xref: /linux/drivers/atm/fore200e.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4 
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6 
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9 
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14 
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19 
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24 
25 
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <asm/uaccess.h>
47 #include <asm/atomic.h>
48 
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57 
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61 
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65 
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69 
70 #include "fore200e.h"
71 #include "suni.h"
72 
73 #define FORE200E_VERSION "0.3e"
74 
75 #define FORE200E         "fore200e: "
76 
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86 
87 
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90 
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92 
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94 
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ++(index) % (modulo))
96 
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99 			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100 				    __func__, __LINE__, #expr); \
101 			     panic(FORE200E "%s", __func__); \
102 			 }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106 
107 
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110 
111 static LIST_HEAD(fore200e_boards);
112 
113 
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117 
118 
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123 
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128 
129 
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133 
134 
135 #if 0 /* currently unused */
136 static int
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144 
145     return -EINVAL;
146 }
147 #endif
148 
149 
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160 
161     return -EINVAL;
162 }
163 
164 
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172 
173 
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176 
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181 
182     if (alignment <= sizeof(int))
183 	alignment = 0;
184 
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188 
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191 	return -ENOMEM;
192 
193     if (alignment > 0)
194 	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195 
196     chunk->align_addr = chunk->alloc_addr + offset;
197 
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199 
200     return 0;
201 }
202 
203 
204 /* free a chunk of memory */
205 
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210 
211     kfree(chunk->alloc_addr);
212 }
213 
214 
215 static void
216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221 
222 
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228 
229     mb();
230     do {
231 	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 	    break;
233 
234     } while (time_before(jiffies, timeout));
235 
236 #if 1
237     if (!ok) {
238 	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 	       *addr, val);
240     }
241 #endif
242 
243     return ok;
244 }
245 
246 
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252 
253     do {
254 	if ((ok = (fore200e->bus->read(addr) == val)))
255 	    break;
256 
257     } while (time_before(jiffies, timeout));
258 
259 #if 1
260     if (!ok) {
261 	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 	       fore200e->bus->read(addr), val);
263     }
264 #endif
265 
266     return ok;
267 }
268 
269 
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275 
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278 
279 	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280 
281 		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282 
283 		    struct chunk* data = &buffer[ nbr ].data;
284 
285 		    if (data->alloc_addr != NULL)
286 			fore200e_chunk_free(fore200e, data);
287 		}
288 	    }
289 	}
290     }
291 }
292 
293 
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298 
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301 
302 	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303 	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304 
305 	    if (status->alloc_addr)
306 		fore200e->bus->dma_chunk_free(fore200e, status);
307 
308 	    if (rbd_block->alloc_addr)
309 		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 	}
311     }
312 }
313 
314 
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319 
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321 
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323 
324     fore200e->bus->reset(fore200e);
325 
326     if (diag) {
327 	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 	if (ok == 0) {
329 
330 	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 	    return -ENODEV;
332 	}
333 
334 	printk(FORE200E "device %s self-test passed\n", fore200e->name);
335 
336 	fore200e->state = FORE200E_STATE_RESET;
337     }
338 
339     return 0;
340 }
341 
342 
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 	   fore200e->name, fore200e->phys_base,
348 	   fore200e_irq_itoa(fore200e->irq));
349 
350     if (fore200e->state > FORE200E_STATE_RESET) {
351 	/* first, reset the board to prevent further interrupts or data transfers */
352 	fore200e_reset(fore200e, 0);
353     }
354 
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357 
358     case FORE200E_STATE_COMPLETE:
359 	kfree(fore200e->stats);
360 
361     case FORE200E_STATE_IRQ:
362 	free_irq(fore200e->irq, fore200e->atm_dev);
363 
364     case FORE200E_STATE_ALLOC_BUF:
365 	fore200e_free_rx_buf(fore200e);
366 
367     case FORE200E_STATE_INIT_BSQ:
368 	fore200e_uninit_bs_queue(fore200e);
369 
370     case FORE200E_STATE_INIT_RXQ:
371 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373 
374     case FORE200E_STATE_INIT_TXQ:
375 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377 
378     case FORE200E_STATE_INIT_CMDQ:
379 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380 
381     case FORE200E_STATE_INITIALIZE:
382 	/* nothing to do for that state */
383 
384     case FORE200E_STATE_START_FW:
385 	/* nothing to do for that state */
386 
387     case FORE200E_STATE_RESET:
388 	/* nothing to do for that state */
389 
390     case FORE200E_STATE_MAP:
391 	fore200e->bus->unmap(fore200e);
392 
393     case FORE200E_STATE_CONFIGURE:
394 	/* nothing to do for that state */
395 
396     case FORE200E_STATE_REGISTER:
397 	/* XXX shouldn't we *start* by deregistering the device? */
398 	atm_dev_deregister(fore200e->atm_dev);
399 
400     case FORE200E_STATE_BLANK:
401 	/* nothing to do for that state */
402 	break;
403     }
404 }
405 
406 
407 #ifdef CONFIG_PCI
408 
409 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410 {
411     /* on big-endian hosts, the board is configured to convert
412        the endianess of slave RAM accesses  */
413     return le32_to_cpu(readl(addr));
414 }
415 
416 
417 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     writel(cpu_to_le32(val), addr);
422 }
423 
424 
425 static u32
426 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427 {
428     u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
429 
430     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
431 	    virt_addr, size, direction, dma_addr);
432 
433     return dma_addr;
434 }
435 
436 
437 static void
438 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439 {
440     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441 	    dma_addr, size, direction);
442 
443     pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
444 }
445 
446 
447 static void
448 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449 {
450     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451 
452     pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
453 }
454 
455 static void
456 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459 
460     pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
461 }
462 
463 
464 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466 
467 static int
468 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469 			     int size, int nbr, int alignment)
470 {
471     /* returned chunks are page-aligned */
472     chunk->alloc_size = size * nbr;
473     chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
474 					     chunk->alloc_size,
475 					     &chunk->dma_addr);
476 
477     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
478 	return -ENOMEM;
479 
480     chunk->align_addr = chunk->alloc_addr;
481 
482     return 0;
483 }
484 
485 
486 /* free a DMA consistent chunk of memory */
487 
488 static void
489 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
490 {
491     pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
492 			chunk->alloc_size,
493 			chunk->alloc_addr,
494 			chunk->dma_addr);
495 }
496 
497 
498 static int
499 fore200e_pca_irq_check(struct fore200e* fore200e)
500 {
501     /* this is a 1 bit register */
502     int irq_posted = readl(fore200e->regs.pca.psr);
503 
504 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
505     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
506 	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
507     }
508 #endif
509 
510     return irq_posted;
511 }
512 
513 
514 static void
515 fore200e_pca_irq_ack(struct fore200e* fore200e)
516 {
517     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
518 }
519 
520 
521 static void
522 fore200e_pca_reset(struct fore200e* fore200e)
523 {
524     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
525     fore200e_spin(10);
526     writel(0, fore200e->regs.pca.hcr);
527 }
528 
529 
530 static int __devinit
531 fore200e_pca_map(struct fore200e* fore200e)
532 {
533     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534 
535     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536 
537     if (fore200e->virt_base == NULL) {
538 	printk(FORE200E "can't map device %s\n", fore200e->name);
539 	return -EFAULT;
540     }
541 
542     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543 
544     /* gain access to the PCA specific registers  */
545     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548 
549     fore200e->state = FORE200E_STATE_MAP;
550     return 0;
551 }
552 
553 
554 static void
555 fore200e_pca_unmap(struct fore200e* fore200e)
556 {
557     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558 
559     if (fore200e->virt_base != NULL)
560 	iounmap(fore200e->virt_base);
561 }
562 
563 
564 static int __devinit
565 fore200e_pca_configure(struct fore200e* fore200e)
566 {
567     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
568     u8              master_ctrl, latency;
569 
570     DPRINTK(2, "device %s being configured\n", fore200e->name);
571 
572     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
573 	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
574 	return -EIO;
575     }
576 
577     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
578 
579     master_ctrl = master_ctrl
580 #if defined(__BIG_ENDIAN)
581 	/* request the PCA board to convert the endianess of slave RAM accesses */
582 	| PCA200E_CTRL_CONVERT_ENDIAN
583 #endif
584 #if 0
585         | PCA200E_CTRL_DIS_CACHE_RD
