xref: /linux/drivers/atm/fore200e.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4 
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6 
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9 
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14 
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19 
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24 
25 
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <linux/atomic.h>
48 
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57 
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61 
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65 
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69 
70 #include "fore200e.h"
71 #include "suni.h"
72 
73 #define FORE200E_VERSION "0.3e"
74 
75 #define FORE200E         "fore200e: "
76 
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86 
87 
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90 
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92 
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94 
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96 
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99 			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100 				    __func__, __LINE__, #expr); \
101 			     panic(FORE200E "%s", __func__); \
102 			 }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106 
107 
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110 
111 static LIST_HEAD(fore200e_boards);
112 
113 
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117 
118 
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123 
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128 
129 
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133 
134 
135 #if 0 /* currently unused */
136 static int
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144 
145     return -EINVAL;
146 }
147 #endif
148 
149 
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160 
161     return -EINVAL;
162 }
163 
164 
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172 
173 
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176 
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181 
182     if (alignment <= sizeof(int))
183 	alignment = 0;
184 
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188 
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191 	return -ENOMEM;
192 
193     if (alignment > 0)
194 	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195 
196     chunk->align_addr = chunk->alloc_addr + offset;
197 
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199 
200     return 0;
201 }
202 
203 
204 /* free a chunk of memory */
205 
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210 
211     kfree(chunk->alloc_addr);
212 }
213 
214 
215 static void
216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221 
222 
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228 
229     mb();
230     do {
231 	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 	    break;
233 
234     } while (time_before(jiffies, timeout));
235 
236 #if 1
237     if (!ok) {
238 	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 	       *addr, val);
240     }
241 #endif
242 
243     return ok;
244 }
245 
246 
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252 
253     do {
254 	if ((ok = (fore200e->bus->read(addr) == val)))
255 	    break;
256 
257     } while (time_before(jiffies, timeout));
258 
259 #if 1
260     if (!ok) {
261 	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 	       fore200e->bus->read(addr), val);
263     }
264 #endif
265 
266     return ok;
267 }
268 
269 
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275 
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278 
279 	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280 
281 		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282 
283 		    struct chunk* data = &buffer[ nbr ].data;
284 
285 		    if (data->alloc_addr != NULL)
286 			fore200e_chunk_free(fore200e, data);
287 		}
288 	    }
289 	}
290     }
291 }
292 
293 
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298 
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301 
302 	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303 	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304 
305 	    if (status->alloc_addr)
306 		fore200e->bus->dma_chunk_free(fore200e, status);
307 
308 	    if (rbd_block->alloc_addr)
309 		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 	}
311     }
312 }
313 
314 
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319 
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321 
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323 
324     fore200e->bus->reset(fore200e);
325 
326     if (diag) {
327 	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 	if (ok == 0) {
329 
330 	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 	    return -ENODEV;
332 	}
333 
334 	printk(FORE200E "device %s self-test passed\n", fore200e->name);
335 
336 	fore200e->state = FORE200E_STATE_RESET;
337     }
338 
339     return 0;
340 }
341 
342 
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 	   fore200e->name, fore200e->phys_base,
348 	   fore200e_irq_itoa(fore200e->irq));
349 
350     if (fore200e->state > FORE200E_STATE_RESET) {
351 	/* first, reset the board to prevent further interrupts or data transfers */
352 	fore200e_reset(fore200e, 0);
353     }
354 
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357 
358     case FORE200E_STATE_COMPLETE:
359 	kfree(fore200e->stats);
360 
361     case FORE200E_STATE_IRQ:
362 	free_irq(fore200e->irq, fore200e->atm_dev);
363 
364     case FORE200E_STATE_ALLOC_BUF:
365 	fore200e_free_rx_buf(fore200e);
366 
367     case FORE200E_STATE_INIT_BSQ:
368 	fore200e_uninit_bs_queue(fore200e);
369 
370     case FORE200E_STATE_INIT_RXQ:
371 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373 
374     case FORE200E_STATE_INIT_TXQ:
375 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377 
378     case FORE200E_STATE_INIT_CMDQ:
379 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380 
381     case FORE200E_STATE_INITIALIZE:
382 	/* nothing to do for that state */
383 
384     case FORE200E_STATE_START_FW:
385 	/* nothing to do for that state */
386 
387     case FORE200E_STATE_RESET:
388 	/* nothing to do for that state */
389 
390     case FORE200E_STATE_MAP:
391 	fore200e->bus->unmap(fore200e);
392 
393     case FORE200E_STATE_CONFIGURE:
394 	/* nothing to do for that state */
395 
396     case FORE200E_STATE_REGISTER:
397 	/* XXX shouldn't we *start* by deregistering the device? */
398 	atm_dev_deregister(fore200e->atm_dev);
399 
400     case FORE200E_STATE_BLANK:
401 	/* nothing to do for that state */
402 	break;
403     }
404 }
405 
406 
407 #ifdef CONFIG_PCI
408 
409 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410 {
411     /* on big-endian hosts, the board is configured to convert
412        the endianess of slave RAM accesses  */
413     return le32_to_cpu(readl(addr));
414 }
415 
416 
417 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     writel(cpu_to_le32(val), addr);
422 }
423 
424 
425 static u32
426 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427 {
428     u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
429 
430     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
431 	    virt_addr, size, direction, dma_addr);
432 
433     return dma_addr;
434 }
435 
436 
437 static void
438 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439 {
440     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441 	    dma_addr, size, direction);
442 
443     dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
444 }
445 
446 
447 static void
448 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449 {
450     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451 
452     dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
453 }
454 
455 static void
456 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459 
460     dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461 }
462 
463 
464 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466 
467 static int
468 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469 			     int size, int nbr, int alignment)
470 {
471     /* returned chunks are page-aligned */
472     chunk->alloc_size = size * nbr;
473     chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
474 					   chunk->alloc_size,
475 					   &chunk->dma_addr,
476 					   GFP_KERNEL);
477 
478     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
479 	return -ENOMEM;
480 
481     chunk->align_addr = chunk->alloc_addr;
482 
483     return 0;
484 }
485 
486 
487 /* free a DMA consistent chunk of memory */
488 
489 static void
490 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
491 {
492     dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
493 			chunk->alloc_size,
494 			chunk->alloc_addr,
495 			chunk->dma_addr);
496 }
497 
498 
499 static int
500 fore200e_pca_irq_check(struct fore200e* fore200e)
501 {
502     /* this is a 1 bit register */
503     int irq_posted = readl(fore200e->regs.pca.psr);
504 
505 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
506     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
507 	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
508     }
509 #endif
510 
511     return irq_posted;
512 }
513 
514 
515 static void
516 fore200e_pca_irq_ack(struct fore200e* fore200e)
517 {
518     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
519 }
520 
521 
522 static void
523 fore200e_pca_reset(struct fore200e* fore200e)
524 {
525     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
526     fore200e_spin(10);
527     writel(0, fore200e->regs.pca.hcr);
528 }
529 
530 
531 static int fore200e_pca_map(struct fore200e* fore200e)
532 {
533     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534 
535     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536 
537     if (fore200e->virt_base == NULL) {
538 	printk(FORE200E "can't map device %s\n", fore200e->name);
539 	return -EFAULT;
540     }
541 
542     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543 
544     /* gain access to the PCA specific registers  */
545     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548 
549     fore200e->state = FORE200E_STATE_MAP;
550     return 0;
551 }
552 
553 
554 static void
555 fore200e_pca_unmap(struct fore200e* fore200e)
556 {
557     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558 
559     if (fore200e->virt_base != NULL)
560 	iounmap(fore200e->virt_base);
561 }
562 
563 
564 static int fore200e_pca_configure(struct fore200e *fore200e)
565 {
566     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
567     u8              master_ctrl, latency;
568 
569     DPRINTK(2, "device %s being configured\n", fore200e->name);
570 
571     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
572 	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
573 	return -EIO;
574     }
575 
