1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 A FORE Systems 200E-series driver for ATM on Linux. 4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003. 5 6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de). 7 8 This driver simultaneously supports PCA-200E and SBA-200E adapters 9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures. 10 11 */ 12 13 14 #include <linux/kernel.h> 15 #include <linux/slab.h> 16 #include <linux/init.h> 17 #include <linux/capability.h> 18 #include <linux/interrupt.h> 19 #include <linux/bitops.h> 20 #include <linux/pci.h> 21 #include <linux/module.h> 22 #include <linux/atmdev.h> 23 #include <linux/sonet.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/delay.h> 26 #include <linux/firmware.h> 27 #include <linux/pgtable.h> 28 #include <asm/io.h> 29 #include <asm/string.h> 30 #include <asm/page.h> 31 #include <asm/irq.h> 32 #include <asm/dma.h> 33 #include <asm/byteorder.h> 34 #include <linux/uaccess.h> 35 #include <linux/atomic.h> 36 37 #ifdef CONFIG_SBUS 38 #include <linux/of.h> 39 #include <linux/platform_device.h> 40 #include <asm/idprom.h> 41 #include <asm/openprom.h> 42 #include <asm/oplib.h> 43 #endif 44 45 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */ 46 #define FORE200E_USE_TASKLET 47 #endif 48 49 #if 0 /* enable the debugging code of the buffer supply queues */ 50 #define FORE200E_BSQ_DEBUG 51 #endif 52 53 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */ 54 #define FORE200E_52BYTE_AAL0_SDU 55 #endif 56 57 #include "fore200e.h" 58 #include "suni.h" 59 60 #define FORE200E_VERSION "0.3e" 61 62 #define FORE200E "fore200e: " 63 64 #if 0 /* override .config */ 65 #define CONFIG_ATM_FORE200E_DEBUG 1 66 #endif 67 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 68 #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \ 69 printk(FORE200E format, ##args); } while (0) 70 #else 71 #define DPRINTK(level, format, args...) do {} while (0) 72 #endif 73 74 75 #define FORE200E_ALIGN(addr, alignment) \ 76 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr)) 77 78 #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type)) 79 80 #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ]) 81 82 #define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo)) 83 84 #if 1 85 #define ASSERT(expr) if (!(expr)) { \ 86 printk(FORE200E "assertion failed! %s[%d]: %s\n", \ 87 __func__, __LINE__, #expr); \ 88 panic(FORE200E "%s", __func__); \ 89 } 90 #else 91 #define ASSERT(expr) do {} while (0) 92 #endif 93 94 95 static const struct atmdev_ops fore200e_ops; 96 97 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen"); 98 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION); 99 100 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 101 { BUFFER_S1_NBR, BUFFER_L1_NBR }, 102 { BUFFER_S2_NBR, BUFFER_L2_NBR } 103 }; 104 105 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 106 { BUFFER_S1_SIZE, BUFFER_L1_SIZE }, 107 { BUFFER_S2_SIZE, BUFFER_L2_SIZE } 108 }; 109 110 111 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 112 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" }; 113 #endif 114 115 116 #if 0 /* currently unused */ 117 static int 118 fore200e_fore2atm_aal(enum fore200e_aal aal) 119 { 120 switch(aal) { 121 case FORE200E_AAL0: return ATM_AAL0; 122 case FORE200E_AAL34: return ATM_AAL34; 123 case FORE200E_AAL5: return ATM_AAL5; 124 } 125 126 return -EINVAL; 127 } 128 #endif 129 130 131 static enum fore200e_aal 132 fore200e_atm2fore_aal(int aal) 133 { 134 switch(aal) { 135 case ATM_AAL0: return FORE200E_AAL0; 136 case ATM_AAL34: return FORE200E_AAL34; 137 case ATM_AAL1: 138 case ATM_AAL2: 139 case ATM_AAL5: return FORE200E_AAL5; 140 } 141 142 return -EINVAL; 143 } 144 145 146 static char* 147 fore200e_irq_itoa(int irq) 148 { 149 static char str[8]; 150 sprintf(str, "%d", irq); 151 return str; 152 } 153 154 155 /* allocate and align a chunk of memory intended to hold the data behing exchanged 156 between the driver and the adapter (using streaming DVMA) */ 157 158 static int 159 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction) 160 { 161 unsigned long offset = 0; 162 163 if (alignment <= sizeof(int)) 164 alignment = 0; 165 166 chunk->alloc_size = size + alignment; 167 chunk->direction = direction; 168 169 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL); 170 if (chunk->alloc_addr == NULL) 171 return -ENOMEM; 172 173 if (alignment > 0) 174 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 175 176 chunk->align_addr = chunk->alloc_addr + offset; 177 178 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr, 179 size, direction); 180 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) { 181 kfree(chunk->alloc_addr); 182 return -ENOMEM; 183 } 184 return 0; 185 } 186 187 188 /* free a chunk of memory */ 189 190 static void 191 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 192 { 193 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size, 194 chunk->direction); 195 kfree(chunk->alloc_addr); 196 } 197 198 /* 199 * Allocate a DMA consistent chunk of memory intended to act as a communication 200 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver 201 * and the adapter. 202 */ 203 static int 204 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk, 205 int size, int nbr, int alignment) 206 { 207 /* returned chunks are page-aligned */ 208 chunk->alloc_size = size * nbr; 209 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size, 210 &chunk->dma_addr, GFP_KERNEL); 211 if (!chunk->alloc_addr) 212 return -ENOMEM; 213 chunk->align_addr = chunk->alloc_addr; 214 return 0; 215 } 216 217 /* 218 * Free a DMA consistent chunk of memory. 219 */ 220 static void 221 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 222 { 223 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr, 224 chunk->dma_addr); 225 } 226 227 static void 228 fore200e_spin(int msecs) 229 { 230 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 231 while (time_before(jiffies, timeout)); 232 } 233 234 235 static int 236 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs) 237 { 238 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 239 int ok; 240 241 mb(); 242 do { 243 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR)) 244 break; 245 246 } while (time_before(jiffies, timeout)); 247 248 #if 1 249 if (!ok) { 250 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n", 251 *addr, val); 252 } 253 #endif 254 255 return ok; 256 } 257 258 259 static int 260 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs) 261 { 262 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 263 int ok; 264 265 do { 266 if ((ok = (fore200e->bus->read(addr) == val))) 267 break; 268 269 } while (time_before(jiffies, timeout)); 270 271 #if 1 272 if (!ok) { 273 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n", 274 fore200e->bus->read(addr), val); 275 } 276 #endif 277 278 return ok; 279 } 280 281 282 static void 283 fore200e_free_rx_buf(struct fore200e* fore200e) 284 { 285 int scheme, magn, nbr; 286 struct buffer* buffer; 287 288 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 289 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 290 291 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) { 292 293 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) { 294 295 struct chunk* data = &buffer[ nbr ].data; 296 297 if (data->alloc_addr != NULL) 298 fore200e_chunk_free(fore200e, data); 299 } 300 } 301 } 302 } 303 } 304 305 306 static void 307 fore200e_uninit_bs_queue(struct fore200e* fore200e) 308 { 309 int scheme, magn; 310 311 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 312 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 313 314 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status; 315 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block; 316 317 if (status->alloc_addr) 318 fore200e_dma_chunk_free(fore200e, status); 319 320 if (rbd_block->alloc_addr) 321 fore200e_dma_chunk_free(fore200e, rbd_block); 322 } 323 } 324 } 325 326 327 static int 328 fore200e_reset(struct fore200e* fore200e, int diag) 329 { 330 int ok; 331 332 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET; 333 334 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat); 335 336 fore200e->bus->reset(fore200e); 337 338 if (diag) { 339 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000); 340 if (ok == 0) { 341 342 printk(FORE200E "device %s self-test failed\n", fore200e->name); 343 return -ENODEV; 344 } 345 346 printk(FORE200E "device %s self-test passed\n", fore200e->name); 347 348 fore200e->state = FORE200E_STATE_RESET; 349 } 350 351 return 0; 352 } 353 354 355 static void 356 fore200e_shutdown(struct fore200e* fore200e) 357 { 358 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n", 359 fore200e->name, fore200e->phys_base, 360 fore200e_irq_itoa(fore200e->irq)); 361 362 if (fore200e->state > FORE200E_STATE_RESET) { 363 /* first, reset the board to prevent further interrupts or data transfers */ 364 fore200e_reset(fore200e, 0); 365 } 366 367 /* then, release all allocated resources */ 368 switch(fore200e->state) { 369 370 case FORE200E_STATE_COMPLETE: 371 kfree(fore200e->stats); 372 373 fallthrough; 374 case FORE200E_STATE_IRQ: 375 free_irq(fore200e->irq, fore200e->atm_dev); 376 377 fallthrough; 378 case FORE200E_STATE_ALLOC_BUF: 379 fore200e_free_rx_buf(fore200e); 380 381 fallthrough; 382 case FORE200E_STATE_INIT_BSQ: 383 fore200e_uninit_bs_queue(fore200e); 384 385 fallthrough; 386 case FORE200E_STATE_INIT_RXQ: 387 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status); 388 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd); 389 390 fallthrough; 391 case FORE200E_STATE_INIT_TXQ: 392 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status); 393 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd); 394 395 fallthrough; 396 case FORE200E_STATE_INIT_CMDQ: 397 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status); 398 399 fallthrough; 400 case FORE200E_STATE_INITIALIZE: 401 /* nothing to do for that state */ 402 403 case FORE200E_STATE_START_FW: 404 /* nothing to do for that state */ 405 406 case FORE200E_STATE_RESET: 407 /* nothing to do for that state */ 408 409 case FORE200E_STATE_MAP: 410 fore200e->bus->unmap(fore200e); 411 412 fallthrough; 413 case FORE200E_STATE_CONFIGURE: 414 /* nothing to do for that state */ 415 416 case FORE200E_STATE_REGISTER: 417 /* XXX shouldn't we *start* by deregistering the device? */ 418 atm_dev_deregister(fore200e->atm_dev); 419 420 fallthrough; 421 case