1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * nicstar.c 4 * 5 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards. 6 * 7 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME. 8 * It was taken from the frle-0.22 device driver. 9 * As the file doesn't have a copyright notice, in the file 10 * nicstarmac.copyright I put the copyright notice from the 11 * frle-0.22 device driver. 12 * Some code is based on the nicstar driver by M. Welsh. 13 * 14 * Author: Rui Prior (rprior@inescn.pt) 15 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999 16 * 17 * 18 * (C) INESC 1999 19 */ 20 21 /* 22 * IMPORTANT INFORMATION 23 * 24 * There are currently three types of spinlocks: 25 * 26 * 1 - Per card interrupt spinlock (to protect structures and such) 27 * 2 - Per SCQ scq spinlock 28 * 3 - Per card resource spinlock (to access registers, etc.) 29 * 30 * These must NEVER be grabbed in reverse order. 31 * 32 */ 33 34 /* Header files */ 35 36 #include <linux/module.h> 37 #include <linux/kernel.h> 38 #include <linux/skbuff.h> 39 #include <linux/atmdev.h> 40 #include <linux/atm.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/types.h> 44 #include <linux/string.h> 45 #include <linux/delay.h> 46 #include <linux/init.h> 47 #include <linux/sched.h> 48 #include <linux/timer.h> 49 #include <linux/interrupt.h> 50 #include <linux/bitops.h> 51 #include <linux/slab.h> 52 #include <linux/idr.h> 53 #include <asm/io.h> 54 #include <linux/uaccess.h> 55 #include <linux/atomic.h> 56 #include <linux/etherdevice.h> 57 #include "nicstar.h" 58 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 59 #include "suni.h" 60 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 61 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 62 #include "idt77105.h" 63 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 64 65 /* Additional code */ 66 67 #include "nicstarmac.c" 68 69 /* Configurable parameters */ 70 71 #undef PHY_LOOPBACK 72 #undef TX_DEBUG 73 #undef RX_DEBUG 74 #undef GENERAL_DEBUG 75 #undef EXTRA_DEBUG 76 77 /* Do not touch these */ 78 79 #ifdef TX_DEBUG 80 #define TXPRINTK(args...) printk(args) 81 #else 82 #define TXPRINTK(args...) 83 #endif /* TX_DEBUG */ 84 85 #ifdef RX_DEBUG 86 #define RXPRINTK(args...) printk(args) 87 #else 88 #define RXPRINTK(args...) 89 #endif /* RX_DEBUG */ 90 91 #ifdef GENERAL_DEBUG 92 #define PRINTK(args...) printk(args) 93 #else 94 #define PRINTK(args...) do {} while (0) 95 #endif /* GENERAL_DEBUG */ 96 97 #ifdef EXTRA_DEBUG 98 #define XPRINTK(args...) printk(args) 99 #else 100 #define XPRINTK(args...) 101 #endif /* EXTRA_DEBUG */ 102 103 /* Macros */ 104 105 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ) 106 107 #define NS_DELAY mdelay(1) 108 109 #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b))) 110 111 #ifndef ATM_SKB 112 #define ATM_SKB(s) (&(s)->atm) 113 #endif 114 115 #define scq_virt_to_bus(scq, p) \ 116 (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org)) 117 118 /* Function declarations */ 119 120 static u32 ns_read_sram(ns_dev * card, u32 sram_address); 121 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 122 int count); 123 static int ns_init_card(int i, struct pci_dev *pcidev); 124 static void ns_init_card_error(ns_dev * card, int error); 125 static scq_info *get_scq(ns_dev *card, int size, u32 scd); 126 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc); 127 static void push_rxbufs(ns_dev *, struct sk_buff *); 128 static irqreturn_t ns_irq_handler(int irq, void *dev_id); 129 static int ns_open(struct atm_vcc *vcc); 130 static void ns_close(struct atm_vcc *vcc); 131 static void fill_tst(ns_dev * card, int n, vc_map * vc); 132 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb); 133 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb); 134 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 135 struct sk_buff *skb, bool may_sleep); 136 static void process_tsq(ns_dev * card); 137 static void drain_scq(ns_dev * card, scq_info * scq, int pos); 138 static void process_rsq(ns_dev * card); 139 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe); 140 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb); 141 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count); 142 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb); 143 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb); 144 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb); 145 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page); 146 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg); 147 #ifdef EXTRA_DEBUG 148 static void which_list(ns_dev * card, struct sk_buff *skb); 149 #endif 150 static void ns_poll(struct timer_list *unused); 151 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 152 unsigned long addr); 153 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr); 154 155 /* Global variables */ 156 157 static struct ns_dev *cards[NS_MAX_CARDS]; 158 static unsigned num_cards; 159 static const struct atmdev_ops atm_ops = { 160 .open = ns_open, 161 .close = ns_close, 162 .ioctl = ns_ioctl, 163 .send = ns_send, 164 .send_bh = ns_send_bh, 165 .phy_put = ns_phy_put, 166 .phy_get = ns_phy_get, 167 .proc_read = ns_proc_read, 168 .owner = THIS_MODULE, 169 }; 170 171 static struct timer_list ns_timer; 172 static char *mac[NS_MAX_CARDS]; 173 module_param_array(mac, charp, NULL, 0); 174 MODULE_LICENSE("GPL"); 175 176 /* Functions */ 177 178 static int nicstar_init_one(struct pci_dev *pcidev, 179 const struct pci_device_id *ent) 180 { 181 static int index = -1; 182 unsigned int error; 183 184 index++; 185 cards[index] = NULL; 186 187 error = ns_init_card(index, pcidev); 188 if (error) { 189 cards[index--] = NULL; /* don't increment index */ 190 goto err_out; 191 } 192 193 return 0; 194 err_out: 195 return -ENODEV; 196 } 197 198 static void nicstar_remove_one(struct pci_dev *pcidev) 199 { 200 int i, j; 201 ns_dev *card = pci_get_drvdata(pcidev); 202 struct sk_buff *hb; 203 struct sk_buff *iovb; 204 struct sk_buff *lb; 205 struct sk_buff *sb; 206 207 i = card->index; 208 209 if (cards[i] == NULL) 210 return; 211 212 if (card->atmdev->phy && card->atmdev->phy->stop) 213 card->atmdev->phy->stop(card->atmdev); 214 215 /* Stop everything */ 216 writel(0x00000000, card->membase + CFG); 217 218 /* De-register device */ 219 atm_dev_deregister(card->atmdev); 220 221 /* Disable PCI device */ 222 pci_disable_device(pcidev); 223 224 /* Free up resources */ 225 j = 0; 226 PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count); 227 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) { 228 dev_kfree_skb_any(hb); 229 j++; 230 } 231 PRINTK("nicstar%d: %d huge buffers freed.\n", i, j); 232 j = 0; 233 PRINTK("nicstar%d: freeing %d iovec buffers.\n", i, 234 card->iovpool.count); 235 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) { 236 dev_kfree_skb_any(iovb); 237 j++; 238 } 239 PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j); 240 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 241 dev_kfree_skb_any(lb); 242 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 243 dev_kfree_skb_any(sb); 244 free_scq(card, card->scq0, NULL); 245 for (j = 0; j < NS_FRSCD_NUM; j++) { 246 if (card->scd2vc[j] != NULL) 247 free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc); 248 } 249 idr_destroy(&card->idr); 250 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, 251 card->rsq.org, card->rsq.dma); 252 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, 253 card->tsq.org, card->tsq.dma); 254 free_irq(card->pcidev->irq, card); 255 iounmap(card->membase); 256 kfree(card); 257 } 258 259 static const struct pci_device_id nicstar_pci_tbl[] = { 260 { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 }, 261 {0,} /* terminate list */ 262 }; 263 264 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl); 265 266 static struct pci_driver nicstar_driver = { 267 .name = "nicstar", 268 .id_table = nicstar_pci_tbl, 269 .probe = nicstar_init_one, 270 .remove = nicstar_remove_one, 271 }; 272 273 static int __init nicstar_init(void) 274 { 275 unsigned error = 0; /* Initialized to remove compile warning */ 276 277 XPRINTK("nicstar: nicstar_init() called.\n"); 278 279 error = pci_register_driver(&nicstar_driver); 280 281 TXPRINTK("nicstar: TX debug enabled.\n"); 282 RXPRINTK("nicstar: RX debug enabled.\n"); 283 PRINTK("nicstar: General debug enabled.\n"); 284 #ifdef PHY_LOOPBACK 285 printk("nicstar: using PHY loopback.\n"); 286 #endif /* PHY_LOOPBACK */ 287 XPRINTK("nicstar: nicstar_init() returned.\n"); 288 289 if (!error) { 290 timer_setup(&ns_timer, ns_poll, 0); 291 ns_timer.expires = jiffies + NS_POLL_PERIOD; 292 add_timer(&ns_timer); 293 } 294 295 return error; 296 } 297 298 static void __exit nicstar_cleanup(void) 299 { 300 XPRINTK("nicstar: nicstar_cleanup() called.\n"); 301 302 del_timer_sync(&ns_timer); 303 304 pci_unregister_driver(&nicstar_driver); 305 306 XPRINTK("nicstar: nicstar_cleanup() returned.\n"); 307 } 308 309 static u32 ns_read_sram(ns_dev * card, u32 sram_address) 310 { 311 unsigned long flags; 312 u32 data; 313 sram_address <<= 2; 314 sram_address &= 0x0007FFFC; /* address must be dword aligned */ 315 sram_address |= 0x50000000; /* SRAM read command */ 316 spin_lock_irqsave(&card->res_lock, flags); 317 while (CMD_BUSY(card)) ; 318 writel(sram_address, card->membase + CMD); 319 while (CMD_BUSY(card)) ; 320 data = readl(card->membase + DR0); 321 spin_unlock_irqrestore(&card->res_lock, flags); 322 return data; 323 } 324 325 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 326 int count) 327 { 328 unsigned long flags; 329 int i, c; 330 count--; /* count range now is 0..3 instead of 1..4 */ 331 c = count; 332 c <<= 2; /* to use increments of 4 */ 333 spin_lock_irqsave(&card->res_lock, flags); 334 while (CMD_BUSY(card)) ; 335 for (i = 0; i <= c; i += 4) 336 writel(*(value++), card->membase + i); 337 /* Note: DR# registers are the first 4 dwords in nicstar's memspace, 338 so card->membase + DR0 == card->membase */ 339 sram_address <<= 2; 340 sram_address &= 0x0007FFFC; 341 sram_address |= (0x40000000 | count); 342 writel(sram_address, card->membase + CMD); 343 spin_unlock_irqrestore(&card->res_lock, flags); 344 } 345 346 static int ns_init_card(int i, struct pci_dev *pcidev) 347 { 348 int j; 349 struct ns_dev *card = NULL; 350 unsigned char pci_latency; 351 unsigned error; 352 u32 data; 353 u32 u32d[4]; 354 u32 ns_cfg_rctsize; 355 int bcount; 356 unsigned long membase; 357 358 error = 0; 359 360 if (pci_enable_device(pcidev)) { 361 printk("nicstar%d: can't enable PCI device\n", i); 362 error = 2; 363 ns_init_card_error(card, error); 364 return error; 365 } 366 if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) { 367 printk(KERN_WARNING 368 "nicstar%d: No suitable DMA available.