576     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
577 
578     master_ctrl = master_ctrl
579 #if defined(__BIG_ENDIAN)
580 	/* request the PCA board to convert the endianess of slave RAM accesses */
581 	| PCA200E_CTRL_CONVERT_ENDIAN
582 #endif
583 #if 0
584         | PCA200E_CTRL_DIS_CACHE_RD
585         | PCA200E_CTRL_DIS_WRT_INVAL
586         | PCA200E_CTRL_ENA_CONT_REQ_MODE
587         | PCA200E_CTRL_2_CACHE_WRT_INVAL
588 #endif
589 	| PCA200E_CTRL_LARGE_PCI_BURSTS;
590 
591     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
592 
593     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
594        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
595        this may impact the performances of other PCI devices on the same bus, though */
596     latency = 192;
597     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
598 
599     fore200e->state = FORE200E_STATE_CONFIGURE;
600     return 0;
601 }
602 
603 
604 static int __init
605 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
606 {
607     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
608     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
609     struct prom_opcode      opcode;
610     int                     ok;
611     u32                     prom_dma;
612 
613     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
614 
615     opcode.opcode = OPCODE_GET_PROM;
616     opcode.pad    = 0;
617 
618     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
619 
620     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
621 
622     *entry->status = STATUS_PENDING;
623 
624     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
625 
626     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
627 
628     *entry->status = STATUS_FREE;
629 
630     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
631 
632     if (ok == 0) {
633 	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
634 	return -EIO;
635     }
636 
637 #if defined(__BIG_ENDIAN)
638 
639 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
640 
641     /* MAC address is stored as little-endian */
642     swap_here(&prom->mac_addr[0]);
643     swap_here(&prom->mac_addr[4]);
644 #endif
645 
646     return 0;
647 }
648 
649 
650 static int
651 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
652 {
653     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
654 
655     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
656 		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
657 }
658 
659 #endif /* CONFIG_PCI */
660 
661 
662 #ifdef CONFIG_SBUS
663 
664 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
665 {
666     return sbus_readl(addr);
667 }
668 
669 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
670 {
671     sbus_writel(val, addr);
672 }
673 
674 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
675 {
676 	struct platform_device *op = fore200e->bus_dev;
677 	u32 dma_addr;
678 
679 	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
680 
681 	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
682 		virt_addr, size, direction, dma_addr);
683 
684 	return dma_addr;
685 }
686 
687 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
688 {
689 	struct platform_device *op = fore200e->bus_dev;
690 
691 	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
692 		dma_addr, size, direction);
693 
694 	dma_unmap_single(&op->dev, dma_addr, size, direction);
695 }
696 
697 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
698 {
699 	struct platform_device *op = fore200e->bus_dev;
700 
701 	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
702 
703 	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
704 }
705 
706 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
707 {
708 	struct platform_device *op = fore200e->bus_dev;
709 
710 	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
711 
712 	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
713 }
714 
715 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
716  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
717  */
718 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
719 					int size, int nbr, int alignment)
720 {
721 	struct platform_device *op = fore200e->bus_dev;
722 
723 	chunk->alloc_size = chunk->align_size = size * nbr;
724 
725 	/* returned chunks are page-aligned */
726 	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
727 					       &chunk->dma_addr, GFP_ATOMIC);
728 
729 	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
730 		return -ENOMEM;
731 
732 	chunk->align_addr = chunk->alloc_addr;
733 
734 	return 0;
735 }
736 
737 /* free a DVMA consistent chunk of memory */
738 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
739 {
740 	struct platform_device *op = fore200e->bus_dev;
741 
742 	dma_free_coherent(&op->dev, chunk->alloc_size,
743 			  chunk->alloc_addr, chunk->dma_addr);
744 }
745 
746 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
747 {
748 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
749 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
750 }
751 
752 static int fore200e_sba_irq_check(struct fore200e *fore200e)
753 {
754 	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
755 }
756 
757 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
758 {
759 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
760 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
761 }
762 
763 static void fore200e_sba_reset(struct fore200e *fore200e)
764 {
765 	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
766 	fore200e_spin(10);
767 	fore200e->bus->write(0, fore200e->regs.sba.hcr);
768 }
769 
770 static int __init fore200e_sba_map(struct fore200e *fore200e)
771 {
772 	struct platform_device *op = fore200e->bus_dev;
773 	unsigned int bursts;
774 
775 	/* gain access to the SBA specific registers  */
776 	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
777 	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
778 	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
779 	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
780 
781 	if (!fore200e->virt_base) {
782 		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
783 		return -EFAULT;
784 	}
785 
786 	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
787 
788 	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
789 
790 	/* get the supported DVMA burst sizes */
791 	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
792 
793 	if (sbus_can_dma_64bit())
794 		sbus_set_sbus64(&op->dev, bursts);
795 
796 	fore200e->state = FORE200E_STATE_MAP;
797 	return 0;
798 }
799 
800 static void fore200e_sba_unmap(struct fore200e *fore200e)
801 {
802 	struct platform_device *op = fore200e->bus_dev;
803 
804 	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
805 	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
806 	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
807 	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
808 }
809 
810 static int __init fore200e_sba_configure(struct fore200e *fore200e)
811 {
812 	fore200e->state = FORE200E_STATE_CONFIGURE;
813 	return 0;
814 }
815 
816 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
817 {
818 	struct platform_device *op = fore200e->bus_dev;
819 	const u8 *prop;
820 	int len;
821 
822 	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
823 	if (!prop)
824 		return -ENODEV;
825 	memcpy(&prom->mac_addr[4], prop, 4);
826 
827 	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
828 	if (!prop)
829 		return -ENODEV;
830 	memcpy(&prom->mac_addr[2], prop, 4);
831 
832 	prom->serial_number = of_getintprop_default(op->dev.of_node,
833 						    "serialnumber", 0);
834 	prom->hw_revision = of_getintprop_default(op->dev.of_node,
835 						  "promversion", 0);
836 
837 	return 0;
838 }
839 
840 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
841 {
842 	struct platform_device *op = fore200e->bus_dev;
843 	const struct linux_prom_registers *regs;
844 
845 	regs = of_get_property(op->dev.of_node, "reg", NULL);
846 
847 	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
848 		       (regs ? regs->which_io : 0), op->dev.of_node->name);
849 }
850 #endif /* CONFIG_SBUS */
851 
852 
853 static void
854 fore200e_tx_irq(struct fore200e* fore200e)
855 {
856     struct host_txq*        txq = &fore200e->host_txq;
857     struct host_txq_entry*  entry;
858     struct atm_vcc*         vcc;
859     struct fore200e_vc_map* vc_map;
860 
861     if (fore200e->host_txq.txing == 0)
862 	return;
863 
864     for (;;) {
865 
866 	entry = &txq->host_entry[ txq->tail ];
867 
868         if ((*entry->status & STATUS_COMPLETE) == 0) {
869 	    break;
870 	}
871 
872 	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
873 		entry, txq->tail, entry->vc_map, entry->skb);
874 
875 	/* free copy of misaligned data */
876 	kfree(entry->data);
877 
878 	/* remove DMA mapping */
879 	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
880 				 DMA_TO_DEVICE);
881 
882 	vc_map = entry->vc_map;
883 
884 	/* vcc closed since the time the entry was submitted for tx? */
885 	if ((vc_map->vcc == NULL) ||
886 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
887 
888 	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
889 		    fore200e->atm_dev->number);
890 
891 	    dev_kfree_skb_any(entry->skb);
892 	}
893 	else {
894 	    ASSERT(vc_map->vcc);
895 
896 	    /* vcc closed then immediately re-opened? */
897 	    if (vc_map->incarn != entry->incarn) {
898 
899 		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
900 		   if the same vcc is immediately re-opened, those pending PDUs must
901 		   not be popped after the completion of their emission, as they refer
902 		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
903 		   would be decremented by the size of the (unrelated) skb, possibly
904 		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
905 		   we thus bind the tx entry to the current incarnation of the vcc
906 		   when the entry is submitted for tx. When the tx later completes,
907 		   if the incarnation number of the tx entry does not match the one
908 		   of the vcc, then this implies that the vcc has been closed then re-opened.
909 		   we thus just drop the skb here. */
910 
911 		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
912 			fore200e->atm_dev->number);
913 
914 		dev_kfree_skb_any(entry->skb);
915 	    }
916 	    else {
917 		vcc = vc_map->vcc;
918 		ASSERT(vcc);
919 
920 		/* notify tx completion */
921 		if (vcc->pop) {
922 		    vcc->pop(vcc, entry->skb);
923 		}
924 		else {
925 		    dev_kfree_skb_any(entry->skb);
926 		}
927 
928 		/* check error condition */
929 		if (*entry->status & STATUS_ERROR)
930 		    atomic_inc(&vcc->stats->tx_err);
931 		else
932 		    atomic_inc(&vcc->stats->tx);
933 	    }
934 	}
935 
936 	*entry->status = STATUS_FREE;
937 
938 	fore200e->host_txq.txing--;
939 
940 	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
941     }
942 }
943 
944 
945 #ifdef FORE200E_BSQ_DEBUG
946 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