586         | PCA200E_CTRL_DIS_WRT_INVAL
587         | PCA200E_CTRL_ENA_CONT_REQ_MODE
588         | PCA200E_CTRL_2_CACHE_WRT_INVAL
589 #endif
590 	| PCA200E_CTRL_LARGE_PCI_BURSTS;
591 
592     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
593 
594     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
595        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
596        this may impact the performances of other PCI devices on the same bus, though */
597     latency = 192;
598     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
599 
600     fore200e->state = FORE200E_STATE_CONFIGURE;
601     return 0;
602 }
603 
604 
605 static int __init
606 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
607 {
608     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
609     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
610     struct prom_opcode      opcode;
611     int                     ok;
612     u32                     prom_dma;
613 
614     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
615 
616     opcode.opcode = OPCODE_GET_PROM;
617     opcode.pad    = 0;
618 
619     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
620 
621     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
622 
623     *entry->status = STATUS_PENDING;
624 
625     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
626 
627     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
628 
629     *entry->status = STATUS_FREE;
630 
631     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
632 
633     if (ok == 0) {
634 	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
635 	return -EIO;
636     }
637 
638 #if defined(__BIG_ENDIAN)
639 
640 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
641 
642     /* MAC address is stored as little-endian */
643     swap_here(&prom->mac_addr[0]);
644     swap_here(&prom->mac_addr[4]);
645 #endif
646 
647     return 0;
648 }
649 
650 
651 static int
652 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
653 {
654     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
655 
656     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
657 		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
658 }
659 
660 #endif /* CONFIG_PCI */
661 
662 
663 #ifdef CONFIG_SBUS
664 
665 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
666 {
667     return sbus_readl(addr);
668 }
669 
670 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
671 {
672     sbus_writel(val, addr);
673 }
674 
675 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
676 {
677 	struct of_device *op = fore200e->bus_dev;
678 	u32 dma_addr;
679 
680 	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
681 
682 	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
683 		virt_addr, size, direction, dma_addr);
684 
685 	return dma_addr;
686 }
687 
688 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
689 {
690 	struct of_device *op = fore200e->bus_dev;
691 
692 	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
693 		dma_addr, size, direction);
694 
695 	dma_unmap_single(&op->dev, dma_addr, size, direction);
696 }
697 
698 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
699 {
700 	struct of_device *op = fore200e->bus_dev;
701 
702 	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
703 
704 	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
705 }
706 
707 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
708 {
709 	struct of_device *op = fore200e->bus_dev;
710 
711 	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
712 
713 	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
714 }
715 
716 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
717  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
718  */
719 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
720 					int size, int nbr, int alignment)
721 {
722 	struct of_device *op = fore200e->bus_dev;
723 
724 	chunk->alloc_size = chunk->align_size = size * nbr;
725 
726 	/* returned chunks are page-aligned */
727 	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
728 					       &chunk->dma_addr, GFP_ATOMIC);
729 
730 	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
731 		return -ENOMEM;
732 
733 	chunk->align_addr = chunk->alloc_addr;
734 
735 	return 0;
736 }
737 
738 /* free a DVMA consistent chunk of memory */
739 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
740 {
741 	struct of_device *op = fore200e->bus_dev;
742 
743 	dma_free_coherent(&op->dev, chunk->alloc_size,
744 			  chunk->alloc_addr, chunk->dma_addr);
745 }
746 
747 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
748 {
749 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
750 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
751 }
752 
753 static int fore200e_sba_irq_check(struct fore200e *fore200e)
754 {
755 	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
756 }
757 
758 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
759 {
760 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
761 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
762 }
763 
764 static void fore200e_sba_reset(struct fore200e *fore200e)
765 {
766 	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
767 	fore200e_spin(10);
768 	fore200e->bus->write(0, fore200e->regs.sba.hcr);
769 }
770 
771 static int __init fore200e_sba_map(struct fore200e *fore200e)
772 {
773 	struct of_device *op = fore200e->bus_dev;
774 	unsigned int bursts;
775 
776 	/* gain access to the SBA specific registers  */
777 	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
778 	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
779 	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
780 	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
781 
782 	if (!fore200e->virt_base) {
783 		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
784 		return -EFAULT;
785 	}
786 
787 	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
788 
789 	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
790 
791 	/* get the supported DVMA burst sizes */
792 	bursts = of_getintprop_default(op->node->parent, "burst-sizes", 0x00);
793 
794 	if (sbus_can_dma_64bit())
795 		sbus_set_sbus64(&op->dev, bursts);
796 
797 	fore200e->state = FORE200E_STATE_MAP;
798 	return 0;
799 }
800 
801 static void fore200e_sba_unmap(struct fore200e *fore200e)
802 {
803 	struct of_device *op = fore200e->bus_dev;
804 
805 	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
806 	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
807 	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
808 	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
809 }
810 
811 static int __init fore200e_sba_configure(struct fore200e *fore200e)
812 {
813 	fore200e->state = FORE200E_STATE_CONFIGURE;
814 	return 0;
815 }
816 
817 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
818 {
819 	struct of_device *op = fore200e->bus_dev;
820 	const u8 *prop;
821 	int len;
822 
823 	prop = of_get_property(op->node, "madaddrlo2", &len);
824 	if (!prop)
825 		return -ENODEV;
826 	memcpy(&prom->mac_addr[4], prop, 4);
827 
828 	prop = of_get_property(op->node, "madaddrhi4", &len);
829 	if (!prop)
830 		return -ENODEV;
831 	memcpy(&prom->mac_addr[2], prop, 4);
832 
833 	prom->serial_number = of_getintprop_default(op->node, "serialnumber", 0);
834 	prom->hw_revision = of_getintprop_default(op->node, "promversion", 0);
835 
836 	return 0;
837 }
838 
839 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
840 {
841 	struct of_device *op = fore200e->bus_dev;
842 	const struct linux_prom_registers *regs;
843 
844 	regs = of_get_property(op->node, "reg", NULL);
845 
846 	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
847 		       (regs ? regs->which_io : 0), op->node->name);
848 }
849 #endif /* CONFIG_SBUS */
850 
851 
852 static void
853 fore200e_tx_irq(struct fore200e* fore200e)
854 {
855     struct host_txq*        txq = &fore200e->host_txq;
856     struct host_txq_entry*  entry;
857     struct atm_vcc*         vcc;
858     struct fore200e_vc_map* vc_map;
859 
860     if (fore200e->host_txq.txing == 0)
861 	return;
862 
863     for (;;) {
864 
865 	entry = &txq->host_entry[ txq->tail ];
866 
867         if ((*entry->status & STATUS_COMPLETE) == 0) {
868 	    break;
869 	}
870 
871 	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
872 		entry, txq->tail, entry->vc_map, entry->skb);
873 
874 	/* free copy of misaligned data */
875 	kfree(entry->data);
876 
877 	/* remove DMA mapping */
878 	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
879 				 DMA_TO_DEVICE);
880 
881 	vc_map = entry->vc_map;
882 
883 	/* vcc closed since the time the entry was submitted for tx? */
884 	if ((vc_map->vcc == NULL) ||
885 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
886 
887 	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
888 		    fore200e->atm_dev->number);
889 
890 	    dev_kfree_skb_any(entry->skb);
891 	}
892 	else {
893 	    ASSERT(vc_map->vcc);
894 
895 	    /* vcc closed then immediately re-opened? */
896 	    if (vc_map->incarn != entry->incarn) {
897 
898 		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
899 		   if the same vcc is immediately re-opened, those pending PDUs must
900 		   not be popped after the completion of their emission, as they refer
901 		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
902 		   would be decremented by the size of the (unrelated) skb, possibly
903 		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
904 		   we thus bind the tx entry to the current incarnation of the vcc
905 		   when the entry is submitted for tx. When the tx later completes,
906 		   if the incarnation number of the tx entry does not match the one
907 		   of the vcc, then this implies that the vcc has been closed then re-opened.
908 		   we thus just drop the skb here. */
909 
910 		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
911 			fore200e->atm_dev->number);
912 
913 		dev_kfree_skb_any(entry->skb);
914 	    }
915 	    else {
916 		vcc = vc_map->vcc;
917 		ASSERT(vcc);
918 
919 		/* notify tx completion */
920 		if (vcc->pop) {
921 		    vcc->pop(vcc, entry->skb);
922 		}
923 		else {
924 		    dev_kfree_skb_any(entry->skb);
925 		}
926 #if 1
927 		/* race fixed by the above incarnation mechanism, but... */
928 		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
929 		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
930 		}
931 #endif
932 		/* check error condition */
933 		if (*entry->status & STATUS_ERROR)
934 		    atomic_inc(&vcc->stats->tx_err);
935 		else
936 		    atomic_inc(&vcc->stats->tx);
937 	    }
938 	}
939 
940 	*entry->status = STATUS_FREE;
941 
942 	fore200e->host_txq.txing--;
943 
944 	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
945     }
946 }
947 
948 
949 #ifdef FORE200E_BSQ_DEBUG
950 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
951 {
952     struct buffer* buffer;
953     int count = 0;
954 
955     buffer = bsq->freebuf;
956     while (buffer) {
957 
958 	if (buffer->supplied) {
959 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
960 		   where, scheme, magn, buffer->index);
961 	}
962 
963 	if (buffer->magn != magn) {
964 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
965 		   where, scheme, magn, buffer->index, buffer->magn);
966 	}
967 
968 	if (buffer->scheme != scheme) {
