xref: /linux/drivers/atm/fore200e.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3   A FORE Systems 200E-series driver for ATM on Linux.
4   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5 
6   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7 
8   This driver simultaneously supports PCA-200E and SBA-200E adapters
9   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10 
11 */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/capability.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/pci.h>
21 #include <linux/module.h>
22 #include <linux/atmdev.h>
23 #include <linux/sonet.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/string.h>
30 #include <asm/page.h>
31 #include <asm/irq.h>
32 #include <asm/dma.h>
33 #include <asm/byteorder.h>
34 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 
37 #ifdef CONFIG_SBUS
38 #include <linux/of.h>
39 #include <linux/platform_device.h>
40 #include <asm/idprom.h>
41 #include <asm/openprom.h>
42 #include <asm/oplib.h>
43 #endif
44 
45 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
46 #define FORE200E_USE_TASKLET
47 #endif
48 
49 #if 0 /* enable the debugging code of the buffer supply queues */
50 #define FORE200E_BSQ_DEBUG
51 #endif
52 
53 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
54 #define FORE200E_52BYTE_AAL0_SDU
55 #endif
56 
57 #include "fore200e.h"
58 #include "suni.h"
59 
60 #define FORE200E_VERSION "0.3e"
61 
62 #define FORE200E         "fore200e: "
63 
64 #if 0 /* override .config */
65 #define CONFIG_ATM_FORE200E_DEBUG 1
66 #endif
67 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
68 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
69                                                   printk(FORE200E format, ##args); } while (0)
70 #else
71 #define DPRINTK(level, format, args...)  do {} while (0)
72 #endif
73 
74 
75 #define FORE200E_ALIGN(addr, alignment) \
76         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
77 
78 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
79 
80 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
81 
82 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
83 
84 #if 1
85 #define ASSERT(expr)     if (!(expr)) { \
86 			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
87 				    __func__, __LINE__, #expr); \
88 			     panic(FORE200E "%s", __func__); \
89 			 }
90 #else
91 #define ASSERT(expr)     do {} while (0)
92 #endif
93 
94 
95 static const struct atmdev_ops   fore200e_ops;
96 
97 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
98 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
99 
100 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
101     { BUFFER_S1_NBR, BUFFER_L1_NBR },
102     { BUFFER_S2_NBR, BUFFER_L2_NBR }
103 };
104 
105 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
106     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
107     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
108 };
109 
110 
111 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
112 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
113 #endif
114 
115 
116 #if 0 /* currently unused */
117 static int
118 fore200e_fore2atm_aal(enum fore200e_aal aal)
119 {
120     switch(aal) {
121     case FORE200E_AAL0:  return ATM_AAL0;
122     case FORE200E_AAL34: return ATM_AAL34;
123     case FORE200E_AAL5:  return ATM_AAL5;
124     }
125 
126     return -EINVAL;
127 }
128 #endif
129 
130 
131 static enum fore200e_aal
132 fore200e_atm2fore_aal(int aal)
133 {
134     switch(aal) {
135     case ATM_AAL0:  return FORE200E_AAL0;
136     case ATM_AAL34: return FORE200E_AAL34;
137     case ATM_AAL1:
138     case ATM_AAL2:
139     case ATM_AAL5:  return FORE200E_AAL5;
140     }
141 
142     return -EINVAL;
143 }
144 
145 
146 static char*
147 fore200e_irq_itoa(int irq)
148 {
149     static char str[8];
150     sprintf(str, "%d", irq);
151     return str;
152 }
153 
154 
155 /* allocate and align a chunk of memory intended to hold the data behing exchanged
156    between the driver and the adapter (using streaming DVMA) */
157 
158 static int
159 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
160 {
161     unsigned long offset = 0;
162 
163     if (alignment <= sizeof(int))
164 	alignment = 0;
165 
166     chunk->alloc_size = size + alignment;
167     chunk->direction  = direction;
168 
169     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
170     if (chunk->alloc_addr == NULL)
171 	return -ENOMEM;
172 
173     if (alignment > 0)
174 	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
175 
176     chunk->align_addr = chunk->alloc_addr + offset;
177 
178     chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
179 				     size, direction);
180     if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
181 	kfree(chunk->alloc_addr);
182 	return -ENOMEM;
183     }
184     return 0;
185 }
186 
187 
188 /* free a chunk of memory */
189 
190 static void
191 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
192 {
193     dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
194 		     chunk->direction);
195     kfree(chunk->alloc_addr);
196 }
197 
198 /*
199  * Allocate a DMA consistent chunk of memory intended to act as a communication
200  * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
201  * and the adapter.
202  */
203 static int
204 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
205 		int size, int nbr, int alignment)
206 {
207 	/* returned chunks are page-aligned */
208 	chunk->alloc_size = size * nbr;
209 	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
210 					       &chunk->dma_addr, GFP_KERNEL);
211 	if (!chunk->alloc_addr)
212 		return -ENOMEM;
213 	chunk->align_addr = chunk->alloc_addr;
214 	return 0;
215 }
216 
217 /*
218  * Free a DMA consistent chunk of memory.
219  */
220 static void
221 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
222 {
223 	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
224 			  chunk->dma_addr);
225 }
226 
227 static void
228 fore200e_spin(int msecs)
229 {
230     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
231     while (time_before(jiffies, timeout));
232 }
233 
234 
235 static int
236 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
237 {
238     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
239     int           ok;
240 
241     mb();
242     do {
243 	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
244 	    break;
245 
246     } while (time_before(jiffies, timeout));
247 
248 #if 1
249     if (!ok) {
250 	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
251 	       *addr, val);
252     }
253 #endif
254 
255     return ok;
256 }
257 
258 
259 static int
260 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
261 {
262     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
263     int           ok;
264 
265     do {
266 	if ((ok = (fore200e->bus->read(addr) == val)))
267 	    break;
268 
269     } while (time_before(jiffies, timeout));
270 
271 #if 1
272     if (!ok) {
273 	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
274 	       fore200e->bus->read(addr), val);
275     }
276 #endif
277 
278     return ok;
279 }
280 
281 
282 static void
283 fore200e_free_rx_buf(struct fore200e* fore200e)
284 {
285     int scheme, magn, nbr;
286     struct buffer* buffer;
287 
288     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
289 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
290 
291 	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
292 
293 		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
294 
295 		    struct chunk* data = &buffer[ nbr ].data;
296 
297 		    if (data->alloc_addr != NULL)
298 			fore200e_chunk_free(fore200e, data);
299 		}
300 	    }
301 	}
302     }
303 }
304 
305 
306 static void
307 fore200e_uninit_bs_queue(struct fore200e* fore200e)
308 {
309     int scheme, magn;
310 
311     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
312 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
313 
314 	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
315 	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
316 
317 	    if (status->alloc_addr)
318 		fore200e_dma_chunk_free(fore200e, status);
319 
320 	    if (rbd_block->alloc_addr)
321 		fore200e_dma_chunk_free(fore200e, rbd_block);
322 	}
323     }
324 }
325 
326 
327 static int
328 fore200e_reset(struct fore200e* fore200e, int diag)
329 {
330     int ok;
331 
332     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
333 
334     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
335 
336     fore200e->bus->reset(fore200e);
337 
338     if (diag) {
339 	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
340 	if (ok == 0) {
341 
342 	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
343 	    return -ENODEV;
344 	}
345 
346 	printk(FORE200E "device %s self-test passed\n", fore200e->name);
347 
348 	fore200e->state = FORE200E_STATE_RESET;
349     }
350 
351     return 0;
352 }
353 
354 
355 static void
356 fore200e_shutdown(struct fore200e* fore200e)
357 {
358     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
359 	   fore200e->name, fore200e->phys_base,
360 	   fore200e_irq_itoa(fore200e->irq));
361 
362     if (fore200e->state > FORE200E_STATE_RESET) {
363 	/* first, reset the board to prevent further interrupts or data transfers */
364 	fore200e_reset(fore200e, 0);
365     }
366 
367     /* then, release all allocated resources */
368     switch(fore200e->state) {
369 
370     case FORE200E_STATE_COMPLETE:
371 	kfree(fore200e->stats);
372 
373 	fallthrough;
374     case FORE200E_STATE_IRQ:
375 	free_irq(fore200e->irq, fore200e->atm_dev);
376 
377 	fallthrough;
378     case FORE200E_STATE_ALLOC_BUF:
379 	fore200e_free_rx_buf(fore200e);
380 
381 	fallthrough;
382     case FORE200E_STATE_INIT_BSQ:
383 	fore200e_uninit_bs_queue(fore200e);
384 
385 	fallthrough;
386     case FORE200E_STATE_INIT_RXQ:
387 	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
388 	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
389 
390 	fallthrough;
391     case FORE200E_STATE_INIT_TXQ:
392 	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
393 	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
394 
395 	fallthrough;
396     case FORE200E_STATE_INIT_CMDQ:
397 	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
398 
399 	fallthrough;
400     case FORE200E_STATE_INITIALIZE:
401 	/* nothing to do for that state */
402 
403     case FORE200E_STATE_START_FW:
404 	/* nothing to do for that state */
405 
406     case FORE200E_STATE_RESET:
407 	/* nothing to do for that state */
408 
409     case FORE200E_STATE_MAP:
410 	fore200e->bus->unmap(fore200e);
411 
412 	fallthrough;
413     case FORE200E_STATE_CONFIGURE:
414 	/* nothing to do for that state */
415 
416     case FORE200E_STATE_REGISTER:
417 	/* XXX shouldn't we *start* by deregistering the device? */
418 	atm_dev_deregister(fore200e->atm_dev);
419 
420 	fallthrough;
421     case FORE200E_STATE_BLANK:
422 	/* nothing to do for that state */
423 	break;
424     }
425 }
426 
427 
428 #ifdef CONFIG_PCI
429 
430 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
431 {
432     /* on big-endian hosts, the board is configured to convert
433        the endianess of slave RAM accesses  */
434     return le32_to_cpu(readl(addr));
435 }
436 
437 
438 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
439 {
440     /* on big-endian hosts, the board is configured to convert
441        the endianess of slave RAM accesses  */
442     writel(cpu_to_le32(val), addr);
443 }
444 
445 static int
446 fore200e_pca_irq_check(struct fore200e* fore200e)