947 {
948     struct buffer* buffer;
949     int count = 0;
950 
951     buffer = bsq->freebuf;
952     while (buffer) {
953 
954 	if (buffer->supplied) {
955 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
956 		   where, scheme, magn, buffer->index);
957 	}
958 
959 	if (buffer->magn != magn) {
960 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
961 		   where, scheme, magn, buffer->index, buffer->magn);
962 	}
963 
964 	if (buffer->scheme != scheme) {
965 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
966 		   where, scheme, magn, buffer->index, buffer->scheme);
967 	}
968 
969 	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
970 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
971 		   where, scheme, magn, buffer->index);
972 	}
973 
974 	count++;
975 	buffer = buffer->next;
976     }
977 
978     if (count != bsq->freebuf_count) {
979 	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
980 	       where, scheme, magn, count, bsq->freebuf_count);
981     }
982     return 0;
983 }
984 #endif
985 
986 
987 static void
988 fore200e_supply(struct fore200e* fore200e)
989 {
990     int  scheme, magn, i;
991 
992     struct host_bsq*       bsq;
993     struct host_bsq_entry* entry;
994     struct buffer*         buffer;
995 
996     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
997 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
998 
999 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1000 
1001 #ifdef FORE200E_BSQ_DEBUG
1002 	    bsq_audit(1, bsq, scheme, magn);
1003 #endif
1004 	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1005 
1006 		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1007 			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1008 
1009 		entry = &bsq->host_entry[ bsq->head ];
1010 
1011 		for (i = 0; i < RBD_BLK_SIZE; i++) {
1012 
1013 		    /* take the first buffer in the free buffer list */
1014 		    buffer = bsq->freebuf;
1015 		    if (!buffer) {
1016 			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1017 			       scheme, magn, bsq->freebuf_count);
1018 			return;
1019 		    }
1020 		    bsq->freebuf = buffer->next;
1021 
1022 #ifdef FORE200E_BSQ_DEBUG
1023 		    if (buffer->supplied)
1024 			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1025 			       scheme, magn, buffer->index);
1026 		    buffer->supplied = 1;
1027 #endif
1028 		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1029 		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1030 		}
1031 
1032 		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1033 
1034  		/* decrease accordingly the number of free rx buffers */
1035 		bsq->freebuf_count -= RBD_BLK_SIZE;
1036 
1037 		*entry->status = STATUS_PENDING;
1038 		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1039 	    }
1040 	}
1041     }
1042 }
1043 
1044 
1045 static int
1046 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1047 {
1048     struct sk_buff*      skb;
1049     struct buffer*       buffer;
1050     struct fore200e_vcc* fore200e_vcc;
1051     int                  i, pdu_len = 0;
1052 #ifdef FORE200E_52BYTE_AAL0_SDU
1053     u32                  cell_header = 0;
1054 #endif
1055 
1056     ASSERT(vcc);
1057 
1058     fore200e_vcc = FORE200E_VCC(vcc);
1059     ASSERT(fore200e_vcc);
1060 
1061 #ifdef FORE200E_52BYTE_AAL0_SDU
1062     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1063 
1064 	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1065 	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1066                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1067                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1068                        rpd->atm_header.clp;
1069 	pdu_len = 4;
1070     }
1071 #endif
1072 
1073     /* compute total PDU length */
1074     for (i = 0; i < rpd->nseg; i++)
1075 	pdu_len += rpd->rsd[ i ].length;
1076 
1077     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1078     if (skb == NULL) {
1079 	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1080 
1081 	atomic_inc(&vcc->stats->rx_drop);
1082 	return -ENOMEM;
1083     }
1084 
1085     __net_timestamp(skb);
1086 
1087 #ifdef FORE200E_52BYTE_AAL0_SDU
1088     if (cell_header) {
1089 	*((u32*)skb_put(skb, 4)) = cell_header;
1090     }
1091 #endif
1092 
1093     /* reassemble segments */
1094     for (i = 0; i < rpd->nseg; i++) {
1095 
1096 	/* rebuild rx buffer address from rsd handle */
1097 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1098 
1099 	/* Make device DMA transfer visible to CPU.  */
1100 	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1101 
1102 	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1103 
1104 	/* Now let the device get at it again.  */
1105 	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1106     }
1107 
1108     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1109 
1110     if (pdu_len < fore200e_vcc->rx_min_pdu)
1111 	fore200e_vcc->rx_min_pdu = pdu_len;
1112     if (pdu_len > fore200e_vcc->rx_max_pdu)
1113 	fore200e_vcc->rx_max_pdu = pdu_len;
1114     fore200e_vcc->rx_pdu++;
1115 
1116     /* push PDU */
1117     if (atm_charge(vcc, skb->truesize) == 0) {
1118 
1119 	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1120 		vcc->itf, vcc->vpi, vcc->vci);
1121 
1122 	dev_kfree_skb_any(skb);
1123 
1124 	atomic_inc(&vcc->stats->rx_drop);
1125 	return -ENOMEM;
1126     }
1127 
1128     vcc->push(vcc, skb);
1129     atomic_inc(&vcc->stats->rx);
1130 
1131     return 0;
1132 }
1133 
1134 
1135 static void
1136 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1137 {
1138     struct host_bsq* bsq;
1139     struct buffer*   buffer;
1140     int              i;
1141 
1142     for (i = 0; i < rpd->nseg; i++) {
1143 
1144 	/* rebuild rx buffer address from rsd handle */
1145 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1146 
1147 	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1148 
1149 #ifdef FORE200E_BSQ_DEBUG
1150 	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1151 
1152 	if (buffer->supplied == 0)
1153 	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1154 		   buffer->scheme, buffer->magn, buffer->index);
1155 	buffer->supplied = 0;
1156 #endif
1157 
1158 	/* re-insert the buffer into the free buffer list */
1159 	buffer->next = bsq->freebuf;
1160 	bsq->freebuf = buffer;
1161 
1162 	/* then increment the number of free rx buffers */
1163 	bsq->freebuf_count++;
1164     }
1165 }
1166 
1167 
1168 static void
1169 fore200e_rx_irq(struct fore200e* fore200e)
1170 {
1171     struct host_rxq*        rxq = &fore200e->host_rxq;
1172     struct host_rxq_entry*  entry;
1173     struct atm_vcc*         vcc;
1174     struct fore200e_vc_map* vc_map;
1175 
1176     for (;;) {
1177 
1178 	entry = &rxq->host_entry[ rxq->head ];
1179 
1180 	/* no more received PDUs */
1181 	if ((*entry->status & STATUS_COMPLETE) == 0)
1182 	    break;
1183 
1184 	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1185 
1186 	if ((vc_map->vcc == NULL) ||
1187 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1188 
1189 	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1190 		    fore200e->atm_dev->number,
1191 		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1192 	}
1193 	else {
1194 	    vcc = vc_map->vcc;
1195 	    ASSERT(vcc);
1196 
1197 	    if ((*entry->status & STATUS_ERROR) == 0) {
1198 
1199 		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1200 	    }
1201 	    else {
1202 		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1203 			fore200e->atm_dev->number,
1204 			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1205 		atomic_inc(&vcc->stats->rx_err);
1206 	    }
1207 	}
1208 
1209 	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1210 
1211 	fore200e_collect_rpd(fore200e, entry->rpd);
1212 
1213 	/* rewrite the rpd address to ack the received PDU */
1214 	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1215 	*entry->status = STATUS_FREE;
1216 
1217 	fore200e_supply(fore200e);
1218     }
1219 }
1220 
1221 
1222 #ifndef FORE200E_USE_TASKLET
1223 static void
1224 fore200e_irq(struct fore200e* fore200e)
1225 {
1226     unsigned long flags;
1227 
1228     spin_lock_irqsave(&fore200e->q_lock, flags);
1229     fore200e_rx_irq(fore200e);
1230     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1231 
1232     spin_lock_irqsave(&fore200e->q_lock, flags);
1233     fore200e_tx_irq(fore200e);
1234     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1235 }
1236 #endif
1237 
1238 
1239 static irqreturn_t
1240 fore200e_interrupt(int irq, void* dev)
1241 {
1242     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1243 
1244     if (fore200e->bus->irq_check(fore200e) == 0) {
1245 
1246 	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1247 	return IRQ_NONE;
1248     }
1249     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1250 
1251 #ifdef FORE200E_USE_TASKLET
1252     tasklet_schedule(&fore200e->tx_tasklet);
1253     tasklet_schedule(&fore200e->rx_tasklet);
1254 #else
1255     fore200e_irq(fore200e);
1256 #endif
1257 
1258     fore200e->bus->irq_ack(fore200e);
1259     return IRQ_HANDLED;
1260 }
1261 
1262 
1263 #ifdef FORE200E_USE_TASKLET
1264 static void
1265 fore200e_tx_tasklet(unsigned long data)
1266 {
1267     struct fore200e* fore200e = (struct fore200e*) data;
1268     unsigned long flags;
1269 
1270     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1271 
1272     spin_lock_irqsave(&fore200e->q_lock, flags);
1273     fore200e_tx_irq(fore200e);
1274     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1275 }
1276 
1277 
1278 static void
1279 fore200e_rx_tasklet(unsigned long data)
1280 {
1281     struct fore200e* fore200e = (struct fore200e*) data;
1282     unsigned long    flags;
1283 
1284     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1285 
1286     spin_lock_irqsave(&fore200e->q_lock, flags);
1287     fore200e_rx_irq((struct fore200e*) data);
1288     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1289 }
1290 #endif
1291 
1292 
1293 static int
1294 fore200e_select_scheme(struct atm_vcc* vcc)
1295 {
1296     /* fairly balance the VCs over (identical) buffer schemes */
1297     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1298 
1299     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1300 	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1301 
1302     return scheme;
1303 }
1304 
1305 
1306 static int
1307 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1308 {
1309     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1310     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1311     struct activate_opcode   activ_opcode;
1312     struct deactivate_opcode deactiv_opcode;
1313     struct vpvc              vpvc;
1314     int                      ok;
1315     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1316 
1317     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1318 
1319     if (activate) {
1320 	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1321 
