1 /* 2 3 he.c 4 5 ForeRunnerHE ATM Adapter driver for ATM on Linux 6 Copyright (C) 1999-2001 Naval Research Laboratory 7 8 This library is free software; you can redistribute it and/or 9 modify it under the terms of the GNU Lesser General Public 10 License as published by the Free Software Foundation; either 11 version 2.1 of the License, or (at your option) any later version. 12 13 This library is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 Lesser General Public License for more details. 17 18 You should have received a copy of the GNU Lesser General Public 19 License along with this library; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 22 */ 23 24 /* 25 26 he.c 27 28 ForeRunnerHE ATM Adapter driver for ATM on Linux 29 Copyright (C) 1999-2001 Naval Research Laboratory 30 31 Permission to use, copy, modify and distribute this software and its 32 documentation is hereby granted, provided that both the copyright 33 notice and this permission notice appear in all copies of the software, 34 derivative works or modified versions, and any portions thereof, and 35 that both notices appear in supporting documentation. 36 37 NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND 38 DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER 39 RESULTING FROM THE USE OF THIS SOFTWARE. 40 41 This driver was written using the "Programmer's Reference Manual for 42 ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98. 43 44 AUTHORS: 45 chas williams <chas@cmf.nrl.navy.mil> 46 eric kinzie <ekinzie@cmf.nrl.navy.mil> 47 48 NOTES: 49 4096 supported 'connections' 50 group 0 is used for all traffic 51 interrupt queue 0 is used for all interrupts 52 aal0 support (based on work from ulrich.u.muller@nokia.com) 53 54 */ 55 56 #include <linux/module.h> 57 #include <linux/kernel.h> 58 #include <linux/skbuff.h> 59 #include <linux/pci.h> 60 #include <linux/errno.h> 61 #include <linux/types.h> 62 #include <linux/string.h> 63 #include <linux/delay.h> 64 #include <linux/init.h> 65 #include <linux/mm.h> 66 #include <linux/sched.h> 67 #include <linux/timer.h> 68 #include <linux/interrupt.h> 69 #include <linux/dma-mapping.h> 70 #include <linux/bitmap.h> 71 #include <linux/slab.h> 72 #include <asm/io.h> 73 #include <asm/byteorder.h> 74 #include <linux/uaccess.h> 75 76 #include <linux/atmdev.h> 77 #include <linux/atm.h> 78 #include <linux/sonet.h> 79 80 #undef USE_SCATTERGATHER 81 #undef USE_CHECKSUM_HW /* still confused about this */ 82 /* #undef HE_DEBUG */ 83 84 #include "he.h" 85 #include "suni.h" 86 #include <linux/atm_he.h> 87 88 #define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args) 89 90 #ifdef HE_DEBUG 91 #define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args) 92 #else /* !HE_DEBUG */ 93 #define HPRINTK(fmt,args...) do { } while (0) 94 #endif /* HE_DEBUG */ 95 96 /* declarations */ 97 98 static int he_open(struct atm_vcc *vcc); 99 static void he_close(struct atm_vcc *vcc); 100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb); 101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg); 102 static irqreturn_t he_irq_handler(int irq, void *dev_id); 103 static void he_tasklet(unsigned long data); 104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page); 105 static int he_start(struct atm_dev *dev); 106 static void he_stop(struct he_dev *dev); 107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long); 108 static unsigned char he_phy_get(struct atm_dev *, unsigned long); 109 110 static u8 read_prom_byte(struct he_dev *he_dev, int addr); 111 112 /* globals */ 113 114 static struct he_dev *he_devs; 115 static bool disable64; 116 static short nvpibits = -1; 117 static short nvcibits = -1; 118 static short rx_skb_reserve = 16; 119 static bool irq_coalesce = true; 120 static bool sdh; 121 122 /* Read from EEPROM = 0000 0011b */ 123 static unsigned int readtab[] = { 124 CS_HIGH | CLK_HIGH, 125 CS_LOW | CLK_LOW, 126 CLK_HIGH, /* 0 */ 127 CLK_LOW, 128 CLK_HIGH, /* 0 */ 129 CLK_LOW, 130 CLK_HIGH, /* 0 */ 131 CLK_LOW, 132 CLK_HIGH, /* 0 */ 133 CLK_LOW, 134 CLK_HIGH, /* 0 */ 135 CLK_LOW, 136 CLK_HIGH, /* 0 */ 137 CLK_LOW | SI_HIGH, 138 CLK_HIGH | SI_HIGH, /* 1 */ 139 CLK_LOW | SI_HIGH, 140 CLK_HIGH | SI_HIGH /* 1 */ 141 }; 142 143 /* Clock to read from/write to the EEPROM */ 144 static unsigned int clocktab[] = { 145 CLK_LOW, 146 CLK_HIGH, 147 CLK_LOW, 148 CLK_HIGH, 149 CLK_LOW, 150 CLK_HIGH, 151 CLK_LOW, 152 CLK_HIGH, 153 CLK_LOW, 154 CLK_HIGH, 155 CLK_LOW, 156 CLK_HIGH, 157 CLK_LOW, 158 CLK_HIGH, 159 CLK_LOW, 160 CLK_HIGH, 161 CLK_LOW 162 }; 163 164 static const struct atmdev_ops he_ops = 165 { 166 .open = he_open, 167 .close = he_close, 168 .ioctl = he_ioctl, 169 .send = he_send, 170 .phy_put = he_phy_put, 171 .phy_get = he_phy_get, 172 .proc_read = he_proc_read, 173 .owner = THIS_MODULE 174 }; 175 176 #define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0) 177 #define he_readl(dev, reg) readl((dev)->membase + (reg)) 178 179 /* section 2.12 connection memory access */ 180 181 static __inline__ void 182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr, 183 unsigned flags) 184 { 185 he_writel(he_dev, val, CON_DAT); 186 (void) he_readl(he_dev, CON_DAT); /* flush posted writes */ 187 he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL); 188 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY); 189 } 190 191 #define he_writel_rcm(dev, val, reg) \ 192 he_writel_internal(dev, val, reg, CON_CTL_RCM) 193 194 #define he_writel_tcm(dev, val, reg) \ 195 he_writel_internal(dev, val, reg, CON_CTL_TCM) 196 197 #define he_writel_mbox(dev, val, reg) \ 198 he_writel_internal(dev, val, reg, CON_CTL_MBOX) 199 200 static unsigned 201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags) 202 { 203 he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL); 204 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY); 205 return he_readl(he_dev, CON_DAT); 206 } 207 208 #define he_readl_rcm(dev, reg) \ 209 he_readl_internal(dev, reg, CON_CTL_RCM) 210 211 #define he_readl_tcm(dev, reg) \ 212 he_readl_internal(dev, reg, CON_CTL_TCM) 213 214 #define he_readl_mbox(dev, reg) \ 215 he_readl_internal(dev, reg, CON_CTL_MBOX) 216 217 218 /* figure 2.2 connection id */ 219 220 #define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff) 221 222 /* 2.5.1 per connection transmit state registers */ 223 224 #define he_writel_tsr0(dev, val, cid) \ 225 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0) 226 #define he_readl_tsr0(dev, cid) \ 227 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0) 228 229 #define he_writel_tsr1(dev, val, cid) \ 230 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1) 231 232 #define he_writel_tsr2(dev, val, cid) \ 233 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2) 234 235 #define he_writel_tsr3(dev, val, cid) \ 236 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3) 237 238 #define he_writel_tsr4(dev, val, cid) \ 239 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4) 240 241 /* from page 2-20 242 * 243 * NOTE While the transmit connection is active, bits 23 through 0 244 * of this register must not be written by the host. Byte 245 * enables should be used during normal operation when writing 246 * the most significant byte. 247 */ 248 249 #define he_writel_tsr4_upper(dev, val, cid) \ 250 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \ 251 CON_CTL_TCM \ 252 | CON_BYTE_DISABLE_2 \ 253 | CON_BYTE_DISABLE_1 \ 254 | CON_BYTE_DISABLE_0) 255 256 #define he_readl_tsr4(dev, cid) \ 257 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4) 258 259 #define he_writel_tsr5(dev, val, cid) \ 260 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5) 261 262 #define he_writel_tsr6(dev, val, cid) \ 263 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6) 264 265 #define he_writel_tsr7(dev, val, cid) \ 266 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7) 267 268 269 #define he_writel_tsr8(dev, val, cid) \ 270 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0) 271 272 #define he_writel_tsr9(dev, val, cid) \ 273 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1) 274 275 #define he_writel_tsr10(dev, val, cid) \ 276 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2) 277 278 #define he_writel_tsr11(dev, val, cid) \ 279 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3) 280 281 282 #define he_writel_tsr12(dev, val, cid) \ 283 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0) 284 285 #define he_writel_tsr13(dev, val, cid) \ 286 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1) 287 288 289 #define he_writel_tsr14(dev, val, cid) \ 290 he_writel_tcm(dev, val, CONFIG_TSRD | cid) 291 292 #define he_writel_tsr14_upper(dev, val, cid) \ 293 he_writel_internal(dev, val, CONFIG_TSRD | cid, \ 294 CON_CTL_TCM \ 295 | CON_BYTE_DISABLE_2 \ 296 | CON_BYTE_DISABLE_1 \ 297 | CON_BYTE_DISABLE_0) 298 299 /* 2.7.1 per connection receive state registers */ 300 301 #define he_writel_rsr0(dev, val, cid) \ 302 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0) 303 #define he_readl_rsr0(dev, cid) \ 304 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0) 305 306 #define he_writel_rsr1(dev, val, cid) \ 307 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1) 308 309 #define he_writel_rsr2(dev, val, cid) \ 310 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2) 311 312 #define he_writel_rsr3(dev, val, cid) \ 313 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3) 314 315 #define he_writel_rsr4(dev, val, cid) \ 316 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4) 317 318 #define he_writel_rsr5(dev, val, cid) \ 319 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5) 320 321 #define he_writel_rsr6(dev, val, cid) \ 322 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6) 323 324 #define he_writel_rsr7(dev, val, cid) \ 325 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7) 326 327 static __inline__ struct atm_vcc* 328 __find_vcc(struct he_dev *he_dev, unsigned cid) 329 { 330 struct hlist_head *head; 331 struct atm_vcc *vcc; 332 struct sock *s; 333 short vpi; 334 int vci; 335 336 vpi = cid >> he_dev->vcibits; 337 vci = cid & ((1 << he_dev->vcibits) - 1); 338 head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)]; 339 340 sk_for_each(s, head) { 341 vcc = atm_sk(s); 342 if (vcc->dev == he_dev->atm_dev && 343 vcc->vci == vci && vcc->vpi == vpi && 344 vcc->qos.rxtp.traffic_class != ATM_NONE) { 345 return vcc; 346 } 347 } 348 return NULL; 349 } 350 351 static int he_init_one(struct pci_dev *pci_dev, 352 const struct pci_device_id *pci_ent) 353 { 354 