447 {
448     /* this is a 1 bit register */
449     int irq_posted = readl(fore200e->regs.pca.psr);
450 
451 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
452     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
453 	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
454     }
455 #endif
456 
457     return irq_posted;
458 }
459 
460 
461 static void
462 fore200e_pca_irq_ack(struct fore200e* fore200e)
463 {
464     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
465 }
466 
467 
468 static void
469 fore200e_pca_reset(struct fore200e* fore200e)
470 {
471     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
472     fore200e_spin(10);
473     writel(0, fore200e->regs.pca.hcr);
474 }
475 
476 
477 static int fore200e_pca_map(struct fore200e* fore200e)
478 {
479     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
480 
481     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
482 
483     if (fore200e->virt_base == NULL) {
484 	printk(FORE200E "can't map device %s\n", fore200e->name);
485 	return -EFAULT;
486     }
487 
488     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
489 
490     /* gain access to the PCA specific registers  */
491     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
492     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
493     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
494 
495     fore200e->state = FORE200E_STATE_MAP;
496     return 0;
497 }
498 
499 
500 static void
501 fore200e_pca_unmap(struct fore200e* fore200e)
502 {
503     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
504 
505     if (fore200e->virt_base != NULL)
506 	iounmap(fore200e->virt_base);
507 }
508 
509 
510 static int fore200e_pca_configure(struct fore200e *fore200e)
511 {
512     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
513     u8              master_ctrl, latency;
514 
515     DPRINTK(2, "device %s being configured\n", fore200e->name);
516 
517     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
518 	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
519 	return -EIO;
520     }
521 
522     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
523 
524     master_ctrl = master_ctrl
525 #if defined(__BIG_ENDIAN)
526 	/* request the PCA board to convert the endianess of slave RAM accesses */
527 	| PCA200E_CTRL_CONVERT_ENDIAN
528 #endif
529 #if 0
530         | PCA200E_CTRL_DIS_CACHE_RD
531         | PCA200E_CTRL_DIS_WRT_INVAL
532         | PCA200E_CTRL_ENA_CONT_REQ_MODE
533         | PCA200E_CTRL_2_CACHE_WRT_INVAL
534 #endif
535 	| PCA200E_CTRL_LARGE_PCI_BURSTS;
536 
537     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
538 
539     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
540        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
541        this may impact the performances of other PCI devices on the same bus, though */
542     latency = 192;
543     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
544 
545     fore200e->state = FORE200E_STATE_CONFIGURE;
546     return 0;
547 }
548 
549 
550 static int __init
551 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
552 {
553     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
554     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
555     struct prom_opcode      opcode;
556     int                     ok;
557     u32                     prom_dma;
558 
559     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
560 
561     opcode.opcode = OPCODE_GET_PROM;
562     opcode.pad    = 0;
563 
564     prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
565 			      DMA_FROM_DEVICE);
566     if (dma_mapping_error(fore200e->dev, prom_dma))
567 	return -ENOMEM;
568 
569     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
570 
571     *entry->status = STATUS_PENDING;
572 
573     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
574 
575     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
576 
577     *entry->status = STATUS_FREE;
578 
579     dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
580 
581     if (ok == 0) {
582 	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
583 	return -EIO;
584     }
585 
586 #if defined(__BIG_ENDIAN)
587 
588 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
589 
590     /* MAC address is stored as little-endian */
591     swap_here(&prom->mac_addr[0]);
592     swap_here(&prom->mac_addr[4]);
593 #endif
594 
595     return 0;
596 }
597 
598 
599 static int
600 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
601 {
602     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
603 
604     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
605 		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
606 }
607 
608 static const struct fore200e_bus fore200e_pci_ops = {
609 	.model_name		= "PCA-200E",
610 	.proc_name		= "pca200e",
611 	.descr_alignment	= 32,
612 	.buffer_alignment	= 4,
613 	.status_alignment	= 32,
614 	.read			= fore200e_pca_read,
615 	.write			= fore200e_pca_write,
616 	.configure		= fore200e_pca_configure,
617 	.map			= fore200e_pca_map,
618 	.reset			= fore200e_pca_reset,
619 	.prom_read		= fore200e_pca_prom_read,
620 	.unmap			= fore200e_pca_unmap,
621 	.irq_check		= fore200e_pca_irq_check,
622 	.irq_ack		= fore200e_pca_irq_ack,
623 	.proc_read		= fore200e_pca_proc_read,
624 };
625 #endif /* CONFIG_PCI */
626 
627 #ifdef CONFIG_SBUS
628 
629 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
630 {
631     return sbus_readl(addr);
632 }
633 
634 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
635 {
636     sbus_writel(val, addr);
637 }
638 
639 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
640 {
641 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
642 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
643 }
644 
645 static int fore200e_sba_irq_check(struct fore200e *fore200e)
646 {
647 	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
648 }
649 
650 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
651 {
652 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
653 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
654 }
655 
656 static void fore200e_sba_reset(struct fore200e *fore200e)
657 {
658 	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
659 	fore200e_spin(10);
660 	fore200e->bus->write(0, fore200e->regs.sba.hcr);
661 }
662 
663 static int __init fore200e_sba_map(struct fore200e *fore200e)
664 {
665 	struct platform_device *op = to_platform_device(fore200e->dev);
666 	unsigned int bursts;
667 
668 	/* gain access to the SBA specific registers  */
669 	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
670 	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
671 	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
672 	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
673 
674 	if (!fore200e->virt_base) {
675 		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
676 		return -EFAULT;
677 	}
678 
679 	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
680 
681 	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
682 
683 	/* get the supported DVMA burst sizes */
684 	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
685 
686 	if (sbus_can_dma_64bit())
687 		sbus_set_sbus64(&op->dev, bursts);
688 
689 	fore200e->state = FORE200E_STATE_MAP;
690 	return 0;
691 }
692 
693 static void fore200e_sba_unmap(struct fore200e *fore200e)
694 {
695 	struct platform_device *op = to_platform_device(fore200e->dev);
696 
697 	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
698 	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
699 	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
700 	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
701 }
702 
703 static int __init fore200e_sba_configure(struct fore200e *fore200e)
704 {
705 	fore200e->state = FORE200E_STATE_CONFIGURE;
706 	return 0;
707 }
708 
709 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
710 {
711 	struct platform_device *op = to_platform_device(fore200e->dev);
712 	const u8 *prop;
713 	int len;
714 
715 	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
716 	if (!prop)
717 		return -ENODEV;
718 	memcpy(&prom->mac_addr[4], prop, 4);
719 
720 	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
721 	if (!prop)
722 		return -ENODEV;
723 	memcpy(&prom->mac_addr[2], prop, 4);
724 
725 	prom->serial_number = of_getintprop_default(op->dev.of_node,
726 						    "serialnumber", 0);
727 	prom->hw_revision = of_getintprop_default(op->dev.of_node,
728 						  "promversion", 0);
729 
730 	return 0;
731 }
732 
733 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
734 {
735 	struct platform_device *op = to_platform_device(fore200e->dev);
736 	const struct linux_prom_registers *regs;
737 
738 	regs = of_get_property(op->dev.of_node, "reg", NULL);
739 
740 	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
741 		       (regs ? regs->which_io : 0), op->dev.of_node);
742 }
743 
744 static const struct fore200e_bus fore200e_sbus_ops = {
745 	.model_name		= "SBA-200E",
746 	.proc_name		= "sba200e",
747 	.descr_alignment	= 32,
748 	.buffer_alignment	= 64,
749 	.status_alignment	= 32,
750 	.read			= fore200e_sba_read,
751 	.write			= fore200e_sba_write,
752 	.configure		= fore200e_sba_configure,
753 	.map			= fore200e_sba_map,
754 	.reset			= fore200e_sba_reset,
755 	.prom_read		= fore200e_sba_prom_read,
756 	.unmap			= fore200e_sba_unmap,
757 	.irq_enable		= fore200e_sba_irq_enable,
758 	.irq_check		= fore200e_sba_irq_check,
759 	.irq_ack		= fore200e_sba_irq_ack,
760 	.proc_read		= fore200e_sba_proc_read,
761 };
762 #endif /* CONFIG_SBUS */
763 
764 static void
765 fore200e_tx_irq(struct fore200e* fore200e)
766 {
767     struct host_txq*        txq = &fore200e->host_txq;
768     struct host_txq_entry*  entry;
769     struct atm_vcc*         vcc;
770     struct fore200e_vc_map* vc_map;
771 
772     if (fore200e->host_txq.txing == 0)
773 	return;
774 
775     for (;;) {
776 
777 	entry = &txq->host_entry[ txq->tail ];
778 
779         if ((*entry->status & STATUS_COMPLETE) == 0) {
780 	    break;
781 	}
782 
783 	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
784 		entry, txq->tail, entry->vc_map, entry->skb);
785 
786 	/* free copy of misaligned data */
787 	kfree(entry->data);
788 
789 	/* remove DMA mapping */
790 	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
791 				 DMA_TO_DEVICE);
792 
793 	vc_map = entry->vc_map;
794 
795 	/* vcc closed since the time the entry was submitted for tx? */
796 	if ((vc_map->vcc == NULL) ||
797 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
798 
799 	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
800 		    fore200e->atm_dev->number);
801 
802 	    dev_kfree_skb_any(entry->skb);
803 	}
804 	else {
805 	    ASSERT(vc_map->vcc);
806 
807 	    /* vcc closed then immediately re-opened? */
808 	    if (vc_map->incarn != entry->incarn) {
809 
810 		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
811 		   if the same vcc is immediately re-opened, those pending PDUs must
812 		   not be popped after the completion of their emission, as they refer
813 		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
814 		   would be decremented by the size of the (unrelated) skb, possibly
815 		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
816 		   we thus bind the tx entry to the current incarnation of the vcc
817 		   when the entry is submitted for tx. When the tx later completes,
818 		   if the incarnation number of the tx entry does not match the one
819 		   of the vcc, then this implies that the vcc has been closed then re-opened.
