1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 A FORE Systems 200E-series driver for ATM on Linux. 4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003. 5 6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de). 7 8 This driver simultaneously supports PCA-200E and SBA-200E adapters 9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures. 10 11 */ 12 13 14 #include <linux/kernel.h> 15 #include <linux/slab.h> 16 #include <linux/init.h> 17 #include <linux/capability.h> 18 #include <linux/interrupt.h> 19 #include <linux/bitops.h> 20 #include <linux/pci.h> 21 #include <linux/module.h> 22 #include <linux/atmdev.h> 23 #include <linux/sonet.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/delay.h> 26 #include <linux/firmware.h> 27 #include <linux/pgtable.h> 28 #include <asm/io.h> 29 #include <asm/string.h> 30 #include <asm/page.h> 31 #include <asm/irq.h> 32 #include <asm/dma.h> 33 #include <asm/byteorder.h> 34 #include <linux/uaccess.h> 35 #include <linux/atomic.h> 36 37 #ifdef CONFIG_SBUS 38 #include <linux/of.h> 39 #include <linux/platform_device.h> 40 #include <asm/idprom.h> 41 #include <asm/openprom.h> 42 #include <asm/oplib.h> 43 #endif 44 45 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */ 46 #define FORE200E_USE_TASKLET 47 #endif 48 49 #if 0 /* enable the debugging code of the buffer supply queues */ 50 #define FORE200E_BSQ_DEBUG 51 #endif 52 53 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */ 54 #define FORE200E_52BYTE_AAL0_SDU 55 #endif 56 57 #include "fore200e.h" 58 #include "suni.h" 59 60 #define FORE200E_VERSION "0.3e" 61 62 #define FORE200E "fore200e: " 63 64 #if 0 /* override .config */ 65 #define CONFIG_ATM_FORE200E_DEBUG 1 66 #endif 67 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 68 #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \ 69 printk(FORE200E format, ##args); } while (0) 70 #else 71 #define DPRINTK(level, format, args...) do {} while (0) 72 #endif 73 74 75 #define FORE200E_ALIGN(addr, alignment) \ 76 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr)) 77 78 #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type)) 79 80 #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ]) 81 82 #define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo)) 83 84 #if 1 85 #define ASSERT(expr) if (!(expr)) { \ 86 printk(FORE200E "assertion failed! %s[%d]: %s\n", \ 87 __func__, __LINE__, #expr); \ 88 panic(FORE200E "%s", __func__); \ 89 } 90 #else 91 #define ASSERT(expr) do {} while (0) 92 #endif 93 94 95 static const struct atmdev_ops fore200e_ops; 96 97 static LIST_HEAD(fore200e_boards); 98 99 100 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen"); 101 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION); 102 103 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 104 { BUFFER_S1_NBR, BUFFER_L1_NBR }, 105 { BUFFER_S2_NBR, BUFFER_L2_NBR } 106 }; 107 108 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 109 { BUFFER_S1_SIZE, BUFFER_L1_SIZE }, 110 { BUFFER_S2_SIZE, BUFFER_L2_SIZE } 111 }; 112 113 114 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 115 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" }; 116 #endif 117 118 119 #if 0 /* currently unused */ 120 static int 121 fore200e_fore2atm_aal(enum fore200e_aal aal) 122 { 123 switch(aal) { 124 case FORE200E_AAL0: return ATM_AAL0; 125 case FORE200E_AAL34: return ATM_AAL34; 126 case FORE200E_AAL5: return ATM_AAL5; 127 } 128 129 return -EINVAL; 130 } 131 #endif 132 133 134 static enum fore200e_aal 135 fore200e_atm2fore_aal(int aal) 136 { 137 switch(aal) { 138 case ATM_AAL0: return FORE200E_AAL0; 139 case ATM_AAL34: return FORE200E_AAL34; 140 case ATM_AAL1: 141 case ATM_AAL2: 142 case ATM_AAL5: return FORE200E_AAL5; 143 } 144 145 return -EINVAL; 146 } 147 148 149 static char* 150 fore200e_irq_itoa(int irq) 151 { 152 static char str[8]; 153 sprintf(str, "%d", irq); 154 return str; 155 } 156 157 158 /* allocate and align a chunk of memory intended to hold the data behing exchanged 159 between the driver and the adapter (using streaming DVMA) */ 160 161 static int 162 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction) 163 { 164 unsigned long offset = 0; 165 166 if (alignment <= sizeof(int)) 167 alignment = 0; 168 169 chunk->alloc_size = size + alignment; 170 chunk->direction = direction; 171 172 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL); 173 if (chunk->alloc_addr == NULL) 174 return -ENOMEM; 175 176 if (alignment > 0) 177 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 178 179 chunk->align_addr = chunk->alloc_addr + offset; 180 181 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr, 182 size, direction); 183 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) { 184 kfree(chunk->alloc_addr); 185 return -ENOMEM; 186 } 187 return 0; 188 } 189 190 191 /* free a chunk of memory */ 192 193 static void 194 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 195 { 196 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size, 197 chunk->direction); 198 kfree(chunk->alloc_addr); 199 } 200 201 /* 202 * Allocate a DMA consistent chunk of memory intended to act as a communication 203 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver 204 * and the adapter. 205 */ 206 static int 207 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk, 208 int size, int nbr, int alignment) 209 { 210 /* returned chunks are page-aligned */ 211 chunk->alloc_size = size * nbr; 212 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size, 213 &chunk->dma_addr, GFP_KERNEL); 214 if (!chunk->alloc_addr) 215 return -ENOMEM; 216 chunk->align_addr = chunk->alloc_addr; 217 return 0; 218 } 219 220 /* 221 * Free a DMA consistent chunk of memory. 222 */ 223 static void 224 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 225 { 226 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr, 227 chunk->dma_addr); 228 } 229 230 static void 231 fore200e_spin(int msecs) 232 { 233 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 234 while (time_before(jiffies, timeout)); 235 } 236 237 238 static int 239 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs) 240 { 241 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 242 int ok; 243 244 mb(); 245 do { 246 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR)) 247 break; 248 249 } while (time_before(jiffies, timeout)); 250 251 #if 1 252 if (!ok) { 253 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n", 254 *addr, val); 255 } 256 #endif 257 258 return ok; 259 } 260 261 262 static int 263 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs) 264 { 265 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 266 int ok; 267 268 do { 269 if ((ok = (fore200e->bus->read(addr) == val))) 270 break; 271 272 } while (time_before(jiffies, timeout)); 273 274 #if 1 275 if (!ok) { 276 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n", 277 fore200e->bus->read(addr), val); 278 } 279 #endif 280 281 return ok; 282 } 283 284 285 static void 286 fore200e_free_rx_buf(struct fore200e* fore200e) 287 { 288 int scheme, magn, nbr; 289 struct buffer* buffer; 290 291 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 292 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 293 294 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) { 295 296 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) { 297 298 struct chunk* data = &buffer[ nbr ].data; 299 300 if (data->alloc_addr != NULL) 301 fore200e_chunk_free(fore200e, data); 302 } 303 } 304 } 305 } 306 } 307 308 309 static void 310 fore200e_uninit_bs_queue(struct fore200e* fore200e) 311 { 312 int scheme, magn; 313 314 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 315 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 316 317 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status; 318 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block; 319 320 if (status->alloc_addr) 321 fore200e_dma_chunk_free(fore200e, status); 322 323 if (rbd_block->alloc_addr) 324 fore200e_dma_chunk_free(fore200e, rbd_block); 325 } 326 } 327 } 328 329 330 static int 331 fore200e_reset(struct fore200e* fore200e, int diag) 332 { 333 int ok; 334 335 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET; 336 337 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat); 338 339 fore200e->bus->reset(fore200e); 340 341 if (diag) { 342 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000); 343 if (ok == 0) { 344 345 printk(FORE200E "device %s self-test failed\n", fore200e->name); 346 return -ENODEV; 347 } 348 349 printk(FORE200E "device %s self-test passed\n", fore200e->name); 350 351 fore200e->state = FORE200E_STATE_RESET; 352 } 353 354 return 0; 355 } 356 357 358 static void 359 fore200e_shutdown(struct fore200e* fore200e) 360 { 361 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n", 362 fore200e->name, fore200e->phys_base, 363 fore200e_irq_itoa(fore200e->irq)); 364 365 if (fore200e->state > FORE200E_STATE_RESET) { 366 /* first, reset the board to prevent further interrupts or data transfers */ 367 fore200e_reset(fore200e, 0); 368 } 369 370 /* then, release all allocated resources */ 371 switch(fore200e->state) { 372 373 case FORE200E_STATE_COMPLETE: 374 kfree(fore200e->stats); 375 376 fallthrough; 377 case FORE200E_STATE_IRQ: 378 free_irq(fore200e->irq, fore200e->atm_dev); 379 380 fallthrough; 381 case FORE200E_STATE_ALLOC_BUF: 382 fore200e_free_rx_buf(fore200e); 383 384 fallthrough; 385 case FORE200E_STATE_INIT_BSQ: 386 fore200e_uninit_bs_queue(fore200e); 387 388 fallthrough; 389 case FORE200E_STATE_INIT_RXQ: 390 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status); 391 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd); 392 393 fallthrough; 394 case FORE200E_STATE_INIT_TXQ: 395 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status); 396 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd); 397 398 fallthrough; 399 case FORE200E_STATE_INIT_CMDQ: 400 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status); 401 402 fallthrough; 403 case FORE200E_STATE_INITIALIZE: 404 /* nothing to do for that state */ 405 406 case FORE200E_STATE_START_FW: 407 /* nothing to do for that state */ 408 409 case FORE200E_STATE_RESET: 410 /* nothing to do for that state */ 411 412 case FORE200E_STATE_MAP: 413 fore200e->bus->unmap(fore200e); 414 415 fallthrough; 416 case FORE200E_STATE_CONFIGURE: 417 /* nothing to do for that state */ 418 419 case FORE200E_STATE_REGISTER: 420 /* XXX shouldn't we *start* by deregistering the device? */ 421 atm_dev_deregister(fore200e->atm_dev); 422 423 fallthrough; 424 case FORE200E_STATE_BLANK: 425 /* nothing to do for that state */ 426 break; 427 } 428 } 429 430 431 #ifdef CONFIG_PCI 432 433 static u32 fore200e_pca_read(volatile u32 __iomem *addr) 434 { 435 /* on big-endian hosts, the board is configured to convert 436 the endianess of slave RAM accesses */ 437 return le32_to_cpu(readl(addr)); 438 } 439 440 441 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr) 442 { 443 /* on big-endian hosts, the board is configured to convert 444 the endianess of slave RAM accesses */ 445 writel(cpu_to_le32(val), addr); 446 } 447 448 static int 449 fore200e_pca_irq_check(struct fore200e* fore200e) 450 { 451 /* this is a 1 bit register */ 452 int irq_posted = readl(fore200e->regs.pca.psr); 453 454 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2) 455 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) { 456 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number); 457 } 458 #endif 459 460 return irq_posted; 461 } 462 463 464 static void 465 fore200e_pca_irq_ack(struct fore200e* fore200e) 466 { 467 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr); 468 } 469 470 471 static void 472 fore200e_pca_reset(struct fore200e* fore200e) 473 { 474 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr); 475 fore200e_spin(10); 476 writel(0, fore200e->regs.pca.hcr); 477 } 478 479 480 static int fore200e_pca_map(struct fore200e* fore200e) 481 { 482 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name); 483 484 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH); 485 486 if (fore200e->virt_base == NULL) { 487 printk(FORE200E "can't map device %s\n", fore200e->name); 488 return -EFAULT; 489 } 490 491 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 492 493 /* gain access to the PCA specific registers */ 494 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET; 495 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET; 496 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET; 497 498 fore200e->state = FORE200E_STATE_MAP; 499 return 0; 500 } 501 502 503 static void 504 fore200e_pca_unmap(struct fore200e* fore200e) 505 { 506 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name); 507 508 if (fore200e->virt_base != NULL) 509 iounmap(fore200e->virt_base); 510 } 511 512 513 static int fore200e_pca_configure(struct fore200e *fore200e) 514 { 515 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev); 516 u8 master_ctrl, latency; 517 518 DPRINTK(2, "device %s being configured\n", fore200e->name); 519 520 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) { 521 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); 522 return -EIO; 523 } 524 525 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl); 526 527 master_ctrl = master_ctrl 528 #if defined(__BIG_ENDIAN) 529 /* request the PCA board to convert the endianess of slave RAM accesses */ 530 | PCA200E_CTRL_CONVERT_ENDIAN 531 #endif 532 #if 0 533 | PCA200E_CTRL_DIS_CACHE_RD 534 | PCA200E_CTRL_DIS_WRT_INVAL 535 | PCA200E_CTRL_ENA_CONT_REQ_MODE 536 | PCA200E_CTRL_2_CACHE_WRT_INVAL 537 #endif 538 | PCA200E_CTRL_LARGE_PCI_BURSTS; 539 540 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl); 541 542 /* raise latency from 32 (default) to 192, as this seems to prevent NIC 543 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition. 544 this may impact the performances of other PCI devices on the same bus, though */ 545 latency = 192; 546 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency); 547 548 fore200e->state = FORE200E_STATE_CONFIGURE; 549 return 0; 550 } 551 552 553 static int __init 554 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom) 555 { 556 struct host_cmdq* cmdq = &fore200e->host_cmdq; 557 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 558 struct prom_opcode opcode; 559 int ok; 560 u32 prom_dma; 561 562 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 563 564 opcode.opcode = OPCODE_GET_PROM; 565 opcode.pad = 0; 566 567 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data), 568 DMA_FROM_DEVICE); 569 if (dma_mapping_error(fore200e->dev, prom_dma)) 570 return -ENOMEM; 571 572 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr); 573 574 *entry->status = STATUS_PENDING; 575 576 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode); 577 578 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 579 580 *entry->status = STATUS_FREE; 581 582 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE); 583 584 if (ok == 0) { 585 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name); 586 return -EIO; 587 } 588 589 #if defined(__BIG_ENDIAN) 590 591 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) )) 592 593 /* MAC address is stored as little-endian */ 594 swap_here(&prom->mac_addr[0]); 595 swap_here(&prom->mac_addr[4]); 596 #endif 597 598 return 0; 599 } 600 601 602 static int 603 fore200e_pca_proc_read(struct fore200e* fore200e, char *page) 604 { 605 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev); 606 607 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", 608 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn)); 609 } 610 611 static const struct fore200e_bus fore200e_pci_ops = { 612 .model_name = "PCA-200E", 613 .proc_name = "pca200e", 614 .descr_alignment = 32, 615 .buffer_alignment = 4, 616 .status_alignment = 32, 617 .read = fore200e_pca_read, 618 .write = fore200e_pca_write, 619 .configure = fore200e_pca_configure, 620 .map = fore200e_pca_map, 621 .reset = fore200e_pca_reset, 622 .prom_read = fore200e_pca_prom_read, 623 .unmap = fore200e_pca_unmap, 624 .irq_check = fore200e_pca_irq_check, 625 .irq_ack = fore200e_pca_irq_ack, 626 .proc_read = fore200e_pca_proc_read, 627 }; 628 #endif /* CONFIG_PCI */ 629 630 #ifdef CONFIG_SBUS 631 632 static u32 fore200e_sba_read(volatile u32 __iomem *addr) 633 { 634 return sbus_readl(addr); 635 } 636 637 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr) 638 { 639 sbus_writel(val, addr); 640 } 641 642 static void fore200e_sba_irq_enable(struct fore200e *fore200e) 643 { 644 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 645 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr); 646 } 647 648 static int fore200e_sba_irq_check(struct fore200e *fore200e) 649 { 650 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ; 651 } 652 653 static void fore200e_sba_irq_ack(struct fore200e *fore200e) 654 { 655 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 656 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr); 657 } 658 659 static void fore200e_sba_reset(struct fore200e *fore200e) 660 { 661 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr); 662 fore200e_spin(10); 663 fore200e->bus->write(0, fore200e->regs.sba.hcr); 664 } 665 666 static int __init fore200e_sba_map(struct fore200e *fore200e) 667 { 668 struct platform_device *op = to_platform_device(fore200e->dev); 669 unsigned int bursts; 670 671 /* gain access to the SBA specific registers */ 672 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR"); 673 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR"); 674 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR"); 675 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM"); 676 677 if (!fore200e->virt_base) { 678 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name); 679 return -EFAULT; 680 } 681 682 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 683 684 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */ 685 686 /* get the supported DVMA burst sizes */ 687 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00); 688 689 if (sbus_can_dma_64bit()) 690 sbus_set_sbus64(&op->dev, bursts); 691 692 fore200e->state = FORE200E_STATE_MAP; 693 return 0; 694 } 695 696 static void fore200e_sba_unmap(struct fore200e *fore200e) 697 { 698 struct platform_device *op = to_platform_device(fore200e->dev); 699 700 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH); 701 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH); 702 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH); 703 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH); 704 } 705 706 static int __init fore200e_sba_configure(struct fore200e *fore200e) 707 { 708 fore200e->state = FORE200E_STATE_CONFIGURE; 709 return 0; 710 } 711 712 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom) 713 { 714 struct platform_device *op = to_platform_device(fore200e->dev); 715 const u8 *prop; 716 int len; 717 718 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len); 719 if (!prop) 720 return -ENODEV; 721 memcpy(&prom->mac_addr[4], prop, 4); 722 723 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len); 724 if (!prop) 725 return -ENODEV; 726 memcpy(&prom->mac_addr[2], prop, 4); 727 728 prom->serial_number = of_getintprop_default(op->dev.of_node, 729 "serialnumber", 0); 730 prom->hw_revision = of_getintprop_default(op->dev.of_node, 731 "promversion", 0); 732 733 return 0; 734 } 735 736 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page) 737 { 738 struct platform_device *op = to_platform_device(fore200e->dev); 739 const struct linux_prom_registers *regs; 740 741 regs = of_get_property(op->dev.of_node, "reg", NULL); 742 743 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n", 744 (regs ? regs->which_io : 0), op->dev.of_node); 745 } 746 747 static const struct fore200e_bus fore200e_sbus_ops = { 748 .model_name = "SBA-200E", 749 .proc_name = "sba200e", 750 .descr_alignment = 32, 751 .buffer_alignment = 64, 752 .status_alignment = 32, 753 .read = fore200e_sba_read, 754 .write = fore200e_sba_write, 755 .configure = fore200e_sba_configure, 756 .map = fore200e_sba_map, 757 .reset = fore200e_sba_reset, 758 .prom_read = fore200e_sba_prom_read, 759 .unmap = fore200e_sba_unmap, 760 .irq_enable = fore200e_sba_irq_enable, 761 .irq_check = fore200e_sba_irq_check, 762 .irq_ack = fore200e_sba_irq_ack, 763 .proc_read = fore200e_sba_proc_read, 764 }; 765 #endif /* CONFIG_SBUS */ 766 767 static void 768 fore200e_tx_irq(struct fore200e* fore200e) 769 { 770 struct host_txq* txq = &fore200e->host_txq; 771 struct host_txq_entry* entry; 772 struct atm_vcc* vcc; 773 struct fore200e_vc_map* vc_map; 774 775 if (fore200e->host_txq.txing == 0) 776 return; 777 778 for (;;) { 779 780 entry = &txq->host_entry[ txq->tail ]; 781 782 if ((*entry->status & STATUS_COMPLETE) == 0) { 783 break; 784 } 785 786 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 787 entry, txq->tail, entry->vc_map, entry->skb); 788 789 /* free copy of misaligned data */ 790 kfree(entry->data); 791 792 /* remove DMA mapping */ 793 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length, 794 DMA_TO_DEVICE); 795 796 vc_map = entry->vc_map; 797 798 /* vcc closed since the time the entry was submitted for tx? */ 799 if ((vc_map->vcc == NULL) || 800 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 801 802 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n", 803 fore200e->atm_dev->number); 804 805 dev_kfree_skb_any(entry->skb); 806 } 807 else { 808 ASSERT(vc_map->vcc); 809 810 /* vcc closed then immediately re-opened? */ 811 if (vc_map->incarn != entry->incarn) { 812 813 /* when a vcc is closed, some PDUs may be still pending in the tx queue. 814 if the same vcc is immediately re-opened, those pending PDUs must 815 not be popped after the completion of their emission, as they refer 816 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc 817 would be decremented by the size of the (unrelated) skb, possibly 818 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc. 819 we thus bind the tx entry to the current incarnation of the vcc 820 when the entry is submitted for tx. When the tx later completes, 821 if the incarnation number of the tx entry does not match the one 822 of the vcc, then this implies that the vcc has been closed then re-opened. 823 we thus just drop the skb here. */ 824 825 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n", 826 fore200e->atm_dev->number); 827 828 dev_kfree_skb_any(entry->skb); 829 } 830 else { 831 vcc = vc_map->vcc; 832 ASSERT(vcc); 833 834 /* notify tx completion */ 835 if (vcc->pop) { 836 vcc->pop(vcc, entry->skb); 837 } 838 else { 839 dev_kfree_skb_any(entry->skb); 840 } 841 842 /* check error condition */ 843 if (*entry->status & STATUS_ERROR) 844 atomic_inc(&vcc->stats->tx_err); 845 else 846 atomic_inc(&vcc->stats->tx); 847 } 848 } 849 850 *entry->status = STATUS_FREE; 851 852 fore200e->host_txq.txing--; 853 854 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX); 855 } 856 } 857 858 859 #ifdef FORE200E_BSQ_DEBUG 860 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn) 861 { 862 struct buffer* buffer; 863 int count = 0; 864 865 buffer = bsq->freebuf; 866 while (buffer) { 867 868 if (buffer->supplied) { 869 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n", 870 where, scheme, magn, buffer->index); 871 } 872 873 if (buffer->magn != magn) { 874 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n", 875 where, scheme, magn, buffer->index, buffer->magn); 876 } 877 878 if (buffer->scheme != scheme) { 879 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n", 880 where, scheme, magn, buffer->index, buffer->scheme); 881 } 882 883 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) { 884 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n", 885 where, scheme, magn, buffer->index); 