struct atm_dev *atm_dev = NULL; 355 struct he_dev *he_dev = NULL; 356 int err = 0; 357 358 printk(KERN_INFO "ATM he driver\n"); 359 360 if (pci_enable_device(pci_dev)) 361 return -EIO; 362 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) { 363 printk(KERN_WARNING "he: no suitable dma available\n"); 364 err = -EIO; 365 goto init_one_failure; 366 } 367 368 atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL); 369 if (!atm_dev) { 370 err = -ENODEV; 371 goto init_one_failure; 372 } 373 pci_set_drvdata(pci_dev, atm_dev); 374 375 he_dev = kzalloc(sizeof(struct he_dev), 376 GFP_KERNEL); 377 if (!he_dev) { 378 err = -ENOMEM; 379 goto init_one_failure; 380 } 381 he_dev->pci_dev = pci_dev; 382 he_dev->atm_dev = atm_dev; 383 he_dev->atm_dev->dev_data = he_dev; 384 atm_dev->dev_data = he_dev; 385 he_dev->number = atm_dev->number; 386 tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev); 387 spin_lock_init(&he_dev->global_lock); 388 389 if (he_start(atm_dev)) { 390 he_stop(he_dev); 391 err = -ENODEV; 392 goto init_one_failure; 393 } 394 he_dev->next = NULL; 395 if (he_devs) 396 he_dev->next = he_devs; 397 he_devs = he_dev; 398 return 0; 399 400 init_one_failure: 401 if (atm_dev) 402 atm_dev_deregister(atm_dev); 403 kfree(he_dev); 404 pci_disable_device(pci_dev); 405 return err; 406 } 407 408 static void he_remove_one(struct pci_dev *pci_dev) 409 { 410 struct atm_dev *atm_dev; 411 struct he_dev *he_dev; 412 413 atm_dev = pci_get_drvdata(pci_dev); 414 he_dev = HE_DEV(atm_dev); 415 416 /* need to remove from he_devs */ 417 418 he_stop(he_dev); 419 atm_dev_deregister(atm_dev); 420 kfree(he_dev); 421 422 pci_disable_device(pci_dev); 423 } 424 425 426 static unsigned 427 rate_to_atmf(unsigned rate) /* cps to atm forum format */ 428 { 429 #define NONZERO (1 << 14) 430 431 unsigned exp = 0; 432 433 if (rate == 0) 434 return 0; 435 436 rate <<= 9; 437 while (rate > 0x3ff) { 438 ++exp; 439 rate >>= 1; 440 } 441 442 return (NONZERO | (exp << 9) | (rate & 0x1ff)); 443 } 444 445 static void he_init_rx_lbfp0(struct he_dev *he_dev) 446 { 447 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 448 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 449 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 450 unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row; 451 452 lbufd_index = 0; 453 lbm_offset = he_readl(he_dev, RCMLBM_BA); 454 455 he_writel(he_dev, lbufd_index, RLBF0_H); 456 457 for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) { 458 lbufd_index += 2; 459 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 460 461 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 462 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 463 464 if (++lbuf_count == lbufs_per_row) { 465 lbuf_count = 0; 466 row_offset += he_dev->bytes_per_row; 467 } 468 lbm_offset += 4; 469 } 470 471 he_writel(he_dev, lbufd_index - 2, RLBF0_T); 472 he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C); 473 } 474 475 static void he_init_rx_lbfp1(struct he_dev *he_dev) 476 { 477 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 478 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 479 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 480 unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row; 481 482 lbufd_index = 1; 483 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index); 484 485 he_writel(he_dev, lbufd_index, RLBF1_H); 486 487 for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) { 488 lbufd_index += 2; 489 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 490 491 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 492 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 493 494 if (++lbuf_count == lbufs_per_row) { 495 lbuf_count = 0; 496 row_offset += he_dev->bytes_per_row; 497 } 498 lbm_offset += 4; 499 } 500 501 he_writel(he_dev, lbufd_index - 2, RLBF1_T); 502 he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C); 503 } 504 505 static void he_init_tx_lbfp(struct he_dev *he_dev) 506 { 507 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 508 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 509 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 510 unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row; 511 512 lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs; 513 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index); 514 515 he_writel(he_dev, lbufd_index, TLBF_H); 516 517 for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) { 518 lbufd_index += 1; 519 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 520 521 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 522 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 523 524 if (++lbuf_count == lbufs_per_row) { 525 lbuf_count = 0; 526 row_offset += he_dev->bytes_per_row; 527 } 528 lbm_offset += 2; 529 } 530 531 he_writel(he_dev, lbufd_index - 1, TLBF_T); 532 } 533 534 static int he_init_tpdrq(struct he_dev *he_dev) 535 { 536 he_dev->tpdrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev, 537 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq), 538 &he_dev->tpdrq_phys, 539 GFP_KERNEL); 540 if (he_dev->tpdrq_base == NULL) { 541 hprintk("failed to alloc tpdrq\n"); 542 return -ENOMEM; 543 } 544 545 he_dev->tpdrq_tail = he_dev->tpdrq_base; 546 he_dev->tpdrq_head = he_dev->tpdrq_base; 547 548 he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H); 549 he_writel(he_dev, 0, TPDRQ_T); 550 he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S); 551 552 return 0; 553 } 554 555 static void he_init_cs_block(struct he_dev *he_dev) 556 { 557 unsigned clock, rate, delta; 558 int reg; 559 560 /* 5.1.7 cs block initialization */ 561 562 for (reg = 0; reg < 0x20; ++reg) 563 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg); 564 565 /* rate grid timer reload values */ 566 567 clock = he_is622(he_dev) ? 66667000 : 50000000; 568 rate = he_dev->atm_dev->link_rate; 569 delta = rate / 16 / 2; 570 571 for (reg = 0; reg < 0x10; ++reg) { 572 /* 2.4 internal transmit function 573 * 574 * we initialize the first row in the rate grid. 575 * values are period (in clock cycles) of timer 576 */ 577 unsigned period = clock / rate; 578 579 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg); 580 rate -= delta; 581 } 582 583 if (he_is622(he_dev)) { 584 /* table 5.2 (4 cells per lbuf) */ 585 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0); 586 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1); 587 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2); 588 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3); 589 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4); 590 591 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */ 592 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0); 593 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1); 594 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2); 595 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0); 596 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1); 597 he_writel_mbox(he_dev, 0x14585, CS_RTFWR); 598 599 he_writel_mbox(he_dev, 0x4680, CS_RTATR); 600 601 /* table 5.8 */ 602 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET); 603 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX); 604 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN); 605 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC); 606 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC); 607 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL); 608 609 /* table 5.9 */ 610 he_writel_mbox(he_dev, 0x5, CS_OTPPER); 611 he_writel_mbox(he_dev, 0x14, CS_OTWPER); 612 } else { 613 /* table 5.1 (4 cells per lbuf) */ 614 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0); 615 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1); 616 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2); 617 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3); 618 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4); 619 620 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */ 621 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0); 622 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1); 623 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2); 624 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0); 625 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1); 626 he_writel_mbox(he_dev, 0xf424, CS_RTFWR); 627 628 he_writel_mbox(he_dev, 0x4680, CS_RTATR); 629 630 /* table 5.8 */ 631 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET); 632 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX); 633 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN); 634 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC); 635 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC); 636 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL); 637 638 /* table 5.9 */ 639 he_writel_mbox(he_dev, 0x6, CS_OTPPER); 640 he_writel_mbox(he_dev, 0x1e, CS_OTWPER); 641 } 642 643 he_writel_mbox(he_dev, 0x8, CS_OTTLIM); 644 645 for (reg = 0; reg < 0x8; ++reg) 646 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg); 647 648 } 649 650 static int he_init_cs_block_rcm(struct he_dev *he_dev) 651 { 652 unsigned (*rategrid)[16][16]; 653 unsigned rate, delta; 654 int i, j, reg; 655 656 unsigned rate_atmf, exp, man; 657 unsigned long long rate_cps; 658 int mult, buf, buf_limit = 4; 659 660 rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL); 661 if (!rategrid) 662 return -ENOMEM; 663 664 /* initialize rate grid group table */ 665 666 for (reg = 0x0; reg < 0xff; ++reg) 667 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg); 668 669 /* initialize rate controller groups */ 670 671 for (reg = 0x100; reg < 0x1ff; ++reg) 672 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg); 673 674 /* initialize tNrm lookup table */ 675 676 /* the manual makes reference to a routine in a sample driver 677 for proper configuration; fortunately, we only need this 678 in order to support abr connection */ 679 680 /* initialize rate to group table */ 681 682 rate = he_dev->atm_dev->link_rate; 683 delta = rate / 32; 684 685 /* 686 * 2.4 transmit internal functions 687 * 688 * we construct a copy of the rate grid used by the scheduler 689 * in order to construct the rate to group table below 690 */ 691 692 for (j = 0; j < 16; j++) { 693 (*rategrid)[0][j] = rate; 694 rate -= delta; 695 } 696 697 for (i = 1; i < 16; i++) 698 for (j = 0; j < 16; j++) 699 if (i > 14) 700 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4; 701 else 702 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2; 