820 		   we thus just drop the skb here. */
821 
822 		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
823 			fore200e->atm_dev->number);
824 
825 		dev_kfree_skb_any(entry->skb);
826 	    }
827 	    else {
828 		vcc = vc_map->vcc;
829 		ASSERT(vcc);
830 
831 		/* notify tx completion */
832 		if (vcc->pop) {
833 		    vcc->pop(vcc, entry->skb);
834 		}
835 		else {
836 		    dev_kfree_skb_any(entry->skb);
837 		}
838 
839 		/* check error condition */
840 		if (*entry->status & STATUS_ERROR)
841 		    atomic_inc(&vcc->stats->tx_err);
842 		else
843 		    atomic_inc(&vcc->stats->tx);
844 	    }
845 	}
846 
847 	*entry->status = STATUS_FREE;
848 
849 	fore200e->host_txq.txing--;
850 
851 	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
852     }
853 }
854 
855 
856 #ifdef FORE200E_BSQ_DEBUG
857 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
858 {
859     struct buffer* buffer;
860     int count = 0;
861 
862     buffer = bsq->freebuf;
863     while (buffer) {
864 
865 	if (buffer->supplied) {
866 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
867 		   where, scheme, magn, buffer->index);
868 	}
869 
870 	if (buffer->magn != magn) {
871 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
872 		   where, scheme, magn, buffer->index, buffer->magn);
873 	}
874 
875 	if (buffer->scheme != scheme) {
876 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
877 		   where, scheme, magn, buffer->index, buffer->scheme);
878 	}
879 
880 	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
881 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
882 		   where, scheme, magn, buffer->index);
883 	}
884 
885 	count++;
886 	buffer = buffer->next;
887     }
888 
889     if (count != bsq->freebuf_count) {
890 	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
891 	       where, scheme, magn, count, bsq->freebuf_count);
892     }
893     return 0;
894 }
895 #endif
896 
897 
898 static void
899 fore200e_supply(struct fore200e* fore200e)
900 {
901     int  scheme, magn, i;
902 
903     struct host_bsq*       bsq;
904     struct host_bsq_entry* entry;
905     struct buffer*         buffer;
906 
907     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
908 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
909 
910 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
911 
912 #ifdef FORE200E_BSQ_DEBUG
913 	    bsq_audit(1, bsq, scheme, magn);
914 #endif
915 	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
916 
917 		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
918 			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
919 
920 		entry = &bsq->host_entry[ bsq->head ];
921 
922 		for (i = 0; i < RBD_BLK_SIZE; i++) {
923 
924 		    /* take the first buffer in the free buffer list */
925 		    buffer = bsq->freebuf;
926 		    if (!buffer) {
927 			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
928 			       scheme, magn, bsq->freebuf_count);
929 			return;
930 		    }
931 		    bsq->freebuf = buffer->next;
932 
933 #ifdef FORE200E_BSQ_DEBUG
934 		    if (buffer->supplied)
935 			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
936 			       scheme, magn, buffer->index);
937 		    buffer->supplied = 1;
938 #endif
939 		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
940 		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
941 		}
942 
943 		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
944 
945  		/* decrease accordingly the number of free rx buffers */
946 		bsq->freebuf_count -= RBD_BLK_SIZE;
947 
948 		*entry->status = STATUS_PENDING;
949 		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
950 	    }
951 	}
952     }
953 }
954 
955 
956 static int
957 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
958 {
959     struct sk_buff*      skb;
960     struct buffer*       buffer;
961     struct fore200e_vcc* fore200e_vcc;
962     int                  i, pdu_len = 0;
963 #ifdef FORE200E_52BYTE_AAL0_SDU
964     u32                  cell_header = 0;
965 #endif
966 
967     ASSERT(vcc);
968 
969     fore200e_vcc = FORE200E_VCC(vcc);
970     ASSERT(fore200e_vcc);
971 
972 #ifdef FORE200E_52BYTE_AAL0_SDU
973     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
974 
975 	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
976 	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
977                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
978                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
979                        rpd->atm_header.clp;
980 	pdu_len = 4;
981     }
982 #endif
983 
984     /* compute total PDU length */
985     for (i = 0; i < rpd->nseg; i++)
986 	pdu_len += rpd->rsd[ i ].length;
987 
988     skb = alloc_skb(pdu_len, GFP_ATOMIC);
989     if (skb == NULL) {
990 	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
991 
992 	atomic_inc(&vcc->stats->rx_drop);
993 	return -ENOMEM;
994     }
995 
996     __net_timestamp(skb);
997 
998 #ifdef FORE200E_52BYTE_AAL0_SDU
999     if (cell_header) {
1000 	*((u32*)skb_put(skb, 4)) = cell_header;
1001     }
1002 #endif
1003 
1004     /* reassemble segments */
1005     for (i = 0; i < rpd->nseg; i++) {
1006 
1007 	/* rebuild rx buffer address from rsd handle */
1008 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1009 
1010 	/* Make device DMA transfer visible to CPU.  */
1011 	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1012 				rpd->rsd[i].length, DMA_FROM_DEVICE);
1013 
1014 	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1015 
1016 	/* Now let the device get at it again.  */
1017 	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1018 				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1019     }
1020 
1021     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1022 
1023     if (pdu_len < fore200e_vcc->rx_min_pdu)
1024 	fore200e_vcc->rx_min_pdu = pdu_len;
1025     if (pdu_len > fore200e_vcc->rx_max_pdu)
1026 	fore200e_vcc->rx_max_pdu = pdu_len;
1027     fore200e_vcc->rx_pdu++;
1028 
1029     /* push PDU */
1030     if (atm_charge(vcc, skb->truesize) == 0) {
1031 
1032 	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1033 		vcc->itf, vcc->vpi, vcc->vci);
1034 
1035 	dev_kfree_skb_any(skb);
1036 
1037 	atomic_inc(&vcc->stats->rx_drop);
1038 	return -ENOMEM;
1039     }
1040 
1041     vcc->push(vcc, skb);
1042     atomic_inc(&vcc->stats->rx);
1043 
1044     return 0;
1045 }
1046 
1047 
1048 static void
1049 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1050 {
1051     struct host_bsq* bsq;
1052     struct buffer*   buffer;
1053     int              i;
1054 
1055     for (i = 0; i < rpd->nseg; i++) {
1056 
1057 	/* rebuild rx buffer address from rsd handle */
1058 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1059 
1060 	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1061 
1062 #ifdef FORE200E_BSQ_DEBUG
1063 	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1064 
1065 	if (buffer->supplied == 0)
1066 	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1067 		   buffer->scheme, buffer->magn, buffer->index);
1068 	buffer->supplied = 0;
1069 #endif
1070 
1071 	/* re-insert the buffer into the free buffer list */
1072 	buffer->next = bsq->freebuf;
1073 	bsq->freebuf = buffer;
1074 
1075 	/* then increment the number of free rx buffers */
1076 	bsq->freebuf_count++;
1077     }
1078 }
1079 
1080 
1081 static void
1082 fore200e_rx_irq(struct fore200e* fore200e)
1083 {
1084     struct host_rxq*        rxq = &fore200e->host_rxq;
1085     struct host_rxq_entry*  entry;
1086     struct atm_vcc*         vcc;
1087     struct fore200e_vc_map* vc_map;
1088 
1089     for (;;) {
1090 
1091 	entry = &rxq->host_entry[ rxq->head ];
1092 
1093 	/* no more received PDUs */
1094 	if ((*entry->status & STATUS_COMPLETE) == 0)
1095 	    break;
1096 
1097 	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1098 
1099 	if ((vc_map->vcc == NULL) ||
1100 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1101 
1102 	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1103 		    fore200e->atm_dev->number,
1104 		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1105 	}
1106 	else {
1107 	    vcc = vc_map->vcc;
1108 	    ASSERT(vcc);
1109 
1110 	    if ((*entry->status & STATUS_ERROR) == 0) {
1111 
1112 		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1113 	    }
1114 	    else {
1115 		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1116 			fore200e->atm_dev->number,
1117 			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1118 		atomic_inc(&vcc->stats->rx_err);
1119 	    }
1120 	}
1121 
1122 	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1123 
1124 	fore200e_collect_rpd(fore200e, entry->rpd);
1125 
1126 	/* rewrite the rpd address to ack the received PDU */
1127 	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1128 	*entry->status = STATUS_FREE;
1129 
1130 	fore200e_supply(fore200e);
1131     }
1132 }
1133 
1134 
1135 #ifndef FORE200E_USE_TASKLET
1136 static void
1137 fore200e_irq(struct fore200e* fore200e)
1138 {
1139     unsigned long flags;
1140 
1141     spin_lock_irqsave(&fore200e->q_lock, flags);
1142     fore200e_rx_irq(fore200e);
1143     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1144 
1145     spin_lock_irqsave(&fore200e->q_lock, flags);
1146     fore200e_tx_irq(fore200e);
1147     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1148 }
1149 #endif
1150 
1151 
1152 static irqreturn_t
1153 fore200e_interrupt(int irq, void* dev)
1154 {
1155     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1156 
1157     if (fore200e->bus->irq_check(fore200e) == 0) {
1158 
1159 	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1160 	return IRQ_NONE;
1161     }
1162     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1163 
1164 #ifdef FORE200E_USE_TASKLET
1165     tasklet_schedule(&fore200e->tx_tasklet);
1166     tasklet_schedule(&fore200e->rx_tasklet);
1167 #else
1168     fore200e_irq(fore200e);
1169 #endif
1170 
1171     fore200e->bus->irq_ack(fore200e);
1172     return IRQ_HANDLED;
1173 }
1174 
1175 
1176 #ifdef FORE200E_USE_TASKLET
1177 static void
1178 fore200e_tx_tasklet(unsigned long data)
1179 {
1180     struct fore200e* fore200e = (struct fore200e*) data;
1181     unsigned long flags;
1182 
1183     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1184 
1185     spin_lock_irqsave(&fore200e->q_lock, flags);
1186     fore200e_tx_irq(fore200e);
1187     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1188 }
1189 
1190 
1191 static void
1192 fore200e_rx_tasklet(unsigned long data)
1193 {
1194     struct fore200e* fore200e = (struct fore200e*) data;
1195     unsigned long    flags;
1196 
1197     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1198 
1199     spin_lock_irqsave(&fore200e->q_lock, flags);
1200     fore200e_rx_irq((struct fore200e*) data);
1201     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1202 }
1203 #endif
1204 
1205 
1206 static int
1207 fore200e_select_scheme(struct atm_vcc* vcc)
1208 {
1209     /* fairly balance the VCs over (identical) buffer schemes */
1210     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1211 
1212     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1213 	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1214 
1215     return scheme;
1216 }
1217 
1218 
1219 static int
1220 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1221 {
1222     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1223     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1224     struct activate_opcode   activ_opcode;
1225     struct deactivate_opcode deactiv_opcode;
1226     struct vpvc              vpvc;
1227     int                      ok;
