1 /* 2 3 he.c 4 5 ForeRunnerHE ATM Adapter driver for ATM on Linux 6 Copyright (C) 1999-2001 Naval Research Laboratory 7 8 This library is free software; you can redistribute it and/or 9 modify it under the terms of the GNU Lesser General Public 10 License as published by the Free Software Foundation; either 11 version 2.1 of the License, or (at your option) any later version. 12 13 This library is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 Lesser General Public License for more details. 17 18 You should have received a copy of the GNU Lesser General Public 19 License along with this library; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 22 */ 23 24 /* 25 26 he.c 27 28 ForeRunnerHE ATM Adapter driver for ATM on Linux 29 Copyright (C) 1999-2001 Naval Research Laboratory 30 31 Permission to use, copy, modify and distribute this software and its 32 documentation is hereby granted, provided that both the copyright 33 notice and this permission notice appear in all copies of the software, 34 derivative works or modified versions, and any portions thereof, and 35 that both notices appear in supporting documentation. 36 37 NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND 38 DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER 39 RESULTING FROM THE USE OF THIS SOFTWARE. 40 41 This driver was written using the "Programmer's Reference Manual for 42 ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98. 43 44 AUTHORS: 45 chas williams <chas@cmf.nrl.navy.mil> 46 eric kinzie <ekinzie@cmf.nrl.navy.mil> 47 48 NOTES: 49 4096 supported 'connections' 50 group 0 is used for all traffic 51 interrupt queue 0 is used for all interrupts 52 aal0 support (based on work from ulrich.u.muller@nokia.com) 53 54 */ 55 56 #include <linux/module.h> 57 #include <linux/kernel.h> 58 #include <linux/skbuff.h> 59 #include <linux/pci.h> 60 #include <linux/errno.h> 61 #include <linux/types.h> 62 #include <linux/string.h> 63 #include <linux/delay.h> 64 #include <linux/init.h> 65 #include <linux/mm.h> 66 #include <linux/sched.h> 67 #include <linux/timer.h> 68 #include <linux/interrupt.h> 69 #include <linux/dma-mapping.h> 70 #include <linux/bitmap.h> 71 #include <linux/slab.h> 72 #include <asm/io.h> 73 #include <asm/byteorder.h> 74 #include <asm/uaccess.h> 75 76 #include <linux/atmdev.h> 77 #include <linux/atm.h> 78 #include <linux/sonet.h> 79 80 #undef USE_SCATTERGATHER 81 #undef USE_CHECKSUM_HW /* still confused about this */ 82 /* #undef HE_DEBUG */ 83 84 #include "he.h" 85 #include "suni.h" 86 #include <linux/atm_he.h> 87 88 #define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args) 89 90 #ifdef HE_DEBUG 91 #define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args) 92 #else /* !HE_DEBUG */ 93 #define HPRINTK(fmt,args...) do { } while (0) 94 #endif /* HE_DEBUG */ 95 96 /* declarations */ 97 98 static int he_open(struct atm_vcc *vcc); 99 static void he_close(struct atm_vcc *vcc); 100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb); 101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg); 102 static irqreturn_t he_irq_handler(int irq, void *dev_id); 103 static void he_tasklet(unsigned long data); 104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page); 105 static int he_start(struct atm_dev *dev); 106 static void he_stop(struct he_dev *dev); 107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long); 108 static unsigned char he_phy_get(struct atm_dev *, unsigned long); 109 110 static u8 read_prom_byte(struct he_dev *he_dev, int addr); 111 112 /* globals */ 113 114 static struct he_dev *he_devs; 115 static bool disable64; 116 static short nvpibits = -1; 117 static short nvcibits = -1; 118 static short rx_skb_reserve = 16; 119 static bool irq_coalesce = true; 120 static bool sdh; 121 122 /* Read from EEPROM = 0000 0011b */ 123 static unsigned int readtab[] = { 124 CS_HIGH | CLK_HIGH, 125 CS_LOW | CLK_LOW, 126 CLK_HIGH, /* 0 */ 127 CLK_LOW, 128 CLK_HIGH, /* 0 */ 129 CLK_LOW, 130 CLK_HIGH, /* 0 */ 131 CLK_LOW, 132 CLK_HIGH, /* 0 */ 133 CLK_LOW, 134 CLK_HIGH, /* 0 */ 135 CLK_LOW, 136 CLK_HIGH, /* 0 */ 137 CLK_LOW | SI_HIGH, 138 CLK_HIGH | SI_HIGH, /* 1 */ 139 CLK_LOW | SI_HIGH, 140 CLK_HIGH | SI_HIGH /* 1 */ 141 }; 142 143 /* Clock to read from/write to the EEPROM */ 144 static unsigned int clocktab[] = { 145 CLK_LOW, 146 CLK_HIGH, 147 CLK_LOW, 148 CLK_HIGH, 149 CLK_LOW, 150 CLK_HIGH, 151 CLK_LOW, 152 CLK_HIGH, 153 CLK_LOW, 154 CLK_HIGH, 155 CLK_LOW, 156 CLK_HIGH, 157 CLK_LOW, 158 CLK_HIGH, 159 CLK_LOW, 160 CLK_HIGH, 161 CLK_LOW 162 }; 163 164 static struct atmdev_ops he_ops = 165 { 166 .open = he_open, 167 .close = he_close, 168 .ioctl = he_ioctl, 169 .send = he_send, 170 .phy_put = he_phy_put, 171 .phy_get = he_phy_get, 172 .proc_read = he_proc_read, 173 .owner = THIS_MODULE 174 }; 175 176 #define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0) 177 #define he_readl(dev, reg) readl((dev)->membase + (reg)) 178 179 /* section 2.12 connection memory access */ 180 181 static __inline__ void 182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr, 183 unsigned flags) 184 { 185 he_writel(he_dev, val, CON_DAT); 186 (void) he_readl(he_dev, CON_DAT); /* flush posted writes */ 187 he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL); 188 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY); 189 } 190 191 #define he_writel_rcm(dev, val, reg) \ 192 he_writel_internal(dev, val, reg, CON_CTL_RCM) 193 194 #define he_writel_tcm(dev, val, reg) \ 195 he_writel_internal(dev, val, reg, CON_CTL_TCM) 196 197 #define he_writel_mbox(dev, val, reg) \ 198 he_writel_internal(dev, val, reg, CON_CTL_MBOX) 199 200 static unsigned 201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags) 202 { 203 he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL); 204 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY); 205 return he_readl(he_dev, CON_DAT); 206 } 207 208 #define he_readl_rcm(dev, reg) \ 209 he_readl_internal(dev, reg, CON_CTL_RCM) 210 211 #define he_readl_tcm(dev, reg) \ 212 he_readl_internal(dev, reg, CON_CTL_TCM) 213 214 #define he_readl_mbox(dev, reg) \ 215 he_readl_internal(dev, reg, CON_CTL_MBOX) 216 217 218 /* figure 2.2 connection id */ 219 220 #define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff) 221 222 /* 2.5.1 per connection transmit state registers */ 223 224 #define he_writel_tsr0(dev, val, cid) \ 225 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0) 226 #define he_readl_tsr0(dev, cid) \ 227 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0) 228 229 #define he_writel_tsr1(dev, val, cid) \ 230 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1) 231 232 #define he_writel_tsr2(dev, val, cid) \ 233 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2) 234 235 #define he_writel_tsr3(dev, val, cid) \ 236 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3) 237 238 #define he_writel_tsr4(dev, val, cid) \ 239 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4) 240 241 /* from page 2-20 242 * 243 * NOTE While the transmit connection is active, bits 23 through 0 244 * of this register must not be written by the host. Byte 245 * enables should be used during normal operation when writing 246 * the most significant byte. 247 */ 248 249 #define he_writel_tsr4_upper(dev, val, cid) \ 250 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \ 251 CON_CTL_TCM \ 252 | CON_BYTE_DISABLE_2 \ 253 | CON_BYTE_DISABLE_1 \ 254 | CON_BYTE_DISABLE_0) 255 256 #define he_readl_tsr4(dev, cid) \ 257 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4) 258 259 #define he_writel_tsr5(dev, val, cid) \ 260 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5) 261 262 #define he_writel_tsr6(dev, val, cid) \ 263 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6) 264 265 #define he_writel_tsr7(dev, val, cid) \ 266 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7) 267 268 269 #define he_writel_tsr8(dev, val, cid) \ 270 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0) 271 272 #define he_writel_tsr9(dev, val, cid) \ 273 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1) 274 275 #define he_writel_tsr10(dev, val, cid) \ 276 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2) 277 278 #define he_writel_tsr11(dev, val, cid) \ 279 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3) 280 281 282 #define he_writel_tsr12(dev, val, cid) \ 283 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0) 284 285 #define he_writel_tsr13(dev, val, cid) \ 286 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1) 287 288 289 #define he_writel_tsr14(dev, val, cid) \ 290 he_writel_tcm(dev, val, CONFIG_TSRD | cid) 291 292 #define he_writel_tsr14_upper(dev, val, cid) \ 293 he_writel_internal(dev, val, CONFIG_TSRD | cid, \ 294 CON_CTL_TCM \ 295 | CON_BYTE_DISABLE_2 \ 296 | CON_BYTE_DISABLE_1 \ 297 | CON_BYTE_DISABLE_0) 298 299 /* 2.7.1 per connection receive state registers */ 300 301 #define he_writel_rsr0(dev, val, cid) \ 302 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0) 303 #define he_readl_rsr0(dev, cid) \ 304 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0) 305 306 #define he_writel_rsr1(dev, val, cid) \ 307 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1) 308 309 #define he_writel_rsr2(dev, val, cid) \ 310 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2) 311 312 #define he_writel_rsr3(dev, val, cid) \ 313 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3) 314 315 #define he_writel_rsr4(dev, val, cid) \ 316 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4) 317 318 #define he_writel_rsr5(dev, val, cid) \ 319 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5) 320 321 #define he_writel_rsr6(dev, val, cid) \ 322 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6) 323 324 #define he_writel_rsr7(dev, val, cid) \ 325 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7) 326 327 static __inline__ struct atm_vcc* 328 __find_vcc(struct he_dev *he_dev, unsigned cid) 329 { 330 struct hlist_head *head; 331 struct atm_vcc *vcc; 332 struct sock *s; 333 short vpi; 334 int vci; 335 336 vpi = cid >> he_dev->vcibits; 337 vci = cid & ((1 << he_dev->vcibits) - 1); 338 head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)]; 339 340 sk_for_each(s, head) { 341 vcc = atm_sk(s); 342 if (vcc->dev == he_dev->atm_dev && 343 vcc->vci == vci && vcc->vpi == vpi && 344 vcc->qos.rxtp.traffic_class != ATM_NONE) { 345 return vcc; 346 } 347 } 348 return NULL; 349 } 350 351 static int he_init_one(struct pci_dev *pci_dev, 352 const struct pci_device_id *pci_ent) 353 { 354 struct atm_dev *atm_dev = NULL; 355 struct he_dev *he_dev = NULL; 356 int err = 0; 357 358 printk(KERN_INFO "ATM he driver\n"); 359 360 if (pci_enable_device(pci_dev)) 361 return -EIO; 362 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) { 363 printk(KERN_WARNING "he: no suitable dma available\n"); 364 err = -EIO; 365 goto init_one_failure; 366 } 367 368 atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL); 369 if (!atm_dev) { 370 err = -ENODEV; 371 goto init_one_failure; 372 } 373 pci_set_drvdata(pci_dev, atm_dev); 374 375 he_dev = kzalloc(sizeof(struct he_dev), 376 GFP_KERNEL); 377 if (!he_dev) { 378 err = -ENOMEM; 379 goto init_one_failure; 380 } 381 he_dev->pci_dev = pci_dev; 382 he_dev->atm_dev = atm_dev; 383 he_dev->atm_dev->dev_data = he_dev; 384 atm_dev->dev_data = he_dev; 385 he_dev->number = atm_dev->number; 386 tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev); 387 spin_lock_init(&he_dev->global_lock); 388 389 if (he_start(atm_dev)) { 390 he_stop(he_dev); 391 err = -ENODEV; 392 goto init_one_failure; 393 } 394 he_dev->next = NULL; 395 if (he_devs) 396 he_dev->next = he_devs; 397 he_devs = he_dev; 398 return 0; 399 400 init_one_failure: 401 if (atm_dev) 402 atm_dev_deregister(atm_dev); 403 kfree(he_dev); 404 pci_disable_device(pci_dev); 405 return err; 406 } 407 408 static void he_remove_one(struct pci_dev *pci_dev) 409 { 410 struct atm_dev *atm_dev; 411 struct he_dev *he_dev; 412 413 atm_dev = pci_get_drvdata(pci_dev); 414 he_dev = HE_DEV(atm_dev); 415 416 /* need to remove from he_devs */ 417 418 he_stop(he_dev); 419 atm_dev_deregister(atm_dev); 420 kfree(he_dev); 421 422 pci_disable_device(pci_dev); 423 } 424 425 426 static unsigned 427 rate_to_atmf(unsigned rate) /* cps to atm forum format */ 428 { 429 #define NONZERO (1 << 14) 430 431 unsigned exp = 0; 432 433 if (rate == 0) 434 return 0; 435 436 rate <<= 9; 437 while (rate > 0x3ff) { 438 ++exp; 439 rate >>= 1; 440 } 441 442 return (NONZERO | (exp << 9) | (rate & 0x1ff)); 443 } 444 445 static void he_init_rx_lbfp0(struct he_dev *he_dev) 446 { 447 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 448 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 449 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 450 unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row; 451 452 lbufd_index = 0; 453 lbm_offset = he_readl(he_dev, RCMLBM_BA); 454 455 he_writel(he_dev, lbufd_index, RLBF0_H); 456 457 for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) { 458 lbufd_index += 2; 459 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 460 461 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 462 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 463 464 if (++lbuf_count == lbufs_per_row) { 465 lbuf_count = 0; 466 row_offset += he_dev->bytes_per_row; 467 } 468 lbm_offset += 4; 469 } 470 471 he_writel(he_dev, lbufd_index - 2, RLBF0_T); 472 he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C); 473 } 474 475 static void he_init_rx_lbfp1(struct he_dev *he_dev) 476 { 477 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 478 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 479 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 480 unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row; 481 482 lbufd_index = 1; 483 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index); 484 485 he_writel(he_dev, lbufd_index, RLBF1_H); 486 487 for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) { 488 lbufd_index += 2; 489 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 490 491 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 492 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 493 494 if (++lbuf_count == lbufs_per_row) { 495 lbuf_count = 0; 496 row_offset += he_dev->bytes_per_row; 497 } 498 lbm_offset += 4; 499 } 500 501 he_writel(he_dev, lbufd_index - 2, RLBF1_T); 502 he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C); 503 } 504 505 static void he_init_tx_lbfp(struct he_dev *he_dev) 506 { 507 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 508 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 509 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 510 unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row; 511 512 lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs; 513 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index); 514 515 he_writel(he_dev, lbufd_index, TLBF_H); 516 517 for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) { 518 lbufd_index += 1; 519 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 520 521 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 522 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 523 524 if (++lbuf_count == lbufs_per_row) { 525 lbuf_count = 0; 526 row_offset += he_dev->bytes_per_row; 527 } 528 lbm_offset += 2; 529 } 530 531 he_writel(he_dev, lbufd_index - 1, TLBF_T); 532 } 533 534 static int he_init_tpdrq(struct he_dev *he_dev) 535 { 536 he_dev->tpdrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 537 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq), 538 &he_dev->tpdrq_phys, GFP_KERNEL); 539 if (he_dev->tpdrq_base == NULL) { 540 hprintk("failed to alloc tpdrq\n"); 541 return -ENOMEM; 542 } 543 544 he_dev->tpdrq_tail = he_dev->tpdrq_base; 545 he_dev->tpdrq_head = he_dev->tpdrq_base; 546 547 he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H); 548 he_writel(he_dev, 0, TPDRQ_T); 549 he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S); 550 551 return 0; 552 } 553 554 static void he_init_cs_block(struct he_dev *he_dev) 555 { 556 unsigned clock, rate, delta; 557 int reg; 558 559 /* 5.1.7 cs block initialization */ 560 561 for (reg = 0; reg < 0x20; ++reg) 562 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg); 563 564 /* rate grid timer reload values */ 565 566 clock = he_is622(he_dev) ? 66667000 : 50000000; 567 rate = he_dev->atm_dev->link_rate; 568 delta = rate / 16 / 2; 569 570 for (reg = 0; reg < 0x10; ++reg) { 571 /* 2.4 internal transmit function 572 * 573 * we initialize the first row in the rate grid. 574 * values are period (in clock cycles) of timer 575 */ 576 unsigned period = clock / rate; 577 578 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg); 579 rate -= delta; 580 } 581 582 if (he_is622(he_dev)) { 583 /* table 5.2 (4 cells per lbuf) */ 584 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0); 585 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1); 586 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2); 587 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3); 588 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4); 589 590 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */ 591 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0); 592 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1); 593 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2); 594 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0); 595 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1); 596 he_writel_mbox(he_dev, 0x14585, CS_RTFWR); 597 598 he_writel_mbox(he_dev, 0x4680, CS_RTATR); 599 600 /* table 5.8 */ 601 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET); 602 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX); 603 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN); 604 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC); 605 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC); 606 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL); 607 608 /* table 5.9 */ 609 he_writel_mbox(he_dev, 0x5, CS_OTPPER); 610 he_writel_mbox(he_dev, 0x14, CS_OTWPER); 611 } else { 612 /* table 5.1 (4 cells per lbuf) */ 613 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0); 614 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1); 615 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2); 616 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3); 617 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4); 618 619 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */ 620 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0); 621 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1); 622 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2); 623 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0); 624 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1); 625 he_writel_mbox(he_dev, 0xf424, CS_RTFWR); 626 627 he_writel_mbox(he_dev, 0x4680, CS_RTATR); 628 629 /* table 5.8 */ 630 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET); 631 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX); 632 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN); 633 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC); 634 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC); 635 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL); 636 637 /* table 5.9 */ 638 he_writel_mbox(he_dev, 0x6, CS_OTPPER); 639 he_writel_mbox(he_dev, 0x1e, CS_OTWPER); 640 } 641 642 he_writel_mbox(he_dev, 0x8, CS_OTTLIM); 643 644 for (reg = 0; reg < 0x8; ++reg) 645 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg); 646 647 } 648 649 static int he_init_cs_block_rcm(struct he_dev *he_dev) 650 { 651 unsigned (*rategrid)[16][16]; 652 unsigned rate, delta; 653 int i, j, reg; 654 655 unsigned rate_atmf, exp, man; 656 unsigned long long rate_cps; 657 int mult, buf, buf_limit = 4; 658 659 rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL); 660 if (!rategrid) 661 return -ENOMEM; 662 663 /* initialize rate grid group table */ 664 665 for (reg = 0x0; reg < 0xff; ++reg) 666 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg); 667 668 /* initialize rate controller groups */ 669 670 for (reg = 0x100; reg < 0x1ff; ++reg) 671 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg); 672 673 /* initialize tNrm lookup table */ 674 675 /* the manual makes reference to a routine in a sample driver 676 for proper configuration; fortunately, we only need this 677 in order to support abr connection */ 678 679 /* initialize rate to group table */ 680 681 rate = he_dev->atm_dev->link_rate; 682 delta = rate / 32; 683 684 /* 685 * 2.4 transmit internal functions 686 * 687 * we construct a copy of the rate grid used by the scheduler 688 * in order to construct the rate to group table below 689 */ 690 691 for (j = 0; j < 16; j++) { 692 (*rategrid)[0][j] = rate; 693 rate -= delta; 694 } 695 696 for (i = 1; i < 16; i++) 697 for (j = 0; j < 16; j++) 698 if (i > 14) 699 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4; 700 else 701 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2; 702 703 /* 704 * 2.4 transmit