1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 A FORE Systems 200E-series driver for ATM on Linux. 4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003. 5 6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de). 7 8 This driver simultaneously supports PCA-200E and SBA-200E adapters 9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures. 10 11 */ 12 13 14 #include <linux/kernel.h> 15 #include <linux/slab.h> 16 #include <linux/init.h> 17 #include <linux/capability.h> 18 #include <linux/interrupt.h> 19 #include <linux/bitops.h> 20 #include <linux/pci.h> 21 #include <linux/module.h> 22 #include <linux/atmdev.h> 23 #include <linux/sonet.h> 24 #include <linux/atm_suni.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/delay.h> 27 #include <linux/firmware.h> 28 #include <linux/pgtable.h> 29 #include <asm/io.h> 30 #include <asm/string.h> 31 #include <asm/page.h> 32 #include <asm/irq.h> 33 #include <asm/dma.h> 34 #include <asm/byteorder.h> 35 #include <linux/uaccess.h> 36 #include <linux/atomic.h> 37 38 #ifdef CONFIG_SBUS 39 #include <linux/of.h> 40 #include <linux/of_device.h> 41 #include <asm/idprom.h> 42 #include <asm/openprom.h> 43 #include <asm/oplib.h> 44 #endif 45 46 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */ 47 #define FORE200E_USE_TASKLET 48 #endif 49 50 #if 0 /* enable the debugging code of the buffer supply queues */ 51 #define FORE200E_BSQ_DEBUG 52 #endif 53 54 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */ 55 #define FORE200E_52BYTE_AAL0_SDU 56 #endif 57 58 #include "fore200e.h" 59 #include "suni.h" 60 61 #define FORE200E_VERSION "0.3e" 62 63 #define FORE200E "fore200e: " 64 65 #if 0 /* override .config */ 66 #define CONFIG_ATM_FORE200E_DEBUG 1 67 #endif 68 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 69 #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \ 70 printk(FORE200E format, ##args); } while (0) 71 #else 72 #define DPRINTK(level, format, args...) do {} while (0) 73 #endif 74 75 76 #define FORE200E_ALIGN(addr, alignment) \ 77 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr)) 78 79 #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type)) 80 81 #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ]) 82 83 #define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo)) 84 85 #if 1 86 #define ASSERT(expr) if (!(expr)) { \ 87 printk(FORE200E "assertion failed! %s[%d]: %s\n", \ 88 __func__, __LINE__, #expr); \ 89 panic(FORE200E "%s", __func__); \ 90 } 91 #else 92 #define ASSERT(expr) do {} while (0) 93 #endif 94 95 96 static const struct atmdev_ops fore200e_ops; 97 98 static LIST_HEAD(fore200e_boards); 99 100 101 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen"); 102 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION); 103 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E"); 104 105 106 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 107 { BUFFER_S1_NBR, BUFFER_L1_NBR }, 108 { BUFFER_S2_NBR, BUFFER_L2_NBR } 109 }; 110 111 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 112 { BUFFER_S1_SIZE, BUFFER_L1_SIZE }, 113 { BUFFER_S2_SIZE, BUFFER_L2_SIZE } 114 }; 115 116 117 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 118 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" }; 119 #endif 120 121 122 #if 0 /* currently unused */ 123 static int 124 fore200e_fore2atm_aal(enum fore200e_aal aal) 125 { 126 switch(aal) { 127 case FORE200E_AAL0: return ATM_AAL0; 128 case FORE200E_AAL34: return ATM_AAL34; 129 case FORE200E_AAL5: return ATM_AAL5; 130 } 131 132 return -EINVAL; 133 } 134 #endif 135 136 137 static enum fore200e_aal 138 fore200e_atm2fore_aal(int aal) 139 { 140 switch(aal) { 141 case ATM_AAL0: return FORE200E_AAL0; 142 case ATM_AAL34: return FORE200E_AAL34; 143 case ATM_AAL1: 144 case ATM_AAL2: 145 case ATM_AAL5: return FORE200E_AAL5; 146 } 147 148 return -EINVAL; 149 } 150 151 152 static char* 153 fore200e_irq_itoa(int irq) 154 { 155 static char str[8]; 156 sprintf(str, "%d", irq); 157 return str; 158 } 159 160 161 /* allocate and align a chunk of memory intended to hold the data behing exchanged 162 between the driver and the adapter (using streaming DVMA) */ 163 164 static int 165 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction) 166 { 167 unsigned long offset = 0; 168 169 if (alignment <= sizeof(int)) 170 alignment = 0; 171 172 chunk->alloc_size = size + alignment; 173 chunk->direction = direction; 174 175 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL); 176 if (chunk->alloc_addr == NULL) 177 return -ENOMEM; 178 179 if (alignment > 0) 180 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 181 182 chunk->align_addr = chunk->alloc_addr + offset; 183 184 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr, 185 size, direction); 186 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) { 187 kfree(chunk->alloc_addr); 188 return -ENOMEM; 189 } 190 return 0; 191 } 192 193 194 /* free a chunk of memory */ 195 196 static void 197 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 198 { 199 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size, 200 chunk->direction); 201 kfree(chunk->alloc_addr); 202 } 203 204 /* 205 * Allocate a DMA consistent chunk of memory intended to act as a communication 206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver 207 * and the adapter. 208 */ 209 static int 210 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk, 211 int size, int nbr, int alignment) 212 { 213 /* returned chunks are page-aligned */ 214 chunk->alloc_size = size * nbr; 215 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size, 216 &chunk->dma_addr, GFP_KERNEL); 217 if (!chunk->alloc_addr) 218 return -ENOMEM; 219 chunk->align_addr = chunk->alloc_addr; 220 return 0; 221 } 222 223 /* 224 * Free a DMA consistent chunk of memory. 225 */ 226 static void 227 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 228 { 229 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr, 230 chunk->dma_addr); 231 } 232 233 static void 234 fore200e_spin(int msecs) 235 { 236 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 237 while (time_before(jiffies, timeout)); 238 } 239 240 241 static int 242 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs) 243 { 244 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 245 int ok; 246 247 mb(); 248 do { 249 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR)) 250 break; 251 252 } while (time_before(jiffies, timeout)); 253 254 #if 1 255 if (!ok) { 256 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n", 257 *addr, val); 258 } 259 #endif 260 261 return ok; 262 } 263 264 265 static int 266 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs) 267 { 268 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 269 int ok; 270 271 do { 272 if ((ok = (fore200e->bus->read(addr) == val))) 273 break; 274 275 } while (time_before(jiffies, timeout)); 276 277 #if 1 278 if (!ok) { 279 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n", 280 fore200e->bus->read(addr), val); 281 } 282 #endif 283 284 return ok; 285 } 286 287 288 static void 289 fore200e_free_rx_buf(struct fore200e* fore200e) 290 { 291 int scheme, magn, nbr; 292 struct buffer* buffer; 293 294 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 295 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 296 297 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) { 298 299 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) { 300 301 struct chunk* data = &buffer[ nbr ].data; 302 303 if (data->alloc_addr != NULL) 304 fore200e_chunk_free(fore200e, data); 305 } 306 } 307 } 308 } 309 } 310 311 312 static void 313 fore200e_uninit_bs_queue(struct fore200e* fore200e) 314 { 315 int scheme, magn; 316 317 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 318 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 319 320 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status; 321 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block; 322 323 if (status->alloc_addr) 324 fore200e_dma_chunk_free(fore200e, status); 325 326 if (rbd_block->alloc_addr) 327 fore200e_dma_chunk_free(fore200e, rbd_block); 328 } 329 } 330 } 331 332 333 static int 334 fore200e_reset(struct fore200e* fore200e, int diag) 335 { 336 int ok; 337 338 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET; 339 340 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat); 341 342 fore200e->bus->reset(fore200e); 343 344 if (diag) { 345 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000); 346 if (ok == 0) { 347 348 printk(FORE200E "device %s self-test failed\n", fore200e->name); 349 return -ENODEV; 350 } 351 352 printk(FORE200E "device %s self-test passed\n", fore200e->name); 353 354 fore200e->state = FORE200E_STATE_RESET; 355 } 356 357 return 0; 358 } 359 360 361 static void 362 fore200e_shutdown(struct fore200e* fore200e) 363 { 364 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n", 365 fore200e->name, fore200e->phys_base, 366 fore200e_irq_itoa(fore200e->irq)); 367 368 if (fore200e->state > FORE200E_STATE_RESET) { 369 /* first, reset the board to prevent further interrupts or data transfers */ 370 fore200e_reset(fore200e, 0); 371 } 372 373 /* then, release all allocated resources */ 374 switch(fore200e->state) { 375 376 case FORE200E_STATE_COMPLETE: 377 kfree(fore200e->stats); 378 379 /* fall through */ 380 case FORE200E_STATE_IRQ: 381 free_irq(fore200e->irq, fore200e->atm_dev); 382 383 /* fall through */ 384 case FORE200E_STATE_ALLOC_BUF: 385 fore200e_free_rx_buf(fore200e); 386 387 /* fall through */ 388 case FORE200E_STATE_INIT_BSQ: 389 fore200e_uninit_bs_queue(fore200e); 390 391 /* fall through */ 392 case FORE200E_STATE_INIT_RXQ: 393 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status); 394 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd); 395 396 /* fall through */ 397 case FORE200E_STATE_INIT_TXQ: 398 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status); 399 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd); 400 401 /* fall through */ 402 case FORE200E_STATE_INIT_CMDQ: 403 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status); 404 405 /* fall through */ 406 case FORE200E_STATE_INITIALIZE: 407 /* nothing to do for that state */ 408 409 case FORE200E_STATE_START_FW: 410 /* nothing to do for that state */ 411 412 case FORE200E_STATE_RESET: 413 /* nothing to do for that state */ 414 415 case FORE200E_STATE_MAP: 416 fore200e->bus->unmap(fore200e); 417 418 /* fall through */ 419 case FORE200E_STATE_CONFIGURE: 420 /* nothing to do for that state */ 421 422 case FORE200E_STATE_REGISTER: 423 /* XXX shouldn't we *start* by deregistering the device? */ 424 atm_dev_deregister(fore200e->atm_dev); 