1228     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1229 
1230     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1231 
1232     if (activate) {
1233 	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1234 
1235 	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1236 	activ_opcode.aal    = aal;
1237 	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1238 	activ_opcode.pad    = 0;
1239     }
1240     else {
1241 	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1242 	deactiv_opcode.pad    = 0;
1243     }
1244 
1245     vpvc.vci = vcc->vci;
1246     vpvc.vpi = vcc->vpi;
1247 
1248     *entry->status = STATUS_PENDING;
1249 
1250     if (activate) {
1251 
1252 #ifdef FORE200E_52BYTE_AAL0_SDU
1253 	mtu = 48;
1254 #endif
1255 	/* the MTU is not used by the cp, except in the case of AAL0 */
1256 	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1257 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1258 	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1259     }
1260     else {
1261 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1262 	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1263     }
1264 
1265     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1266 
1267     *entry->status = STATUS_FREE;
1268 
1269     if (ok == 0) {
1270 	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1271 	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1272 	return -EIO;
1273     }
1274 
1275     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1276 	    activate ? "open" : "clos");
1277 
1278     return 0;
1279 }
1280 
1281 
1282 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1283 
1284 static void
1285 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1286 {
1287     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1288 
1289 	/* compute the data cells to idle cells ratio from the tx PCR */
1290 	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1291 	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1292     }
1293     else {
1294 	/* disable rate control */
1295 	rate->data_cells = rate->idle_cells = 0;
1296     }
1297 }
1298 
1299 
1300 static int
1301 fore200e_open(struct atm_vcc *vcc)
1302 {
1303     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1304     struct fore200e_vcc*    fore200e_vcc;
1305     struct fore200e_vc_map* vc_map;
1306     unsigned long	    flags;
1307     int			    vci = vcc->vci;
1308     short		    vpi = vcc->vpi;
1309 
1310     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1311     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1312 
1313     spin_lock_irqsave(&fore200e->q_lock, flags);
1314 
1315     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1316     if (vc_map->vcc) {
1317 
1318 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1319 
1320 	printk(FORE200E "VC %d.%d.%d already in use\n",
1321 	       fore200e->atm_dev->number, vpi, vci);
1322 
1323 	return -EINVAL;
1324     }
1325 
1326     vc_map->vcc = vcc;
1327 
1328     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1329 
1330     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1331     if (fore200e_vcc == NULL) {
1332 	vc_map->vcc = NULL;
1333 	return -ENOMEM;
1334     }
1335 
1336     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1337 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1338 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1339 	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1340 	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1341 	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1342 	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1343 
1344     /* pseudo-CBR bandwidth requested? */
1345     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1346 
1347 	mutex_lock(&fore200e->rate_mtx);
1348 	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1349 	    mutex_unlock(&fore200e->rate_mtx);
1350 
1351 	    kfree(fore200e_vcc);
1352 	    vc_map->vcc = NULL;
1353 	    return -EAGAIN;
1354 	}
1355 
1356 	/* reserve bandwidth */
1357 	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1358 	mutex_unlock(&fore200e->rate_mtx);
1359     }
1360 
1361     vcc->itf = vcc->dev->number;
1362 
1363     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1364     set_bit(ATM_VF_ADDR, &vcc->flags);
1365 
1366     vcc->dev_data = fore200e_vcc;
1367 
1368     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1369 
1370 	vc_map->vcc = NULL;
1371 
1372 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1373 	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1374 
1375 	vcc->dev_data = NULL;
1376 
1377 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1378 
1379 	kfree(fore200e_vcc);
1380 	return -EINVAL;
1381     }
1382 
1383     /* compute rate control parameters */
1384     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1385 
1386 	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1387 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1388 
1389 	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1390 		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1391 		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1392 		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1393     }
1394 
1395     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1396     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1397     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1398 
1399     /* new incarnation of the vcc */
1400     vc_map->incarn = ++fore200e->incarn_count;
1401 
1402     /* VC unusable before this flag is set */
1403     set_bit(ATM_VF_READY, &vcc->flags);
1404 
1405     return 0;
1406 }
1407 
1408 
1409 static void
1410 fore200e_close(struct atm_vcc* vcc)
1411 {
1412     struct fore200e_vcc*    fore200e_vcc;
1413     struct fore200e*        fore200e;
1414     struct fore200e_vc_map* vc_map;
1415     unsigned long           flags;
1416 
1417     ASSERT(vcc);
1418     fore200e = FORE200E_DEV(vcc->dev);
1419 
1420     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1421     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1422 
1423     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1424 
1425     clear_bit(ATM_VF_READY, &vcc->flags);
1426 
1427     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1428 
1429     spin_lock_irqsave(&fore200e->q_lock, flags);
1430 
1431     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1432 
1433     /* the vc is no longer considered as "in use" by fore200e_open() */
1434     vc_map->vcc = NULL;
1435 
1436     vcc->itf = vcc->vci = vcc->vpi = 0;
1437 
1438     fore200e_vcc = FORE200E_VCC(vcc);
1439     vcc->dev_data = NULL;
1440 
1441     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1442 
1443     /* release reserved bandwidth, if any */
1444     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1445 
1446 	mutex_lock(&fore200e->rate_mtx);
1447 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1448 	mutex_unlock(&fore200e->rate_mtx);
1449 
1450 	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1451     }
1452 
1453     clear_bit(ATM_VF_ADDR, &vcc->flags);
1454     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1455 
1456     ASSERT(fore200e_vcc);
1457     kfree(fore200e_vcc);
1458 }
1459 
1460 
1461 static int
1462 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1463 {
1464     struct fore200e*        fore200e;
1465     struct fore200e_vcc*    fore200e_vcc;
1466     struct fore200e_vc_map* vc_map;
1467     struct host_txq*        txq;
1468     struct host_txq_entry*  entry;
1469     struct tpd*             tpd;
1470     struct tpd_haddr        tpd_haddr;
1471     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1472     int                     tx_copy      = 0;
1473     int                     tx_len       = skb->len;
1474     u32*                    cell_header  = NULL;
1475     unsigned char*          skb_data;
1476     int                     skb_len;
1477     unsigned char*          data;
1478     unsigned long           flags;
1479 
1480     if (!vcc)
1481         return -EINVAL;
1482 
1483     fore200e = FORE200E_DEV(vcc->dev);
1484     fore200e_vcc = FORE200E_VCC(vcc);
1485 
1486     if (!fore200e)
1487         return -EINVAL;
1488 
1489     txq = &fore200e->host_txq;
1490     if (!fore200e_vcc)
1491         return -EINVAL;
1492 
1493     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1494 	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1495 	dev_kfree_skb_any(skb);
1496 	return -EINVAL;
1497     }
1498 
1499 #ifdef FORE200E_52BYTE_AAL0_SDU
1500     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1501 	cell_header = (u32*) skb->data;
1502 	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1503 	skb_len     = tx_len = skb->len  - 4;
1504 
1505 	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1506     }
1507     else
1508 #endif
1509     {
1510 	skb_data = skb->data;
1511 	skb_len  = skb->len;
1512     }
1513 
1514     if (((unsigned long)skb_data) & 0x3) {
1515 
1516 	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1517 	tx_copy = 1;
1518 	tx_len  = skb_len;
1519     }
1520 
1521     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1522 
1523         /* this simply NUKES the PCA board */
1524 	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1525 	tx_copy = 1;
1526 	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1527     }
1528 
1529     if (tx_copy) {
1530 	data = kmalloc(tx_len, GFP_ATOMIC);
1531 	if (data == NULL) {
1532 	    if (vcc->pop) {
1533 		vcc->pop(vcc, skb);
1534 	    }
1535 	    else {
1536 		dev_kfree_skb_any(skb);
1537 	    }
1538 	    return -ENOMEM;
1539 	}
1540 
1541 	memcpy(data, skb_data, skb_len);
1542 	if (skb_len < tx_len)
1543 	    memset(data + skb_len, 0x00, tx_len - skb_len);
1544     }
1545     else {
1546 	data = skb_data;
1547     }
1548 
1549     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1550     ASSERT(vc_map->vcc == vcc);
1551 
1552   retry_here:
1553 
1554     spin_lock_irqsave(&fore200e->q_lock, flags);
1555 
1556     entry = &txq->host_entry[ txq->head ];
1557 
1558     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1559 
1560 	/* try to free completed tx queue entries */
1561 	fore200e_tx_irq(fore200e);
1562 
1563 	if (*entry->status != STATUS_FREE) {
1564 
1565 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1566 
1567 	    /* retry once again? */
1568 	    if (--retry > 0) {
1569 		udelay(50);
1570 		goto retry_here;
1571 	    }
1572 
1573 	    atomic_inc(&vcc->stats->tx_err);
1574 
1575 	    fore200e->tx_sat++;
1576 	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1577 		    fore200e->name, fore200e->cp_queues->heartbeat);
1578 	    if (vcc->pop) {
1579 		vcc->pop(vcc, skb);
1580 	    }
1581 	    else {
1582 		dev_kfree_skb_any(skb);
1583 	    }
1584 
1585 	    if (tx_copy)
1586 		kfree(data);
1587 
1588 	    return -ENOBUFS;
1589 	}
1590     }
1591 
1592     entry->incarn = vc_map->incarn;
1593     entry->vc_map = vc_map;
1594     entry->skb    = skb;
1595     entry->data   = tx_copy ? data : NULL;
1596 
1597     tpd = entry->tpd;
1598     tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1599 					  DMA_TO_DEVICE);
1600     if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1601 	if (tx_copy)
1602 	    kfree(data);
1603 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1604 	return -ENOMEM;
1605     }
1606     tpd->tsd[ 0 ].length = tx_len;
1607 
1608     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1609     txq->txing++;
1610 
1611     /* The dma_map call above implies a dma_sync so the device can use it,
1612      * thus no explicit dma_sync call is necessary here.