1322 	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1323 	activ_opcode.aal    = aal;
1324 	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1325 	activ_opcode.pad    = 0;
1326     }
1327     else {
1328 	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1329 	deactiv_opcode.pad    = 0;
1330     }
1331 
1332     vpvc.vci = vcc->vci;
1333     vpvc.vpi = vcc->vpi;
1334 
1335     *entry->status = STATUS_PENDING;
1336 
1337     if (activate) {
1338 
1339 #ifdef FORE200E_52BYTE_AAL0_SDU
1340 	mtu = 48;
1341 #endif
1342 	/* the MTU is not used by the cp, except in the case of AAL0 */
1343 	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1344 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1345 	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1346     }
1347     else {
1348 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1349 	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1350     }
1351 
1352     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1353 
1354     *entry->status = STATUS_FREE;
1355 
1356     if (ok == 0) {
1357 	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1358 	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1359 	return -EIO;
1360     }
1361 
1362     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1363 	    activate ? "open" : "clos");
1364 
1365     return 0;
1366 }
1367 
1368 
1369 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1370 
1371 static void
1372 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1373 {
1374     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1375 
1376 	/* compute the data cells to idle cells ratio from the tx PCR */
1377 	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1378 	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1379     }
1380     else {
1381 	/* disable rate control */
1382 	rate->data_cells = rate->idle_cells = 0;
1383     }
1384 }
1385 
1386 
1387 static int
1388 fore200e_open(struct atm_vcc *vcc)
1389 {
1390     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1391     struct fore200e_vcc*    fore200e_vcc;
1392     struct fore200e_vc_map* vc_map;
1393     unsigned long	    flags;
1394     int			    vci = vcc->vci;
1395     short		    vpi = vcc->vpi;
1396 
1397     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1398     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1399 
1400     spin_lock_irqsave(&fore200e->q_lock, flags);
1401 
1402     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1403     if (vc_map->vcc) {
1404 
1405 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1406 
1407 	printk(FORE200E "VC %d.%d.%d already in use\n",
1408 	       fore200e->atm_dev->number, vpi, vci);
1409 
1410 	return -EINVAL;
1411     }
1412 
1413     vc_map->vcc = vcc;
1414 
1415     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416 
1417     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1418     if (fore200e_vcc == NULL) {
1419 	vc_map->vcc = NULL;
1420 	return -ENOMEM;
1421     }
1422 
1423     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1424 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1425 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1426 	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1427 	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1428 	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1429 	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1430 
1431     /* pseudo-CBR bandwidth requested? */
1432     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1433 
1434 	mutex_lock(&fore200e->rate_mtx);
1435 	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1436 	    mutex_unlock(&fore200e->rate_mtx);
1437 
1438 	    kfree(fore200e_vcc);
1439 	    vc_map->vcc = NULL;
1440 	    return -EAGAIN;
1441 	}
1442 
1443 	/* reserve bandwidth */
1444 	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1445 	mutex_unlock(&fore200e->rate_mtx);
1446     }
1447 
1448     vcc->itf = vcc->dev->number;
1449 
1450     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1451     set_bit(ATM_VF_ADDR, &vcc->flags);
1452 
1453     vcc->dev_data = fore200e_vcc;
1454 
1455     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1456 
1457 	vc_map->vcc = NULL;
1458 
1459 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1460 	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1461 
1462 	vcc->dev_data = NULL;
1463 
1464 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1465 
1466 	kfree(fore200e_vcc);
1467 	return -EINVAL;
1468     }
1469 
1470     /* compute rate control parameters */
1471     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1472 
1473 	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1474 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1475 
1476 	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1477 		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1478 		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1479 		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1480     }
1481 
1482     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1483     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1484     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1485 
1486     /* new incarnation of the vcc */
1487     vc_map->incarn = ++fore200e->incarn_count;
1488 
1489     /* VC unusable before this flag is set */
1490     set_bit(ATM_VF_READY, &vcc->flags);
1491 
1492     return 0;
1493 }
1494 
1495 
1496 static void
1497 fore200e_close(struct atm_vcc* vcc)
1498 {
1499     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1500     struct fore200e_vcc*    fore200e_vcc;
1501     struct fore200e_vc_map* vc_map;
1502     unsigned long           flags;
1503 
1504     ASSERT(vcc);
1505     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1506     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1507 
1508     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1509 
1510     clear_bit(ATM_VF_READY, &vcc->flags);
1511 
1512     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1513 
1514     spin_lock_irqsave(&fore200e->q_lock, flags);
1515 
1516     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1517 
1518     /* the vc is no longer considered as "in use" by fore200e_open() */
1519     vc_map->vcc = NULL;
1520 
1521     vcc->itf = vcc->vci = vcc->vpi = 0;
1522 
1523     fore200e_vcc = FORE200E_VCC(vcc);
1524     vcc->dev_data = NULL;
1525 
1526     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1527 
1528     /* release reserved bandwidth, if any */
1529     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1530 
1531 	mutex_lock(&fore200e->rate_mtx);
1532 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1533 	mutex_unlock(&fore200e->rate_mtx);
1534 
1535 	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1536     }
1537 
1538     clear_bit(ATM_VF_ADDR, &vcc->flags);
1539     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1540 
1541     ASSERT(fore200e_vcc);
1542     kfree(fore200e_vcc);
1543 }
1544 
1545 
1546 static int
1547 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1548 {
1549     struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1550     struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1551     struct fore200e_vc_map* vc_map;
1552     struct host_txq*        txq          = &fore200e->host_txq;
1553     struct host_txq_entry*  entry;
1554     struct tpd*             tpd;
1555     struct tpd_haddr        tpd_haddr;
1556     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1557     int                     tx_copy      = 0;
1558     int                     tx_len       = skb->len;
1559     u32*                    cell_header  = NULL;
1560     unsigned char*          skb_data;
1561     int                     skb_len;
1562     unsigned char*          data;
1563     unsigned long           flags;
1564 
1565     ASSERT(vcc);
1566     ASSERT(fore200e);
1567     ASSERT(fore200e_vcc);
1568 
1569     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1570 	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1571 	dev_kfree_skb_any(skb);
1572 	return -EINVAL;
1573     }
1574 
1575 #ifdef FORE200E_52BYTE_AAL0_SDU
1576     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1577 	cell_header = (u32*) skb->data;
1578 	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1579 	skb_len     = tx_len = skb->len  - 4;
1580 
1581 	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1582     }
1583     else
1584 #endif
1585     {
1586 	skb_data = skb->data;
1587 	skb_len  = skb->len;
1588     }
1589 
1590     if (((unsigned long)skb_data) & 0x3) {
1591 
1592 	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1593 	tx_copy = 1;
1594 	tx_len  = skb_len;
1595     }
1596 
1597     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1598 
1599         /* this simply NUKES the PCA board */
1600 	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1601 	tx_copy = 1;
1602 	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1603     }
1604 
1605     if (tx_copy) {
1606 	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1607 	if (data == NULL) {
1608 	    if (vcc->pop) {
1609 		vcc->pop(vcc, skb);
1610 	    }
1611 	    else {
1612 		dev_kfree_skb_any(skb);
1613 	    }
1614 	    return -ENOMEM;
1615 	}
1616 
1617 	memcpy(data, skb_data, skb_len);
1618 	if (skb_len < tx_len)
1619 	    memset(data + skb_len, 0x00, tx_len - skb_len);
1620     }
1621     else {
1622 	data = skb_data;
1623     }
1624 
1625     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1626     ASSERT(vc_map->vcc == vcc);
1627 
1628   retry_here:
1629 
1630     spin_lock_irqsave(&fore200e->q_lock, flags);
1631 
1632     entry = &txq->host_entry[ txq->head ];
1633 
1634     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1635 
1636 	/* try to free completed tx queue entries */
1637 	fore200e_tx_irq(fore200e);
1638 
1639 	if (*entry->status != STATUS_FREE) {
1640 
1641 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1642 
1643 	    /* retry once again? */
1644 	    if (--retry > 0) {
1645 		udelay(50);
1646 		goto retry_here;
1647 	    }
1648 
1649 	    atomic_inc(&vcc->stats->tx_err);
1650 
1651 	    fore200e->tx_sat++;
1652 	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1653 		    fore200e->name, fore200e->cp_queues->heartbeat);
1654 	    if (vcc->pop) {
1655 		vcc->pop(vcc, skb);
1656 	    }
1657 	    else {
1658 		dev_kfree_skb_any(skb);
1659 	    }
1660 
1661 	    if (tx_copy)
1662 		kfree(data);
1663 
1664 	    return -ENOBUFS;
1665 	}
1666     }
1667 
1668     entry->incarn = vc_map->incarn;
1669     entry->vc_map = vc_map;
1670     entry->skb    = skb;
1671     entry->data   = tx_copy ? data : NULL;
1672 
1673     tpd = entry->tpd;
1674     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1675     tpd->tsd[ 0 ].length = tx_len;
1676 
1677     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1678     txq->txing++;
1679 
1680     /* The dma_map call above implies a dma_sync so the device can use it,
1681      * thus no explicit dma_sync call is necessary here.