425 426 case FORE200E_STATE_BLANK: 427 /* nothing to do for that state */ 428 break; 429 } 430 } 431 432 433 #ifdef CONFIG_PCI 434 435 static u32 fore200e_pca_read(volatile u32 __iomem *addr) 436 { 437 /* on big-endian hosts, the board is configured to convert 438 the endianess of slave RAM accesses */ 439 return le32_to_cpu(readl(addr)); 440 } 441 442 443 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr) 444 { 445 /* on big-endian hosts, the board is configured to convert 446 the endianess of slave RAM accesses */ 447 writel(cpu_to_le32(val), addr); 448 } 449 450 static int 451 fore200e_pca_irq_check(struct fore200e* fore200e) 452 { 453 /* this is a 1 bit register */ 454 int irq_posted = readl(fore200e->regs.pca.psr); 455 456 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2) 457 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) { 458 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number); 459 } 460 #endif 461 462 return irq_posted; 463 } 464 465 466 static void 467 fore200e_pca_irq_ack(struct fore200e* fore200e) 468 { 469 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr); 470 } 471 472 473 static void 474 fore200e_pca_reset(struct fore200e* fore200e) 475 { 476 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr); 477 fore200e_spin(10); 478 writel(0, fore200e->regs.pca.hcr); 479 } 480 481 482 static int fore200e_pca_map(struct fore200e* fore200e) 483 { 484 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name); 485 486 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH); 487 488 if (fore200e->virt_base == NULL) { 489 printk(FORE200E "can't map device %s\n", fore200e->name); 490 return -EFAULT; 491 } 492 493 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 494 495 /* gain access to the PCA specific registers */ 496 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET; 497 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET; 498 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET; 499 500 fore200e->state = FORE200E_STATE_MAP; 501 return 0; 502 } 503 504 505 static void 506 fore200e_pca_unmap(struct fore200e* fore200e) 507 { 508 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name); 509 510 if (fore200e->virt_base != NULL) 511 iounmap(fore200e->virt_base); 512 } 513 514 515 static int fore200e_pca_configure(struct fore200e *fore200e) 516 { 517 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev); 518 u8 master_ctrl, latency; 519 520 DPRINTK(2, "device %s being configured\n", fore200e->name); 521 522 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) { 523 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); 524 return -EIO; 525 } 526 527 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl); 528 529 master_ctrl = master_ctrl 530 #if defined(__BIG_ENDIAN) 531 /* request the PCA board to convert the endianess of slave RAM accesses */ 532 | PCA200E_CTRL_CONVERT_ENDIAN 533 #endif 534 #if 0 535 | PCA200E_CTRL_DIS_CACHE_RD 536 | PCA200E_CTRL_DIS_WRT_INVAL 537 | PCA200E_CTRL_ENA_CONT_REQ_MODE 538 | PCA200E_CTRL_2_CACHE_WRT_INVAL 539 #endif 540 | PCA200E_CTRL_LARGE_PCI_BURSTS; 541 542 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl); 543 544 /* raise latency from 32 (default) to 192, as this seems to prevent NIC 545 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition. 546 this may impact the performances of other PCI devices on the same bus, though */ 547 latency = 192; 548 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency); 549 550 fore200e->state = FORE200E_STATE_CONFIGURE; 551 return 0; 552 } 553 554 555 static int __init 556 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom) 557 { 558 struct host_cmdq* cmdq = &fore200e->host_cmdq; 559 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 560 struct prom_opcode opcode; 561 int ok; 562 u32 prom_dma; 563 564 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 565 566 opcode.opcode = OPCODE_GET_PROM; 567 opcode.pad = 0; 568 569 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data), 570 DMA_FROM_DEVICE); 571 if (dma_mapping_error(fore200e->dev, prom_dma)) 572 return -ENOMEM; 573 574 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr); 575 576 *entry->status = STATUS_PENDING; 577 578 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode); 579 580 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 581 582 *entry->status = STATUS_FREE; 583 584 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE); 585 586 if (ok == 0) { 587 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name); 588 return -EIO; 589 } 590 591 #if defined(__BIG_ENDIAN) 592 593 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) )) 594 595 /* MAC address is stored as little-endian */ 596 swap_here(&prom->mac_addr[0]); 597 swap_here(&prom->mac_addr[4]); 598 #endif 599 600 return 0; 601 } 602 603 604 static int 605 fore200e_pca_proc_read(struct fore200e* fore200e, char *page) 606 { 607 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev); 608 609 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", 610 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn)); 611 } 612 613 static const struct fore200e_bus fore200e_pci_ops = { 614 .model_name = "PCA-200E", 615 .proc_name = "pca200e", 616 .descr_alignment = 32, 617 .buffer_alignment = 4, 618 .status_alignment = 32, 619 .read = fore200e_pca_read, 620 .write = fore200e_pca_write, 621 .configure = fore200e_pca_configure, 622 .map = fore200e_pca_map, 623 .reset = fore200e_pca_reset, 624 .prom_read = fore200e_pca_prom_read, 625 .unmap = fore200e_pca_unmap, 626 .irq_check = fore200e_pca_irq_check, 627 .irq_ack = fore200e_pca_irq_ack, 628 .proc_read = fore200e_pca_proc_read, 629 }; 630 #endif /* CONFIG_PCI */ 631 632 #ifdef CONFIG_SBUS 633 634 static u32 fore200e_sba_read(volatile u32 __iomem *addr) 635 { 636 return sbus_readl(addr); 637 } 638 639 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr) 640 { 641 sbus_writel(val, addr); 642 } 643 644 static void fore200e_sba_irq_enable(struct fore200e *fore200e) 645 { 646 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 647 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr); 648 } 649 650 static int fore200e_sba_irq_check(struct fore200e *fore200e) 651 { 652 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ; 653 } 654 655 static void fore200e_sba_irq_ack(struct fore200e *fore200e) 656 { 657 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 658 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr); 659 } 660 661 static void fore200e_sba_reset(struct fore200e *fore200e) 662 { 663 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr); 664 fore200e_spin(10); 665 fore200e->bus->write(0, fore200e->regs.sba.hcr); 666 } 667 668 static int __init fore200e_sba_map(struct fore200e *fore200e) 669 { 670 struct platform_device *op = to_platform_device(fore200e->dev); 671 unsigned int bursts; 672 673 /* gain access to the SBA specific registers */ 674 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR"); 675 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR"); 676 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR"); 677 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM"); 678 679 if (!fore200e->virt_base) { 680 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name); 681 return -EFAULT; 682 } 683 684 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 685 686 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */ 687 688 /* get the supported DVMA burst sizes */ 689 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00); 690 691 if (sbus_can_dma_64bit()) 692 sbus_set_sbus64(&op->dev, bursts); 693 694 fore200e->state = FORE200E_STATE_MAP; 695 return 0; 696 } 697 698 static void fore200e_sba_unmap(struct fore200e *fore200e) 699 { 700 struct platform_device *op = to_platform_device(fore200e->dev); 701 702 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH); 703 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH); 704 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH); 705 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH); 706 } 707 708 static int __init fore200e_sba_configure(struct fore200e *fore200e) 709 { 710 fore200e->state = FORE200E_STATE_CONFIGURE; 711 return 0; 712 } 713 714 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom) 715 { 716 struct platform_device *op = to_platform_device(fore200e->dev); 717 const u8 *prop; 718 int len; 719 720 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len); 721 if (!prop) 722 return -ENODEV; 723 memcpy(&prom->mac_addr[4], prop, 4); 724 725 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len); 726 if (!prop) 727 return -ENODEV; 728 memcpy(&prom->mac_addr[2], prop, 4); 729 730 prom->serial_number = of_getintprop_default(op->dev.of_node, 731 "serialnumber", 0); 732 prom->hw_revision = of_getintprop_default(op->dev.of_node, 733 "promversion", 0); 734 735 return 0; 736 } 737 738 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page) 739 { 740 struct platform_device *op = to_platform_device(fore200e->dev); 741 const struct linux_prom_registers *regs; 742 743 regs = of_get_property(op->dev.of_node, "reg", NULL); 744 745 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n", 746 (regs ? regs->which_io : 0), op->dev.of_node); 747 } 748 749 static const struct fore200e_bus fore200e_sbus_ops = { 750 .model_name = "SBA-200E", 751 .proc_name = "sba200e", 752 .descr_alignment = 32, 753 .buffer_alignment = 64, 754 .status_alignment = 32, 755 .read = fore200e_sba_read, 756 .write = fore200e_sba_write, 757 .configure = fore200e_sba_configure, 758 .map = fore200e_sba_map, 759 .reset = fore200e_sba_reset, 760 .prom_read = fore200e_sba_prom_read, 761 .unmap = fore200e_sba_unmap, 762 .irq_enable = fore200e_sba_irq_enable, 763 .irq_check = fore200e_sba_irq_check, 764 .irq_ack = fore200e_sba_irq_ack, 765 .proc_read = fore200e_sba_proc_read, 766 }; 767 #endif /* CONFIG_SBUS */ 768 769 static void 770 fore200e_tx_irq(struct fore200e* fore200e) 771 { 772 struct host_txq* txq = &fore200e->host_txq; 773 struct host_txq_entry* entry; 774 struct atm_vcc* vcc; 775 struct fore200e_vc_map* vc_map; 776 777 if (fore200e->host_txq.txing == 0) 778 return; 779 780 for (;;) { 781 782 entry = &txq->host_entry[ txq->tail ]; 783 784 if ((*entry->status & STATUS_COMPLETE) == 0) { 785 break; 786 } 787 788 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 789 entry, txq->tail, entry->vc_map, entry->skb); 790 791 /* free copy of misaligned data */ 792 kfree(entry->data); 793 794 /* remove DMA mapping */ 795 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length, 796 DMA_TO_DEVICE); 797 798 vc_map = entry->vc_map; 799 800 /* vcc closed since the time the entry was submitted for tx? */ 801 if ((vc_map->vcc == NULL) || 802 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 803 804 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n", 805 fore200e->atm_dev->number); 806 807 dev_kfree_skb_any(entry->skb); 808 } 809 else { 810 ASSERT(vc_map->vcc); 811 812 /* vcc closed then immediately re-opened? */ 813 if (vc_map->incarn != entry->incarn) { 814 815 /* when a vcc is closed, some PDUs may be still pending in the tx queue. 