703 704 /* 705 * 2.4 transmit internal function 706 * 707 * this table maps the upper 5 bits of exponent and mantissa 708 * of the atm forum representation of the rate into an index 709 * on rate grid 710 */ 711 712 rate_atmf = 0; 713 while (rate_atmf < 0x400) { 714 man = (rate_atmf & 0x1f) << 4; 715 exp = rate_atmf >> 5; 716 717 /* 718 instead of '/ 512', use '>> 9' to prevent a call 719 to divdu3 on x86 platforms 720 */ 721 rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9; 722 723 if (rate_cps < 10) 724 rate_cps = 10; /* 2.2.1 minimum payload rate is 10 cps */ 725 726 for (i = 255; i > 0; i--) 727 if ((*rategrid)[i/16][i%16] >= rate_cps) 728 break; /* pick nearest rate instead? */ 729 730 /* 731 * each table entry is 16 bits: (rate grid index (8 bits) 732 * and a buffer limit (8 bits) 733 * there are two table entries in each 32-bit register 734 */ 735 736 #ifdef notdef 737 buf = rate_cps * he_dev->tx_numbuffs / 738 (he_dev->atm_dev->link_rate * 2); 739 #else 740 /* this is pretty, but avoids _divdu3 and is mostly correct */ 741 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR; 742 if (rate_cps > (272ULL * mult)) 743 buf = 4; 744 else if (rate_cps > (204ULL * mult)) 745 buf = 3; 746 else if (rate_cps > (136ULL * mult)) 747 buf = 2; 748 else if (rate_cps > (68ULL * mult)) 749 buf = 1; 750 else 751 buf = 0; 752 #endif 753 if (buf > buf_limit) 754 buf = buf_limit; 755 reg = (reg << 16) | ((i << 8) | buf); 756 757 #define RTGTBL_OFFSET 0x400 758 759 if (rate_atmf & 0x1) 760 he_writel_rcm(he_dev, reg, 761 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1)); 762 763 ++rate_atmf; 764 } 765 766 kfree(rategrid); 767 return 0; 768 } 769 770 static int he_init_group(struct he_dev *he_dev, int group) 771 { 772 struct he_buff *heb, *next; 773 dma_addr_t mapping; 774 int i; 775 776 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32)); 777 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32)); 778 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32)); 779 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 780 G0_RBPS_BS + (group * 32)); 781 782 /* bitmap table */ 783 he_dev->rbpl_table = bitmap_zalloc(RBPL_TABLE_SIZE, GFP_KERNEL); 784 if (!he_dev->rbpl_table) { 785 hprintk("unable to allocate rbpl bitmap table\n"); 786 return -ENOMEM; 787 } 788 789 /* rbpl_virt 64-bit pointers */ 790 he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE, 791 sizeof(*he_dev->rbpl_virt), 792 GFP_KERNEL); 793 if (!he_dev->rbpl_virt) { 794 hprintk("unable to allocate rbpl virt table\n"); 795 goto out_free_rbpl_table; 796 } 797 798 /* large buffer pool */ 799 he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev, 800 CONFIG_RBPL_BUFSIZE, 64, 0); 801 if (he_dev->rbpl_pool == NULL) { 802 hprintk("unable to create rbpl pool\n"); 803 goto out_free_rbpl_virt; 804 } 805 806 he_dev->rbpl_base = dma_alloc_coherent(&he_dev->pci_dev->dev, 807 CONFIG_RBPL_SIZE * sizeof(struct he_rbp), 808 &he_dev->rbpl_phys, GFP_KERNEL); 809 if (he_dev->rbpl_base == NULL) { 810 hprintk("failed to alloc rbpl_base\n"); 811 goto out_destroy_rbpl_pool; 812 } 813 814 INIT_LIST_HEAD(&he_dev->rbpl_outstanding); 815 816 for (i = 0; i < CONFIG_RBPL_SIZE; ++i) { 817 818 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping); 819 if (!heb) 820 goto out_free_rbpl; 821 heb->mapping = mapping; 822 list_add(&heb->entry, &he_dev->rbpl_outstanding); 823 824 set_bit(i, he_dev->rbpl_table); 825 he_dev->rbpl_virt[i] = heb; 826 he_dev->rbpl_hint = i + 1; 827 he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET; 828 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data); 829 } 830 he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1]; 831 832 he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32)); 833 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), 834 G0_RBPL_T + (group * 32)); 835 he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4, 836 G0_RBPL_BS + (group * 32)); 837 he_writel(he_dev, 838 RBP_THRESH(CONFIG_RBPL_THRESH) | 839 RBP_QSIZE(CONFIG_RBPL_SIZE - 1) | 840 RBP_INT_ENB, 841 G0_RBPL_QI + (group * 32)); 842 843 /* rx buffer ready queue */ 844 845 he_dev->rbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev, 846 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq), 847 &he_dev->rbrq_phys, GFP_KERNEL); 848 if (he_dev->rbrq_base == NULL) { 849 hprintk("failed to allocate rbrq\n"); 850 goto out_free_rbpl; 851 } 852 853 he_dev->rbrq_head = he_dev->rbrq_base; 854 he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16)); 855 he_writel(he_dev, 0, G0_RBRQ_H + (group * 16)); 856 he_writel(he_dev, 857 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1), 858 G0_RBRQ_Q + (group * 16)); 859 if (irq_coalesce) { 860 hprintk("coalescing interrupts\n"); 861 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7), 862 G0_RBRQ_I + (group * 16)); 863 } else 864 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1), 865 G0_RBRQ_I + (group * 16)); 866 867 /* tx buffer ready queue */ 868 869 he_dev->tbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev, 870 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), 871 &he_dev->tbrq_phys, GFP_KERNEL); 872 if (he_dev->tbrq_base == NULL) { 873 hprintk("failed to allocate tbrq\n"); 874 goto out_free_rbpq_base; 875 } 876 877 he_dev->tbrq_head = he_dev->tbrq_base; 878 879 he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16)); 880 he_writel(he_dev, 0, G0_TBRQ_H + (group * 16)); 881 he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16)); 882 he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16)); 883 884 return 0; 885 886 out_free_rbpq_base: 887 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * 888 sizeof(struct he_rbrq), he_dev->rbrq_base, 889 he_dev->rbrq_phys); 890 out_free_rbpl: 891 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry) 892 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 893 894 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE * 895 sizeof(struct he_rbp), he_dev->rbpl_base, 896 he_dev->rbpl_phys); 897 out_destroy_rbpl_pool: 898 dma_pool_destroy(he_dev->rbpl_pool); 899 out_free_rbpl_virt: 900 kfree(he_dev->rbpl_virt); 901 out_free_rbpl_table: 902 bitmap_free(he_dev->rbpl_table); 903 904 return -ENOMEM; 905 } 906 907 static int he_init_irq(struct he_dev *he_dev) 908 { 909 int i; 910 911 /* 2.9.3.5 tail offset for each interrupt queue is located after the 912 end of the interrupt queue */ 913 914 he_dev->irq_base = dma_alloc_coherent(&he_dev->pci_dev->dev, 915 (CONFIG_IRQ_SIZE + 1) * sizeof(struct he_irq), 916 &he_dev->irq_phys, GFP_KERNEL); 917 if (he_dev->irq_base == NULL) { 918 hprintk("failed to allocate irq\n"); 919 return -ENOMEM; 920 } 921 he_dev->irq_tailoffset = (unsigned *) 922 &he_dev->irq_base[CONFIG_IRQ_SIZE]; 923 *he_dev->irq_tailoffset = 0; 924 he_dev->irq_head = he_dev->irq_base; 925 he_dev->irq_tail = he_dev->irq_base; 926 927 for (i = 0; i < CONFIG_IRQ_SIZE; ++i) 928 he_dev->irq_base[i].isw = ITYPE_INVALID; 929 930 he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE); 931 he_writel(he_dev, 932 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH), 933 IRQ0_HEAD); 934 he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL); 935 he_writel(he_dev, 0x0, IRQ0_DATA); 936 937 he_writel(he_dev, 0x0, IRQ1_BASE); 938 he_writel(he_dev, 0x0, IRQ1_HEAD); 939 he_writel(he_dev, 0x0, IRQ1_CNTL); 940 he_writel(he_dev, 0x0, IRQ1_DATA); 941 942 he_writel(he_dev, 0x0, IRQ2_BASE); 943 he_writel(he_dev, 0x0, IRQ2_HEAD); 944 he_writel(he_dev, 0x0, IRQ2_CNTL); 945 he_writel(he_dev, 0x0, IRQ2_DATA); 946 947 he_writel(he_dev, 0x0, IRQ3_BASE); 948 he_writel(he_dev, 0x0, IRQ3_HEAD); 949 he_writel(he_dev, 0x0, IRQ3_CNTL); 950 he_writel(he_dev, 0x0, IRQ3_DATA); 951 952 /* 2.9.3.2 interrupt queue mapping registers */ 953 954 he_writel(he_dev, 0x0, GRP_10_MAP); 955 he_writel(he_dev, 0x0, GRP_32_MAP); 956 he_writel(he_dev, 0x0, GRP_54_MAP); 957 he_writel(he_dev, 0x0, GRP_76_MAP); 958 959 if (request_irq(he_dev->pci_dev->irq, 960 he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) { 961 hprintk("irq %d already in use\n", he_dev->pci_dev->irq); 962 return -EINVAL; 963 } 964 965 he_dev->irq = he_dev->pci_dev->irq; 966 967 return 0; 968 } 969 970 static int he_start(struct atm_dev *dev) 971 { 972 struct he_dev *he_dev; 973 struct pci_dev *pci_dev; 974 unsigned long membase; 975 976 u16 command; 977 u32 gen_cntl_0, host_cntl, lb_swap; 978 u8 cache_size, timer; 979 980 unsigned err; 981 unsigned int status, reg; 982 int i, group; 983 984 he_dev = HE_DEV(dev); 985 pci_dev = he_dev->pci_dev; 986 987 membase = pci_resource_start(pci_dev, 0); 988 HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq); 989 990 /* 991 * pci bus controller initialization 992 */ 993 994 /* 4.3 pci bus controller-specific initialization */ 995 if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) { 996 hprintk("can't read GEN_CNTL_0\n"); 997 return -EINVAL; 998 } 999 gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT); 1000 if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) { 1001 hprintk("can't write GEN_CNTL_0.\n"); 1002 return -EINVAL; 1003 } 1004 1005 if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) { 1006 hprintk("can't read PCI_COMMAND.\n"); 1007 return -EINVAL; 1008 } 1009 1010 command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE); 1011 if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) { 1012 hprintk("can't enable memory.\n"); 1013 return -EINVAL; 1014 } 1015 1016 if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) { 1017 hprintk("can't read cache line size?\n"); 1018 return -EINVAL; 1019 } 1020 1021 if (cache_size < 16) { 1022 cache_size = 16; 1023 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size)) 1024 hprintk("can't set cache line size to %d\n", cache_size); 1025 } 1026 1027 if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) { 1028 hprintk("can't read latency timer?