internal function 705 * 706 * this table maps the upper 5 bits of exponent and mantissa 707 * of the atm forum representation of the rate into an index 708 * on rate grid 709 */ 710 711 rate_atmf = 0; 712 while (rate_atmf < 0x400) { 713 man = (rate_atmf & 0x1f) << 4; 714 exp = rate_atmf >> 5; 715 716 /* 717 instead of '/ 512', use '>> 9' to prevent a call 718 to divdu3 on x86 platforms 719 */ 720 rate_cps = (unsigned long long) (1 << exp) * (man + 512) >> 9; 721 722 if (rate_cps < 10) 723 rate_cps = 10; /* 2.2.1 minimum payload rate is 10 cps */ 724 725 for (i = 255; i > 0; i--) 726 if ((*rategrid)[i/16][i%16] >= rate_cps) 727 break; /* pick nearest rate instead? */ 728 729 /* 730 * each table entry is 16 bits: (rate grid index (8 bits) 731 * and a buffer limit (8 bits) 732 * there are two table entries in each 32-bit register 733 */ 734 735 #ifdef notdef 736 buf = rate_cps * he_dev->tx_numbuffs / 737 (he_dev->atm_dev->link_rate * 2); 738 #else 739 /* this is pretty, but avoids _divdu3 and is mostly correct */ 740 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR; 741 if (rate_cps > (272 * mult)) 742 buf = 4; 743 else if (rate_cps > (204 * mult)) 744 buf = 3; 745 else if (rate_cps > (136 * mult)) 746 buf = 2; 747 else if (rate_cps > (68 * mult)) 748 buf = 1; 749 else 750 buf = 0; 751 #endif 752 if (buf > buf_limit) 753 buf = buf_limit; 754 reg = (reg << 16) | ((i << 8) | buf); 755 756 #define RTGTBL_OFFSET 0x400 757 758 if (rate_atmf & 0x1) 759 he_writel_rcm(he_dev, reg, 760 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1)); 761 762 ++rate_atmf; 763 } 764 765 kfree(rategrid); 766 return 0; 767 } 768 769 static int he_init_group(struct he_dev *he_dev, int group) 770 { 771 struct he_buff *heb, *next; 772 dma_addr_t mapping; 773 int i; 774 775 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32)); 776 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32)); 777 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32)); 778 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 779 G0_RBPS_BS + (group * 32)); 780 781 /* bitmap table */ 782 he_dev->rbpl_table = kmalloc(BITS_TO_LONGS(RBPL_TABLE_SIZE) 783 * sizeof(unsigned long), GFP_KERNEL); 784 if (!he_dev->rbpl_table) { 785 hprintk("unable to allocate rbpl bitmap table\n"); 786 return -ENOMEM; 787 } 788 bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE); 789 790 /* rbpl_virt 64-bit pointers */ 791 he_dev->rbpl_virt = kmalloc(RBPL_TABLE_SIZE 792 * sizeof(struct he_buff *), GFP_KERNEL); 793 if (!he_dev->rbpl_virt) { 794 hprintk("unable to allocate rbpl virt table\n"); 795 goto out_free_rbpl_table; 796 } 797 798 /* large buffer pool */ 799 he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev, 800 CONFIG_RBPL_BUFSIZE, 64, 0); 801 if (he_dev->rbpl_pool == NULL) { 802 hprintk("unable to create rbpl pool\n"); 803 goto out_free_rbpl_virt; 804 } 805 806 he_dev->rbpl_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 807 CONFIG_RBPL_SIZE * sizeof(struct he_rbp), 808 &he_dev->rbpl_phys, GFP_KERNEL); 809 if (he_dev->rbpl_base == NULL) { 810 hprintk("failed to alloc rbpl_base\n"); 811 goto out_destroy_rbpl_pool; 812 } 813 814 INIT_LIST_HEAD(&he_dev->rbpl_outstanding); 815 816 for (i = 0; i < CONFIG_RBPL_SIZE; ++i) { 817 818 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping); 819 if (!heb) 820 goto out_free_rbpl; 821 heb->mapping = mapping; 822 list_add(&heb->entry, &he_dev->rbpl_outstanding); 823 824 set_bit(i, he_dev->rbpl_table); 825 he_dev->rbpl_virt[i] = heb; 826 he_dev->rbpl_hint = i + 1; 827 he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET; 828 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data); 829 } 830 he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1]; 831 832 he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32)); 833 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), 834 G0_RBPL_T + (group * 32)); 835 he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4, 836 G0_RBPL_BS + (group * 32)); 837 he_writel(he_dev, 838 RBP_THRESH(CONFIG_RBPL_THRESH) | 839 RBP_QSIZE(CONFIG_RBPL_SIZE - 1) | 840 RBP_INT_ENB, 841 G0_RBPL_QI + (group * 32)); 842 843 /* rx buffer ready queue */ 844 845 he_dev->rbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 846 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq), 847 &he_dev->rbrq_phys, GFP_KERNEL); 848 if (he_dev->rbrq_base == NULL) { 849 hprintk("failed to allocate rbrq\n"); 850 goto out_free_rbpl; 851 } 852 853 he_dev->rbrq_head = he_dev->rbrq_base; 854 he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16)); 855 he_writel(he_dev, 0, G0_RBRQ_H + (group * 16)); 856 he_writel(he_dev, 857 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1), 858 G0_RBRQ_Q + (group * 16)); 859 if (irq_coalesce) { 860 hprintk("coalescing interrupts\n"); 861 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7), 862 G0_RBRQ_I + (group * 16)); 863 } else 864 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1), 865 G0_RBRQ_I + (group * 16)); 866 867 /* tx buffer ready queue */ 868 869 he_dev->tbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 870 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), 871 &he_dev->tbrq_phys, GFP_KERNEL); 872 if (he_dev->tbrq_base == NULL) { 873 hprintk("failed to allocate tbrq\n"); 874 goto out_free_rbpq_base; 875 } 876 877 he_dev->tbrq_head = he_dev->tbrq_base; 878 879 he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16)); 880 he_writel(he_dev, 0, G0_TBRQ_H + (group * 16)); 881 he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16)); 882 he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16)); 883 884 return 0; 885 886 out_free_rbpq_base: 887 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * 888 sizeof(struct he_rbrq), he_dev->rbrq_base, 889 he_dev->rbrq_phys); 890 out_free_rbpl: 891 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry) 892 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 893 894 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE * 895 sizeof(struct he_rbp), he_dev->rbpl_base, 896 he_dev->rbpl_phys); 897 out_destroy_rbpl_pool: 898 dma_pool_destroy(he_dev->rbpl_pool); 899 out_free_rbpl_virt: 900 kfree(he_dev->rbpl_virt); 901 out_free_rbpl_table: 902 kfree(he_dev->rbpl_table); 903 904 return -ENOMEM; 905 } 906 907 static int he_init_irq(struct he_dev *he_dev) 908 { 909 int i; 910 911 /* 2.9.3.5 tail offset for each interrupt queue is located after the 912 end of the interrupt queue */ 913 914 he_dev->irq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 915 (CONFIG_IRQ_SIZE + 1) 916 * sizeof(struct he_irq), 917 &he_dev->irq_phys, 918 GFP_KERNEL); 919 if (he_dev->irq_base == NULL) { 920 hprintk("failed to allocate irq\n"); 921 return -ENOMEM; 922 } 923 he_dev->irq_tailoffset = (unsigned *) 924 &he_dev->irq_base[CONFIG_IRQ_SIZE]; 925 *he_dev->irq_tailoffset = 0; 926 he_dev->irq_head = he_dev->irq_base; 927 he_dev->irq_tail = he_dev->irq_base; 928 929 for (i = 0; i < CONFIG_IRQ_SIZE; ++i) 930 he_dev->irq_base[i].isw = ITYPE_INVALID; 931 932 he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE); 933 he_writel(he_dev, 934 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH), 935 IRQ0_HEAD); 936 he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL); 937 he_writel(he_dev, 0x0, IRQ0_DATA); 938 939 he_writel(he_dev, 0x0, IRQ1_BASE); 940 he_writel(he_dev, 0x0, IRQ1_HEAD); 941 he_writel(he_dev, 0x0, IRQ1_CNTL); 942 he_writel(he_dev, 0x0, IRQ1_DATA); 943 944 he_writel(he_dev, 0x0, IRQ2_BASE); 945 he_writel(he_dev, 0x0, IRQ2_HEAD); 946 he_writel(he_dev, 0x0, IRQ2_CNTL); 947 he_writel(he_dev, 0x0, IRQ2_DATA); 948 949 he_writel(he_dev, 0x0, IRQ3_BASE); 950 he_writel(he_dev, 0x0, IRQ3_HEAD); 951 he_writel(he_dev, 0x0, IRQ3_CNTL); 952 he_writel(he_dev, 0x0, IRQ3_DATA); 953 954 /* 2.9.3.2 interrupt queue mapping registers */ 955 956 he_writel(he_dev, 0x0, GRP_10_MAP); 957 he_writel(he_dev, 0x0, GRP_32_MAP); 958 he_writel(he_dev, 0x0, GRP_54_MAP); 959 he_writel(he_dev, 0x0, GRP_76_MAP); 960 961 if (request_irq(he_dev->pci_dev->irq, 962 he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) { 963 hprintk("irq %d already in use\n", he_dev->pci_dev->irq); 964 return -EINVAL; 965 } 966 967 he_dev->irq = he_dev->pci_dev->irq; 968 969 return 0; 970 } 971 972 static int he_start(struct atm_dev *dev) 973 { 974 struct he_dev *he_dev; 975 struct pci_dev *pci_dev; 976 unsigned long membase; 977 978 u16 command; 979 u32 gen_cntl_0, host_cntl, lb_swap; 980 u8 cache_size, timer; 981 982 unsigned err; 983 unsigned int status, reg; 984 int i, group; 985 986 he_dev = HE_DEV(dev); 987 pci_dev = he_dev->pci_dev; 988 989 membase = pci_resource_start(pci_dev, 0); 990 HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq); 991 992 /* 993 * pci bus controller initialization 994 */ 995 996 /* 4.3 pci bus controller-specific initialization */ 997 if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) { 998 hprintk("can't read GEN_CNTL_0\n"); 999 return -EINVAL; 1000 } 1001 gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT); 1002 if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) { 1003 hprintk("can't write GEN_CNTL_0.\n"); 1004 return -EINVAL; 1005 } 1006 1007 if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) { 1008 hprintk("can't read PCI_COMMAND.\n"); 1009 return -EINVAL; 1010 } 1011 1012 command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE); 1013 if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) { 1014 hprintk("can't enable memory.\n"); 1015 return -EINVAL; 1016 } 1017 1018 if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) { 1019 hprintk("can't read cache line size?\n"); 1020 return -EINVAL; 1021 } 1022 1023 if (cache_size < 16) { 1024 cache_size = 16; 1025 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size)) 1026 hprintk("can't set cache line size to %d\n", cache_size); 1027 } 1028 1029 if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) { 1030 hprintk("can't read latency timer?