969 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
970 		   where, scheme, magn, buffer->index, buffer->scheme);
971 	}
972 
973 	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
974 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
975 		   where, scheme, magn, buffer->index);
976 	}
977 
978 	count++;
979 	buffer = buffer->next;
980     }
981 
982     if (count != bsq->freebuf_count) {
983 	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
984 	       where, scheme, magn, count, bsq->freebuf_count);
985     }
986     return 0;
987 }
988 #endif
989 
990 
991 static void
992 fore200e_supply(struct fore200e* fore200e)
993 {
994     int  scheme, magn, i;
995 
996     struct host_bsq*       bsq;
997     struct host_bsq_entry* entry;
998     struct buffer*         buffer;
999 
1000     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1001 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1002 
1003 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1004 
1005 #ifdef FORE200E_BSQ_DEBUG
1006 	    bsq_audit(1, bsq, scheme, magn);
1007 #endif
1008 	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1009 
1010 		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1011 			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1012 
1013 		entry = &bsq->host_entry[ bsq->head ];
1014 
1015 		for (i = 0; i < RBD_BLK_SIZE; i++) {
1016 
1017 		    /* take the first buffer in the free buffer list */
1018 		    buffer = bsq->freebuf;
1019 		    if (!buffer) {
1020 			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1021 			       scheme, magn, bsq->freebuf_count);
1022 			return;
1023 		    }
1024 		    bsq->freebuf = buffer->next;
1025 
1026 #ifdef FORE200E_BSQ_DEBUG
1027 		    if (buffer->supplied)
1028 			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1029 			       scheme, magn, buffer->index);
1030 		    buffer->supplied = 1;
1031 #endif
1032 		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1033 		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1034 		}
1035 
1036 		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1037 
1038  		/* decrease accordingly the number of free rx buffers */
1039 		bsq->freebuf_count -= RBD_BLK_SIZE;
1040 
1041 		*entry->status = STATUS_PENDING;
1042 		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1043 	    }
1044 	}
1045     }
1046 }
1047 
1048 
1049 static int
1050 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1051 {
1052     struct sk_buff*      skb;
1053     struct buffer*       buffer;
1054     struct fore200e_vcc* fore200e_vcc;
1055     int                  i, pdu_len = 0;
1056 #ifdef FORE200E_52BYTE_AAL0_SDU
1057     u32                  cell_header = 0;
1058 #endif
1059 
1060     ASSERT(vcc);
1061 
1062     fore200e_vcc = FORE200E_VCC(vcc);
1063     ASSERT(fore200e_vcc);
1064 
1065 #ifdef FORE200E_52BYTE_AAL0_SDU
1066     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1067 
1068 	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1069 	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1070                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1071                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1072                        rpd->atm_header.clp;
1073 	pdu_len = 4;
1074     }
1075 #endif
1076 
1077     /* compute total PDU length */
1078     for (i = 0; i < rpd->nseg; i++)
1079 	pdu_len += rpd->rsd[ i ].length;
1080 
1081     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1082     if (skb == NULL) {
1083 	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1084 
1085 	atomic_inc(&vcc->stats->rx_drop);
1086 	return -ENOMEM;
1087     }
1088 
1089     __net_timestamp(skb);
1090 
1091 #ifdef FORE200E_52BYTE_AAL0_SDU
1092     if (cell_header) {
1093 	*((u32*)skb_put(skb, 4)) = cell_header;
1094     }
1095 #endif
1096 
1097     /* reassemble segments */
1098     for (i = 0; i < rpd->nseg; i++) {
1099 
1100 	/* rebuild rx buffer address from rsd handle */
1101 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1102 
1103 	/* Make device DMA transfer visible to CPU.  */
1104 	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1105 
1106 	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1107 
1108 	/* Now let the device get at it again.  */
1109 	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1110     }
1111 
1112     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1113 
1114     if (pdu_len < fore200e_vcc->rx_min_pdu)
1115 	fore200e_vcc->rx_min_pdu = pdu_len;
1116     if (pdu_len > fore200e_vcc->rx_max_pdu)
1117 	fore200e_vcc->rx_max_pdu = pdu_len;
1118     fore200e_vcc->rx_pdu++;
1119 
1120     /* push PDU */
1121     if (atm_charge(vcc, skb->truesize) == 0) {
1122 
1123 	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1124 		vcc->itf, vcc->vpi, vcc->vci);
1125 
1126 	dev_kfree_skb_any(skb);
1127 
1128 	atomic_inc(&vcc->stats->rx_drop);
1129 	return -ENOMEM;
1130     }
1131 
1132     ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1133 
1134     vcc->push(vcc, skb);
1135     atomic_inc(&vcc->stats->rx);
1136 
1137     ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1138 
1139     return 0;
1140 }
1141 
1142 
1143 static void
1144 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145 {
1146     struct host_bsq* bsq;
1147     struct buffer*   buffer;
1148     int              i;
1149 
1150     for (i = 0; i < rpd->nseg; i++) {
1151 
1152 	/* rebuild rx buffer address from rsd handle */
1153 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154 
1155 	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156 
1157 #ifdef FORE200E_BSQ_DEBUG
1158 	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159 
1160 	if (buffer->supplied == 0)
1161 	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162 		   buffer->scheme, buffer->magn, buffer->index);
1163 	buffer->supplied = 0;
1164 #endif
1165 
1166 	/* re-insert the buffer into the free buffer list */
1167 	buffer->next = bsq->freebuf;
1168 	bsq->freebuf = buffer;
1169 
1170 	/* then increment the number of free rx buffers */
1171 	bsq->freebuf_count++;
1172     }
1173 }
1174 
1175 
1176 static void
1177 fore200e_rx_irq(struct fore200e* fore200e)
1178 {
1179     struct host_rxq*        rxq = &fore200e->host_rxq;
1180     struct host_rxq_entry*  entry;
1181     struct atm_vcc*         vcc;
1182     struct fore200e_vc_map* vc_map;
1183 
1184     for (;;) {
1185 
1186 	entry = &rxq->host_entry[ rxq->head ];
1187 
1188 	/* no more received PDUs */
1189 	if ((*entry->status & STATUS_COMPLETE) == 0)
1190 	    break;
1191 
1192 	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193 
1194 	if ((vc_map->vcc == NULL) ||
1195 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196 
1197 	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198 		    fore200e->atm_dev->number,
1199 		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200 	}
1201 	else {
1202 	    vcc = vc_map->vcc;
1203 	    ASSERT(vcc);
1204 
1205 	    if ((*entry->status & STATUS_ERROR) == 0) {
1206 
1207 		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208 	    }
1209 	    else {
1210 		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211 			fore200e->atm_dev->number,
1212 			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213 		atomic_inc(&vcc->stats->rx_err);
1214 	    }
1215 	}
1216 
1217 	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218 
1219 	fore200e_collect_rpd(fore200e, entry->rpd);
1220 
1221 	/* rewrite the rpd address to ack the received PDU */
1222 	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223 	*entry->status = STATUS_FREE;
1224 
1225 	fore200e_supply(fore200e);
1226     }
1227 }
1228 
1229 
1230 #ifndef FORE200E_USE_TASKLET
1231 static void
1232 fore200e_irq(struct fore200e* fore200e)
1233 {
1234     unsigned long flags;
1235 
1236     spin_lock_irqsave(&fore200e->q_lock, flags);
1237     fore200e_rx_irq(fore200e);
1238     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239 
1240     spin_lock_irqsave(&fore200e->q_lock, flags);
1241     fore200e_tx_irq(fore200e);
1242     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243 }
1244 #endif
1245 
1246 
1247 static irqreturn_t
1248 fore200e_interrupt(int irq, void* dev)
1249 {
1250     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251 
1252     if (fore200e->bus->irq_check(fore200e) == 0) {
1253 
1254 	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255 	return IRQ_NONE;
1256     }
1257     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258 
1259 #ifdef FORE200E_USE_TASKLET
1260     tasklet_schedule(&fore200e->tx_tasklet);
1261     tasklet_schedule(&fore200e->rx_tasklet);
1262 #else
1263     fore200e_irq(fore200e);
1264 #endif
1265 
1266     fore200e->bus->irq_ack(fore200e);
1267     return IRQ_HANDLED;
1268 }
1269 
1270 
1271 #ifdef FORE200E_USE_TASKLET
1272 static void
1273 fore200e_tx_tasklet(unsigned long data)
1274 {
1275     struct fore200e* fore200e = (struct fore200e*) data;
1276     unsigned long flags;
1277 
1278     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279 
1280     spin_lock_irqsave(&fore200e->q_lock, flags);
1281     fore200e_tx_irq(fore200e);
1282     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283 }
1284 
1285 
1286 static void
1287 fore200e_rx_tasklet(unsigned long data)
1288 {
1289     struct fore200e* fore200e = (struct fore200e*) data;
1290     unsigned long    flags;
1291 
1292     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293 
1294     spin_lock_irqsave(&fore200e->q_lock, flags);
1295     fore200e_rx_irq((struct fore200e*) data);
1296     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297 }
1298 #endif
1299 
1300 
1301 static int
1302 fore200e_select_scheme(struct atm_vcc* vcc)
1303 {
1304     /* fairly balance the VCs over (identical) buffer schemes */
1305     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306 
1307     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308 	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1309 
1310     return scheme;
1311 }
1312 
1313 
1314 static int
1315 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316 {
1317     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319     struct activate_opcode   activ_opcode;
1320     struct deactivate_opcode deactiv_opcode;
1321     struct vpvc              vpvc;
1322     int                      ok;
1323     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324 
1325     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326 
1327     if (activate) {
1328 	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329 
1330 	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331 	activ_opcode.aal    = aal;
1332 	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333 	activ_opcode.pad    = 0;
1334     }
1335     else {
1336 	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337 	deactiv_opcode.pad    = 0;
1338     }
1339 
1340     vpvc.vci = vcc->vci;
1341     vpvc.vpi = vcc->vpi;
1342 
1343     *entry->status = STATUS_PENDING;
1344 
1345     if (activate) {
1346 
1347 #ifdef FORE200E_52BYTE_AAL0_SDU
1348 	mtu = 48;
1349 #endif
1350 	/* the MTU is not used by the cp, except in the case of AAL0 */
1351 	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353 	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354     }
1355     else {