FORE200E_STATE_BLANK: 422 /* nothing to do for that state */ 423 break; 424 } 425 } 426 427 428 #ifdef CONFIG_PCI 429 430 static u32 fore200e_pca_read(volatile u32 __iomem *addr) 431 { 432 /* on big-endian hosts, the board is configured to convert 433 the endianess of slave RAM accesses */ 434 return le32_to_cpu(readl(addr)); 435 } 436 437 438 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr) 439 { 440 /* on big-endian hosts, the board is configured to convert 441 the endianess of slave RAM accesses */ 442 writel(cpu_to_le32(val), addr); 443 } 444 445 static int 446 fore200e_pca_irq_check(struct fore200e* fore200e) 447 { 448 /* this is a 1 bit register */ 449 int irq_posted = readl(fore200e->regs.pca.psr); 450 451 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2) 452 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) { 453 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number); 454 } 455 #endif 456 457 return irq_posted; 458 } 459 460 461 static void 462 fore200e_pca_irq_ack(struct fore200e* fore200e) 463 { 464 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr); 465 } 466 467 468 static void 469 fore200e_pca_reset(struct fore200e* fore200e) 470 { 471 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr); 472 fore200e_spin(10); 473 writel(0, fore200e->regs.pca.hcr); 474 } 475 476 477 static int fore200e_pca_map(struct fore200e* fore200e) 478 { 479 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name); 480 481 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH); 482 483 if (fore200e->virt_base == NULL) { 484 printk(FORE200E "can't map device %s\n", fore200e->name); 485 return -EFAULT; 486 } 487 488 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 489 490 /* gain access to the PCA specific registers */ 491 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET; 492 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET; 493 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET; 494 495 fore200e->state = FORE200E_STATE_MAP; 496 return 0; 497 } 498 499 500 static void 501 fore200e_pca_unmap(struct fore200e* fore200e) 502 { 503 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name); 504 505 if (fore200e->virt_base != NULL) 506 iounmap(fore200e->virt_base); 507 } 508 509 510 static int fore200e_pca_configure(struct fore200e *fore200e) 511 { 512 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev); 513 u8 master_ctrl, latency; 514 515 DPRINTK(2, "device %s being configured\n", fore200e->name); 516 517 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) { 518 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); 519 return -EIO; 520 } 521 522 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl); 523 524 master_ctrl = master_ctrl 525 #if defined(__BIG_ENDIAN) 526 /* request the PCA board to convert the endianess of slave RAM accesses */ 527 | PCA200E_CTRL_CONVERT_ENDIAN 528 #endif 529 #if 0 530 | PCA200E_CTRL_DIS_CACHE_RD 531 | PCA200E_CTRL_DIS_WRT_INVAL 532 | PCA200E_CTRL_ENA_CONT_REQ_MODE 533 | PCA200E_CTRL_2_CACHE_WRT_INVAL 534 #endif 535 | PCA200E_CTRL_LARGE_PCI_BURSTS; 536 537 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl); 538 539 /* raise latency from 32 (default) to 192, as this seems to prevent NIC 540 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition. 541 this may impact the performances of other PCI devices on the same bus, though */ 542 latency = 192; 543 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency); 544 545 fore200e->state = FORE200E_STATE_CONFIGURE; 546 return 0; 547 } 548 549 550 static int __init 551 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom) 552 { 553 struct host_cmdq* cmdq = &fore200e->host_cmdq; 554 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 555 struct prom_opcode opcode; 556 int ok; 557 u32 prom_dma; 558 559 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 560 561 opcode.opcode = OPCODE_GET_PROM; 562 opcode.pad = 0; 563 564 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data), 565 DMA_FROM_DEVICE); 566 if (dma_mapping_error(fore200e->dev, prom_dma)) 567 return -ENOMEM; 568 569 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr); 570 571 *entry->status = STATUS_PENDING; 572 573 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode); 574 575 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 576 577 *entry->status = STATUS_FREE; 578 579 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE); 580 581 if (ok == 0) { 582 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name); 583 return -EIO; 584 } 585 586 #if defined(__BIG_ENDIAN) 587 588 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) )) 589 590 /* MAC address is stored as little-endian */ 591 swap_here(&prom->mac_addr[0]); 592 swap_here(&prom->mac_addr[4]); 593 #endif 594 595 return 0; 596 } 597 598 599 static int 600 fore200e_pca_proc_read(struct fore200e* fore200e, char *page) 601 { 602 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev); 603 604 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", 605 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn)); 606 } 607 608 static const struct fore200e_bus fore200e_pci_ops = { 609 .model_name = "PCA-200E", 610 .proc_name = "pca200e", 611 .descr_alignment = 32, 612 .buffer_alignment = 4, 613 .status_alignment = 32, 614 .read = fore200e_pca_read, 615 .write = fore200e_pca_write, 616 .configure = fore200e_pca_configure, 617 .map = fore200e_pca_map, 618 .reset = fore200e_pca_reset, 619 .prom_read = fore200e_pca_prom_read, 620 .unmap = fore200e_pca_unmap, 621 .irq_check = fore200e_pca_irq_check, 622 .irq_ack = fore200e_pca_irq_ack, 623 .proc_read = fore200e_pca_proc_read, 624 }; 625 #endif /* CONFIG_PCI */ 626 627 #ifdef CONFIG_SBUS 628 629 static u32 fore200e_sba_read(volatile u32 __iomem *addr) 630 { 631 return sbus_readl(addr); 632 } 633 634 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr) 635 { 636 sbus_writel(val, addr); 637 } 638 639 static void fore200e_sba_irq_enable(struct fore200e *fore200e) 640 { 641 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 642 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr); 643 } 644 645 static int fore200e_sba_irq_check(struct fore200e *fore200e) 646 { 647 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ; 648 } 649 650 static void fore200e_sba_irq_ack(struct fore200e *fore200e) 651 { 652 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 653 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr); 654 } 655 656 static void fore200e_sba_reset(struct fore200e *fore200e) 657 { 658 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr); 659 fore200e_spin(10); 660 fore200e->bus->write(0, fore200e->regs.sba.hcr); 661 } 662 663 static int __init fore200e_sba_map(struct fore200e *fore200e) 664 { 665 struct platform_device *op = to_platform_device(fore200e->dev); 666 unsigned int bursts; 667 668 /* gain access to the SBA specific registers */ 669 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR"); 670 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR"); 671 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR"); 672 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM"); 673 674 if (!fore200e->virt_base) { 675 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name); 676 return -EFAULT; 677 } 678 679 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 680 681 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */ 682 683 /* get the supported DVMA burst sizes */ 684 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00); 685 686 if (sbus_can_dma_64bit()) 687 sbus_set_sbus64(&op->dev, bursts); 688 689 fore200e->state = FORE200E_STATE_MAP; 690 return 0; 691 } 692 693 static void fore200e_sba_unmap(struct fore200e *fore200e) 694 { 695 struct platform_device *op = to_platform_device(fore200e->dev); 696 697 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH); 698 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH); 699 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH); 700 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH); 701 } 702 703 static int __init fore200e_sba_configure(struct fore200e *fore200e) 704 { 705 fore200e->state = FORE200E_STATE_CONFIGURE; 706 return 0; 707 } 708 709 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom) 710 { 711 struct platform_device *op = to_platform_device(fore200e->dev); 712 const u8 *prop; 713 int len; 714 715 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len); 716 if (!prop) 717 return -ENODEV; 718 memcpy(&prom->mac_addr[4], prop, 4); 719 720 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len); 721 if (!prop) 722 return -ENODEV; 723 memcpy(&prom->mac_addr[2], prop, 4); 724 725 prom->serial_number = of_getintprop_default(op->dev.of_node, 726 "serialnumber", 0); 727 prom->hw_revision = of_getintprop_default(op->dev.of_node, 728 "promversion", 0); 729 730 return 0; 731 } 732 733 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page) 734 { 735 struct platform_device *op = to_platform_device(fore200e->dev); 736 const struct linux_prom_registers *regs; 737 738 regs = of_get_property(op->dev.of_node, "reg", NULL); 739 740 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n", 741 (regs ? regs->which_io : 0), op->dev.of_node); 742 } 743 744 static const struct fore200e_bus fore200e_sbus_ops = { 745 .model_name = "SBA-200E", 746 .proc_name = "sba200e", 747 .descr_alignment = 32, 748 .buffer_alignment = 64, 749 .status_alignment = 32, 750 .read = fore200e_sba_read, 751 .write = fore200e_sba_write, 752 .configure = fore200e_sba_configure, 753 .map = fore200e_sba_map, 754 .reset = fore200e_sba_reset, 755 .prom_read = fore200e_sba_prom_read, 756 .unmap = fore200e_sba_unmap, 757 .irq_enable = fore200e_sba_irq_enable, 758 .irq_check = fore200e_sba_irq_check, 759 .irq_ack = fore200e_sba_irq_ack, 760 .proc_read = fore200e_sba_proc_read, 761 }; 762 #endif /* CONFIG_SBUS */ 763 764 static void 765 fore200e_tx_irq(struct fore200e* fore200e) 766 { 767 struct host_txq* txq = &fore200e->host_txq; 768 struct host_txq_entry* entry; 769 struct atm_vcc* vcc; 770 struct fore200e_vc_map* vc_map; 771 772 if (fore200e->host_txq.txing == 0) 773 return; 774 775 for (;;) { 776 777 entry = &txq->host_entry[ txq->tail ]; 778 779 if ((*entry->status & STATUS_COMPLETE) == 0) { 780 break; 781 } 782 783 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 784 entry, txq->tail, entry->vc_map, entry->skb); 785 786 /* free copy of misaligned data */ 787 kfree(entry->data); 788 789 /* remove DMA mapping */ 790 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length, 791 DMA_TO_DEVICE); 792 793 vc_map = entry->vc_map; 794 795 /* vcc closed since the time the entry was submitted for tx? */ 796 if ((vc_map->vcc == NULL) || 797 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 798 799 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n", 800 fore200e->atm_dev->number); 801 802 dev_kfree_skb_any(entry->skb); 803 } 804 else { 805 ASSERT(vc_map->vcc); 806 807 /* vcc closed then immediately re-opened? */ 808 if (vc_map->incarn != entry->incarn) { 809 810 /* when a vcc is closed, some PDUs may be still pending in the tx queue. 