\n"); 1031 return -EINVAL; 1032 } 1033 1034 /* from table 3.9 1035 * 1036 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE 1037 * 1038 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles] 1039 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles] 1040 * 1041 */ 1042 #define LAT_TIMER 209 1043 if (timer < LAT_TIMER) { 1044 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER); 1045 timer = LAT_TIMER; 1046 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer)) 1047 hprintk("can't set latency timer to %d\n", timer); 1048 } 1049 1050 if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) { 1051 hprintk("can't set up page mapping\n"); 1052 return -EINVAL; 1053 } 1054 1055 /* 4.4 card reset */ 1056 he_writel(he_dev, 0x0, RESET_CNTL); 1057 he_writel(he_dev, 0xff, RESET_CNTL); 1058 1059 msleep(16); /* 16 ms */ 1060 status = he_readl(he_dev, RESET_CNTL); 1061 if ((status & BOARD_RST_STATUS) == 0) { 1062 hprintk("reset failed\n"); 1063 return -EINVAL; 1064 } 1065 1066 /* 4.5 set bus width */ 1067 host_cntl = he_readl(he_dev, HOST_CNTL); 1068 if (host_cntl & PCI_BUS_SIZE64) 1069 gen_cntl_0 |= ENBL_64; 1070 else 1071 gen_cntl_0 &= ~ENBL_64; 1072 1073 if (disable64 == 1) { 1074 hprintk("disabling 64-bit pci bus transfers\n"); 1075 gen_cntl_0 &= ~ENBL_64; 1076 } 1077 1078 if (gen_cntl_0 & ENBL_64) 1079 hprintk("64-bit transfers enabled\n"); 1080 1081 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1082 1083 /* 4.7 read prom contents */ 1084 for (i = 0; i < PROD_ID_LEN; ++i) 1085 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i); 1086 1087 he_dev->media = read_prom_byte(he_dev, MEDIA); 1088 1089 for (i = 0; i < 6; ++i) 1090 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i); 1091 1092 hprintk("%s%s, %pM\n", he_dev->prod_id, 1093 he_dev->media & 0x40 ? "SM" : "MM", dev->esi); 1094 he_dev->atm_dev->link_rate = he_is622(he_dev) ? 1095 ATM_OC12_PCR : ATM_OC3_PCR; 1096 1097 /* 4.6 set host endianess */ 1098 lb_swap = he_readl(he_dev, LB_SWAP); 1099 if (he_is622(he_dev)) 1100 lb_swap &= ~XFER_SIZE; /* 4 cells */ 1101 else 1102 lb_swap |= XFER_SIZE; /* 8 cells */ 1103 #ifdef __BIG_ENDIAN 1104 lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST; 1105 #else 1106 lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST | 1107 DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP); 1108 #endif /* __BIG_ENDIAN */ 1109 he_writel(he_dev, lb_swap, LB_SWAP); 1110 1111 /* 4.8 sdram controller initialization */ 1112 he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL); 1113 1114 /* 4.9 initialize rnum value */ 1115 lb_swap |= SWAP_RNUM_MAX(0xf); 1116 he_writel(he_dev, lb_swap, LB_SWAP); 1117 1118 /* 4.10 initialize the interrupt queues */ 1119 if ((err = he_init_irq(he_dev)) != 0) 1120 return err; 1121 1122 /* 4.11 enable pci bus controller state machines */ 1123 host_cntl |= (OUTFF_ENB | CMDFF_ENB | 1124 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB); 1125 he_writel(he_dev, host_cntl, HOST_CNTL); 1126 1127 gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB; 1128 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1129 1130 /* 1131 * atm network controller initialization 1132 */ 1133 1134 /* 5.1.1 generic configuration state */ 1135 1136 /* 1137 * local (cell) buffer memory map 1138 * 1139 * HE155 HE622 1140 * 1141 * 0 ____________1023 bytes 0 _______________________2047 bytes 1142 * | | | | | 1143 * | utility | | rx0 | | 1144 * 5|____________| 255|___________________| u | 1145 * 6| | 256| | t | 1146 * | | | | i | 1147 * | rx0 | row | tx | l | 1148 * | | | | i | 1149 * | | 767|___________________| t | 1150 * 517|____________| 768| | y | 1151 * row 518| | | rx1 | | 1152 * | | 1023|___________________|___| 1153 * | | 1154 * | tx | 1155 * | | 1156 * | | 1157 * 1535|____________| 1158 * 1536| | 1159 * | rx1 | 1160 * 2047|____________| 1161 * 1162 */ 1163 1164 /* total 4096 connections */ 1165 he_dev->vcibits = CONFIG_DEFAULT_VCIBITS; 1166 he_dev->vpibits = CONFIG_DEFAULT_VPIBITS; 1167 1168 if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) { 1169 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS); 1170 return -ENODEV; 1171 } 1172 1173 if (nvpibits != -1) { 1174 he_dev->vpibits = nvpibits; 1175 he_dev->vcibits = HE_MAXCIDBITS - nvpibits; 1176 } 1177 1178 if (nvcibits != -1) { 1179 he_dev->vcibits = nvcibits; 1180 he_dev->vpibits = HE_MAXCIDBITS - nvcibits; 1181 } 1182 1183 1184 if (he_is622(he_dev)) { 1185 he_dev->cells_per_row = 40; 1186 he_dev->bytes_per_row = 2048; 1187 he_dev->r0_numrows = 256; 1188 he_dev->tx_numrows = 512; 1189 he_dev->r1_numrows = 256; 1190 he_dev->r0_startrow = 0; 1191 he_dev->tx_startrow = 256; 1192 he_dev->r1_startrow = 768; 1193 } else { 1194 he_dev->cells_per_row = 20; 1195 he_dev->bytes_per_row = 1024; 1196 he_dev->r0_numrows = 512; 1197 he_dev->tx_numrows = 1018; 1198 he_dev->r1_numrows = 512; 1199 he_dev->r0_startrow = 6; 1200 he_dev->tx_startrow = 518; 1201 he_dev->r1_startrow = 1536; 1202 } 1203 1204 he_dev->cells_per_lbuf = 4; 1205 he_dev->buffer_limit = 4; 1206 he_dev->r0_numbuffs = he_dev->r0_numrows * 1207 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1208 if (he_dev->r0_numbuffs > 2560) 1209 he_dev->r0_numbuffs = 2560; 1210 1211 he_dev->r1_numbuffs = he_dev->r1_numrows * 1212 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1213 if (he_dev->r1_numbuffs > 2560) 1214 he_dev->r1_numbuffs = 2560; 1215 1216 he_dev->tx_numbuffs = he_dev->tx_numrows * 1217 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1218 if (he_dev->tx_numbuffs > 5120) 1219 he_dev->tx_numbuffs = 5120; 1220 1221 /* 5.1.2 configure hardware dependent registers */ 1222 1223 he_writel(he_dev, 1224 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) | 1225 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) | 1226 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) | 1227 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)), 1228 LBARB); 1229 1230 he_writel(he_dev, BANK_ON | 1231 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)), 1232 SDRAMCON); 1233 1234 he_writel(he_dev, 1235 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) | 1236 RM_RW_WAIT(1), RCMCONFIG); 1237 he_writel(he_dev, 1238 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) | 1239 TM_RW_WAIT(1), TCMCONFIG); 1240 1241 he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG); 1242 1243 he_writel(he_dev, 1244 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) | 1245 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) | 1246 RX_VALVP(he_dev->vpibits) | 1247 RX_VALVC(he_dev->vcibits), RC_CONFIG); 1248 1249 he_writel(he_dev, DRF_THRESH(0x20) | 1250 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) | 1251 TX_VCI_MASK(he_dev->vcibits) | 1252 LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG); 1253 1254 he_writel(he_dev, 0x0, TXAAL5_PROTO); 1255 1256 he_writel(he_dev, PHY_INT_ENB | 1257 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)), 1258 RH_CONFIG); 1259 1260 /* 5.1.3 initialize connection memory */ 1261 1262 for (i = 0; i < TCM_MEM_SIZE; ++i) 1263 he_writel_tcm(he_dev, 0, i); 1264 1265 for (i = 0; i < RCM_MEM_SIZE; ++i) 1266 he_writel_rcm(he_dev, 0, i); 1267 1268 /* 1269 * transmit connection memory map 1270 * 1271 * tx memory 1272 * 0x0 ___________________ 1273 * | | 1274 * | | 1275 * | TSRa | 1276 * | | 1277 * | | 1278 * 0x8000|___________________| 1279 * | | 1280 * | TSRb | 1281 * 0xc000|___________________| 1282 * | | 1283 * | TSRc | 1284 * 0xe000|___________________| 1285 * | TSRd | 1286 * 0xf000|___________________| 1287 * | tmABR | 1288 * 0x10000|___________________| 1289 * | | 1290 * | tmTPD | 1291 * |___________________| 1292 * | | 1293 * .... 1294 * 0x1ffff|___________________| 1295 * 1296 * 1297 */ 1298 1299 he_writel(he_dev, CONFIG_TSRB, TSRB_BA); 1300 he_writel(he_dev, CONFIG_TSRC, TSRC_BA); 1301 he_writel(he_dev, CONFIG_TSRD, TSRD_BA); 1302 he_writel(he_dev, CONFIG_TMABR, TMABR_BA); 1303 he_writel(he_dev, CONFIG_TPDBA, TPD_BA); 1304 1305 1306 /* 1307 * receive connection memory map 1308 * 1309 * 0x0 ___________________ 1310 * | | 1311 * | | 1312 * | RSRa | 1313 * | | 1314 * | | 1315 * 0x8000|___________________| 1316 * | | 1317 * | rx0/1 | 1318 * | LBM | link lists of local 1319 * | tx | buffer memory 1320 * | | 1321 * 0xd000|___________________| 1322 * | | 1323 * | rmABR | 1324 * 0xe000|___________________| 1325 * | | 1326 * | RSRb | 1327 * |___________________| 1328 * | | 1329 * .... 1330 * 0xffff|___________________| 1331 */ 1332 1333 he_writel(he_dev, 0x08000, RCMLBM_BA); 1334 he_writel(he_dev, 0x0e000, RCMRSRB_BA); 1335 he_writel(he_dev, 0x0d800, RCMABR_BA); 1336 1337 /* 5.1.4 initialize local buffer free pools linked lists */ 1338 1339 he_init_rx_lbfp0(he_dev); 1340 he_init_rx_lbfp1(he_dev); 1341 1342 he_writel(he_dev, 0x0, RLBC_H); 1343 he_writel(he_dev, 0x0, RLBC_T); 1344 he_writel(he_dev, 0x0, RLBC_H2); 1345 1346 he_writel(he_dev, 512, RXTHRSH); /* 10% of r0+r1 buffers */ 1347 he_writel(he_dev, 256, LITHRSH); /* 5% of r0+r1 buffers */ 1348 1349 he_init_tx_lbfp(he_dev); 1350 1351 he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA); 1352 1353 /* 5.1.5 initialize intermediate receive queues */ 1354 1355 if (he_is622(he_dev)) { 1356 he_writel(he_dev, 0x000f, G0_INMQ_S); 1357 he_writel(he_dev, 0x200f, G0_INMQ_L); 1358 1359 he_writel(he_dev, 0x001f, G1_INMQ_S); 1360 he_writel(he_dev, 0x201f, G1_INMQ_L); 1361 1362 he_writel(he_dev, 0x002f, G2_INMQ_S); 1363 he_writel(he_dev, 0x202f, G2_INMQ_L); 1364 1365 he_writel(he_dev, 0x003f, G3_INMQ_S); 1366 he_writel(he_dev, 0x203f, G3_INMQ_L); 1367 1368 he_writel(he_dev, 0x004f, G4_INMQ_S); 1369 he_writel(he_dev, 0x204f, G4_INMQ_L); 1370 1371 he_writel(he_dev, 0x005f, G5_INMQ_S); 1372 he_writel(he_dev, 0x205f, G5_INMQ_L); 1373 1374 he_writel(he_dev, 0x006f, G6_INMQ_S); 1375 he_writel(he_dev, 0x206f, G6_INMQ_L); 1376 1377 he_writel(he_dev, 0x007f, G7_INMQ_S); 1378 he_writel(he_dev, 0x207f, G7_INMQ_L); 1379 } else { 1380 he_writel(he_dev, 0x0000, G0_INMQ_S); 1381 he_writel(he_dev, 0x0008, G0_INMQ_L); 1382 1383 he_writel(he_dev, 0x0001, G1_INMQ_S); 1384 he_writel(he_dev, 0x0009, G1_INMQ_L); 1385 1386 he_writel(he_dev, 0x0002, G2_INMQ_S); 1387 he_writel(he_dev, 0x000a, G2_INMQ_L); 1388 1389 he_writel(he_dev, 0x0003, G3_INMQ_S); 1390 he_writel(he_dev, 0x000b, G3_INMQ_L); 1391 1392 he_writel(he_dev, 0x0004, G4_INMQ_S); 1393 he_writel(he_dev, 0x000c, G4_INMQ_L); 1394 1395 he_writel(he_dev, 0x0005, G5_INMQ_S); 1396 he_writel(he_dev, 0x000d, G5_INMQ_L); 1397 1398 he_writel(he_dev, 0x0006, G6_INMQ_S); 1399 he_writel(he_dev, 0x000e, G6_INMQ_L); 1400 1401 he_writel(he_dev, 0x0007, G7_INMQ_S); 1402 he_writel(he_dev, 0x000f, G7_INMQ_L); 1403 } 1404 1405 /* 5.1.6 application tunable parameters */ 1406 1407 he_writel(he_dev, 0x0, MCC); 1408 he_writel(he_dev, 0x0, OEC); 1409 he_writel(he_dev, 0x0, DCC); 1410 he_writel(he_dev, 0x0, CEC); 1411 1412 /* 5.1.7 cs block initialization */ 1413 1414 he_init_cs_block(he_dev); 1415 1416 /* 5.1.8 cs block connection memory initialization */ 1417 1418 if (he_init_cs_block_rcm(he_dev) < 0) 1419 return -ENOMEM; 1420 1421 /* 5.1.10 initialize host structures */ 1422 1423 he_init_tpdrq(he_dev); 1424 1425 