1613      */
1614 
1615     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1616 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1617 	    tpd->tsd[0].length, skb_len);
1618 
1619     if (skb_len < fore200e_vcc->tx_min_pdu)
1620 	fore200e_vcc->tx_min_pdu = skb_len;
1621     if (skb_len > fore200e_vcc->tx_max_pdu)
1622 	fore200e_vcc->tx_max_pdu = skb_len;
1623     fore200e_vcc->tx_pdu++;
1624 
1625     /* set tx rate control information */
1626     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1627     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1628 
1629     if (cell_header) {
1630 	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1631 	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1632 	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1633 	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1634 	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1635     }
1636     else {
1637 	/* set the ATM header, common to all cells conveying the PDU */
1638 	tpd->atm_header.clp = 0;
1639 	tpd->atm_header.plt = 0;
1640 	tpd->atm_header.vci = vcc->vci;
1641 	tpd->atm_header.vpi = vcc->vpi;
1642 	tpd->atm_header.gfc = 0;
1643     }
1644 
1645     tpd->spec.length = tx_len;
1646     tpd->spec.nseg   = 1;
1647     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1648     tpd->spec.intr   = 1;
1649 
1650     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1651     tpd_haddr.pad   = 0;
1652     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1653 
1654     *entry->status = STATUS_PENDING;
1655     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1656 
1657     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1658 
1659     return 0;
1660 }
1661 
1662 
1663 static int
1664 fore200e_getstats(struct fore200e* fore200e)
1665 {
1666     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1667     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1668     struct stats_opcode     opcode;
1669     int                     ok;
1670     u32                     stats_dma_addr;
1671 
1672     if (fore200e->stats == NULL) {
1673 	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1674 	if (fore200e->stats == NULL)
1675 	    return -ENOMEM;
1676     }
1677 
1678     stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1679 				    sizeof(struct stats), DMA_FROM_DEVICE);
1680     if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1681     	return -ENOMEM;
1682 
1683     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1684 
1685     opcode.opcode = OPCODE_GET_STATS;
1686     opcode.pad    = 0;
1687 
1688     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1689 
1690     *entry->status = STATUS_PENDING;
1691 
1692     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1693 
1694     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1695 
1696     *entry->status = STATUS_FREE;
1697 
1698     dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1699 
1700     if (ok == 0) {
1701 	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1702 	return -EIO;
1703     }
1704 
1705     return 0;
1706 }
1707 
1708 #if 0 /* currently unused */
1709 static int
1710 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1711 {
1712     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1713     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1714     struct oc3_opcode       opcode;
1715     int                     ok;
1716     u32                     oc3_regs_dma_addr;
1717 
1718     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1719 
1720     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1721 
1722     opcode.opcode = OPCODE_GET_OC3;
1723     opcode.reg    = 0;
1724     opcode.value  = 0;
1725     opcode.mask   = 0;
1726 
1727     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1728 
1729     *entry->status = STATUS_PENDING;
1730 
1731     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1732 
1733     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1734 
1735     *entry->status = STATUS_FREE;
1736 
1737     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738 
1739     if (ok == 0) {
1740 	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1741 	return -EIO;
1742     }
1743 
1744     return 0;
1745 }
1746 #endif
1747 
1748 
1749 static int
1750 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1751 {
1752     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1753     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1754     struct oc3_opcode       opcode;
1755     int                     ok;
1756 
1757     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1758 
1759     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760 
1761     opcode.opcode = OPCODE_SET_OC3;
1762     opcode.reg    = reg;
1763     opcode.value  = value;
1764     opcode.mask   = mask;
1765 
1766     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1767 
1768     *entry->status = STATUS_PENDING;
1769 
1770     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1771 
1772     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773 
1774     *entry->status = STATUS_FREE;
1775 
1776     if (ok == 0) {
1777 	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1778 	return -EIO;
1779     }
1780 
1781     return 0;
1782 }
1783 
1784 
1785 static int
1786 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1787 {
1788     u32 mct_value, mct_mask;
1789     int error;
1790 
1791     if (!capable(CAP_NET_ADMIN))
1792 	return -EPERM;
1793 
1794     switch (loop_mode) {
1795 
1796     case ATM_LM_NONE:
1797 	mct_value = 0;
1798 	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1799 	break;
1800 
1801     case ATM_LM_LOC_PHY:
1802 	mct_value = mct_mask = SUNI_MCT_DLE;
1803 	break;
1804 
1805     case ATM_LM_RMT_PHY:
1806 	mct_value = mct_mask = SUNI_MCT_LLE;
1807 	break;
1808 
1809     default:
1810 	return -EINVAL;
1811     }
1812 
1813     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1814     if (error == 0)
1815 	fore200e->loop_mode = loop_mode;
1816 
1817     return error;
1818 }
1819 
1820 
1821 static int
1822 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1823 {
1824     struct sonet_stats tmp;
1825 
1826     if (fore200e_getstats(fore200e) < 0)
1827 	return -EIO;
1828 
1829     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1830     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1831     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1832     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1833     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1834     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1835     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1836     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1837 	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1838 	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1839     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1840 	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1841 	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1842 
1843     if (arg)
1844 	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1845 
1846     return 0;
1847 }
1848 
1849 
1850 static int
1851 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1852 {
1853     struct fore200e* fore200e = FORE200E_DEV(dev);
1854 
1855     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1856 
1857     switch (cmd) {
1858 
1859     case SONET_GETSTAT:
1860 	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1861 
1862     case SONET_GETDIAG:
1863 	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1864 
1865     case ATM_SETLOOP:
1866 	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1867 
1868     case ATM_GETLOOP:
1869 	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1870 
1871     case ATM_QUERYLOOP:
1872 	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1873     }
1874 
1875     return -ENOSYS; /* not implemented */
1876 }
1877 
1878 
1879 static int
1880 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1881 {
1882     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1883     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1884 
1885     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1886 	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1887 	return -EINVAL;
1888     }
1889 
1890     DPRINTK(2, "change_qos %d.%d.%d, "
1891 	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1892 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1893 	    "available_cell_rate = %u",
1894 	    vcc->itf, vcc->vpi, vcc->vci,
1895 	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1896 	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1897 	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1898 	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1899 	    flags, fore200e->available_cell_rate);
1900 
1901     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1902 
1903 	mutex_lock(&fore200e->rate_mtx);
1904 	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1905 	    mutex_unlock(&fore200e->rate_mtx);
1906 	    return -EAGAIN;
1907 	}
1908 
1909 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1910 	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1911 
1912 	mutex_unlock(&fore200e->rate_mtx);
1913 
1914 	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1915 
1916 	/* update rate control parameters */
1917 	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1918 
1919 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1920 
1921 	return 0;
1922     }
1923 
1924     return -EINVAL;
1925 }
1926 
1927 
1928 static int fore200e_irq_request(struct fore200e *fore200e)
1929 {
1930     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1931 
1932 	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1933 	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1934 	return -EBUSY;
1935     }
1936 
1937     printk(FORE200E "IRQ %s reserved for device %s\n",
1938 	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939 
1940 #ifdef FORE200E_USE_TASKLET
1941     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1942     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1943 #endif
1944 
1945     fore200e->state = FORE200E_STATE_IRQ;
1946     return 0;
1947 }
1948 
1949 
1950 static int fore200e_get_esi(struct fore200e *fore200e)
1951 {
1952     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1953     int ok, i;
1954 
1955     if (!prom)
1956 	return -ENOMEM;
1957 
1958     ok = fore200e->bus->prom_read(fore200e, prom);
1959     if (ok < 0) {
1960 	kfree(prom);
1961 	return -EBUSY;
1962     }
1963 
1964     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1965 	   fore200e->name,
1966 	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1967 	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1968 
1969     for (i = 0; i < ESI_LEN; i++) {
1970 	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1971     }
1972 
1973     kfree(prom);
1974 
1975     return 0;
1976 }
1977 
1978 