811 if the same vcc is immediately re-opened, those pending PDUs must 812 not be popped after the completion of their emission, as they refer 813 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc 814 would be decremented by the size of the (unrelated) skb, possibly 815 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc. 816 we thus bind the tx entry to the current incarnation of the vcc 817 when the entry is submitted for tx. When the tx later completes, 818 if the incarnation number of the tx entry does not match the one 819 of the vcc, then this implies that the vcc has been closed then re-opened. 820 we thus just drop the skb here. */ 821 822 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n", 823 fore200e->atm_dev->number); 824 825 dev_kfree_skb_any(entry->skb); 826 } 827 else { 828 vcc = vc_map->vcc; 829 ASSERT(vcc); 830 831 /* notify tx completion */ 832 if (vcc->pop) { 833 vcc->pop(vcc, entry->skb); 834 } 835 else { 836 dev_kfree_skb_any(entry->skb); 837 } 838 839 /* check error condition */ 840 if (*entry->status & STATUS_ERROR) 841 atomic_inc(&vcc->stats->tx_err); 842 else 843 atomic_inc(&vcc->stats->tx); 844 } 845 } 846 847 *entry->status = STATUS_FREE; 848 849 fore200e->host_txq.txing--; 850 851 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX); 852 } 853 } 854 855 856 #ifdef FORE200E_BSQ_DEBUG 857 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn) 858 { 859 struct buffer* buffer; 860 int count = 0; 861 862 buffer = bsq->freebuf; 863 while (buffer) { 864 865 if (buffer->supplied) { 866 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n", 867 where, scheme, magn, buffer->index); 868 } 869 870 if (buffer->magn != magn) { 871 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n", 872 where, scheme, magn, buffer->index, buffer->magn); 873 } 874 875 if (buffer->scheme != scheme) { 876 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n", 877 where, scheme, magn, buffer->index, buffer->scheme); 878 } 879 880 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) { 881 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n", 882 where, scheme, magn, buffer->index); 883 } 884 885 count++; 886 buffer = buffer->next; 887 } 888 889 if (count != bsq->freebuf_count) { 890 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n", 891 where, scheme, magn, count, bsq->freebuf_count); 892 } 893 return 0; 894 } 895 #endif 896 897 898 static void 899 fore200e_supply(struct fore200e* fore200e) 900 { 901 int scheme, magn, i; 902 903 struct host_bsq* bsq; 904 struct host_bsq_entry* entry; 905 struct buffer* buffer; 906 907 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 908 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 909 910 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 911 912 #ifdef FORE200E_BSQ_DEBUG 913 bsq_audit(1, bsq, scheme, magn); 914 #endif 915 while (bsq->freebuf_count >= RBD_BLK_SIZE) { 916 917 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n", 918 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count); 919 920 entry = &bsq->host_entry[ bsq->head ]; 921 922 for (i = 0; i < RBD_BLK_SIZE; i++) { 923 924 /* take the first buffer in the free buffer list */ 925 buffer = bsq->freebuf; 926 if (!buffer) { 927 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n", 928 scheme, magn, bsq->freebuf_count); 929 return; 930 } 931 bsq->freebuf = buffer->next; 932 933 #ifdef FORE200E_BSQ_DEBUG 934 if (buffer->supplied) 935 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n", 936 scheme, magn, buffer->index); 937 buffer->supplied = 1; 938 #endif 939 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr; 940 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer); 941 } 942 943 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS); 944 945 /* decrease accordingly the number of free rx buffers */ 946 bsq->freebuf_count -= RBD_BLK_SIZE; 947 948 *entry->status = STATUS_PENDING; 949 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr); 950 } 951 } 952 } 953 } 954 955 956 static int 957 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd) 958 { 959 struct sk_buff* skb; 960 struct buffer* buffer; 961 struct fore200e_vcc* fore200e_vcc; 962 int i, pdu_len = 0; 963 #ifdef FORE200E_52BYTE_AAL0_SDU 964 u32 cell_header = 0; 965 #endif 966 967 ASSERT(vcc); 968 969 fore200e_vcc = FORE200E_VCC(vcc); 970 ASSERT(fore200e_vcc); 971 972 #ifdef FORE200E_52BYTE_AAL0_SDU 973 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) { 974 975 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) | 976 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) | 977 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) | 978 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 979 rpd->atm_header.clp; 980 pdu_len = 4; 981 } 982 #endif 983 984 /* compute total PDU length */ 985 for (i = 0; i < rpd->nseg; i++) 986 pdu_len += rpd->rsd[ i ].length; 987 988 skb = alloc_skb(pdu_len, GFP_ATOMIC); 989 if (skb == NULL) { 990 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len); 991 992 atomic_inc(&vcc->stats->rx_drop); 993 return -ENOMEM; 994 } 995 996 __net_timestamp(skb); 997 998 #ifdef FORE200E_52BYTE_AAL0_SDU 999 if (cell_header) { 1000 *((u32*)skb_put(skb, 4)) = cell_header; 1001 } 1002 #endif 1003 1004 /* reassemble segments */ 1005 for (i = 0; i < rpd->nseg; i++) { 1006 1007 /* rebuild rx buffer address from rsd handle */ 1008 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1009 1010 /* Make device DMA transfer visible to CPU. */ 1011 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr, 1012 rpd->rsd[i].length, DMA_FROM_DEVICE); 1013 1014 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length); 1015 1016 /* Now let the device get at it again. */ 1017 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr, 1018 rpd->rsd[i].length, DMA_FROM_DEVICE); 1019 } 1020 1021 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize); 1022 1023 if (pdu_len < fore200e_vcc->rx_min_pdu) 1024 fore200e_vcc->rx_min_pdu = pdu_len; 1025 if (pdu_len > fore200e_vcc->rx_max_pdu) 1026 fore200e_vcc->rx_max_pdu = pdu_len; 1027 fore200e_vcc->rx_pdu++; 1028 1029 /* push PDU */ 1030 if (atm_charge(vcc, skb->truesize) == 0) { 1031 1032 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n", 1033 vcc->itf, vcc->vpi, vcc->vci); 1034 1035 dev_kfree_skb_any(skb); 1036 1037 atomic_inc(&vcc->stats->rx_drop); 1038 return -ENOMEM; 1039 } 1040 1041 vcc->push(vcc, skb); 1042 atomic_inc(&vcc->stats->rx); 1043 1044 return 0; 1045 } 1046 1047 1048 static void 1049 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd) 1050 { 1051 struct host_bsq* bsq; 1052 struct buffer* buffer; 1053 int i; 1054 1055 for (i = 0; i < rpd->nseg; i++) { 1056 1057 /* rebuild rx buffer address from rsd handle */ 1058 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1059 1060 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ]; 1061 1062 #ifdef FORE200E_BSQ_DEBUG 1063 bsq_audit(2, bsq, buffer->scheme, buffer->magn); 1064 1065 if (buffer->supplied == 0) 1066 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n", 1067 buffer->scheme, buffer->magn, buffer->index); 1068 buffer->supplied = 0; 1069 #endif 1070 1071 /* re-insert the buffer into the free buffer list */ 1072 buffer->next = bsq->freebuf; 1073 bsq->freebuf = buffer; 1074 1075 /* then increment the number of free rx buffers */ 1076 bsq->freebuf_count++; 1077 } 1078 } 1079 1080 1081 static void 1082 fore200e_rx_irq(struct fore200e* fore200e) 1083 { 1084 struct host_rxq* rxq = &fore200e->host_rxq; 1085 struct host_rxq_entry* entry; 1086 struct atm_vcc* vcc; 1087 struct fore200e_vc_map* vc_map; 1088 1089 for (;;) { 1090 1091 entry = &rxq->host_entry[ rxq->head ]; 1092 1093 /* no more received PDUs */ 1094 if ((*entry->status & STATUS_COMPLETE) == 0) 1095 break; 1096 1097 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1098 1099 if ((vc_map->vcc == NULL) || 1100 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 1101 1102 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n", 1103 fore200e->atm_dev->number, 1104 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1105 } 1106 else { 1107 vcc = vc_map->vcc; 1108 ASSERT(vcc); 1109 1110 if ((*entry->status & STATUS_ERROR) == 0) { 1111 1112 fore200e_push_rpd(fore200e, vcc, entry->rpd); 1113 } 1114 else { 1115 DPRINTK(2, "damaged PDU on %d.%d.%d\n", 1116 fore200e->atm_dev->number, 1117 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1118 atomic_inc(&vcc->stats->rx_err); 1119 } 1120 } 1121 1122 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX); 1123 1124 fore200e_collect_rpd(fore200e, entry->rpd); 1125 1126 /* rewrite the rpd address to ack the received PDU */ 1127 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr); 1128 *entry->status = STATUS_FREE; 1129 1130 fore200e_supply(fore200e); 1131 } 1132 } 1133 1134 1135 #ifndef FORE200E_USE_TASKLET 1136 static void 1137 fore200e_irq(struct fore200e* fore200e) 1138 { 1139 unsigned long flags; 1140 1141 spin_lock_irqsave(&fore200e->q_lock, flags); 1142 fore200e_rx_irq(fore200e); 1143 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1144 1145 spin_lock_irqsave(&fore200e->q_lock, flags); 1146 fore200e_tx_irq(fore200e); 1147 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1148 } 1149 #endif 1150 1151 1152 static irqreturn_t 1153 fore200e_interrupt(int irq, void* dev) 1154 { 1155 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev); 1156 1157 if (fore200e->bus->irq_check(fore200e) == 0) { 1158 1159 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number); 1160 return IRQ_NONE; 1161 } 1162 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number); 1163 1164 #ifdef FORE200E_USE_TASKLET 1165 tasklet_schedule(&fore200e->tx_tasklet); 1166 tasklet_schedule(&fore200e->rx_tasklet); 1167 #else 1168 fore200e_irq(fore200e); 1169 #endif 1170 1171 fore200e->bus->irq_ack(fore200e); 1172 return IRQ_HANDLED; 1173 } 1174 1175 1176 #ifdef