he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev, 1426 sizeof(struct he_tpd), TPD_ALIGNMENT, 0); 1427 if (he_dev->tpd_pool == NULL) { 1428 hprintk("unable to create tpd dma_pool\n"); 1429 return -ENOMEM; 1430 } 1431 1432 INIT_LIST_HEAD(&he_dev->outstanding_tpds); 1433 1434 if (he_init_group(he_dev, 0) != 0) 1435 return -ENOMEM; 1436 1437 for (group = 1; group < HE_NUM_GROUPS; ++group) { 1438 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32)); 1439 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32)); 1440 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32)); 1441 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 1442 G0_RBPS_BS + (group * 32)); 1443 1444 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32)); 1445 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32)); 1446 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 1447 G0_RBPL_QI + (group * 32)); 1448 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32)); 1449 1450 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16)); 1451 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16)); 1452 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0), 1453 G0_RBRQ_Q + (group * 16)); 1454 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16)); 1455 1456 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16)); 1457 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16)); 1458 he_writel(he_dev, TBRQ_THRESH(0x1), 1459 G0_TBRQ_THRESH + (group * 16)); 1460 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16)); 1461 } 1462 1463 /* host status page */ 1464 1465 he_dev->hsp = dma_zalloc_coherent(&he_dev->pci_dev->dev, 1466 sizeof(struct he_hsp), 1467 &he_dev->hsp_phys, GFP_KERNEL); 1468 if (he_dev->hsp == NULL) { 1469 hprintk("failed to allocate host status page\n"); 1470 return -ENOMEM; 1471 } 1472 he_writel(he_dev, he_dev->hsp_phys, HSP_BA); 1473 1474 /* initialize framer */ 1475 1476 #ifdef CONFIG_ATM_HE_USE_SUNI 1477 if (he_isMM(he_dev)) 1478 suni_init(he_dev->atm_dev); 1479 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start) 1480 he_dev->atm_dev->phy->start(he_dev->atm_dev); 1481 #endif /* CONFIG_ATM_HE_USE_SUNI */ 1482 1483 if (sdh) { 1484 /* this really should be in suni.c but for now... */ 1485 int val; 1486 1487 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM); 1488 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT); 1489 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM); 1490 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP); 1491 } 1492 1493 /* 5.1.12 enable transmit and receive */ 1494 1495 reg = he_readl_mbox(he_dev, CS_ERCTL0); 1496 reg |= TX_ENABLE|ER_ENABLE; 1497 he_writel_mbox(he_dev, reg, CS_ERCTL0); 1498 1499 reg = he_readl(he_dev, RC_CONFIG); 1500 reg |= RX_ENABLE; 1501 he_writel(he_dev, reg, RC_CONFIG); 1502 1503 for (i = 0; i < HE_NUM_CS_STPER; ++i) { 1504 he_dev->cs_stper[i].inuse = 0; 1505 he_dev->cs_stper[i].pcr = -1; 1506 } 1507 he_dev->total_bw = 0; 1508 1509 1510 /* atm linux initialization */ 1511 1512 he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits; 1513 he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits; 1514 1515 he_dev->irq_peak = 0; 1516 he_dev->rbrq_peak = 0; 1517 he_dev->rbpl_peak = 0; 1518 he_dev->tbrq_peak = 0; 1519 1520 HPRINTK("hell bent for leather!\n"); 1521 1522 return 0; 1523 } 1524 1525 static void 1526 he_stop(struct he_dev *he_dev) 1527 { 1528 struct he_buff *heb, *next; 1529 struct pci_dev *pci_dev; 1530 u32 gen_cntl_0, reg; 1531 u16 command; 1532 1533 pci_dev = he_dev->pci_dev; 1534 1535 /* disable interrupts */ 1536 1537 if (he_dev->membase) { 1538 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0); 1539 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB); 1540 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1541 1542 tasklet_disable(&he_dev->tasklet); 1543 1544 /* disable recv and transmit */ 1545 1546 reg = he_readl_mbox(he_dev, CS_ERCTL0); 1547 reg &= ~(TX_ENABLE|ER_ENABLE); 1548 he_writel_mbox(he_dev, reg, CS_ERCTL0); 1549 1550 reg = he_readl(he_dev, RC_CONFIG); 1551 reg &= ~(RX_ENABLE); 1552 he_writel(he_dev, reg, RC_CONFIG); 1553 } 1554 1555 #ifdef CONFIG_ATM_HE_USE_SUNI 1556 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop) 1557 he_dev->atm_dev->phy->stop(he_dev->atm_dev); 1558 #endif /* CONFIG_ATM_HE_USE_SUNI */ 1559 1560 if (he_dev->irq) 1561 free_irq(he_dev->irq, he_dev); 1562 1563 if (he_dev->irq_base) 1564 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1) 1565 * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys); 1566 1567 if (he_dev->hsp) 1568 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp), 1569 he_dev->hsp, he_dev->hsp_phys); 1570 1571 if (he_dev->rbpl_base) { 1572 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry) 1573 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1574 1575 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE 1576 * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys); 1577 } 1578 1579 kfree(he_dev->rbpl_virt); 1580 kfree(he_dev->rbpl_table); 1581 1582 if (he_dev->rbpl_pool) 1583 dma_pool_destroy(he_dev->rbpl_pool); 1584 1585 if (he_dev->rbrq_base) 1586 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq), 1587 he_dev->rbrq_base, he_dev->rbrq_phys); 1588 1589 if (he_dev->tbrq_base) 1590 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), 1591 he_dev->tbrq_base, he_dev->tbrq_phys); 1592 1593 if (he_dev->tpdrq_base) 1594 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), 1595 he_dev->tpdrq_base, he_dev->tpdrq_phys); 1596 1597 if (he_dev->tpd_pool) 1598 dma_pool_destroy(he_dev->tpd_pool); 1599 1600 if (he_dev->pci_dev) { 1601 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command); 1602 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); 1603 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command); 1604 } 1605 1606 if (he_dev->membase) 1607 iounmap(he_dev->membase); 1608 } 1609 1610 static struct he_tpd * 1611 __alloc_tpd(struct he_dev *he_dev) 1612 { 1613 struct he_tpd *tpd; 1614 dma_addr_t mapping; 1615 1616 tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping); 1617 if (tpd == NULL) 1618 return NULL; 1619 1620 tpd->status = TPD_ADDR(mapping); 1621 tpd->reserved = 0; 1622 tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0; 1623 tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0; 1624 tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0; 1625 1626 return tpd; 1627 } 1628 1629 #define AAL5_LEN(buf,len) \ 1630 ((((unsigned char *)(buf))[(len)-6] << 8) | \ 1631 (((unsigned char *)(buf))[(len)-5])) 1632 1633 /* 2.10.1.2 receive 1634 * 1635 * aal5 packets can optionally return the tcp checksum in the lower 1636 * 16 bits of the crc (RSR0_TCP_CKSUM) 1637 */ 1638 1639 #define TCP_CKSUM(buf,len) \ 1640 ((((unsigned char *)(buf))[(len)-2] << 8) | \ 1641 (((unsigned char *)(buf))[(len-1)])) 1642 1643 static int 1644 he_service_rbrq(struct he_dev *he_dev, int group) 1645 { 1646 struct he_rbrq *rbrq_tail = (struct he_rbrq *) 1647 ((unsigned long)he_dev->rbrq_base | 1648 he_dev->hsp->group[group].rbrq_tail); 1649 unsigned cid, lastcid = -1; 1650 struct sk_buff *skb; 1651 struct atm_vcc *vcc = NULL; 1652 struct he_vcc *he_vcc; 1653 struct he_buff *heb, *next; 1654 int i; 1655 int pdus_assembled = 0; 1656 int updated = 0; 1657 1658 read_lock(&vcc_sklist_lock); 1659 while (he_dev->rbrq_head != rbrq_tail) { 1660 ++updated; 1661 1662 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n", 1663 he_dev->rbrq_head, group, 1664 RBRQ_ADDR(he_dev->rbrq_head), 1665 RBRQ_BUFLEN(he_dev->rbrq_head), 1666 RBRQ_CID(he_dev->rbrq_head), 1667 RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "", 1668 RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "", 1669 RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "", 1670 RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "", 1671 RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "", 1672 RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : ""); 1673 1674 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET; 1675 heb = he_dev->rbpl_virt[i]; 1676 1677 cid = RBRQ_CID(he_dev->rbrq_head); 1678 if (cid != lastcid) 1679 vcc = __find_vcc(he_dev, cid); 1680 lastcid = cid; 1681 1682 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) { 1683 hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid); 1684 if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) { 1685 clear_bit(i, he_dev->rbpl_table); 1686 list_del(&heb->entry); 1687 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1688 } 1689 1690 goto next_rbrq_entry; 1691 } 1692 1693 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) { 1694 hprintk("HBUF_ERR! (cid 0x%x)\n", cid); 1695 atomic_inc(&vcc->stats->rx_drop); 1696 goto return_host_buffers; 1697 } 1698 1699 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4; 1700 clear_bit(i, he_dev->rbpl_table); 1701 list_move_tail(&heb->entry, &he_vcc->buffers); 1702 he_vcc->pdu_len += heb->len; 1703 1704 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) { 1705 lastcid = -1; 1706 HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid); 1707 wake_up(&he_vcc->rx_waitq); 1708 goto return_host_buffers; 1709 } 1710 1711 if (!RBRQ_END_PDU(he_dev->rbrq_head)) 1712 goto next_rbrq_entry; 1713 1714 if (RBRQ_LEN_ERR(he_dev->rbrq_head) 1715 || RBRQ_CRC_ERR(he_dev->rbrq_head)) { 1716 HPRINTK("%s%s (%d.