\n", i); 369 error = 2; 370 ns_init_card_error(card, error); 371 return error; 372 } 373 374 card = kmalloc(sizeof(*card), GFP_KERNEL); 375 if (!card) { 376 printk 377 ("nicstar%d: can't allocate memory for device structure.\n", 378 i); 379 error = 2; 380 ns_init_card_error(card, error); 381 return error; 382 } 383 cards[i] = card; 384 spin_lock_init(&card->int_lock); 385 spin_lock_init(&card->res_lock); 386 387 pci_set_drvdata(pcidev, card); 388 389 card->index = i; 390 card->atmdev = NULL; 391 card->pcidev = pcidev; 392 membase = pci_resource_start(pcidev, 1); 393 card->membase = ioremap(membase, NS_IOREMAP_SIZE); 394 if (!card->membase) { 395 printk("nicstar%d: can't ioremap() membase.\n", i); 396 error = 3; 397 ns_init_card_error(card, error); 398 return error; 399 } 400 PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase); 401 402 pci_set_master(pcidev); 403 404 if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) { 405 printk("nicstar%d: can't read PCI latency timer.\n", i); 406 error = 6; 407 ns_init_card_error(card, error); 408 return error; 409 } 410 #ifdef NS_PCI_LATENCY 411 if (pci_latency < NS_PCI_LATENCY) { 412 PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i, 413 NS_PCI_LATENCY); 414 for (j = 1; j < 4; j++) { 415 if (pci_write_config_byte 416 (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0) 417 break; 418 } 419 if (j == 4) { 420 printk 421 ("nicstar%d: can't set PCI latency timer to %d.\n", 422 i, NS_PCI_LATENCY); 423 error = 7; 424 ns_init_card_error(card, error); 425 return error; 426 } 427 } 428 #endif /* NS_PCI_LATENCY */ 429 430 /* Clear timer overflow */ 431 data = readl(card->membase + STAT); 432 if (data & NS_STAT_TMROF) 433 writel(NS_STAT_TMROF, card->membase + STAT); 434 435 /* Software reset */ 436 writel(NS_CFG_SWRST, card->membase + CFG); 437 NS_DELAY; 438 writel(0x00000000, card->membase + CFG); 439 440 /* PHY reset */ 441 writel(0x00000008, card->membase + GP); 442 NS_DELAY; 443 writel(0x00000001, card->membase + GP); 444 NS_DELAY; 445 while (CMD_BUSY(card)) ; 446 writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */ 447 NS_DELAY; 448 449 /* Detect PHY type */ 450 while (CMD_BUSY(card)) ; 451 writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD); 452 while (CMD_BUSY(card)) ; 453 data = readl(card->membase + DR0); 454 switch (data) { 455 case 0x00000009: 456 printk("nicstar%d: PHY seems to be 25 Mbps.\n", i); 457 card->max_pcr = ATM_25_PCR; 458 while (CMD_BUSY(card)) ; 459 writel(0x00000008, card->membase + DR0); 460 writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD); 461 /* Clear an eventual pending interrupt */ 462 writel(NS_STAT_SFBQF, card->membase + STAT); 463 #ifdef PHY_LOOPBACK 464 while (CMD_BUSY(card)) ; 465 writel(0x00000022, card->membase + DR0); 466 writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD); 467 #endif /* PHY_LOOPBACK */ 468 break; 469 case 0x00000030: 470 case 0x00000031: 471 printk("nicstar%d: PHY seems to be 155 Mbps.\n", i); 472 card->max_pcr = ATM_OC3_PCR; 473 #ifdef PHY_LOOPBACK 474 while (CMD_BUSY(card)) ; 475 writel(0x00000002, card->membase + DR0); 476 writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD); 477 #endif /* PHY_LOOPBACK */ 478 break; 479 default: 480 printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data); 481 error = 8; 482 ns_init_card_error(card, error); 483 return error; 484 } 485 writel(0x00000000, card->membase + GP); 486 487 /* Determine SRAM size */ 488 data = 0x76543210; 489 ns_write_sram(card, 0x1C003, &data, 1); 490 data = 0x89ABCDEF; 491 ns_write_sram(card, 0x14003, &data, 1); 492 if (ns_read_sram(card, 0x14003) == 0x89ABCDEF && 493 ns_read_sram(card, 0x1C003) == 0x76543210) 494 card->sram_size = 128; 495 else 496 card->sram_size = 32; 497 PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size); 498 499 card->rct_size = NS_MAX_RCTSIZE; 500 501 #if (NS_MAX_RCTSIZE == 4096) 502 if (card->sram_size == 128) 503 printk 504 ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n", 505 i); 506 #elif (NS_MAX_RCTSIZE == 16384) 507 if (card->sram_size == 32) { 508 printk 509 ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n", 510 i); 511 card->rct_size = 4096; 512 } 513 #else 514 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c 515 #endif 516 517 card->vpibits = NS_VPIBITS; 518 if (card->rct_size == 4096) 519 card->vcibits = 12 - NS_VPIBITS; 520 else /* card->rct_size == 16384 */ 521 card->vcibits = 14 - NS_VPIBITS; 522 523 /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */ 524 if (mac[i] == NULL) 525 nicstar_init_eprom(card->membase); 526 527 /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */ 528 writel(0x00000000, card->membase + VPM); 529 530 card->intcnt = 0; 531 if (request_irq 532 (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) { 533 pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq); 534 error = 9; 535 ns_init_card_error(card, error); 536 return error; 537 } 538 539 /* Initialize TSQ */ 540 card->tsq.org = dma_alloc_coherent(&card->pcidev->dev, 541 NS_TSQSIZE + NS_TSQ_ALIGNMENT, 542 &card->tsq.dma, GFP_KERNEL); 543 if (card->tsq.org == NULL) { 544 printk("nicstar%d: can't allocate TSQ.\n", i); 545 error = 10; 546 ns_init_card_error(card, error); 547 return error; 548 } 549 card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT); 550 card->tsq.next = card->tsq.base; 551 card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1); 552 for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++) 553 ns_tsi_init(card->tsq.base + j); 554 writel(0x00000000, card->membase + TSQH); 555 writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB); 556 PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base); 557 558 /* Initialize RSQ */ 559 card->rsq.org = dma_alloc_coherent(&card->pcidev->dev, 560 NS_RSQSIZE + NS_RSQ_ALIGNMENT, 561 &card->rsq.dma, GFP_KERNEL); 562 if (card->rsq.org == NULL) { 563 printk("nicstar%d: can't allocate RSQ.\n", i); 564 error = 11; 565 ns_init_card_error(card, error); 566 return error; 567 } 568 card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT); 569 card->rsq.next = card->rsq.base; 570 card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1); 571 for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++) 572 ns_rsqe_init(card->rsq.base + j); 573 writel(0x00000000, card->membase + RSQH); 574 writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB); 575 PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base); 576 577 /* Initialize SCQ0, the only VBR SCQ used */ 578 card->scq1 = NULL; 579 card->scq2 = NULL; 580 card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0); 581 if (card->scq0 == NULL) { 582 printk("nicstar%d: can't get SCQ0.\n", i); 583 error = 12; 584 ns_init_card_error(card, error); 585 return error; 586 } 587 u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base); 588 u32d[1] = (u32) 0x00000000; 589 u32d[2] = (u32) 0xffffffff; 590 u32d[3] = (u32) 0x00000000; 591 ns_write_sram(card, NS_VRSCD0, u32d, 4); 592 ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */ 593 ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */ 594 card->scq0->scd = NS_VRSCD0; 595 PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base); 596 597 /* Initialize TSTs */ 598 card->tst_addr = NS_TST0; 599 card->tst_free_entries = NS_TST_NUM_ENTRIES; 600 data = NS_TST_OPCODE_VARIABLE; 601 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 602 ns_write_sram(card, NS_TST0 + j, &data, 1); 603 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0); 604 ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1); 605 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 606 ns_write_sram(card, NS_TST1 + j, &data, 1); 607 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1); 608 ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1); 609 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 610 card->tste2vc[j] = NULL; 611 writel(NS_TST0 << 2, card->membase + TSTB); 612 613 /* Initialize RCT. AAL type is set on opening the VC. */ 614 #ifdef RCQ_SUPPORT 615 u32d[0] = NS_RCTE_RAWCELLINTEN; 616 #else 617 u32d[0] = 0x00000000; 618 #endif /* RCQ_SUPPORT */ 619 u32d[1] = 0x00000000; 620 u32d[2] = 0x00000000; 621 u32d[3] = 0xFFFFFFFF; 622 for (j = 0; j < card->rct_size; j++) 623 ns_write_sram(card, j * 4, u32d, 4); 624 625 memset(card->vcmap, 0, sizeof(card->vcmap)); 626 627 for (j = 0; j < NS_FRSCD_NUM; j++) 628 card->scd2vc[j] = NULL; 629 630 /* Initialize buffer levels */ 631 card->sbnr.min = MIN_SB; 632 card->sbnr.init = NUM_SB; 633 card->sbnr.max = MAX_SB; 634 card->lbnr.min = MIN_LB; 635 card->lbnr.init = NUM_LB; 636 card->lbnr.max = MAX_LB; 637 card->iovnr.min = MIN_IOVB; 638 card->iovnr.init = NUM_IOVB; 639 card->iovnr.max = MAX_IOVB; 640 card->hbnr.min = MIN_HB; 641 card->hbnr.init = NUM_HB; 642 card->hbnr.max = MAX_HB; 643 644 card->sm_handle = NULL; 645 card->sm_addr = 0x00000000; 646 card->lg_handle = NULL; 647 card->lg_addr = 0x00000000; 648 649 card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */ 650 651 idr_init(&card->idr); 652 653 /* Pre-allocate some huge buffers */ 654 skb_queue_head_init(&card->hbpool.queue); 655 card->hbpool.count = 0; 656 for (j = 0; j < NUM_HB; j++) { 657 struct sk_buff *hb; 658 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 659 if (hb == NULL) { 660 printk 661 ("nicstar%d: can't allocate %dth of %d huge buffers.