2571 pl.level.max = card->sbnr.max; 2572 break; 2573 2574 case NS_BUFTYPE_LARGE: 2575 pl.count = 2576 ns_stat_lfbqc_get(readl(card->membase + STAT)); 2577 pl.level.min = card->lbnr.min; 2578 pl.level.init = card->lbnr.init; 2579 pl.level.max = card->lbnr.max; 2580 break; 2581 2582 case NS_BUFTYPE_HUGE: 2583 pl.count = card->hbpool.count; 2584 pl.level.min = card->hbnr.min; 2585 pl.level.init = card->hbnr.init; 2586 pl.level.max = card->hbnr.max; 2587 break; 2588 2589 case NS_BUFTYPE_IOVEC: 2590 pl.count = card->iovpool.count; 2591 pl.level.min = card->iovnr.min; 2592 pl.level.init = card->iovnr.init; 2593 pl.level.max = card->iovnr.max; 2594 break; 2595 2596 default: 2597 return -ENOIOCTLCMD; 2598 2599 } 2600 if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl))) 2601 return (sizeof(pl)); 2602 else 2603 return -EFAULT; 2604 2605 case NS_SETBUFLEV: 2606 if (!capable(CAP_NET_ADMIN)) 2607 return -EPERM; 2608 if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl))) 2609 return -EFAULT; 2610 if (pl.level.min >= pl.level.init 2611 || pl.level.init >= pl.level.max) 2612 return -EINVAL; 2613 if (pl.level.min == 0) 2614 return -EINVAL; 2615 switch (pl.buftype) { 2616 case NS_BUFTYPE_SMALL: 2617 if (pl.level.max > TOP_SB) 2618 return -EINVAL; 2619 card->sbnr.min = pl.level.min; 2620 card->sbnr.init = pl.level.init; 2621 card->sbnr.max = pl.level.max; 2622 break; 2623 2624 case NS_BUFTYPE_LARGE: 2625 if (pl.level.max > TOP_LB) 2626 return -EINVAL; 2627 card->lbnr.min = pl.level.min; 2628 card->lbnr.init = pl.level.init; 2629 card->lbnr.max = pl.level.max; 2630 break; 2631 2632 case NS_BUFTYPE_HUGE: 2633 if (pl.level.max > TOP_HB) 2634 return -EINVAL; 2635 card->hbnr.min = pl.level.min; 2636 card->hbnr.init = pl.level.init; 2637 card->hbnr.max = pl.level.max; 2638 break; 2639 2640 case NS_BUFTYPE_IOVEC: 2641 if (pl.level.max > TOP_IOVB) 2642 return -EINVAL; 2643 card->iovnr.min = pl.level.min; 2644 card->iovnr.init = pl.level.init; 2645 card->iovnr.max = pl.level.max; 2646 break; 2647 2648 default: 2649 return -EINVAL; 2650 2651 } 2652 return 0; 2653 2654 case NS_ADJBUFLEV: 2655 if (!capable(CAP_NET_ADMIN)) 2656 return -EPERM; 2657 btype = (long)arg; /* a long is the same size as a pointer or bigger */ 2658 switch (btype) { 2659 case NS_BUFTYPE_SMALL: 2660 while (card->sbfqc < card->sbnr.init) { 2661 struct sk_buff *sb; 2662 2663 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 2664 if (sb == NULL) 2665 return -ENOMEM; 2666 NS_PRV_BUFTYPE(sb) = BUF_SM; 2667 skb_queue_tail(&card->sbpool.queue, sb); 2668 skb_reserve(sb, NS_AAL0_HEADER); 2669 push_rxbufs(card, sb); 2670 } 2671 break; 2672 2673 case NS_BUFTYPE_LARGE: 2674 while (card->lbfqc < card->lbnr.init) { 2675 struct sk_buff *lb; 2676 2677 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 2678 if (lb == NULL) 2679 return -ENOMEM; 2680 NS_PRV_BUFTYPE(lb) = BUF_LG; 2681 skb_queue_tail(&card->lbpool.queue, lb); 2682 skb_reserve(lb, NS_SMBUFSIZE); 2683 push_rxbufs(card, lb); 2684 } 2685 break; 2686 2687 case NS_BUFTYPE_HUGE: 2688 while (card->hbpool.count > card->hbnr.init) { 2689 struct sk_buff *hb; 2690 2691 spin_lock_irqsave(&card->int_lock, flags); 2692 hb = skb_dequeue(&card->hbpool.queue); 2693 card->hbpool.count--; 2694 spin_unlock_irqrestore(&card->int_lock, flags); 2695 if (hb == NULL) 2696 printk 2697 ("nicstar%d: huge buffer count inconsistent.