%d)\n", 1717 RBRQ_CRC_ERR(he_dev->rbrq_head) 1718 ? "CRC_ERR " : "", 1719 RBRQ_LEN_ERR(he_dev->rbrq_head) 1720 ? "LEN_ERR" : "", 1721 vcc->vpi, vcc->vci); 1722 atomic_inc(&vcc->stats->rx_err); 1723 goto return_host_buffers; 1724 } 1725 1726 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve, 1727 GFP_ATOMIC); 1728 if (!skb) { 1729 HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci); 1730 goto return_host_buffers; 1731 } 1732 1733 if (rx_skb_reserve > 0) 1734 skb_reserve(skb, rx_skb_reserve); 1735 1736 __net_timestamp(skb); 1737 1738 list_for_each_entry(heb, &he_vcc->buffers, entry) 1739 memcpy(skb_put(skb, heb->len), &heb->data, heb->len); 1740 1741 switch (vcc->qos.aal) { 1742 case ATM_AAL0: 1743 /* 2.10.1.5 raw cell receive */ 1744 skb->len = ATM_AAL0_SDU; 1745 skb_set_tail_pointer(skb, skb->len); 1746 break; 1747 case ATM_AAL5: 1748 /* 2.10.1.2 aal5 receive */ 1749 1750 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len); 1751 skb_set_tail_pointer(skb, skb->len); 1752 #ifdef USE_CHECKSUM_HW 1753 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) { 1754 skb->ip_summed = CHECKSUM_COMPLETE; 1755 skb->csum = TCP_CKSUM(skb->data, 1756 he_vcc->pdu_len); 1757 } 1758 #endif 1759 break; 1760 } 1761 1762 #ifdef should_never_happen 1763 if (skb->len > vcc->qos.rxtp.max_sdu) 1764 hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid); 1765 #endif 1766 1767 #ifdef notdef 1768 ATM_SKB(skb)->vcc = vcc; 1769 #endif 1770 spin_unlock(&he_dev->global_lock); 1771 vcc->push(vcc, skb); 1772 spin_lock(&he_dev->global_lock); 1773 1774 atomic_inc(&vcc->stats->rx); 1775 1776 return_host_buffers: 1777 ++pdus_assembled; 1778 1779 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry) 1780 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1781 INIT_LIST_HEAD(&he_vcc->buffers); 1782 he_vcc->pdu_len = 0; 1783 1784 next_rbrq_entry: 1785 he_dev->rbrq_head = (struct he_rbrq *) 1786 ((unsigned long) he_dev->rbrq_base | 1787 RBRQ_MASK(he_dev->rbrq_head + 1)); 1788 1789 } 1790 read_unlock(&vcc_sklist_lock); 1791 1792 if (updated) { 1793 if (updated > he_dev->rbrq_peak) 1794 he_dev->rbrq_peak = updated; 1795 1796 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head), 1797 G0_RBRQ_H + (group * 16)); 1798 } 1799 1800 return pdus_assembled; 1801 } 1802 1803 static void 1804 he_service_tbrq(struct he_dev *he_dev, int group) 1805 { 1806 struct he_tbrq *tbrq_tail = (struct he_tbrq *) 1807 ((unsigned long)he_dev->tbrq_base | 1808 he_dev->hsp->group[group].tbrq_tail); 1809 struct he_tpd *tpd; 1810 int slot, updated = 0; 1811 struct he_tpd *__tpd; 1812 1813 /* 2.1.6 transmit buffer return queue */ 1814 1815 while (he_dev->tbrq_head != tbrq_tail) { 1816 ++updated; 1817 1818 HPRINTK("tbrq%d 0x%x%s%s\n", 1819 group, 1820 TBRQ_TPD(he_dev->tbrq_head), 1821 TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "", 1822 TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : ""); 1823 tpd = NULL; 1824 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) { 1825 if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) { 1826 tpd = __tpd; 1827 list_del(&__tpd->entry); 1828 break; 1829 } 1830 } 1831 1832 if (tpd == NULL) { 1833 hprintk("unable to locate tpd for dma buffer %x\n", 1834 TBRQ_TPD(he_dev->tbrq_head)); 1835 goto next_tbrq_entry; 1836 } 1837 1838 if (TBRQ_EOS(he_dev->tbrq_head)) { 1839 HPRINTK("wake_up(tx_waitq) cid 0x%x\n", 1840 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci)); 1841 if (tpd->vcc) 1842 wake_up(&HE_VCC(tpd->vcc)->tx_waitq); 1843 1844 goto next_tbrq_entry; 1845 } 1846 1847 for (slot = 0; slot < TPD_MAXIOV; ++slot) { 1848 if (tpd->iovec[slot].addr) 1849 dma_unmap_single(&he_dev->pci_dev->dev, 1850 tpd->iovec[slot].addr, 1851 tpd->iovec[slot].len & TPD_LEN_MASK, 1852 DMA_TO_DEVICE); 1853 if (tpd->iovec[slot].len & TPD_LST) 1854 break; 1855 1856 } 1857 1858 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */ 1859 if (tpd->vcc && tpd->vcc->pop) 1860 tpd->vcc->pop(tpd->vcc, tpd->skb); 1861 else 1862 dev_kfree_skb_any(tpd->skb); 1863 } 1864 1865 next_tbrq_entry: 1866 if (tpd) 1867 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status)); 1868 he_dev->tbrq_head = (struct he_tbrq *) 1869 ((unsigned long) he_dev->tbrq_base | 1870 TBRQ_MASK(he_dev->tbrq_head + 1)); 1871 } 1872 1873 if (updated) { 1874 if (updated > he_dev->tbrq_peak) 1875 he_dev->tbrq_peak = updated; 1876 1877 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head), 1878 G0_TBRQ_H + (group * 16)); 1879 } 1880 } 1881 1882 static void 1883 he_service_rbpl(struct he_dev *he_dev, int group) 1884 { 1885 struct he_rbp *new_tail; 1886 struct he_rbp *rbpl_head; 1887 struct he_buff *heb; 1888 dma_addr_t mapping; 1889 int i; 1890 int moved = 0; 1891 1892 rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base | 1893 RBPL_MASK(he_readl(he_dev, G0_RBPL_S))); 1894 1895 for (;;) { 1896 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base | 1897 RBPL_MASK(he_dev->rbpl_tail+1)); 1898 1899 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */ 1900 if (new_tail == rbpl_head) 1901 break; 1902 1903 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint); 1904 if (i > (RBPL_TABLE_SIZE - 1)) { 1905 i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE); 1906 if (i > (RBPL_TABLE_SIZE - 1)) 1907 break; 1908 } 1909 he_dev->rbpl_hint = i + 1; 1910 1911 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping); 1912 if (!heb) 1913 break; 1914 heb->mapping = mapping; 1915 list_add(&heb->entry, &he_dev->rbpl_outstanding); 1916 he_dev->rbpl_virt[i] = heb; 1917 set_bit(i, he_dev->rbpl_table); 1918 new_tail->idx = i << RBP_IDX_OFFSET; 1919 new_tail->phys = mapping + offsetof(struct he_buff, data); 1920 1921 he_dev->rbpl_tail = new_tail; 1922 ++moved; 1923 } 1924 1925 if (moved) 1926 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T); 1927 } 1928 1929 static void 1930 he_tasklet(unsigned long data) 1931 { 1932 unsigned long flags; 1933 struct he_dev *he_dev = (struct he_dev *) data; 1934 int group, type; 1935 int updated = 0; 1936 1937 HPRINTK("tasklet (0x%lx)\n", data); 1938 spin_lock_irqsave(&he_dev->global_lock, flags); 1939 1940 while (he_dev->irq_head != he_dev->irq_tail) { 1941 ++updated; 1942 1943 type = ITYPE_TYPE(he_dev->irq_head->isw); 1944 group = ITYPE_GROUP(he_dev->irq_head->isw); 1945 1946 switch (type) { 1947 case ITYPE_RBRQ_THRESH: 1948 HPRINTK("rbrq%d threshold\n", group); 1949 /* fall through */ 1950 case ITYPE_RBRQ_TIMER: 1951 if (he_service_rbrq(he_dev, group)) 1952 he_service_rbpl(he_dev, group); 1953 break; 1954 case ITYPE_TBRQ_THRESH: 1955 HPRINTK("tbrq%d threshold\n", group); 1956 /* fall through */ 1957 case ITYPE_TPD_COMPLETE: 1958 he_service_tbrq(he_dev, group); 1959 break; 1960 case ITYPE_RBPL_THRESH: 1961 he_service_rbpl(he_dev, group); 1962 break; 1963 case ITYPE_RBPS_THRESH: 1964 /* shouldn't happen unless small buffers enabled */ 1965 break; 1966 case ITYPE_PHY: 1967 HPRINTK("phy interrupt\n"); 1968 #ifdef CONFIG_ATM_HE_USE_SUNI 1969 spin_unlock_irqrestore(&he_dev->global_lock, flags); 1970 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt) 1971 he_dev->atm_dev->phy->interrupt(he_dev->atm_dev); 1972 spin_lock_irqsave(&he_dev->global_lock, flags); 1973 #endif 1974 break; 1975 case ITYPE_OTHER: 1976 switch (type|group) { 1977 case ITYPE_PARITY: 1978 hprintk("parity error\n"); 1979 break; 1980 case ITYPE_ABORT: 1981 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR)); 1982 break; 1983 } 1984 break; 1985 case ITYPE_TYPE(ITYPE_INVALID): 1986 /* see 8.1.1 -- check all queues */ 1987 1988 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw); 1989 1990 he_service_rbrq(he_dev, 0); 1991 he_service_rbpl(he_dev, 0); 1992 he_service_tbrq(he_dev, 0); 1993 break; 1994 default: 1995 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw); 1996 } 1997 1998 he_dev->irq_head->isw = ITYPE_INVALID; 1999 2000 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK); 2001 } 2002 2003 if (updated) { 2004 if (updated > he_dev->irq_peak) 2005 he_dev->irq_peak = updated; 2006 2007 he_writel(he_dev, 2008 IRQ_SIZE(CONFIG_IRQ_SIZE) | 2009 IRQ_THRESH(CONFIG_IRQ_THRESH) | 2010 IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD); 2011 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */ 2012 } 2013 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2014 } 2015 2016 static irqreturn_t 2017 he_irq_handler(int irq, void *dev_id) 2018 { 2019 unsigned long flags; 2020 struct he_dev *he_dev = (struct he_dev * )dev_id; 2021 int handled = 0; 2022 2023 if (he_dev == NULL) 2024 return IRQ_NONE; 2025 2026 spin_lock_irqsave(&he_dev->global_lock, flags); 2027 2028 he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) | 2029 (*he_dev->irq_tailoffset << 2)); 2030 2031 if (he_dev->irq_tail == he_dev->irq_head) { 2032 HPRINTK("tailoffset not updated?\n"); 2033 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base | 2034 ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2)); 2035 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata */ 2036 } 2037 2038 #ifdef DEBUG 2039 if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */) 2040 hprintk("spurious (or shared) interrupt?\n"); 2041 #endif 2042 2043 if (he_dev->irq_head != he_dev->irq_tail) { 2044 handled = 1; 2045 tasklet_schedule(&he_dev->tasklet); 2046 he_writel(he_dev, INT_CLEAR_A, INT_FIFO); /* clear interrupt */ 2047 (void) he_readl(he_dev, INT_FIFO); /* flush posted writes */ 2048 } 2049 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2050 return IRQ_RETVAL(handled); 2051 2052 } 2053 2054 static __inline__ void 2055 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid) 2056 { 2057 struct he_tpdrq *new_tail; 2058 2059 HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n", 2060 tpd, cid, he_dev->tpdrq_tail); 2061 2062 /* new_tail = he_dev->tpdrq_tail; */ 2063 new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base | 2064 TPDRQ_MASK(he_dev->tpdrq_tail+1)); 2065 2066 /* 2067 * check to see if we are about to set the tail == head 2068 * if true, update the head pointer from the adapter 2069 * to see if this is really the case (reading the queue 2070 * head for every enqueue would be unnecessarily slow) 2071 */ 2072 2073 if (new_tail == he_dev->tpdrq_head) { 2074 he_dev->tpdrq_head = (struct he_tpdrq *) 2075 (((unsigned long)he_dev->tpdrq_base) | 2076 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H))); 2077 2078 if (new_tail == he_dev->tpdrq_head) { 2079 int slot; 2080 2081 hprintk("tpdrq full (cid 0x%x)\n", cid); 2082 /* 2083 * FIXME 2084 * push tpd onto a transmit backlog queue 2085 * after service_tbrq, service the backlog 2086 * for now, we just drop the pdu 2087 */ 2088 for (slot = 0; slot < TPD_MAXIOV; ++slot) { 2089 if (tpd->iovec[slot].addr) 2090 dma_unmap_single(&he_dev->pci_dev->dev, 2091 tpd->iovec[slot].addr, 2092 tpd->iovec[slot].len & TPD_LEN_MASK, 2093 DMA_TO_DEVICE); 2094 } 2095 if (tpd->skb) { 2096 if (tpd->vcc->pop) 2097 tpd->vcc->pop(tpd->vcc, tpd->skb); 2098 else 2099 dev_kfree_skb_any(tpd->skb); 2100 atomic_inc(&tpd->vcc->stats->tx_err); 2101 } 2102 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status)); 2103 return; 2104 } 2105 } 2106 2107 /* 2.1.5 transmit packet descriptor ready queue */ 2108 list_add_tail(&tpd->entry, &he_dev->outstanding_tpds); 2109 he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status); 2110 he_dev->tpdrq_tail->cid = cid; 2111 wmb(); 2112 2113 he_dev->tpdrq_tail = new_tail; 2114 2115 he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T); 2116 (void) he_readl(he_dev, TPDRQ_T); /* flush posted writes */ 2117 } 2118 2119 static int 2120 he_open(struct atm_vcc *vcc) 2121 { 2122 unsigned long flags; 2123 struct he_dev *he_dev = HE_DEV(vcc->dev); 2124 struct he_vcc *he_vcc; 2125 int err = 0; 2126 unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock; 