FORE200E_USE_TASKLET 1177 static void 1178 fore200e_tx_tasklet(unsigned long data) 1179 { 1180 struct fore200e* fore200e = (struct fore200e*) data; 1181 unsigned long flags; 1182 1183 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1184 1185 spin_lock_irqsave(&fore200e->q_lock, flags); 1186 fore200e_tx_irq(fore200e); 1187 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1188 } 1189 1190 1191 static void 1192 fore200e_rx_tasklet(unsigned long data) 1193 { 1194 struct fore200e* fore200e = (struct fore200e*) data; 1195 unsigned long flags; 1196 1197 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1198 1199 spin_lock_irqsave(&fore200e->q_lock, flags); 1200 fore200e_rx_irq((struct fore200e*) data); 1201 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1202 } 1203 #endif 1204 1205 1206 static int 1207 fore200e_select_scheme(struct atm_vcc* vcc) 1208 { 1209 /* fairly balance the VCs over (identical) buffer schemes */ 1210 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO; 1211 1212 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n", 1213 vcc->itf, vcc->vpi, vcc->vci, scheme); 1214 1215 return scheme; 1216 } 1217 1218 1219 static int 1220 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu) 1221 { 1222 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1223 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1224 struct activate_opcode activ_opcode; 1225 struct deactivate_opcode deactiv_opcode; 1226 struct vpvc vpvc; 1227 int ok; 1228 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal); 1229 1230 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1231 1232 if (activate) { 1233 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc); 1234 1235 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN; 1236 activ_opcode.aal = aal; 1237 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme; 1238 activ_opcode.pad = 0; 1239 } 1240 else { 1241 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN; 1242 deactiv_opcode.pad = 0; 1243 } 1244 1245 vpvc.vci = vcc->vci; 1246 vpvc.vpi = vcc->vpi; 1247 1248 *entry->status = STATUS_PENDING; 1249 1250 if (activate) { 1251 1252 #ifdef FORE200E_52BYTE_AAL0_SDU 1253 mtu = 48; 1254 #endif 1255 /* the MTU is not used by the cp, except in the case of AAL0 */ 1256 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu); 1257 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc); 1258 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode); 1259 } 1260 else { 1261 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc); 1262 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode); 1263 } 1264 1265 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1266 1267 *entry->status = STATUS_FREE; 1268 1269 if (ok == 0) { 1270 printk(FORE200E "unable to %s VC %d.%d.%d\n", 1271 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci); 1272 return -EIO; 1273 } 1274 1275 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 1276 activate ? "open" : "clos"); 1277 1278 return 0; 1279 } 1280 1281 1282 #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */ 1283 1284 static void 1285 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate) 1286 { 1287 if (qos->txtp.max_pcr < ATM_OC3_PCR) { 1288 1289 /* compute the data cells to idle cells ratio from the tx PCR */ 1290 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR; 1291 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells; 1292 } 1293 else { 1294 /* disable rate control */ 1295 rate->data_cells = rate->idle_cells = 0; 1296 } 1297 } 1298 1299 1300 static int 1301 fore200e_open(struct atm_vcc *vcc) 1302 { 1303 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1304 struct fore200e_vcc* fore200e_vcc; 1305 struct fore200e_vc_map* vc_map; 1306 unsigned long flags; 1307 int vci = vcc->vci; 1308 short vpi = vcc->vpi; 1309 1310 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS)); 1311 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS)); 1312 1313 spin_lock_irqsave(&fore200e->q_lock, flags); 1314 1315 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci); 1316 if (vc_map->vcc) { 1317 1318 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1319 1320 printk(FORE200E "VC %d.%d.%d already in use\n", 1321 fore200e->atm_dev->number, vpi, vci); 1322 1323 return -EINVAL; 1324 } 1325 1326 vc_map->vcc = vcc; 1327 1328 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1329 1330 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC); 1331 if (fore200e_vcc == NULL) { 1332 vc_map->vcc = NULL; 1333 return -ENOMEM; 1334 } 1335 1336 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1337 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n", 1338 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1339 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ], 1340 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu, 1341 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ], 1342 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu); 1343 1344 /* pseudo-CBR bandwidth requested? */ 1345 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1346 1347 mutex_lock(&fore200e->rate_mtx); 1348 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) { 1349 mutex_unlock(&fore200e->rate_mtx); 1350 1351 kfree(fore200e_vcc); 1352 vc_map->vcc = NULL; 1353 return -EAGAIN; 1354 } 1355 1356 /* reserve bandwidth */ 1357 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr; 1358 mutex_unlock(&fore200e->rate_mtx); 1359 } 1360 1361 vcc->itf = vcc->dev->number; 1362 1363 set_bit(ATM_VF_PARTIAL,&vcc->flags); 1364 set_bit(ATM_VF_ADDR, &vcc->flags); 1365 1366 vcc->dev_data = fore200e_vcc; 1367 1368 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) { 1369 1370 vc_map->vcc = NULL; 1371 1372 clear_bit(ATM_VF_ADDR, &vcc->flags); 1373 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1374 1375 vcc->dev_data = NULL; 1376 1377 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1378 1379 kfree(fore200e_vcc); 1380 return -EINVAL; 1381 } 1382 1383 /* compute rate control parameters */ 1384 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1385 1386 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate); 1387 set_bit(ATM_VF_HASQOS, &vcc->flags); 1388 1389 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n", 1390 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1391 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 1392 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells); 1393 } 1394 1395 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1; 1396 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0; 1397 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0; 1398 1399 /* new incarnation of the vcc */ 1400 vc_map->incarn = ++fore200e->incarn_count; 1401 1402 /* VC unusable before this flag is set */ 1403 set_bit(ATM_VF_READY, &vcc->flags); 1404 1405 return 0; 1406 } 1407 1408 1409 static void 1410 fore200e_close(struct atm_vcc* vcc) 1411 { 1412 struct fore200e_vcc* fore200e_vcc; 1413 struct fore200e* fore200e; 1414 struct fore200e_vc_map* vc_map; 1415 unsigned long flags; 1416 1417 ASSERT(vcc); 1418 fore200e = FORE200E_DEV(vcc->dev); 1419 1420 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS)); 1421 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS)); 1422 1423 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal)); 1424 1425 clear_bit(ATM_VF_READY, &vcc->flags); 1426 1427 fore200e_activate_vcin(fore200e, 0, vcc, 0); 1428 1429 spin_lock_irqsave(&fore200e->q_lock, flags); 1430 1431 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1432 1433 /* the vc is no longer considered as "in use" by fore200e_open() */ 1434 vc_map->vcc = NULL; 1435 1436 vcc->itf = vcc->vci = vcc->vpi = 0; 1437 1438 fore200e_vcc = FORE200E_VCC(vcc); 1439 vcc->dev_data = NULL; 1440 1441 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1442 1443 /* release reserved bandwidth, if any */ 1444 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1445 1446 mutex_lock(&fore200e->rate_mtx); 1447 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1448 mutex_unlock(&fore200e->rate_mtx); 1449 1450 clear_bit(ATM_VF_HASQOS, &vcc->flags); 1451 } 1452 1453 clear_bit(ATM_VF_ADDR, &vcc->flags); 1454 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1455 1456 ASSERT(fore200e_vcc); 1457 kfree(fore200e_vcc); 1458 } 1459 1460 1461 static int 1462 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb) 1463 { 1464 struct fore200e* fore200e; 1465 struct fore200e_vcc* fore200e_vcc; 1466 struct fore200e_vc_map* vc_map; 1467 struct host_txq* txq; 1468 struct host_txq_entry* entry; 1469 struct tpd* tpd; 1470 struct tpd_haddr tpd_haddr; 1471 int retry = CONFIG_ATM_FORE200E_TX_RETRY; 1472 int tx_copy = 0; 1473 int tx_len = skb->len; 1474 u32* cell_header = NULL; 1475 unsigned char* skb_data; 1476 int skb_len; 1477 unsigned char* data; 1478 unsigned long flags; 1479 1480 if (!vcc) 1481 return -EINVAL; 1482 1483 fore200e = FORE200E_DEV(vcc->dev); 1484 fore200e_vcc = FORE200E_VCC(vcc); 1485 1486 if (!fore200e) 1487 return -EINVAL; 1488 1489 txq = &fore200e->host_txq; 1490 if (!fore200e_vcc) 1491 return -EINVAL; 1492 1493 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1494 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi); 1495 dev_kfree_skb_any(skb); 1496 return -EINVAL; 1497 } 1498 1499 #ifdef FORE200E_52BYTE_AAL0_SDU 1500 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) { 1501 cell_header = (u32*) skb->data; 1502 skb_data = skb->data + 4; /* skip 4-byte cell header */ 1503 skb_len = tx_len = skb->len - 4; 1504 1505 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header); 1506 } 1507 else 1508 #endif 1509 { 1510 skb_data = skb->data; 1511 skb_len = skb->len; 1512 } 1513 1514 if (((unsigned long)skb_data) & 0x3) { 1515 1516 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name); 1517 tx_copy = 1; 1518 tx_len = skb_len; 1519 } 1520 1521 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) { 1522 1523 /* this simply NUKES the PCA board */ 1524 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name); 1525 tx_copy = 1; 1526 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD; 1527 } 1528 1529 if (tx_copy) { 1530 data = kmalloc(tx_len, GFP_ATOMIC); 1531 if (data == NULL) { 1532 if (vcc->pop) { 1533 vcc->pop(vcc, skb); 1534 } 1535 else { 1536 dev_kfree_skb_any(skb); 1537 } 1538 return -ENOMEM; 1539 } 1540 1541 memcpy(data, skb_data, skb_len); 1542 if (skb_len < tx_len) 1543 memset(data + skb_len, 0x00, tx_len - skb_len); 1544 } 1545 else { 1546 data = skb_data; 1547 } 1548 1549 