1682      */
1683 
1684     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1685 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1686 	    tpd->tsd[0].length, skb_len);
1687 
1688     if (skb_len < fore200e_vcc->tx_min_pdu)
1689 	fore200e_vcc->tx_min_pdu = skb_len;
1690     if (skb_len > fore200e_vcc->tx_max_pdu)
1691 	fore200e_vcc->tx_max_pdu = skb_len;
1692     fore200e_vcc->tx_pdu++;
1693 
1694     /* set tx rate control information */
1695     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1696     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1697 
1698     if (cell_header) {
1699 	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1700 	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1701 	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1702 	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1703 	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1704     }
1705     else {
1706 	/* set the ATM header, common to all cells conveying the PDU */
1707 	tpd->atm_header.clp = 0;
1708 	tpd->atm_header.plt = 0;
1709 	tpd->atm_header.vci = vcc->vci;
1710 	tpd->atm_header.vpi = vcc->vpi;
1711 	tpd->atm_header.gfc = 0;
1712     }
1713 
1714     tpd->spec.length = tx_len;
1715     tpd->spec.nseg   = 1;
1716     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1717     tpd->spec.intr   = 1;
1718 
1719     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1720     tpd_haddr.pad   = 0;
1721     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1722 
1723     *entry->status = STATUS_PENDING;
1724     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1725 
1726     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1727 
1728     return 0;
1729 }
1730 
1731 
1732 static int
1733 fore200e_getstats(struct fore200e* fore200e)
1734 {
1735     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1736     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1737     struct stats_opcode     opcode;
1738     int                     ok;
1739     u32                     stats_dma_addr;
1740 
1741     if (fore200e->stats == NULL) {
1742 	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1743 	if (fore200e->stats == NULL)
1744 	    return -ENOMEM;
1745     }
1746 
1747     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1748 					    sizeof(struct stats), DMA_FROM_DEVICE);
1749 
1750     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1751 
1752     opcode.opcode = OPCODE_GET_STATS;
1753     opcode.pad    = 0;
1754 
1755     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1756 
1757     *entry->status = STATUS_PENDING;
1758 
1759     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1760 
1761     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1762 
1763     *entry->status = STATUS_FREE;
1764 
1765     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1766 
1767     if (ok == 0) {
1768 	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1769 	return -EIO;
1770     }
1771 
1772     return 0;
1773 }
1774 
1775 
1776 static int
1777 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1778 {
1779     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1780 
1781     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1782 	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1783 
1784     return -EINVAL;
1785 }
1786 
1787 
1788 static int
1789 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1790 {
1791     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1792 
1793     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1794 	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1795 
1796     return -EINVAL;
1797 }
1798 
1799 
1800 #if 0 /* currently unused */
1801 static int
1802 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1803 {
1804     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1805     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1806     struct oc3_opcode       opcode;
1807     int                     ok;
1808     u32                     oc3_regs_dma_addr;
1809 
1810     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1811 
1812     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1813 
1814     opcode.opcode = OPCODE_GET_OC3;
1815     opcode.reg    = 0;
1816     opcode.value  = 0;
1817     opcode.mask   = 0;
1818 
1819     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1820 
1821     *entry->status = STATUS_PENDING;
1822 
1823     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1824 
1825     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1826 
1827     *entry->status = STATUS_FREE;
1828 
1829     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1830 
1831     if (ok == 0) {
1832 	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1833 	return -EIO;
1834     }
1835 
1836     return 0;
1837 }
1838 #endif
1839 
1840 
1841 static int
1842 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1843 {
1844     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1845     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1846     struct oc3_opcode       opcode;
1847     int                     ok;
1848 
1849     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1850 
1851     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1852 
1853     opcode.opcode = OPCODE_SET_OC3;
1854     opcode.reg    = reg;
1855     opcode.value  = value;
1856     opcode.mask   = mask;
1857 
1858     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1859 
1860     *entry->status = STATUS_PENDING;
1861 
1862     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1863 
1864     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1865 
1866     *entry->status = STATUS_FREE;
1867 
1868     if (ok == 0) {
1869 	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1870 	return -EIO;
1871     }
1872 
1873     return 0;
1874 }
1875 
1876 
1877 static int
1878 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1879 {
1880     u32 mct_value, mct_mask;
1881     int error;
1882 
1883     if (!capable(CAP_NET_ADMIN))
1884 	return -EPERM;
1885 
1886     switch (loop_mode) {
1887 
1888     case ATM_LM_NONE:
1889 	mct_value = 0;
1890 	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1891 	break;
1892 
1893     case ATM_LM_LOC_PHY:
1894 	mct_value = mct_mask = SUNI_MCT_DLE;
1895 	break;
1896 
1897     case ATM_LM_RMT_PHY:
1898 	mct_value = mct_mask = SUNI_MCT_LLE;
1899 	break;
1900 
1901     default:
1902 	return -EINVAL;
1903     }
1904 
1905     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1906     if (error == 0)
1907 	fore200e->loop_mode = loop_mode;
1908 
1909     return error;
1910 }
1911 
1912 
1913 static int
1914 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1915 {
1916     struct sonet_stats tmp;
1917 
1918     if (fore200e_getstats(fore200e) < 0)
1919 	return -EIO;
1920 
1921     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1922     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1923     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1924     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1925     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1926     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1927     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1928     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1929 	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1930 	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1931     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1932 	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1933 	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1934 
1935     if (arg)
1936 	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1937 
1938     return 0;
1939 }
1940 
1941 
1942 static int
1943 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1944 {
1945     struct fore200e* fore200e = FORE200E_DEV(dev);
1946 
1947     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1948 
1949     switch (cmd) {
1950 
1951     case SONET_GETSTAT:
1952 	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1953 
1954     case SONET_GETDIAG:
1955 	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1956 
1957     case ATM_SETLOOP:
1958 	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1959 
1960     case ATM_GETLOOP:
1961 	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1962 
1963     case ATM_QUERYLOOP:
1964 	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1965     }
1966 
1967     return -ENOSYS; /* not implemented */
1968 }
1969 
1970 
1971 static int
1972 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1973 {
1974     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1975     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1976 
1977     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1978 	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1979 	return -EINVAL;
1980     }
1981 
1982     DPRINTK(2, "change_qos %d.%d.%d, "
1983 	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1984 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1985 	    "available_cell_rate = %u",
1986 	    vcc->itf, vcc->vpi, vcc->vci,
1987 	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1988 	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1989 	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1990 	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1991 	    flags, fore200e->available_cell_rate);
1992 
1993     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1994 
1995 	mutex_lock(&fore200e->rate_mtx);
1996 	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1997 	    mutex_unlock(&fore200e->rate_mtx);
1998 	    return -EAGAIN;
1999 	}
2000 
2001 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2002 	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2003 
2004 	mutex_unlock(&fore200e->rate_mtx);
2005 
2006 	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2007 
2008 	/* update rate control parameters */
2009 	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2010 
2011 	set_bit(ATM_VF_HASQOS, &vcc->flags);
2012 
2013 	return 0;
2014     }
2015 
2016     return -EINVAL;
2017 }
2018 
2019 
2020 static int fore200e_irq_request(struct fore200e *fore200e)
2021 {
2022     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2023 
2024 	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2025 	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2026 	return -EBUSY;
2027     }
2028 
2029     printk(FORE200E "IRQ %s reserved for device %s\n",
2030 	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2031 
2032 #ifdef FORE200E_USE_TASKLET
2033     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2034     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2035 #endif
2036 
2037     fore200e->state = FORE200E_STATE_IRQ;
2038     return 0;
2039 }
2040 
2041 
2042 static int fore200e_get_esi(struct fore200e *fore200e)
2043 {
2044     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2045     int ok, i;
2046 
2047     if (!prom)
2048 	return -ENOMEM;
2049 
2050     ok = fore200e->bus->prom_read(fore200e, prom);
2051     if (ok < 0) {
2052 	kfree(prom);
2053 	return -EBUSY;
2054     }
2055 
2056     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2057 	   fore200e->name,
2058 	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2059 	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2060 
2061     for (i = 0; i < ESI_LEN; i++) {
2062 	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2063     }
2064 
2065     kfree(prom);
2066 
2067     return 0;
2068 }
2069 
2070 
2071 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2072 {
2073     int scheme, magn, nbr, size, i;
2074 
2075     struct host_bsq* bsq;
2076     struct buffer*   buffer;
2077 