886 } 887 888 count++; 889 buffer = buffer->next; 890 } 891 892 if (count != bsq->freebuf_count) { 893 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n", 894 where, scheme, magn, count, bsq->freebuf_count); 895 } 896 return 0; 897 } 898 #endif 899 900 901 static void 902 fore200e_supply(struct fore200e* fore200e) 903 { 904 int scheme, magn, i; 905 906 struct host_bsq* bsq; 907 struct host_bsq_entry* entry; 908 struct buffer* buffer; 909 910 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 911 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 912 913 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 914 915 #ifdef FORE200E_BSQ_DEBUG 916 bsq_audit(1, bsq, scheme, magn); 917 #endif 918 while (bsq->freebuf_count >= RBD_BLK_SIZE) { 919 920 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n", 921 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count); 922 923 entry = &bsq->host_entry[ bsq->head ]; 924 925 for (i = 0; i < RBD_BLK_SIZE; i++) { 926 927 /* take the first buffer in the free buffer list */ 928 buffer = bsq->freebuf; 929 if (!buffer) { 930 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n", 931 scheme, magn, bsq->freebuf_count); 932 return; 933 } 934 bsq->freebuf = buffer->next; 935 936 #ifdef FORE200E_BSQ_DEBUG 937 if (buffer->supplied) 938 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n", 939 scheme, magn, buffer->index); 940 buffer->supplied = 1; 941 #endif 942 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr; 943 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer); 944 } 945 946 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS); 947 948 /* decrease accordingly the number of free rx buffers */ 949 bsq->freebuf_count -= RBD_BLK_SIZE; 950 951 *entry->status = STATUS_PENDING; 952 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr); 953 } 954 } 955 } 956 } 957 958 959 static int 960 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd) 961 { 962 struct sk_buff* skb; 963 struct buffer* buffer; 964 struct fore200e_vcc* fore200e_vcc; 965 int i, pdu_len = 0; 966 #ifdef FORE200E_52BYTE_AAL0_SDU 967 u32 cell_header = 0; 968 #endif 969 970 ASSERT(vcc); 971 972 fore200e_vcc = FORE200E_VCC(vcc); 973 ASSERT(fore200e_vcc); 974 975 #ifdef FORE200E_52BYTE_AAL0_SDU 976 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) { 977 978 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) | 979 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) | 980 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) | 981 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 982 rpd->atm_header.clp; 983 pdu_len = 4; 984 } 985 #endif 986 987 /* compute total PDU length */ 988 for (i = 0; i < rpd->nseg; i++) 989 pdu_len += rpd->rsd[ i ].length; 990 991 skb = alloc_skb(pdu_len, GFP_ATOMIC); 992 if (skb == NULL) { 993 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len); 994 995 atomic_inc(&vcc->stats->rx_drop); 996 return -ENOMEM; 997 } 998 999 __net_timestamp(skb); 1000 1001 #ifdef FORE200E_52BYTE_AAL0_SDU 1002 if (cell_header) { 1003 *((u32*)skb_put(skb, 4)) = cell_header; 1004 } 1005 #endif 1006 1007 /* reassemble segments */ 1008 for (i = 0; i < rpd->nseg; i++) { 1009 1010 /* rebuild rx buffer address from rsd handle */ 1011 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1012 1013 /* Make device DMA transfer visible to CPU. */ 1014 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr, 1015 rpd->rsd[i].length, DMA_FROM_DEVICE); 1016 1017 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length); 1018 1019 /* Now let the device get at it again. */ 1020 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr, 1021 rpd->rsd[i].length, DMA_FROM_DEVICE); 1022 } 1023 1024 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize); 1025 1026 if (pdu_len < fore200e_vcc->rx_min_pdu) 1027 fore200e_vcc->rx_min_pdu = pdu_len; 1028 if (pdu_len > fore200e_vcc->rx_max_pdu) 1029 fore200e_vcc->rx_max_pdu = pdu_len; 1030 fore200e_vcc->rx_pdu++; 1031 1032 /* push PDU */ 1033 if (atm_charge(vcc, skb->truesize) == 0) { 1034 1035 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n", 1036 vcc->itf, vcc->vpi, vcc->vci); 1037 1038 dev_kfree_skb_any(skb); 1039 1040 atomic_inc(&vcc->stats->rx_drop); 1041 return -ENOMEM; 1042 } 1043 1044 vcc->push(vcc, skb); 1045 atomic_inc(&vcc->stats->rx); 1046 1047 return 0; 1048 } 1049 1050 1051 static void 1052 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd) 1053 { 1054 struct host_bsq* bsq; 1055 struct buffer* buffer; 1056 int i; 1057 1058 for (i = 0; i < rpd->nseg; i++) { 1059 1060 /* rebuild rx buffer address from rsd handle */ 1061 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1062 1063 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ]; 1064 1065 #ifdef FORE200E_BSQ_DEBUG 1066 bsq_audit(2, bsq, buffer->scheme, buffer->magn); 1067 1068 if (buffer->supplied == 0) 1069 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n", 1070 buffer->scheme, buffer->magn, buffer->index); 1071 buffer->supplied = 0; 1072 #endif 1073 1074 /* re-insert the buffer into the free buffer list */ 1075 buffer->next = bsq->freebuf; 1076 bsq->freebuf = buffer; 1077 1078 /* then increment the number of free rx buffers */ 1079 bsq->freebuf_count++; 1080 } 1081 } 1082 1083 1084 static void 1085 fore200e_rx_irq(struct fore200e* fore200e) 1086 { 1087 struct host_rxq* rxq = &fore200e->host_rxq; 1088 struct host_rxq_entry* entry; 1089 struct atm_vcc* vcc; 1090 struct fore200e_vc_map* vc_map; 1091 1092 for (;;) { 1093 1094 entry = &rxq->host_entry[ rxq->head ]; 1095 1096 /* no more received PDUs */ 1097 if ((*entry->status & STATUS_COMPLETE) == 0) 1098 break; 1099 1100 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1101 1102 if ((vc_map->vcc == NULL) || 1103 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 1104 1105 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n", 1106 fore200e->atm_dev->number, 1107 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1108 } 1109 else { 1110 vcc = vc_map->vcc; 1111 ASSERT(vcc); 1112 1113 if ((*entry->status & STATUS_ERROR) == 0) { 1114 1115 fore200e_push_rpd(fore200e, vcc, entry->rpd); 1116 } 1117 else { 1118 DPRINTK(2, "damaged PDU on %d.%d.%d\n", 1119 fore200e->atm_dev->number, 1120 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1121 atomic_inc(&vcc->stats->rx_err); 1122 } 1123 } 1124 1125 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX); 1126 1127 fore200e_collect_rpd(fore200e, entry->rpd); 1128 1129 /* rewrite the rpd address to ack the received PDU */ 1130 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr); 1131 *entry->status = STATUS_FREE; 1132 1133 fore200e_supply(fore200e); 1134 } 1135 } 1136 1137 1138 #ifndef FORE200E_USE_TASKLET 1139 static void 1140 fore200e_irq(struct fore200e* fore200e) 1141 { 1142 unsigned long flags; 1143 1144 spin_lock_irqsave(&fore200e->q_lock, flags); 1145 fore200e_rx_irq(fore200e); 1146 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1147 1148 spin_lock_irqsave(&fore200e->q_lock, flags); 1149 fore200e_tx_irq(fore200e); 1150 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1151 } 1152 #endif 1153 1154 1155 static irqreturn_t 1156 fore200e_interrupt(int irq, void* dev) 1157 { 1158 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev); 1159 1160 if (fore200e->bus->irq_check(fore200e) == 0) { 1161 1162 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number); 1163 return IRQ_NONE; 1164 } 1165 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number); 1166 1167 #ifdef FORE200E_USE_TASKLET 1168 tasklet_schedule(&fore200e->tx_tasklet); 1169 tasklet_schedule(&fore200e->rx_tasklet); 1170 #else 1171 fore200e_irq(fore200e); 1172 #endif 1173 1174 fore200e->bus->irq_ack(fore200e); 1175 return IRQ_HANDLED; 1176 } 1177 1178 1179 #ifdef FORE200E_USE_TASKLET 1180 static void 1181 fore200e_tx_tasklet(unsigned long data) 1182 { 1183 struct fore200e* fore200e = (struct fore200e*) data; 1184 unsigned long