816 if the same vcc is immediately re-opened, those pending PDUs must 817 not be popped after the completion of their emission, as they refer 818 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc 819 would be decremented by the size of the (unrelated) skb, possibly 820 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc. 821 we thus bind the tx entry to the current incarnation of the vcc 822 when the entry is submitted for tx. When the tx later completes, 823 if the incarnation number of the tx entry does not match the one 824 of the vcc, then this implies that the vcc has been closed then re-opened. 825 we thus just drop the skb here. */ 826 827 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n", 828 fore200e->atm_dev->number); 829 830 dev_kfree_skb_any(entry->skb); 831 } 832 else { 833 vcc = vc_map->vcc; 834 ASSERT(vcc); 835 836 /* notify tx completion */ 837 if (vcc->pop) { 838 vcc->pop(vcc, entry->skb); 839 } 840 else { 841 dev_kfree_skb_any(entry->skb); 842 } 843 844 /* check error condition */ 845 if (*entry->status & STATUS_ERROR) 846 atomic_inc(&vcc->stats->tx_err); 847 else 848 atomic_inc(&vcc->stats->tx); 849 } 850 } 851 852 *entry->status = STATUS_FREE; 853 854 fore200e->host_txq.txing--; 855 856 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX); 857 } 858 } 859 860 861 #ifdef FORE200E_BSQ_DEBUG 862 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn) 863 { 864 struct buffer* buffer; 865 int count = 0; 866 867 buffer = bsq->freebuf; 868 while (buffer) { 869 870 if (buffer->supplied) { 871 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n", 872 where, scheme, magn, buffer->index); 873 } 874 875 if (buffer->magn != magn) { 876 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n", 877 where, scheme, magn, buffer->index, buffer->magn); 878 } 879 880 if (buffer->scheme != scheme) { 881 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n", 882 where, scheme, magn, buffer->index, buffer->scheme); 883 } 884 885 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) { 886 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n", 887 where, scheme, magn, buffer->index); 888 } 889 890 count++; 891 buffer = buffer->next; 892 } 893 894 if (count != bsq->freebuf_count) { 895 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n", 896 where, scheme, magn, count, bsq->freebuf_count); 897 } 898 return 0; 899 } 900 #endif 901 902 903 static void 904 fore200e_supply(struct fore200e* fore200e) 905 { 906 int scheme, magn, i; 907 908 struct host_bsq* bsq; 909 struct host_bsq_entry* entry; 910 struct buffer* buffer; 911 912 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 913 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 914 915 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 916 917 #ifdef FORE200E_BSQ_DEBUG 918 bsq_audit(1, bsq, scheme, magn); 919 #endif 920 while (bsq->freebuf_count >= RBD_BLK_SIZE) { 921 922 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n", 923 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count); 924 925 entry = &bsq->host_entry[ bsq->head ]; 926 927 for (i = 0; i < RBD_BLK_SIZE; i++) { 928 929 /* take the first buffer in the free buffer list */ 930 buffer = bsq->freebuf; 931 if (!buffer) { 932 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n", 933 scheme, magn, bsq->freebuf_count); 934 return; 935 } 936 bsq->freebuf = buffer->next; 937 938 #ifdef FORE200E_BSQ_DEBUG 939 if (buffer->supplied) 940 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n", 941 scheme, magn, buffer->index); 942 buffer->supplied = 1; 943 #endif 944 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr; 945 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer); 946 } 947 948 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS); 949 950 /* decrease accordingly the number of free rx buffers */ 951 bsq->freebuf_count -= RBD_BLK_SIZE; 952 953 *entry->status = STATUS_PENDING; 954 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr); 955 } 956 } 957 } 958 } 959 960 961 static int 962 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd) 963 { 964 struct sk_buff* skb; 965 struct buffer* buffer; 966 struct fore200e_vcc* fore200e_vcc; 967 int i, pdu_len = 0; 968 #ifdef FORE200E_52BYTE_AAL0_SDU 969 u32 cell_header = 0; 970 #endif 971 972 ASSERT(vcc); 973 974 fore200e_vcc = FORE200E_VCC(vcc); 975 ASSERT(fore200e_vcc); 976 977 #ifdef FORE200E_52BYTE_AAL0_SDU 978 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) { 979 980 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) | 981 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) | 982 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) | 983 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 984 rpd->atm_header.clp; 985 pdu_len = 4; 986 } 987 #endif 988 989 /* compute total PDU length */ 990 for (i = 0; i < rpd->nseg; i++) 991 pdu_len += rpd->rsd[ i ].length; 992 993 skb = alloc_skb(pdu_len, GFP_ATOMIC); 994 if (skb == NULL) { 995 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len); 996 997 atomic_inc(&vcc->stats->rx_drop); 998 return -ENOMEM; 999 } 1000 1001 __net_timestamp(skb); 1002 1003 #ifdef FORE200E_52BYTE_AAL0_SDU 1004 if (cell_header) { 1005 *((u32*)skb_put(skb, 4)) = cell_header; 1006 } 1007 #endif 1008 1009 /* reassemble segments */ 1010 for (i = 0; i < rpd->nseg; i++) { 1011 1012 /* rebuild rx buffer address from rsd handle */ 1013 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1014 1015 /* Make device DMA transfer visible to CPU. */ 1016 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr, 1017 rpd->rsd[i].length, DMA_FROM_DEVICE); 1018 1019 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length); 1020 1021 /* Now let the device get at it again. */ 1022 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr, 1023 rpd->rsd[i].length, DMA_FROM_DEVICE); 1024 } 1025 1026 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize); 1027 1028 if (pdu_len < fore200e_vcc->rx_min_pdu) 1029 fore200e_vcc->rx_min_pdu = pdu_len; 1030 if (pdu_len > fore200e_vcc->rx_max_pdu) 1031 fore200e_vcc->rx_max_pdu = pdu_len; 1032 fore200e_vcc->rx_pdu++; 1033 1034 /* push PDU */ 1035 if (atm_charge(vcc, skb->truesize) == 0) { 1036 1037 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n", 1038 vcc->itf, vcc->vpi, vcc->vci); 1039 1040 dev_kfree_skb_any(skb); 1041 1042 atomic_inc(&vcc->stats->rx_drop); 1043 return -ENOMEM; 1044 } 1045 1046 vcc->push(vcc, skb); 1047 atomic_inc(&vcc->stats->rx); 1048 1049 return 0; 1050 } 1051 1052 1053 static void 1054 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd) 1055 { 1056 struct host_bsq* bsq; 1057 struct buffer* buffer; 1058 int i; 1059 1060 for (i = 0; i < rpd->nseg; i++) { 1061 1062 /* rebuild rx buffer address from rsd handle */ 1063 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1064 1065 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ]; 1066 1067 #ifdef FORE200E_BSQ_DEBUG 1068 bsq_audit(2, bsq, buffer->scheme, buffer->magn); 1069 1070 if (buffer->supplied == 0) 1071 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n", 1072 buffer->scheme, buffer->magn, buffer->index); 1073 buffer->supplied = 0; 1074 #endif 1075 1076 /* re-insert the buffer into the free buffer list */ 1077 buffer->next = bsq->freebuf; 1078 bsq->freebuf = buffer; 1079 1080 /* then increment the number of free rx buffers */ 1081 bsq->freebuf_count++; 1082 } 1083 } 1084 1085 1086 static void 1087 fore200e_rx_irq(struct fore200e* fore200e) 1088 { 1089 struct host_rxq* rxq = &fore200e->host_rxq; 1090 struct host_rxq_entry* entry; 1091 struct atm_vcc* vcc; 1092 struct fore200e_vc_map* vc_map; 1093 1094 for (;;) { 1095 1096 entry = &rxq->host_entry[ rxq->head ]; 1097 1098 /* no more received PDUs */ 1099 if ((*entry->status & STATUS_COMPLETE) == 0) 1100 break; 1101 1102 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1103 1104 if ((vc_map->vcc == NULL) || 1105 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 1106 1107 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n", 1108 fore200e->atm_dev->number, 1109 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1110 } 1111 else { 1112 vcc = vc_map->vcc; 1113 ASSERT(vcc); 1114 1115 if ((*entry->status & STATUS_ERROR) == 0) { 1116 1117 fore200e_push_rpd(fore200e, vcc, entry->rpd); 1118 } 1119 else { 1120 DPRINTK(2, "damaged PDU on %d.%d.%d\n", 1121 fore200e->atm_dev->number, 1122 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1123 atomic_inc(&vcc->stats->rx_err); 1124 } 1125 } 1126 1127 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX); 1128 1129 fore200e_collect_rpd(fore200e, entry->rpd); 1130 1131 /* rewrite the rpd address to ack the received PDU */ 1132 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr); 1133 *entry->status = STATUS_FREE; 1134 1135 fore200e_supply(fore200e); 1136 } 1137 } 1138 1139 1140 #ifndef FORE200E_USE_TASKLET 1141 static void 1142 fore200e_irq(struct fore200e* fore200e) 1143 { 1144 unsigned long flags; 1145 1146 spin_lock_irqsave(&fore200e->q_lock, flags); 1147 fore200e_rx_irq(fore200e); 1148 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1149 1150 spin_lock_irqsave(&fore200e->q_lock, flags); 1151 fore200e_tx_irq(fore200e); 1152 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1153 } 1154 #endif 1155 1156 1157 static irqreturn_t 1158 fore200e_interrupt(int irq, void* dev) 1159 { 1160 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev); 1161 1162 if (fore200e->bus->irq_check(fore200e) == 0) { 1163 1164 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number); 1165 return IRQ_NONE; 1166 } 1167 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number); 1168 1169 #ifdef FORE200E_USE_TASKLET 1170 tasklet_schedule(&fore200e->tx_tasklet); 1171 tasklet_schedule(&fore200e->rx_tasklet); 1172 #else 1173 fore200e_irq(fore200e); 1174 #endif 1175 1176 fore200e->bus->irq_ack(fore200e); 1177 return IRQ_HANDLED; 1178 } 1179 1180 1181 #ifdef FORE200E_USE_TASKLET 1182 static void 1183 fore200e_tx_tasklet(unsigned long data) 1184 { 1185 struct fore200e* fore200e = (struct fore200e*) data; 1186 unsigned long flags; 1187 1188 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1189 