\n"); 1029 return -EINVAL; 1030 } 1031 1032 /* from table 3.9 1033 * 1034 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE 1035 * 1036 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles] 1037 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles] 1038 * 1039 */ 1040 #define LAT_TIMER 209 1041 if (timer < LAT_TIMER) { 1042 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER); 1043 timer = LAT_TIMER; 1044 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer)) 1045 hprintk("can't set latency timer to %d\n", timer); 1046 } 1047 1048 if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) { 1049 hprintk("can't set up page mapping\n"); 1050 return -EINVAL; 1051 } 1052 1053 /* 4.4 card reset */ 1054 he_writel(he_dev, 0x0, RESET_CNTL); 1055 he_writel(he_dev, 0xff, RESET_CNTL); 1056 1057 msleep(16); /* 16 ms */ 1058 status = he_readl(he_dev, RESET_CNTL); 1059 if ((status & BOARD_RST_STATUS) == 0) { 1060 hprintk("reset failed\n"); 1061 return -EINVAL; 1062 } 1063 1064 /* 4.5 set bus width */ 1065 host_cntl = he_readl(he_dev, HOST_CNTL); 1066 if (host_cntl & PCI_BUS_SIZE64) 1067 gen_cntl_0 |= ENBL_64; 1068 else 1069 gen_cntl_0 &= ~ENBL_64; 1070 1071 if (disable64 == 1) { 1072 hprintk("disabling 64-bit pci bus transfers\n"); 1073 gen_cntl_0 &= ~ENBL_64; 1074 } 1075 1076 if (gen_cntl_0 & ENBL_64) 1077 hprintk("64-bit transfers enabled\n"); 1078 1079 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1080 1081 /* 4.7 read prom contents */ 1082 for (i = 0; i < PROD_ID_LEN; ++i) 1083 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i); 1084 1085 he_dev->media = read_prom_byte(he_dev, MEDIA); 1086 1087 for (i = 0; i < 6; ++i) 1088 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i); 1089 1090 hprintk("%s%s, %pM\n", he_dev->prod_id, 1091 he_dev->media & 0x40 ? "SM" : "MM", dev->esi); 1092 he_dev->atm_dev->link_rate = he_is622(he_dev) ? 1093 ATM_OC12_PCR : ATM_OC3_PCR; 1094 1095 /* 4.6 set host endianess */ 1096 lb_swap = he_readl(he_dev, LB_SWAP); 1097 if (he_is622(he_dev)) 1098 lb_swap &= ~XFER_SIZE; /* 4 cells */ 1099 else 1100 lb_swap |= XFER_SIZE; /* 8 cells */ 1101 #ifdef __BIG_ENDIAN 1102 lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST; 1103 #else 1104 lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST | 1105 DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP); 1106 #endif /* __BIG_ENDIAN */ 1107 he_writel(he_dev, lb_swap, LB_SWAP); 1108 1109 /* 4.8 sdram controller initialization */ 1110 he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL); 1111 1112 /* 4.9 initialize rnum value */ 1113 lb_swap |= SWAP_RNUM_MAX(0xf); 1114 he_writel(he_dev, lb_swap, LB_SWAP); 1115 1116 /* 4.10 initialize the interrupt queues */ 1117 if ((err = he_init_irq(he_dev)) != 0) 1118 return err; 1119 1120 /* 4.11 enable pci bus controller state machines */ 1121 host_cntl |= (OUTFF_ENB | CMDFF_ENB | 1122 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB); 1123 he_writel(he_dev, host_cntl, HOST_CNTL); 1124 1125 gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB; 1126 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1127 1128 /* 1129 * atm network controller initialization 1130 */ 1131 1132 /* 5.1.1 generic configuration state */ 1133 1134 /* 1135 * local (cell) buffer memory map 1136 * 1137 * HE155 HE622 1138 * 1139 * 0 ____________1023 bytes 0 _______________________2047 bytes 1140 * | | | | | 1141 * | utility | | rx0 | | 1142 * 5|____________| 255|___________________| u | 1143 * 6| | 256| | t | 1144 * | | | | i | 1145 * | rx0 | row | tx | l | 1146 * | | | | i | 1147 * | | 767|___________________| t | 1148 * 517|____________| 768| | y | 1149 * row 518| | | rx1 | | 1150 * | | 1023|___________________|___| 1151 * | | 1152 * | tx | 1153 * | | 1154 * | | 1155 * 1535|____________| 1156 * 1536| | 1157 * | rx1 | 1158 * 2047|____________| 1159 * 1160 */ 1161 1162 /* total 4096 connections */ 1163 he_dev->vcibits = CONFIG_DEFAULT_VCIBITS; 1164 he_dev->vpibits = CONFIG_DEFAULT_VPIBITS; 1165 1166 if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) { 1167 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS); 1168 return -ENODEV; 1169 } 1170 1171 if (nvpibits != -1) { 1172 he_dev->vpibits = nvpibits; 1173 he_dev->vcibits = HE_MAXCIDBITS - nvpibits; 1174 } 1175 1176 if (nvcibits != -1) { 1177 he_dev->vcibits = nvcibits; 1178 he_dev->vpibits = HE_MAXCIDBITS - nvcibits; 1179 } 1180 1181 1182 if (he_is622(he_dev)) { 1183 he_dev->cells_per_row = 40; 1184 he_dev->bytes_per_row = 2048; 1185 he_dev->r0_numrows = 256; 1186 he_dev->tx_numrows = 512; 1187 he_dev->r1_numrows = 256; 1188 he_dev->r0_startrow = 0; 1189 he_dev->tx_startrow = 256; 1190 he_dev->r1_startrow = 768; 1191 } else { 1192 he_dev->cells_per_row = 20; 1193 he_dev->bytes_per_row = 1024; 1194 he_dev->r0_numrows = 512; 1195 he_dev->tx_numrows = 1018; 1196 he_dev->r1_numrows = 512; 1197 he_dev->r0_startrow = 6; 1198 he_dev->tx_startrow = 518; 1199 he_dev->r1_startrow = 1536; 1200 } 1201 1202 he_dev->cells_per_lbuf = 4; 1203 he_dev->buffer_limit = 4; 1204 he_dev->r0_numbuffs = he_dev->r0_numrows * 1205 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1206 if (he_dev->r0_numbuffs > 2560) 1207 he_dev->r0_numbuffs = 2560; 1208 1209 he_dev->r1_numbuffs = he_dev->r1_numrows * 1210 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1211 if (he_dev->r1_numbuffs > 2560) 1212 he_dev->r1_numbuffs = 2560; 1213 1214 he_dev->tx_numbuffs = he_dev->tx_numrows * 1215 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1216 if (he_dev->tx_numbuffs > 5120) 1217 he_dev->tx_numbuffs = 5120; 1218 1219 /* 5.1.2 configure hardware dependent registers */ 1220 1221 he_writel(he_dev, 1222 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) | 1223 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) | 1224 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) | 1225 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)), 1226 LBARB); 1227 1228 he_writel(he_dev, BANK_ON | 1229 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)), 1230 SDRAMCON); 1231 1232 he_writel(he_dev, 1233 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) | 1234 RM_RW_WAIT(1), RCMCONFIG); 1235 he_writel(he_dev, 1236 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) | 1237 TM_RW_WAIT(1), TCMCONFIG); 1238 1239 he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG); 1240 1241 he_writel(he_dev, 1242 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) | 1243 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) | 1244 RX_VALVP(he_dev->vpibits) | 1245 RX_VALVC(he_dev->vcibits), RC_CONFIG); 1246 1247 he_writel(he_dev, DRF_THRESH(0x20) | 1248 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) | 1249 TX_VCI_MASK(he_dev->vcibits) | 1250 LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG); 1251 1252 he_writel(he_dev, 0x0, TXAAL5_PROTO); 1253 1254 he_writel(he_dev, PHY_INT_ENB | 1255 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)), 1256 RH_CONFIG); 1257 1258 /* 5.1.3 initialize connection memory */ 1259 1260 for (i = 0; i < TCM_MEM_SIZE; ++i) 1261 he_writel_tcm(he_dev, 0, i); 1262 1263 for (i = 0; i < RCM_MEM_SIZE; ++i) 1264 he_writel_rcm(he_dev, 0, i); 1265 1266 /* 1267 * transmit connection memory map 1268 * 1269 * tx memory 1270 * 0x0 ___________________ 1271 * | | 1272 * | | 1273 * | TSRa | 1274 * | | 1275 * | | 1276 * 0x8000|___________________| 1277 * | | 1278 * | TSRb | 1279 * 0xc000|___________________| 1280 * | | 1281 * | TSRc | 1282 * 0xe000|___________________| 1283 * | TSRd | 1284 * 0xf000|___________________| 1285 * | tmABR | 1286 * 0x10000|___________________| 1287 * | | 1288 * | tmTPD | 1289 * |___________________| 1290 * | | 1291 * .... 1292 * 0x1ffff|___________________| 1293 * 1294 * 1295 */ 1296 1297 he_writel(he_dev, CONFIG_TSRB, TSRB_BA); 1298 he_writel(he_dev, CONFIG_TSRC, TSRC_BA); 1299 he_writel(he_dev, CONFIG_TSRD, TSRD_BA); 1300 he_writel(he_dev, CONFIG_TMABR, TMABR_BA); 1301 he_writel(he_dev, CONFIG_TPDBA, TPD_BA); 1302 1303 1304 /* 1305 * receive connection memory map 1306 * 1307 * 0x0 ___________________ 1308 * | | 1309 * | | 1310 * | RSRa | 1311 * | | 1312 * | | 1313 * 0x8000|___________________| 1314 * | | 1315 * | rx0/1 | 1316 * | LBM | link lists of local 1317 * | tx | buffer memory 1318 * | | 1319 * 0xd000|___________________| 1320 * | | 1321 * | rmABR | 1322 * 0xe000|___________________| 1323 * | | 1324 * | RSRb | 1325 * |___________________| 1326 * | | 1327 * .... 1328 * 0xffff|___________________| 1329 */ 1330 1331 he_writel(he_dev, 0x08000, RCMLBM_BA); 1332 he_writel(he_dev, 0x0e000, RCMRSRB_BA); 1333 he_writel(he_dev, 0x0d800, RCMABR_BA); 1334 1335 /* 5.1.4 initialize local buffer free pools linked lists */ 1336 1337 he_init_rx_lbfp0(he_dev); 1338 he_init_rx_lbfp1(he_dev); 1339 1340 he_writel(he_dev, 0x0, RLBC_H); 1341 he_writel(he_dev, 0x0, RLBC_T); 1342 he_writel(he_dev, 0x0, RLBC_H2); 1343 1344 he_writel(he_dev, 512, RXTHRSH); /* 10% of r0+r1 buffers */ 1345 he_writel(he_dev, 256, LITHRSH); /* 5% of r0+r1 buffers */ 1346 1347 he_init_tx_lbfp(he_dev); 1348 1349 he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA); 1350 1351 /* 5.1.5 initialize intermediate receive queues */ 1352 1353 if (he_is622(he_dev)) { 1354 he_writel(he_dev, 0x000f, G0_INMQ_S); 1355 he_writel(he_dev, 0x200f, G0_INMQ_L); 1356 1357 he_writel(he_dev, 0x001f, G1_INMQ_S); 1358 he_writel(he_dev, 0x201f, G1_INMQ_L); 1359 1360 he_writel(he_dev, 0x002f, G2_INMQ_S); 1361 he_writel(he_dev, 0x202f, G2_INMQ_L); 1362 1363 he_writel(he_dev, 0x003f, G3_INMQ_S); 1364 he_writel(he_dev, 0x203f, G3_INMQ_L); 1365 1366 he_writel(he_dev, 0x004f, G4_INMQ_S); 1367 he_writel(he_dev, 0x204f, G4_INMQ_L); 1368 1369 he_writel(he_dev, 0x005f, G5_INMQ_S); 1370 he_writel(he_dev, 0x205f, G5_INMQ_L); 1371 1372 he_writel(he_dev, 0x006f, G6_INMQ_S); 1373 he_writel(he_dev, 0x206f, G6_INMQ_L); 1374 1375 he_writel(he_dev, 0x007f, G7_INMQ_S); 1376 he_writel(he_dev, 0x207f, G7_INMQ_L); 1377 } else { 1378 he_writel(he_dev, 0x0000, G0_INMQ_S); 1379 he_writel(he_dev, 0x0008, G0_INMQ_L); 1380 1381 he_writel(he_dev, 0x0001, G1_INMQ_S); 1382 he_writel(he_dev, 0x0009, G1_INMQ_L); 1383 1384 he_writel(he_dev, 0x0002, G2_INMQ_S); 1385 he_writel(he_dev, 0x000a, G2_INMQ_L); 1386 1387 he_writel(he_dev, 0x0003, G3_INMQ_S); 1388 he_writel(he_dev, 0x000b, G3_INMQ_L); 1389 1390 he_writel(he_dev, 0x0004, G4_INMQ_S); 1391 he_writel(he_dev, 0x000c, G4_INMQ_L); 1392 1393 he_writel(he_dev, 0x0005, G5_INMQ_S); 1394 he_writel(he_dev, 0x000d, G5_INMQ_L); 1395 1396 he_writel(he_dev, 0x0006, G6_INMQ_S); 1397 he_writel(he_dev, 0x000e, G6_INMQ_L); 1398 1399 he_writel(he_dev, 0x0007, G7_INMQ_S); 1400 he_writel(he_dev, 0x000f, G7_INMQ_L); 1401 } 1402 1403 /* 5.1.6 application tunable parameters */ 1404 1405 he_writel(he_dev, 0x0, MCC); 1406 he_writel(he_dev, 0x0, OEC); 1407 he_writel(he_dev, 0x0, DCC); 1408 he_writel(he_dev, 0x0, CEC); 1409 1410 /* 5.1.7 cs block initialization */ 1411 1412 he_init_cs_block(he_dev); 1413 1414 /* 5.1.8 cs block connection memory initialization */ 1415 1416 if (he_init_cs_block_rcm(he_dev) < 0) 1417 return -ENOMEM; 1418 1419 /* 5.1.10 initialize host structures */ 1420 1421 he_init_tpdrq(he_dev); 1422 1423 he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev, 