2078     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2079 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2080 
2081 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2082 
2083 	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2084 	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2085 
2086 	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2087 
2088 	    /* allocate the array of receive buffers */
2089 	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2090 
2091 	    if (buffer == NULL)
2092 		return -ENOMEM;
2093 
2094 	    bsq->freebuf = NULL;
2095 
2096 	    for (i = 0; i < nbr; i++) {
2097 
2098 		buffer[ i ].scheme = scheme;
2099 		buffer[ i ].magn   = magn;
2100 #ifdef FORE200E_BSQ_DEBUG
2101 		buffer[ i ].index  = i;
2102 		buffer[ i ].supplied = 0;
2103 #endif
2104 
2105 		/* allocate the receive buffer body */
2106 		if (fore200e_chunk_alloc(fore200e,
2107 					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2108 					 DMA_FROM_DEVICE) < 0) {
2109 
2110 		    while (i > 0)
2111 			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2112 		    kfree(buffer);
2113 
2114 		    return -ENOMEM;
2115 		}
2116 
2117 		/* insert the buffer into the free buffer list */
2118 		buffer[ i ].next = bsq->freebuf;
2119 		bsq->freebuf = &buffer[ i ];
2120 	    }
2121 	    /* all the buffers are free, initially */
2122 	    bsq->freebuf_count = nbr;
2123 
2124 #ifdef FORE200E_BSQ_DEBUG
2125 	    bsq_audit(3, bsq, scheme, magn);
2126 #endif
2127 	}
2128     }
2129 
2130     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2131     return 0;
2132 }
2133 
2134 
2135 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2136 {
2137     int scheme, magn, i;
2138 
2139     struct host_bsq*     bsq;
2140     struct cp_bsq_entry __iomem * cp_entry;
2141 
2142     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2143 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2144 
2145 	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2146 
2147 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2148 
2149 	    /* allocate and align the array of status words */
2150 	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2151 					       &bsq->status,
2152 					       sizeof(enum status),
2153 					       QUEUE_SIZE_BS,
2154 					       fore200e->bus->status_alignment) < 0) {
2155 		return -ENOMEM;
2156 	    }
2157 
2158 	    /* allocate and align the array of receive buffer descriptors */
2159 	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2160 					       &bsq->rbd_block,
2161 					       sizeof(struct rbd_block),
2162 					       QUEUE_SIZE_BS,
2163 					       fore200e->bus->descr_alignment) < 0) {
2164 
2165 		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2166 		return -ENOMEM;
2167 	    }
2168 
2169 	    /* get the base address of the cp resident buffer supply queue entries */
2170 	    cp_entry = fore200e->virt_base +
2171 		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2172 
2173 	    /* fill the host resident and cp resident buffer supply queue entries */
2174 	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2175 
2176 		bsq->host_entry[ i ].status =
2177 		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2178 	        bsq->host_entry[ i ].rbd_block =
2179 		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2180 		bsq->host_entry[ i ].rbd_block_dma =
2181 		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2182 		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2183 
2184 		*bsq->host_entry[ i ].status = STATUS_FREE;
2185 
2186 		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2187 				     &cp_entry[ i ].status_haddr);
2188 	    }
2189 	}
2190     }
2191 
2192     fore200e->state = FORE200E_STATE_INIT_BSQ;
2193     return 0;
2194 }
2195 
2196 
2197 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2198 {
2199     struct host_rxq*     rxq =  &fore200e->host_rxq;
2200     struct cp_rxq_entry __iomem * cp_entry;
2201     int i;
2202 
2203     DPRINTK(2, "receive queue is being initialized\n");
2204 
2205     /* allocate and align the array of status words */
2206     if (fore200e->bus->dma_chunk_alloc(fore200e,
2207 				       &rxq->status,
2208 				       sizeof(enum status),
2209 				       QUEUE_SIZE_RX,
2210 				       fore200e->bus->status_alignment) < 0) {
2211 	return -ENOMEM;
2212     }
2213 
2214     /* allocate and align the array of receive PDU descriptors */
2215     if (fore200e->bus->dma_chunk_alloc(fore200e,
2216 				       &rxq->rpd,
2217 				       sizeof(struct rpd),
2218 				       QUEUE_SIZE_RX,
2219 				       fore200e->bus->descr_alignment) < 0) {
2220 
2221 	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2222 	return -ENOMEM;
2223     }
2224 
2225     /* get the base address of the cp resident rx queue entries */
2226     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2227 
2228     /* fill the host resident and cp resident rx entries */
2229     for (i=0; i < QUEUE_SIZE_RX; i++) {
2230 
2231 	rxq->host_entry[ i ].status =
2232 	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2233 	rxq->host_entry[ i ].rpd =
2234 	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2235 	rxq->host_entry[ i ].rpd_dma =
2236 	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2237 	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2238 
2239 	*rxq->host_entry[ i ].status = STATUS_FREE;
2240 
2241 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2242 			     &cp_entry[ i ].status_haddr);
2243 
2244 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2245 			     &cp_entry[ i ].rpd_haddr);
2246     }
2247 
2248     /* set the head entry of the queue */
2249     rxq->head = 0;
2250 
2251     fore200e->state = FORE200E_STATE_INIT_RXQ;
2252     return 0;
2253 }
2254 
2255 
2256 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2257 {
2258     struct host_txq*     txq =  &fore200e->host_txq;
2259     struct cp_txq_entry __iomem * cp_entry;
2260     int i;
2261 
2262     DPRINTK(2, "transmit queue is being initialized\n");
2263 
2264     /* allocate and align the array of status words */
2265     if (fore200e->bus->dma_chunk_alloc(fore200e,
2266 				       &txq->status,
2267 				       sizeof(enum status),
2268 				       QUEUE_SIZE_TX,
2269 				       fore200e->bus->status_alignment) < 0) {
2270 	return -ENOMEM;
2271     }
2272 
2273     /* allocate and align the array of transmit PDU descriptors */
2274     if (fore200e->bus->dma_chunk_alloc(fore200e,
2275 				       &txq->tpd,
2276 				       sizeof(struct tpd),
2277 				       QUEUE_SIZE_TX,
2278 				       fore200e->bus->descr_alignment) < 0) {
2279 
2280 	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2281 	return -ENOMEM;
2282     }
2283 
2284     /* get the base address of the cp resident tx queue entries */
2285     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2286 
2287     /* fill the host resident and cp resident tx entries */
2288     for (i=0; i < QUEUE_SIZE_TX; i++) {
2289 
2290 	txq->host_entry[ i ].status =
2291 	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2292 	txq->host_entry[ i ].tpd =
2293 	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2294 	txq->host_entry[ i ].tpd_dma  =
2295                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2296 	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2297 
2298 	*txq->host_entry[ i ].status = STATUS_FREE;
2299 
2300 	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2301 			     &cp_entry[ i ].status_haddr);
2302 
2303         /* although there is a one-to-one mapping of tx queue entries and tpds,
2304 	   we do not write here the DMA (physical) base address of each tpd into
2305 	   the related cp resident entry, because the cp relies on this write
2306 	   operation to detect that a new pdu has been submitted for tx */
2307     }
2308 
2309     /* set the head and tail entries of the queue */
2310     txq->head = 0;
2311     txq->tail = 0;
2312 
2313     fore200e->state = FORE200E_STATE_INIT_TXQ;
2314     return 0;
2315 }
2316 
2317 
2318 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2319 {
2320     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2321     struct cp_cmdq_entry __iomem * cp_entry;
2322     int i;
2323 
2324     DPRINTK(2, "command queue is being initialized\n");
2325 
2326     /* allocate and align the array of status words */
2327     if (fore200e->bus->dma_chunk_alloc(fore200e,
2328 				       &cmdq->status,
2329 				       sizeof(enum status),
2330 				       QUEUE_SIZE_CMD,
2331 				       fore200e->bus->status_alignment) < 0) {
2332 	return -ENOMEM;
2333     }
2334 
2335     /* get the base address of the cp resident cmd queue entries */
2336     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2337 
2338     /* fill the host resident and cp resident cmd entries */
2339     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2340 
2341 	cmdq->host_entry[ i ].status   =
2342                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2343 	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2344 
2345 	*cmdq->host_entry[ i ].status = STATUS_FREE;
2346 
2347 	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2348                              &cp_entry[ i ].status_haddr);
2349     }
2350 
2351     /* set the head entry of the queue */
2352     cmdq->head = 0;
2353 
2354     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2355     return 0;
2356 }
2357 
2358 
2359 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2360 				    enum buffer_scheme scheme,
2361 				    enum buffer_magn magn, int queue_length,
2362 				    int pool_size, int supply_blksize)
2363 {
2364     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2365 
2366     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2367     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2368     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2369     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2370 }
2371 
2372 
2373 static int fore200e_initialize(struct fore200e *fore200e)
2374 {
2375     struct cp_queues __iomem * cpq;
2376     int               ok, scheme, magn;
2377 
2378     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2379 
2380     mutex_init(&fore200e->rate_mtx);
2381     spin_lock_init(&fore200e->q_lock);
2382 
2383     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2384 
2385     /* enable cp to host interrupts */
2386     fore200e->bus->write(1, &cpq->imask);
2387 
2388     if (fore200e->bus->irq_enable)
2389 	fore200e->bus->irq_enable(fore200e);
2390 
2391     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2392 
2393     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2394     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2395     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2396 
2397     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2398     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2399 
2400     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2401 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2402 	    fore200e_param_bs_queue(fore200e, scheme, magn,
2403 				    QUEUE_SIZE_BS,
2404 				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2405 				    RBD_BLK_SIZE);
2406 
2407     /* issue the initialize command */
2408     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2409     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2410 
2411     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2412     if (ok == 0) {
2413 	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2414 	return -ENODEV;
2415     }
2416 
2417     printk(FORE200E "device %s initialized\n", fore200e->name);
2418 
2419     fore200e->state = FORE200E_STATE_INITIALIZE;
2420     return 0;