1190 spin_lock_irqsave(&fore200e->q_lock, flags); 1191 fore200e_tx_irq(fore200e); 1192 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1193 } 1194 1195 1196 static void 1197 fore200e_rx_tasklet(unsigned long data) 1198 { 1199 struct fore200e* fore200e = (struct fore200e*) data; 1200 unsigned long flags; 1201 1202 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1203 1204 spin_lock_irqsave(&fore200e->q_lock, flags); 1205 fore200e_rx_irq((struct fore200e*) data); 1206 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1207 } 1208 #endif 1209 1210 1211 static int 1212 fore200e_select_scheme(struct atm_vcc* vcc) 1213 { 1214 /* fairly balance the VCs over (identical) buffer schemes */ 1215 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO; 1216 1217 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n", 1218 vcc->itf, vcc->vpi, vcc->vci, scheme); 1219 1220 return scheme; 1221 } 1222 1223 1224 static int 1225 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu) 1226 { 1227 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1228 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1229 struct activate_opcode activ_opcode; 1230 struct deactivate_opcode deactiv_opcode; 1231 struct vpvc vpvc; 1232 int ok; 1233 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal); 1234 1235 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1236 1237 if (activate) { 1238 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc); 1239 1240 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN; 1241 activ_opcode.aal = aal; 1242 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme; 1243 activ_opcode.pad = 0; 1244 } 1245 else { 1246 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN; 1247 deactiv_opcode.pad = 0; 1248 } 1249 1250 vpvc.vci = vcc->vci; 1251 vpvc.vpi = vcc->vpi; 1252 1253 *entry->status = STATUS_PENDING; 1254 1255 if (activate) { 1256 1257 #ifdef FORE200E_52BYTE_AAL0_SDU 1258 mtu = 48; 1259 #endif 1260 /* the MTU is not used by the cp, except in the case of AAL0 */ 1261 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu); 1262 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc); 1263 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode); 1264 } 1265 else { 1266 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc); 1267 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode); 1268 } 1269 1270 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1271 1272 *entry->status = STATUS_FREE; 1273 1274 if (ok == 0) { 1275 printk(FORE200E "unable to %s VC %d.%d.%d\n", 1276 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci); 1277 return -EIO; 1278 } 1279 1280 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 1281 activate ? "open" : "clos"); 1282 1283 return 0; 1284 } 1285 1286 1287 #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */ 1288 1289 static void 1290 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate) 1291 { 1292 if (qos->txtp.max_pcr < ATM_OC3_PCR) { 1293 1294 /* compute the data cells to idle cells ratio from the tx PCR */ 1295 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR; 1296 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells; 1297 } 1298 else { 1299 /* disable rate control */ 1300 rate->data_cells = rate->idle_cells = 0; 1301 } 1302 } 1303 1304 1305 static int 1306 fore200e_open(struct atm_vcc *vcc) 1307 { 1308 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1309 struct fore200e_vcc* fore200e_vcc; 1310 struct fore200e_vc_map* vc_map; 1311 unsigned long flags; 1312 int vci = vcc->vci; 1313 short vpi = vcc->vpi; 1314 1315 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS)); 1316 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS)); 1317 1318 spin_lock_irqsave(&fore200e->q_lock, flags); 1319 1320 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci); 1321 if (vc_map->vcc) { 1322 1323 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1324 1325 printk(FORE200E "VC %d.%d.%d already in use\n", 1326 fore200e->atm_dev->number, vpi, vci); 1327 1328 return -EINVAL; 1329 } 1330 1331 vc_map->vcc = vcc; 1332 1333 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1334 1335 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC); 1336 if (fore200e_vcc == NULL) { 1337 vc_map->vcc = NULL; 1338 return -ENOMEM; 1339 } 1340 1341 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1342 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n", 1343 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1344 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ], 1345 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu, 1346 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ], 1347 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu); 1348 1349 /* pseudo-CBR bandwidth requested? */ 1350 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1351 1352 mutex_lock(&fore200e->rate_mtx); 1353 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) { 1354 mutex_unlock(&fore200e->rate_mtx); 1355 1356 kfree(fore200e_vcc); 1357 vc_map->vcc = NULL; 1358 return -EAGAIN; 1359 } 1360 1361 /* reserve bandwidth */ 1362 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr; 1363 mutex_unlock(&fore200e->rate_mtx); 1364 } 1365 1366 vcc->itf = vcc->dev->number; 1367 1368 set_bit(ATM_VF_PARTIAL,&vcc->flags); 1369 set_bit(ATM_VF_ADDR, &vcc->flags); 1370 1371 vcc->dev_data = fore200e_vcc; 1372 1373 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) { 1374 1375 vc_map->vcc = NULL; 1376 1377 clear_bit(ATM_VF_ADDR, &vcc->flags); 1378 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1379 1380 vcc->dev_data = NULL; 1381 1382 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1383 1384 kfree(fore200e_vcc); 1385 return -EINVAL; 1386 } 1387 1388 /* compute rate control parameters */ 1389 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1390 1391 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate); 1392 set_bit(ATM_VF_HASQOS, &vcc->flags); 1393 1394 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n", 1395 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1396 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 1397 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells); 1398 } 1399 1400 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1; 1401 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0; 1402 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0; 1403 1404 /* new incarnation of the vcc */ 1405 vc_map->incarn = ++fore200e->incarn_count; 1406 1407 /* VC unusable before this flag is set */ 1408 set_bit(ATM_VF_READY, &vcc->flags); 1409 1410 return 0; 1411 } 1412 1413 1414 static void 1415 fore200e_close(struct atm_vcc* vcc) 1416 { 1417 struct fore200e_vcc* fore200e_vcc; 1418 struct fore200e* fore200e; 1419 struct fore200e_vc_map* vc_map; 1420 unsigned long flags; 1421 1422 ASSERT(vcc); 1423 fore200e = FORE200E_DEV(vcc->dev); 1424 1425 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS)); 1426 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS)); 1427 1428 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal)); 1429 1430 clear_bit(ATM_VF_READY, &vcc->flags); 1431 1432 fore200e_activate_vcin(fore200e, 0, vcc, 0); 1433 1434 spin_lock_irqsave(&fore200e->q_lock, flags); 1435 1436 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1437 1438 /* the vc is no longer considered as "in use" by fore200e_open() */ 1439 vc_map->vcc = NULL; 1440 1441 vcc->itf = vcc->vci = vcc->vpi = 0; 1442 1443 fore200e_vcc = FORE200E_VCC(vcc); 1444 vcc->dev_data = NULL; 1445 1446 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1447 1448 /* release reserved bandwidth, if any */ 1449 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1450 1451 mutex_lock(&fore200e->rate_mtx); 1452 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1453 mutex_unlock(&fore200e->rate_mtx); 1454 1455 clear_bit(ATM_VF_HASQOS, &vcc->flags); 1456 } 1457 1458 clear_bit(ATM_VF_ADDR, &vcc->flags); 1459 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1460 1461 ASSERT(fore200e_vcc); 1462 kfree(fore200e_vcc); 1463 } 1464 1465 1466 static int 1467 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb) 1468 { 1469 struct fore200e* fore200e; 1470 struct fore200e_vcc* fore200e_vcc; 1471 struct fore200e_vc_map* vc_map; 1472 struct host_txq* txq; 1473 struct host_txq_entry* entry; 1474 struct tpd* tpd; 1475 struct tpd_haddr tpd_haddr; 1476 int retry = CONFIG_ATM_FORE200E_TX_RETRY; 1477 int tx_copy = 0; 1478 int tx_len = skb->len; 1479 u32* cell_header = NULL; 1480 unsigned char* skb_data; 1481 int skb_len; 1482 unsigned char* data; 1483 unsigned long flags; 1484 1485 if (!vcc) 1486 return -EINVAL; 1487 1488 fore200e = FORE200E_DEV(vcc->dev); 1489 fore200e_vcc = FORE200E_VCC(vcc); 1490 1491 if (!fore200e) 1492 return -EINVAL; 1493 1494 txq = &fore200e->host_txq; 1495 if (!fore200e_vcc) 1496 return -EINVAL; 1497 1498 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1499 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi); 1500 dev_kfree_skb_any(skb); 1501 return -EINVAL; 1502 } 1503 1504 #ifdef FORE200E_52BYTE_AAL0_SDU 1505 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) { 1506 cell_header = (u32*) skb->data; 1507 skb_data = skb->data + 4; /* skip 4-byte cell header */ 1508 skb_len = tx_len = skb->len - 4; 1509 1510 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header); 1511 } 1512 else 1513 #endif 1514 { 1515 skb_data = skb->data; 1516 skb_len = skb->len; 1517 } 1518 1519 if (((unsigned long)skb_data) & 0x3) { 1520 1521 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name); 1522 tx_copy = 1; 1523 tx_len = skb_len; 1524 } 1525 1526 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) { 1527 1528 /* this simply NUKES the PCA board */ 1529 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name); 1530 tx_copy = 1; 1531 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD; 1532 } 1533 1534 if (tx_copy) { 1535 data = kmalloc(tx_len, GFP_ATOMIC); 1536 if (data == NULL) { 1537 if (vcc->pop) { 1538 vcc->pop(vcc, skb); 1539 } 1540 else { 1541 dev_kfree_skb_any(skb); 1542 } 1543 return -ENOMEM; 1544 } 1545 1546 memcpy(data, skb_data, skb_len); 1547 if (skb_len < tx_len) 1548 memset(data + skb_len, 0x00, tx_len - skb_len); 1549 } 1550 else { 1551 data = skb_data; 1552 } 1553 1554 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1555 ASSERT(vc_map->vcc == vcc); 1556 1557 retry_here: 1558 1559 spin_lock_irqsave(&fore200e->q_lock, flags); 1560 1561 entry = &txq->host_entry[ txq->head ]; 1562 1563 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) { 1564 1565 /* try to free completed tx queue entries */ 1566 fore200e_tx_irq(fore200e); 1567 1568 if (*entry->status != STATUS_FREE) { 1569 1570 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1571 1572 /* retry once again? */ 1573 if (--retry > 0) { 1574 udelay(50); 1575 goto retry_here; 1576 } 1577 1578 atomic_inc(&vcc->stats->tx_err); 1579 1580 fore200e->tx_sat++; 1581 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n", 1582 fore200e->name, fore200e->cp_queues->heartbeat); 1583 if (vcc->pop) { 1584 vcc->pop(vcc, skb); 1585 } 1586 else { 1587 dev_kfree_skb_any(skb); 1588 } 1589 1590 if (tx_copy) 1591 kfree(data); 1592 1593 return -ENOBUFS; 1594 } 1595 } 1596 1597 entry->incarn = vc_map->incarn; 1598 entry->vc_map = vc_map; 1599 entry->skb = skb; 1600 entry->data = tx_copy ? data : NULL; 1601 1602 tpd = entry->tpd; 1603 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len, 1604 DMA_TO_DEVICE); 1605 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) { 1606 if (tx_copy) 1607 kfree(data); 1608 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1609 return -ENOMEM; 1610 } 1611 tpd->tsd[ 0 ].length = tx_len; 1612 1613 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX); 1614 txq->txing++; 1615 1616 /* The dma_map call above implies a dma_sync so the device can use it, 1617 * thus no explicit dma_sync call is necessary here. 1618 */ 1619 1620 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 1621 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1622 tpd->tsd[0].length, skb_len); 1623 1624 if (skb_len < fore200e_vcc->tx_min_pdu) 1625 fore200e_vcc->tx_min_pdu = skb_len; 1626 if (skb_len > fore200e_vcc->tx_max_pdu) 1627 fore200e_vcc->tx_max_pdu = skb_len; 1628 fore200e_vcc->tx_pdu++; 1629 1630 /* set tx rate control information */ 1631 tpd->rate.data_cells = fore200e_vcc->rate.data_cells; 1632 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; 1633 1634 if (cell_header) { 1635 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP); 1636 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 1637 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT; 1638 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT; 1639 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT; 1640 } 1641 else { 1642 /* set the ATM header, common to all cells conveying the PDU */ 1643 tpd->atm_header.clp = 0; 1644 tpd->atm_header.plt = 0; 1645 tpd->atm_header.vci = vcc->vci; 1646 tpd->atm_header.vpi = vcc->vpi; 1647 tpd->atm_header.gfc = 0; 1648 } 1649 1650 tpd->spec.length = tx_len; 1651 tpd->spec.nseg = 1; 1652 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal); 1653 tpd->spec.intr = 1; 1654 1655 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */ 1656 tpd_haddr.pad = 0; 1657 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */ 1658 1659 *entry->status = STATUS_PENDING; 1660 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr); 1661 1662 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1663 1664 return 0; 1665 } 1666 1667 1668 static int 1669 fore200e_getstats(struct fore200e* fore200e) 1670 { 1671 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1672 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1673 struct stats_opcode opcode; 1674 int ok; 1675 u32 stats_dma_addr; 1676 1677 if (fore200e->stats == NULL) { 1678 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL); 1679 if (fore200e->stats == NULL) 1680 return -ENOMEM; 1681 } 1682 1683 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats, 1684 sizeof(struct stats), DMA_FROM_DEVICE); 1685 if (dma_mapping_error(fore200e->dev, stats_dma_addr)) 1686 return -ENOMEM; 1687 1688 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1689 1690 opcode.opcode = OPCODE_GET_STATS; 1691 opcode.pad = 0; 1692 1693 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr); 1694 1695 *entry->status = STATUS_PENDING; 1696 1697 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode); 1698 1699 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1700 1701 *entry->status = STATUS_FREE; 1702 1703 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE); 1704 1705 if (ok == 0) { 1706 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name); 1707 return -EIO; 1708 } 1709 1710 return 0; 1711 } 1712 1713 1714 static int 1715 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) 1716 { 1717 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ 1718 1719 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", 1720 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); 1721 1722 return -EINVAL; 1723 } 1724 1725 1726 static int 1727 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen) 1728 { 1729 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ 1730 1731 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", 1732 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); 1733 1734 return -EINVAL; 1735 } 1736 1737 1738 #if 0 /* currently unused */ 1739 static int 1740 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs) 1741 { 1742 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1743 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1744 struct oc3_opcode opcode; 1745 int ok; 1746 u32 oc3_regs_dma_addr; 1747 1748 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1749 1750 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1751 1752 opcode.opcode = OPCODE_GET_OC3; 1753 opcode.reg = 0; 1754 opcode.value = 0; 1755 opcode.mask = 0; 1756 1757 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1758 1759 *entry->status = STATUS_PENDING; 1760 1761 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode); 1762 1763 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1764 1765 *entry->status = STATUS_FREE; 1766 1767 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1768 1769 if (ok == 0) { 1770 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name); 1771 return -EIO; 1772 } 1773 1774 return 0; 1775 } 1776 #endif 1777 1778 1779 static int 1780 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask) 1781 { 1782 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1783 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1784 struct oc3_opcode opcode; 1785 int ok; 1786 1787 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask); 1788 1789 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1790 1791 opcode.opcode = OPCODE_SET_OC3; 1792 opcode.reg = reg; 1793 opcode.value = value; 1794 opcode.mask = mask; 1795 1796 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1797 1798 *entry->status = STATUS_PENDING; 1799 1800 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode); 1801 1802 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1803 1804 *entry->status = STATUS_FREE; 1805 1806 if (ok == 0) { 1807 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name); 1808 return -EIO; 1809 } 1810 1811 return 0; 1812 } 1813 1814 1815 static int 1816 fore200e_setloop(struct fore200e* fore200e, int loop_mode) 1817 { 1818 u32 mct_value, mct_mask; 1819 int error; 1820 1821 if (!capable(CAP_NET_ADMIN)) 1822 return -EPERM; 1823 1824 switch (loop_mode) { 1825 1826 case ATM_LM_NONE: 1827 mct_value = 0; 1828 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE; 1829 break; 1830 1831 case ATM_LM_LOC_PHY: 1832 mct_value = mct_mask = SUNI_MCT_DLE; 1833 break; 1834 1835 case ATM_LM_RMT_PHY: 1836 mct_value = mct_mask = SUNI_MCT_LLE; 1837 break; 1838 1839 default: 1840 return -EINVAL; 1841 } 1842 1843 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask); 1844 if (error == 0) 1845 fore200e->loop_mode = loop_mode; 1846 1847 return error; 1848 } 1849 1850 1851 static int 1852 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg) 1853 { 1854 struct sonet_stats tmp; 1855 1856 if (fore200e_getstats(fore200e) < 0) 1857 return -EIO; 1858 1859 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors); 1860 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors); 1861 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors); 1862 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors); 1863 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors); 1864 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors); 1865 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors); 1866 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) + 1867 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) + 1868 be32_to_cpu(fore200e->stats->aal5.cells_transmitted); 1869 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) + 1870 be32_to_cpu(fore200e->stats->aal34.cells_received) + 1871 be32_to_cpu(fore200e->stats->aal5.cells_received); 1872 1873 if (arg) 1874 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0; 1875 1876 return 0; 1877 } 1878 1879 1880 static int 1881 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg) 1882 { 1883 struct fore200e* fore200e = FORE200E_DEV(dev); 1884 1885 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg); 1886 1887 switch (cmd) { 1888 1889 case SONET_GETSTAT: 1890 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg); 1891 1892 case SONET_GETDIAG: 1893 return put_user(0, (int __user *)arg) ? -EFAULT : 0; 1894 1895 case ATM_SETLOOP: 1896 return fore200e_setloop(fore200e, (int)(unsigned long)arg); 1897 1898 case ATM_GETLOOP: 1899 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0; 1900 1901 case ATM_QUERYLOOP: 1902 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0; 1903 } 1904 1905 return -ENOSYS; /* not implemented */ 1906 } 1907 1908 1909 static int 1910 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags) 1911 { 1912 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); 1913 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1914 1915 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1916 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi); 1917 return -EINVAL; 1918 } 1919 1920 DPRINTK(2, "change_qos %d.%d.