\n", 662 i, j, NUM_HB); 663 error = 13; 664 ns_init_card_error(card, error); 665 return error; 666 } 667 NS_PRV_BUFTYPE(hb) = BUF_NONE; 668 skb_queue_tail(&card->hbpool.queue, hb); 669 card->hbpool.count++; 670 } 671 672 /* Allocate large buffers */ 673 skb_queue_head_init(&card->lbpool.queue); 674 card->lbpool.count = 0; /* Not used */ 675 for (j = 0; j < NUM_LB; j++) { 676 struct sk_buff *lb; 677 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 678 if (lb == NULL) { 679 printk 680 ("nicstar%d: can't allocate %dth of %d large buffers.\n", 681 i, j, NUM_LB); 682 error = 14; 683 ns_init_card_error(card, error); 684 return error; 685 } 686 NS_PRV_BUFTYPE(lb) = BUF_LG; 687 skb_queue_tail(&card->lbpool.queue, lb); 688 skb_reserve(lb, NS_SMBUFSIZE); 689 push_rxbufs(card, lb); 690 /* Due to the implementation of push_rxbufs() this is 1, not 0 */ 691 if (j == 1) { 692 card->rcbuf = lb; 693 card->rawcell = (struct ns_rcqe *) lb->data; 694 card->rawch = NS_PRV_DMA(lb); 695 } 696 } 697 /* Test for strange behaviour which leads to crashes */ 698 if ((bcount = 699 ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) { 700 printk 701 ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n", 702 i, j, bcount); 703 error = 14; 704 ns_init_card_error(card, error); 705 return error; 706 } 707 708 /* Allocate small buffers */ 709 skb_queue_head_init(&card->sbpool.queue); 710 card->sbpool.count = 0; /* Not used */ 711 for (j = 0; j < NUM_SB; j++) { 712 struct sk_buff *sb; 713 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 714 if (sb == NULL) { 715 printk 716 ("nicstar%d: can't allocate %dth of %d small buffers.\n", 717 i, j, NUM_SB); 718 error = 15; 719 ns_init_card_error(card, error); 720 return error; 721 } 722 NS_PRV_BUFTYPE(sb) = BUF_SM; 723 skb_queue_tail(&card->sbpool.queue, sb); 724 skb_reserve(sb, NS_AAL0_HEADER); 725 push_rxbufs(card, sb); 726 } 727 /* Test for strange behaviour which leads to crashes */ 728 if ((bcount = 729 ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) { 730 printk 731 ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n", 732 i, j, bcount); 733 error = 15; 734 ns_init_card_error(card, error); 735 return error; 736 } 737 738 /* Allocate iovec buffers */ 739 skb_queue_head_init(&card->iovpool.queue); 740 card->iovpool.count = 0; 741 for (j = 0; j < NUM_IOVB; j++) { 742 struct sk_buff *iovb; 743 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 744 if (iovb == NULL) { 745 printk 746 ("nicstar%d: can't allocate %dth of %d iovec buffers.\n", 747 i, j, NUM_IOVB); 748 error = 16; 749 ns_init_card_error(card, error); 750 return error; 751 } 752 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 753 skb_queue_tail(&card->iovpool.queue, iovb); 754 card->iovpool.count++; 755 } 756 757 /* Configure NICStAR */ 758 if (card->rct_size == 4096) 759 ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES; 760 else /* (card->rct_size == 16384) */ 761 ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES; 762 763 card->efbie = 1; 764 765 /* Register device */ 766 card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops, 767 -1, NULL); 768 if (card->atmdev == NULL) { 769 printk("nicstar%d: can't register device.\n", i); 770 error = 17; 771 ns_init_card_error(card, error); 772 return error; 773 } 774 775 if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) { 776 nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET, 777 card->atmdev->esi, 6); 778 if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) { 779 nicstar_read_eprom(card->membase, 780 NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT, 781 card->atmdev->esi, 6); 782 } 783 } 784 785 printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi); 786 787 card->atmdev->dev_data = card; 788 card->atmdev->ci_range.vpi_bits = card->vpibits; 789 card->atmdev->ci_range.vci_bits = card->vcibits; 790 card->atmdev->link_rate = card->max_pcr; 791 card->atmdev->phy = NULL; 792 793 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 794 if (card->max_pcr == ATM_OC3_PCR) 795 suni_init(card->atmdev); 796 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 797 798 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 799 if (card->max_pcr == ATM_25_PCR) 800 idt77105_init(card->atmdev); 801 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 802 803 if (card->atmdev->phy && card->atmdev->phy->start) 804 card->atmdev->phy->start(card->atmdev); 805 806 writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */ 807 NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */ 808 NS_CFG_PHYIE, card->membase + CFG); 809 810 num_cards++; 811 812 return error; 813 } 814 815 static void ns_init_card_error(ns_dev *card, int error) 816 { 817 if (error >= 17) { 818 writel(0x00000000, card->membase + CFG); 819 } 820 if (error >= 16) { 821 struct sk_buff *iovb; 822 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) 823 dev_kfree_skb_any(iovb); 824 } 825 if (error >= 15) { 826 struct sk_buff *sb; 827 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 828 dev_kfree_skb_any(sb); 829 free_scq(card, card->scq0, NULL); 830 } 831 if (error >= 14) { 832 struct sk_buff *lb; 833 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 834 dev_kfree_skb_any(lb); 835 } 836 if (error >= 13) { 837 struct sk_buff *hb; 838 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) 839 dev_kfree_skb_any(hb); 840 } 841 if (error >= 12) { 842 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, 843 card->rsq.org, card->rsq.dma); 844 } 845 if (error >= 11) { 846 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, 847 card->tsq.org, card->tsq.dma); 848 } 849 if (error >= 10) { 850 free_irq(card->pcidev->irq, card); 851 } 852 if (error >= 4) { 853 iounmap(card->membase); 854 } 855 if (error >= 3) { 856 pci_disable_device(card->pcidev); 857 kfree(card); 858 } 859 } 860 861 static scq_info *get_scq(ns_dev *card, int size, u32 scd) 862 { 863 scq_info *scq; 864 865 if (size != VBR_SCQSIZE && size != CBR_SCQSIZE) 866 return NULL; 867 868 scq = kmalloc(sizeof(*scq), GFP_KERNEL); 869 if (!scq) 870 return NULL; 871 scq->org = dma_alloc_coherent(&card->pcidev->dev, 872 2 * size, &scq->dma, GFP_KERNEL); 873 if (!scq->org) { 874 kfree(scq); 875 return NULL; 876 } 877 scq->skb = kcalloc(size / NS_SCQE_SIZE, sizeof(*scq->skb), 878 GFP_KERNEL); 879 if (!scq->skb) { 880 dma_free_coherent(&card->pcidev->dev, 881 2 * size, scq->org, scq->dma); 882 kfree(scq); 883 return NULL; 884 } 885 scq->num_entries = size / NS_SCQE_SIZE; 886 scq->base = PTR_ALIGN(scq->org, size); 887 scq->next = scq->base; 888 scq->last = scq->base + (scq->num_entries - 1); 889 scq->tail = scq->last; 890 scq->scd = scd; 891 scq->tbd_count = 0; 892 init_waitqueue_head(&scq->scqfull_waitq); 893 scq->full = 0; 894 spin_lock_init(&scq->lock); 895 896 return scq; 897 } 898 899 /* For variable rate SCQ vcc must be NULL */ 900 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc) 901 { 902 int i; 903 904 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) 905 for (i = 0; i < scq->num_entries; i++) { 906 if (scq->skb[i] != NULL) { 907 vcc = ATM_SKB(scq->skb[i])->vcc; 908 if (vcc->pop != NULL) 909 vcc->pop(vcc, scq->skb[i]); 910 else 911 dev_kfree_skb_any(scq->skb[i]); 912 } 913 } else { /* vcc must be != NULL */ 914 915 if (vcc == NULL) { 916 printk 917 ("nicstar: free_scq() called with vcc == NULL for fixed rate scq."); 918 for (i = 0; i < scq->num_entries; i++) 919 dev_kfree_skb_any(scq->skb[i]); 920 } else 921 for (i = 0; i < scq->num_entries; i++) { 922 if (scq->skb[i] != NULL) { 923 if (vcc->pop != NULL) 924 vcc->pop(vcc, scq->skb[i]); 925 else 926 dev_kfree_skb_any(scq->skb[i]); 927 } 928 } 929 } 930 kfree(scq->skb); 931 dma_free_coherent(&card->pcidev->dev, 932 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ? 933 VBR_SCQSIZE : CBR_SCQSIZE), 934 scq->org, scq->dma); 935 kfree(scq); 936 } 937 938 /* The handles passed must be pointers to the sk_buff containing the small 939 or large buffer(s) cast to u32. */ 940 static void push_rxbufs(ns_dev * card, struct sk_buff *skb) 941 { 942 struct sk_buff *handle1, *handle2; 943 int id1, id2; 944 u32 addr1, addr2; 945 u32 stat; 946 unsigned long flags; 947 948 /* *BARF* */ 949 handle2 = NULL; 950 addr2 = 0; 951 handle1 = skb; 952 addr1 = dma_map_single(&card->pcidev->dev, 953 skb->data, 954 (NS_PRV_BUFTYPE(skb) == BUF_SM 955 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 956 DMA_TO_DEVICE); 957 NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */ 958 959 #ifdef GENERAL_DEBUG 960 if (!addr1) 961 printk("nicstar%d: push_rxbufs called with addr1 = 0.\n", 962 card->index); 963 #endif /* GENERAL_DEBUG */ 964 965 stat = readl(card->membase + STAT); 966 card->sbfqc = ns_stat_sfbqc_get(stat); 967 card->lbfqc = ns_stat_lfbqc_get(stat); 968 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 969 if (!addr2) { 970 if (card->sm_addr) { 971 addr2 = card->sm_addr; 972 handle2 = card->sm_handle; 973 card->sm_addr = 0x00000000; 974 card->sm_handle = NULL; 975 } else { /* (!sm_addr) */ 976 977 card->sm_addr = addr1; 978 card->sm_handle = handle1; 979 } 980 } 981 } else { /* buf_type == BUF_LG */ 982 983 if (!addr2) { 984 if (card->lg_addr) { 985 addr2 = card->lg_addr; 986 handle2 = card->lg_handle; 987 card->lg_addr = 0x00000000; 988 card->lg_handle = NULL; 989 } else { /* (!lg_addr) */ 990 991 card->lg_addr = addr1; 992 card->lg_handle = handle1; 993 } 994 } 995 } 996 997 if (addr2) { 998 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 999 if (card->sbfqc >= card->sbnr.max) { 1000 skb_unlink(handle1, &card->sbpool.queue); 1001 dev_kfree_skb_any(handle1); 1002 skb_unlink(handle2, &card->sbpool.queue); 1003 dev_kfree_skb_any(handle2); 1004 return; 1005 } else 1006 card->sbfqc += 2; 1007 } else { /* (buf_type == BUF_LG) */ 1008 1009 if (card->lbfqc >= card->lbnr.max) { 1010 skb_unlink(handle1, &card->lbpool.queue); 1011 dev_kfree_skb_any(handle1); 1012 skb_unlink(handle2, &card->lbpool.queue); 1013 dev_kfree_skb_any(handle2); 1014 return; 1015 } else 1016 card->lbfqc += 2; 1017 } 1018 1019 id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC); 1020 if (id1 < 0) 1021 goto out; 1022 1023 id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC); 1024 if (id2 < 0) 1025 goto out; 1026 1027 spin_lock_irqsave(&card->res_lock, flags); 1028 while (CMD_BUSY(card)) ; 1029 writel(addr2, card->membase + DR3); 1030 writel(id2, card->membase + DR2); 1031 writel(addr1, card->membase + DR1); 1032 writel(id1, card->membase + DR0); 1033 writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb), 1034 card->membase + CMD); 1035 spin_unlock_irqrestore(&card->res_lock, flags); 1036 1037 XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n", 1038 card->index, 1039 (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"), 1040 addr1, addr2); 1041 } 1042 1043 if (!card->efbie && card->sbfqc >= card->sbnr.min && 1044 card->lbfqc >= card->lbnr.min) { 1045 card->efbie = 1; 1046 writel((readl(card->membase + CFG) | NS_CFG_EFBIE), 1047 card->membase + CFG); 1048 } 1049 1050 out: 1051 return; 1052 } 1053 1054 static irqreturn_t ns_irq_handler(int irq, void *dev_id) 1055 { 1056 u32 stat_r; 1057 ns_dev *card; 1058 struct atm_dev *dev; 1059 unsigned long flags; 1060 1061 card = (ns_dev *) dev_id; 1062 dev = card->atmdev; 1063 card->intcnt++; 1064 1065 PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index); 1066 1067 spin_lock_irqsave(&card->int_lock, flags); 1068 1069 stat_r = readl(card->membase + STAT); 1070 1071 /* Transmit Status Indicator has been written to T. S. Queue */ 1072 if (stat_r & NS_STAT_TSIF) { 1073 TXPRINTK("nicstar%d: TSI interrupt\n", card->index); 1074 process_tsq(card); 1075 writel(NS_STAT_TSIF, card->membase + STAT); 1076 } 1077 1078 /* Incomplete CS-PDU has been transmitted */ 1079 if (stat_r & NS_STAT_TXICP) { 1080 writel(NS_STAT_TXICP, card->membase + STAT); 1081 TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n", 1082 card->index); 1083 } 1084 1085 /* Transmit Status Queue 7/8 full */ 1086 if (stat_r & NS_STAT_TSQF) { 1087 writel(NS_STAT_TSQF, card->membase + STAT); 1088 PRINTK("nicstar%d: TSQ full.\n", card->index); 1089 process_tsq(card); 1090 } 1091 1092 /* Timer overflow */ 1093 if (stat_r & NS_STAT_TMROF) { 1094 writel(NS_STAT_TMROF, card->membase + STAT); 1095 PRINTK("nicstar%d: Timer overflow.\n", card->index); 1096 } 1097 1098 /* PHY device interrupt signal active */ 1099 if (stat_r & NS_STAT_PHYI) { 1100 writel(NS_STAT_PHYI, card->membase + STAT); 1101 PRINTK("nicstar%d: PHY interrupt.\n", card->index); 1102 if (dev->phy && dev->phy->interrupt) { 1103 dev->phy->interrupt(dev); 1104 } 1105 } 1106 1107 /* Small Buffer Queue is full */ 1108 if (stat_r & NS_STAT_SFBQF) { 1109 writel(NS_STAT_SFBQF, card->membase + STAT); 1110 printk("nicstar%d: Small free buffer queue is full.\n", 1111 card->index); 1112 } 1113 1114 /* Large Buffer Queue is full */ 1115 if (stat_r & NS_STAT_LFBQF) { 1116 writel(NS_STAT_LFBQF, card->membase + STAT); 1117 printk("nicstar%d: Large free buffer queue is full.\n", 1118 card->index); 1119 } 1120 1121 /* Receive Status Queue is full */ 1122 if (stat_r & NS_STAT_RSQF) { 1123 writel(NS_STAT_RSQF, card->membase + STAT); 1124 printk("nicstar%d: RSQ full.\n", card->index); 1125 process_rsq(card); 1126 } 1127 1128 /* Complete CS-PDU received */ 1129 if (stat_r & NS_STAT_EOPDU) { 1130 RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index); 1131 process_rsq(card); 1132 writel(NS_STAT_EOPDU, card->membase + STAT); 1133 } 1134 1135 /* Raw cell received */ 1136 if (stat_r & NS_STAT_RAWCF) { 1137 writel(NS_STAT_RAWCF, card->membase + STAT); 1138 #ifndef RCQ_SUPPORT 1139 printk("nicstar%d: Raw cell received and no support yet...\n", 1140 card->index); 1141 #endif /* RCQ_SUPPORT */ 1142 /* NOTE: the following procedure may keep a raw cell pending until the 1143 next interrupt. As this preliminary support is only meant to 1144 avoid buffer leakage, this is not an issue. */ 1145 while (readl(card->membase + RAWCT) != card->rawch) { 1146 1147 if (ns_rcqe_islast(card->rawcell)) { 1148 struct sk_buff *oldbuf; 1149 1150 oldbuf = card->rcbuf; 1151 card->rcbuf = idr_find(&card->idr, 1152 ns_rcqe_nextbufhandle(card->rawcell)); 1153 card->rawch = NS_PRV_DMA(card->rcbuf); 1154 card->rawcell = (struct ns_rcqe *) 1155 card->rcbuf->data; 1156 recycle_rx_buf(card, oldbuf); 1157 } else { 1158 card->rawch += NS_RCQE_SIZE; 1159 card->rawcell++; 1160 } 1161 } 1162 } 1163 1164 /* Small buffer queue is empty */ 1165 if (stat_r & NS_STAT_SFBQE) { 1166 int i; 1167 struct sk_buff *sb; 1168 1169 writel(NS_STAT_SFBQE, card->membase + STAT); 1170 printk("nicstar%d: Small free buffer queue empty.\n", 1171 card->index); 1172 for (i = 0; i < card->sbnr.min; i++) { 1173 sb = dev_alloc_skb(NS_SMSKBSIZE); 1174 if (sb == NULL) { 1175 writel(readl(card->membase + CFG) & 1176 ~NS_CFG_EFBIE, card->membase + CFG); 1177 card->efbie = 0; 1178 break; 1179 } 1180 NS_PRV_BUFTYPE(sb) = BUF_SM; 1181 skb_queue_tail(&card->sbpool.queue, sb); 1182 skb_reserve(sb, NS_AAL0_HEADER); 1183 push_rxbufs(card, sb); 1184 } 1185 card->sbfqc = i; 1186 process_rsq(card); 1187 } 1188 1189 /* Large buffer queue empty */ 1190 if (stat_r & NS_STAT_LFBQE) { 1191 int i; 1192 struct sk_buff *lb; 1193 1194 writel(NS_STAT_LFBQE, card->membase + STAT); 1195 printk("nicstar%d: Large free buffer queue empty.\n", 1196 card->index); 1197 for (i = 0; i < card->lbnr.min; i++) { 1198 lb = dev_alloc_skb(NS_LGSKBSIZE); 1199 if (lb == NULL) { 1200 writel(readl(card->membase + CFG) & 1201 ~NS_CFG_EFBIE, card->membase + CFG); 1202 card->efbie = 0; 1203 break; 1204 } 1205 NS_PRV_BUFTYPE(lb) = BUF_LG; 1206 skb_queue_tail(&card->lbpool.queue, lb); 1207 skb_reserve(lb, NS_SMBUFSIZE); 1208 push_rxbufs(card, lb); 1209 } 1210 card->lbfqc = i; 1211 process_rsq(card); 1212 } 1213 1214 /* Receive Status Queue is 7/8 full */ 1215 if (stat_r & NS_STAT_RSQAF) { 1216 writel(NS_STAT_RSQAF, card->membase + STAT); 1217 RXPRINTK("nicstar%d: RSQ almost full.\n", card->index); 1218 process_rsq(card); 1219 } 1220 1221 spin_unlock_irqrestore(&card->int_lock, flags); 1222 PRINTK("nicstar%d: end of interrupt service\n", card->index); 1223 return IRQ_HANDLED; 1224 } 1225 1226 static int ns_open(struct atm_vcc *vcc) 1227 { 1228 ns_dev *card; 1229 vc_map *vc; 1230 unsigned long tmpl, modl; 1231 int tcr, tcra; /* target cell rate, and absolute value */ 1232 int n = 0; /* Number of entries in the TST. Initialized to remove 1233 the compiler warning. */ 1234 u32 u32d[4]; 1235 int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler 1236 warning. How I wish compilers were clever enough to 1237 tell which variables can truly be used 1238 uninitialized... */ 1239 int inuse; /* tx or rx vc already in use by another vcc */ 1240 short vpi = vcc->vpi; 1241 int vci = vcc->vci; 1242 1243 card = (ns_dev *) vcc->dev->dev_data; 1244 PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi, 1245 vci); 1246 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1247 PRINTK("nicstar%d: unsupported AAL.\n", card->index); 1248 return -EINVAL; 1249 } 1250 1251 vc = &(card->vcmap[vpi << card->vcibits | vci]); 1252 vcc->dev_data = vc; 1253 1254 inuse = 0; 1255 if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx) 1256 inuse = 1; 1257 if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx) 1258 inuse += 2; 1259 if (inuse) { 1260 printk("nicstar%d: %s vci already in use.\n", card->index, 1261 inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx"); 1262 return -EINVAL; 1263 } 1264 1265 set_bit(ATM_VF_ADDR, &vcc->flags); 1266 1267 /* NOTE: You are not allowed to modify an open connection's QOS. To change 1268 that, remove the ATM_VF_PARTIAL flag checking. There may be other changes 1269 needed to do that. */ 1270 if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) { 1271 scq_info *scq; 1272 1273 set_bit(ATM_VF_PARTIAL, &vcc->flags); 1274 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1275 /* Check requested cell rate and availability of SCD */ 1276 if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0 1277 && vcc->qos.txtp.min_pcr == 0) { 1278 PRINTK 1279 ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n", 1280 card->index); 1281 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1282 clear_bit(ATM_VF_ADDR, &vcc->flags); 1283 return -EINVAL; 1284 } 1285 1286 tcr = atm_pcr_goal(&(vcc->qos.txtp)); 1287 tcra = tcr >= 0 ? tcr : -tcr; 1288 1289 PRINTK("nicstar%d: target cell rate = %d.\n", 1290 card->index, vcc->qos.txtp.max_pcr); 1291 1292 tmpl = 1293 (unsigned long)tcra *(unsigned long) 1294 NS_TST_NUM_ENTRIES; 1295 modl = tmpl % card->max_pcr; 1296 1297 n = (int)(tmpl / card->max_pcr); 1298 if (tcr > 0) { 1299 if (modl > 0) 1300 n++; 1301 } else if (tcr == 0) { 1302 if ((n = 1303 (card->tst_free_entries - 1304 NS_TST_RESERVED)) <= 0) { 1305 PRINTK 1306 ("nicstar%d: no CBR bandwidth free.\n", 1307 card->index); 1308 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1309 clear_bit(ATM_VF_ADDR, &vcc->flags); 1310 return -EINVAL; 1311 } 1312 } 1313 1314 if (n == 0) { 1315 printk 1316 ("nicstar%d: selected bandwidth < granularity.\n", 1317 card->index); 1318 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1319 clear_bit(ATM_VF_ADDR, &vcc->flags); 1320 return -EINVAL; 1321 } 1322 1323 if (n > (card->tst_free_entries - NS_TST_RESERVED)) { 1324 PRINTK 1325 ("nicstar%d: not enough free CBR bandwidth.\n", 1326 card->index); 1327 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1328 clear_bit(ATM_VF_ADDR, &vcc->flags); 1329 return -EINVAL; 1330 } else 1331 card->tst_free_entries -= n; 1332 1333 XPRINTK("nicstar%d: writing %d tst entries.\n", 1334 card->index, n); 1335 for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) { 1336 if (card->scd2vc[frscdi] == NULL) { 1337 card->scd2vc[frscdi] = vc; 1338 break; 1339 } 1340 } 1341 if (frscdi == NS_FRSCD_NUM) { 1342 PRINTK 1343 ("nicstar%d: no SCD available for CBR channel.\n", 1344 card->index); 1345 card->tst_free_entries += n; 1346 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1347 clear_bit(ATM_VF_ADDR, &vcc->flags); 1348 return -EBUSY; 1349 } 1350 1351 vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE; 1352 1353 scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd); 1354 if (scq == NULL) { 1355 PRINTK("nicstar%d: can't get fixed rate SCQ.