2127 short vpi = vcc->vpi; 2128 int vci = vcc->vci; 2129 2130 if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC) 2131 return 0; 2132 2133 HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci); 2134 2135 set_bit(ATM_VF_ADDR, &vcc->flags); 2136 2137 cid = he_mkcid(he_dev, vpi, vci); 2138 2139 he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC); 2140 if (he_vcc == NULL) { 2141 hprintk("unable to allocate he_vcc during open\n"); 2142 return -ENOMEM; 2143 } 2144 2145 INIT_LIST_HEAD(&he_vcc->buffers); 2146 he_vcc->pdu_len = 0; 2147 he_vcc->rc_index = -1; 2148 2149 init_waitqueue_head(&he_vcc->rx_waitq); 2150 init_waitqueue_head(&he_vcc->tx_waitq); 2151 2152 vcc->dev_data = he_vcc; 2153 2154 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 2155 int pcr_goal; 2156 2157 pcr_goal = atm_pcr_goal(&vcc->qos.txtp); 2158 if (pcr_goal == 0) 2159 pcr_goal = he_dev->atm_dev->link_rate; 2160 if (pcr_goal < 0) /* means round down, technically */ 2161 pcr_goal = -pcr_goal; 2162 2163 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal); 2164 2165 switch (vcc->qos.aal) { 2166 case ATM_AAL5: 2167 tsr0_aal = TSR0_AAL5; 2168 tsr4 = TSR4_AAL5; 2169 break; 2170 case ATM_AAL0: 2171 tsr0_aal = TSR0_AAL0_SDU; 2172 tsr4 = TSR4_AAL0_SDU; 2173 break; 2174 default: 2175 err = -EINVAL; 2176 goto open_failed; 2177 } 2178 2179 spin_lock_irqsave(&he_dev->global_lock, flags); 2180 tsr0 = he_readl_tsr0(he_dev, cid); 2181 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2182 2183 if (TSR0_CONN_STATE(tsr0) != 0) { 2184 hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0); 2185 err = -EBUSY; 2186 goto open_failed; 2187 } 2188 2189 switch (vcc->qos.txtp.traffic_class) { 2190 case ATM_UBR: 2191 /* 2.3.3.1 open connection ubr */ 2192 2193 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal | 2194 TSR0_USE_WMIN | TSR0_UPDATE_GER; 2195 break; 2196 2197 case ATM_CBR: 2198 /* 2.3.3.2 open connection cbr */ 2199 2200 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */ 2201 if ((he_dev->total_bw + pcr_goal) 2202 > (he_dev->atm_dev->link_rate * 9 / 10)) 2203 { 2204 err = -EBUSY; 2205 goto open_failed; 2206 } 2207 2208 spin_lock_irqsave(&he_dev->global_lock, flags); /* also protects he_dev->cs_stper[] */ 2209 2210 /* find an unused cs_stper register */ 2211 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg) 2212 if (he_dev->cs_stper[reg].inuse == 0 || 2213 he_dev->cs_stper[reg].pcr == pcr_goal) 2214 break; 2215 2216 if (reg == HE_NUM_CS_STPER) { 2217 err = -EBUSY; 2218 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2219 goto open_failed; 2220 } 2221 2222 he_dev->total_bw += pcr_goal; 2223 2224 he_vcc->rc_index = reg; 2225 ++he_dev->cs_stper[reg].inuse; 2226 he_dev->cs_stper[reg].pcr = pcr_goal; 2227 2228 clock = he_is622(he_dev) ? 66667000 : 50000000; 2229 period = clock / pcr_goal; 2230 2231 HPRINTK("rc_index = %d period = %d\n", 2232 reg, period); 2233 2234 he_writel_mbox(he_dev, rate_to_atmf(period/2), 2235 CS_STPER0 + reg); 2236 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2237 2238 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal | 2239 TSR0_RC_INDEX(reg); 2240 2241 break; 2242 default: 2243 err = -EINVAL; 2244 goto open_failed; 2245 } 2246 2247 spin_lock_irqsave(&he_dev->global_lock, flags); 2248 2249 he_writel_tsr0(he_dev, tsr0, cid); 2250 he_writel_tsr4(he_dev, tsr4 | 1, cid); 2251 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) | 2252 TSR1_PCR(rate_to_atmf(pcr_goal)), cid); 2253 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid); 2254 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid); 2255 2256 he_writel_tsr3(he_dev, 0x0, cid); 2257 he_writel_tsr5(he_dev, 0x0, cid); 2258 he_writel_tsr6(he_dev, 0x0, cid); 2259 he_writel_tsr7(he_dev, 0x0, cid); 2260 he_writel_tsr8(he_dev, 0x0, cid); 2261 he_writel_tsr10(he_dev, 0x0, cid); 2262 he_writel_tsr11(he_dev, 0x0, cid); 2263 he_writel_tsr12(he_dev, 0x0, cid); 2264 he_writel_tsr13(he_dev, 0x0, cid); 2265 he_writel_tsr14(he_dev, 0x0, cid); 2266 (void) he_readl_tsr0(he_dev, cid); /* flush posted writes */ 2267 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2268 } 2269 2270 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 2271 unsigned aal; 2272 2273 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid, 2274 &HE_VCC(vcc)->rx_waitq); 2275 2276 switch (vcc->qos.aal) { 2277 case ATM_AAL5: 2278 aal = RSR0_AAL5; 2279 break; 2280 case ATM_AAL0: 2281 aal = RSR0_RAWCELL; 2282 break; 2283 default: 2284 err = -EINVAL; 2285 goto open_failed; 2286 } 2287 2288 spin_lock_irqsave(&he_dev->global_lock, flags); 2289 2290 rsr0 = he_readl_rsr0(he_dev, cid); 2291 if (rsr0 & RSR0_OPEN_CONN) { 2292 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2293 2294 hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0); 2295 err = -EBUSY; 2296 goto open_failed; 2297 } 2298 2299 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY; 2300 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY; 2301 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 2302 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0; 2303 2304 #ifdef USE_CHECKSUM_HW 2305 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI) 2306 rsr0 |= RSR0_TCP_CKSUM; 2307 #endif 2308 2309 he_writel_rsr4(he_dev, rsr4, cid); 2310 he_writel_rsr1(he_dev, rsr1, cid); 2311 /* 5.1.11 last parameter initialized should be 2312 the open/closed indication in rsr0 */ 2313 he_writel_rsr0(he_dev, 2314 rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid); 2315 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */ 2316 2317 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2318 } 2319 2320 open_failed: 2321 2322 if (err) { 2323 kfree(he_vcc); 2324 clear_bit(ATM_VF_ADDR, &vcc->flags); 2325 } 2326 else 2327 set_bit(ATM_VF_READY, &vcc->flags); 2328 2329 return err; 2330 } 2331 2332 static void 2333 he_close(struct atm_vcc *vcc) 2334 { 2335 unsigned long flags; 2336 DECLARE_WAITQUEUE(wait, current); 2337 struct he_dev *he_dev = HE_DEV(vcc->dev); 2338 struct he_tpd *tpd; 2339 unsigned cid; 2340 struct he_vcc *he_vcc = HE_VCC(vcc); 2341 #define MAX_RETRY 30 2342 int retry = 0, sleep = 1, tx_inuse; 2343 2344 HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci); 2345 2346 clear_bit(ATM_VF_READY, &vcc->flags); 2347 cid = he_mkcid(he_dev, vcc->vpi, vcc->vci); 2348 2349 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 2350 int timeout; 2351 2352 HPRINTK("close rx cid 0x%x\n", cid); 2353 2354 /* 2.7.2.2 close receive operation */ 2355 2356 /* wait for previous close (if any) to finish */ 2357 2358 spin_lock_irqsave(&he_dev->global_lock, flags); 2359 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) { 2360 HPRINTK("close cid 0x%x RCC_BUSY\n", cid); 2361 udelay(250); 2362 } 2363 2364 set_current_state(TASK_UNINTERRUPTIBLE); 2365 add_wait_queue(&he_vcc->rx_waitq, &wait); 2366 2367 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid); 2368 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */ 2369 he_writel_mbox(he_dev, cid, RXCON_CLOSE); 2370 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2371 2372 timeout = schedule_timeout(30*HZ); 2373 2374 remove_wait_queue(&he_vcc->rx_waitq, &wait); 2375 set_current_state(TASK_RUNNING); 2376 2377 if (timeout == 0) 2378 hprintk("close rx timeout cid 0x%x\n", cid); 2379 2380 HPRINTK("close rx cid 0x%x complete\n", cid); 2381 2382 } 2383 2384 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 2385 volatile unsigned tsr4, tsr0; 2386 int timeout; 2387 2388 HPRINTK("close tx cid 0x%x\n", cid); 2389 2390 /* 2.1.2 2391 * 2392 * ... the host must first stop queueing packets to the TPDRQ 2393 * on the connection to be closed, then wait for all outstanding 2394 * packets to be transmitted and their buffers returned to the 2395 * TBRQ. When the last packet on the connection arrives in the 2396 * TBRQ, the host issues the close command to the adapter. 2397 */ 2398 2399 while (((tx_inuse = atomic_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) && 2400 (retry < MAX_RETRY)) { 2401 msleep(sleep); 2402 if (sleep < 250) 2403 sleep = sleep * 2; 2404 2405 ++retry; 2406 } 2407 2408 if (tx_inuse > 1) 2409 hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse); 2410 2411 /* 2.3.1.1 generic close operations with flush */ 2412 2413 spin_lock_irqsave(&he_dev->global_lock, flags); 2414 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid); 2415 /* also clears TSR4_SESSION_ENDED */ 2416 2417 switch (vcc->qos.txtp.traffic_class) { 2418 case ATM_UBR: 2419 he_writel_tsr1(he_dev, 2420 TSR1_MCR(rate_to_atmf(200000)) 2421 | TSR1_PCR(0), cid); 2422 break; 2423 case ATM_CBR: 2424 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid); 2425 break; 2426 } 2427 (void) he_readl_tsr4(he_dev, cid); /* flush posted writes */ 2428 2429 tpd = __alloc_tpd(he_dev); 2430 if (tpd == NULL) { 2431 hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid); 2432 goto close_tx_incomplete; 2433 } 2434 tpd->status |= TPD_EOS | TPD_INT; 2435 tpd->skb = NULL; 2436 tpd->vcc = vcc; 2437 wmb(); 2438 2439 set_current_state(TASK_UNINTERRUPTIBLE); 2440 add_wait_queue(&he_vcc->tx_waitq, &wait); 2441 __enqueue_tpd(he_dev, tpd, cid); 2442 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2443 2444 timeout = schedule_timeout(30*HZ); 2445 2446 remove_wait_queue(&he_vcc->tx_waitq, &wait); 2447 set_current_state(TASK_RUNNING); 2448 2449 spin_lock_irqsave(&he_dev->global_lock, flags); 2450 2451 if (timeout == 0) { 2452 hprintk("close tx timeout cid 0x%x\n", cid); 2453 goto close_tx_incomplete; 2454 } 2455 2456 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) { 2457 HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4); 2458 udelay(250); 2459 } 2460 2461 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) { 2462 HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0); 2463 udelay(250); 2464 } 2465 2466 close_tx_incomplete: 2467 2468 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 2469 int reg = he_vcc->rc_index; 2470 2471 HPRINTK("cs_stper reg = %d\n", reg); 2472 2473 if (he_dev->cs_stper[reg].inuse == 0) 2474 hprintk("cs_stper[%d].inuse = 0!