%d, " 1921 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1922 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n" 1923 "available_cell_rate = %u", 1924 vcc->itf, vcc->vpi, vcc->vci, 1925 fore200e_traffic_class[ qos->txtp.traffic_class ], 1926 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu, 1927 fore200e_traffic_class[ qos->rxtp.traffic_class ], 1928 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu, 1929 flags, fore200e->available_cell_rate); 1930 1931 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) { 1932 1933 mutex_lock(&fore200e->rate_mtx); 1934 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) { 1935 mutex_unlock(&fore200e->rate_mtx); 1936 return -EAGAIN; 1937 } 1938 1939 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1940 fore200e->available_cell_rate -= qos->txtp.max_pcr; 1941 1942 mutex_unlock(&fore200e->rate_mtx); 1943 1944 memcpy(&vcc->qos, qos, sizeof(struct atm_qos)); 1945 1946 /* update rate control parameters */ 1947 fore200e_rate_ctrl(qos, &fore200e_vcc->rate); 1948 1949 set_bit(ATM_VF_HASQOS, &vcc->flags); 1950 1951 return 0; 1952 } 1953 1954 return -EINVAL; 1955 } 1956 1957 1958 static int fore200e_irq_request(struct fore200e *fore200e) 1959 { 1960 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) { 1961 1962 printk(FORE200E "unable to reserve IRQ %s for device %s\n", 1963 fore200e_irq_itoa(fore200e->irq), fore200e->name); 1964 return -EBUSY; 1965 } 1966 1967 printk(FORE200E "IRQ %s reserved for device %s\n", 1968 fore200e_irq_itoa(fore200e->irq), fore200e->name); 1969 1970 #ifdef FORE200E_USE_TASKLET 1971 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e); 1972 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e); 1973 #endif 1974 1975 fore200e->state = FORE200E_STATE_IRQ; 1976 return 0; 1977 } 1978 1979 1980 static int fore200e_get_esi(struct fore200e *fore200e) 1981 { 1982 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL); 1983 int ok, i; 1984 1985 if (!prom) 1986 return -ENOMEM; 1987 1988 ok = fore200e->bus->prom_read(fore200e, prom); 1989 if (ok < 0) { 1990 kfree(prom); 1991 return -EBUSY; 1992 } 1993 1994 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n", 1995 fore200e->name, 1996 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */ 1997 prom->serial_number & 0xFFFF, &prom->mac_addr[2]); 1998 1999 for (i = 0; i < ESI_LEN; i++) { 2000 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ]; 2001 } 2002 2003 kfree(prom); 2004 2005 return 0; 2006 } 2007 2008 2009 static int fore200e_alloc_rx_buf(struct fore200e *fore200e) 2010 { 2011 int scheme, magn, nbr, size, i; 2012 2013 struct host_bsq* bsq; 2014 struct buffer* buffer; 2015 2016 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 2017 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 2018 2019 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 2020 2021 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ]; 2022 size = fore200e_rx_buf_size[ scheme ][ magn ]; 2023 2024 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn); 2025 2026 /* allocate the array of receive buffers */ 2027 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer), 2028 GFP_KERNEL); 2029 2030 if (buffer == NULL) 2031 return -ENOMEM; 2032 2033 bsq->freebuf = NULL; 2034 2035 for (i = 0; i < nbr; i++) { 2036 2037 buffer[ i ].scheme = scheme; 2038 buffer[ i ].magn = magn; 2039 #ifdef FORE200E_BSQ_DEBUG 2040 buffer[ i ].index = i; 2041 buffer[ i ].supplied = 0; 2042 #endif 2043 2044 /* allocate the receive buffer body */ 2045 if (fore200e_chunk_alloc(fore200e, 2046 &buffer[ i ].data, size, fore200e->bus->buffer_alignment, 2047 DMA_FROM_DEVICE) < 0) { 2048 2049 while (i > 0) 2050 fore200e_chunk_free(fore200e, &buffer[ --i ].data); 2051 kfree(buffer); 2052 2053 return -ENOMEM; 2054 } 2055 2056 /* insert the buffer into the free buffer list */ 2057 buffer[ i ].next = bsq->freebuf; 2058 bsq->freebuf = &buffer[ i ]; 2059 } 2060 /* all the buffers are free, initially */ 2061 bsq->freebuf_count = nbr; 2062 2063 #ifdef FORE200E_BSQ_DEBUG 2064 bsq_audit(3, bsq, scheme, magn); 2065 #endif 2066 } 2067 } 2068 2069 fore200e->state = FORE200E_STATE_ALLOC_BUF; 2070 return 0; 2071 } 2072 2073 2074 static int fore200e_init_bs_queue(struct fore200e *fore200e) 2075 { 2076 int scheme, magn, i; 2077 2078 struct host_bsq* bsq; 2079 struct cp_bsq_entry __iomem * cp_entry; 2080 2081 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 2082 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 2083 2084 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn); 2085 2086 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 2087 2088 /* allocate and align the array of status words */ 2089 if (fore200e_dma_chunk_alloc(fore200e, 2090 &bsq->status, 2091 sizeof(enum status), 2092 QUEUE_SIZE_BS, 2093 fore200e->bus->status_alignment) < 0) { 2094 return -ENOMEM; 2095 } 2096 2097 /* allocate and align the array of receive buffer descriptors */ 2098 if (fore200e_dma_chunk_alloc(fore200e, 2099 &bsq->rbd_block, 2100 sizeof(struct rbd_block), 2101 QUEUE_SIZE_BS, 2102 fore200e->bus->descr_alignment) < 0) { 2103 2104 fore200e_dma_chunk_free(fore200e, &bsq->status); 2105 return -ENOMEM; 2106 } 2107 2108 /* get the base address of the cp resident buffer supply queue entries */ 2109 cp_entry = fore200e->virt_base + 2110 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]); 2111 2112 /* fill the host resident and cp resident buffer supply queue entries */ 2113 for (i = 0; i < QUEUE_SIZE_BS; i++) { 2114 2115 bsq->host_entry[ i ].status = 2116 FORE200E_INDEX(bsq->status.align_addr, enum status, i); 2117 bsq->host_entry[ i ].rbd_block = 2118 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i); 2119 bsq->host_entry[ i ].rbd_block_dma = 2120 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i); 2121 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2122 2123 *bsq->host_entry[ i ].status = STATUS_FREE; 2124 2125 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 2126 &cp_entry[ i ].status_haddr); 2127 } 2128 } 2129 } 2130 2131 fore200e->state = FORE200E_STATE_INIT_BSQ; 2132 return 0; 2133 } 2134 2135 2136 static int fore200e_init_rx_queue(struct fore200e *fore200e) 2137 { 2138 struct host_rxq* rxq = &fore200e->host_rxq; 2139 struct cp_rxq_entry __iomem * cp_entry; 2140 int i; 2141 2142 DPRINTK(2, "receive queue is being initialized\n"); 2143 2144 /* allocate and align the array of status words */ 2145 if (fore200e_dma_chunk_alloc(fore200e, 2146 &rxq->status, 2147 sizeof(enum status), 2148 QUEUE_SIZE_RX, 2149 fore200e->bus->status_alignment) < 0) { 2150 return -ENOMEM; 2151 } 2152 2153 /* allocate and align the array of receive PDU descriptors */ 2154 if (fore200e_dma_chunk_alloc(fore200e, 2155 &rxq->rpd, 2156 sizeof(struct rpd), 2157 QUEUE_SIZE_RX, 2158 fore200e->bus->descr_alignment) < 0) { 2159 2160 fore200e_dma_chunk_free(fore200e, &rxq->status); 2161 return -ENOMEM; 2162 } 2163 2164 /* get the base address of the cp resident rx queue entries */ 2165 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq); 2166 2167 /* fill the host resident and cp resident rx entries */ 2168 for (i=0; i < QUEUE_SIZE_RX; i++) { 2169 2170 rxq->host_entry[ i ].status = 2171 FORE200E_INDEX(rxq->status.align_addr, enum status, i); 2172 rxq->host_entry[ i ].rpd = 2173 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i); 2174 rxq->host_entry[ i ].rpd_dma = 2175 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i); 2176 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2177 2178 *rxq->host_entry[ i ].status = STATUS_FREE; 2179 2180 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 2181 &cp_entry[ i ].status_haddr); 2182 2183 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i), 2184 &cp_entry[ i ].rpd_haddr); 2185 } 2186 2187 /* set the head entry of the queue */ 2188 rxq->head = 0; 2189 2190 fore200e->state = FORE200E_STATE_INIT_RXQ; 2191 return 0; 2192 } 2193 2194 2195 static int fore200e_init_tx_queue(struct fore200e *fore200e) 2196 { 2197 struct host_txq* txq = &fore200e->host_txq; 2198 struct cp_txq_entry __iomem * cp_entry; 2199 int i; 2200 2201 DPRINTK(2, "transmit queue is being initialized\n"); 2202 2203 /* allocate and align the array of status words */ 2204 if (fore200e_dma_chunk_alloc(fore200e, 2205 &txq->status, 2206 sizeof(enum status), 2207 QUEUE_SIZE_TX, 2208 fore200e->bus->status_alignment) < 0) { 2209 return -ENOMEM; 2210 } 2211 2212 /* allocate and align the array of transmit PDU descriptors */ 2213 if (fore200e_dma_chunk_alloc(fore200e, 2214 &txq->tpd, 2215 sizeof(struct tpd), 2216 QUEUE_SIZE_TX, 2217 fore200e->bus->descr_alignment) < 0) { 2218 2219 fore200e_dma_chunk_free(fore200e, &txq->status); 2220 return -ENOMEM; 2221 } 2222 2223 /* get the base address of the cp resident tx queue entries */ 2224 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq); 2225 2226 /* fill the host resident and cp resident tx entries */ 2227 for (i=0; i < QUEUE_SIZE_TX; i++) { 2228 2229 txq->host_entry[ i ].status = 2230 FORE200E_INDEX(txq->status.align_addr, enum status, i); 2231 txq->host_entry[ i ].tpd = 2232 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i); 2233 txq->host_entry[ i ].tpd_dma = 2234 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i); 2235 txq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2236 2237 *txq->host_entry[ i ].status = STATUS_FREE; 2238 2239 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 2240 &cp_entry[ i ].status_haddr); 2241 2242 /* although there is a one-to-one mapping of tx queue entries and tpds, 2243 we do not write here the DMA (physical) base address of each tpd into 2244 the related cp resident entry, because the cp relies on this write 2245 operation to detect that a new pdu has been submitted for tx */ 2246 } 2247 2248 /* set the head and tail entries of the queue */ 2249 txq->head = 0; 2250 txq->tail = 0; 2251 2252 fore200e->state = FORE200E_STATE_INIT_TXQ; 2253 return 0; 2254 } 2255 2256 2257 static int fore200e_init_cmd_queue(struct fore200e *fore200e) 2258 { 2259 struct host_cmdq* cmdq = &fore200e->host_cmdq; 2260 struct cp_cmdq_entry __iomem * cp_entry; 2261 int i; 2262 2263 DPRINTK(2, "command queue is being initialized\n"); 2264 2265 /* allocate and align the array of status words */ 2266 if (fore200e_dma_chunk_alloc(fore200e, 2267 &cmdq->status, 2268 sizeof(enum status), 2269 QUEUE_SIZE_CMD, 2270 fore200e->bus->status_alignment) < 0) { 2271 return -ENOMEM; 2272 } 2273 2274 /* get the base address of the cp resident cmd queue entries */ 2275 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq); 2276 2277 /* fill the host resident and cp resident cmd entries */ 2278 for (i=0; i < QUEUE_SIZE_CMD; i++) { 2279 2280 cmdq->host_entry[ i ].status = 2281 FORE200E_INDEX(cmdq->status.align_addr, enum status, i); 2282 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2283 2284 *cmdq->host_entry[ i ].status = STATUS_FREE; 2285 2286 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 2287 &cp_entry[ i ].status_haddr); 2288 } 2289 2290 /* set the head entry of the queue */ 2291 cmdq->head = 0; 2292 2293 fore200e->state = FORE200E_STATE_INIT_CMDQ; 2294 return 0; 2295 } 2296 2297 2298 static void fore200e_param_bs_queue(struct fore200e *fore200e, 2299 enum buffer_scheme scheme, 2300 enum buffer_magn magn, int queue_length, 2301 int pool_size, int supply_blksize) 2302 { 2303 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ]; 2304 2305 fore200e->bus->write(queue_length, &bs_spec->queue_length); 2306 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size); 2307 