\n", 1356 card->index); 1357 card->scd2vc[frscdi] = NULL; 1358 card->tst_free_entries += n; 1359 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1360 clear_bit(ATM_VF_ADDR, &vcc->flags); 1361 return -ENOMEM; 1362 } 1363 vc->scq = scq; 1364 u32d[0] = scq_virt_to_bus(scq, scq->base); 1365 u32d[1] = (u32) 0x00000000; 1366 u32d[2] = (u32) 0xffffffff; 1367 u32d[3] = (u32) 0x00000000; 1368 ns_write_sram(card, vc->cbr_scd, u32d, 4); 1369 1370 fill_tst(card, n, vc); 1371 } else if (vcc->qos.txtp.traffic_class == ATM_UBR) { 1372 vc->cbr_scd = 0x00000000; 1373 vc->scq = card->scq0; 1374 } 1375 1376 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1377 vc->tx = 1; 1378 vc->tx_vcc = vcc; 1379 vc->tbd_count = 0; 1380 } 1381 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1382 u32 status; 1383 1384 vc->rx = 1; 1385 vc->rx_vcc = vcc; 1386 vc->rx_iov = NULL; 1387 1388 /* Open the connection in hardware */ 1389 if (vcc->qos.aal == ATM_AAL5) 1390 status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN; 1391 else /* vcc->qos.aal == ATM_AAL0 */ 1392 status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN; 1393 #ifdef RCQ_SUPPORT 1394 status |= NS_RCTE_RAWCELLINTEN; 1395 #endif /* RCQ_SUPPORT */ 1396 ns_write_sram(card, 1397 NS_RCT + 1398 (vpi << card->vcibits | vci) * 1399 NS_RCT_ENTRY_SIZE, &status, 1); 1400 } 1401 1402 } 1403 1404 set_bit(ATM_VF_READY, &vcc->flags); 1405 return 0; 1406 } 1407 1408 static void ns_close(struct atm_vcc *vcc) 1409 { 1410 vc_map *vc; 1411 ns_dev *card; 1412 u32 data; 1413 int i; 1414 1415 vc = vcc->dev_data; 1416 card = vcc->dev->dev_data; 1417 PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index, 1418 (int)vcc->vpi, vcc->vci); 1419 1420 clear_bit(ATM_VF_READY, &vcc->flags); 1421 1422 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1423 u32 addr; 1424 unsigned long flags; 1425 1426 addr = 1427 NS_RCT + 1428 (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE; 1429 spin_lock_irqsave(&card->res_lock, flags); 1430 while (CMD_BUSY(card)) ; 1431 writel(NS_CMD_CLOSE_CONNECTION | addr << 2, 1432 card->membase + CMD); 1433 spin_unlock_irqrestore(&card->res_lock, flags); 1434 1435 vc->rx = 0; 1436 if (vc->rx_iov != NULL) { 1437 struct sk_buff *iovb; 1438 u32 stat; 1439 1440 stat = readl(card->membase + STAT); 1441 card->sbfqc = ns_stat_sfbqc_get(stat); 1442 card->lbfqc = ns_stat_lfbqc_get(stat); 1443 1444 PRINTK 1445 ("nicstar%d: closing a VC with pending rx buffers.\n", 1446 card->index); 1447 iovb = vc->rx_iov; 1448 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 1449 NS_PRV_IOVCNT(iovb)); 1450 NS_PRV_IOVCNT(iovb) = 0; 1451 spin_lock_irqsave(&card->int_lock, flags); 1452 recycle_iov_buf(card, iovb); 1453 spin_unlock_irqrestore(&card->int_lock, flags); 1454 vc->rx_iov = NULL; 1455 } 1456 } 1457 1458 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1459 vc->tx = 0; 1460 } 1461 1462 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1463 unsigned long flags; 1464 ns_scqe *scqep; 1465 scq_info *scq; 1466 1467 scq = vc->scq; 1468 1469 for (;;) { 1470 spin_lock_irqsave(&scq->lock, flags); 1471 scqep = scq->next; 1472 if (scqep == scq->base) 1473 scqep = scq->last; 1474 else 1475 scqep--; 1476 if (scqep == scq->tail) { 1477 spin_unlock_irqrestore(&scq->lock, flags); 1478 break; 1479 } 1480 /* If the last entry is not a TSR, place one in the SCQ in order to 1481 be able to completely drain it and then close. */ 1482 if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) { 1483 ns_scqe tsr; 1484 u32 scdi, scqi; 1485 u32 data; 1486 int index; 1487 1488 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1489 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1490 scqi = scq->next - scq->base; 1491 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1492 tsr.word_3 = 0x00000000; 1493 tsr.word_4 = 0x00000000; 1494 *scq->next = tsr; 1495 index = (int)scqi; 1496 scq->skb[index] = NULL; 1497 if (scq->next == scq->last) 1498 scq->next = scq->base; 1499 else 1500 scq->next++; 1501 data = scq_virt_to_bus(scq, scq->next); 1502 ns_write_sram(card, scq->scd, &data, 1); 1503 } 1504 spin_unlock_irqrestore(&scq->lock, flags); 1505 schedule(); 1506 } 1507 1508 /* Free all TST entries */ 1509 data = NS_TST_OPCODE_VARIABLE; 1510 for (i = 0; i < NS_TST_NUM_ENTRIES; i++) { 1511 if (card->tste2vc[i] == vc) { 1512 ns_write_sram(card, card->tst_addr + i, &data, 1513 1); 1514 card->tste2vc[i] = NULL; 1515 card->tst_free_entries++; 1516 } 1517 } 1518 1519 card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL; 1520 free_scq(card, vc->scq, vcc); 1521 } 1522 1523 /* remove all references to vcc before deleting it */ 1524 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1525 unsigned long flags; 1526 scq_info *scq = card->scq0; 1527 1528 spin_lock_irqsave(&scq->lock, flags); 1529 1530 for (i = 0; i < scq->num_entries; i++) { 1531 if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) { 1532 ATM_SKB(scq->skb[i])->vcc = NULL; 1533 atm_return(vcc, scq->skb[i]->truesize); 1534 PRINTK 1535 ("nicstar: deleted pending vcc mapping\n"); 1536 } 1537 } 1538 1539 spin_unlock_irqrestore(&scq->lock, flags); 1540 } 1541 1542 vcc->dev_data = NULL; 1543 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1544 clear_bit(ATM_VF_ADDR, &vcc->flags); 1545 1546 #ifdef RX_DEBUG 1547 { 1548 u32 stat, cfg; 1549 stat = readl(card->membase + STAT); 1550 cfg = readl(card->membase + CFG); 1551 printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg); 1552 printk 1553 ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n", 1554 card->tsq.base, card->tsq.next, 1555 card->tsq.last, readl(card->membase + TSQT)); 1556 printk 1557 ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n", 1558 card->rsq.base, card->rsq.next, 1559 card->rsq.last, readl(card->membase + RSQT)); 1560 printk("Empty free buffer queue interrupt %s \n", 1561 card->efbie ? "enabled" : "disabled"); 1562 printk("SBCNT = %d count = %d LBCNT = %d count = %d \n", 1563 ns_stat_sfbqc_get(stat), card->sbpool.count, 1564 ns_stat_lfbqc_get(stat), card->lbpool.count); 1565 printk("hbpool.count = %d iovpool.count = %d \n", 1566 card->hbpool.count, card->iovpool.count); 1567 } 1568 #endif /* RX_DEBUG */ 1569 } 1570 1571 static void fill_tst(ns_dev * card, int n, vc_map * vc) 1572 { 1573 u32 new_tst; 1574 unsigned long cl; 1575 int e, r; 1576 u32 data; 1577 1578 /* It would be very complicated to keep the two TSTs synchronized while 1579 assuring that writes are only made to the inactive TST. So, for now I 1580 will use only one TST. If problems occur, I will change this again */ 1581 1582 new_tst = card->tst_addr; 1583 1584 /* Fill procedure */ 1585 1586 for (e = 0; e < NS_TST_NUM_ENTRIES; e++) { 1587 if (card->tste2vc[e] == NULL) 1588 break; 1589 } 1590 if (e == NS_TST_NUM_ENTRIES) { 1591 printk("nicstar%d: No free TST entries found. \n", card->index); 1592 return; 1593 } 1594 1595 r = n; 1596 cl = NS_TST_NUM_ENTRIES; 1597 data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd); 1598 1599 while (r > 0) { 1600 if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) { 1601 card->tste2vc[e] = vc; 1602 ns_write_sram(card, new_tst + e, &data, 1); 1603 cl -= NS_TST_NUM_ENTRIES; 1604 r--; 1605 } 1606 1607 if (++e == NS_TST_NUM_ENTRIES) { 1608 e = 0; 1609 } 1610 cl += n; 1611 } 1612 1613 /* End of fill procedure */ 1614 1615 data = ns_tste_make(NS_TST_OPCODE_END, new_tst); 1616 ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1); 1617 ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1); 1618 card->tst_addr = new_tst; 1619 } 1620 1621 static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep) 1622 { 1623 ns_dev *card; 1624 vc_map *vc; 1625 scq_info *scq; 1626 unsigned long buflen; 1627 ns_scqe scqe; 1628 u32 flags; /* TBD flags, not CPU flags */ 1629 1630 card = vcc->dev->dev_data; 1631 TXPRINTK("nicstar%d: ns_send() called.\n", card->index); 1632 if ((vc = (vc_map *) vcc->dev_data) == NULL) { 1633 printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n", 1634 card->index); 1635 atomic_inc(&vcc->stats->tx_err); 1636 dev_kfree_skb_any(skb); 1637 return -EINVAL; 1638 } 1639 1640 if (!vc->tx) { 1641 printk("nicstar%d: Trying to transmit on a non-tx VC.\n", 1642 card->index); 1643 atomic_inc(&vcc->stats->tx_err); 1644 dev_kfree_skb_any(skb); 1645 return -EINVAL; 1646 } 1647 1648 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1649 printk("nicstar%d: Only AAL0 and AAL5 are supported.\n", 1650 card->index); 1651 atomic_inc(&vcc->stats->tx_err); 1652 dev_kfree_skb_any(skb); 1653 return -EINVAL; 1654 } 1655 1656 if (skb_shinfo(skb)->nr_frags != 0) { 1657 printk("nicstar%d: No scatter-gather yet.\n", card->index); 1658 atomic_inc(&vcc->stats->tx_err); 1659 dev_kfree_skb_any(skb); 1660 return -EINVAL; 1661 } 1662 1663 ATM_SKB(skb)->vcc = vcc; 1664 1665 NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data, 1666 skb->len, DMA_TO_DEVICE); 1667 1668 if (vcc->qos.aal == ATM_AAL5) { 1669 buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */ 1670 flags = NS_TBD_AAL5; 1671 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb)); 1672 scqe.word_3 = cpu_to_le32(skb->len); 1673 scqe.word_4 = 1674 ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0, 1675 ATM_SKB(skb)-> 1676 atm_options & ATM_ATMOPT_CLP ? 