\n", 2698 card->index); 2699 else 2700 dev_kfree_skb_any(hb); 2701 2702 } 2703 while (card->hbpool.count < card->hbnr.init) { 2704 struct sk_buff *hb; 2705 2706 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 2707 if (hb == NULL) 2708 return -ENOMEM; 2709 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2710 spin_lock_irqsave(&card->int_lock, flags); 2711 skb_queue_tail(&card->hbpool.queue, hb); 2712 card->hbpool.count++; 2713 spin_unlock_irqrestore(&card->int_lock, flags); 2714 } 2715 break; 2716 2717 case NS_BUFTYPE_IOVEC: 2718 while (card->iovpool.count > card->iovnr.init) { 2719 struct sk_buff *iovb; 2720 2721 spin_lock_irqsave(&card->int_lock, flags); 2722 iovb = skb_dequeue(&card->iovpool.queue); 2723 card->iovpool.count--; 2724 spin_unlock_irqrestore(&card->int_lock, flags); 2725 if (iovb == NULL) 2726 printk 2727 ("nicstar%d: iovec buffer count inconsistent.\n", 2728 card->index); 2729 else 2730 dev_kfree_skb_any(iovb); 2731 2732 } 2733 while (card->iovpool.count < card->iovnr.init) { 2734 struct sk_buff *iovb; 2735 2736 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 2737 if (iovb == NULL) 2738 return -ENOMEM; 2739 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2740 spin_lock_irqsave(&card->int_lock, flags); 2741 skb_queue_tail(&card->iovpool.queue, iovb); 2742 card->iovpool.count++; 2743 spin_unlock_irqrestore(&card->int_lock, flags); 2744 } 2745 break; 2746 2747 default: 2748 return -EINVAL; 2749 2750 } 2751 return 0; 2752 2753 default: 2754 if (dev->phy && dev->phy->ioctl) { 2755 return dev->phy->ioctl(dev, cmd, arg); 2756 } else { 2757 printk("nicstar%d: %s == NULL \n", card->index, 2758 dev->phy ? "dev->phy->ioctl" : "dev->phy"); 2759 return -ENOIOCTLCMD; 2760 } 2761 } 2762 } 2763 2764 #ifdef EXTRA_DEBUG 2765 static void which_list(ns_dev * card, struct sk_buff *skb) 2766 { 2767 printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb)); 2768 } 2769 #endif /* EXTRA_DEBUG */ 2770 2771 static void ns_poll(unsigned long arg) 2772 { 2773 int i; 2774 ns_dev *card; 2775 unsigned long flags; 2776 u32 stat_r, stat_w; 2777 2778 PRINTK("nicstar: Entering ns_poll().\n"); 2779 for (i = 0; i < num_cards; i++) { 2780 card = cards[i]; 2781 if (spin_is_locked(&card->int_lock)) { 2782 /* Probably it isn't worth spinning */ 2783 continue; 2784 } 2785 spin_lock_irqsave(&card->int_lock, flags); 2786 2787 stat_w = 0; 2788 stat_r = readl(card->membase + STAT); 2789 if (stat_r & NS_STAT_TSIF) 2790 stat_w |= NS_STAT_TSIF; 2791 if (stat_r & NS_STAT_EOPDU) 2792 stat_w |= NS_STAT_EOPDU; 2793 2794 process_tsq(card); 2795 process_rsq(card); 2796 2797 writel(stat_w, card->membase + STAT); 2798 spin_unlock_irqrestore(&card->int_lock, flags); 2799 } 2800 mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD); 2801 PRINTK("nicstar: Leaving ns_poll().\n"); 2802 } 2803 2804 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 2805 unsigned long addr) 2806 { 2807 ns_dev *card; 2808 unsigned long flags; 2809 2810 card = dev->dev_data; 2811 spin_lock_irqsave(&card->res_lock, flags); 2812 while (CMD_BUSY(card)) ; 2813 writel((u32) value, card->membase + DR0); 2814 writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF), 2815 card->membase + CMD); 2816 spin_unlock_irqrestore(&card->res_lock, flags); 2817 } 2818 2819 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr) 2820 { 2821 ns_dev *card; 2822 unsigned long flags; 2823 u32 data; 2824 2825 card = dev->dev_data; 2826 spin_lock_irqsave(&card->res_lock, flags); 2827 while (CMD_BUSY(card)) ; 2828 writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF), 2829 card->membase + CMD); 2830 while (CMD_BUSY(card)) ; 2831 data = readl(card->membase + DR0) & 0x000000FF; 2832 spin_unlock_irqrestore(&card->res_lock, flags); 2833 return (unsigned char)data; 2834 } 2835 2836 module_init(nicstar_init); 2837 module_exit(nicstar_cleanup); 2838