flags; 1185 1186 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1187 1188 spin_lock_irqsave(&fore200e->q_lock, flags); 1189 fore200e_tx_irq(fore200e); 1190 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1191 } 1192 1193 1194 static void 1195 fore200e_rx_tasklet(unsigned long data) 1196 { 1197 struct fore200e* fore200e = (struct fore200e*) data; 1198 unsigned long flags; 1199 1200 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1201 1202 spin_lock_irqsave(&fore200e->q_lock, flags); 1203 fore200e_rx_irq((struct fore200e*) data); 1204 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1205 } 1206 #endif 1207 1208 1209 static int 1210 fore200e_select_scheme(struct atm_vcc* vcc) 1211 { 1212 /* fairly balance the VCs over (identical) buffer schemes */ 1213 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO; 1214 1215 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n", 1216 vcc->itf, vcc->vpi, vcc->vci, scheme); 1217 1218 return scheme; 1219 } 1220 1221 1222 static int 1223 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu) 1224 { 1225 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1226 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1227 struct activate_opcode activ_opcode; 1228 struct deactivate_opcode deactiv_opcode; 1229 struct vpvc vpvc; 1230 int ok; 1231 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal); 1232 1233 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1234 1235 if (activate) { 1236 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc); 1237 1238 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN; 1239 activ_opcode.aal = aal; 1240 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme; 1241 activ_opcode.pad = 0; 1242 } 1243 else { 1244 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN; 1245 deactiv_opcode.pad = 0; 1246 } 1247 1248 vpvc.vci = vcc->vci; 1249 vpvc.vpi = vcc->vpi; 1250 1251 *entry->status = STATUS_PENDING; 1252 1253 if (activate) { 1254 1255 #ifdef FORE200E_52BYTE_AAL0_SDU 1256 mtu = 48; 1257 #endif 1258 /* the MTU is not used by the cp, except in the case of AAL0 */ 1259 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu); 1260 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc); 1261 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode); 1262 } 1263 else { 1264 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc); 1265 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode); 1266 } 1267 1268 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1269 1270 *entry->status = STATUS_FREE; 1271 1272 if (ok == 0) { 1273 printk(FORE200E "unable to %s VC %d.%d.%d\n", 1274 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci); 1275 return -EIO; 1276 } 1277 1278 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 1279 activate ? "open" : "clos"); 1280 1281 return 0; 1282 } 1283 1284 1285 #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */ 1286 1287 static void 1288 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate) 1289 { 1290 if (qos->txtp.max_pcr < ATM_OC3_PCR) { 1291 1292 /* compute the data cells to idle cells ratio from the tx PCR */ 1293 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR; 1294 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells; 1295 } 1296 else { 1297 /* disable rate control */ 1298 rate->data_cells = rate->idle_cells = 0; 1299 } 1300 } 1301 1302 1303 static int 1304 fore200e_open(struct atm_vcc *vcc) 1305 { 1306 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1307 struct fore200e_vcc* fore200e_vcc; 1308 struct fore200e_vc_map* vc_map; 1309 unsigned long flags; 1310 int vci = vcc->vci; 1311 short vpi = vcc->vpi; 1312 1313 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS)); 1314 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS)); 1315 1316 spin_lock_irqsave(&fore200e->q_lock, flags); 1317 1318 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci); 1319 if (vc_map->vcc) { 1320 1321 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1322 1323 printk(FORE200E "VC %d.%d.%d already in use\n", 1324 fore200e->atm_dev->number, vpi, vci); 1325 1326 return -EINVAL; 1327 } 1328 1329 vc_map->vcc = vcc; 1330 1331 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1332 1333 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC); 1334 if (fore200e_vcc == NULL) { 1335 vc_map->vcc = NULL; 1336 return -ENOMEM; 1337 } 1338 1339 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1340 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n", 1341 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1342 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ], 1343 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu, 1344 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ], 1345 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu); 1346 1347 /* pseudo-CBR bandwidth requested? */ 1348 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1349 1350 mutex_lock(&fore200e->rate_mtx); 1351 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) { 1352 mutex_unlock(&fore200e->rate_mtx); 1353 1354 kfree(fore200e_vcc); 1355 vc_map->vcc = NULL; 1356 return -EAGAIN; 1357 } 1358 1359 /* reserve bandwidth */ 1360 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr; 1361 mutex_unlock(&fore200e->rate_mtx); 1362 } 1363 1364 vcc->itf = vcc->dev->number; 1365 1366 set_bit(ATM_VF_PARTIAL,&vcc->flags); 1367 set_bit(ATM_VF_ADDR, &vcc->flags); 1368 1369 vcc->dev_data = fore200e_vcc; 1370 1371 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) { 1372 1373 vc_map->vcc = NULL; 1374 1375 clear_bit(ATM_VF_ADDR, &vcc->flags); 1376 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1377 1378 vcc->dev_data = NULL; 1379 1380 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1381 1382 kfree(fore200e_vcc); 1383 return -EINVAL; 1384 } 1385 1386 /* compute rate control parameters */ 1387 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1388 1389 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate); 1390 set_bit(ATM_VF_HASQOS, &vcc->flags); 1391 1392 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n", 1393 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1394 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 1395 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells); 1396 } 1397 1398 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1; 1399 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0; 1400 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0; 1401 1402 /* new incarnation of the vcc */ 1403 vc_map->incarn = ++fore200e->incarn_count; 1404 1405 /* VC unusable before this flag is set */ 1406 set_bit(ATM_VF_READY, &vcc->flags); 1407 1408 return 0; 1409 } 1410 1411 1412 static void 1413 fore200e_close(struct atm_vcc* vcc) 1414 { 1415 struct fore200e_vcc* fore200e_vcc; 1416 struct fore200e* fore200e; 1417 struct fore200e_vc_map* vc_map; 1418 unsigned long flags; 1419 1420 ASSERT(vcc); 1421 fore200e = FORE200E_DEV(vcc->dev); 1422 1423 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS)); 1424 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS)); 1425 1426 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal)); 1427 1428 clear_bit(ATM_VF_READY, &vcc->flags); 1429 1430 fore200e_activate_vcin(fore200e, 0, vcc, 0); 1431 1432 spin_lock_irqsave(&fore200e->q_lock, flags); 1433 1434 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1435 1436 /* the vc is no longer considered as "in use" by fore200e_open() */ 1437 vc_map->vcc = NULL; 1438 1439 vcc->itf = vcc->vci = vcc->vpi = 0; 1440 1441 fore200e_vcc = FORE200E_VCC(vcc); 1442 vcc->dev_data = NULL; 1443 1444 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1445 1446 /* release reserved bandwidth, if any */ 1447 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1448 1449 mutex_lock(&fore200e->rate_mtx); 1450 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1451 mutex_unlock(&fore200e->rate_mtx); 1452 1453 clear_bit(ATM_VF_HASQOS, &vcc->flags); 1454 } 1455 1456 clear_bit(ATM_VF_ADDR, &vcc->flags); 1457 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1458 1459 ASSERT(fore200e_vcc); 1460 kfree(fore200e_vcc); 1461 } 1462 1463 1464 static int 1465 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb) 1466 { 1467 struct fore200e* fore200e; 1468 struct fore200e_vcc* fore200e_vcc; 1469 struct fore200e_vc_map* vc_map; 1470 struct host_txq* txq; 1471 struct host_txq_entry* entry; 1472 struct tpd* tpd; 1473 struct tpd_haddr tpd_haddr; 1474 int retry = CONFIG_ATM_FORE200E_TX_RETRY; 1475 int tx_copy = 0; 1476 int tx_len = skb->len; 1477 u32* cell_header = NULL; 1478 unsigned char* skb_data; 1479 int skb_len; 1480 unsigned char* data; 1481 unsigned long flags; 1482 1483 if (!vcc) 1484 return -EINVAL; 1485 1486 fore200e = FORE200E_DEV(vcc->dev); 1487 fore200e_vcc = FORE200E_VCC(vcc); 1488 1489 if (!fore200e) 1490 return -EINVAL; 1491 1492 txq = &fore200e->host_txq; 1493 if (!fore200e_vcc) 1494 return -EINVAL; 1495 1496 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1497 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi); 1498 dev_kfree_skb_any(skb); 1499 return -EINVAL; 1500 } 1501 1502 #ifdef FORE200E_52BYTE_AAL0_SDU 1503 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) { 1504 cell_header = (u32*) skb->data; 1505 skb_data = skb->data + 4; /* skip 4-byte cell header */ 1506 skb_len = tx_len = skb->len - 4; 1507 1508 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header); 1509 } 1510 else 1511 #endif 1512 { 1513 skb_data = skb->data; 1514 skb_len = skb->len; 1515 } 1516 1517 if (((unsigned long)skb_data) & 0x3) { 1518 1519 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name); 1520 tx_copy = 1; 1521 tx_len = skb_len; 1522 } 1523 1524 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) { 1525 1526 /* this simply NUKES the PCA board */ 1527 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name); 1528 tx_copy = 1; 1529 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD; 1530 } 1531 1532 if (tx_copy) { 1533 data = kmalloc(tx_len, GFP_ATOMIC); 1534 if (data == NULL) { 1535 if (vcc->pop) { 1536 vcc->pop(vcc, skb); 1537 } 1538 else { 1539 dev_kfree_skb_any(skb); 1540 } 1541 return -ENOMEM; 1542 } 1543 1544 memcpy(data, skb_data, skb_len); 1545 if (skb_len < tx_len) 1546 memset(data + skb_len, 0x00, tx_len - skb_len); 1547 } 1548 else { 1549 data = skb_data; 1550 } 1551 1552 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1553 ASSERT(vc_map->vcc == vcc); 1554 1555 retry_here: 1556 1557 spin_lock_irqsave(&fore200e->q_lock, flags); 1558 1559 entry = &txq->host_entry[ txq->head ]; 1560 1561 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) { 1562 1563 /* try to free completed tx queue entries */ 1564 fore200e_tx_irq(fore200e); 1565 1566 if (*entry->status != STATUS_FREE) { 1567 1568 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1569 1570 /* retry once again? */ 1571 if (--retry > 0) { 1572 udelay(50); 1573 goto retry_here; 1574 } 1575 1576 atomic_inc(&vcc->stats->tx_err); 1577 1578 fore200e->tx_sat++; 1579 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n", 1580 fore200e->name, fore200e->cp_queues->heartbeat); 1581 if (vcc->pop) { 1582 vcc->pop(vcc, skb); 1583 } 1584 else { 1585 dev_kfree_skb_any(skb); 1586 } 1587 1588 if (tx_copy) 1589 kfree(data); 1590 1591 return -ENOBUFS; 1592 } 1593 } 1594 1595 entry->incarn = vc_map->incarn; 1596 entry->vc_map = vc_map; 1597 entry->skb = skb; 1598 entry->data = tx_copy ? data : NULL; 1599 1600 tpd = entry->tpd; 1601 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len, 1602 DMA_TO_DEVICE); 1603 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) { 1604 if (tx_copy) 1605 kfree(data); 1606 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1607 return -ENOMEM; 1608 } 1609 tpd->tsd[ 0 ].length = tx_len; 1610 1611 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX); 1612 txq->txing++; 1613 1614 /* The dma_map call above implies a dma_sync so the device can use it, 1615 * thus no explicit dma_sync call is necessary here. 1616 */ 1617 1618 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 1619 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1620 tpd->tsd[0].length, skb_len); 1621 1622 if (skb_len < fore200e_vcc->tx_min_pdu) 1623 fore200e_vcc->tx_min_pdu = skb_len; 1624 if (skb_len > fore200e_vcc->tx_max_pdu) 1625 fore200e_vcc->tx_max_pdu = skb_len; 1626 fore200e_vcc->tx_pdu++; 1627 1628 /* set tx rate control information */ 1629 tpd->rate.data_cells = fore200e_vcc->rate.data_cells; 1630 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; 1631 1632 if (cell_header) { 1633 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP); 1634 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 1635 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT; 1636 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT; 1637 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT; 1638 } 1639 else { 1640 /* set the ATM header, common to all cells conveying the PDU */ 1641 tpd->atm_header.clp = 0; 1642 tpd->atm_header.plt = 0; 1643 tpd->atm_header.vci = vcc->vci; 1644 tpd->atm_header.vpi = vcc->vpi; 1645 tpd->atm_header.gfc = 0; 1646 } 1647 1648 tpd->spec.length = tx_len; 1649 tpd->spec.nseg = 1; 1650 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal); 1651 tpd->spec.intr = 1; 1652 1653 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */ 1654 tpd_haddr.pad = 0; 1655 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */ 1656 1657 *entry->status = STATUS_PENDING; 1658 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr); 1659 1660 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1661 1662 return 0; 1663 } 1664 1665 1666 static int 1667 fore200e_getstats(struct fore200e* fore200e) 1668 { 1669 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1670 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1671 struct stats_opcode opcode; 1672 int ok; 1673 u32 stats_dma_addr; 1674 1675 if (fore200e->stats == NULL) { 1676 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL); 1677 if (fore200e->stats == NULL) 1678 return -ENOMEM; 1679 } 1680 1681 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats, 1682 sizeof(struct stats), DMA_FROM_DEVICE); 1683 if (dma_mapping_error(fore200e->dev, stats_dma_addr)) 1684 return -ENOMEM; 1685 1686 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1687 1688 opcode.opcode = OPCODE_GET_STATS; 1689 opcode.pad = 0; 1690 1691 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr); 1692 1693 *entry->status = STATUS_PENDING; 1694 1695 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode); 1696 1697 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1698 1699 *entry->status = STATUS_FREE; 1700 1701 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE); 1702 1703 if (ok == 0) { 1704 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name); 1705 return -EIO; 1706 } 1707 1708 return 0; 1709 } 1710 1711 #if 0 /* currently unused */ 1712 static int 1713 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs) 1714 { 1715 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1716 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1717 struct oc3_opcode opcode; 1718 int ok; 1719 u32 oc3_regs_dma_addr; 1720 1721 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1722 1723 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1724 1725 opcode.opcode = OPCODE_GET_OC3; 1726 opcode.reg = 0; 1727 opcode.value = 0; 1728 opcode.mask = 0; 1729 1730 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1731 1732 *entry->status = STATUS_PENDING; 1733 1734 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode); 1735 1736 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1737 1738 *entry->status = STATUS_FREE; 1739 1740 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1741 1742 if (ok == 0) { 1743 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name); 1744 return -EIO; 1745 } 1746 1747 