1 : 0); 1677 flags |= NS_TBD_EOPDU; 1678 } else { /* (vcc->qos.aal == ATM_AAL0) */ 1679 1680 buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */ 1681 flags = NS_TBD_AAL0; 1682 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER); 1683 scqe.word_3 = cpu_to_le32(0x00000000); 1684 if (*skb->data & 0x02) /* Payload type 1 - end of pdu */ 1685 flags |= NS_TBD_EOPDU; 1686 scqe.word_4 = 1687 cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK); 1688 /* Force the VPI/VCI to be the same as in VCC struct */ 1689 scqe.word_4 |= 1690 cpu_to_le32((((u32) vcc-> 1691 vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc-> 1692 vci) << 1693 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK); 1694 } 1695 1696 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1697 scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen); 1698 scq = ((vc_map *) vcc->dev_data)->scq; 1699 } else { 1700 scqe.word_1 = 1701 ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen); 1702 scq = card->scq0; 1703 } 1704 1705 if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) { 1706 atomic_inc(&vcc->stats->tx_err); 1707 dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len, 1708 DMA_TO_DEVICE); 1709 dev_kfree_skb_any(skb); 1710 return -EIO; 1711 } 1712 atomic_inc(&vcc->stats->tx); 1713 1714 return 0; 1715 } 1716 1717 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb) 1718 { 1719 return _ns_send(vcc, skb, true); 1720 } 1721 1722 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb) 1723 { 1724 return _ns_send(vcc, skb, false); 1725 } 1726 1727 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 1728 struct sk_buff *skb, bool may_sleep) 1729 { 1730 unsigned long flags; 1731 ns_scqe tsr; 1732 u32 scdi, scqi; 1733 int scq_is_vbr; 1734 u32 data; 1735 int index; 1736 1737 spin_lock_irqsave(&scq->lock, flags); 1738 while (scq->tail == scq->next) { 1739 if (!may_sleep) { 1740 spin_unlock_irqrestore(&scq->lock, flags); 1741 printk("nicstar%d: Error pushing TBD.\n", card->index); 1742 return 1; 1743 } 1744 1745 scq->full = 1; 1746 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1747 scq->tail != scq->next, 1748 scq->lock, 1749 SCQFULL_TIMEOUT); 1750 1751 if (scq->full) { 1752 spin_unlock_irqrestore(&scq->lock, flags); 1753 printk("nicstar%d: Timeout pushing TBD.\n", 1754 card->index); 1755 return 1; 1756 } 1757 } 1758 *scq->next = *tbd; 1759 index = (int)(scq->next - scq->base); 1760 scq->skb[index] = skb; 1761 XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n", 1762 card->index, skb, index); 1763 XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1764 card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2), 1765 le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4), 1766 scq->next); 1767 if (scq->next == scq->last) 1768 scq->next = scq->base; 1769 else 1770 scq->next++; 1771 1772 vc->tbd_count++; 1773 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) { 1774 scq->tbd_count++; 1775 scq_is_vbr = 1; 1776 } else 1777 scq_is_vbr = 0; 1778 1779 if (vc->tbd_count >= MAX_TBD_PER_VC 1780 || scq->tbd_count >= MAX_TBD_PER_SCQ) { 1781 int has_run = 0; 1782 1783 while (scq->tail == scq->next) { 1784 if (!may_sleep) { 1785 data = scq_virt_to_bus(scq, scq->next); 1786 ns_write_sram(card, scq->scd, &data, 1); 1787 spin_unlock_irqrestore(&scq->lock, flags); 1788 printk("nicstar%d: Error pushing TSR.\n", 1789 card->index); 1790 return 0; 1791 } 1792 1793 scq->full = 1; 1794 if (has_run++) 1795 break; 1796 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1797 scq->tail != scq->next, 1798 scq->lock, 1799 SCQFULL_TIMEOUT); 1800 } 1801 1802 if (!scq->full) { 1803 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1804 if (scq_is_vbr) 1805 scdi = NS_TSR_SCDISVBR; 1806 else 1807 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1808 scqi = scq->next - scq->base; 1809 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1810 tsr.word_3 = 0x00000000; 1811 tsr.word_4 = 0x00000000; 1812 1813 *scq->next = tsr; 1814 index = (int)scqi; 1815 scq->skb[index] = NULL; 1816 XPRINTK 1817 ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1818 card->index, le32_to_cpu(tsr.word_1), 1819 le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3), 1820 le32_to_cpu(tsr.word_4), scq->next); 1821 if (scq->next == scq->last) 1822 scq->next = scq->base; 1823 else 1824 scq->next++; 1825 vc->tbd_count = 0; 1826 scq->tbd_count = 0; 1827 } else 1828 PRINTK("nicstar%d: Timeout pushing TSR.\n", 1829 card->index); 1830 } 1831 data = scq_virt_to_bus(scq, scq->next); 1832 ns_write_sram(card, scq->scd, &data, 1); 1833 1834 spin_unlock_irqrestore(&scq->lock, flags); 1835 1836 return 0; 1837 } 1838 1839 static void process_tsq(ns_dev * card) 1840 { 1841 u32 scdi; 1842 scq_info *scq; 1843 ns_tsi *previous = NULL, *one_ahead, *two_ahead; 1844 int serviced_entries; /* flag indicating at least on entry was serviced */ 1845 1846 serviced_entries = 0; 1847 1848 if (card->tsq.next == card->tsq.last) 1849 one_ahead = card->tsq.base; 1850 else 1851 one_ahead = card->tsq.next + 1; 1852 1853 if (one_ahead == card->tsq.last) 1854 two_ahead = card->tsq.base; 1855 else 1856 two_ahead = one_ahead + 1; 1857 1858 while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) || 1859 !ns_tsi_isempty(two_ahead)) 1860 /* At most two empty, as stated in the 77201 errata */ 1861 { 1862 serviced_entries = 1; 1863 1864 /* Skip the one or two possible empty entries */ 1865 while (ns_tsi_isempty(card->tsq.next)) { 1866 if (card->tsq.next == card->tsq.last) 1867 card->tsq.next = card->tsq.base; 1868 else 1869 card->tsq.next++; 1870 } 1871 1872 if (!ns_tsi_tmrof(card->tsq.next)) { 1873 scdi = ns_tsi_getscdindex(card->tsq.next); 1874 if (scdi == NS_TSI_SCDISVBR) 1875 scq = card->scq0; 1876 else { 1877 if (card->scd2vc[scdi] == NULL) { 1878 printk 1879 ("nicstar%d: could not find VC from SCD index.\n", 1880 card->index); 1881 ns_tsi_init(card->tsq.next); 1882 return; 1883 } 1884 scq = card->scd2vc[scdi]->scq; 1885 } 1886 drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next)); 1887 scq->full = 0; 1888 wake_up_interruptible(&(scq->scqfull_waitq)); 1889 } 1890 1891 ns_tsi_init(card->tsq.next); 1892 previous = card->tsq.next; 1893 if (card->tsq.next == card->tsq.last) 1894 card->tsq.next = card->tsq.base; 1895 else 1896 card->tsq.next++; 1897 1898 if (card->tsq.next == card->tsq.last) 1899 one_ahead = card->tsq.base; 1900 else 1901 one_ahead = card->tsq.next + 1; 1902 1903 if (one_ahead == card->tsq.last) 1904 two_ahead = card->tsq.base; 1905 else 1906 two_ahead = one_ahead + 1; 1907 } 1908 1909 if (serviced_entries) 1910 writel(PTR_DIFF(previous, card->tsq.base), 1911 card->membase + TSQH); 1912 } 1913 1914 static void drain_scq(ns_dev * card, scq_info * scq, int pos) 1915 { 1916 struct atm_vcc *vcc; 1917 struct sk_buff *skb; 1918 int i; 1919 unsigned long flags; 1920 1921 XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n", 1922 card->index, scq, pos); 1923 if (pos >= scq->num_entries) { 1924 printk("nicstar%d: Bad index on drain_scq().\n", card->index); 1925 return; 1926 } 1927 1928 spin_lock_irqsave(&scq->lock, flags); 1929 i = (int)(scq->tail - scq->base); 1930 if (++i == scq->num_entries) 1931 i = 0; 1932 while (i != pos) { 1933 skb = scq->skb[i]; 1934 XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n", 1935 card->index, skb, i); 1936 if (skb != NULL) { 1937 dma_unmap_single(&card->pcidev->dev, 1938 NS_PRV_DMA(skb), 1939 skb->len, 1940 DMA_TO_DEVICE); 1941 vcc = ATM_SKB(skb)->vcc; 1942 if (vcc && vcc->pop != NULL) { 1943 vcc->pop(vcc, skb); 1944 } else { 1945 dev_kfree_skb_irq(skb); 1946 } 1947 scq->skb[i] = NULL; 1948 } 1949 if (++i == scq->num_entries) 1950 i = 0; 1951 } 1952 scq->tail = scq->base + pos; 1953 spin_unlock_irqrestore(&scq->lock, flags); 1954 } 1955 1956 static void process_rsq(ns_dev * card) 1957 { 1958 ns_rsqe *previous; 1959 1960 if (!ns_rsqe_valid(card->rsq.next)) 1961 return; 1962 do { 1963 dequeue_rx(card, card->rsq.next); 1964 ns_rsqe_init(card->rsq.next); 1965 previous = card->rsq.next; 1966 if (card->rsq.next == card->rsq.last) 1967 card->rsq.next = card->rsq.base; 1968 else 1969 card->rsq.next++; 1970 } while (ns_rsqe_valid(card->rsq.next)); 1971 writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH); 1972 } 1973 1974 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe) 1975 { 1976 u32 vpi, vci; 1977 vc_map *vc; 1978 struct sk_buff *iovb; 1979 struct iovec *iov; 1980 struct atm_vcc *vcc; 1981 struct sk_buff *skb; 1982 unsigned short aal5_len; 1983 int len; 1984 u32 stat; 1985 u32 id; 1986 1987 stat = readl(card->membase + STAT); 1988 card->sbfqc = ns_stat_sfbqc_get(stat); 1989 card->lbfqc = ns_stat_lfbqc_get(stat); 1990 1991 id = le32_to_cpu(rsqe->buffer_handle); 1992 skb = idr_remove(&card->idr, id); 1993 if (!skb) { 1994 RXPRINTK(KERN_ERR 1995 "nicstar%d: skb not found!\n", card->index); 1996 return; 1997 } 1998 dma_sync_single_for_cpu(&card->pcidev->dev, 1999 NS_PRV_DMA(skb), 2000 (NS_PRV_BUFTYPE(skb) == BUF_SM 2001 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 2002 DMA_FROM_DEVICE); 2003 dma_unmap_single(&card->pcidev->dev, 2004 NS_PRV_DMA(skb), 2005 (NS_PRV_BUFTYPE(skb) == BUF_SM 2006 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 2007 DMA_FROM_DEVICE); 2008 vpi = ns_rsqe_vpi(rsqe); 2009 vci = ns_rsqe_vci(rsqe); 2010 if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) { 2011 printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n", 2012 card->index, vpi, vci); 2013 recycle_rx_buf(card, skb); 2014 return; 2015 } 2016 2017 vc = &(card->vcmap[vpi << card->vcibits | vci]); 2018 if (!vc->rx) { 2019 RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n", 2020 card->index, vpi, vci); 2021 recycle_rx_buf(card, skb); 2022 return; 2023 } 2024 2025 vcc = vc->rx_vcc; 2026 2027 if (vcc->qos.aal == ATM_AAL0) { 2028 struct sk_buff *sb; 2029 unsigned char *cell; 2030 int i; 2031 2032 cell = skb->data; 2033 for (i = ns_rsqe_cellcount(rsqe); i; i--) { 2034 sb = dev_alloc_skb(NS_SMSKBSIZE); 2035 if (!sb) { 2036 printk 2037 ("nicstar%d: Can't allocate buffers for aal0.\n", 2038 card->index); 2039 atomic_add(i, &vcc->stats->rx_drop); 2040 break; 2041 } 2042 if (!atm_charge(vcc, sb->truesize)) { 2043 RXPRINTK 2044 ("nicstar%d: atm_charge() dropped aal0 packets.