fore200e->bus->write(pool_size, &bs_spec->pool_size); 2308 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize); 2309 } 2310 2311 2312 static int fore200e_initialize(struct fore200e *fore200e) 2313 { 2314 struct cp_queues __iomem * cpq; 2315 int ok, scheme, magn; 2316 2317 DPRINTK(2, "device %s being initialized\n", fore200e->name); 2318 2319 mutex_init(&fore200e->rate_mtx); 2320 spin_lock_init(&fore200e->q_lock); 2321 2322 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET; 2323 2324 /* enable cp to host interrupts */ 2325 fore200e->bus->write(1, &cpq->imask); 2326 2327 if (fore200e->bus->irq_enable) 2328 fore200e->bus->irq_enable(fore200e); 2329 2330 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect); 2331 2332 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len); 2333 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len); 2334 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len); 2335 2336 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension); 2337 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension); 2338 2339 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) 2340 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) 2341 fore200e_param_bs_queue(fore200e, scheme, magn, 2342 QUEUE_SIZE_BS, 2343 fore200e_rx_buf_nbr[ scheme ][ magn ], 2344 RBD_BLK_SIZE); 2345 2346 /* issue the initialize command */ 2347 fore200e->bus->write(STATUS_PENDING, &cpq->init.status); 2348 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode); 2349 2350 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000); 2351 if (ok == 0) { 2352 printk(FORE200E "device %s initialization failed\n", fore200e->name); 2353 return -ENODEV; 2354 } 2355 2356 printk(FORE200E "device %s initialized\n", fore200e->name); 2357 2358 fore200e->state = FORE200E_STATE_INITIALIZE; 2359 return 0; 2360 } 2361 2362 2363 static void fore200e_monitor_putc(struct fore200e *fore200e, char c) 2364 { 2365 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2366 2367 #if 0 2368 printk("%c", c); 2369 #endif 2370 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send); 2371 } 2372 2373 2374 static int fore200e_monitor_getc(struct fore200e *fore200e) 2375 { 2376 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2377 unsigned long timeout = jiffies + msecs_to_jiffies(50); 2378 int c; 2379 2380 while (time_before(jiffies, timeout)) { 2381 2382 c = (int) fore200e->bus->read(&monitor->soft_uart.recv); 2383 2384 if (c & FORE200E_CP_MONITOR_UART_AVAIL) { 2385 2386 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv); 2387 #if 0 2388 printk("%c", c & 0xFF); 2389 #endif 2390 return c & 0xFF; 2391 } 2392 } 2393 2394 return -1; 2395 } 2396 2397 2398 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str) 2399 { 2400 while (*str) { 2401 2402 /* the i960 monitor doesn't accept any new character if it has something to say */ 2403 while (fore200e_monitor_getc(fore200e) >= 0); 2404 2405 fore200e_monitor_putc(fore200e, *str++); 2406 } 2407 2408 while (fore200e_monitor_getc(fore200e) >= 0); 2409 } 2410 2411 #ifdef __LITTLE_ENDIAN 2412 #define FW_EXT ".bin" 2413 #else 2414 #define FW_EXT "_ecd.bin2" 2415 #endif 2416 2417 static int fore200e_load_and_start_fw(struct fore200e *fore200e) 2418 { 2419 const struct firmware *firmware; 2420 const struct fw_header *fw_header; 2421 const __le32 *fw_data; 2422 u32 fw_size; 2423 u32 __iomem *load_addr; 2424 char buf[48]; 2425 int err; 2426 2427 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT); 2428 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) { 2429 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name); 2430 return err; 2431 } 2432 2433 fw_data = (const __le32 *)firmware->data; 2434 fw_size = firmware->size / sizeof(u32); 2435 fw_header = (const struct fw_header *)firmware->data; 2436 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset); 2437 2438 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n", 2439 fore200e->name, load_addr, fw_size); 2440 2441 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) { 2442 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name); 2443 goto release; 2444 } 2445 2446 for (; fw_size--; fw_data++, load_addr++) 2447 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr); 2448 2449 DPRINTK(2, "device %s firmware being started\n", fore200e->name); 2450 2451 #if defined(__sparc_v9__) 2452 /* reported to be required by SBA cards on some sparc64 hosts */ 2453 fore200e_spin(100); 2454 #endif 2455 2456 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset)); 2457 fore200e_monitor_puts(fore200e, buf); 2458 2459 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) { 2460 printk(FORE200E "device %s firmware didn't start\n", fore200e->name); 2461 goto release; 2462 } 2463 2464 printk(FORE200E "device %s firmware started\n", fore200e->name); 2465 2466 fore200e->state = FORE200E_STATE_START_FW; 2467 err = 0; 2468 2469 release: 2470 release_firmware(firmware); 2471 return err; 2472 } 2473 2474 2475 static int fore200e_register(struct fore200e *fore200e, struct device *parent) 2476 { 2477 struct atm_dev* atm_dev; 2478 2479 DPRINTK(2, "device %s being registered\n", fore200e->name); 2480 2481 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops, 2482 -1, NULL); 2483 if (atm_dev == NULL) { 2484 printk(FORE200E "unable to register device %s\n", fore200e->name); 2485 return -ENODEV; 2486 } 2487 2488 atm_dev->dev_data = fore200e; 2489 fore200e->atm_dev = atm_dev; 2490 2491 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS; 2492 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS; 2493 2494 fore200e->available_cell_rate = ATM_OC3_PCR; 2495 2496 fore200e->state = FORE200E_STATE_REGISTER; 2497 return 0; 2498 } 2499 2500 2501 static int fore200e_init(struct fore200e *fore200e, struct device *parent) 2502 { 2503 if (fore200e_register(fore200e, parent) < 0) 2504 return -ENODEV; 2505 2506 if (fore200e->bus->configure(fore200e) < 0) 2507 return -ENODEV; 2508 2509 if (fore200e->bus->map(fore200e) < 0) 2510 return -ENODEV; 2511 2512 if (fore200e_reset(fore200e, 1) < 0) 2513 return -ENODEV; 2514 2515 if (fore200e_load_and_start_fw(fore200e) < 0) 2516 return -ENODEV; 2517 2518 if (fore200e_initialize(fore200e) < 0) 2519 return -ENODEV; 2520 2521 if (fore200e_init_cmd_queue(fore200e) < 0) 2522 return -ENOMEM; 2523 2524 if (fore200e_init_tx_queue(fore200e) < 0) 2525 return -ENOMEM; 2526 2527 if (fore200e_init_rx_queue(fore200e) < 0) 2528 return -ENOMEM; 2529 2530 if (fore200e_init_bs_queue(fore200e) < 0) 2531 return -ENOMEM; 2532 2533 if (fore200e_alloc_rx_buf(fore200e) < 0) 2534 return -ENOMEM; 2535 2536 if (fore200e_get_esi(fore200e) < 0) 2537 return -EIO; 2538 2539 if (fore200e_irq_request(fore200e) < 0) 2540 return -EBUSY; 2541 2542 fore200e_supply(fore200e); 2543 2544 /* all done, board initialization is now complete */ 2545 fore200e->state = FORE200E_STATE_COMPLETE; 2546 return 0; 2547 } 2548 2549 #ifdef CONFIG_SBUS 2550 static const struct of_device_id fore200e_sba_match[]; 2551 static int fore200e_sba_probe(struct platform_device *op) 2552 { 2553 const struct of_device_id *match; 2554 struct fore200e *fore200e; 2555 static int index = 0; 2556 int err; 2557 2558 match = of_match_device(fore200e_sba_match, &op->dev); 2559 if (!match) 2560 return -EINVAL; 2561 2562 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2563 if (!fore200e) 2564 return -ENOMEM; 2565 2566 fore200e->bus = &fore200e_sbus_ops; 2567 fore200e->dev = &op->dev; 2568 fore200e->irq = op->archdata.irqs[0]; 2569 fore200e->phys_base = op->resource[0].start; 2570 2571 sprintf(fore200e->name, "SBA-200E-%d", index); 2572 2573 err = fore200e_init(fore200e, &op->dev); 2574 if (err < 0) { 2575 fore200e_shutdown(fore200e); 2576 kfree(fore200e); 2577 return err; 2578 } 2579 2580 index++; 2581 dev_set_drvdata(&op->dev, fore200e); 2582 2583 return 0; 2584 } 2585 2586 static int fore200e_sba_remove(struct platform_device *op) 2587 { 2588 struct fore200e *fore200e = dev_get_drvdata(&op->dev); 2589 2590 fore200e_shutdown(fore200e); 2591 kfree(fore200e); 2592 2593 return 0; 2594 } 2595 2596 static const struct of_device_id fore200e_sba_match[] = { 2597 { 2598 .name = SBA200E_PROM_NAME, 2599 }, 2600 {}, 2601 }; 2602 MODULE_DEVICE_TABLE(of, fore200e_sba_match); 2603 2604 static struct platform_driver fore200e_sba_driver = { 2605 .driver = { 2606 .name = "fore_200e", 2607 .of_match_table = fore200e_sba_match, 2608 }, 2609 .probe = fore200e_sba_probe, 2610 .remove = fore200e_sba_remove, 2611 }; 2612 #endif 2613 2614 #ifdef CONFIG_PCI 2615 static int fore200e_pca_detect(struct pci_dev *pci_dev, 2616 const struct pci_device_id *pci_ent) 2617 { 2618 struct fore200e* fore200e; 2619 int err = 0; 2620 static int index = 0; 2621 2622 if (pci_enable_device(pci_dev)) { 2623 err = -EINVAL; 2624 goto out; 2625 } 2626 2627 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) { 2628 err = -EINVAL; 2629 goto out; 2630 } 2631 2632 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2633 if (fore200e == NULL) { 2634 err = -ENOMEM; 2635 goto out_disable; 2636 } 2637 2638 fore200e->bus = &fore200e_pci_ops; 2639 fore200e->dev = &pci_dev->dev; 2640 fore200e->irq = pci_dev->irq; 2641 fore200e->phys_base = pci_resource_start(pci_dev, 0); 2642 2643 sprintf(fore200e->name, "PCA-200E-%d", index - 1); 2644 2645 pci_set_master(pci_dev); 2646 2647 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n", 2648 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); 2649 2650 sprintf(fore200e->name, "PCA-200E-%d", index); 2651 2652 err = fore200e_init(fore200e, &pci_dev->dev); 2653 if (err < 0) { 2654 fore200e_shutdown(fore200e); 2655 goto out_free; 2656 } 2657 2658 ++index; 2659 pci_set_drvdata(pci_dev, fore200e); 2660 2661 out: 2662 return err; 2663 2664 out_free: 2665 kfree(fore200e); 2666 out_disable: 2667 pci_disable_device(pci_dev); 2668 goto out; 2669 } 2670 2671 2672 static void fore200e_pca_remove_one(struct pci_dev *pci_dev) 2673 { 2674 struct fore200e *fore200e; 2675 2676 fore200e = pci_get_drvdata(pci_dev); 2677 2678 fore200e_shutdown(fore200e); 2679 kfree(fore200e); 2680 pci_disable_device(pci_dev); 2681 } 2682 2683 2684 static const struct pci_device_id fore200e_pca_tbl[] = { 2685 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID }, 2686 { 0, } 2687 }; 2688 2689 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl); 2690 2691 static struct pci_driver fore200e_pca_driver = { 2692 .name = "fore_200e", 2693 .probe = fore200e_pca_detect, 2694 .remove = fore200e_pca_remove_one, 2695 .id_table = fore200e_pca_tbl, 2696 }; 2697 #endif 2698 2699 static int __init fore200e_module_init(void) 2700 { 2701 int err = 0; 2702 2703 