1979 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1980 {
1981     int scheme, magn, nbr, size, i;
1982 
1983     struct host_bsq* bsq;
1984     struct buffer*   buffer;
1985 
1986     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1987 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1988 
1989 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1990 
1991 	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1992 	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1993 
1994 	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1995 
1996 	    /* allocate the array of receive buffers */
1997 	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
1998                                            GFP_KERNEL);
1999 
2000 	    if (buffer == NULL)
2001 		return -ENOMEM;
2002 
2003 	    bsq->freebuf = NULL;
2004 
2005 	    for (i = 0; i < nbr; i++) {
2006 
2007 		buffer[ i ].scheme = scheme;
2008 		buffer[ i ].magn   = magn;
2009 #ifdef FORE200E_BSQ_DEBUG
2010 		buffer[ i ].index  = i;
2011 		buffer[ i ].supplied = 0;
2012 #endif
2013 
2014 		/* allocate the receive buffer body */
2015 		if (fore200e_chunk_alloc(fore200e,
2016 					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2017 					 DMA_FROM_DEVICE) < 0) {
2018 
2019 		    while (i > 0)
2020 			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2021 		    kfree(buffer);
2022 
2023 		    return -ENOMEM;
2024 		}
2025 
2026 		/* insert the buffer into the free buffer list */
2027 		buffer[ i ].next = bsq->freebuf;
2028 		bsq->freebuf = &buffer[ i ];
2029 	    }
2030 	    /* all the buffers are free, initially */
2031 	    bsq->freebuf_count = nbr;
2032 
2033 #ifdef FORE200E_BSQ_DEBUG
2034 	    bsq_audit(3, bsq, scheme, magn);
2035 #endif
2036 	}
2037     }
2038 
2039     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2040     return 0;
2041 }
2042 
2043 
2044 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2045 {
2046     int scheme, magn, i;
2047 
2048     struct host_bsq*     bsq;
2049     struct cp_bsq_entry __iomem * cp_entry;
2050 
2051     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2052 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2053 
2054 	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2055 
2056 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2057 
2058 	    /* allocate and align the array of status words */
2059 	    if (fore200e_dma_chunk_alloc(fore200e,
2060 					       &bsq->status,
2061 					       sizeof(enum status),
2062 					       QUEUE_SIZE_BS,
2063 					       fore200e->bus->status_alignment) < 0) {
2064 		return -ENOMEM;
2065 	    }
2066 
2067 	    /* allocate and align the array of receive buffer descriptors */
2068 	    if (fore200e_dma_chunk_alloc(fore200e,
2069 					       &bsq->rbd_block,
2070 					       sizeof(struct rbd_block),
2071 					       QUEUE_SIZE_BS,
2072 					       fore200e->bus->descr_alignment) < 0) {
2073 
2074 		fore200e_dma_chunk_free(fore200e, &bsq->status);
2075 		return -ENOMEM;
2076 	    }
2077 
2078 	    /* get the base address of the cp resident buffer supply queue entries */
2079 	    cp_entry = fore200e->virt_base +
2080 		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2081 
2082 	    /* fill the host resident and cp resident buffer supply queue entries */
2083 	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2084 
2085 		bsq->host_entry[ i ].status =
2086 		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2087 	        bsq->host_entry[ i ].rbd_block =
2088 		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2089 		bsq->host_entry[ i ].rbd_block_dma =
2090 		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2091 		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2092 
2093 		*bsq->host_entry[ i ].status = STATUS_FREE;
2094 
2095 		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2096 				     &cp_entry[ i ].status_haddr);
2097 	    }
2098 	}
2099     }
2100 
2101     fore200e->state = FORE200E_STATE_INIT_BSQ;
2102     return 0;
2103 }
2104 
2105 
2106 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2107 {
2108     struct host_rxq*     rxq =  &fore200e->host_rxq;
2109     struct cp_rxq_entry __iomem * cp_entry;
2110     int i;
2111 
2112     DPRINTK(2, "receive queue is being initialized\n");
2113 
2114     /* allocate and align the array of status words */
2115     if (fore200e_dma_chunk_alloc(fore200e,
2116 				       &rxq->status,
2117 				       sizeof(enum status),
2118 				       QUEUE_SIZE_RX,
2119 				       fore200e->bus->status_alignment) < 0) {
2120 	return -ENOMEM;
2121     }
2122 
2123     /* allocate and align the array of receive PDU descriptors */
2124     if (fore200e_dma_chunk_alloc(fore200e,
2125 				       &rxq->rpd,
2126 				       sizeof(struct rpd),
2127 				       QUEUE_SIZE_RX,
2128 				       fore200e->bus->descr_alignment) < 0) {
2129 
2130 	fore200e_dma_chunk_free(fore200e, &rxq->status);
2131 	return -ENOMEM;
2132     }
2133 
2134     /* get the base address of the cp resident rx queue entries */
2135     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2136 
2137     /* fill the host resident and cp resident rx entries */
2138     for (i=0; i < QUEUE_SIZE_RX; i++) {
2139 
2140 	rxq->host_entry[ i ].status =
2141 	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2142 	rxq->host_entry[ i ].rpd =
2143 	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2144 	rxq->host_entry[ i ].rpd_dma =
2145 	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2146 	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2147 
2148 	*rxq->host_entry[ i ].status = STATUS_FREE;
2149 
2150 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2151 			     &cp_entry[ i ].status_haddr);
2152 
2153 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2154 			     &cp_entry[ i ].rpd_haddr);
2155     }
2156 
2157     /* set the head entry of the queue */
2158     rxq->head = 0;
2159 
2160     fore200e->state = FORE200E_STATE_INIT_RXQ;
2161     return 0;
2162 }
2163 
2164 
2165 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2166 {
2167     struct host_txq*     txq =  &fore200e->host_txq;
2168     struct cp_txq_entry __iomem * cp_entry;
2169     int i;
2170 
2171     DPRINTK(2, "transmit queue is being initialized\n");
2172 
2173     /* allocate and align the array of status words */
2174     if (fore200e_dma_chunk_alloc(fore200e,
2175 				       &txq->status,
2176 				       sizeof(enum status),
2177 				       QUEUE_SIZE_TX,
2178 				       fore200e->bus->status_alignment) < 0) {
2179 	return -ENOMEM;
2180     }
2181 
2182     /* allocate and align the array of transmit PDU descriptors */
2183     if (fore200e_dma_chunk_alloc(fore200e,
2184 				       &txq->tpd,
2185 				       sizeof(struct tpd),
2186 				       QUEUE_SIZE_TX,
2187 				       fore200e->bus->descr_alignment) < 0) {
2188 
2189 	fore200e_dma_chunk_free(fore200e, &txq->status);
2190 	return -ENOMEM;
2191     }
2192 
2193     /* get the base address of the cp resident tx queue entries */
2194     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2195 
2196     /* fill the host resident and cp resident tx entries */
2197     for (i=0; i < QUEUE_SIZE_TX; i++) {
2198 
2199 	txq->host_entry[ i ].status =
2200 	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2201 	txq->host_entry[ i ].tpd =
2202 	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2203 	txq->host_entry[ i ].tpd_dma  =
2204                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2205 	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2206 
2207 	*txq->host_entry[ i ].status = STATUS_FREE;
2208 
2209 	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2210 			     &cp_entry[ i ].status_haddr);
2211 
2212         /* although there is a one-to-one mapping of tx queue entries and tpds,
2213 	   we do not write here the DMA (physical) base address of each tpd into
2214 	   the related cp resident entry, because the cp relies on this write
2215 	   operation to detect that a new pdu has been submitted for tx */
2216     }
2217 
2218     /* set the head and tail entries of the queue */
2219     txq->head = 0;
2220     txq->tail = 0;
2221 
2222     fore200e->state = FORE200E_STATE_INIT_TXQ;
2223     return 0;
2224 }
2225 
2226 
2227 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2228 {
2229     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2230     struct cp_cmdq_entry __iomem * cp_entry;
2231     int i;
2232 
2233     DPRINTK(2, "command queue is being initialized\n");
2234 
2235     /* allocate and align the array of status words */
2236     if (fore200e_dma_chunk_alloc(fore200e,
2237 				       &cmdq->status,
2238 				       sizeof(enum status),
2239 				       QUEUE_SIZE_CMD,
2240 				       fore200e->bus->status_alignment) < 0) {
2241 	return -ENOMEM;
2242     }
2243 
2244     /* get the base address of the cp resident cmd queue entries */
2245     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2246 
2247     /* fill the host resident and cp resident cmd entries */
2248     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2249 
2250 	cmdq->host_entry[ i ].status   =
2251                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2252 	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2253 
2254 	*cmdq->host_entry[ i ].status = STATUS_FREE;
2255 
2256 	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2257                              &cp_entry[ i ].status_haddr);
2258     }
2259 
2260     /* set the head entry of the queue */
2261     cmdq->head = 0;
2262 
2263     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2264     return 0;
2265 }
2266 
2267 
2268 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2269 				    enum buffer_scheme scheme,
2270 				    enum buffer_magn magn, int queue_length,
2271 				    int pool_size, int supply_blksize)
2272 {
2273     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2274 
2275     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2276     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2277     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2278     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2279 }
2280 
2281 
2282 static int fore200e_initialize(struct fore200e *fore200e)
2283 {
2284     struct cp_queues __iomem * cpq;
2285     int               ok, scheme, magn;
2286 
2287     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2288 
2289     mutex_init(&fore200e->rate_mtx);
2290     spin_lock_init(&fore200e->q_lock);
2291 
2292     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2293 
2294     /* enable cp to host interrupts */
2295     fore200e->bus->write(1, &cpq->imask);
2296 
2297     if (fore200e->bus->irq_enable)
2298 	fore200e->bus->irq_enable(fore200e);
2299 
2300     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2301 
2302     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2303     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2304     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2305 