\n", 2045 card->index); 2046 atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */ 2047 dev_kfree_skb_any(sb); 2048 break; 2049 } 2050 /* Rebuild the header */ 2051 *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 | 2052 (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000); 2053 if (i == 1 && ns_rsqe_eopdu(rsqe)) 2054 *((u32 *) sb->data) |= 0x00000002; 2055 skb_put(sb, NS_AAL0_HEADER); 2056 memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD); 2057 skb_put(sb, ATM_CELL_PAYLOAD); 2058 ATM_SKB(sb)->vcc = vcc; 2059 __net_timestamp(sb); 2060 vcc->push(vcc, sb); 2061 atomic_inc(&vcc->stats->rx); 2062 cell += ATM_CELL_PAYLOAD; 2063 } 2064 2065 recycle_rx_buf(card, skb); 2066 return; 2067 } 2068 2069 /* To reach this point, the AAL layer can only be AAL5 */ 2070 2071 if ((iovb = vc->rx_iov) == NULL) { 2072 iovb = skb_dequeue(&(card->iovpool.queue)); 2073 if (iovb == NULL) { /* No buffers in the queue */ 2074 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC); 2075 if (iovb == NULL) { 2076 printk("nicstar%d: Out of iovec buffers.\n", 2077 card->index); 2078 atomic_inc(&vcc->stats->rx_drop); 2079 recycle_rx_buf(card, skb); 2080 return; 2081 } 2082 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2083 } else if (--card->iovpool.count < card->iovnr.min) { 2084 struct sk_buff *new_iovb; 2085 if ((new_iovb = 2086 alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) { 2087 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2088 skb_queue_tail(&card->iovpool.queue, new_iovb); 2089 card->iovpool.count++; 2090 } 2091 } 2092 vc->rx_iov = iovb; 2093 NS_PRV_IOVCNT(iovb) = 0; 2094 iovb->len = 0; 2095 iovb->data = iovb->head; 2096 skb_reset_tail_pointer(iovb); 2097 /* IMPORTANT: a pointer to the sk_buff containing the small or large 2098 buffer is stored as iovec base, NOT a pointer to the 2099 small or large buffer itself. */ 2100 } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) { 2101 printk("nicstar%d: received too big AAL5 SDU.\n", card->index); 2102 atomic_inc(&vcc->stats->rx_err); 2103 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2104 NS_MAX_IOVECS); 2105 NS_PRV_IOVCNT(iovb) = 0; 2106 iovb->len = 0; 2107 iovb->data = iovb->head; 2108 skb_reset_tail_pointer(iovb); 2109 } 2110 iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++]; 2111 iov->iov_base = (void *)skb; 2112 iov->iov_len = ns_rsqe_cellcount(rsqe) * 48; 2113 iovb->len += iov->iov_len; 2114 2115 #ifdef EXTRA_DEBUG 2116 if (NS_PRV_IOVCNT(iovb) == 1) { 2117 if (NS_PRV_BUFTYPE(skb) != BUF_SM) { 2118 printk 2119 ("nicstar%d: Expected a small buffer, and this is not one.\n", 2120 card->index); 2121 which_list(card, skb); 2122 atomic_inc(&vcc->stats->rx_err); 2123 recycle_rx_buf(card, skb); 2124 vc->rx_iov = NULL; 2125 recycle_iov_buf(card, iovb); 2126 return; 2127 } 2128 } else { /* NS_PRV_IOVCNT(iovb) >= 2 */ 2129 2130 if (NS_PRV_BUFTYPE(skb) != BUF_LG) { 2131 printk 2132 ("nicstar%d: Expected a large buffer, and this is not one.\n", 2133 card->index); 2134 which_list(card, skb); 2135 atomic_inc(&vcc->stats->rx_err); 2136 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2137 NS_PRV_IOVCNT(iovb)); 2138 vc->rx_iov = NULL; 2139 recycle_iov_buf(card, iovb); 2140 return; 2141 } 2142 } 2143 #endif /* EXTRA_DEBUG */ 2144 2145 if (ns_rsqe_eopdu(rsqe)) { 2146 /* This works correctly regardless of the endianness of the host */ 2147 unsigned char *L1L2 = (unsigned char *) 2148 (skb->data + iov->iov_len - 6); 2149 aal5_len = L1L2[0] << 8 | L1L2[1]; 2150 len = (aal5_len == 0x0000) ? 0x10000 : aal5_len; 2151 if (ns_rsqe_crcerr(rsqe) || 2152 len + 8 > iovb->len || len + (47 + 8) < iovb->len) { 2153 printk("nicstar%d: AAL5 CRC error", card->index); 2154 if (len + 8 > iovb->len || len + (47 + 8) < iovb->len) 2155 printk(" - PDU size mismatch.\n"); 2156 else 2157 printk(".\n"); 2158 atomic_inc(&vcc->stats->rx_err); 2159 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2160 NS_PRV_IOVCNT(iovb)); 2161 vc->rx_iov = NULL; 2162 recycle_iov_buf(card, iovb); 2163 return; 2164 } 2165 2166 /* By this point we (hopefully) have a complete SDU without errors. */ 2167 2168 if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */ 2169 /* skb points to a small buffer */ 2170 if (!atm_charge(vcc, skb->truesize)) { 2171 push_rxbufs(card, skb); 2172 atomic_inc(&vcc->stats->rx_drop); 2173 } else { 2174 skb_put(skb, len); 2175 dequeue_sm_buf(card, skb); 2176 ATM_SKB(skb)->vcc = vcc; 2177 __net_timestamp(skb); 2178 vcc->push(vcc, skb); 2179 atomic_inc(&vcc->stats->rx); 2180 } 2181 } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */ 2182 struct sk_buff *sb; 2183 2184 sb = (struct sk_buff *)(iov - 1)->iov_base; 2185 /* skb points to a large buffer */ 2186 2187 if (len <= NS_SMBUFSIZE) { 2188 if (!atm_charge(vcc, sb->truesize)) { 2189 push_rxbufs(card, sb); 2190 atomic_inc(&vcc->stats->rx_drop); 2191 } else { 2192 skb_put(sb, len); 2193 dequeue_sm_buf(card, sb); 2194 ATM_SKB(sb)->vcc = vcc; 2195 __net_timestamp(sb); 2196 vcc->push(vcc, sb); 2197 atomic_inc(&vcc->stats->rx); 2198 } 2199 2200 push_rxbufs(card, skb); 2201 2202 } else { /* len > NS_SMBUFSIZE, the usual case */ 2203 2204 if (!atm_charge(vcc, skb->truesize)) { 2205 push_rxbufs(card, skb); 2206 atomic_inc(&vcc->stats->rx_drop); 2207 } else { 2208 dequeue_lg_buf(card, skb); 2209 skb_push(skb, NS_SMBUFSIZE); 2210 skb_copy_from_linear_data(sb, skb->data, 2211 NS_SMBUFSIZE); 2212 skb_put(skb, len - NS_SMBUFSIZE); 2213 ATM_SKB(skb)->vcc = vcc; 2214 __net_timestamp(skb); 2215 vcc->push(vcc, skb); 2216 atomic_inc(&vcc->stats->rx); 2217 } 2218 2219 push_rxbufs(card, sb); 2220 2221 } 2222 2223 } else { /* Must push a huge buffer */ 2224 2225 struct sk_buff *hb, *sb, *lb; 2226 int remaining, tocopy; 2227 int j; 2228 2229 hb = skb_dequeue(&(card->hbpool.queue)); 2230 if (hb == NULL) { /* No buffers in the queue */ 2231 2232 hb = dev_alloc_skb(NS_HBUFSIZE); 2233 if (hb == NULL) { 2234 printk 2235 ("nicstar%d: Out of huge buffers.\n", 2236 card->index); 2237 atomic_inc(&vcc->stats->rx_drop); 2238 recycle_iovec_rx_bufs(card, 2239 (struct iovec *) 2240 iovb->data, 2241 NS_PRV_IOVCNT(iovb)); 2242 vc->rx_iov = NULL; 2243 recycle_iov_buf(card, iovb); 2244 return; 2245 } else if (card->hbpool.count < card->hbnr.min) { 2246 struct sk_buff *new_hb; 2247 if ((new_hb = 2248 dev_alloc_skb(NS_HBUFSIZE)) != 2249 NULL) { 2250 skb_queue_tail(&card->hbpool. 2251 queue, new_hb); 2252 card->hbpool.count++; 2253 } 2254 } 2255 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2256 } else if (--card->hbpool.count < card->hbnr.min) { 2257 struct sk_buff *new_hb; 2258 if ((new_hb = 2259 dev_alloc_skb(NS_HBUFSIZE)) != NULL) { 2260 NS_PRV_BUFTYPE(new_hb) = BUF_NONE; 2261 skb_queue_tail(&card->hbpool.queue, 2262 new_hb); 2263 card->hbpool.count++; 2264 } 2265 if (card->hbpool.count < card->hbnr.min) { 2266 if ((new_hb = 2267 dev_alloc_skb(NS_HBUFSIZE)) != 2268 NULL) { 2269 NS_PRV_BUFTYPE(new_hb) = 2270 BUF_NONE; 2271 skb_queue_tail(&card->hbpool. 2272 queue, new_hb); 2273 card->hbpool.count++; 2274 } 2275 } 2276 } 2277 2278 iov = (struct iovec *)iovb->data; 2279 2280 if (!atm_charge(vcc, hb->truesize)) { 2281 recycle_iovec_rx_bufs(card, iov, 2282 NS_PRV_IOVCNT(iovb)); 2283 if (card->hbpool.count < card->hbnr.max) { 2284 skb_queue_tail(&card->hbpool.queue, hb); 2285 card->hbpool.count++; 2286 } else 2287 dev_kfree_skb_any(hb); 2288 atomic_inc(&vcc->stats->rx_drop); 2289 } else { 2290 /* Copy the small buffer to the huge buffer */ 2291 sb = (struct sk_buff *)iov->iov_base; 2292 skb_copy_from_linear_data(sb, hb->data, 2293 iov->iov_len); 2294 skb_put(hb, iov->iov_len); 2295 remaining = len - iov->iov_len; 2296 iov++; 2297 /* Free the small buffer */ 2298 push_rxbufs(card, sb); 2299 2300 /* Copy all large buffers to the huge buffer and free them */ 2301 for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) { 2302 lb = (struct sk_buff *)iov->iov_base; 2303 tocopy = 2304 min_t(int, remaining, iov->iov_len); 2305 skb_copy_from_linear_data(lb, 2306 skb_tail_pointer 2307 (hb), tocopy); 2308 skb_put(hb, tocopy); 2309 iov++; 2310 remaining -= tocopy; 2311 push_rxbufs(card, lb); 2312 } 2313 #ifdef EXTRA_DEBUG 2314 if (remaining != 0 || hb->len != len) 2315 printk 2316 ("nicstar%d: Huge buffer len mismatch.\n", 2317 card->index); 2318 #endif /* EXTRA_DEBUG */ 2319 ATM_SKB(hb)->vcc = vcc; 2320 __net_timestamp(hb); 2321 vcc->push(vcc, hb); 2322 atomic_inc(&vcc->stats->rx); 2323 } 2324 } 2325 2326 vc->rx_iov = NULL; 2327 recycle_iov_buf(card, iovb); 2328 } 2329 2330 } 2331 2332 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb) 2333 { 2334 if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) { 2335 printk("nicstar%d: What kind of rx buffer is this?\n", 2336 card->index); 2337 dev_kfree_skb_any(skb); 2338 } else 2339 push_rxbufs(card, skb); 2340 } 2341 2342 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count) 2343 { 2344 while (count-- > 0) 2345 recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base); 2346 } 2347 2348 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb) 2349 { 2350 if (card->iovpool.count < card->iovnr.max) { 2351 skb_queue_tail(&card->iovpool.queue, iovb); 2352 card->iovpool.count++; 2353 } else 2354 dev_kfree_skb_any(iovb); 2355 } 2356 2357 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb) 2358 { 2359 skb_unlink(sb, &card->sbpool.queue); 2360 if (card->sbfqc < card->sbnr.init) { 2361 struct sk_buff *new_sb; 2362 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2363 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2364 skb_queue_tail(&card->sbpool.queue, new_sb); 2365 skb_reserve(new_sb, NS_AAL0_HEADER); 2366 push_rxbufs(card, new_sb); 2367 } 2368 } 2369 if (card->sbfqc < card->sbnr.init) 2370 { 2371 struct sk_buff *new_sb; 2372 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2373 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2374 skb_queue_tail(&card->sbpool.queue, new_sb); 2375 skb_reserve(new_sb, NS_AAL0_HEADER); 2376 push_rxbufs(card, new_sb); 2377 } 2378 } 2379 } 2380 2381 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb) 2382 { 2383 skb_unlink(lb, &card->lbpool.queue); 2384 if (card->lbfqc < card->lbnr.init) { 2385 struct sk_buff *new_lb; 2386 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2387 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2388 skb_queue_tail(&card->lbpool.queue, new_lb); 2389 skb_reserve(new_lb, NS_SMBUFSIZE); 2390 push_rxbufs(card, new_lb); 2391 } 2392 } 2393 if (card->lbfqc < card->lbnr.init) 2394 { 2395 struct sk_buff *new_lb; 2396 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2397 