1424 sizeof(struct he_tpd), TPD_ALIGNMENT, 0); 1425 if (he_dev->tpd_pool == NULL) { 1426 hprintk("unable to create tpd dma_pool\n"); 1427 return -ENOMEM; 1428 } 1429 1430 INIT_LIST_HEAD(&he_dev->outstanding_tpds); 1431 1432 if (he_init_group(he_dev, 0) != 0) 1433 return -ENOMEM; 1434 1435 for (group = 1; group < HE_NUM_GROUPS; ++group) { 1436 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32)); 1437 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32)); 1438 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32)); 1439 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 1440 G0_RBPS_BS + (group * 32)); 1441 1442 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32)); 1443 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32)); 1444 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 1445 G0_RBPL_QI + (group * 32)); 1446 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32)); 1447 1448 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16)); 1449 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16)); 1450 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0), 1451 G0_RBRQ_Q + (group * 16)); 1452 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16)); 1453 1454 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16)); 1455 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16)); 1456 he_writel(he_dev, TBRQ_THRESH(0x1), 1457 G0_TBRQ_THRESH + (group * 16)); 1458 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16)); 1459 } 1460 1461 /* host status page */ 1462 1463 he_dev->hsp = dma_alloc_coherent(&he_dev->pci_dev->dev, 1464 sizeof(struct he_hsp), 1465 &he_dev->hsp_phys, GFP_KERNEL); 1466 if (he_dev->hsp == NULL) { 1467 hprintk("failed to allocate host status page\n"); 1468 return -ENOMEM; 1469 } 1470 he_writel(he_dev, he_dev->hsp_phys, HSP_BA); 1471 1472 /* initialize framer */ 1473 1474 #ifdef CONFIG_ATM_HE_USE_SUNI 1475 if (he_isMM(he_dev)) 1476 suni_init(he_dev->atm_dev); 1477 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start) 1478 he_dev->atm_dev->phy->start(he_dev->atm_dev); 1479 #endif /* CONFIG_ATM_HE_USE_SUNI */ 1480 1481 if (sdh) { 1482 /* this really should be in suni.c but for now... */ 1483 int val; 1484 1485 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM); 1486 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT); 1487 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM); 1488 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP); 1489 } 1490 1491 /* 5.1.12 enable transmit and receive */ 1492 1493 reg = he_readl_mbox(he_dev, CS_ERCTL0); 1494 reg |= TX_ENABLE|ER_ENABLE; 1495 he_writel_mbox(he_dev, reg, CS_ERCTL0); 1496 1497 reg = he_readl(he_dev, RC_CONFIG); 1498 reg |= RX_ENABLE; 1499 he_writel(he_dev, reg, RC_CONFIG); 1500 1501 for (i = 0; i < HE_NUM_CS_STPER; ++i) { 1502 he_dev->cs_stper[i].inuse = 0; 1503 he_dev->cs_stper[i].pcr = -1; 1504 } 1505 he_dev->total_bw = 0; 1506 1507 1508 /* atm linux initialization */ 1509 1510 he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits; 1511 he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits; 1512 1513 he_dev->irq_peak = 0; 1514 he_dev->rbrq_peak = 0; 1515 he_dev->rbpl_peak = 0; 1516 he_dev->tbrq_peak = 0; 1517 1518 HPRINTK("hell bent for leather!\n"); 1519 1520 return 0; 1521 } 1522 1523 static void 1524 he_stop(struct he_dev *he_dev) 1525 { 1526 struct he_buff *heb, *next; 1527 struct pci_dev *pci_dev; 1528 u32 gen_cntl_0, reg; 1529 u16 command; 1530 1531 pci_dev = he_dev->pci_dev; 1532 1533 /* disable interrupts */ 1534 1535 if (he_dev->membase) { 1536 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0); 1537 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB); 1538 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1539 1540 tasklet_disable(&he_dev->tasklet); 1541 1542 /* disable recv and transmit */ 1543 1544 reg = he_readl_mbox(he_dev, CS_ERCTL0); 1545 reg &= ~(TX_ENABLE|ER_ENABLE); 1546 he_writel_mbox(he_dev, reg, CS_ERCTL0); 1547 1548 reg = he_readl(he_dev, RC_CONFIG); 1549 reg &= ~(RX_ENABLE); 1550 he_writel(he_dev, reg, RC_CONFIG); 1551 } 1552 1553 #ifdef CONFIG_ATM_HE_USE_SUNI 1554 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop) 1555 he_dev->atm_dev->phy->stop(he_dev->atm_dev); 1556 #endif /* CONFIG_ATM_HE_USE_SUNI */ 1557 1558 if (he_dev->irq) 1559 free_irq(he_dev->irq, he_dev); 1560 1561 if (he_dev->irq_base) 1562 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1) 1563 * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys); 1564 1565 if (he_dev->hsp) 1566 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp), 1567 he_dev->hsp, he_dev->hsp_phys); 1568 1569 if (he_dev->rbpl_base) { 1570 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry) 1571 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1572 1573 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE 1574 * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys); 1575 } 1576 1577 kfree(he_dev->rbpl_virt); 1578 bitmap_free(he_dev->rbpl_table); 1579 dma_pool_destroy(he_dev->rbpl_pool); 1580 1581 if (he_dev->rbrq_base) 1582 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq), 1583 he_dev->rbrq_base, he_dev->rbrq_phys); 1584 1585 if (he_dev->tbrq_base) 1586 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), 1587 he_dev->tbrq_base, he_dev->tbrq_phys); 1588 1589 if (he_dev->tpdrq_base) 1590 dma_free_coherent(&he_dev->pci_dev->dev, 1591 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq), 1592 he_dev->tpdrq_base, he_dev->tpdrq_phys); 1593 1594 dma_pool_destroy(he_dev->tpd_pool); 1595 1596 if (he_dev->pci_dev) { 1597 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command); 1598 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); 1599 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command); 1600 } 1601 1602 if (he_dev->membase) 1603 iounmap(he_dev->membase); 1604 } 1605 1606 static struct he_tpd * 1607 __alloc_tpd(struct he_dev *he_dev) 1608 { 1609 struct he_tpd *tpd; 1610 dma_addr_t mapping; 1611 1612 tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping); 1613 if (tpd == NULL) 1614 return NULL; 1615 1616 tpd->status = TPD_ADDR(mapping); 1617 tpd->reserved = 0; 1618 tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0; 1619 tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0; 1620 tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0; 1621 1622 return tpd; 1623 } 1624 1625 #define AAL5_LEN(buf,len) \ 1626 ((((unsigned char *)(buf))[(len)-6] << 8) | \ 1627 (((unsigned char *)(buf))[(len)-5])) 1628 1629 /* 2.10.1.2 receive 1630 * 1631 * aal5 packets can optionally return the tcp checksum in the lower 1632 * 16 bits of the crc (RSR0_TCP_CKSUM) 1633 */ 1634 1635 #define TCP_CKSUM(buf,len) \ 1636 ((((unsigned char *)(buf))[(len)-2] << 8) | \ 1637 (((unsigned char *)(buf))[(len-1)])) 1638 1639 static int 1640 he_service_rbrq(struct he_dev *he_dev, int group) 1641 { 1642 struct he_rbrq *rbrq_tail = (struct he_rbrq *) 1643 ((unsigned long)he_dev->rbrq_base | 1644 he_dev->hsp->group[group].rbrq_tail); 1645 unsigned cid, lastcid = -1; 1646 struct sk_buff *skb; 1647 struct atm_vcc *vcc = NULL; 1648 struct he_vcc *he_vcc; 1649 struct he_buff *heb, *next; 1650 int i; 1651 int pdus_assembled = 0; 1652 int updated = 0; 1653 1654 read_lock(&vcc_sklist_lock); 1655 while (he_dev->rbrq_head != rbrq_tail) { 1656 ++updated; 1657 1658 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n", 1659 he_dev->rbrq_head, group, 1660 RBRQ_ADDR(he_dev->rbrq_head), 1661 RBRQ_BUFLEN(he_dev->rbrq_head), 1662 RBRQ_CID(he_dev->rbrq_head), 1663 RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "", 1664 RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "", 1665 RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "", 1666 RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "", 1667 RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "", 1668 RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : ""); 1669 1670 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET; 1671 heb = he_dev->rbpl_virt[i]; 1672 1673 cid = RBRQ_CID(he_dev->rbrq_head); 1674 if (cid != lastcid) 1675 vcc = __find_vcc(he_dev, cid); 1676 lastcid = cid; 1677 1678 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) { 1679 hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid); 1680 if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) { 1681 clear_bit(i, he_dev->rbpl_table); 1682 list_del(&heb->entry); 1683 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1684 } 1685 1686 goto next_rbrq_entry; 1687 } 1688 1689 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) { 1690 hprintk("HBUF_ERR! (cid 0x%x)\n", cid); 1691 atomic_inc(&vcc->stats->rx_drop); 1692 goto return_host_buffers; 1693 } 1694 1695 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4; 1696 clear_bit(i, he_dev->rbpl_table); 1697 list_move_tail(&heb->entry, &he_vcc->buffers); 1698 he_vcc->pdu_len += heb->len; 1699 1700 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) { 1701 lastcid = -1; 1702 HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid); 1703 wake_up(&he_vcc->rx_waitq); 1704 goto return_host_buffers; 1705 } 1706 1707 if (!RBRQ_END_PDU(he_dev->rbrq_head)) 1708 goto next_rbrq_entry; 1709 1710 if (RBRQ_LEN_ERR(he_dev->rbrq_head) 1711 || RBRQ_CRC_ERR(he_dev->rbrq_head)) { 1712 HPRINTK("%s%s (%d.