2306     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2307     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2308 
2309     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2310 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2311 	    fore200e_param_bs_queue(fore200e, scheme, magn,
2312 				    QUEUE_SIZE_BS,
2313 				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2314 				    RBD_BLK_SIZE);
2315 
2316     /* issue the initialize command */
2317     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2318     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2319 
2320     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2321     if (ok == 0) {
2322 	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2323 	return -ENODEV;
2324     }
2325 
2326     printk(FORE200E "device %s initialized\n", fore200e->name);
2327 
2328     fore200e->state = FORE200E_STATE_INITIALIZE;
2329     return 0;
2330 }
2331 
2332 
2333 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2334 {
2335     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2336 
2337 #if 0
2338     printk("%c", c);
2339 #endif
2340     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2341 }
2342 
2343 
2344 static int fore200e_monitor_getc(struct fore200e *fore200e)
2345 {
2346     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2347     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2348     int                c;
2349 
2350     while (time_before(jiffies, timeout)) {
2351 
2352 	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2353 
2354 	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2355 
2356 	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2357 #if 0
2358 	    printk("%c", c & 0xFF);
2359 #endif
2360 	    return c & 0xFF;
2361 	}
2362     }
2363 
2364     return -1;
2365 }
2366 
2367 
2368 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2369 {
2370     while (*str) {
2371 
2372 	/* the i960 monitor doesn't accept any new character if it has something to say */
2373 	while (fore200e_monitor_getc(fore200e) >= 0);
2374 
2375 	fore200e_monitor_putc(fore200e, *str++);
2376     }
2377 
2378     while (fore200e_monitor_getc(fore200e) >= 0);
2379 }
2380 
2381 #ifdef __LITTLE_ENDIAN
2382 #define FW_EXT ".bin"
2383 #else
2384 #define FW_EXT "_ecd.bin2"
2385 #endif
2386 
2387 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2388 {
2389     const struct firmware *firmware;
2390     const struct fw_header *fw_header;
2391     const __le32 *fw_data;
2392     u32 fw_size;
2393     u32 __iomem *load_addr;
2394     char buf[48];
2395     int err;
2396 
2397     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2398     if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2399 	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2400 	return err;
2401     }
2402 
2403     fw_data = (const __le32 *)firmware->data;
2404     fw_size = firmware->size / sizeof(u32);
2405     fw_header = (const struct fw_header *)firmware->data;
2406     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2407 
2408     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2409 	    fore200e->name, load_addr, fw_size);
2410 
2411     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2412 	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2413 	goto release;
2414     }
2415 
2416     for (; fw_size--; fw_data++, load_addr++)
2417 	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2418 
2419     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2420 
2421 #if defined(__sparc_v9__)
2422     /* reported to be required by SBA cards on some sparc64 hosts */
2423     fore200e_spin(100);
2424 #endif
2425 
2426     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2427     fore200e_monitor_puts(fore200e, buf);
2428 
2429     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2430 	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2431 	goto release;
2432     }
2433 
2434     printk(FORE200E "device %s firmware started\n", fore200e->name);
2435 
2436     fore200e->state = FORE200E_STATE_START_FW;
2437     err = 0;
2438 
2439 release:
2440     release_firmware(firmware);
2441     return err;
2442 }
2443 
2444 
2445 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2446 {
2447     struct atm_dev* atm_dev;
2448 
2449     DPRINTK(2, "device %s being registered\n", fore200e->name);
2450 
2451     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2452                                -1, NULL);
2453     if (atm_dev == NULL) {
2454 	printk(FORE200E "unable to register device %s\n", fore200e->name);
2455 	return -ENODEV;
2456     }
2457 
2458     atm_dev->dev_data = fore200e;
2459     fore200e->atm_dev = atm_dev;
2460 
2461     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2462     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2463 
2464     fore200e->available_cell_rate = ATM_OC3_PCR;
2465 
2466     fore200e->state = FORE200E_STATE_REGISTER;
2467     return 0;
2468 }
2469 
2470 
2471 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2472 {
2473     if (fore200e_register(fore200e, parent) < 0)
2474 	return -ENODEV;
2475 
2476     if (fore200e->bus->configure(fore200e) < 0)
2477 	return -ENODEV;
2478 
2479     if (fore200e->bus->map(fore200e) < 0)
2480 	return -ENODEV;
2481 
2482     if (fore200e_reset(fore200e, 1) < 0)
2483 	return -ENODEV;
2484 
2485     if (fore200e_load_and_start_fw(fore200e) < 0)
2486 	return -ENODEV;
2487 
2488     if (fore200e_initialize(fore200e) < 0)
2489 	return -ENODEV;
2490 
2491     if (fore200e_init_cmd_queue(fore200e) < 0)
2492 	return -ENOMEM;
2493 
2494     if (fore200e_init_tx_queue(fore200e) < 0)
2495 	return -ENOMEM;
2496 
2497     if (fore200e_init_rx_queue(fore200e) < 0)
2498 	return -ENOMEM;
2499 
2500     if (fore200e_init_bs_queue(fore200e) < 0)
2501 	return -ENOMEM;
2502 
2503     if (fore200e_alloc_rx_buf(fore200e) < 0)
2504 	return -ENOMEM;
2505 
2506     if (fore200e_get_esi(fore200e) < 0)
2507 	return -EIO;
2508 
2509     if (fore200e_irq_request(fore200e) < 0)
2510 	return -EBUSY;
2511 
2512     fore200e_supply(fore200e);
2513 
2514     /* all done, board initialization is now complete */
2515     fore200e->state = FORE200E_STATE_COMPLETE;
2516     return 0;
2517 }
2518 
2519 #ifdef CONFIG_SBUS
2520 static int fore200e_sba_probe(struct platform_device *op)
2521 {
2522 	struct fore200e *fore200e;
2523 	static int index = 0;
2524 	int err;
2525 
2526 	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2527 	if (!fore200e)
2528 		return -ENOMEM;
2529 
2530 	fore200e->bus = &fore200e_sbus_ops;
2531 	fore200e->dev = &op->dev;
2532 	fore200e->irq = op->archdata.irqs[0];
2533 	fore200e->phys_base = op->resource[0].start;
2534 
2535 	sprintf(fore200e->name, "SBA-200E-%d", index);
2536 
2537 	err = fore200e_init(fore200e, &op->dev);
2538 	if (err < 0) {
2539 		fore200e_shutdown(fore200e);
2540 		kfree(fore200e);
2541 		return err;
2542 	}
2543 
2544 	index++;
2545 	dev_set_drvdata(&op->dev, fore200e);
2546 
2547 	return 0;
2548 }
2549 
2550 static void fore200e_sba_remove(struct platform_device *op)
2551 {
2552 	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2553 
2554 	fore200e_shutdown(fore200e);
2555 	kfree(fore200e);
2556 }
2557 
2558 static const struct of_device_id fore200e_sba_match[] = {
2559 	{
2560 		.name = SBA200E_PROM_NAME,
2561 	},
2562 	{},
2563 };
2564 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2565 
2566 static struct platform_driver fore200e_sba_driver = {
2567 	.driver = {
2568 		.name = "fore_200e",
2569 		.of_match_table = fore200e_sba_match,
2570 	},
2571 	.probe		= fore200e_sba_probe,
2572 	.remove		= fore200e_sba_remove,
2573 };
2574 #endif
2575 
2576 #ifdef CONFIG_PCI
2577 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2578 			       const struct pci_device_id *pci_ent)
2579 {
2580     struct fore200e* fore200e;
2581     int err = 0;
2582     static int index = 0;
2583 
2584     if (pci_enable_device(pci_dev)) {
2585 	err = -EINVAL;
2586 	goto out;
2587     }
2588 
2589     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2590 	err = -EINVAL;
2591 	goto out;
2592     }
2593 
2594     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2595     if (fore200e == NULL) {
2596 	err = -ENOMEM;
2597 	goto out_disable;
2598     }
2599 
2600     fore200e->bus       = &fore200e_pci_ops;
2601     fore200e->dev	= &pci_dev->dev;
2602     fore200e->irq       = pci_dev->irq;
2603     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2604 
2605     sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2606 
2607     pci_set_master(pci_dev);
2608 
2609     printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2610 	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2611 
2612     sprintf(fore200e->name, "PCA-200E-%d", index);
2613 
2614     err = fore200e_init(fore200e, &pci_dev->dev);
2615     if (err < 0) {
2616 	fore200e_shutdown(fore200e);
2617 	goto out_free;
2618     }
2619 
2620     ++index;
2621     pci_set_drvdata(pci_dev, fore200e);
2622 
2623 out:
2624     return err;
2625 
2626 out_free:
2627     kfree(fore200e);
2628 out_disable:
2629     pci_disable_device(pci_dev);
2630     goto out;
2631 }
2632 
2633 
2634 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2635 {
2636     struct fore200e *fore200e;
2637 
2638     fore200e = pci_get_drvdata(pci_dev);
2639 
2640     fore200e_shutdown(fore200e);
2641     kfree(fore200e);
2642     pci_disable_device(pci_dev);
2643 }
2644 
2645 
2646 static const struct pci_device_id fore200e_pca_tbl[] = {
2647     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2648     { 0, }
2649 };
2650 
2651 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2652 
2653 static struct pci_driver fore200e_pca_driver = {
2654     .name =     "fore_200e",
2655     .probe =    fore200e_pca_detect,
2656     .remove =   fore200e_pca_remove_one,
2657     .id_table = fore200e_pca_tbl,
2658 };
2659 #endif
2660 
2661 static int __init fore200e_module_init(void)
2662 {
2663 	int err = 0;
2664 
2665 	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2666 
2667 #ifdef CONFIG_SBUS
2668 	err = platform_driver_register(&fore200e_sba_driver);
2669 	if (err)
2670 		return err;
2671 #endif
2672 
2673 #ifdef CONFIG_PCI
2674 	err = pci_register_driver(&fore200e_pca_driver);
2675 #endif
2676 
2677 #ifdef CONFIG_SBUS
2678 	if (err)
2679 		platform_driver_unregister(&fore200e_sba_driver);
2680 #endif
2681 
2682 	return err;
2683 }
2684 
2685 static void __exit fore200e_module_cleanup(void)
2686 {
2687 #ifdef CONFIG_PCI
2688 	pci_unregister_driver(&fore200e_pca_driver);
2689 #endif
2690 #ifdef CONFIG_SBUS
2691 	platform_driver_unregister(&fore200e_sba_driver);
2692 #endif
2693 }
2694 
2695 static int
2696 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2697 {
2698     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2699     struct fore200e_vcc* fore200e_vcc;
2700     struct atm_vcc*      vcc;
2701     int                  i, len, left = *pos;
2702     unsigned long        flags;
2703 
2704     if (!left--) {
2705 