1356 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357 	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358     }
1359 
1360     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361 
1362     *entry->status = STATUS_FREE;
1363 
1364     if (ok == 0) {
1365 	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366 	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367 	return -EIO;
1368     }
1369 
1370     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1371 	    activate ? "open" : "clos");
1372 
1373     return 0;
1374 }
1375 
1376 
1377 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378 
1379 static void
1380 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381 {
1382     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383 
1384 	/* compute the data cells to idle cells ratio from the tx PCR */
1385 	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386 	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387     }
1388     else {
1389 	/* disable rate control */
1390 	rate->data_cells = rate->idle_cells = 0;
1391     }
1392 }
1393 
1394 
1395 static int
1396 fore200e_open(struct atm_vcc *vcc)
1397 {
1398     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399     struct fore200e_vcc*    fore200e_vcc;
1400     struct fore200e_vc_map* vc_map;
1401     unsigned long	    flags;
1402     int			    vci = vcc->vci;
1403     short		    vpi = vcc->vpi;
1404 
1405     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407 
1408     spin_lock_irqsave(&fore200e->q_lock, flags);
1409 
1410     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411     if (vc_map->vcc) {
1412 
1413 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414 
1415 	printk(FORE200E "VC %d.%d.%d already in use\n",
1416 	       fore200e->atm_dev->number, vpi, vci);
1417 
1418 	return -EINVAL;
1419     }
1420 
1421     vc_map->vcc = vcc;
1422 
1423     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424 
1425     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426     if (fore200e_vcc == NULL) {
1427 	vc_map->vcc = NULL;
1428 	return -ENOMEM;
1429     }
1430 
1431     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434 	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435 	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436 	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437 	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438 
1439     /* pseudo-CBR bandwidth requested? */
1440     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441 
1442 	mutex_lock(&fore200e->rate_mtx);
1443 	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444 	    mutex_unlock(&fore200e->rate_mtx);
1445 
1446 	    kfree(fore200e_vcc);
1447 	    vc_map->vcc = NULL;
1448 	    return -EAGAIN;
1449 	}
1450 
1451 	/* reserve bandwidth */
1452 	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453 	mutex_unlock(&fore200e->rate_mtx);
1454     }
1455 
1456     vcc->itf = vcc->dev->number;
1457 
1458     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459     set_bit(ATM_VF_ADDR, &vcc->flags);
1460 
1461     vcc->dev_data = fore200e_vcc;
1462 
1463     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464 
1465 	vc_map->vcc = NULL;
1466 
1467 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1468 	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469 
1470 	vcc->dev_data = NULL;
1471 
1472 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473 
1474 	kfree(fore200e_vcc);
1475 	return -EINVAL;
1476     }
1477 
1478     /* compute rate control parameters */
1479     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480 
1481 	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1483 
1484 	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485 		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486 		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1487 		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488     }
1489 
1490     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493 
1494     /* new incarnation of the vcc */
1495     vc_map->incarn = ++fore200e->incarn_count;
1496 
1497     /* VC unusable before this flag is set */
1498     set_bit(ATM_VF_READY, &vcc->flags);
1499 
1500     return 0;
1501 }
1502 
1503 
1504 static void
1505 fore200e_close(struct atm_vcc* vcc)
1506 {
1507     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1508     struct fore200e_vcc*    fore200e_vcc;
1509     struct fore200e_vc_map* vc_map;
1510     unsigned long           flags;
1511 
1512     ASSERT(vcc);
1513     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515 
1516     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517 
1518     clear_bit(ATM_VF_READY, &vcc->flags);
1519 
1520     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521 
1522     spin_lock_irqsave(&fore200e->q_lock, flags);
1523 
1524     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525 
1526     /* the vc is no longer considered as "in use" by fore200e_open() */
1527     vc_map->vcc = NULL;
1528 
1529     vcc->itf = vcc->vci = vcc->vpi = 0;
1530 
1531     fore200e_vcc = FORE200E_VCC(vcc);
1532     vcc->dev_data = NULL;
1533 
1534     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535 
1536     /* release reserved bandwidth, if any */
1537     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538 
1539 	mutex_lock(&fore200e->rate_mtx);
1540 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1541 	mutex_unlock(&fore200e->rate_mtx);
1542 
1543 	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544     }
1545 
1546     clear_bit(ATM_VF_ADDR, &vcc->flags);
1547     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548 
1549     ASSERT(fore200e_vcc);
1550     kfree(fore200e_vcc);
1551 }
1552 
1553 
1554 static int
1555 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556 {
1557     struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1558     struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1559     struct fore200e_vc_map* vc_map;
1560     struct host_txq*        txq          = &fore200e->host_txq;
1561     struct host_txq_entry*  entry;
1562     struct tpd*             tpd;
1563     struct tpd_haddr        tpd_haddr;
1564     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1565     int                     tx_copy      = 0;
1566     int                     tx_len       = skb->len;
1567     u32*                    cell_header  = NULL;
1568     unsigned char*          skb_data;
1569     int                     skb_len;
1570     unsigned char*          data;
1571     unsigned long           flags;
1572 
1573     ASSERT(vcc);
1574     ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1575     ASSERT(fore200e);
1576     ASSERT(fore200e_vcc);
1577 
1578     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1579 	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1580 	dev_kfree_skb_any(skb);
1581 	return -EINVAL;
1582     }
1583 
1584 #ifdef FORE200E_52BYTE_AAL0_SDU
1585     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1586 	cell_header = (u32*) skb->data;
1587 	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1588 	skb_len     = tx_len = skb->len  - 4;
1589 
1590 	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1591     }
1592     else
1593 #endif
1594     {
1595 	skb_data = skb->data;
1596 	skb_len  = skb->len;
1597     }
1598 
1599     if (((unsigned long)skb_data) & 0x3) {
1600 
1601 	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1602 	tx_copy = 1;
1603 	tx_len  = skb_len;
1604     }
1605 
1606     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1607 
1608         /* this simply NUKES the PCA board */
1609 	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1610 	tx_copy = 1;
1611 	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1612     }
1613 
1614     if (tx_copy) {
1615 	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1616 	if (data == NULL) {
1617 	    if (vcc->pop) {
1618 		vcc->pop(vcc, skb);
1619 	    }
1620 	    else {
1621 		dev_kfree_skb_any(skb);
1622 	    }
1623 	    return -ENOMEM;
1624 	}
1625 
1626 	memcpy(data, skb_data, skb_len);
1627 	if (skb_len < tx_len)
1628 	    memset(data + skb_len, 0x00, tx_len - skb_len);
1629     }
1630     else {
1631 	data = skb_data;
1632     }
1633 
1634     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1635     ASSERT(vc_map->vcc == vcc);
1636 
1637   retry_here:
1638 
1639     spin_lock_irqsave(&fore200e->q_lock, flags);
1640 
1641     entry = &txq->host_entry[ txq->head ];
1642 
1643     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1644 
1645 	/* try to free completed tx queue entries */
1646 	fore200e_tx_irq(fore200e);
1647 
1648 	if (*entry->status != STATUS_FREE) {
1649 
1650 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1651 
1652 	    /* retry once again? */
1653 	    if (--retry > 0) {
1654 		udelay(50);
1655 		goto retry_here;
1656 	    }
1657 
1658 	    atomic_inc(&vcc->stats->tx_err);
1659 
1660 	    fore200e->tx_sat++;
1661 	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1662 		    fore200e->name, fore200e->cp_queues->heartbeat);
1663 	    if (vcc->pop) {
1664 		vcc->pop(vcc, skb);
1665 	    }
1666 	    else {
1667 		dev_kfree_skb_any(skb);
1668 	    }
1669 
1670 	    if (tx_copy)
1671 		kfree(data);
1672 
1673 	    return -ENOBUFS;
1674 	}
1675     }
1676 
1677     entry->incarn = vc_map->incarn;
1678     entry->vc_map = vc_map;
1679     entry->skb    = skb;
1680     entry->data   = tx_copy ? data : NULL;
1681 
1682     tpd = entry->tpd;
1683     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1684     tpd->tsd[ 0 ].length = tx_len;
1685 
1686     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1687     txq->txing++;
1688 
1689     /* The dma_map call above implies a dma_sync so the device can use it,
1690      * thus no explicit dma_sync call is necessary here.
1691      */
1692 
1693     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1694 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1695 	    tpd->tsd[0].length, skb_len);
1696 
1697     if (skb_len < fore200e_vcc->tx_min_pdu)
1698 	fore200e_vcc->tx_min_pdu = skb_len;
1699     if (skb_len > fore200e_vcc->tx_max_pdu)
1700 	fore200e_vcc->tx_max_pdu = skb_len;
1701     fore200e_vcc->tx_pdu++;
1702 
1703     /* set tx rate control information */
1704     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1705     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1706 
1707     if (cell_header) {
1708 	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1709 	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1710 	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1711 	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1712 	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1713     }
1714     else {
1715 	/* set the ATM header, common to all cells conveying the PDU */
1716 	tpd->atm_header.clp = 0;
1717 	tpd->atm_header.plt = 0;
1718 	tpd->atm_header.vci = vcc->vci;
1719 	tpd->atm_header.vpi = vcc->vpi;
1720 	tpd->atm_header.gfc = 0;
1721     }
1722 
1723     tpd->spec.length = tx_len;
1724     tpd->spec.nseg   = 1;
1725     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1726     tpd->spec.intr   = 1;
1727 
1728     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1729     tpd_haddr.pad   = 0;
1730     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1731 