2421 }
2422 
2423 
2424 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2425 {
2426     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2427 
2428 #if 0
2429     printk("%c", c);
2430 #endif
2431     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2432 }
2433 
2434 
2435 static int fore200e_monitor_getc(struct fore200e *fore200e)
2436 {
2437     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2438     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2439     int                c;
2440 
2441     while (time_before(jiffies, timeout)) {
2442 
2443 	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2444 
2445 	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2446 
2447 	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2448 #if 0
2449 	    printk("%c", c & 0xFF);
2450 #endif
2451 	    return c & 0xFF;
2452 	}
2453     }
2454 
2455     return -1;
2456 }
2457 
2458 
2459 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2460 {
2461     while (*str) {
2462 
2463 	/* the i960 monitor doesn't accept any new character if it has something to say */
2464 	while (fore200e_monitor_getc(fore200e) >= 0);
2465 
2466 	fore200e_monitor_putc(fore200e, *str++);
2467     }
2468 
2469     while (fore200e_monitor_getc(fore200e) >= 0);
2470 }
2471 
2472 #ifdef __LITTLE_ENDIAN
2473 #define FW_EXT ".bin"
2474 #else
2475 #define FW_EXT "_ecd.bin2"
2476 #endif
2477 
2478 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2479 {
2480     const struct firmware *firmware;
2481     struct device *device;
2482     const struct fw_header *fw_header;
2483     const __le32 *fw_data;
2484     u32 fw_size;
2485     u32 __iomem *load_addr;
2486     char buf[48];
2487     int err = -ENODEV;
2488 
2489     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2490 	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2491 #ifdef CONFIG_SBUS
2492     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2493 	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2494 #endif
2495     else
2496 	return err;
2497 
2498     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2499     if ((err = request_firmware(&firmware, buf, device)) < 0) {
2500 	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2501 	return err;
2502     }
2503 
2504     fw_data = (const __le32 *)firmware->data;
2505     fw_size = firmware->size / sizeof(u32);
2506     fw_header = (const struct fw_header *)firmware->data;
2507     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2508 
2509     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2510 	    fore200e->name, load_addr, fw_size);
2511 
2512     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2513 	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2514 	goto release;
2515     }
2516 
2517     for (; fw_size--; fw_data++, load_addr++)
2518 	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2519 
2520     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2521 
2522 #if defined(__sparc_v9__)
2523     /* reported to be required by SBA cards on some sparc64 hosts */
2524     fore200e_spin(100);
2525 #endif
2526 
2527     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2528     fore200e_monitor_puts(fore200e, buf);
2529 
2530     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2531 	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2532 	goto release;
2533     }
2534 
2535     printk(FORE200E "device %s firmware started\n", fore200e->name);
2536 
2537     fore200e->state = FORE200E_STATE_START_FW;
2538     err = 0;
2539 
2540 release:
2541     release_firmware(firmware);
2542     return err;
2543 }
2544 
2545 
2546 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2547 {
2548     struct atm_dev* atm_dev;
2549 
2550     DPRINTK(2, "device %s being registered\n", fore200e->name);
2551 
2552     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2553                                -1, NULL);
2554     if (atm_dev == NULL) {
2555 	printk(FORE200E "unable to register device %s\n", fore200e->name);
2556 	return -ENODEV;
2557     }
2558 
2559     atm_dev->dev_data = fore200e;
2560     fore200e->atm_dev = atm_dev;
2561 
2562     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2563     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2564 
2565     fore200e->available_cell_rate = ATM_OC3_PCR;
2566 
2567     fore200e->state = FORE200E_STATE_REGISTER;
2568     return 0;
2569 }
2570 
2571 
2572 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2573 {
2574     if (fore200e_register(fore200e, parent) < 0)
2575 	return -ENODEV;
2576 
2577     if (fore200e->bus->configure(fore200e) < 0)
2578 	return -ENODEV;
2579 
2580     if (fore200e->bus->map(fore200e) < 0)
2581 	return -ENODEV;
2582 
2583     if (fore200e_reset(fore200e, 1) < 0)
2584 	return -ENODEV;
2585 
2586     if (fore200e_load_and_start_fw(fore200e) < 0)
2587 	return -ENODEV;
2588 
2589     if (fore200e_initialize(fore200e) < 0)
2590 	return -ENODEV;
2591 
2592     if (fore200e_init_cmd_queue(fore200e) < 0)
2593 	return -ENOMEM;
2594 
2595     if (fore200e_init_tx_queue(fore200e) < 0)
2596 	return -ENOMEM;
2597 
2598     if (fore200e_init_rx_queue(fore200e) < 0)
2599 	return -ENOMEM;
2600 
2601     if (fore200e_init_bs_queue(fore200e) < 0)
2602 	return -ENOMEM;
2603 
2604     if (fore200e_alloc_rx_buf(fore200e) < 0)
2605 	return -ENOMEM;
2606 
2607     if (fore200e_get_esi(fore200e) < 0)
2608 	return -EIO;
2609 
2610     if (fore200e_irq_request(fore200e) < 0)
2611 	return -EBUSY;
2612 
2613     fore200e_supply(fore200e);
2614 
2615     /* all done, board initialization is now complete */
2616     fore200e->state = FORE200E_STATE_COMPLETE;
2617     return 0;
2618 }
2619 
2620 #ifdef CONFIG_SBUS
2621 static const struct of_device_id fore200e_sba_match[];
2622 static int fore200e_sba_probe(struct platform_device *op)
2623 {
2624 	const struct of_device_id *match;
2625 	const struct fore200e_bus *bus;
2626 	struct fore200e *fore200e;
2627 	static int index = 0;
2628 	int err;
2629 
2630 	match = of_match_device(fore200e_sba_match, &op->dev);
2631 	if (!match)
2632 		return -EINVAL;
2633 	bus = match->data;
2634 
2635 	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2636 	if (!fore200e)
2637 		return -ENOMEM;
2638 
2639 	fore200e->bus = bus;
2640 	fore200e->bus_dev = op;
2641 	fore200e->irq = op->archdata.irqs[0];
2642 	fore200e->phys_base = op->resource[0].start;
2643 
2644 	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2645 
2646 	err = fore200e_init(fore200e, &op->dev);
2647 	if (err < 0) {
2648 		fore200e_shutdown(fore200e);
2649 		kfree(fore200e);
2650 		return err;
2651 	}
2652 
2653 	index++;
2654 	dev_set_drvdata(&op->dev, fore200e);
2655 
2656 	return 0;
2657 }
2658 
2659 static int fore200e_sba_remove(struct platform_device *op)
2660 {
2661 	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2662 
2663 	fore200e_shutdown(fore200e);
2664 	kfree(fore200e);
2665 
2666 	return 0;
2667 }
2668 
2669 static const struct of_device_id fore200e_sba_match[] = {
2670 	{
2671 		.name = SBA200E_PROM_NAME,
2672 		.data = (void *) &fore200e_bus[1],
2673 	},
2674 	{},
2675 };
2676 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2677 
2678 static struct platform_driver fore200e_sba_driver = {
2679 	.driver = {
2680 		.name = "fore_200e",
2681 		.of_match_table = fore200e_sba_match,
2682 	},
2683 	.probe		= fore200e_sba_probe,
2684 	.remove		= fore200e_sba_remove,
2685 };
2686 #endif
2687 
2688 #ifdef CONFIG_PCI
2689 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2690 			       const struct pci_device_id *pci_ent)
2691 {
2692     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2693     struct fore200e* fore200e;
2694     int err = 0;
2695     static int index = 0;
2696 
2697     if (pci_enable_device(pci_dev)) {
2698 	err = -EINVAL;
2699 	goto out;
2700     }
2701 
2702     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2703 	err = -EINVAL;
2704 	goto out;
2705     }
2706 
2707     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2708     if (fore200e == NULL) {
2709 	err = -ENOMEM;
2710 	goto out_disable;
2711     }
2712 
2713     fore200e->bus       = bus;
2714     fore200e->bus_dev   = pci_dev;
2715     fore200e->irq       = pci_dev->irq;
2716     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2717 
2718     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2719 
2720     pci_set_master(pci_dev);
2721 
2722     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2723 	   fore200e->bus->model_name,
2724 	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2725 
2726     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2727 
2728     err = fore200e_init(fore200e, &pci_dev->dev);
2729     if (err < 0) {
2730 	fore200e_shutdown(fore200e);
2731 	goto out_free;
2732     }
2733 
2734     ++index;
2735     pci_set_drvdata(pci_dev, fore200e);
2736 
2737 out:
2738     return err;
2739 
2740 out_free:
2741     kfree(fore200e);
2742 out_disable:
2743     pci_disable_device(pci_dev);
2744     goto out;
2745 }
2746 
2747 
2748 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2749 {
2750     struct fore200e *fore200e;
2751 
2752     fore200e = pci_get_drvdata(pci_dev);
2753 
2754     fore200e_shutdown(fore200e);
2755     kfree(fore200e);
2756     pci_disable_device(pci_dev);
2757 }
2758 
2759 
2760 static struct pci_device_id fore200e_pca_tbl[] = {
2761     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2762       0, 0, (unsigned long) &fore200e_bus[0] },
2763     { 0, }
2764 };
2765 
2766 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2767 
2768 static struct pci_driver fore200e_pca_driver = {
2769     .name =     "fore_200e",
2770     .probe =    fore200e_pca_detect,
2771     .remove =   fore200e_pca_remove_one,
2772     .id_table = fore200e_pca_tbl,
2773 };
2774 #endif
2775 
2776 static int __init fore200e_module_init(void)
2777 {
2778 	int err = 0;
2779 
2780 	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2781 
2782 #ifdef CONFIG_SBUS
2783 	err = platform_driver_register(&fore200e_sba_driver);
2784 	if (err)
2785 		return err;
2786 #endif
2787 
2788 #ifdef CONFIG_PCI
2789 	err = pci_register_driver(&fore200e_pca_driver);
2790 #endif
2791 
2792 #ifdef CONFIG_SBUS
2793 	if (err)
2794 		platform_driver_unregister(&fore200e_sba_driver);
2795 #endif
2796 
2797 	return err;
2798 }
2799 
2800 static void __exit fore200e_module_cleanup(void)
2801 {
2802 #ifdef CONFIG_PCI
2803 	pci_unregister_driver(&fore200e_pca_driver);
2804 #endif
2805 #ifdef CONFIG_SBUS
2806 	platform_driver_unregister(&fore200e_sba_driver);
2807 #endif
2808 }
2809 
2810 static int
2811 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2812 {
2813     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2814     struct fore200e_vcc* fore200e_vcc;
2815     struct atm_vcc*      vcc;
2816     int                  i, len, left = *pos;
2817     unsigned long        flags;
2818 
2819     if (!left--) {
2820 
2821 	if (fore200e_getstats(fore200e) < 0)
2822 	    return -EIO;
2823 
2824 	len = sprintf(page,"\n"
2825 		       " device:\n"
2826 		       "   internal name:\t\t%s\n", fore200e->name);
2827 
2828 	/* print bus-specific information */
2829 	if (fore200e->bus->proc_read)
2830 	    len += fore200e->bus->proc_read(fore200e, page + len);
2831 
2832 	len += sprintf(page + len,
2833 		"   interrupt line:\t\t%s\n"
2834 		"   physical base address:\t0x%p\n"
2835 		"   virtual base address:\t0x%p\n"
2836 		"   factory address (ESI):\t%pM\n"
2837 		"   board serial number:\t\t%d\n\n",
2838 		fore200e_irq_itoa(fore200e->irq),
2839 		(void*)fore200e->phys_base,
2840 		fore200e->virt_base,
2841 		fore200e->esi,
2842 		fore200e->esi[4] * 256 + fore200e->esi[5]);
2843 
2844 	return len;
2845     }
2846 
2847     if (!left--)