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1550 ASSERT(vc_map->vcc == vcc); 1551 1552 retry_here: 1553 1554 spin_lock_irqsave(&fore200e->q_lock, flags); 1555 1556 entry = &txq->host_entry[ txq->head ]; 1557 1558 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) { 1559 1560 /* try to free completed tx queue entries */ 1561 fore200e_tx_irq(fore200e); 1562 1563 if (*entry->status != STATUS_FREE) { 1564 1565 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1566 1567 /* retry once again? */ 1568 if (--retry > 0) { 1569 udelay(50); 1570 goto retry_here; 1571 } 1572 1573 atomic_inc(&vcc->stats->tx_err); 1574 1575 fore200e->tx_sat++; 1576 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n", 1577 fore200e->name, fore200e->cp_queues->heartbeat); 1578 if (vcc->pop) { 1579 vcc->pop(vcc, skb); 1580 } 1581 else { 1582 dev_kfree_skb_any(skb); 1583 } 1584 1585 if (tx_copy) 1586 kfree(data); 1587 1588 return -ENOBUFS; 1589 } 1590 } 1591 1592 entry->incarn = vc_map->incarn; 1593 entry->vc_map = vc_map; 1594 entry->skb = skb; 1595 entry->data = tx_copy ? data : NULL; 1596 1597 tpd = entry->tpd; 1598 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len, 1599 DMA_TO_DEVICE); 1600 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) { 1601 if (tx_copy) 1602 kfree(data); 1603 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1604 return -ENOMEM; 1605 } 1606 tpd->tsd[ 0 ].length = tx_len; 1607 1608 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX); 1609 txq->txing++; 1610 1611 /* The dma_map call above implies a dma_sync so the device can use it, 1612 * thus no explicit dma_sync call is necessary here. 1613 */ 1614 1615 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 1616 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1617 tpd->tsd[0].length, skb_len); 1618 1619 if (skb_len < fore200e_vcc->tx_min_pdu) 1620 fore200e_vcc->tx_min_pdu = skb_len; 1621 if (skb_len > fore200e_vcc->tx_max_pdu) 1622 fore200e_vcc->tx_max_pdu = skb_len; 1623 fore200e_vcc->tx_pdu++; 1624 1625 /* set tx rate control information */ 1626 tpd->rate.data_cells = fore200e_vcc->rate.data_cells; 1627 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; 1628 1629 if (cell_header) { 1630 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP); 1631 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 1632 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT; 1633 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT; 1634 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT; 1635 } 1636 else { 1637 /* set the ATM header, common to all cells conveying the PDU */ 1638 tpd->atm_header.clp = 0; 1639 tpd->atm_header.plt = 0; 1640 tpd->atm_header.vci = vcc->vci; 1641 tpd->atm_header.vpi = vcc->vpi; 1642 tpd->atm_header.gfc = 0; 1643 } 1644 1645 tpd->spec.length = tx_len; 1646 tpd->spec.nseg = 1; 1647 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal); 1648 tpd->spec.intr = 1; 1649 1650 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */ 1651 tpd_haddr.pad = 0; 1652 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */ 1653 1654 *entry->status = STATUS_PENDING; 1655 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr); 1656 1657 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1658 1659 return 0; 1660 } 1661 1662 1663 static int 1664 fore200e_getstats(struct fore200e* fore200e) 1665 { 1666 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1667 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1668 struct stats_opcode opcode; 1669 int ok; 1670 u32 stats_dma_addr; 1671 1672 if (fore200e->stats == NULL) { 1673 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL); 1674 if (fore200e->stats == NULL) 1675 return -ENOMEM; 1676 } 1677 1678 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats, 1679 sizeof(struct stats), DMA_FROM_DEVICE); 1680 if (dma_mapping_error(fore200e->dev, stats_dma_addr)) 1681 return -ENOMEM; 1682 1683 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1684 1685 opcode.opcode = OPCODE_GET_STATS; 1686 opcode.pad = 0; 1687 1688 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr); 1689 1690 *entry->status = STATUS_PENDING; 1691 1692 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode); 1693 1694 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1695 1696 *entry->status = STATUS_FREE; 1697 1698 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE); 1699 1700 if (ok == 0) { 1701 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name); 1702 return -EIO; 1703 } 1704 1705 return 0; 1706 } 1707 1708 #if 0 /* currently unused */ 1709 static int 1710 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs) 1711 { 1712 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1713 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1714 struct oc3_opcode opcode; 1715 int ok; 1716 u32 oc3_regs_dma_addr; 1717 1718 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1719 1720 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1721 1722 opcode.opcode = OPCODE_GET_OC3; 1723 opcode.reg = 0; 1724 opcode.value = 0; 1725 opcode.mask = 0; 1726 1727 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1728 1729 *entry->status = STATUS_PENDING; 1730 1731 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode); 1732 1733 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1734 1735 *entry->status = STATUS_FREE; 1736 1737 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1738 1739 if (ok == 0) { 1740 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name); 1741 return -EIO; 1742 } 1743 1744 return 0; 1745 } 1746 #endif 1747 1748 1749 static int 1750 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask) 1751 { 1752 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1753 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1754 struct oc3_opcode opcode; 1755 int ok; 1756 1757 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask); 1758 1759 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1760 1761 opcode.opcode = OPCODE_SET_OC3; 1762 opcode.reg = reg; 1763 opcode.value = value; 1764 opcode.mask = mask; 1765 1766 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1767 1768 *entry->status = STATUS_PENDING; 1769 1770 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode); 1771 1772 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1773 1774 *entry->status = STATUS_FREE; 1775 1776 if (ok == 0) { 1777 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name); 1778 return -EIO; 1779 } 1780 1781 return 0; 1782 } 1783 1784 1785 static int 1786 fore200e_setloop(struct fore200e* fore200e, int loop_mode) 1787 { 1788 u32 mct_value, mct_mask; 1789 int error; 1790 1791 if (!capable(CAP_NET_ADMIN)) 1792 return -EPERM; 1793 1794 switch (loop_mode) { 1795 1796 case ATM_LM_NONE: 1797 mct_value = 0; 1798 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE; 1799 break; 1800 1801 case ATM_LM_LOC_PHY: 1802 mct_value = mct_mask = SUNI_MCT_DLE; 1803 break; 1804 1805 case ATM_LM_RMT_PHY: 1806 mct_value = mct_mask = SUNI_MCT_LLE; 1807 break; 1808 1809 default: 1810 return -EINVAL; 1811 } 1812 1813 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask); 1814 if (error == 0) 1815 fore200e->loop_mode = loop_mode; 1816 1817 return error; 1818 } 1819 1820 1821 static int 1822 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg) 1823 { 1824 struct sonet_stats tmp; 1825 1826 if (fore200e_getstats(fore200e) < 0) 1827 return -EIO; 1828 1829 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors); 1830 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors); 1831 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors); 1832 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors); 1833 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors); 1834 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors); 1835 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors); 1836 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) + 1837 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) + 1838 be32_to_cpu(fore200e->stats->aal5.cells_transmitted); 1839 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) + 1840 be32_to_cpu(fore200e->stats->aal34.cells_received) + 1841 be32_to_cpu(fore200e->stats->aal5.cells_received); 1842 1843 if (arg) 1844 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0; 1845 1846 return 0; 1847 } 1848 1849 1850 static int 1851 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg) 1852 { 1853 struct fore200e* fore200e = FORE200E_DEV(dev); 1854 1855 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg); 1856 1857 switch (cmd) { 1858 1859 case SONET_GETSTAT: 1860 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg); 1861 1862 case SONET_GETDIAG: 1863 return put_user(0, (int __user *)arg) ? -EFAULT : 0; 1864 1865 case ATM_SETLOOP: 1866 return fore200e_setloop(fore200e, (int)(unsigned long)arg); 1867 1868 case ATM_GETLOOP: 1869 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0; 1870 1871 case ATM_QUERYLOOP: 1872 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0; 1873 } 1874 1875 return -ENOSYS; /* not implemented */ 1876 } 1877 1878 1879 static int 1880 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags) 1881 { 1882 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); 1883 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1884 1885 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1886 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi); 1887 return -EINVAL; 1888 } 1889 1890 DPRINTK(2, "change_qos %d.%d.