1732     *entry->status = STATUS_PENDING;
1733     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1734 
1735     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1736 
1737     return 0;
1738 }
1739 
1740 
1741 static int
1742 fore200e_getstats(struct fore200e* fore200e)
1743 {
1744     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1745     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1746     struct stats_opcode     opcode;
1747     int                     ok;
1748     u32                     stats_dma_addr;
1749 
1750     if (fore200e->stats == NULL) {
1751 	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1752 	if (fore200e->stats == NULL)
1753 	    return -ENOMEM;
1754     }
1755 
1756     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1757 					    sizeof(struct stats), DMA_FROM_DEVICE);
1758 
1759     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760 
1761     opcode.opcode = OPCODE_GET_STATS;
1762     opcode.pad    = 0;
1763 
1764     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1765 
1766     *entry->status = STATUS_PENDING;
1767 
1768     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1769 
1770     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1771 
1772     *entry->status = STATUS_FREE;
1773 
1774     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1775 
1776     if (ok == 0) {
1777 	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1778 	return -EIO;
1779     }
1780 
1781     return 0;
1782 }
1783 
1784 
1785 static int
1786 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1787 {
1788     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1789 
1790     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1791 	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1792 
1793     return -EINVAL;
1794 }
1795 
1796 
1797 static int
1798 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1799 {
1800     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1801 
1802     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1803 	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1804 
1805     return -EINVAL;
1806 }
1807 
1808 
1809 #if 0 /* currently unused */
1810 static int
1811 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1812 {
1813     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1814     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1815     struct oc3_opcode       opcode;
1816     int                     ok;
1817     u32                     oc3_regs_dma_addr;
1818 
1819     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1820 
1821     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1822 
1823     opcode.opcode = OPCODE_GET_OC3;
1824     opcode.reg    = 0;
1825     opcode.value  = 0;
1826     opcode.mask   = 0;
1827 
1828     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1829 
1830     *entry->status = STATUS_PENDING;
1831 
1832     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1833 
1834     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1835 
1836     *entry->status = STATUS_FREE;
1837 
1838     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1839 
1840     if (ok == 0) {
1841 	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1842 	return -EIO;
1843     }
1844 
1845     return 0;
1846 }
1847 #endif
1848 
1849 
1850 static int
1851 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1852 {
1853     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1854     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1855     struct oc3_opcode       opcode;
1856     int                     ok;
1857 
1858     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1859 
1860     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1861 
1862     opcode.opcode = OPCODE_SET_OC3;
1863     opcode.reg    = reg;
1864     opcode.value  = value;
1865     opcode.mask   = mask;
1866 
1867     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1868 
1869     *entry->status = STATUS_PENDING;
1870 
1871     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1872 
1873     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1874 
1875     *entry->status = STATUS_FREE;
1876 
1877     if (ok == 0) {
1878 	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1879 	return -EIO;
1880     }
1881 
1882     return 0;
1883 }
1884 
1885 
1886 static int
1887 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1888 {
1889     u32 mct_value, mct_mask;
1890     int error;
1891 
1892     if (!capable(CAP_NET_ADMIN))
1893 	return -EPERM;
1894 
1895     switch (loop_mode) {
1896 
1897     case ATM_LM_NONE:
1898 	mct_value = 0;
1899 	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1900 	break;
1901 
1902     case ATM_LM_LOC_PHY:
1903 	mct_value = mct_mask = SUNI_MCT_DLE;
1904 	break;
1905 
1906     case ATM_LM_RMT_PHY:
1907 	mct_value = mct_mask = SUNI_MCT_LLE;
1908 	break;
1909 
1910     default:
1911 	return -EINVAL;
1912     }
1913 
1914     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1915     if (error == 0)
1916 	fore200e->loop_mode = loop_mode;
1917 
1918     return error;
1919 }
1920 
1921 
1922 static int
1923 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1924 {
1925     struct sonet_stats tmp;
1926 
1927     if (fore200e_getstats(fore200e) < 0)
1928 	return -EIO;
1929 
1930     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1931     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1932     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1933     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1934     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1935     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1936     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1937     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1938 	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1939 	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1940     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1941 	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1942 	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1943 
1944     if (arg)
1945 	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1946 
1947     return 0;
1948 }
1949 
1950 
1951 static int
1952 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1953 {
1954     struct fore200e* fore200e = FORE200E_DEV(dev);
1955 
1956     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1957 
1958     switch (cmd) {
1959 
1960     case SONET_GETSTAT:
1961 	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1962 
1963     case SONET_GETDIAG:
1964 	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1965 
1966     case ATM_SETLOOP:
1967 	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1968 
1969     case ATM_GETLOOP:
1970 	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1971 
1972     case ATM_QUERYLOOP:
1973 	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1974     }
1975 
1976     return -ENOSYS; /* not implemented */
1977 }
1978 
1979 
1980 static int
1981 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1982 {
1983     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1984     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1985 
1986     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1987 	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1988 	return -EINVAL;
1989     }
1990 
1991     DPRINTK(2, "change_qos %d.%d.%d, "
1992 	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1993 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1994 	    "available_cell_rate = %u",
1995 	    vcc->itf, vcc->vpi, vcc->vci,
1996 	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1997 	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1998 	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1999 	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2000 	    flags, fore200e->available_cell_rate);
2001 
2002     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2003 
2004 	mutex_lock(&fore200e->rate_mtx);
2005 	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2006 	    mutex_unlock(&fore200e->rate_mtx);
2007 	    return -EAGAIN;
2008 	}
2009 
2010 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2011 	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2012 
2013 	mutex_unlock(&fore200e->rate_mtx);
2014 
2015 	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2016 
2017 	/* update rate control parameters */
2018 	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2019 
2020 	set_bit(ATM_VF_HASQOS, &vcc->flags);
2021 
2022 	return 0;
2023     }
2024 
2025     return -EINVAL;
2026 }
2027 
2028 
2029 static int __devinit
2030 fore200e_irq_request(struct fore200e* fore200e)
2031 {
2032     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2033 
2034 	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2035 	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2036 	return -EBUSY;
2037     }
2038 
2039     printk(FORE200E "IRQ %s reserved for device %s\n",
2040 	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2041 
2042 #ifdef FORE200E_USE_TASKLET
2043     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2044     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2045 #endif
2046 
2047     fore200e->state = FORE200E_STATE_IRQ;
2048     return 0;
2049 }
2050 
2051 
2052 static int __devinit
2053 fore200e_get_esi(struct fore200e* fore200e)
2054 {
2055     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2056     int ok, i;
2057 
2058     if (!prom)
2059 	return -ENOMEM;
2060 
2061     ok = fore200e->bus->prom_read(fore200e, prom);
2062     if (ok < 0) {
2063 	kfree(prom);
2064 	return -EBUSY;
2065     }
2066 
2067     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2068 	   fore200e->name,
2069 	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2070 	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2071 
2072     for (i = 0; i < ESI_LEN; i++) {
2073 	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2074     }
2075 
2076     kfree(prom);
2077 
2078     return 0;
2079 }
2080 
2081 
2082 static int __devinit
2083 fore200e_alloc_rx_buf(struct fore200e* fore200e)
2084 {
2085     int scheme, magn, nbr, size, i;
2086 
2087     struct host_bsq* bsq;
2088     struct buffer*   buffer;
2089 
2090     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2091 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2092 
2093 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2094 
2095 	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2096 	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2097 
2098 	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2099 
2100 	    /* allocate the array of receive buffers */
2101 	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2102 
2103 	    if (buffer == NULL)
2104 		return -ENOMEM;
2105 
2106 	    bsq->freebuf = NULL;
2107 
2108 	    for (i = 0; i < nbr; i++) {
2109 
2110 		buffer[ i ].scheme = scheme;
2111 		buffer[ i ].magn   = magn;
2112 #ifdef FORE200E_BSQ_DEBUG
2113 		buffer[ i ].index  = i;
2114 		buffer[ i ].supplied = 0;
2115 #endif
2116 
2117 		/* allocate the receive buffer body */
2118 		if (fore200e_chunk_alloc(fore200e,
2119 					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2120 					 DMA_FROM_DEVICE) < 0) {
2121 
2122 		    while (i > 0)