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2398 skb_queue_tail(&card->lbpool.queue, new_lb); 2399 skb_reserve(new_lb, NS_SMBUFSIZE); 2400 push_rxbufs(card, new_lb); 2401 } 2402 } 2403 } 2404 2405 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page) 2406 { 2407 u32 stat; 2408 ns_dev *card; 2409 int left; 2410 2411 left = (int)*pos; 2412 card = (ns_dev *) dev->dev_data; 2413 stat = readl(card->membase + STAT); 2414 if (!left--) 2415 return sprintf(page, "Pool count min init max \n"); 2416 if (!left--) 2417 return sprintf(page, "Small %5d %5d %5d %5d \n", 2418 ns_stat_sfbqc_get(stat), card->sbnr.min, 2419 card->sbnr.init, card->sbnr.max); 2420 if (!left--) 2421 return sprintf(page, "Large %5d %5d %5d %5d \n", 2422 ns_stat_lfbqc_get(stat), card->lbnr.min, 2423 card->lbnr.init, card->lbnr.max); 2424 if (!left--) 2425 return sprintf(page, "Huge %5d %5d %5d %5d \n", 2426 card->hbpool.count, card->hbnr.min, 2427 card->hbnr.init, card->hbnr.max); 2428 if (!left--) 2429 return sprintf(page, "Iovec %5d %5d %5d %5d \n", 2430 card->iovpool.count, card->iovnr.min, 2431 card->iovnr.init, card->iovnr.max); 2432 if (!left--) { 2433 int retval; 2434 retval = 2435 sprintf(page, "Interrupt counter: %u \n", card->intcnt); 2436 card->intcnt = 0; 2437 return retval; 2438 } 2439 #if 0 2440 /* Dump 25.6 Mbps PHY registers */ 2441 /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it 2442 here just in case it's needed for debugging. */ 2443 if (card->max_pcr == ATM_25_PCR && !left--) { 2444 u32 phy_regs[4]; 2445 u32 i; 2446 2447 for (i = 0; i < 4; i++) { 2448 while (CMD_BUSY(card)) ; 2449 writel(NS_CMD_READ_UTILITY | 0x00000200 | i, 2450 card->membase + CMD); 2451 while (CMD_BUSY(card)) ; 2452 phy_regs[i] = readl(card->membase + DR0) & 0x000000FF; 2453 } 2454 2455 return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n", 2456 phy_regs[0], phy_regs[1], phy_regs[2], 2457 phy_regs[3]); 2458 } 2459 #endif /* 0 - Dump 25.6 Mbps PHY registers */ 2460 #if 0 2461 /* Dump TST */ 2462 if (left-- < NS_TST_NUM_ENTRIES) { 2463 if (card->tste2vc[left + 1] == NULL) 2464 return sprintf(page, "%5d - VBR/UBR \n", left + 1); 2465 else 2466 return sprintf(page, "%5d - %d %d \n", left + 1, 2467 card->tste2vc[left + 1]->tx_vcc->vpi, 2468 card->tste2vc[left + 1]->tx_vcc->vci); 2469 } 2470 #endif /* 0 */ 2471 return 0; 2472 } 2473 2474 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg) 2475 { 2476 ns_dev *card; 2477 pool_levels pl; 2478 long btype; 2479 unsigned long flags; 2480 2481 card = dev->dev_data; 2482 switch (cmd) { 2483 case NS_GETPSTAT: 2484 if (get_user 2485 (pl.buftype, &((pool_levels __user *) arg)->buftype)) 2486 return -EFAULT; 2487 switch (pl.buftype) { 2488 case NS_BUFTYPE_SMALL: 2489 pl.count = 2490 ns_stat_sfbqc_get(readl(card->membase + STAT)); 2491 pl.level.min = card->sbnr.min; 2492 pl.level.init = card->sbnr.init; 2493 pl.level.max = card->sbnr.max; 2494 break; 2495 2496 case NS_BUFTYPE_LARGE: 2497 pl.count = 2498 ns_stat_lfbqc_get(readl(card->membase + STAT)); 2499 pl.level.min = card->lbnr.min; 2500 pl.level.init = card->lbnr.init; 2501 pl.level.max = card->lbnr.max; 2502 break; 2503 2504 case NS_BUFTYPE_HUGE: 2505 pl.count = card->hbpool.count; 2506 pl.level.min = card->hbnr.min; 2507 pl.level.init = card->hbnr.init; 2508 pl.level.max = card->hbnr.max; 2509 break; 2510 2511 case NS_BUFTYPE_IOVEC: 2512 pl.count = card->iovpool.count; 2513 pl.level.min = card->iovnr.min; 2514 pl.level.init = card->iovnr.init; 2515 pl.level.max = card->iovnr.max; 2516 break; 2517 2518 default: 2519 return -ENOIOCTLCMD; 2520 2521 } 2522 if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl))) 2523 return (sizeof(pl)); 2524 else 2525 return -EFAULT; 2526 2527 case NS_SETBUFLEV: 2528 if (!capable(CAP_NET_ADMIN)) 2529 return -EPERM; 2530 if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl))) 2531 return -EFAULT; 2532 if (pl.level.min >= pl.level.init 2533 || pl.level.init >= pl.level.max) 2534 return -EINVAL; 2535 if (pl.level.min == 0) 2536 return -EINVAL; 2537 switch (pl.buftype) { 2538 case NS_BUFTYPE_SMALL: 2539 if (pl.level.max > TOP_SB) 2540 return -EINVAL; 2541 card->sbnr.min = pl.level.min; 2542 card->sbnr.init = pl.level.init; 2543 card->sbnr.max = pl.level.max; 2544 break; 2545 2546 case NS_BUFTYPE_LARGE: 2547 if (pl.level.max > TOP_LB) 2548 return -EINVAL; 2549 card->lbnr.min = pl.level.min; 2550 card->lbnr.init = pl.level.init; 2551 card->lbnr.max = pl.level.max; 2552 break; 2553 2554 case NS_BUFTYPE_HUGE: 2555 if (pl.level.max > TOP_HB) 2556 return -EINVAL; 2557 card->hbnr.min = pl.level.min; 2558 card->hbnr.init = pl.level.init; 2559 card->hbnr.max = pl.level.max; 2560 break; 2561 2562 case NS_BUFTYPE_IOVEC: 2563 if (pl.level.max > TOP_IOVB) 2564 return -EINVAL; 2565 card->iovnr.min = pl.level.min; 2566 card->iovnr.init = pl.level.init; 2567 card->iovnr.max = pl.level.max; 2568 break; 2569 2570 default: 2571 return -EINVAL; 2572 2573 } 2574 return 0; 2575 2576 case NS_ADJBUFLEV: 2577 if (!capable(CAP_NET_ADMIN)) 2578 return -EPERM; 2579 btype = (long)arg; /* a long is the same size as a pointer or bigger */ 2580 switch (btype) { 2581 case NS_BUFTYPE_SMALL: 2582 while (card->sbfqc < card->sbnr.init) { 2583 struct sk_buff *sb; 2584 2585 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 2586 if (sb == NULL) 2587 return -ENOMEM; 2588 NS_PRV_BUFTYPE(sb) = BUF_SM; 2589 skb_queue_tail(&card->sbpool.queue, sb); 2590 skb_reserve(sb, NS_AAL0_HEADER); 2591 push_rxbufs(card, sb); 2592 } 2593 break; 2594 2595 case NS_BUFTYPE_LARGE: 2596 while (card->lbfqc < card->lbnr.init) { 2597 struct sk_buff *lb; 2598 2599 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 2600 if (lb == NULL) 2601 return -ENOMEM; 2602 NS_PRV_BUFTYPE(lb) = BUF_LG; 2603 skb_queue_tail(&card->lbpool.queue, lb); 2604 skb_reserve(lb, NS_SMBUFSIZE); 2605 push_rxbufs(card, lb); 2606 } 2607 break; 2608 2609 case NS_BUFTYPE_HUGE: 2610 while (card->hbpool.count > card->hbnr.init) { 2611 struct sk_buff *hb; 2612 2613 spin_lock_irqsave(&card->int_lock, flags); 2614 hb = skb_dequeue(&card->hbpool.queue); 2615 card->hbpool.count--; 2616 spin_unlock_irqrestore(&card->int_lock, flags); 2617 if (hb == NULL) 2618 printk 2619 ("nicstar%d: huge buffer count inconsistent.\n", 2620 card->index); 2621 else 2622 dev_kfree_skb_any(hb); 2623 2624 } 2625 while (card->hbpool.count < card->hbnr.init) { 2626 struct sk_buff *hb; 2627 2628 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 2629 if (hb == NULL) 2630 return -ENOMEM; 2631 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2632 spin_lock_irqsave(&card->int_lock, flags); 2633 skb_queue_tail(&card->hbpool.queue, hb); 2634 card->hbpool.count++; 2635 spin_unlock_irqrestore(&card->int_lock, flags); 2636 } 2637 break; 2638 2639 case NS_BUFTYPE_IOVEC: 2640 while (card->iovpool.count > card->iovnr.init) { 2641 struct sk_buff *iovb; 2642 2643 spin_lock_irqsave(&card->int_lock, flags); 2644 iovb = skb_dequeue(&card->iovpool.queue); 2645 card->iovpool.count--; 2646 spin_unlock_irqrestore(&card->int_lock, flags); 2647 if (iovb == NULL) 2648 printk 2649 ("nicstar%d: iovec buffer count inconsistent.\n", 2650 card->index); 2651 else 2652 dev_kfree_skb_any(iovb); 2653 2654 } 2655 while (card->iovpool.count < card->iovnr.init) { 2656 struct sk_buff *iovb; 2657 2658 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 2659 if (iovb == NULL) 2660 return -ENOMEM; 2661 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2662 spin_lock_irqsave(&card->int_lock, flags); 2663 skb_queue_tail(&card->iovpool.queue, iovb); 2664 card->iovpool.count++; 2665 spin_unlock_irqrestore(&card->int_lock, flags); 2666 } 2667 break; 2668 2669 default: 2670 return -EINVAL; 2671 2672 } 2673 return 0; 2674 2675 default: 2676 if (dev->phy && dev->phy->ioctl) { 2677 return dev->phy->ioctl(dev, cmd, arg); 2678 } else { 2679 printk("nicstar%d: %s == NULL \n", card->index, 2680 dev->phy ? "dev->phy->ioctl" : "dev->phy"); 2681 return -ENOIOCTLCMD; 2682 } 2683 } 2684 } 2685 2686 #ifdef EXTRA_DEBUG 2687 static void which_list(ns_dev * card, struct sk_buff *skb) 2688 { 2689 printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb)); 2690 } 2691 #endif /* EXTRA_DEBUG */ 2692 2693 static void ns_poll(struct timer_list *unused) 2694 { 2695 int i; 2696 ns_dev *card; 2697 unsigned long flags; 2698 u32 stat_r, stat_w; 2699 2700 PRINTK("nicstar: Entering ns_poll().\n"); 2701 for (i = 0; i < num_cards; i++) { 2702 card = cards[i]; 2703 if (!spin_trylock_irqsave(&card->int_lock, flags)) { 2704 /* Probably it isn't worth spinning */ 2705 continue; 2706 } 2707 2708 stat_w = 0; 2709 stat_r = readl(card->membase + STAT); 2710 if (stat_r & NS_STAT_TSIF) 2711 stat_w |= NS_STAT_TSIF; 2712 if (stat_r & NS_STAT_EOPDU) 2713 stat_w |= NS_STAT_EOPDU; 2714 2715 process_tsq(card); 2716 process_rsq(card); 2717 2718 writel(stat_w, card->membase + STAT); 2719 spin_unlock_irqrestore(&card->int_lock, flags); 2720 } 2721 mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD); 2722 PRINTK("nicstar: Leaving ns_poll().\n"); 2723 } 2724 2725 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 2726 unsigned long addr) 2727 { 2728 ns_dev *card; 2729 unsigned long flags; 2730 2731 card = dev->dev_data; 2732 spin_lock_irqsave(&card->res_lock, flags); 2733 while (CMD_BUSY(card)) ; 2734 writel((u32) value, card->membase + DR0); 2735 writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF), 2736 card->membase + CMD); 2737 spin_unlock_irqrestore(&card->res_lock, flags); 2738 } 2739 2740 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr) 2741 { 2742 ns_dev *card; 2743 unsigned long flags; 2744 u32 data; 2745 2746 card = dev->dev_data; 2747 spin_lock_irqsave(&card->res_lock, flags); 2748 while (CMD_BUSY(card)) ; 2749 writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF), 2750 card->membase + CMD); 2751 while (CMD_BUSY(card)) ; 2752 data = readl(card->membase + DR0) & 0x000000FF; 2753 spin_unlock_irqrestore(&card->res_lock, flags); 2754 return (unsigned char)data; 2755 } 2756 2757 module_init(nicstar_init); 2758 module_exit(nicstar_cleanup); 2759