%d, " 1891 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1892 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n" 1893 "available_cell_rate = %u", 1894 vcc->itf, vcc->vpi, vcc->vci, 1895 fore200e_traffic_class[ qos->txtp.traffic_class ], 1896 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu, 1897 fore200e_traffic_class[ qos->rxtp.traffic_class ], 1898 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu, 1899 flags, fore200e->available_cell_rate); 1900 1901 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) { 1902 1903 mutex_lock(&fore200e->rate_mtx); 1904 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) { 1905 mutex_unlock(&fore200e->rate_mtx); 1906 return -EAGAIN; 1907 } 1908 1909 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1910 fore200e->available_cell_rate -= qos->txtp.max_pcr; 1911 1912 mutex_unlock(&fore200e->rate_mtx); 1913 1914 memcpy(&vcc->qos, qos, sizeof(struct atm_qos)); 1915 1916 /* update rate control parameters */ 1917 fore200e_rate_ctrl(qos, &fore200e_vcc->rate); 1918 1919 set_bit(ATM_VF_HASQOS, &vcc->flags); 1920 1921 return 0; 1922 } 1923 1924 return -EINVAL; 1925 } 1926 1927 1928 static int fore200e_irq_request(struct fore200e *fore200e) 1929 { 1930 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) { 1931 1932 printk(FORE200E "unable to reserve IRQ %s for device %s\n", 1933 fore200e_irq_itoa(fore200e->irq), fore200e->name); 1934 return -EBUSY; 1935 } 1936 1937 printk(FORE200E "IRQ %s reserved for device %s\n", 1938 fore200e_irq_itoa(fore200e->irq), fore200e->name); 1939 1940 #ifdef FORE200E_USE_TASKLET 1941 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e); 1942 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e); 1943 #endif 1944 1945 fore200e->state = FORE200E_STATE_IRQ; 1946 return 0; 1947 } 1948 1949 1950 static int fore200e_get_esi(struct fore200e *fore200e) 1951 { 1952 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL); 1953 int ok, i; 1954 1955 if (!prom) 1956 return -ENOMEM; 1957 1958 ok = fore200e->bus->prom_read(fore200e, prom); 1959 if (ok < 0) { 1960 kfree(prom); 1961 return -EBUSY; 1962 } 1963 1964 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n", 1965 fore200e->name, 1966 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */ 1967 prom->serial_number & 0xFFFF, &prom->mac_addr[2]); 1968 1969 for (i = 0; i < ESI_LEN; i++) { 1970 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ]; 1971 } 1972 1973 kfree(prom); 1974 1975 return 0; 1976 } 1977 1978 1979 static int fore200e_alloc_rx_buf(struct fore200e *fore200e) 1980 { 1981 int scheme, magn, nbr, size, i; 1982 1983 struct host_bsq* bsq; 1984 struct buffer* buffer; 1985 1986 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 1987 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 1988 1989 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 1990 1991 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ]; 1992 size = fore200e_rx_buf_size[ scheme ][ magn ]; 1993 1994 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn); 1995 1996 /* allocate the array of receive buffers */ 1997 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer), 1998 GFP_KERNEL); 1999 2000 if (buffer == NULL) 2001 return -ENOMEM; 2002 2003 bsq->freebuf = NULL; 2004 2005 for (i = 0; i < nbr; i++) { 2006 2007 buffer[ i ].scheme = scheme; 2008 buffer[ i ].magn = magn; 2009 #ifdef FORE200E_BSQ_DEBUG 2010 buffer[ i ].index = i; 2011 buffer[ i ].supplied = 0; 2012 #endif 2013 2014 /* allocate the receive buffer body */ 2015 if (fore200e_chunk_alloc(fore200e, 2016 &buffer[ i ].data, size, fore200e->bus->buffer_alignment, 2017 DMA_FROM_DEVICE) < 0) { 2018 2019 while (i > 0) 2020 fore200e_chunk_free(fore200e, &buffer[ --i ].data); 2021 kfree(buffer); 2022 2023 return -ENOMEM; 2024 } 2025 2026 /* insert the buffer into the free buffer list */ 2027 buffer[ i ].next = bsq->freebuf; 2028 bsq->freebuf = &buffer[ i ]; 2029 } 2030 /* all the buffers are free, initially */ 2031 bsq->freebuf_count = nbr; 2032 2033 #ifdef FORE200E_BSQ_DEBUG 2034 bsq_audit(3, bsq, scheme, magn); 2035 #endif 2036 } 2037 } 2038 2039 fore200e->state = FORE200E_STATE_ALLOC_BUF; 2040 return 0; 2041 } 2042 2043 2044 static int fore200e_init_bs_queue(struct fore200e *fore200e) 2045 { 2046 int scheme, magn, i; 2047 2048 struct host_bsq* bsq; 2049 struct cp_bsq_entry __iomem * cp_entry; 2050 2051 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 2052 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 2053 2054 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn); 2055 2056 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 2057 2058 /* allocate and align the array of status words */ 2059 if (fore200e_dma_chunk_alloc(fore200e, 2060 &bsq->status, 2061 sizeof(enum status), 2062 QUEUE_SIZE_BS, 2063 fore200e->bus->status_alignment) < 0) { 2064 return -ENOMEM; 2065 } 2066 2067 /* allocate and align the array of receive buffer descriptors */ 2068 if (fore200e_dma_chunk_alloc(fore200e, 2069 &bsq->rbd_block, 2070 sizeof(struct rbd_block), 2071 QUEUE_SIZE_BS, 2072 fore200e->bus->descr_alignment) < 0) { 2073 2074 fore200e_dma_chunk_free(fore200e, &bsq->status); 2075 return -ENOMEM; 2076 } 2077 2078 /* get the base address of the cp resident buffer supply queue entries */ 2079 cp_entry = fore200e->virt_base + 2080 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]); 2081 2082 /* fill the host resident and cp resident buffer supply queue entries */ 2083 for (i = 0; i < QUEUE_SIZE_BS; i++) { 2084 2085 bsq->host_entry[ i ].status = 2086 FORE200E_INDEX(bsq->status.align_addr, enum status, i); 2087 bsq->host_entry[ i ].rbd_block = 2088 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i); 2089 bsq->host_entry[ i ].rbd_block_dma = 2090 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i); 2091 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2092 2093 *bsq->host_entry[ i ].status = STATUS_FREE; 2094 2095 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 2096 &cp_entry[ i ].status_haddr); 2097 } 2098 } 2099 } 2100 2101 fore200e->state = FORE200E_STATE_INIT_BSQ; 2102 return 0; 2103 } 2104 2105 2106 static int fore200e_init_rx_queue(struct fore200e *fore200e) 2107 { 2108 struct host_rxq* rxq = &fore200e->host_rxq; 2109 struct cp_rxq_entry __iomem * cp_entry; 2110 int i; 2111 2112 DPRINTK(2, "receive queue is being initialized\n"); 2113 2114 /* allocate and align the array of status words */ 2115 if (fore200e_dma_chunk_alloc(fore200e, 2116 &rxq->status, 2117 sizeof(enum status), 2118 QUEUE_SIZE_RX, 2119 fore200e->bus->status_alignment) < 0) { 2120 return -ENOMEM; 2121 } 2122 2123 /* allocate and align the array of receive PDU descriptors */ 2124 if (fore200e_dma_chunk_alloc(fore200e, 2125 &rxq->rpd, 2126 sizeof(struct rpd), 2127 QUEUE_SIZE_RX, 2128 fore200e->bus->descr_alignment) < 0) { 2129 2130 fore200e_dma_chunk_free(fore200e, &rxq->status); 2131 return -ENOMEM; 2132 } 2133 2134 /* get the base address of the cp resident rx queue entries */ 2135 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq); 2136 2137 /* fill the host resident and cp resident rx entries */ 2138 for (i=0; i < QUEUE_SIZE_RX; i++) { 2139 2140 rxq->host_entry[ i ].status = 2141 FORE200E_INDEX(rxq->status.align_addr, enum status, i); 2142 rxq->host_entry[ i ].rpd = 2143 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i); 2144 rxq->host_entry[ i ].rpd_dma = 2145 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i); 2146 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2147 2148 *rxq->host_entry[ i ].status = STATUS_FREE; 2149 2150 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 2151 &cp_entry[ i ].status_haddr); 2152 2153 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i), 2154 &cp_entry[ i ].rpd_haddr); 2155 } 2156 2157 /* set the head entry of the queue */ 2158 rxq->head = 0; 2159 2160 fore200e->state = FORE200E_STATE_INIT_RXQ; 2161 return 0; 2162 } 2163 2164 2165 static int fore200e_init_tx_queue(struct fore200e *fore200e) 2166 { 2167 struct host_txq* txq = &fore200e->host_txq; 2168 struct cp_txq_entry __iomem * cp_entry; 2169 int i; 2170 2171 DPRINTK(2, "transmit queue is being initialized\n"); 2172 2173 /* allocate and align the array of status words */ 2174 if (fore200e_dma_chunk_alloc(fore200e, 2175 &txq->status, 2176 sizeof(enum status), 2177 QUEUE_SIZE_TX, 2178 fore200e->bus->status_alignment) < 0) { 2179 return -ENOMEM; 2180 } 2181 2182 /* allocate and align the array of transmit PDU descriptors */ 2183 if (fore200e_dma_chunk_alloc(fore200e, 2184 &txq->tpd, 2185 sizeof(struct tpd), 2186 QUEUE_SIZE_TX, 2187 fore200e->bus->descr_alignment) < 0) { 2188 2189 fore200e_dma_chunk_free(fore200e, &txq->status); 2190 return -ENOMEM; 2191 } 2192 2193 /* get the base address of the cp resident tx queue entries */ 2194 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq); 2195 2196 /* fill the host resident and cp resident tx entries */ 2197 for (i=0; i < QUEUE_SIZE_TX; i++) { 2198 2199 txq->host_entry[ i ].status = 2200 FORE200E_INDEX(txq->status.align_addr, enum status, i); 2201 txq->host_entry[ i ].tpd = 2202 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i); 2203 txq->host_entry[ i ].tpd_dma = 2204 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i); 2205 txq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2206 2207 *txq->host_entry[ i ].status = STATUS_FREE; 2208 2209 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 2210 &cp_entry[ i ].status_haddr); 2211 2212 /* although there is a one-to-one mapping of tx queue entries and tpds, 2213 we do not write here the DMA (physical) base address of each tpd into 2214 the related cp resident entry, because the cp relies on this write 2215 operation to detect that a new pdu has been submitted for tx */ 2216 } 2217 2218 /* set the head and tail entries of the queue */ 2219 txq->head = 0; 2220 txq->tail = 0; 2221 2222 fore200e->state = FORE200E_STATE_INIT_TXQ; 2223 return 0; 2224 } 2225 2226 2227 static int fore200e_init_cmd_queue(struct fore200e *fore200e) 2228 { 2229 struct host_cmdq* cmdq = &fore200e->host_cmdq; 2230 struct cp_cmdq_entry __iomem * cp_entry; 2231 int i; 2232 2233 DPRINTK(2, "command queue is being initialized\n"); 2234 2235 /* allocate and align the array of status words */ 2236 if (fore200e_dma_chunk_alloc(fore200e, 2237 &cmdq->status, 2238 sizeof(enum status), 2239 QUEUE_SIZE_CMD, 2240 fore200e->bus->status_alignment) < 0) { 2241 return -ENOMEM; 2242 } 2243 2244 /* get the base address of the cp resident cmd queue entries */ 2245 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq); 2246 2247 /* fill the host resident and cp resident cmd entries */ 2248 for (i=0; i < QUEUE_SIZE_CMD; i++) { 2249 2250 cmdq->host_entry[ i ].status = 2251 FORE200E_INDEX(cmdq->status.align_addr, enum status, i); 2252 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2253 2254 *cmdq->host_entry[ i ].status = STATUS_FREE; 2255 2256 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 2257 &cp_entry[ i ].status_haddr); 2258 } 2259 2260 /* set the head entry of the queue */ 2261 cmdq->head = 0; 2262 2263 fore200e->state = FORE200E_STATE_INIT_CMDQ; 2264 return 0; 2265 } 2266 2267 2268 static void fore200e_param_bs_queue(struct fore200e *fore200e, 2269 enum buffer_scheme scheme, 2270 enum buffer_magn magn, int queue_length, 2271 int pool_size, int supply_blksize) 2272 { 2273 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ]; 2274 2275 fore200e->bus->write(queue_length, &bs_spec->queue_length); 2276 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size); 