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n"); 2704 2705 #ifdef CONFIG_SBUS 2706 err = platform_driver_register(&fore200e_sba_driver); 2707 if (err) 2708 return err; 2709 #endif 2710 2711 #ifdef CONFIG_PCI 2712 err = pci_register_driver(&fore200e_pca_driver); 2713 #endif 2714 2715 #ifdef CONFIG_SBUS 2716 if (err) 2717 platform_driver_unregister(&fore200e_sba_driver); 2718 #endif 2719 2720 return err; 2721 } 2722 2723 static void __exit fore200e_module_cleanup(void) 2724 { 2725 #ifdef CONFIG_PCI 2726 pci_unregister_driver(&fore200e_pca_driver); 2727 #endif 2728 #ifdef CONFIG_SBUS 2729 platform_driver_unregister(&fore200e_sba_driver); 2730 #endif 2731 } 2732 2733 static int 2734 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page) 2735 { 2736 struct fore200e* fore200e = FORE200E_DEV(dev); 2737 struct fore200e_vcc* fore200e_vcc; 2738 struct atm_vcc* vcc; 2739 int i, len, left = *pos; 2740 unsigned long flags; 2741 2742 if (!left--) { 2743 2744 if (fore200e_getstats(fore200e) < 0) 2745 return -EIO; 2746 2747 len = sprintf(page,"\n" 2748 " device:\n" 2749 " internal name:\t\t%s\n", fore200e->name); 2750 2751 /* print bus-specific information */ 2752 if (fore200e->bus->proc_read) 2753 len += fore200e->bus->proc_read(fore200e, page + len); 2754 2755 len += sprintf(page + len, 2756 " interrupt line:\t\t%s\n" 2757 " physical base address:\t0x%p\n" 2758 " virtual base address:\t0x%p\n" 2759 " factory address (ESI):\t%pM\n" 2760 " board serial number:\t\t%d\n\n", 2761 fore200e_irq_itoa(fore200e->irq), 2762 (void*)fore200e->phys_base, 2763 fore200e->virt_base, 2764 fore200e->esi, 2765 fore200e->esi[4] * 256 + fore200e->esi[5]); 2766 2767 return len; 2768 } 2769 2770 if (!left--) 2771 return sprintf(page, 2772 " free small bufs, scheme 1:\t%d\n" 2773 " free large bufs, scheme 1:\t%d\n" 2774 " free small bufs, scheme 2:\t%d\n" 2775 " free large bufs, scheme 2:\t%d\n", 2776 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count, 2777 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count, 2778 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count, 2779 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count); 2780 2781 if (!left--) { 2782 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat); 2783 2784 len = sprintf(page,"\n\n" 2785 " cell processor:\n" 2786 " heartbeat state:\t\t"); 2787 2788 if (hb >> 16 != 0xDEAD) 2789 len += sprintf(page + len, "0x%08x\n", hb); 2790 else 2791 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF); 2792 2793 return len; 2794 } 2795 2796 if (!left--) { 2797 static const char* media_name[] = { 2798 "unshielded twisted pair", 2799 "multimode optical fiber ST", 2800 "multimode optical fiber SC", 2801 "single-mode optical fiber ST", 2802 "single-mode optical fiber SC", 2803 "unknown" 2804 }; 2805 2806 static const char* oc3_mode[] = { 2807 "normal operation", 2808 "diagnostic loopback", 2809 "line loopback", 2810 "unknown" 2811 }; 2812 2813 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release); 2814 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release); 2815 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision); 2816 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type)); 2817 u32 oc3_index; 2818 2819 if (media_index > 4) 2820 media_index = 5; 2821 2822 switch (fore200e->loop_mode) { 2823 case ATM_LM_NONE: oc3_index = 0; 2824 break; 2825 case ATM_LM_LOC_PHY: oc3_index = 1; 2826 break; 2827 case ATM_LM_RMT_PHY: oc3_index = 2; 2828 break; 2829 default: oc3_index = 3; 2830 } 2831 2832 return sprintf(page, 2833 " firmware release:\t\t%d.%d.%d\n" 2834 " monitor release:\t\t%d.%d\n" 2835 " media type:\t\t\t%s\n" 2836 " OC-3 revision:\t\t0x%x\n" 2837 " OC-3 mode:\t\t\t%s", 2838 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24, 2839 mon960_release >> 16, mon960_release << 16 >> 16, 2840 media_name[ media_index ], 2841 oc3_revision, 2842 oc3_mode[ oc3_index ]); 2843 } 2844 2845 if (!left--) { 2846 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor; 2847 2848 return sprintf(page, 2849 "\n\n" 2850 " monitor:\n" 2851 " version number:\t\t%d\n" 2852 " boot status word:\t\t0x%08x\n", 2853 fore200e->bus->read(&cp_monitor->mon_version), 2854 fore200e->bus->read(&cp_monitor->bstat)); 2855 } 2856 2857 if (!left--) 2858 return sprintf(page, 2859 "\n" 2860 " device statistics:\n" 2861 " 4b5b:\n" 2862 " crc_header_errors:\t\t%10u\n" 2863 " framing_errors:\t\t%10u\n", 2864 be32_to_cpu(fore200e->stats->phy.crc_header_errors), 2865 be32_to_cpu(fore200e->stats->phy.framing_errors)); 2866 2867 if (!left--) 2868 return sprintf(page, "\n" 2869 " OC-3:\n" 2870 " section_bip8_errors:\t%10u\n" 2871 " path_bip8_errors:\t\t%10u\n" 2872 " line_bip24_errors:\t\t%10u\n" 2873 " line_febe_errors:\t\t%10u\n" 2874 " path_febe_errors:\t\t%10u\n" 2875 " corr_hcs_errors:\t\t%10u\n" 2876 " ucorr_hcs_errors:\t\t%10u\n", 2877 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors), 2878 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors), 2879 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors), 2880 be32_to_cpu(fore200e->stats->oc3.line_febe_errors), 2881 be32_to_cpu(fore200e->stats->oc3.path_febe_errors), 2882 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors), 2883 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors)); 2884 2885 if (!left--) 2886 return sprintf(page,"\n" 2887 " ATM:\t\t\t\t cells\n" 2888 " TX:\t\t\t%10u\n" 2889 " RX:\t\t\t%10u\n" 2890 " vpi out of range:\t\t%10u\n" 2891 " vpi no conn:\t\t%10u\n" 2892 " vci out of range:\t\t%10u\n" 2893 " vci no conn:\t\t%10u\n", 2894 be32_to_cpu(fore200e->stats->atm.cells_transmitted), 2895 be32_to_cpu(fore200e->stats->atm.cells_received), 2896 be32_to_cpu(fore200e->stats->atm.vpi_bad_range), 2897 be32_to_cpu(fore200e->stats->atm.vpi_no_conn), 2898 be32_to_cpu(fore200e->stats->atm.vci_bad_range), 2899 be32_to_cpu(fore200e->stats->atm.vci_no_conn)); 2900 2901 if (!left--) 2902 return sprintf(page,"\n" 2903 " AAL0:\t\t\t cells\n" 2904 " TX:\t\t\t%10u\n" 2905 " RX:\t\t\t%10u\n" 2906 " dropped:\t\t\t%10u\n", 2907 be32_to_cpu(fore200e->stats->aal0.cells_transmitted), 2908 be32_to_cpu(fore200e->stats->aal0.cells_received), 2909 be32_to_cpu(fore200e->stats->aal0.cells_dropped)); 2910 2911 if (!left--) 2912 return sprintf(page,"\n" 2913 " AAL3/4:\n" 2914 " SAR sublayer:\t\t cells\n" 2915 " TX:\t\t\t%10u\n" 2916 " RX:\t\t\t%10u\n" 2917 " dropped:\t\t\t%10u\n" 2918 " CRC errors:\t\t%10u\n" 2919 " protocol errors:\t\t%10u\n\n" 2920 " CS sublayer:\t\t PDUs\n" 2921 " TX:\t\t\t%10u\n" 2922 " RX:\t\t\t%10u\n" 2923 " dropped:\t\t\t%10u\n" 2924 " protocol errors:\t\t%10u\n", 2925 be32_to_cpu(fore200e->stats->aal34.cells_transmitted), 2926 be32_to_cpu(fore200e->stats->aal34.cells_received), 2927 be32_to_cpu(fore200e->stats->aal34.cells_dropped), 2928 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors), 2929 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors), 2930 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted), 2931 be32_to_cpu(fore200e->stats->aal34.cspdus_received), 2932 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped), 2933 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors)); 2934 2935 if (!left--) 2936 return sprintf(page,"\n" 2937 " AAL5:\n" 2938 " SAR sublayer:\t\t cells\n" 2939 " TX:\t\t\t%10u\n" 2940 " RX:\t\t\t%10u\n" 2941 " dropped:\t\t\t%10u\n" 2942 " congestions:\t\t%10u\n\n" 2943 " CS sublayer:\t\t PDUs\n" 2944 " TX:\t\t\t%10u\n" 2945 " RX:\t\t\t%10u\n" 2946 " dropped:\t\t\t%10u\n" 2947 " CRC errors:\t\t%10u\n" 2948 " protocol errors:\t\t%10u\n", 2949 be32_to_cpu(fore200e->stats->aal5.cells_transmitted), 2950 be32_to_cpu(fore200e->stats->aal5.cells_received), 2951 be32_to_cpu(fore200e->stats->aal5.cells_dropped), 2952 be32_to_cpu(fore200e->stats->aal5.congestion_experienced), 2953 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted), 2954 be32_to_cpu(fore200e->stats->aal5.cspdus_received), 2955 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped), 2956 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors), 2957 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors)); 2958 2959 if (!left--) 2960 return sprintf(page,"\n" 2961 " AUX:\t\t allocation failures\n" 2962 " small b1:\t\t\t%10u\n" 2963 " large b1:\t\t\t%10u\n" 2964 " small b2:\t\t\t%10u\n" 2965 " large b2:\t\t\t%10u\n" 2966 " RX PDUs:\t\t\t%10u\n" 2967 " TX PDUs:\t\t\t%10lu\n", 2968 be32_to_cpu(fore200e->stats->aux.small_b1_failed), 2969 be32_to_cpu(fore200e->stats->aux.large_b1_failed), 2970 be32_to_cpu(fore200e->stats->aux.small_b2_failed), 2971 be32_to_cpu(fore200e->stats->aux.large_b2_failed), 2972 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed), 2973 fore200e->tx_sat); 2974 2975 if (!left--) 2976 return sprintf(page,"\n" 2977 " receive carrier:\t\t\t%s\n", 2978 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!"); 2979 2980 if (!left--) { 2981 return sprintf(page,"\n" 2982 " VCCs:\n address VPI VCI AAL " 2983 "TX PDUs TX min/max size RX PDUs RX min/max size\n"); 2984 } 2985 2986 for (i = 0; i < NBR_CONNECT; i++) { 2987 2988 vcc = fore200e->vc_map[i].vcc; 2989 2990 if (vcc == NULL) 2991 continue; 2992 2993 spin_lock_irqsave(&fore200e->q_lock, flags); 2994 2995 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) { 2996 2997 fore200e_vcc = FORE200E_VCC(vcc); 2998 ASSERT(fore200e_vcc); 2999 3000 len = sprintf(page, 3001 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", 3002 vcc, 3003 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 3004 fore200e_vcc->tx_pdu, 3005 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu, 3006 fore200e_vcc->tx_max_pdu, 3007 fore200e_vcc->rx_pdu, 3008 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu, 3009 fore200e_vcc->rx_max_pdu); 3010 3011 spin_unlock_irqrestore(&fore200e->q_lock, flags); 3012 return len; 3013 } 3014 3015 spin_unlock_irqrestore(&fore200e->q_lock, flags); 3016 } 3017 3018 return 0; 3019 } 3020 3021 module_init(fore200e_module_init); 3022 module_exit(fore200e_module_cleanup); 3023 3024 3025 static const struct atmdev_ops fore200e_ops = { 3026 .open = fore200e_open, 3027 .close = fore200e_close, 3028 .ioctl = fore200e_ioctl, 3029 .getsockopt = fore200e_getsockopt, 3030 .setsockopt = fore200e_setsockopt, 3031 .send = fore200e_send, 3032 .change_qos = fore200e_change_qos, 3033 .proc_read = fore200e_proc_read, 3034 .owner = THIS_MODULE 3035 }; 3036 3037 MODULE_LICENSE("GPL"); 3038 #ifdef CONFIG_PCI 3039 #ifdef __LITTLE_ENDIAN__ 3040 MODULE_FIRMWARE("pca200e.bin"); 3041 #else 3042 MODULE_FIRMWARE("pca200e_ecd.bin2"); 3043 #endif 3044 #endif /* CONFIG_PCI */ 3045 #ifdef CONFIG_SBUS 3046 MODULE_FIRMWARE("sba200e_ecd.bin2"); 3047 #endif 3048