2123 			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2124 		    kfree(buffer);
2125 
2126 		    return -ENOMEM;
2127 		}
2128 
2129 		/* insert the buffer into the free buffer list */
2130 		buffer[ i ].next = bsq->freebuf;
2131 		bsq->freebuf = &buffer[ i ];
2132 	    }
2133 	    /* all the buffers are free, initially */
2134 	    bsq->freebuf_count = nbr;
2135 
2136 #ifdef FORE200E_BSQ_DEBUG
2137 	    bsq_audit(3, bsq, scheme, magn);
2138 #endif
2139 	}
2140     }
2141 
2142     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2143     return 0;
2144 }
2145 
2146 
2147 static int __devinit
2148 fore200e_init_bs_queue(struct fore200e* fore200e)
2149 {
2150     int scheme, magn, i;
2151 
2152     struct host_bsq*     bsq;
2153     struct cp_bsq_entry __iomem * cp_entry;
2154 
2155     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2156 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2157 
2158 	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2159 
2160 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2161 
2162 	    /* allocate and align the array of status words */
2163 	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2164 					       &bsq->status,
2165 					       sizeof(enum status),
2166 					       QUEUE_SIZE_BS,
2167 					       fore200e->bus->status_alignment) < 0) {
2168 		return -ENOMEM;
2169 	    }
2170 
2171 	    /* allocate and align the array of receive buffer descriptors */
2172 	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2173 					       &bsq->rbd_block,
2174 					       sizeof(struct rbd_block),
2175 					       QUEUE_SIZE_BS,
2176 					       fore200e->bus->descr_alignment) < 0) {
2177 
2178 		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2179 		return -ENOMEM;
2180 	    }
2181 
2182 	    /* get the base address of the cp resident buffer supply queue entries */
2183 	    cp_entry = fore200e->virt_base +
2184 		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2185 
2186 	    /* fill the host resident and cp resident buffer supply queue entries */
2187 	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2188 
2189 		bsq->host_entry[ i ].status =
2190 		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2191 	        bsq->host_entry[ i ].rbd_block =
2192 		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2193 		bsq->host_entry[ i ].rbd_block_dma =
2194 		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2195 		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2196 
2197 		*bsq->host_entry[ i ].status = STATUS_FREE;
2198 
2199 		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2200 				     &cp_entry[ i ].status_haddr);
2201 	    }
2202 	}
2203     }
2204 
2205     fore200e->state = FORE200E_STATE_INIT_BSQ;
2206     return 0;
2207 }
2208 
2209 
2210 static int __devinit
2211 fore200e_init_rx_queue(struct fore200e* fore200e)
2212 {
2213     struct host_rxq*     rxq =  &fore200e->host_rxq;
2214     struct cp_rxq_entry __iomem * cp_entry;
2215     int i;
2216 
2217     DPRINTK(2, "receive queue is being initialized\n");
2218 
2219     /* allocate and align the array of status words */
2220     if (fore200e->bus->dma_chunk_alloc(fore200e,
2221 				       &rxq->status,
2222 				       sizeof(enum status),
2223 				       QUEUE_SIZE_RX,
2224 				       fore200e->bus->status_alignment) < 0) {
2225 	return -ENOMEM;
2226     }
2227 
2228     /* allocate and align the array of receive PDU descriptors */
2229     if (fore200e->bus->dma_chunk_alloc(fore200e,
2230 				       &rxq->rpd,
2231 				       sizeof(struct rpd),
2232 				       QUEUE_SIZE_RX,
2233 				       fore200e->bus->descr_alignment) < 0) {
2234 
2235 	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2236 	return -ENOMEM;
2237     }
2238 
2239     /* get the base address of the cp resident rx queue entries */
2240     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2241 
2242     /* fill the host resident and cp resident rx entries */
2243     for (i=0; i < QUEUE_SIZE_RX; i++) {
2244 
2245 	rxq->host_entry[ i ].status =
2246 	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2247 	rxq->host_entry[ i ].rpd =
2248 	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2249 	rxq->host_entry[ i ].rpd_dma =
2250 	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2251 	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2252 
2253 	*rxq->host_entry[ i ].status = STATUS_FREE;
2254 
2255 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2256 			     &cp_entry[ i ].status_haddr);
2257 
2258 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2259 			     &cp_entry[ i ].rpd_haddr);
2260     }
2261 
2262     /* set the head entry of the queue */
2263     rxq->head = 0;
2264 
2265     fore200e->state = FORE200E_STATE_INIT_RXQ;
2266     return 0;
2267 }
2268 
2269 
2270 static int __devinit
2271 fore200e_init_tx_queue(struct fore200e* fore200e)
2272 {
2273     struct host_txq*     txq =  &fore200e->host_txq;
2274     struct cp_txq_entry __iomem * cp_entry;
2275     int i;
2276 
2277     DPRINTK(2, "transmit queue is being initialized\n");
2278 
2279     /* allocate and align the array of status words */
2280     if (fore200e->bus->dma_chunk_alloc(fore200e,
2281 				       &txq->status,
2282 				       sizeof(enum status),
2283 				       QUEUE_SIZE_TX,
2284 				       fore200e->bus->status_alignment) < 0) {
2285 	return -ENOMEM;
2286     }
2287 
2288     /* allocate and align the array of transmit PDU descriptors */
2289     if (fore200e->bus->dma_chunk_alloc(fore200e,
2290 				       &txq->tpd,
2291 				       sizeof(struct tpd),
2292 				       QUEUE_SIZE_TX,
2293 				       fore200e->bus->descr_alignment) < 0) {
2294 
2295 	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2296 	return -ENOMEM;
2297     }
2298 
2299     /* get the base address of the cp resident tx queue entries */
2300     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2301 
2302     /* fill the host resident and cp resident tx entries */
2303     for (i=0; i < QUEUE_SIZE_TX; i++) {
2304 
2305 	txq->host_entry[ i ].status =
2306 	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2307 	txq->host_entry[ i ].tpd =
2308 	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2309 	txq->host_entry[ i ].tpd_dma  =
2310                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2311 	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2312 
2313 	*txq->host_entry[ i ].status = STATUS_FREE;
2314 
2315 	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2316 			     &cp_entry[ i ].status_haddr);
2317 
2318         /* although there is a one-to-one mapping of tx queue entries and tpds,
2319 	   we do not write here the DMA (physical) base address of each tpd into
2320 	   the related cp resident entry, because the cp relies on this write
2321 	   operation to detect that a new pdu has been submitted for tx */
2322     }
2323 
2324     /* set the head and tail entries of the queue */
2325     txq->head = 0;
2326     txq->tail = 0;
2327 
2328     fore200e->state = FORE200E_STATE_INIT_TXQ;
2329     return 0;
2330 }
2331 
2332 
2333 static int __devinit
2334 fore200e_init_cmd_queue(struct fore200e* fore200e)
2335 {
2336     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2337     struct cp_cmdq_entry __iomem * cp_entry;
2338     int i;
2339 
2340     DPRINTK(2, "command queue is being initialized\n");
2341 
2342     /* allocate and align the array of status words */
2343     if (fore200e->bus->dma_chunk_alloc(fore200e,
2344 				       &cmdq->status,
2345 				       sizeof(enum status),
2346 				       QUEUE_SIZE_CMD,
2347 				       fore200e->bus->status_alignment) < 0) {
2348 	return -ENOMEM;
2349     }
2350 
2351     /* get the base address of the cp resident cmd queue entries */
2352     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2353 
2354     /* fill the host resident and cp resident cmd entries */
2355     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2356 
2357 	cmdq->host_entry[ i ].status   =
2358                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2359 	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2360 
2361 	*cmdq->host_entry[ i ].status = STATUS_FREE;
2362 
2363 	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2364                              &cp_entry[ i ].status_haddr);
2365     }
2366 
2367     /* set the head entry of the queue */
2368     cmdq->head = 0;
2369 
2370     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2371     return 0;
2372 }
2373 
2374 
2375 static void __devinit
2376 fore200e_param_bs_queue(struct fore200e* fore200e,
2377 			enum buffer_scheme scheme, enum buffer_magn magn,
2378 			int queue_length, int pool_size, int supply_blksize)
2379 {
2380     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2381 
2382     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2383     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2384     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2385     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2386 }
2387 
2388 
2389 static int __devinit
2390 fore200e_initialize(struct fore200e* fore200e)
2391 {
2392     struct cp_queues __iomem * cpq;
2393     int               ok, scheme, magn;
2394 
2395     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2396 
2397     mutex_init(&fore200e->rate_mtx);
2398     spin_lock_init(&fore200e->q_lock);
2399 
2400     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2401 
2402     /* enable cp to host interrupts */
2403     fore200e->bus->write(1, &cpq->imask);
2404 
2405     if (fore200e->bus->irq_enable)
2406 	fore200e->bus->irq_enable(fore200e);
2407 
2408     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2409 
2410     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2411     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2412     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2413 
2414     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2415     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2416 
2417     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2418 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2419 	    fore200e_param_bs_queue(fore200e, scheme, magn,
2420 				    QUEUE_SIZE_BS,
2421 				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2422 				    RBD_BLK_SIZE);
2423 
2424     /* issue the initialize command */
2425     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2426     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2427 
2428     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2429     if (ok == 0) {
2430 	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2431 	return -ENODEV;
2432     }
2433 
2434     printk(FORE200E "device %s initialized\n", fore200e->name);
2435 
2436     fore200e->state = FORE200E_STATE_INITIALIZE;
2437     return 0;
2438 }
2439 
2440 
2441 static void __devinit
2442 fore200e_monitor_putc(struct fore200e* fore200e, char c)
2443 {
2444     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2445 
2446 #if 0
2447     printk("%c", c);
2448 #endif
2449     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2450 }
2451 
2452 
2453 static int __devinit
2454 fore200e_monitor_getc(struct fore200e* fore200e)
2455 {
2456     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2457     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2458     int                c;