2277 fore200e->bus->write(pool_size, &bs_spec->pool_size); 2278 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize); 2279 } 2280 2281 2282 static int fore200e_initialize(struct fore200e *fore200e) 2283 { 2284 struct cp_queues __iomem * cpq; 2285 int ok, scheme, magn; 2286 2287 DPRINTK(2, "device %s being initialized\n", fore200e->name); 2288 2289 mutex_init(&fore200e->rate_mtx); 2290 spin_lock_init(&fore200e->q_lock); 2291 2292 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET; 2293 2294 /* enable cp to host interrupts */ 2295 fore200e->bus->write(1, &cpq->imask); 2296 2297 if (fore200e->bus->irq_enable) 2298 fore200e->bus->irq_enable(fore200e); 2299 2300 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect); 2301 2302 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len); 2303 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len); 2304 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len); 2305 2306 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension); 2307 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension); 2308 2309 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) 2310 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) 2311 fore200e_param_bs_queue(fore200e, scheme, magn, 2312 QUEUE_SIZE_BS, 2313 fore200e_rx_buf_nbr[ scheme ][ magn ], 2314 RBD_BLK_SIZE); 2315 2316 /* issue the initialize command */ 2317 fore200e->bus->write(STATUS_PENDING, &cpq->init.status); 2318 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode); 2319 2320 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000); 2321 if (ok == 0) { 2322 printk(FORE200E "device %s initialization failed\n", fore200e->name); 2323 return -ENODEV; 2324 } 2325 2326 printk(FORE200E "device %s initialized\n", fore200e->name); 2327 2328 fore200e->state = FORE200E_STATE_INITIALIZE; 2329 return 0; 2330 } 2331 2332 2333 static void fore200e_monitor_putc(struct fore200e *fore200e, char c) 2334 { 2335 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2336 2337 #if 0 2338 printk("%c", c); 2339 #endif 2340 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send); 2341 } 2342 2343 2344 static int fore200e_monitor_getc(struct fore200e *fore200e) 2345 { 2346 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2347 unsigned long timeout = jiffies + msecs_to_jiffies(50); 2348 int c; 2349 2350 while (time_before(jiffies, timeout)) { 2351 2352 c = (int) fore200e->bus->read(&monitor->soft_uart.recv); 2353 2354 if (c & FORE200E_CP_MONITOR_UART_AVAIL) { 2355 2356 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv); 2357 #if 0 2358 printk("%c", c & 0xFF); 2359 #endif 2360 return c & 0xFF; 2361 } 2362 } 2363 2364 return -1; 2365 } 2366 2367 2368 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str) 2369 { 2370 while (*str) { 2371 2372 /* the i960 monitor doesn't accept any new character if it has something to say */ 2373 while (fore200e_monitor_getc(fore200e) >= 0); 2374 2375 fore200e_monitor_putc(fore200e, *str++); 2376 } 2377 2378 while (fore200e_monitor_getc(fore200e) >= 0); 2379 } 2380 2381 #ifdef __LITTLE_ENDIAN 2382 #define FW_EXT ".bin" 2383 #else 2384 #define FW_EXT "_ecd.bin2" 2385 #endif 2386 2387 static int fore200e_load_and_start_fw(struct fore200e *fore200e) 2388 { 2389 const struct firmware *firmware; 2390 const struct fw_header *fw_header; 2391 const __le32 *fw_data; 2392 u32 fw_size; 2393 u32 __iomem *load_addr; 2394 char buf[48]; 2395 int err; 2396 2397 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT); 2398 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) { 2399 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name); 2400 return err; 2401 } 2402 2403 fw_data = (const __le32 *)firmware->data; 2404 fw_size = firmware->size / sizeof(u32); 2405 fw_header = (const struct fw_header *)firmware->data; 2406 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset); 2407 2408 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n", 2409 fore200e->name, load_addr, fw_size); 2410 2411 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) { 2412 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name); 2413 goto release; 2414 } 2415 2416 for (; fw_size--; fw_data++, load_addr++) 2417 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr); 2418 2419 DPRINTK(2, "device %s firmware being started\n", fore200e->name); 2420 2421 #if defined(__sparc_v9__) 2422 /* reported to be required by SBA cards on some sparc64 hosts */ 2423 fore200e_spin(100); 2424 #endif 2425 2426 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset)); 2427 fore200e_monitor_puts(fore200e, buf); 2428 2429 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) { 2430 printk(FORE200E "device %s firmware didn't start\n", fore200e->name); 2431 goto release; 2432 } 2433 2434 printk(FORE200E "device %s firmware started\n", fore200e->name); 2435 2436 fore200e->state = FORE200E_STATE_START_FW; 2437 err = 0; 2438 2439 release: 2440 release_firmware(firmware); 2441 return err; 2442 } 2443 2444 2445 static int fore200e_register(struct fore200e *fore200e, struct device *parent) 2446 { 2447 struct atm_dev* atm_dev; 2448 2449 DPRINTK(2, "device %s being registered\n", fore200e->name); 2450 2451 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops, 2452 -1, NULL); 2453 if (atm_dev == NULL) { 2454 printk(FORE200E "unable to register device %s\n", fore200e->name); 2455 return -ENODEV; 2456 } 2457 2458 atm_dev->dev_data = fore200e; 2459 fore200e->atm_dev = atm_dev; 2460 2461 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS; 2462 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS; 2463 2464 fore200e->available_cell_rate = ATM_OC3_PCR; 2465 2466 fore200e->state = FORE200E_STATE_REGISTER; 2467 return 0; 2468 } 2469 2470 2471 static int fore200e_init(struct fore200e *fore200e, struct device *parent) 2472 { 2473 if (fore200e_register(fore200e, parent) < 0) 2474 return -ENODEV; 2475 2476 if (fore200e->bus->configure(fore200e) < 0) 2477 return -ENODEV; 2478 2479 if (fore200e->bus->map(fore200e) < 0) 2480 return -ENODEV; 2481 2482 if (fore200e_reset(fore200e, 1) < 0) 2483 return -ENODEV; 2484 2485 if (fore200e_load_and_start_fw(fore200e) < 0) 2486 return -ENODEV; 2487 2488 if (fore200e_initialize(fore200e) < 0) 2489 return -ENODEV; 2490 2491 if (fore200e_init_cmd_queue(fore200e) < 0) 2492 return -ENOMEM; 2493 2494 if (fore200e_init_tx_queue(fore200e) < 0) 2495 return -ENOMEM; 2496 2497 if (fore200e_init_rx_queue(fore200e) < 0) 2498 return -ENOMEM; 2499 2500 if (fore200e_init_bs_queue(fore200e) < 0) 2501 return -ENOMEM; 2502 2503 if (fore200e_alloc_rx_buf(fore200e) < 0) 2504 return -ENOMEM; 2505 2506 if (fore200e_get_esi(fore200e) < 0) 2507 return -EIO; 2508 2509 if (fore200e_irq_request(fore200e) < 0) 2510 return -EBUSY; 2511 2512 fore200e_supply(fore200e); 2513 2514 /* all done, board initialization is now complete */ 2515 fore200e->state = FORE200E_STATE_COMPLETE; 2516 return 0; 2517 } 2518 2519 #ifdef CONFIG_SBUS 2520 static int fore200e_sba_probe(struct platform_device *op) 2521 { 2522 struct fore200e *fore200e; 2523 static int index = 0; 2524 int err; 2525 2526 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2527 if (!fore200e) 2528 return -ENOMEM; 2529 2530 fore200e->bus = &fore200e_sbus_ops; 2531 fore200e->dev = &op->dev; 2532 fore200e->irq = op->archdata.irqs[0]; 2533 fore200e->phys_base = op->resource[0].start; 2534 2535 sprintf(fore200e->name, "SBA-200E-%d", index); 2536 2537 err = fore200e_init(fore200e, &op->dev); 2538 if (err < 0) { 2539 fore200e_shutdown(fore200e); 2540 kfree(fore200e); 2541 return err; 2542 } 2543 2544 index++; 2545 dev_set_drvdata(&op->dev, fore200e); 2546 2547 return 0; 2548 } 2549 2550 static void fore200e_sba_remove(struct platform_device *op) 2551 { 2552 struct fore200e *fore200e = dev_get_drvdata(&op->dev); 2553 2554 fore200e_shutdown(fore200e); 2555 kfree(fore200e); 2556 } 2557 2558 static const struct of_device_id fore200e_sba_match[] = { 2559 { 2560 .name = SBA200E_PROM_NAME, 2561 }, 2562 {}, 2563 }; 2564 MODULE_DEVICE_TABLE(of, fore200e_sba_match); 2565 2566 static struct platform_driver fore200e_sba_driver = { 2567 .driver = { 2568 .name = "fore_200e", 2569 .of_match_table = fore200e_sba_match, 2570 }, 2571 .probe = fore200e_sba_probe, 2572 .remove_new = fore200e_sba_remove, 2573 }; 2574 #endif 2575 2576 #ifdef CONFIG_PCI 2577 static int fore200e_pca_detect(struct pci_dev *pci_dev, 2578 const struct pci_device_id *pci_ent) 2579 { 2580 struct fore200e* fore200e; 2581 int err = 0; 2582 static int index = 0; 2583 2584 if (pci_enable_device(pci_dev)) { 2585 err = -EINVAL; 2586 goto out; 2587 } 2588 2589 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) { 2590 err = -EINVAL; 2591 goto out; 2592 } 2593 2594 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2595 if (fore200e == NULL) { 2596 err = -ENOMEM; 2597 goto out_disable; 2598 } 2599 2600 fore200e->bus = &fore200e_pci_ops; 2601 fore200e->dev = &pci_dev->dev; 2602 fore200e->irq = pci_dev->irq; 2603 fore200e->phys_base = pci_resource_start(pci_dev, 0); 2604 2605 sprintf(fore200e->name, "PCA-200E-%d", index - 1); 2606 2607 pci_set_master(pci_dev); 2608 2609 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n", 2610 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); 2611 2612 sprintf(fore200e->name, "PCA-200E-%d", index); 2613 2614 err = fore200e_init(fore200e, &pci_dev->dev); 2615 if (err < 0) { 2616 fore200e_shutdown(fore200e); 2617 goto out_free; 2618 } 2619 2620 ++index; 2621 pci_set_drvdata(pci_dev, fore200e); 2622 2623 out: 2624 return err; 2625 2626 out_free: 2627 kfree(fore200e); 2628 out_disable: 2629 pci_disable_device(pci_dev); 2630 goto out; 2631 } 2632 2633 2634 static void fore200e_pca_remove_one(struct pci_dev *pci_dev) 2635 { 2636 struct fore200e *fore200e; 2637 2638 fore200e = pci_get_drvdata(pci_dev); 2639 2640 fore200e_shutdown(fore200e); 2641 kfree(fore200e); 2642 pci_disable_device(pci_dev); 2643 } 2644 2645 2646 static const struct pci_device_id fore200e_pca_tbl[] = { 2647 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID }, 2648 { 0, } 2649 }; 2650 2651 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl); 2652 2653 static struct pci_driver fore200e_pca_driver = { 2654 .name = "fore_200e", 2655 .probe = fore200e_pca_detect, 2656 .remove = fore200e_pca_remove_one, 2657 .id_table = fore200e_pca_tbl, 2658 }; 2659 #endif 2660 2661 static int __init fore200e_module_init(void) 2662 { 2663 int err = 0; 2664 2665 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n"); 2666 2667 #ifdef CONFIG_SBUS 2668 err = platform_driver_register(&fore200e_sba_driver); 2669 if (err) 2670 return err; 2671 #endif 2672 2673 #ifdef CONFIG_PCI 2674 err = pci_register_driver(&fore200e_pca_driver); 2675 #endif 2676 2677 #ifdef CONFIG_SBUS 2678 if (err) 2679 platform_driver_unregister(&fore200e_sba_driver); 2680 #endif 2681 2682 return err; 2683 } 2684 2685 static void __exit fore200e_module_cleanup(void) 2686 { 2687 #ifdef CONFIG_PCI 2688 pci_unregister_driver(&fore200e_pca_driver); 2689 #endif 2690 #ifdef CONFIG_SBUS 2691 platform_driver_unregister(&fore200e_sba_driver); 2692 #endif 2693 } 2694 2695 static int 2696 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page) 2697 { 2698 struct fore200e* fore200e = FORE200E_DEV(dev); 2699 struct fore200e_vcc* fore200e_vcc; 2700 struct atm_vcc* vcc; 2701 int i, len, left = *pos; 2702 unsigned long flags; 2703 2704 if (!left--) { 2705 2706 if (fore200e_getstats(fore200e) < 0) 2707 return -EIO; 2708 2709 len = sprintf(page,"\n" 2710 " device:\n" 2711 " internal name:\t\t%s\n", fore200e->name); 2712 2713 /* print bus-specific information */ 2714 if (fore200e->bus->proc_read) 2715 len += fore200e->bus->proc_read(fore200e, page + len); 2716 2717 len += sprintf(page + len, 2718 " interrupt line:\t\t%s\n" 2719 " physical base address:\t0x%p\n" 2720 " virtual base address:\t0x%p\n" 2721 " factory address (ESI):\t%pM\n" 2722 " board serial number:\t\t%d\n\n", 2723 fore200e_irq_itoa(fore200e->irq), 2724 (void*)fore200e->phys_base, 2725 fore200e->virt_base, 2726 fore200e->esi, 2727 fore200e->esi[4] * 256 + fore200e->esi[5]); 2728 2729 return len; 2730 } 2731 2732 if (!left--) 2733 return sprintf(page, 2734 " free small bufs, scheme 1:\t%d\n" 2735 " free large bufs, scheme 1:\t%d\n" 2736 " free small bufs, scheme 2:\t%d\n" 2737 " free large bufs, scheme 2:\t%d\n", 2738 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count, 2739 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count, 2740 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count, 2741 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count); 2742 2743 if (!left--) { 2744 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat); 2745 2746 len = sprintf(page,"\n\n" 2747 " cell processor:\n" 2748 " heartbeat state:\t\t"); 2749 2750 if (hb >> 16 != 0xDEAD) 2751 len += sprintf(page + len, "0x%08x\n", hb); 2752 else 2753 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF); 2754 2755 return len; 2756 } 2757 2758 if (!left--) { 2759 static const char* media_name[] = { 2760 "unshielded twisted pair", 2761 "multimode optical fiber ST", 2762 "multimode optical fiber SC", 2763 "single-mode optical fiber ST", 2764 "single-mode optical fiber SC", 2765 "unknown" 2766 }; 2767 2768 static const char* oc3_mode[] = { 2769 "normal operation", 2770 "diagnostic loopback", 2771 "line loopback", 2772 "unknown" 2773 }; 2774 2775 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release); 2776 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release); 2777 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision); 2778 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type)); 2779 u32 oc3_index; 2780 2781 if (media_index > 4) 2782 media_index = 5; 2783 2784 switch (fore200e->loop_mode) { 2785 case ATM_LM_NONE: oc3_index = 0; 2786 break; 2787 case ATM_LM_LOC_PHY: oc3_index = 1; 2788 break; 2789 case ATM_LM_RMT_PHY: oc3_index = 2; 2790 break; 2791 default: oc3_index = 3; 2792 } 2793 2794 return sprintf(page, 2795 " firmware release:\t\t%d.%d.%d\n" 2796 " monitor release:\t\t%d.%d\n" 2797 " media type:\t\t\t%s\n" 2798 " OC-3 revision:\t\t0x%x\n" 2799 " OC-3 mode:\t\t\t%s", 2800 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24, 2801 mon960_release >> 16, mon960_release << 16 >> 16, 2802 media_name[ media_index ], 2803 oc3_revision, 2804 oc3_mode[ oc3_index ]); 2805 } 2806 2807 if (!left--) { 2808 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor; 2809 2810 return sprintf(page, 2811 "\n\n" 2812 " monitor:\n" 2813 " version number:\t\t%d\n" 2814 " boot status word:\t\t0x%08x\n", 2815 fore200e->bus->read(&cp_monitor->mon_version), 2816 fore200e->bus->read(&cp_monitor->bstat)); 2817 } 2818 2819 if (!left--) 2820 return sprintf(page, 2821 "\n" 2822 " device statistics:\n" 2823 " 4b5b:\n" 2824 " crc_header_errors:\t\t%10u\n" 2825 " framing_errors:\t\t%10u\n", 2826 be32_to_cpu(fore200e->stats->phy.crc_header_errors), 2827 be32_to_cpu(fore200e->stats->phy.framing_errors)); 2828 2829 if (!left--) 2830 return sprintf(page, "\n" 2831 " OC-3:\n" 2832 " section_bip8_errors:\t%10u\n" 2833 " path_bip8_errors:\t\t%10u\n" 2834 " line_bip24_errors:\t\t%10u\n" 2835 " line_febe_errors:\t\t%10u\n" 2836 " path_febe_errors:\t\t%10u\n" 2837 " corr_hcs_errors:\t\t%10u\n" 2838 " ucorr_hcs_errors:\t\t%10u\n", 2839 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors), 2840 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors), 2841 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors), 2842 be32_to_cpu(fore200e->stats->oc3.line_febe_errors), 2843 be32_to_cpu(fore200e->stats->oc3.path_febe_errors), 2844 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors), 2845 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors)); 2846 2847 if (!left--) 2848 return sprintf(page,"\n" 2849 " ATM:\t\t\t\t cells\n" 2850 " TX:\t\t\t%10u\n" 2851 " RX:\t\t\t%10u\n" 2852 " vpi out of range:\t\t%10u\n" 2853 " vpi no conn:\t\t%10u\n" 2854 " vci out of range:\t\t%10u\n" 2855 " vci no conn:\t\t%10u\n", 2856 be32_to_cpu(fore200e->stats->atm.cells_transmitted), 2857 be32_to_cpu(fore200e->stats->atm.cells_received), 2858 be32_to_cpu(fore200e->stats->atm.vpi_bad_range), 2859 be32_to_cpu(fore200e->stats->atm.vpi_no_conn), 2860 be32_to_cpu(fore200e->stats->atm.vci_bad_range), 2861 be32_to_cpu(fore200e->stats->atm.vci_no_conn)); 2862 2863 if (!left--) 2864 return sprintf(page,"\n" 2865 " AAL0:\t\t\t cells\n" 2866 " TX:\t\t\t%10u\n" 2867 " RX:\t\t\t%10u\n" 2868 " dropped:\t\t\t%10u\n", 2869 be32_to_cpu(fore200e->stats->aal0.cells_transmitted), 2870 be32_to_cpu(fore200e->stats->aal0.cells_received), 2871 be32_to_cpu(fore200e->stats->aal0.cells_dropped)); 2872 2873 if (!left--) 2874 return sprintf(page,"\n" 2875 " AAL3/4:\n" 2876 " SAR sublayer:\t\t cells\n" 2877 " TX:\t\t\t%10u\n" 2878 " RX:\t\t\t%10u\n" 2879 " dropped:\t\t\t%10u\n" 2880 " CRC errors:\t\t%10u\n" 2881 " protocol errors:\t\t%10u\n\n" 2882 " CS sublayer:\t\t PDUs\n" 2883 " TX:\t\t\t%10u\n" 2884 " RX:\t\t\t%10u\n" 2885 " dropped:\t\t\t%10u\n" 2886 " protocol errors:\t\t%10u\n", 2887 be32_to_cpu(fore200e->stats->aal34.cells_transmitted), 2888 be32_to_cpu(fore200e->stats->aal34.cells_received), 2889 be32_to_cpu(fore200e->stats->aal34.cells_dropped), 2890 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors), 2891 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors), 2892 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted), 2893 be32_to_cpu(fore200e->stats->aal34.cspdus_received), 2894 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped), 2895 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors)); 2896 2897 if (!left--) 2898 return sprintf(page,"\n" 2899 " AAL5:\n" 2900 " SAR sublayer:\t\t cells\n" 2901 " TX:\t\t\t%10u\n" 2902 " RX:\t\t\t%10u\n" 2903 " dropped:\t\t\t%10u\n" 2904 " congestions:\t\t%10u\n\n" 2905 " CS sublayer:\t\t PDUs\n" 2906 " TX:\t\t\t%10u\n" 2907 " RX:\t\t\t%10u\n" 2908 " dropped:\t\t\t%10u\n" 2909 " CRC errors:\t\t%10u\n" 2910 " protocol errors:\t\t%10u\n", 2911 be32_to_cpu(fore200e->stats->aal5.cells_transmitted), 2912 be32_to_cpu(fore200e->stats->aal5.cells_received), 2913 be32_to_cpu(fore200e->stats->aal5.cells_dropped), 2914 be32_to_cpu(fore200e->stats->aal5.congestion_experienced), 2915 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted), 2916 be32_to_cpu(fore200e->stats->aal5.cspdus_received), 2917 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped), 2918 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors), 2919 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors)); 2920 2921 if (!left--) 2922 return sprintf(page,"\n" 2923 " AUX:\t\t allocation failures\n" 2924 " small b1:\t\t\t%10u\n" 2925 " large b1:\t\t\t%10u\n" 2926 " small b2:\t\t\t%10u\n" 2927 " large b2:\t\t\t%10u\n" 2928 " RX PDUs:\t\t\t%10u\n" 2929 " TX PDUs:\t\t\t%10lu\n", 2930 be32_to_cpu(fore200e->stats->aux.small_b1_failed), 2931 be32_to_cpu(fore200e->stats->aux.large_b1_failed), 2932 be32_to_cpu(fore200e->stats->aux.small_b2_failed), 2933 be32_to_cpu(fore200e->stats->aux.large_b2_failed), 2934 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed), 2935 fore200e->tx_sat); 2936 2937 if (!left--) 2938 return sprintf(page,"\n" 2939 " receive carrier:\t\t\t%s\n", 2940 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!"); 2941 2942 if (!left--) { 2943 return sprintf(page,"\n" 2944 " VCCs:\n address VPI VCI AAL " 2945 "TX PDUs TX min/max size RX PDUs RX min/max size\n"); 2946 } 2947 2948 for (i = 0; i < NBR_CONNECT; i++) { 2949 2950 vcc = fore200e->vc_map[i].vcc; 2951 2952 if (vcc == NULL) 2953 continue; 2954 2955 spin_lock_irqsave(&fore200e->q_lock, flags); 2956 2957 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) { 2958 2959 fore200e_vcc = FORE200E_VCC(vcc); 2960 ASSERT(fore200e_vcc); 2961 2962 len = sprintf(page, 2963 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", 2964 vcc, 2965 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 2966 fore200e_vcc->tx_pdu, 2967 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu, 2968 fore200e_vcc->tx_max_pdu, 2969 fore200e_vcc->rx_pdu, 2970 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu, 2971 fore200e_vcc->rx_max_pdu); 2972 2973 spin_unlock_irqrestore(&fore200e->q_lock, flags); 2974 return len; 2975 } 2976 2977 spin_unlock_irqrestore(&fore200e->q_lock, flags); 2978 } 2979 2980 return 0; 2981 } 2982 2983 module_init(fore200e_module_init); 2984 module_exit(fore200e_module_cleanup); 2985 2986 2987 static const struct atmdev_ops fore200e_ops = { 2988 .open = fore200e_open, 2989 .close = fore200e_close, 2990 .ioctl = fore200e_ioctl, 2991 .send = fore200e_send, 2992 .change_qos = fore200e_change_qos, 2993 .proc_read = fore200e_proc_read, 2994 .owner = THIS_MODULE 2995 }; 2996 2997 MODULE_LICENSE("GPL"); 2998 #ifdef CONFIG_PCI 2999 #ifdef __LITTLE_ENDIAN__ 3000 MODULE_FIRMWARE("pca200e.bin"); 3001 #else 3002 MODULE_FIRMWARE("pca200e_ecd.bin2"); 3003 #endif 3004 #endif /* CONFIG_PCI */ 3005 #ifdef CONFIG_SBUS 3006 MODULE_FIRMWARE("sba200e_ecd.bin2"); 3007 #endif 3008