%d)\n", 1713 RBRQ_CRC_ERR(he_dev->rbrq_head) 1714 ? "CRC_ERR " : "", 1715 RBRQ_LEN_ERR(he_dev->rbrq_head) 1716 ? "LEN_ERR" : "", 1717 vcc->vpi, vcc->vci); 1718 atomic_inc(&vcc->stats->rx_err); 1719 goto return_host_buffers; 1720 } 1721 1722 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve, 1723 GFP_ATOMIC); 1724 if (!skb) { 1725 HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci); 1726 goto return_host_buffers; 1727 } 1728 1729 if (rx_skb_reserve > 0) 1730 skb_reserve(skb, rx_skb_reserve); 1731 1732 __net_timestamp(skb); 1733 1734 list_for_each_entry(heb, &he_vcc->buffers, entry) 1735 skb_put_data(skb, &heb->data, heb->len); 1736 1737 switch (vcc->qos.aal) { 1738 case ATM_AAL0: 1739 /* 2.10.1.5 raw cell receive */ 1740 skb->len = ATM_AAL0_SDU; 1741 skb_set_tail_pointer(skb, skb->len); 1742 break; 1743 case ATM_AAL5: 1744 /* 2.10.1.2 aal5 receive */ 1745 1746 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len); 1747 skb_set_tail_pointer(skb, skb->len); 1748 #ifdef USE_CHECKSUM_HW 1749 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) { 1750 skb->ip_summed = CHECKSUM_COMPLETE; 1751 skb->csum = TCP_CKSUM(skb->data, 1752 he_vcc->pdu_len); 1753 } 1754 #endif 1755 break; 1756 } 1757 1758 #ifdef should_never_happen 1759 if (skb->len > vcc->qos.rxtp.max_sdu) 1760 hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid); 1761 #endif 1762 1763 #ifdef notdef 1764 ATM_SKB(skb)->vcc = vcc; 1765 #endif 1766 spin_unlock(&he_dev->global_lock); 1767 vcc->push(vcc, skb); 1768 spin_lock(&he_dev->global_lock); 1769 1770 atomic_inc(&vcc->stats->rx); 1771 1772 return_host_buffers: 1773 ++pdus_assembled; 1774 1775 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry) 1776 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1777 INIT_LIST_HEAD(&he_vcc->buffers); 1778 he_vcc->pdu_len = 0; 1779 1780 next_rbrq_entry: 1781 he_dev->rbrq_head = (struct he_rbrq *) 1782 ((unsigned long) he_dev->rbrq_base | 1783 RBRQ_MASK(he_dev->rbrq_head + 1)); 1784 1785 } 1786 read_unlock(&vcc_sklist_lock); 1787 1788 if (updated) { 1789 if (updated > he_dev->rbrq_peak) 1790 he_dev->rbrq_peak = updated; 1791 1792 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head), 1793 G0_RBRQ_H + (group * 16)); 1794 } 1795 1796 return pdus_assembled; 1797 } 1798 1799 static void 1800 he_service_tbrq(struct he_dev *he_dev, int group) 1801 { 1802 struct he_tbrq *tbrq_tail = (struct he_tbrq *) 1803 ((unsigned long)he_dev->tbrq_base | 1804 he_dev->hsp->group[group].tbrq_tail); 1805 struct he_tpd *tpd; 1806 int slot, updated = 0; 1807 struct he_tpd *__tpd; 1808 1809 /* 2.1.6 transmit buffer return queue */ 1810 1811 while (he_dev->tbrq_head != tbrq_tail) { 1812 ++updated; 1813 1814 HPRINTK("tbrq%d 0x%x%s%s\n", 1815 group, 1816 TBRQ_TPD(he_dev->tbrq_head), 1817 TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "", 1818 TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : ""); 1819 tpd = NULL; 1820 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) { 1821 if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) { 1822 tpd = __tpd; 1823 list_del(&__tpd->entry); 1824 break; 1825 } 1826 } 1827 1828 if (tpd == NULL) { 1829 hprintk("unable to locate tpd for dma buffer %x\n", 1830 TBRQ_TPD(he_dev->tbrq_head)); 1831 goto next_tbrq_entry; 1832 } 1833 1834 if (TBRQ_EOS(he_dev->tbrq_head)) { 1835 HPRINTK("wake_up(tx_waitq) cid 0x%x\n", 1836 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci)); 1837 if (tpd->vcc) 1838 wake_up(&HE_VCC(tpd->vcc)->tx_waitq); 1839 1840 goto next_tbrq_entry; 1841 } 1842 1843 for (slot = 0; slot < TPD_MAXIOV; ++slot) { 1844 if (tpd->iovec[slot].addr) 1845 dma_unmap_single(&he_dev->pci_dev->dev, 1846 tpd->iovec[slot].addr, 1847 tpd->iovec[slot].len & TPD_LEN_MASK, 1848 DMA_TO_DEVICE); 1849 if (tpd->iovec[slot].len & TPD_LST) 1850 break; 1851 1852 } 1853 1854 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */ 1855 if (tpd->vcc && tpd->vcc->pop) 1856 tpd->vcc->pop(tpd->vcc, tpd->skb); 1857 else 1858 dev_kfree_skb_any(tpd->skb); 1859 } 1860 1861 next_tbrq_entry: 1862 if (tpd) 1863 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status)); 1864 he_dev->tbrq_head = (struct he_tbrq *) 1865 ((unsigned long) he_dev->tbrq_base | 1866 TBRQ_MASK(he_dev->tbrq_head + 1)); 1867 } 1868 1869 if (updated) { 1870 if (updated > he_dev->tbrq_peak) 1871 he_dev->tbrq_peak = updated; 1872 1873 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head), 1874 G0_TBRQ_H + (group * 16)); 1875 } 1876 } 1877 1878 static void 1879 he_service_rbpl(struct he_dev *he_dev, int group) 1880 { 1881 struct he_rbp *new_tail; 1882 struct he_rbp *rbpl_head; 1883 struct he_buff *heb; 1884 dma_addr_t mapping; 1885 int i; 1886 int moved = 0; 1887 1888 rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base | 1889 RBPL_MASK(he_readl(he_dev, G0_RBPL_S))); 1890 1891 for (;;) { 1892 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base | 1893 RBPL_MASK(he_dev->rbpl_tail+1)); 1894 1895 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */ 1896 if (new_tail == rbpl_head) 1897 break; 1898 1899 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint); 1900 if (i > (RBPL_TABLE_SIZE - 1)) { 1901 i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE); 1902 if (i > (RBPL_TABLE_SIZE - 1)) 1903 break; 1904 } 1905 he_dev->rbpl_hint = i + 1; 1906 1907 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping); 1908 if (!heb) 1909 break; 1910 heb->mapping = mapping; 1911 list_add(&heb->entry, &he_dev->rbpl_outstanding); 1912 he_dev->rbpl_virt[i] = heb; 1913 set_bit(i, he_dev->rbpl_table); 1914 new_tail->idx = i << RBP_IDX_OFFSET; 1915 new_tail->phys = mapping + offsetof(struct he_buff, data); 1916 1917 he_dev->rbpl_tail = new_tail; 1918 ++moved; 1919 } 1920 1921 if (moved) 1922 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T); 1923 } 1924 1925 static void 1926 he_tasklet(unsigned long data) 1927 { 1928 unsigned long flags; 1929 struct he_dev *he_dev = (struct he_dev *) data; 1930 int group, type; 1931 int updated = 0; 1932 1933 HPRINTK("tasklet (0x%lx)\n", data); 1934 spin_lock_irqsave(&he_dev->global_lock, flags); 1935 1936 while (he_dev->irq_head != he_dev->irq_tail) { 1937 ++updated; 1938 1939 type = ITYPE_TYPE(he_dev->irq_head->isw); 1940 group = ITYPE_GROUP(he_dev->irq_head->isw); 1941 1942 switch (type) { 1943 case ITYPE_RBRQ_THRESH: 1944 HPRINTK("rbrq%d threshold\n", group); 1945 fallthrough; 1946 case ITYPE_RBRQ_TIMER: 1947 if (he_service_rbrq(he_dev, group)) 1948 he_service_rbpl(he_dev, group); 1949 break; 1950 case ITYPE_TBRQ_THRESH: 1951 HPRINTK("tbrq%d threshold\n", group); 1952 fallthrough; 1953 case ITYPE_TPD_COMPLETE: 1954 he_service_tbrq(he_dev, group); 1955 break; 1956 case ITYPE_RBPL_THRESH: 1957 he_service_rbpl(he_dev, group); 1958 break; 1959 case ITYPE_RBPS_THRESH: 1960 /* shouldn't happen unless small buffers enabled */ 1961 break; 1962 case ITYPE_PHY: 1963 HPRINTK("phy interrupt\n"); 1964 #ifdef CONFIG_ATM_HE_USE_SUNI 1965 spin_unlock_irqrestore(&he_dev->global_lock, flags); 1966 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt) 1967 he_dev->atm_dev->phy->interrupt(he_dev->atm_dev); 1968 spin_lock_irqsave(&he_dev->global_lock, flags); 1969 #endif 1970 break; 1971 case ITYPE_OTHER: 1972 switch (type|group) { 1973 case ITYPE_PARITY: 1974 hprintk("parity error\n"); 1975 break; 1976 case ITYPE_ABORT: 1977 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR)); 1978 break; 1979 } 1980 break; 1981 case ITYPE_TYPE(ITYPE_INVALID): 1982 /* see 8.1.1 -- check all queues */ 1983 1984 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw); 1985 1986 he_service_rbrq(he_dev, 0); 1987 he_service_rbpl(he_dev, 0); 1988 he_service_tbrq(he_dev, 0); 1989 break; 1990 default: 1991 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw); 1992 } 1993 1994 he_dev->irq_head->isw = ITYPE_INVALID; 1995 1996 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK); 1997 } 1998 1999 if (updated) { 2000 if (updated > he_dev->irq_peak) 2001 he_dev->irq_peak = updated; 2002 2003 he_writel(he_dev, 2004 IRQ_SIZE(CONFIG_IRQ_SIZE) | 2005 IRQ_THRESH(CONFIG_IRQ_THRESH) | 2006 IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD); 2007 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */ 2008 } 2009 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2010 } 2011 2012 static irqreturn_t 2013 he_irq_handler(int irq, void *dev_id) 2014 { 2015 unsigned long flags; 2016 struct he_dev *he_dev = (struct he_dev * )dev_id; 2017 int handled = 0; 2018 2019 if (he_dev == NULL) 2020 return IRQ_NONE; 2021 2022 spin_lock_irqsave(&he_dev->global_lock, flags); 2023 2024 he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) | 2025 (*he_dev->irq_tailoffset << 2)); 2026 2027 if (he_dev->irq_tail == he_dev->irq_head) { 2028 HPRINTK("tailoffset not updated?\n"); 2029 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base | 2030 ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2)); 2031 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata */ 2032 } 2033 2034 #ifdef DEBUG 2035 if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */) 2036 hprintk("spurious (or shared) interrupt?\n"); 2037 #endif 2038 2039 if (he_dev->irq_head != he_dev->irq_tail) { 2040 handled = 1; 2041 tasklet_schedule(&he_dev->tasklet); 2042 he_writel(he_dev, INT_CLEAR_A, INT_FIFO); /* clear interrupt */ 2043 (void) he_readl(he_dev, INT_FIFO); /* flush posted writes */ 2044 } 2045 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2046 return IRQ_RETVAL(handled); 2047 2048 } 2049 2050 static __inline__ void 2051 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid) 2052 { 2053 struct he_tpdrq *new_tail; 2054 2055 HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n", 2056 tpd, cid, he_dev->tpdrq_tail); 2057 2058 /* new_tail = he_dev->tpdrq_tail; */ 2059 new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base | 2060 TPDRQ_MASK(he_dev->tpdrq_tail+1)); 2061 2062 /* 2063 * check to see if we are about to set the tail == head 2064 * if true, update the head pointer from the adapter 2065 * to see if this is really the case (reading the queue 2066 * head for every enqueue would be unnecessarily slow) 2067 */ 2068 2069 if (new_tail == he_dev->tpdrq_head) { 2070 he_dev->tpdrq_head = (struct he_tpdrq *) 2071 (((unsigned long)he_dev->tpdrq_base) | 2072 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H))); 2073 2074 if (new_tail == he_dev->tpdrq_head) { 2075 int slot; 2076 2077 hprintk("tpdrq full (cid 0x%x)\n", cid); 2078 /* 2079 * FIXME 2080 * push tpd onto a transmit backlog queue 2081 * after service_tbrq, service the backlog 2082 * for now, we just drop the pdu 2083 */ 2084 for (slot = 0; slot < TPD_MAXIOV; ++slot) { 2085 if (tpd->iovec[slot].addr) 2086 dma_unmap_single(&he_dev->pci_dev->dev, 2087 tpd->iovec[slot].addr, 2088 tpd->iovec[slot].len & TPD_LEN_MASK, 2089 DMA_TO_DEVICE); 2090 } 2091 if (tpd->skb) { 2092 if (tpd->vcc->pop) 2093 tpd->vcc->pop(tpd->vcc, tpd->skb); 2094 else 2095 dev_kfree_skb_any(tpd->skb); 2096 atomic_inc(&tpd->vcc->stats->tx_err); 2097 } 2098 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status)); 2099 return; 2100 } 2101 } 2102 2103 /* 2.1.5 transmit packet descriptor ready queue */ 2104 list_add_tail(&tpd->entry, &he_dev->outstanding_tpds); 2105 he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status); 2106 he_dev->tpdrq_tail->cid = cid; 2107 wmb(); 2108 2109 he_dev->tpdrq_tail = new_tail; 2110 2111 he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T); 2112 (void) he_readl(he_dev, TPDRQ_T); /* flush posted writes */ 2113 } 2114 2115 static int 2116 he_open(struct atm_vcc *vcc) 2117 { 2118 unsigned long flags; 2119 struct he_dev *he_dev = HE_DEV(vcc->dev); 2120 struct he_vcc *he_vcc; 2121 int err = 0; 2122 unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock; 2123 short vpi = vcc->vpi; 