2459 
2460     while (time_before(jiffies, timeout)) {
2461 
2462 	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2463 
2464 	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2465 
2466 	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2467 #if 0
2468 	    printk("%c", c & 0xFF);
2469 #endif
2470 	    return c & 0xFF;
2471 	}
2472     }
2473 
2474     return -1;
2475 }
2476 
2477 
2478 static void __devinit
2479 fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2480 {
2481     while (*str) {
2482 
2483 	/* the i960 monitor doesn't accept any new character if it has something to say */
2484 	while (fore200e_monitor_getc(fore200e) >= 0);
2485 
2486 	fore200e_monitor_putc(fore200e, *str++);
2487     }
2488 
2489     while (fore200e_monitor_getc(fore200e) >= 0);
2490 }
2491 
2492 #ifdef __LITTLE_ENDIAN
2493 #define FW_EXT ".bin"
2494 #else
2495 #define FW_EXT "_ecd.bin2"
2496 #endif
2497 
2498 static int __devinit
2499 fore200e_load_and_start_fw(struct fore200e* fore200e)
2500 {
2501     const struct firmware *firmware;
2502     struct device *device;
2503     struct fw_header *fw_header;
2504     const __le32 *fw_data;
2505     u32 fw_size;
2506     u32 __iomem *load_addr;
2507     char buf[48];
2508     int err = -ENODEV;
2509 
2510     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2511 	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2512 #ifdef CONFIG_SBUS
2513     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2514 	device = &((struct of_device *) fore200e->bus_dev)->dev;
2515 #endif
2516     else
2517 	return err;
2518 
2519     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2520     if ((err = request_firmware(&firmware, buf, device)) < 0) {
2521 	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2522 	return err;
2523     }
2524 
2525     fw_data = (__le32 *) firmware->data;
2526     fw_size = firmware->size / sizeof(u32);
2527     fw_header = (struct fw_header *) firmware->data;
2528     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2529 
2530     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2531 	    fore200e->name, load_addr, fw_size);
2532 
2533     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2534 	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2535 	goto release;
2536     }
2537 
2538     for (; fw_size--; fw_data++, load_addr++)
2539 	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2540 
2541     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2542 
2543 #if defined(__sparc_v9__)
2544     /* reported to be required by SBA cards on some sparc64 hosts */
2545     fore200e_spin(100);
2546 #endif
2547 
2548     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2549     fore200e_monitor_puts(fore200e, buf);
2550 
2551     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2552 	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2553 	goto release;
2554     }
2555 
2556     printk(FORE200E "device %s firmware started\n", fore200e->name);
2557 
2558     fore200e->state = FORE200E_STATE_START_FW;
2559     err = 0;
2560 
2561 release:
2562     release_firmware(firmware);
2563     return err;
2564 }
2565 
2566 
2567 static int __devinit
2568 fore200e_register(struct fore200e* fore200e)
2569 {
2570     struct atm_dev* atm_dev;
2571 
2572     DPRINTK(2, "device %s being registered\n", fore200e->name);
2573 
2574     atm_dev = atm_dev_register(fore200e->bus->proc_name, &fore200e_ops, -1,
2575       NULL);
2576     if (atm_dev == NULL) {
2577 	printk(FORE200E "unable to register device %s\n", fore200e->name);
2578 	return -ENODEV;
2579     }
2580 
2581     atm_dev->dev_data = fore200e;
2582     fore200e->atm_dev = atm_dev;
2583 
2584     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2585     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2586 
2587     fore200e->available_cell_rate = ATM_OC3_PCR;
2588 
2589     fore200e->state = FORE200E_STATE_REGISTER;
2590     return 0;
2591 }
2592 
2593 
2594 static int __devinit
2595 fore200e_init(struct fore200e* fore200e)
2596 {
2597     if (fore200e_register(fore200e) < 0)
2598 	return -ENODEV;
2599 
2600     if (fore200e->bus->configure(fore200e) < 0)
2601 	return -ENODEV;
2602 
2603     if (fore200e->bus->map(fore200e) < 0)
2604 	return -ENODEV;
2605 
2606     if (fore200e_reset(fore200e, 1) < 0)
2607 	return -ENODEV;
2608 
2609     if (fore200e_load_and_start_fw(fore200e) < 0)
2610 	return -ENODEV;
2611 
2612     if (fore200e_initialize(fore200e) < 0)
2613 	return -ENODEV;
2614 
2615     if (fore200e_init_cmd_queue(fore200e) < 0)
2616 	return -ENOMEM;
2617 
2618     if (fore200e_init_tx_queue(fore200e) < 0)
2619 	return -ENOMEM;
2620 
2621     if (fore200e_init_rx_queue(fore200e) < 0)
2622 	return -ENOMEM;
2623 
2624     if (fore200e_init_bs_queue(fore200e) < 0)
2625 	return -ENOMEM;
2626 
2627     if (fore200e_alloc_rx_buf(fore200e) < 0)
2628 	return -ENOMEM;
2629 
2630     if (fore200e_get_esi(fore200e) < 0)
2631 	return -EIO;
2632 
2633     if (fore200e_irq_request(fore200e) < 0)
2634 	return -EBUSY;
2635 
2636     fore200e_supply(fore200e);
2637 
2638     /* all done, board initialization is now complete */
2639     fore200e->state = FORE200E_STATE_COMPLETE;
2640     return 0;
2641 }
2642 
2643 #ifdef CONFIG_SBUS
2644 static int __devinit fore200e_sba_probe(struct of_device *op,
2645 					const struct of_device_id *match)
2646 {
2647 	const struct fore200e_bus *bus = match->data;
2648 	struct fore200e *fore200e;
2649 	static int index = 0;
2650 	int err;
2651 
2652 	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2653 	if (!fore200e)
2654 		return -ENOMEM;
2655 
2656 	fore200e->bus = bus;
2657 	fore200e->bus_dev = op;
2658 	fore200e->irq = op->irqs[0];
2659 	fore200e->phys_base = op->resource[0].start;
2660 
2661 	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2662 
2663 	err = fore200e_init(fore200e);
2664 	if (err < 0) {
2665 		fore200e_shutdown(fore200e);
2666 		kfree(fore200e);
2667 		return err;
2668 	}
2669 
2670 	index++;
2671 	dev_set_drvdata(&op->dev, fore200e);
2672 
2673 	return 0;
2674 }
2675 
2676 static int __devexit fore200e_sba_remove(struct of_device *op)
2677 {
2678 	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2679 
2680 	fore200e_shutdown(fore200e);
2681 	kfree(fore200e);
2682 
2683 	return 0;
2684 }
2685 
2686 static const struct of_device_id fore200e_sba_match[] = {
2687 	{
2688 		.name = SBA200E_PROM_NAME,
2689 		.data = (void *) &fore200e_bus[1],
2690 	},
2691 	{},
2692 };
2693 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2694 
2695 static struct of_platform_driver fore200e_sba_driver = {
2696 	.name		= "fore_200e",
2697 	.match_table	= fore200e_sba_match,
2698 	.probe		= fore200e_sba_probe,
2699 	.remove		= __devexit_p(fore200e_sba_remove),
2700 };
2701 #endif
2702 
2703 #ifdef CONFIG_PCI
2704 static int __devinit
2705 fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2706 {
2707     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2708     struct fore200e* fore200e;
2709     int err = 0;
2710     static int index = 0;
2711 
2712     if (pci_enable_device(pci_dev)) {
2713 	err = -EINVAL;
2714 	goto out;
2715     }
2716 
2717     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2718     if (fore200e == NULL) {
2719 	err = -ENOMEM;
2720 	goto out_disable;
2721     }
2722 
2723     fore200e->bus       = bus;
2724     fore200e->bus_dev   = pci_dev;
2725     fore200e->irq       = pci_dev->irq;
2726     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2727 
2728     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2729 
2730     pci_set_master(pci_dev);
2731 
2732     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2733 	   fore200e->bus->model_name,
2734 	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2735 
2736     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2737 
2738     err = fore200e_init(fore200e);
2739     if (err < 0) {
2740 	fore200e_shutdown(fore200e);
2741 	goto out_free;
2742     }
2743 
2744     ++index;
2745     pci_set_drvdata(pci_dev, fore200e);
2746 
2747 out:
2748     return err;
2749 
2750 out_free:
2751     kfree(fore200e);
2752 out_disable:
2753     pci_disable_device(pci_dev);
2754     goto out;
2755 }
2756 
2757 
2758 static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2759 {
2760     struct fore200e *fore200e;
2761 
2762     fore200e = pci_get_drvdata(pci_dev);
2763 
2764     fore200e_shutdown(fore200e);
2765     kfree(fore200e);
2766     pci_disable_device(pci_dev);
2767 }
2768 
2769 
2770 static struct pci_device_id fore200e_pca_tbl[] = {
2771     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2772       0, 0, (unsigned long) &fore200e_bus[0] },
2773     { 0, }
2774 };
2775 
2776 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2777 
2778 static struct pci_driver fore200e_pca_driver = {
2779     .name =     "fore_200e",
2780     .probe =    fore200e_pca_detect,
2781     .remove =   __devexit_p(fore200e_pca_remove_one),
2782     .id_table = fore200e_pca_tbl,
2783 };
2784 #endif
2785 
2786 static int __init fore200e_module_init(void)
2787 {
2788 	int err;
2789 
2790 	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2791 
2792 #ifdef CONFIG_SBUS
2793 	err = of_register_driver(&fore200e_sba_driver, &of_bus_type);
2794 	if (err)
2795 		return err;
2796 #endif
2797 
2798 #ifdef CONFIG_PCI
2799 	err = pci_register_driver(&fore200e_pca_driver);
2800 #endif
2801 
2802 #ifdef CONFIG_SBUS
2803 	if (err)
2804 		of_unregister_driver(&fore200e_sba_driver);
2805 #endif
2806 
2807 	return err;
2808 }
2809 
2810 static void __exit fore200e_module_cleanup(void)
2811 {
2812 #ifdef CONFIG_PCI
2813 	pci_unregister_driver(&fore200e_pca_driver);
2814 #endif
2815 #ifdef CONFIG_SBUS
2816 	of_unregister_driver(&fore200e_sba_driver);
2817 #endif
2818 }
2819 
2820 static int
2821 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2822 {
2823     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2824     struct fore200e_vcc* fore200e_vcc;
2825     struct atm_vcc*      vcc;
2826     int                  i, len, left = *pos;
2827     unsigned long        flags;
2828 
2829     if (!left--) {
2830 
2831 	if (fore200e_getstats(fore200e) < 0)
2832 	    return -EIO;
2833 
2834 	len = sprintf(page,"\n"
2835 		       " device:\n"
2836 		       "   internal name:\t\t%s\n", fore200e->name);
2837 
2838 	/* print bus-specific information */
2839 	if (fore200e->bus->proc_read)
2840 	    len += fore200e->bus->proc_read(fore200e, page + len);
2841 
2842 	len += sprintf(page + len,
2843 		"   interrupt line:\t\t%s\n"
2844 		"   physical base address:\t0x%p\n"
2845 		"   virtual base address:\t0x%p\n"
2846 		"   factory address (ESI):\t%pM\n"
2847 		"   board serial number:\t\t%d\n\n",
2848 		fore200e_irq_itoa(fore200e->irq),
2849 		(void*)fore200e->phys_base,
2850 		fore200e->virt_base,
2851 		fore200e->esi,
2852 		fore200e->esi[4] * 256 + fore200e->esi[5]);
2853 
2854 	return len;
2855     }
2856 
2857     if (!left--)
2858 	return sprintf(page,
2859 		       "   free small bufs, scheme 1:\t%d\n"
2860 		       "   free large bufs, scheme 1:\t%d\n"
2861 		       "   free small bufs, scheme 2:\t%d\n"
2862 		       "   free large bufs, scheme 2:\t%d\n",
2863 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2865 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2866 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2867 