\n", reg); 2475 else 2476 --he_dev->cs_stper[reg].inuse; 2477 2478 he_dev->total_bw -= he_dev->cs_stper[reg].pcr; 2479 } 2480 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2481 2482 HPRINTK("close tx cid 0x%x complete\n", cid); 2483 } 2484 2485 kfree(he_vcc); 2486 2487 clear_bit(ATM_VF_ADDR, &vcc->flags); 2488 } 2489 2490 static int 2491 he_send(struct atm_vcc *vcc, struct sk_buff *skb) 2492 { 2493 unsigned long flags; 2494 struct he_dev *he_dev = HE_DEV(vcc->dev); 2495 unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci); 2496 struct he_tpd *tpd; 2497 #ifdef USE_SCATTERGATHER 2498 int i, slot = 0; 2499 #endif 2500 2501 #define HE_TPD_BUFSIZE 0xffff 2502 2503 HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci); 2504 2505 if ((skb->len > HE_TPD_BUFSIZE) || 2506 ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) { 2507 hprintk("buffer too large (or small) -- %d bytes\n", skb->len ); 2508 if (vcc->pop) 2509 vcc->pop(vcc, skb); 2510 else 2511 dev_kfree_skb_any(skb); 2512 atomic_inc(&vcc->stats->tx_err); 2513 return -EINVAL; 2514 } 2515 2516 #ifndef USE_SCATTERGATHER 2517 if (skb_shinfo(skb)->nr_frags) { 2518 hprintk("no scatter/gather support\n"); 2519 if (vcc->pop) 2520 vcc->pop(vcc, skb); 2521 else 2522 dev_kfree_skb_any(skb); 2523 atomic_inc(&vcc->stats->tx_err); 2524 return -EINVAL; 2525 } 2526 #endif 2527 spin_lock_irqsave(&he_dev->global_lock, flags); 2528 2529 tpd = __alloc_tpd(he_dev); 2530 if (tpd == NULL) { 2531 if (vcc->pop) 2532 vcc->pop(vcc, skb); 2533 else 2534 dev_kfree_skb_any(skb); 2535 atomic_inc(&vcc->stats->tx_err); 2536 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2537 return -ENOMEM; 2538 } 2539 2540 if (vcc->qos.aal == ATM_AAL5) 2541 tpd->status |= TPD_CELLTYPE(TPD_USERCELL); 2542 else { 2543 char *pti_clp = (void *) (skb->data + 3); 2544 int clp, pti; 2545 2546 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 2547 clp = (*pti_clp & ATM_HDR_CLP); 2548 tpd->status |= TPD_CELLTYPE(pti); 2549 if (clp) 2550 tpd->status |= TPD_CLP; 2551 2552 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD); 2553 } 2554 2555 #ifdef USE_SCATTERGATHER 2556 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data, 2557 skb_headlen(skb), DMA_TO_DEVICE); 2558 tpd->iovec[slot].len = skb_headlen(skb); 2559 ++slot; 2560 2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2563 2564 if (slot == TPD_MAXIOV) { /* queue tpd; start new tpd */ 2565 tpd->vcc = vcc; 2566 tpd->skb = NULL; /* not the last fragment 2567 so dont ->push() yet */ 2568 wmb(); 2569 2570 __enqueue_tpd(he_dev, tpd, cid); 2571 tpd = __alloc_tpd(he_dev); 2572 if (tpd == NULL) { 2573 if (vcc->pop) 2574 vcc->pop(vcc, skb); 2575 else 2576 dev_kfree_skb_any(skb); 2577 atomic_inc(&vcc->stats->tx_err); 2578 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2579 return -ENOMEM; 2580 } 2581 tpd->status |= TPD_USERCELL; 2582 slot = 0; 2583 } 2584 2585 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, 2586 (void *) page_address(frag->page) + frag->page_offset, 2587 frag->size, DMA_TO_DEVICE); 2588 tpd->iovec[slot].len = frag->size; 2589 ++slot; 2590 2591 } 2592 2593 tpd->iovec[slot - 1].len |= TPD_LST; 2594 #else 2595 tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE); 2596 tpd->length0 = skb->len | TPD_LST; 2597 #endif 2598 tpd->status |= TPD_INT; 2599 2600 tpd->vcc = vcc; 2601 tpd->skb = skb; 2602 wmb(); 2603 ATM_SKB(skb)->vcc = vcc; 2604 2605 __enqueue_tpd(he_dev, tpd, cid); 2606 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2607 2608 atomic_inc(&vcc->stats->tx); 2609 2610 return 0; 2611 } 2612 2613 static int 2614 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg) 2615 { 2616 unsigned long flags; 2617 struct he_dev *he_dev = HE_DEV(atm_dev); 2618 struct he_ioctl_reg reg; 2619 int err = 0; 2620 2621 switch (cmd) { 2622 case HE_GET_REG: 2623 if (!capable(CAP_NET_ADMIN)) 2624 return -EPERM; 2625 2626 if (copy_from_user(®, arg, 2627 sizeof(struct he_ioctl_reg))) 2628 return -EFAULT; 2629 2630 spin_lock_irqsave(&he_dev->global_lock, flags); 2631 switch (reg.type) { 2632 case HE_REGTYPE_PCI: 2633 if (reg.addr >= HE_REGMAP_SIZE) { 2634 err = -EINVAL; 2635 break; 2636 } 2637 2638 reg.val = he_readl(he_dev, reg.addr); 2639 break; 2640 case HE_REGTYPE_RCM: 2641 reg.val = 2642 he_readl_rcm(he_dev, reg.addr); 2643 break; 2644 case HE_REGTYPE_TCM: 2645 reg.val = 2646 he_readl_tcm(he_dev, reg.addr); 2647 break; 2648 case HE_REGTYPE_MBOX: 2649 reg.val = 2650 he_readl_mbox(he_dev, reg.addr); 2651 break; 2652 default: 2653 err = -EINVAL; 2654 break; 2655 } 2656 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2657 if (err == 0) 2658 if (copy_to_user(arg, ®, 2659 sizeof(struct he_ioctl_reg))) 2660 return -EFAULT; 2661 break; 2662 default: 2663 #ifdef CONFIG_ATM_HE_USE_SUNI 2664 if (atm_dev->phy && atm_dev->phy->ioctl) 2665 err = atm_dev->phy->ioctl(atm_dev, cmd, arg); 2666 #else /* CONFIG_ATM_HE_USE_SUNI */ 2667 err = -EINVAL; 2668 #endif /* CONFIG_ATM_HE_USE_SUNI */ 2669 break; 2670 } 2671 2672 return err; 2673 } 2674 2675 static void 2676 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr) 2677 { 2678 unsigned long flags; 2679 struct he_dev *he_dev = HE_DEV(atm_dev); 2680 2681 HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr); 2682 2683 spin_lock_irqsave(&he_dev->global_lock, flags); 2684 he_writel(he_dev, val, FRAMER + (addr*4)); 2685 (void) he_readl(he_dev, FRAMER + (addr*4)); /* flush posted writes */ 2686 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2687 } 2688 2689 2690 static unsigned char 2691 he_phy_get(struct atm_dev *atm_dev, unsigned long addr) 2692 { 2693 unsigned long flags; 2694 struct he_dev *he_dev = HE_DEV(atm_dev); 2695 unsigned reg; 2696 2697 spin_lock_irqsave(&he_dev->global_lock, flags); 2698 reg = he_readl(he_dev, FRAMER + (addr*4)); 2699 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2700 2701 HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg); 2702 return reg; 2703 } 2704 2705 static int 2706 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page) 2707 { 2708 unsigned long flags; 2709 struct he_dev *he_dev = HE_DEV(dev); 2710 int left, i; 2711 #ifdef notdef 2712 struct he_rbrq *rbrq_tail; 2713 struct he_tpdrq *tpdrq_head; 2714 int rbpl_head, rbpl_tail; 2715 #endif 2716 static long mcc = 0, oec = 0, dcc = 0, cec = 0; 2717 2718 2719 left = *pos; 2720 if (!left--) 2721 return sprintf(page, "ATM he driver\n"); 2722 2723 if (!left--) 2724 return sprintf(page, "%s%s\n\n", 2725 he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM"); 2726 2727 if (!left--) 2728 return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n"); 2729 2730 spin_lock_irqsave(&he_dev->global_lock, flags); 2731 mcc += he_readl(he_dev, MCC); 2732 oec += he_readl(he_dev, OEC); 2733 dcc += he_readl(he_dev, DCC); 2734 cec += he_readl(he_dev, CEC); 2735 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2736 2737 if (!left--) 2738 return sprintf(page, "%16ld %16ld %13ld %17ld\n\n", 2739 mcc, oec, dcc, cec); 2740 2741 if (!left--) 2742 return sprintf(page, "irq_size = %d inuse = ? peak = %d\n", 2743 CONFIG_IRQ_SIZE, he_dev->irq_peak); 2744 2745 if (!left--) 2746 return sprintf(page, "tpdrq_size = %d inuse = ?\n", 2747 CONFIG_TPDRQ_SIZE); 2748 2749 if (!left--) 2750 return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n", 2751 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak); 2752 2753 if (!left--) 2754 return sprintf(page, "tbrq_size = %d peak = %d\n", 2755 CONFIG_TBRQ_SIZE, he_dev->tbrq_peak); 2756 2757 2758 #ifdef notdef 2759 rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S)); 2760 rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T)); 2761 2762 inuse = rbpl_head - rbpl_tail; 2763 if (inuse < 0) 2764 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp); 2765 inuse /= sizeof(struct he_rbp); 2766 2767 if (!left--) 2768 return sprintf(page, "rbpl_size = %d inuse = %d\n\n", 2769 CONFIG_RBPL_SIZE, inuse); 2770 #endif 2771 2772 if (!left--) 2773 return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n"); 2774 2775 for (i = 0; i < HE_NUM_CS_STPER; ++i) 2776 if (!left--) 2777 return sprintf(page, "cs_stper%-2d %8ld %3d\n", i, 2778 he_dev->cs_stper[i].pcr, 2779 he_dev->cs_stper[i].inuse); 2780 2781 if (!left--) 2782 return sprintf(page, "total bw (cbr): %d (limit %d)\n", 2783 he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9); 2784 2785 return 0; 2786 } 2787 2788 /* eeprom routines -- see 4.7 */ 2789 2790 static u8 read_prom_byte(struct he_dev *he_dev, int addr) 2791 { 2792 u32 val = 0, tmp_read = 0; 2793 int i, j = 0; 2794 u8 byte_read = 0; 2795 2796 val = readl(he_dev->membase + HOST_CNTL); 2797 val &= 0xFFFFE0FF; 2798 2799 /* Turn on write enable */ 2800 val |= 0x800; 2801 he_writel(he_dev, val, HOST_CNTL); 2802 2803 /* Send READ instruction */ 2804 for (i = 0; i < ARRAY_SIZE(readtab); i++) { 2805 he_writel(he_dev, val | readtab[i], HOST_CNTL); 2806 udelay(EEPROM_DELAY); 2807 } 2808 2809 /* Next, we need to send the byte address to read from */ 2810 for (i = 7; i >= 0; i--) { 2811 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL); 2812 udelay(EEPROM_DELAY); 2813 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL); 2814 udelay(EEPROM_DELAY); 2815 } 2816 2817 j = 0; 2818 2819 val &= 0xFFFFF7FF; /* Turn off write enable */ 2820 he_writel(he_dev, val, HOST_CNTL); 2821 2822 /* Now, we can read data from the EEPROM by clocking it in */ 2823 for (i = 7; i >= 0; i--) { 2824 he_writel(he_dev, val | clocktab[j++], HOST_CNTL); 2825 udelay(EEPROM_DELAY); 2826 tmp_read = he_readl(he_dev, HOST_CNTL); 2827 byte_read |= (unsigned char) 2828 ((tmp_read & ID_DOUT) >> ID_DOFFSET << i); 2829 he_writel(he_dev, val | clocktab[j++], HOST_CNTL); 2830 udelay(EEPROM_DELAY); 2831 } 2832 2833 he_writel(he_dev, val | ID_CS, HOST_CNTL); 2834 udelay(EEPROM_DELAY); 2835 2836 return byte_read; 2837 } 2838 2839 MODULE_LICENSE("GPL"); 2840 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>"); 2841 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver"); 2842 module_param(disable64, bool, 0); 2843 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers"); 2844 module_param(nvpibits, short, 0); 2845 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)"); 2846 module_param(nvcibits, short, 0); 2847 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)"); 2848 module_param(rx_skb_reserve, short, 0); 2849 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)"); 2850 module_param(irq_coalesce, bool, 0); 2851 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)"); 2852 module_param(sdh, bool, 0); 2853 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)"); 2854 2855 static struct pci_device_id he_pci_tbl[] = { 2856 { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 }, 2857 { 0, } 2858 }; 2859 2860 MODULE_DEVICE_TABLE(pci, he_pci_tbl); 2861 2862 static struct pci_driver he_driver = { 2863 .name = "he", 2864 .probe = he_init_one, 2865 .remove = he_remove_one, 2866 .id_table = he_pci_tbl, 2867 }; 2868 2869 module_pci_driver(he_driver); 2870