2706 	if (fore200e_getstats(fore200e) < 0)
2707 	    return -EIO;
2708 
2709 	len = sprintf(page,"\n"
2710 		       " device:\n"
2711 		       "   internal name:\t\t%s\n", fore200e->name);
2712 
2713 	/* print bus-specific information */
2714 	if (fore200e->bus->proc_read)
2715 	    len += fore200e->bus->proc_read(fore200e, page + len);
2716 
2717 	len += sprintf(page + len,
2718 		"   interrupt line:\t\t%s\n"
2719 		"   physical base address:\t0x%p\n"
2720 		"   virtual base address:\t0x%p\n"
2721 		"   factory address (ESI):\t%pM\n"
2722 		"   board serial number:\t\t%d\n\n",
2723 		fore200e_irq_itoa(fore200e->irq),
2724 		(void*)fore200e->phys_base,
2725 		fore200e->virt_base,
2726 		fore200e->esi,
2727 		fore200e->esi[4] * 256 + fore200e->esi[5]);
2728 
2729 	return len;
2730     }
2731 
2732     if (!left--)
2733 	return sprintf(page,
2734 		       "   free small bufs, scheme 1:\t%d\n"
2735 		       "   free large bufs, scheme 1:\t%d\n"
2736 		       "   free small bufs, scheme 2:\t%d\n"
2737 		       "   free large bufs, scheme 2:\t%d\n",
2738 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2739 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2740 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2741 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2742 
2743     if (!left--) {
2744 	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2745 
2746 	len = sprintf(page,"\n\n"
2747 		      " cell processor:\n"
2748 		      "   heartbeat state:\t\t");
2749 
2750 	if (hb >> 16 != 0xDEAD)
2751 	    len += sprintf(page + len, "0x%08x\n", hb);
2752 	else
2753 	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2754 
2755 	return len;
2756     }
2757 
2758     if (!left--) {
2759 	static const char* media_name[] = {
2760 	    "unshielded twisted pair",
2761 	    "multimode optical fiber ST",
2762 	    "multimode optical fiber SC",
2763 	    "single-mode optical fiber ST",
2764 	    "single-mode optical fiber SC",
2765 	    "unknown"
2766 	};
2767 
2768 	static const char* oc3_mode[] = {
2769 	    "normal operation",
2770 	    "diagnostic loopback",
2771 	    "line loopback",
2772 	    "unknown"
2773 	};
2774 
2775 	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2776 	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2777 	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2778 	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2779 	u32 oc3_index;
2780 
2781 	if (media_index > 4)
2782 		media_index = 5;
2783 
2784 	switch (fore200e->loop_mode) {
2785 	    case ATM_LM_NONE:    oc3_index = 0;
2786 		                 break;
2787 	    case ATM_LM_LOC_PHY: oc3_index = 1;
2788 		                 break;
2789 	    case ATM_LM_RMT_PHY: oc3_index = 2;
2790 		                 break;
2791 	    default:             oc3_index = 3;
2792 	}
2793 
2794 	return sprintf(page,
2795 		       "   firmware release:\t\t%d.%d.%d\n"
2796 		       "   monitor release:\t\t%d.%d\n"
2797 		       "   media type:\t\t\t%s\n"
2798 		       "   OC-3 revision:\t\t0x%x\n"
2799                        "   OC-3 mode:\t\t\t%s",
2800 		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2801 		       mon960_release >> 16, mon960_release << 16 >> 16,
2802 		       media_name[ media_index ],
2803 		       oc3_revision,
2804 		       oc3_mode[ oc3_index ]);
2805     }
2806 
2807     if (!left--) {
2808 	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2809 
2810 	return sprintf(page,
2811 		       "\n\n"
2812 		       " monitor:\n"
2813 		       "   version number:\t\t%d\n"
2814 		       "   boot status word:\t\t0x%08x\n",
2815 		       fore200e->bus->read(&cp_monitor->mon_version),
2816 		       fore200e->bus->read(&cp_monitor->bstat));
2817     }
2818 
2819     if (!left--)
2820 	return sprintf(page,
2821 		       "\n"
2822 		       " device statistics:\n"
2823 		       "  4b5b:\n"
2824 		       "     crc_header_errors:\t\t%10u\n"
2825 		       "     framing_errors:\t\t%10u\n",
2826 		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2827 		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2828 
2829     if (!left--)
2830 	return sprintf(page, "\n"
2831 		       "  OC-3:\n"
2832 		       "     section_bip8_errors:\t%10u\n"
2833 		       "     path_bip8_errors:\t\t%10u\n"
2834 		       "     line_bip24_errors:\t\t%10u\n"
2835 		       "     line_febe_errors:\t\t%10u\n"
2836 		       "     path_febe_errors:\t\t%10u\n"
2837 		       "     corr_hcs_errors:\t\t%10u\n"
2838 		       "     ucorr_hcs_errors:\t\t%10u\n",
2839 		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2840 		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2841 		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2842 		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2843 		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2844 		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2845 		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2846 
2847     if (!left--)
2848 	return sprintf(page,"\n"
2849 		       "   ATM:\t\t\t\t     cells\n"
2850 		       "     TX:\t\t\t%10u\n"
2851 		       "     RX:\t\t\t%10u\n"
2852 		       "     vpi out of range:\t\t%10u\n"
2853 		       "     vpi no conn:\t\t%10u\n"
2854 		       "     vci out of range:\t\t%10u\n"
2855 		       "     vci no conn:\t\t%10u\n",
2856 		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2857 		       be32_to_cpu(fore200e->stats->atm.cells_received),
2858 		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2859 		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2860 		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2861 		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2862 
2863     if (!left--)
2864 	return sprintf(page,"\n"
2865 		       "   AAL0:\t\t\t     cells\n"
2866 		       "     TX:\t\t\t%10u\n"
2867 		       "     RX:\t\t\t%10u\n"
2868 		       "     dropped:\t\t\t%10u\n",
2869 		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2870 		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2871 		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2872 
2873     if (!left--)
2874 	return sprintf(page,"\n"
2875 		       "   AAL3/4:\n"
2876 		       "     SAR sublayer:\t\t     cells\n"
2877 		       "       TX:\t\t\t%10u\n"
2878 		       "       RX:\t\t\t%10u\n"
2879 		       "       dropped:\t\t\t%10u\n"
2880 		       "       CRC errors:\t\t%10u\n"
2881 		       "       protocol errors:\t\t%10u\n\n"
2882 		       "     CS  sublayer:\t\t      PDUs\n"
2883 		       "       TX:\t\t\t%10u\n"
2884 		       "       RX:\t\t\t%10u\n"
2885 		       "       dropped:\t\t\t%10u\n"
2886 		       "       protocol errors:\t\t%10u\n",
2887 		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2888 		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2889 		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2890 		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2891 		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2892 		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2893 		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2894 		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2895 		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2896 
2897     if (!left--)
2898 	return sprintf(page,"\n"
2899 		       "   AAL5:\n"
2900 		       "     SAR sublayer:\t\t     cells\n"
2901 		       "       TX:\t\t\t%10u\n"
2902 		       "       RX:\t\t\t%10u\n"
2903 		       "       dropped:\t\t\t%10u\n"
2904 		       "       congestions:\t\t%10u\n\n"
2905 		       "     CS  sublayer:\t\t      PDUs\n"
2906 		       "       TX:\t\t\t%10u\n"
2907 		       "       RX:\t\t\t%10u\n"
2908 		       "       dropped:\t\t\t%10u\n"
2909 		       "       CRC errors:\t\t%10u\n"
2910 		       "       protocol errors:\t\t%10u\n",
2911 		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2912 		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2913 		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2914 		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2915 		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2916 		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2917 		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2918 		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2919 		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2920 
2921     if (!left--)
2922 	return sprintf(page,"\n"
2923 		       "   AUX:\t\t       allocation failures\n"
2924 		       "     small b1:\t\t\t%10u\n"
2925 		       "     large b1:\t\t\t%10u\n"
2926 		       "     small b2:\t\t\t%10u\n"
2927 		       "     large b2:\t\t\t%10u\n"
2928 		       "     RX PDUs:\t\t\t%10u\n"
2929 		       "     TX PDUs:\t\t\t%10lu\n",
2930 		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2931 		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2932 		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2933 		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2934 		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2935 		       fore200e->tx_sat);
2936 
2937     if (!left--)
2938 	return sprintf(page,"\n"
2939 		       " receive carrier:\t\t\t%s\n",
2940 		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2941 
2942     if (!left--) {
2943         return sprintf(page,"\n"
2944 		       " VCCs:\n  address   VPI VCI   AAL "
2945 		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2946     }
2947 
2948     for (i = 0; i < NBR_CONNECT; i++) {
2949 
2950 	vcc = fore200e->vc_map[i].vcc;
2951 
2952 	if (vcc == NULL)
2953 	    continue;
2954 
2955 	spin_lock_irqsave(&fore200e->q_lock, flags);
2956 
2957 	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2958 
2959 	    fore200e_vcc = FORE200E_VCC(vcc);
2960 	    ASSERT(fore200e_vcc);
2961 
2962 	    len = sprintf(page,
2963 			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2964 			  vcc,
2965 			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2966 			  fore200e_vcc->tx_pdu,
2967 			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2968 			  fore200e_vcc->tx_max_pdu,
2969 			  fore200e_vcc->rx_pdu,
2970 			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2971 			  fore200e_vcc->rx_max_pdu);
2972 
2973 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2974 	    return len;
2975 	}
2976 
2977 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2978     }
2979 
2980     return 0;
2981 }
2982 
2983 module_init(fore200e_module_init);
2984 module_exit(fore200e_module_cleanup);
2985 
2986 
2987 static const struct atmdev_ops fore200e_ops = {
2988 	.open       = fore200e_open,
2989 	.close      = fore200e_close,
2990 	.ioctl      = fore200e_ioctl,
2991 	.send       = fore200e_send,
2992 	.change_qos = fore200e_change_qos,
2993 	.proc_read  = fore200e_proc_read,
2994 	.owner      = THIS_MODULE
2995 };
2996 
2997 MODULE_LICENSE("GPL");
2998 #ifdef CONFIG_PCI
2999 #ifdef __LITTLE_ENDIAN__
3000 MODULE_FIRMWARE("pca200e.bin");
3001 #else
3002 MODULE_FIRMWARE("pca200e_ecd.bin2");
3003 #endif
3004 #endif /* CONFIG_PCI */
3005 #ifdef CONFIG_SBUS
3006 MODULE_FIRMWARE("sba200e_ecd.bin2");
3007 #endif
3008