2868     if (!left--) {
2869 	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2870 
2871 	len = sprintf(page,"\n\n"
2872 		      " cell processor:\n"
2873 		      "   heartbeat state:\t\t");
2874 
2875 	if (hb >> 16 != 0xDEAD)
2876 	    len += sprintf(page + len, "0x%08x\n", hb);
2877 	else
2878 	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2879 
2880 	return len;
2881     }
2882 
2883     if (!left--) {
2884 	static const char* media_name[] = {
2885 	    "unshielded twisted pair",
2886 	    "multimode optical fiber ST",
2887 	    "multimode optical fiber SC",
2888 	    "single-mode optical fiber ST",
2889 	    "single-mode optical fiber SC",
2890 	    "unknown"
2891 	};
2892 
2893 	static const char* oc3_mode[] = {
2894 	    "normal operation",
2895 	    "diagnostic loopback",
2896 	    "line loopback",
2897 	    "unknown"
2898 	};
2899 
2900 	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2901 	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2902 	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2903 	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2904 	u32 oc3_index;
2905 
2906 	if (media_index > 4)
2907 		media_index = 5;
2908 
2909 	switch (fore200e->loop_mode) {
2910 	    case ATM_LM_NONE:    oc3_index = 0;
2911 		                 break;
2912 	    case ATM_LM_LOC_PHY: oc3_index = 1;
2913 		                 break;
2914 	    case ATM_LM_RMT_PHY: oc3_index = 2;
2915 		                 break;
2916 	    default:             oc3_index = 3;
2917 	}
2918 
2919 	return sprintf(page,
2920 		       "   firmware release:\t\t%d.%d.%d\n"
2921 		       "   monitor release:\t\t%d.%d\n"
2922 		       "   media type:\t\t\t%s\n"
2923 		       "   OC-3 revision:\t\t0x%x\n"
2924                        "   OC-3 mode:\t\t\t%s",
2925 		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2926 		       mon960_release >> 16, mon960_release << 16 >> 16,
2927 		       media_name[ media_index ],
2928 		       oc3_revision,
2929 		       oc3_mode[ oc3_index ]);
2930     }
2931 
2932     if (!left--) {
2933 	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2934 
2935 	return sprintf(page,
2936 		       "\n\n"
2937 		       " monitor:\n"
2938 		       "   version number:\t\t%d\n"
2939 		       "   boot status word:\t\t0x%08x\n",
2940 		       fore200e->bus->read(&cp_monitor->mon_version),
2941 		       fore200e->bus->read(&cp_monitor->bstat));
2942     }
2943 
2944     if (!left--)
2945 	return sprintf(page,
2946 		       "\n"
2947 		       " device statistics:\n"
2948 		       "  4b5b:\n"
2949 		       "     crc_header_errors:\t\t%10u\n"
2950 		       "     framing_errors:\t\t%10u\n",
2951 		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2952 		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2953 
2954     if (!left--)
2955 	return sprintf(page, "\n"
2956 		       "  OC-3:\n"
2957 		       "     section_bip8_errors:\t%10u\n"
2958 		       "     path_bip8_errors:\t\t%10u\n"
2959 		       "     line_bip24_errors:\t\t%10u\n"
2960 		       "     line_febe_errors:\t\t%10u\n"
2961 		       "     path_febe_errors:\t\t%10u\n"
2962 		       "     corr_hcs_errors:\t\t%10u\n"
2963 		       "     ucorr_hcs_errors:\t\t%10u\n",
2964 		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2965 		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2966 		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2967 		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2968 		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2969 		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2970 		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2971 
2972     if (!left--)
2973 	return sprintf(page,"\n"
2974 		       "   ATM:\t\t\t\t     cells\n"
2975 		       "     TX:\t\t\t%10u\n"
2976 		       "     RX:\t\t\t%10u\n"
2977 		       "     vpi out of range:\t\t%10u\n"
2978 		       "     vpi no conn:\t\t%10u\n"
2979 		       "     vci out of range:\t\t%10u\n"
2980 		       "     vci no conn:\t\t%10u\n",
2981 		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2982 		       be32_to_cpu(fore200e->stats->atm.cells_received),
2983 		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2984 		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2985 		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2986 		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2987 
2988     if (!left--)
2989 	return sprintf(page,"\n"
2990 		       "   AAL0:\t\t\t     cells\n"
2991 		       "     TX:\t\t\t%10u\n"
2992 		       "     RX:\t\t\t%10u\n"
2993 		       "     dropped:\t\t\t%10u\n",
2994 		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2995 		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2996 		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2997 
2998     if (!left--)
2999 	return sprintf(page,"\n"
3000 		       "   AAL3/4:\n"
3001 		       "     SAR sublayer:\t\t     cells\n"
3002 		       "       TX:\t\t\t%10u\n"
3003 		       "       RX:\t\t\t%10u\n"
3004 		       "       dropped:\t\t\t%10u\n"
3005 		       "       CRC errors:\t\t%10u\n"
3006 		       "       protocol errors:\t\t%10u\n\n"
3007 		       "     CS  sublayer:\t\t      PDUs\n"
3008 		       "       TX:\t\t\t%10u\n"
3009 		       "       RX:\t\t\t%10u\n"
3010 		       "       dropped:\t\t\t%10u\n"
3011 		       "       protocol errors:\t\t%10u\n",
3012 		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3013 		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3014 		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3015 		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3016 		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3017 		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3018 		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3019 		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3020 		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3021 
3022     if (!left--)
3023 	return sprintf(page,"\n"
3024 		       "   AAL5:\n"
3025 		       "     SAR sublayer:\t\t     cells\n"
3026 		       "       TX:\t\t\t%10u\n"
3027 		       "       RX:\t\t\t%10u\n"
3028 		       "       dropped:\t\t\t%10u\n"
3029 		       "       congestions:\t\t%10u\n\n"
3030 		       "     CS  sublayer:\t\t      PDUs\n"
3031 		       "       TX:\t\t\t%10u\n"
3032 		       "       RX:\t\t\t%10u\n"
3033 		       "       dropped:\t\t\t%10u\n"
3034 		       "       CRC errors:\t\t%10u\n"
3035 		       "       protocol errors:\t\t%10u\n",
3036 		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3037 		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3038 		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3039 		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3040 		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3041 		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3042 		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3043 		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3044 		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3045 
3046     if (!left--)
3047 	return sprintf(page,"\n"
3048 		       "   AUX:\t\t       allocation failures\n"
3049 		       "     small b1:\t\t\t%10u\n"
3050 		       "     large b1:\t\t\t%10u\n"
3051 		       "     small b2:\t\t\t%10u\n"
3052 		       "     large b2:\t\t\t%10u\n"
3053 		       "     RX PDUs:\t\t\t%10u\n"
3054 		       "     TX PDUs:\t\t\t%10lu\n",
3055 		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3056 		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3057 		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3058 		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3059 		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3060 		       fore200e->tx_sat);
3061 
3062     if (!left--)
3063 	return sprintf(page,"\n"
3064 		       " receive carrier:\t\t\t%s\n",
3065 		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3066 
3067     if (!left--) {
3068         return sprintf(page,"\n"
3069 		       " VCCs:\n  address   VPI VCI   AAL "
3070 		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3071     }
3072 
3073     for (i = 0; i < NBR_CONNECT; i++) {
3074 
3075 	vcc = fore200e->vc_map[i].vcc;
3076 
3077 	if (vcc == NULL)
3078 	    continue;
3079 
3080 	spin_lock_irqsave(&fore200e->q_lock, flags);
3081 
3082 	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3083 
3084 	    fore200e_vcc = FORE200E_VCC(vcc);
3085 	    ASSERT(fore200e_vcc);
3086 
3087 	    len = sprintf(page,
3088 			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3089 			  (u32)(unsigned long)vcc,
3090 			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3091 			  fore200e_vcc->tx_pdu,
3092 			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3093 			  fore200e_vcc->tx_max_pdu,
3094 			  fore200e_vcc->rx_pdu,
3095 			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3096 			  fore200e_vcc->rx_max_pdu);
3097 
3098 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3099 	    return len;
3100 	}
3101 
3102 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3103     }
3104 
3105     return 0;
3106 }
3107 
3108 module_init(fore200e_module_init);
3109 module_exit(fore200e_module_cleanup);
3110 
3111 
3112 static const struct atmdev_ops fore200e_ops =
3113 {
3114 	.open       = fore200e_open,
3115 	.close      = fore200e_close,
3116 	.ioctl      = fore200e_ioctl,
3117 	.getsockopt = fore200e_getsockopt,
3118 	.setsockopt = fore200e_setsockopt,
3119 	.send       = fore200e_send,
3120 	.change_qos = fore200e_change_qos,
3121 	.proc_read  = fore200e_proc_read,
3122 	.owner      = THIS_MODULE
3123 };
3124 
3125 
3126 static const struct fore200e_bus fore200e_bus[] = {
3127 #ifdef CONFIG_PCI
3128     { "PCA-200E", "pca200e", 32, 4, 32,
3129       fore200e_pca_read,
3130       fore200e_pca_write,
3131       fore200e_pca_dma_map,
3132       fore200e_pca_dma_unmap,
3133       fore200e_pca_dma_sync_for_cpu,
3134       fore200e_pca_dma_sync_for_device,
3135       fore200e_pca_dma_chunk_alloc,
3136       fore200e_pca_dma_chunk_free,
3137       fore200e_pca_configure,
3138       fore200e_pca_map,
3139       fore200e_pca_reset,
3140       fore200e_pca_prom_read,
3141       fore200e_pca_unmap,
3142       NULL,
3143       fore200e_pca_irq_check,
3144       fore200e_pca_irq_ack,
3145       fore200e_pca_proc_read,
3146     },
3147 #endif
3148 #ifdef CONFIG_SBUS
3149     { "SBA-200E", "sba200e", 32, 64, 32,
3150       fore200e_sba_read,
3151       fore200e_sba_write,
3152       fore200e_sba_dma_map,
3153       fore200e_sba_dma_unmap,
3154       fore200e_sba_dma_sync_for_cpu,
3155       fore200e_sba_dma_sync_for_device,
3156       fore200e_sba_dma_chunk_alloc,
3157       fore200e_sba_dma_chunk_free,
3158       fore200e_sba_configure,
3159       fore200e_sba_map,
3160       fore200e_sba_reset,
3161       fore200e_sba_prom_read,
3162       fore200e_sba_unmap,
3163       fore200e_sba_irq_enable,
3164       fore200e_sba_irq_check,
3165       fore200e_sba_irq_ack,
3166       fore200e_sba_proc_read,
3167     },
3168 #endif
3169     {}
3170 };
3171 
3172 MODULE_LICENSE("GPL");
3173 #ifdef CONFIG_PCI
3174 #ifdef __LITTLE_ENDIAN__
3175 MODULE_FIRMWARE("pca200e.bin");
3176 #else
3177 MODULE_FIRMWARE("pca200e_ecd.bin2");
3178 #endif
3179 #endif /* CONFIG_PCI */
3180 #ifdef CONFIG_SBUS
3181 MODULE_FIRMWARE("sba200e_ecd.bin2");
3182 #endif
3183