2124 int vci = vcc->vci; 2125 2126 if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC) 2127 return 0; 2128 2129 HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci); 2130 2131 set_bit(ATM_VF_ADDR, &vcc->flags); 2132 2133 cid = he_mkcid(he_dev, vpi, vci); 2134 2135 he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC); 2136 if (he_vcc == NULL) { 2137 hprintk("unable to allocate he_vcc during open\n"); 2138 return -ENOMEM; 2139 } 2140 2141 INIT_LIST_HEAD(&he_vcc->buffers); 2142 he_vcc->pdu_len = 0; 2143 he_vcc->rc_index = -1; 2144 2145 init_waitqueue_head(&he_vcc->rx_waitq); 2146 init_waitqueue_head(&he_vcc->tx_waitq); 2147 2148 vcc->dev_data = he_vcc; 2149 2150 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 2151 int pcr_goal; 2152 2153 pcr_goal = atm_pcr_goal(&vcc->qos.txtp); 2154 if (pcr_goal == 0) 2155 pcr_goal = he_dev->atm_dev->link_rate; 2156 if (pcr_goal < 0) /* means round down, technically */ 2157 pcr_goal = -pcr_goal; 2158 2159 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal); 2160 2161 switch (vcc->qos.aal) { 2162 case ATM_AAL5: 2163 tsr0_aal = TSR0_AAL5; 2164 tsr4 = TSR4_AAL5; 2165 break; 2166 case ATM_AAL0: 2167 tsr0_aal = TSR0_AAL0_SDU; 2168 tsr4 = TSR4_AAL0_SDU; 2169 break; 2170 default: 2171 err = -EINVAL; 2172 goto open_failed; 2173 } 2174 2175 spin_lock_irqsave(&he_dev->global_lock, flags); 2176 tsr0 = he_readl_tsr0(he_dev, cid); 2177 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2178 2179 if (TSR0_CONN_STATE(tsr0) != 0) { 2180 hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0); 2181 err = -EBUSY; 2182 goto open_failed; 2183 } 2184 2185 switch (vcc->qos.txtp.traffic_class) { 2186 case ATM_UBR: 2187 /* 2.3.3.1 open connection ubr */ 2188 2189 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal | 2190 TSR0_USE_WMIN | TSR0_UPDATE_GER; 2191 break; 2192 2193 case ATM_CBR: 2194 /* 2.3.3.2 open connection cbr */ 2195 2196 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */ 2197 if ((he_dev->total_bw + pcr_goal) 2198 > (he_dev->atm_dev->link_rate * 9 / 10)) 2199 { 2200 err = -EBUSY; 2201 goto open_failed; 2202 } 2203 2204 spin_lock_irqsave(&he_dev->global_lock, flags); /* also protects he_dev->cs_stper[] */ 2205 2206 /* find an unused cs_stper register */ 2207 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg) 2208 if (he_dev->cs_stper[reg].inuse == 0 || 2209 he_dev->cs_stper[reg].pcr == pcr_goal) 2210 break; 2211 2212 if (reg == HE_NUM_CS_STPER) { 2213 err = -EBUSY; 2214 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2215 goto open_failed; 2216 } 2217 2218 he_dev->total_bw += pcr_goal; 2219 2220 he_vcc->rc_index = reg; 2221 ++he_dev->cs_stper[reg].inuse; 2222 he_dev->cs_stper[reg].pcr = pcr_goal; 2223 2224 clock = he_is622(he_dev) ? 66667000 : 50000000; 2225 period = clock / pcr_goal; 2226 2227 HPRINTK("rc_index = %d period = %d\n", 2228 reg, period); 2229 2230 he_writel_mbox(he_dev, rate_to_atmf(period/2), 2231 CS_STPER0 + reg); 2232 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2233 2234 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal | 2235 TSR0_RC_INDEX(reg); 2236 2237 break; 2238 default: 2239 err = -EINVAL; 2240 goto open_failed; 2241 } 2242 2243 spin_lock_irqsave(&he_dev->global_lock, flags); 2244 2245 he_writel_tsr0(he_dev, tsr0, cid); 2246 he_writel_tsr4(he_dev, tsr4 | 1, cid); 2247 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) | 2248 TSR1_PCR(rate_to_atmf(pcr_goal)), cid); 2249 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid); 2250 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid); 2251 2252 he_writel_tsr3(he_dev, 0x0, cid); 2253 he_writel_tsr5(he_dev, 0x0, cid); 2254 he_writel_tsr6(he_dev, 0x0, cid); 2255 he_writel_tsr7(he_dev, 0x0, cid); 2256 he_writel_tsr8(he_dev, 0x0, cid); 2257 he_writel_tsr10(he_dev, 0x0, cid); 2258 he_writel_tsr11(he_dev, 0x0, cid); 2259 he_writel_tsr12(he_dev, 0x0, cid); 2260 he_writel_tsr13(he_dev, 0x0, cid); 2261 he_writel_tsr14(he_dev, 0x0, cid); 2262 (void) he_readl_tsr0(he_dev, cid); /* flush posted writes */ 2263 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2264 } 2265 2266 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 2267 unsigned aal; 2268 2269 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid, 2270 &HE_VCC(vcc)->rx_waitq); 2271 2272 switch (vcc->qos.aal) { 2273 case ATM_AAL5: 2274 aal = RSR0_AAL5; 2275 break; 2276 case ATM_AAL0: 2277 aal = RSR0_RAWCELL; 2278 break; 2279 default: 2280 err = -EINVAL; 2281 goto open_failed; 2282 } 2283 2284 spin_lock_irqsave(&he_dev->global_lock, flags); 2285 2286 rsr0 = he_readl_rsr0(he_dev, cid); 2287 if (rsr0 & RSR0_OPEN_CONN) { 2288 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2289 2290 hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0); 2291 err = -EBUSY; 2292 goto open_failed; 2293 } 2294 2295 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY; 2296 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY; 2297 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 2298 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0; 2299 2300 #ifdef USE_CHECKSUM_HW 2301 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI) 2302 rsr0 |= RSR0_TCP_CKSUM; 2303 #endif 2304 2305 he_writel_rsr4(he_dev, rsr4, cid); 2306 he_writel_rsr1(he_dev, rsr1, cid); 2307 /* 5.1.11 last parameter initialized should be 2308 the open/closed indication in rsr0 */ 2309 he_writel_rsr0(he_dev, 2310 rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid); 2311 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */ 2312 2313 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2314 } 2315 2316 open_failed: 2317 2318 if (err) { 2319 kfree(he_vcc); 2320 clear_bit(ATM_VF_ADDR, &vcc->flags); 2321 } 2322 else 2323 set_bit(ATM_VF_READY, &vcc->flags); 2324 2325 return err; 2326 } 2327 2328 static void 2329 he_close(struct atm_vcc *vcc) 2330 { 2331 unsigned long flags; 2332 DECLARE_WAITQUEUE(wait, current); 2333 struct he_dev *he_dev = HE_DEV(vcc->dev); 2334 struct he_tpd *tpd; 2335 unsigned cid; 2336 struct he_vcc *he_vcc = HE_VCC(vcc); 2337 #define MAX_RETRY 30 2338 int retry = 0, sleep = 1, tx_inuse; 2339 2340 HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci); 2341 2342 clear_bit(ATM_VF_READY, &vcc->flags); 2343 cid = he_mkcid(he_dev, vcc->vpi, vcc->vci); 2344 2345 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 2346 int timeout; 2347 2348 HPRINTK("close rx cid 0x%x\n", cid); 2349 2350 /* 2.7.2.2 close receive operation */ 2351 2352 /* wait for previous close (if any) to finish */ 2353 2354 spin_lock_irqsave(&he_dev->global_lock, flags); 2355 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) { 2356 HPRINTK("close cid 0x%x RCC_BUSY\n", cid); 2357 udelay(250); 2358 } 2359 2360 set_current_state(TASK_UNINTERRUPTIBLE); 2361 add_wait_queue(&he_vcc->rx_waitq, &wait); 2362 2363 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid); 2364 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */ 2365 he_writel_mbox(he_dev, cid, RXCON_CLOSE); 2366 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2367 2368 timeout = schedule_timeout(30*HZ); 2369 2370 remove_wait_queue(&he_vcc->rx_waitq, &wait); 2371 set_current_state(TASK_RUNNING); 2372 2373 if (timeout == 0) 2374 hprintk("close rx timeout cid 0x%x\n", cid); 2375 2376 HPRINTK("close rx cid 0x%x complete\n", cid); 2377 2378 } 2379 2380 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 2381 volatile unsigned tsr4, tsr0; 2382 int timeout; 2383 2384 HPRINTK("close tx cid 0x%x\n", cid); 2385 2386 /* 2.1.2 2387 * 2388 * ... the host must first stop queueing packets to the TPDRQ 2389 * on the connection to be closed, then wait for all outstanding 2390 * packets to be transmitted and their buffers returned to the 2391 * TBRQ. When the last packet on the connection arrives in the 2392 * TBRQ, the host issues the close command to the adapter. 2393 */ 2394 2395 while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) && 2396 (retry < MAX_RETRY)) { 2397 msleep(sleep); 2398 if (sleep < 250) 2399 sleep = sleep * 2; 2400 2401 ++retry; 2402 } 2403 2404 if (tx_inuse > 1) 2405 hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse); 2406 2407 /* 2.3.1.1 generic close operations with flush */ 2408 2409 spin_lock_irqsave(&he_dev->global_lock, flags); 2410 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid); 2411 /* also clears TSR4_SESSION_ENDED */ 2412 2413 switch (vcc->qos.txtp.traffic_class) { 2414 case ATM_UBR: 2415 he_writel_tsr1(he_dev, 2416 TSR1_MCR(rate_to_atmf(200000)) 2417 | TSR1_PCR(0), cid); 2418 break; 2419 case ATM_CBR: 2420 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid); 2421 break; 2422 } 2423 (void) he_readl_tsr4(he_dev, cid); /* flush posted writes */ 2424 2425 tpd = __alloc_tpd(he_dev); 2426 if (tpd == NULL) { 2427 hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid); 2428 goto close_tx_incomplete; 2429 } 2430 tpd->status |= TPD_EOS | TPD_INT; 2431 tpd->skb = NULL; 2432 tpd->vcc = vcc; 2433 wmb(); 2434 2435 set_current_state(TASK_UNINTERRUPTIBLE); 2436 add_wait_queue(&he_vcc->tx_waitq, &wait); 2437 __enqueue_tpd(he_dev, tpd, cid); 2438 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2439 2440 timeout = schedule_timeout(30*HZ); 2441 2442 remove_wait_queue(&he_vcc->tx_waitq, &wait); 2443 set_current_state(TASK_RUNNING); 2444 2445 spin_lock_irqsave(&he_dev->global_lock, flags); 2446 2447 if (timeout == 0) { 2448 hprintk("close tx timeout cid 0x%x\n", cid); 2449 goto close_tx_incomplete; 2450 } 2451 2452 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) { 2453 HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4); 2454 udelay(250); 2455 } 2456 2457 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) { 2458 HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0); 2459 udelay(250); 2460 } 2461 2462 close_tx_incomplete: 2463 2464 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 2465 int reg = he_vcc->rc_index; 2466 2467 HPRINTK("cs_stper reg = %d\n", reg); 2468 2469 if (he_dev->cs_stper[reg].inuse == 0) 2470 hprintk("cs_stper[%d].inuse = 0!