2848 	return sprintf(page,
2849 		       "   free small bufs, scheme 1:\t%d\n"
2850 		       "   free large bufs, scheme 1:\t%d\n"
2851 		       "   free small bufs, scheme 2:\t%d\n"
2852 		       "   free large bufs, scheme 2:\t%d\n",
2853 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2854 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2855 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2856 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2857 
2858     if (!left--) {
2859 	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2860 
2861 	len = sprintf(page,"\n\n"
2862 		      " cell processor:\n"
2863 		      "   heartbeat state:\t\t");
2864 
2865 	if (hb >> 16 != 0xDEAD)
2866 	    len += sprintf(page + len, "0x%08x\n", hb);
2867 	else
2868 	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2869 
2870 	return len;
2871     }
2872 
2873     if (!left--) {
2874 	static const char* media_name[] = {
2875 	    "unshielded twisted pair",
2876 	    "multimode optical fiber ST",
2877 	    "multimode optical fiber SC",
2878 	    "single-mode optical fiber ST",
2879 	    "single-mode optical fiber SC",
2880 	    "unknown"
2881 	};
2882 
2883 	static const char* oc3_mode[] = {
2884 	    "normal operation",
2885 	    "diagnostic loopback",
2886 	    "line loopback",
2887 	    "unknown"
2888 	};
2889 
2890 	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2891 	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2892 	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2893 	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2894 	u32 oc3_index;
2895 
2896 	if (media_index > 4)
2897 		media_index = 5;
2898 
2899 	switch (fore200e->loop_mode) {
2900 	    case ATM_LM_NONE:    oc3_index = 0;
2901 		                 break;
2902 	    case ATM_LM_LOC_PHY: oc3_index = 1;
2903 		                 break;
2904 	    case ATM_LM_RMT_PHY: oc3_index = 2;
2905 		                 break;
2906 	    default:             oc3_index = 3;
2907 	}
2908 
2909 	return sprintf(page,
2910 		       "   firmware release:\t\t%d.%d.%d\n"
2911 		       "   monitor release:\t\t%d.%d\n"
2912 		       "   media type:\t\t\t%s\n"
2913 		       "   OC-3 revision:\t\t0x%x\n"
2914                        "   OC-3 mode:\t\t\t%s",
2915 		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2916 		       mon960_release >> 16, mon960_release << 16 >> 16,
2917 		       media_name[ media_index ],
2918 		       oc3_revision,
2919 		       oc3_mode[ oc3_index ]);
2920     }
2921 
2922     if (!left--) {
2923 	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2924 
2925 	return sprintf(page,
2926 		       "\n\n"
2927 		       " monitor:\n"
2928 		       "   version number:\t\t%d\n"
2929 		       "   boot status word:\t\t0x%08x\n",
2930 		       fore200e->bus->read(&cp_monitor->mon_version),
2931 		       fore200e->bus->read(&cp_monitor->bstat));
2932     }
2933 
2934     if (!left--)
2935 	return sprintf(page,
2936 		       "\n"
2937 		       " device statistics:\n"
2938 		       "  4b5b:\n"
2939 		       "     crc_header_errors:\t\t%10u\n"
2940 		       "     framing_errors:\t\t%10u\n",
2941 		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2942 		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2943 
2944     if (!left--)
2945 	return sprintf(page, "\n"
2946 		       "  OC-3:\n"
2947 		       "     section_bip8_errors:\t%10u\n"
2948 		       "     path_bip8_errors:\t\t%10u\n"
2949 		       "     line_bip24_errors:\t\t%10u\n"
2950 		       "     line_febe_errors:\t\t%10u\n"
2951 		       "     path_febe_errors:\t\t%10u\n"
2952 		       "     corr_hcs_errors:\t\t%10u\n"
2953 		       "     ucorr_hcs_errors:\t\t%10u\n",
2954 		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2955 		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2956 		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2957 		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2958 		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2959 		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2960 		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2961 
2962     if (!left--)
2963 	return sprintf(page,"\n"
2964 		       "   ATM:\t\t\t\t     cells\n"
2965 		       "     TX:\t\t\t%10u\n"
2966 		       "     RX:\t\t\t%10u\n"
2967 		       "     vpi out of range:\t\t%10u\n"
2968 		       "     vpi no conn:\t\t%10u\n"
2969 		       "     vci out of range:\t\t%10u\n"
2970 		       "     vci no conn:\t\t%10u\n",
2971 		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2972 		       be32_to_cpu(fore200e->stats->atm.cells_received),
2973 		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2974 		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2975 		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2976 		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2977 
2978     if (!left--)
2979 	return sprintf(page,"\n"
2980 		       "   AAL0:\t\t\t     cells\n"
2981 		       "     TX:\t\t\t%10u\n"
2982 		       "     RX:\t\t\t%10u\n"
2983 		       "     dropped:\t\t\t%10u\n",
2984 		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2985 		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2986 		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2987 
2988     if (!left--)
2989 	return sprintf(page,"\n"
2990 		       "   AAL3/4:\n"
2991 		       "     SAR sublayer:\t\t     cells\n"
2992 		       "       TX:\t\t\t%10u\n"
2993 		       "       RX:\t\t\t%10u\n"
2994 		       "       dropped:\t\t\t%10u\n"
2995 		       "       CRC errors:\t\t%10u\n"
2996 		       "       protocol errors:\t\t%10u\n\n"
2997 		       "     CS  sublayer:\t\t      PDUs\n"
2998 		       "       TX:\t\t\t%10u\n"
2999 		       "       RX:\t\t\t%10u\n"
3000 		       "       dropped:\t\t\t%10u\n"
3001 		       "       protocol errors:\t\t%10u\n",
3002 		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3003 		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3004 		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3005 		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3006 		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3007 		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3008 		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3009 		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3010 		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3011 
3012     if (!left--)
3013 	return sprintf(page,"\n"
3014 		       "   AAL5:\n"
3015 		       "     SAR sublayer:\t\t     cells\n"
3016 		       "       TX:\t\t\t%10u\n"
3017 		       "       RX:\t\t\t%10u\n"
3018 		       "       dropped:\t\t\t%10u\n"
3019 		       "       congestions:\t\t%10u\n\n"
3020 		       "     CS  sublayer:\t\t      PDUs\n"
3021 		       "       TX:\t\t\t%10u\n"
3022 		       "       RX:\t\t\t%10u\n"
3023 		       "       dropped:\t\t\t%10u\n"
3024 		       "       CRC errors:\t\t%10u\n"
3025 		       "       protocol errors:\t\t%10u\n",
3026 		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3027 		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3028 		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3029 		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3030 		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3031 		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3032 		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3033 		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3034 		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3035 
3036     if (!left--)
3037 	return sprintf(page,"\n"
3038 		       "   AUX:\t\t       allocation failures\n"
3039 		       "     small b1:\t\t\t%10u\n"
3040 		       "     large b1:\t\t\t%10u\n"
3041 		       "     small b2:\t\t\t%10u\n"
3042 		       "     large b2:\t\t\t%10u\n"
3043 		       "     RX PDUs:\t\t\t%10u\n"
3044 		       "     TX PDUs:\t\t\t%10lu\n",
3045 		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3046 		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3047 		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3048 		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3049 		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3050 		       fore200e->tx_sat);
3051 
3052     if (!left--)
3053 	return sprintf(page,"\n"
3054 		       " receive carrier:\t\t\t%s\n",
3055 		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3056 
3057     if (!left--) {
3058         return sprintf(page,"\n"
3059 		       " VCCs:\n  address   VPI VCI   AAL "
3060 		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3061     }
3062 
3063     for (i = 0; i < NBR_CONNECT; i++) {
3064 
3065 	vcc = fore200e->vc_map[i].vcc;
3066 
3067 	if (vcc == NULL)
3068 	    continue;
3069 
3070 	spin_lock_irqsave(&fore200e->q_lock, flags);
3071 
3072 	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3073 
3074 	    fore200e_vcc = FORE200E_VCC(vcc);
3075 	    ASSERT(fore200e_vcc);
3076 
3077 	    len = sprintf(page,
3078 			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3079 			  (u32)(unsigned long)vcc,
3080 			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3081 			  fore200e_vcc->tx_pdu,
3082 			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3083 			  fore200e_vcc->tx_max_pdu,
3084 			  fore200e_vcc->rx_pdu,
3085 			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3086 			  fore200e_vcc->rx_max_pdu);
3087 
3088 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3089 	    return len;
3090 	}
3091 
3092 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3093     }
3094 
3095     return 0;
3096 }
3097 
3098 module_init(fore200e_module_init);
3099 module_exit(fore200e_module_cleanup);
3100 
3101 
3102 static const struct atmdev_ops fore200e_ops =
3103 {
3104 	.open       = fore200e_open,
3105 	.close      = fore200e_close,
3106 	.ioctl      = fore200e_ioctl,
3107 	.getsockopt = fore200e_getsockopt,
3108 	.setsockopt = fore200e_setsockopt,
3109 	.send       = fore200e_send,
3110 	.change_qos = fore200e_change_qos,
3111 	.proc_read  = fore200e_proc_read,
3112 	.owner      = THIS_MODULE
3113 };
3114 
3115 
3116 static const struct fore200e_bus fore200e_bus[] = {
3117 #ifdef CONFIG_PCI
3118     { "PCA-200E", "pca200e", 32, 4, 32,
3119       fore200e_pca_read,
3120       fore200e_pca_write,
3121       fore200e_pca_dma_map,
3122       fore200e_pca_dma_unmap,
3123       fore200e_pca_dma_sync_for_cpu,
3124       fore200e_pca_dma_sync_for_device,
3125       fore200e_pca_dma_chunk_alloc,
3126       fore200e_pca_dma_chunk_free,
3127       fore200e_pca_configure,
3128       fore200e_pca_map,
3129       fore200e_pca_reset,
3130       fore200e_pca_prom_read,
3131       fore200e_pca_unmap,
3132       NULL,
3133       fore200e_pca_irq_check,
3134       fore200e_pca_irq_ack,
3135       fore200e_pca_proc_read,
3136     },
3137 #endif
3138 #ifdef CONFIG_SBUS
3139     { "SBA-200E", "sba200e", 32, 64, 32,
3140       fore200e_sba_read,
3141       fore200e_sba_write,
3142       fore200e_sba_dma_map,
3143       fore200e_sba_dma_unmap,
3144       fore200e_sba_dma_sync_for_cpu,
3145       fore200e_sba_dma_sync_for_device,
3146       fore200e_sba_dma_chunk_alloc,
3147       fore200e_sba_dma_chunk_free,
3148       fore200e_sba_configure,
3149       fore200e_sba_map,
3150       fore200e_sba_reset,
3151       fore200e_sba_prom_read,
3152       fore200e_sba_unmap,
3153       fore200e_sba_irq_enable,
3154       fore200e_sba_irq_check,
3155       fore200e_sba_irq_ack,
3156       fore200e_sba_proc_read,
3157     },
3158 #endif
3159     {}
3160 };
3161 
3162 MODULE_LICENSE("GPL");
3163 #ifdef CONFIG_PCI
3164 #ifdef __LITTLE_ENDIAN__
3165 MODULE_FIRMWARE("pca200e.bin");
3166 #else
3167 MODULE_FIRMWARE("pca200e_ecd.bin2");
3168 #endif
3169 #endif /* CONFIG_PCI */
3170 #ifdef CONFIG_SBUS
3171 MODULE_FIRMWARE("sba200e_ecd.bin2");
3172 #endif
3173