\n", reg); 2471 else 2472 --he_dev->cs_stper[reg].inuse; 2473 2474 he_dev->total_bw -= he_dev->cs_stper[reg].pcr; 2475 } 2476 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2477 2478 HPRINTK("close tx cid 0x%x complete\n", cid); 2479 } 2480 2481 kfree(he_vcc); 2482 2483 clear_bit(ATM_VF_ADDR, &vcc->flags); 2484 } 2485 2486 static int 2487 he_send(struct atm_vcc *vcc, struct sk_buff *skb) 2488 { 2489 unsigned long flags; 2490 struct he_dev *he_dev = HE_DEV(vcc->dev); 2491 unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci); 2492 struct he_tpd *tpd; 2493 #ifdef USE_SCATTERGATHER 2494 int i, slot = 0; 2495 #endif 2496 2497 #define HE_TPD_BUFSIZE 0xffff 2498 2499 HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci); 2500 2501 if ((skb->len > HE_TPD_BUFSIZE) || 2502 ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) { 2503 hprintk("buffer too large (or small) -- %d bytes\n", skb->len ); 2504 if (vcc->pop) 2505 vcc->pop(vcc, skb); 2506 else 2507 dev_kfree_skb_any(skb); 2508 atomic_inc(&vcc->stats->tx_err); 2509 return -EINVAL; 2510 } 2511 2512 #ifndef USE_SCATTERGATHER 2513 if (skb_shinfo(skb)->nr_frags) { 2514 hprintk("no scatter/gather support\n"); 2515 if (vcc->pop) 2516 vcc->pop(vcc, skb); 2517 else 2518 dev_kfree_skb_any(skb); 2519 atomic_inc(&vcc->stats->tx_err); 2520 return -EINVAL; 2521 } 2522 #endif 2523 spin_lock_irqsave(&he_dev->global_lock, flags); 2524 2525 tpd = __alloc_tpd(he_dev); 2526 if (tpd == NULL) { 2527 if (vcc->pop) 2528 vcc->pop(vcc, skb); 2529 else 2530 dev_kfree_skb_any(skb); 2531 atomic_inc(&vcc->stats->tx_err); 2532 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2533 return -ENOMEM; 2534 } 2535 2536 if (vcc->qos.aal == ATM_AAL5) 2537 tpd->status |= TPD_CELLTYPE(TPD_USERCELL); 2538 else { 2539 char *pti_clp = (void *) (skb->data + 3); 2540 int clp, pti; 2541 2542 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 2543 clp = (*pti_clp & ATM_HDR_CLP); 2544 tpd->status |= TPD_CELLTYPE(pti); 2545 if (clp) 2546 tpd->status |= TPD_CLP; 2547 2548 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD); 2549 } 2550 2551 #ifdef USE_SCATTERGATHER 2552 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data, 2553 skb_headlen(skb), DMA_TO_DEVICE); 2554 tpd->iovec[slot].len = skb_headlen(skb); 2555 ++slot; 2556 2557 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2558 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2559 2560 if (slot == TPD_MAXIOV) { /* queue tpd; start new tpd */ 2561 tpd->vcc = vcc; 2562 tpd->skb = NULL; /* not the last fragment 2563 so dont ->push() yet */ 2564 wmb(); 2565 2566 __enqueue_tpd(he_dev, tpd, cid); 2567 tpd = __alloc_tpd(he_dev); 2568 if (tpd == NULL) { 2569 if (vcc->pop) 2570 vcc->pop(vcc, skb); 2571 else 2572 dev_kfree_skb_any(skb); 2573 atomic_inc(&vcc->stats->tx_err); 2574 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2575 return -ENOMEM; 2576 } 2577 tpd->status |= TPD_USERCELL; 2578 slot = 0; 2579 } 2580 2581 tpd->iovec[slot].addr = skb_frag_dma_map(&he_dev->pci_dev->dev, 2582 frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); 2583 tpd->iovec[slot].len = skb_frag_size(frag); 2584 ++slot; 2585 2586 } 2587 2588 tpd->iovec[slot - 1].len |= TPD_LST; 2589 #else 2590 tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE); 2591 tpd->length0 = skb->len | TPD_LST; 2592 #endif 2593 tpd->status |= TPD_INT; 2594 2595 tpd->vcc = vcc; 2596 tpd->skb = skb; 2597 wmb(); 2598 ATM_SKB(skb)->vcc = vcc; 2599 2600 __enqueue_tpd(he_dev, tpd, cid); 2601 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2602 2603 atomic_inc(&vcc->stats->tx); 2604 2605 return 0; 2606 } 2607 2608 static int 2609 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg) 2610 { 2611 unsigned long flags; 2612 struct he_dev *he_dev = HE_DEV(atm_dev); 2613 struct he_ioctl_reg reg; 2614 int err = 0; 2615 2616 switch (cmd) { 2617 case HE_GET_REG: 2618 if (!capable(CAP_NET_ADMIN)) 2619 return -EPERM; 2620 2621 if (copy_from_user(®, arg, 2622 sizeof(struct he_ioctl_reg))) 2623 return -EFAULT; 2624 2625 spin_lock_irqsave(&he_dev->global_lock, flags); 2626 switch (reg.type) { 2627 case HE_REGTYPE_PCI: 2628 if (reg.addr >= HE_REGMAP_SIZE) { 2629 err = -EINVAL; 2630 break; 2631 } 2632 2633 reg.val = he_readl(he_dev, reg.addr); 2634 break; 2635 case HE_REGTYPE_RCM: 2636 reg.val = 2637 he_readl_rcm(he_dev, reg.addr); 2638 break; 2639 case HE_REGTYPE_TCM: 2640 reg.val = 2641 he_readl_tcm(he_dev, reg.addr); 2642 break; 2643 case HE_REGTYPE_MBOX: 2644 reg.val = 2645 he_readl_mbox(he_dev, reg.addr); 2646 break; 2647 default: 2648 err = -EINVAL; 2649 break; 2650 } 2651 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2652 if (err == 0) 2653 if (copy_to_user(arg, ®, 2654 sizeof(struct he_ioctl_reg))) 2655 return -EFAULT; 2656 break; 2657 default: 2658 #ifdef CONFIG_ATM_HE_USE_SUNI 2659 if (atm_dev->phy && atm_dev->phy->ioctl) 2660 err = atm_dev->phy->ioctl(atm_dev, cmd, arg); 2661 #else /* CONFIG_ATM_HE_USE_SUNI */ 2662 err = -EINVAL; 2663 #endif /* CONFIG_ATM_HE_USE_SUNI */ 2664 break; 2665 } 2666 2667 return err; 2668 } 2669 2670 static void 2671 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr) 2672 { 2673 unsigned long flags; 2674 struct he_dev *he_dev = HE_DEV(atm_dev); 2675 2676 HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr); 2677 2678 spin_lock_irqsave(&he_dev->global_lock, flags); 2679 he_writel(he_dev, val, FRAMER + (addr*4)); 2680 (void) he_readl(he_dev, FRAMER + (addr*4)); /* flush posted writes */ 2681 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2682 } 2683 2684 2685 static unsigned char 2686 he_phy_get(struct atm_dev *atm_dev, unsigned long addr) 2687 { 2688 unsigned long flags; 2689 struct he_dev *he_dev = HE_DEV(atm_dev); 2690 unsigned reg; 2691 2692 spin_lock_irqsave(&he_dev->global_lock, flags); 2693 reg = he_readl(he_dev, FRAMER + (addr*4)); 2694 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2695 2696 HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg); 2697 return reg; 2698 } 2699 2700 static int 2701 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page) 2702 { 2703 unsigned long flags; 2704 struct he_dev *he_dev = HE_DEV(dev); 2705 int left, i; 2706 #ifdef notdef 2707 struct he_rbrq *rbrq_tail; 2708 struct he_tpdrq *tpdrq_head; 2709 int rbpl_head, rbpl_tail; 2710 #endif 2711 static long mcc = 0, oec = 0, dcc = 0, cec = 0; 2712 2713 2714 left = *pos; 2715 if (!left--) 2716 return sprintf(page, "ATM he driver\n"); 2717 2718 if (!left--) 2719 return sprintf(page, "%s%s\n\n", 2720 he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM"); 2721 2722 if (!left--) 2723 return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n"); 2724 2725 spin_lock_irqsave(&he_dev->global_lock, flags); 2726 mcc += he_readl(he_dev, MCC); 2727 oec += he_readl(he_dev, OEC); 2728 dcc += he_readl(he_dev, DCC); 2729 cec += he_readl(he_dev, CEC); 2730 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2731 2732 if (!left--) 2733 return sprintf(page, "%16ld %16ld %13ld %17ld\n\n", 2734 mcc, oec, dcc, cec); 2735 2736 if (!left--) 2737 return sprintf(page, "irq_size = %d inuse = ? peak = %d\n", 2738 CONFIG_IRQ_SIZE, he_dev->irq_peak); 2739 2740 if (!left--) 2741 return sprintf(page, "tpdrq_size = %d inuse = ?\n", 2742 CONFIG_TPDRQ_SIZE); 2743 2744 if (!left--) 2745 return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n", 2746 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak); 2747 2748 if (!left--) 2749 return sprintf(page, "tbrq_size = %d peak = %d\n", 2750 CONFIG_TBRQ_SIZE, he_dev->tbrq_peak); 2751 2752 2753 #ifdef notdef 2754 rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S)); 2755 rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T)); 2756 2757 inuse = rbpl_head - rbpl_tail; 2758 if (inuse < 0) 2759 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp); 2760 inuse /= sizeof(struct he_rbp); 2761 2762 if (!left--) 2763 return sprintf(page, "rbpl_size = %d inuse = %d\n\n", 2764 CONFIG_RBPL_SIZE, inuse); 2765 #endif 2766 2767 if (!left--) 2768 return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n"); 2769 2770 for (i = 0; i < HE_NUM_CS_STPER; ++i) 2771 if (!left--) 2772 return sprintf(page, "cs_stper%-2d %8ld %3d\n", i, 2773 he_dev->cs_stper[i].pcr, 2774 he_dev->cs_stper[i].inuse); 2775 2776 if (!left--) 2777 return sprintf(page, "total bw (cbr): %d (limit %d)\n", 2778 he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9); 2779 2780 return 0; 2781 } 2782 2783 /* eeprom routines -- see 4.7 */ 2784 2785 static u8 read_prom_byte(struct he_dev *he_dev, int addr) 2786 { 2787 u32 val = 0, tmp_read = 0; 2788 int i, j = 0; 2789 u8 byte_read = 0; 2790 2791 val = readl(he_dev->membase + HOST_CNTL); 2792 val &= 0xFFFFE0FF; 2793 2794 /* Turn on write enable */ 2795 val |= 0x800; 2796 he_writel(he_dev, val, HOST_CNTL); 2797 2798 /* Send READ instruction */ 2799 for (i = 0; i < ARRAY_SIZE(readtab); i++) { 2800 he_writel(he_dev, val | readtab[i], HOST_CNTL); 2801 udelay(EEPROM_DELAY); 2802 } 2803 2804 /* Next, we need to send the byte address to read from */ 2805 for (i = 7; i >= 0; i--) { 2806 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL); 2807 udelay(EEPROM_DELAY); 2808 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL); 2809 udelay(EEPROM_DELAY); 2810 } 2811 2812 j = 0; 2813 2814 val &= 0xFFFFF7FF; /* Turn off write enable */ 2815 he_writel(he_dev, val, HOST_CNTL); 2816 2817 /* Now, we can read data from the EEPROM by clocking it in */ 2818 for (i = 7; i >= 0; i--) { 2819 he_writel(he_dev, val | clocktab[j++], HOST_CNTL); 2820 udelay(EEPROM_DELAY); 2821 tmp_read = he_readl(he_dev, HOST_CNTL); 2822 byte_read |= (unsigned char) 2823 ((tmp_read & ID_DOUT) >> ID_DOFFSET << i); 2824 he_writel(he_dev, val | clocktab[j++], HOST_CNTL); 2825 udelay(EEPROM_DELAY); 2826 } 2827 2828 he_writel(he_dev, val | ID_CS, HOST_CNTL); 2829 udelay(EEPROM_DELAY); 2830 2831 return byte_read; 2832 } 2833 2834 MODULE_LICENSE("GPL"); 2835 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>"); 2836 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver"); 2837 module_param(disable64, bool, 0); 2838 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers"); 2839 module_param(nvpibits, short, 0); 2840 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)"); 2841 module_param(nvcibits, short, 0); 2842 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)"); 2843 module_param(rx_skb_reserve, short, 0); 2844 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)"); 2845 module_param(irq_coalesce, bool, 0); 2846 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)"); 2847 module_param(sdh, bool, 0); 2848 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)"); 2849 2850 static const struct pci_device_id he_pci_tbl[] = { 2851 { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 }, 2852 { 0, } 2853 }; 2854 2855 MODULE_DEVICE_TABLE(pci, he_pci_tbl); 2856 2857 static struct pci_driver he_driver = { 2858 .name = "he", 2859 .probe = he_init_one, 2860 .remove = he_remove_one, 2861 .id_table = he_pci_tbl, 2862 }; 2863 2864 module_pci_driver(he_driver); 2865