return 0; 1748 } 1749 #endif 1750 1751 1752 static int 1753 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask) 1754 { 1755 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1756 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1757 struct oc3_opcode opcode; 1758 int ok; 1759 1760 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask); 1761 1762 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1763 1764 opcode.opcode = OPCODE_SET_OC3; 1765 opcode.reg = reg; 1766 opcode.value = value; 1767 opcode.mask = mask; 1768 1769 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1770 1771 *entry->status = STATUS_PENDING; 1772 1773 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode); 1774 1775 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1776 1777 *entry->status = STATUS_FREE; 1778 1779 if (ok == 0) { 1780 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name); 1781 return -EIO; 1782 } 1783 1784 return 0; 1785 } 1786 1787 1788 static int 1789 fore200e_setloop(struct fore200e* fore200e, int loop_mode) 1790 { 1791 u32 mct_value, mct_mask; 1792 int error; 1793 1794 if (!capable(CAP_NET_ADMIN)) 1795 return -EPERM; 1796 1797 switch (loop_mode) { 1798 1799 case ATM_LM_NONE: 1800 mct_value = 0; 1801 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE; 1802 break; 1803 1804 case ATM_LM_LOC_PHY: 1805 mct_value = mct_mask = SUNI_MCT_DLE; 1806 break; 1807 1808 case ATM_LM_RMT_PHY: 1809 mct_value = mct_mask = SUNI_MCT_LLE; 1810 break; 1811 1812 default: 1813 return -EINVAL; 1814 } 1815 1816 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask); 1817 if (error == 0) 1818 fore200e->loop_mode = loop_mode; 1819 1820 return error; 1821 } 1822 1823 1824 static int 1825 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg) 1826 { 1827 struct sonet_stats tmp; 1828 1829 if (fore200e_getstats(fore200e) < 0) 1830 return -EIO; 1831 1832 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors); 1833 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors); 1834 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors); 1835 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors); 1836 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors); 1837 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors); 1838 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors); 1839 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) + 1840 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) + 1841 be32_to_cpu(fore200e->stats->aal5.cells_transmitted); 1842 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) + 1843 be32_to_cpu(fore200e->stats->aal34.cells_received) + 1844 be32_to_cpu(fore200e->stats->aal5.cells_received); 1845 1846 if (arg) 1847 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0; 1848 1849 return 0; 1850 } 1851 1852 1853 static int 1854 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg) 1855 { 1856 struct fore200e* fore200e = FORE200E_DEV(dev); 1857 1858 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg); 1859 1860 switch (cmd) { 1861 1862 case SONET_GETSTAT: 1863 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg); 1864 1865 case SONET_GETDIAG: 1866 return put_user(0, (int __user *)arg) ? -EFAULT : 0; 1867 1868 case ATM_SETLOOP: 1869 return fore200e_setloop(fore200e, (int)(unsigned long)arg); 1870 1871 case ATM_GETLOOP: 1872 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0; 1873 1874 case ATM_QUERYLOOP: 1875 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0; 1876 } 1877 1878 return -ENOSYS; /* not implemented */ 1879 } 1880 1881 1882 static int 1883 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags) 1884 { 1885 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); 1886 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1887 1888 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1889 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi); 1890 return -EINVAL; 1891 } 1892 1893 DPRINTK(2, "change_qos %d.%d.%d, " 1894 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1895 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n" 1896 "available_cell_rate = %u", 1897 vcc->itf, vcc->vpi, vcc->vci, 1898 fore200e_traffic_class[ qos->txtp.traffic_class ], 1899 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu, 1900 fore200e_traffic_class[ qos->rxtp.traffic_class ], 1901 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu, 1902 flags, fore200e->available_cell_rate); 1903 1904 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) { 1905 1906 mutex_lock(&fore200e->rate_mtx); 1907 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) { 1908 mutex_unlock(&fore200e->rate_mtx); 1909 return -EAGAIN; 1910 } 1911 1912 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1913 fore200e->available_cell_rate -= qos->txtp.max_pcr; 1914 1915 mutex_unlock(&fore200e->rate_mtx); 1916 1917 memcpy(&vcc->qos, qos, sizeof(struct atm_qos)); 1918 1919 /* update rate control parameters */ 1920 fore200e_rate_ctrl(qos, &fore200e_vcc->rate); 1921 1922 set_bit(ATM_VF_HASQOS, &vcc->flags); 1923 1924 return 0; 1925 } 1926 1927 return -EINVAL; 1928 } 1929 1930 1931 static int fore200e_irq_request(struct fore200e *fore200e) 1932 { 1933 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) { 1934 1935 printk(FORE200E "unable to reserve IRQ %s for device %s\n", 1936 fore200e_irq_itoa(fore200e->irq), fore200e->name); 1937 return -EBUSY; 1938 } 1939 1940 printk(FORE200E "IRQ %s reserved for device %s\n", 1941 fore200e_irq_itoa(fore200e->irq), fore200e->name); 1942 1943 #ifdef FORE200E_USE_TASKLET 1944 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e); 1945 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e); 1946 #endif 1947 1948 fore200e->state = FORE200E_STATE_IRQ; 1949 return 0; 1950 } 1951 1952 1953 static int fore200e_get_esi(struct fore200e *fore200e) 1954 { 1955 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL); 1956 int ok, i; 1957 1958 if (!prom) 1959 return -ENOMEM; 1960 1961 ok = fore200e->bus->prom_read(fore200e, prom); 1962 if (ok < 0) { 1963 kfree(prom); 1964 return -EBUSY; 1965 } 1966 1967 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n", 1968 fore200e->name, 1969 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */ 1970 prom->serial_number & 0xFFFF, &prom->mac_addr[2]); 1971 1972 for (i = 0; i < ESI_LEN; i++) { 1973 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ]; 1974 } 1975 1976 kfree(prom); 1977 1978 return 0; 1979 } 1980 1981 1982 static int fore200e_alloc_rx_buf(struct fore200e *fore200e) 1983 { 1984 int scheme, magn, nbr, size, i; 1985 1986 struct host_bsq* bsq; 1987 struct buffer* buffer; 1988 1989 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 1990 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 1991 1992 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 1993 1994 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ]; 1995 size = fore200e_rx_buf_size[ scheme ][ magn ]; 1996 1997 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn); 1998 1999 /* allocate the array of receive buffers */ 2000 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer), 2001 GFP_KERNEL); 2002 2003 if (buffer == NULL) 2004 return -ENOMEM; 2005 2006 bsq->freebuf = NULL; 2007 2008 for (i = 0; i < nbr; i++) { 2009 2010 buffer[ i ].scheme = scheme; 2011 buffer[ i ].magn = magn; 2012 #ifdef FORE200E_BSQ_DEBUG 2013 buffer[ i ].index = i; 2014 buffer[ i ].supplied = 0; 2015 #endif 2016 2017 /* allocate the receive buffer body */ 2018 if (fore200e_chunk_alloc(fore200e, 2019 &buffer[ i ].data, size, fore200e->bus->buffer_alignment, 2020 DMA_FROM_DEVICE) < 0) { 2021 2022 while (i > 0) 2023 fore200e_chunk_free(fore200e, &buffer[ --i ].data); 2024 kfree(buffer); 2025 2026 return -ENOMEM; 2027 } 2028 2029 /* insert the buffer into the free buffer list */ 2030 buffer[ i ].next = bsq->freebuf; 2031 bsq->freebuf = &buffer[ i ]; 2032 } 2033 /* all the buffers are free, initially */ 2034 bsq->freebuf_count = nbr; 2035 2036 #ifdef FORE200E_BSQ_DEBUG 2037 bsq_audit(3, bsq, scheme, magn); 2038 #endif 2039 } 2040 } 2041 2042 fore200e->state = FORE200E_STATE_ALLOC_BUF; 2043 return 0; 2044 } 2045 2046 2047 static int fore200e_init_bs_queue(struct fore200e *fore200e) 2048 { 2049 int scheme, magn, i; 2050 2051 struct host_bsq* bsq; 2052 struct cp_bsq_entry __iomem * cp_entry; 2053 2054 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 2055 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 2056 2057 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn); 2058 2059 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 2060 2061 /* allocate and align the array of status words */ 2062 if (fore200e_dma_chunk_alloc(fore200e, 2063 &bsq->status, 2064 sizeof(enum status), 2065 QUEUE_SIZE_BS, 2066 fore200e->bus->status_alignment) < 0) { 2067 return -ENOMEM; 2068 } 2069 2070 /* allocate and align the array of receive buffer descriptors */ 2071 if (fore200e_dma_chunk_alloc(fore200e, 2072 &bsq->rbd_block, 2073 sizeof(struct rbd_block), 2074 QUEUE_SIZE_BS, 2075 fore200e->bus->descr_alignment) < 0) { 2076 2077 fore200e_dma_chunk_free(fore200e, &bsq->status); 2078 return -ENOMEM; 2079 } 2080 2081 /* get the base address of the cp resident buffer supply queue entries */ 2082 cp_entry = fore200e->virt_base + 2083 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]); 2084 2085 /* fill the host resident and cp resident buffer supply queue entries */ 2086 for (i = 0; i < QUEUE_SIZE_BS; i++) { 2087 2088 bsq->host_entry[ i ].status = 2089 FORE200E_INDEX(bsq->status.align_addr, enum status, i); 2090 bsq->host_entry[ i ].rbd_block = 2091 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i); 2092 bsq->host_entry[ i ].rbd_block_dma = 2093 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i); 2094 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2095 2096 *bsq->host_entry[ i ].status = STATUS_FREE; 2097 2098 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 2099 &cp_entry[ i ].status_haddr); 2100 } 2101 } 2102 } 2103 2104 fore200e->state = FORE200E_STATE_INIT_BSQ; 2105 return 0; 2106 } 2107 2108 2109 static int fore200e_init_rx_queue(struct fore200e *fore200e) 2110 { 2111 struct host_rxq* rxq = &fore200e->host_rxq; 2112 struct cp_rxq_entry __iomem * cp_entry; 2113 int i; 2114 2115 DPRINTK(2, "receive queue is being initialized\n"); 2116 2117 /* allocate and align the array of status words */ 2118 if (fore200e_dma_chunk_alloc(fore200e, 2119 &rxq->status, 2120 sizeof(enum status), 2121 QUEUE_SIZE_RX, 2122 fore200e->bus->status_alignment) < 0) { 2123 return -ENOMEM; 2124 } 2125 2126 /* allocate and align the array of receive PDU descriptors */ 2127 if (fore200e_dma_chunk_alloc(fore200e, 2128 &rxq->rpd, 2129 sizeof(struct rpd), 2130 QUEUE_SIZE_RX, 2131 fore200e->bus->descr_alignment) < 0) { 2132 2133 fore200e_dma_chunk_free(fore200e, &rxq->status); 2134 return -ENOMEM; 2135 } 2136 2137 /* get the base address of the cp resident rx queue entries */ 2138 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq); 2139 2140 /* fill the host resident and cp resident rx entries */ 2141 for (i=0; i < QUEUE_SIZE_RX; i++) { 2142 2143 rxq->host_entry[ i ].status = 2144 FORE200E_INDEX(rxq->status.align_addr, enum status, i); 2145 rxq->host_entry[ i ].rpd = 2146 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i); 2147 rxq->host_entry[ i ].rpd_dma = 2148 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i); 2149 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2150 2151 *rxq->host_entry[ i ].status = STATUS_FREE; 2152 2153 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 2154 &cp_entry[ i ].status_haddr); 2155 2156 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i), 2157 &cp_entry[ i ].rpd_haddr); 2158 } 2159 2160 /* set the head entry of the queue */ 2161 rxq->head = 0; 2162 2163 fore200e->state = FORE200E_STATE_INIT_RXQ; 2164 return 0; 2165 } 2166 2167 2168 static int fore200e_init_tx_queue(struct fore200e *fore200e) 2169 { 2170 struct host_txq* txq = &fore200e->host_txq; 2171 struct cp_txq_entry __iomem * cp_entry; 2172 int i; 2173 2174 DPRINTK(2, "transmit queue is being initialized\n"); 2175 2176 /* allocate and align the array of status words */ 2177 if (fore200e_dma_chunk_alloc(fore200e, 2178 &txq->status, 2179 sizeof(enum status), 2180 QUEUE_SIZE_TX, 2181 fore200e->bus->status_alignment) < 0) { 2182 return -ENOMEM; 2183 } 2184 2185 /* allocate and align the array of transmit PDU descriptors */ 2186 if (fore200e_dma_chunk_alloc(fore200e, 2187 &txq->tpd, 2188 sizeof(struct tpd), 2189 QUEUE_SIZE_TX, 2190 fore200e->bus->descr_alignment) < 0) { 2191 2192 fore200e_dma_chunk_free(fore200e, &txq->status); 2193 return -ENOMEM; 2194 } 2195 2196 /* get the base address of the cp resident tx queue entries */ 2197 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq); 2198 2199 /* fill the host resident and cp resident tx entries */ 2200 for (i=0; i < QUEUE_SIZE_TX; i++) { 2201 2202 txq->host_entry[ i ].status = 2203 FORE200E_INDEX(txq->status.align_addr, enum status, i); 2204 txq->host_entry[ i ].tpd = 2205 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i); 2206 txq->host_entry[ i ].tpd_dma = 2207 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i); 2208 txq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2209 2210 *txq->host_entry[ i ].status = STATUS_FREE; 2211 2212 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 2213 &cp_entry[ i ].status_haddr); 2214 2215 /* although there is a one-to-one mapping of tx queue entries and tpds, 2216 we do not write here the DMA (physical) base address of each tpd into 2217 the related cp resident entry, because the cp relies on this write 2218 operation to detect that a new pdu has been submitted for tx */ 2219 } 2220 2221 /* set the head and tail entries of the queue */ 2222 txq->head = 0; 2223 txq->tail = 0; 2224 2225 fore200e->state = FORE200E_STATE_INIT_TXQ; 2226 return 0; 2227 } 2228 2229 2230 static int fore200e_init_cmd_queue(struct fore200e *fore200e) 2231 { 2232 struct host_cmdq* cmdq = &fore200e->host_cmdq; 2233 struct cp_cmdq_entry __iomem * cp_entry; 2234 int i; 2235 2236 DPRINTK(2, "command queue is being initialized\n"); 2237 2238 /* allocate and align the array of status words */ 2239 if (fore200e_dma_chunk_alloc(fore200e, 2240 &cmdq->status, 2241 sizeof(enum status), 2242 QUEUE_SIZE_CMD, 2243 fore200e->bus->status_alignment) < 0) { 2244 return -ENOMEM; 2245 } 2246 2247 /* get the base address of the cp resident cmd queue entries */ 2248 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq); 2249 2250 /* fill the host resident and cp resident cmd entries */ 2251 for (i=0; i < QUEUE_SIZE_CMD; i++) { 2252 2253 cmdq->host_entry[ i ].status = 2254 FORE200E_INDEX(cmdq->status.align_addr, enum status, i); 2255 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2256 2257 *cmdq->host_entry[ i ].status = STATUS_FREE; 2258 2259 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 2260 &cp_entry[ i ].status_haddr); 2261 } 2262 2263 /* set the head entry of the queue */ 2264 cmdq->head = 0; 2265 2266 fore200e->state = FORE200E_STATE_INIT_CMDQ; 2267 return 0; 2268 } 2269 2270 2271 static void fore200e_param_bs_queue(struct fore200e *fore200e, 2272 enum buffer_scheme scheme, 2273 enum buffer_magn magn, int queue_length, 2274 int pool_size, int supply_blksize) 2275 { 2276 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ]; 2277 2278 fore200e->bus->write(queue_length, &bs_spec->queue_length); 2279 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size); 2280 fore200e->bus->write(pool_size, &bs_spec->pool_size); 2281 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize); 2282 } 2283 2284 2285 static int fore200e_initialize(struct fore200e *fore200e) 2286 { 2287 struct cp_queues __iomem * cpq; 2288 int ok, scheme, magn; 2289 2290 DPRINTK(2, "device %s being initialized\n", fore200e->name); 2291 2292 mutex_init(&fore200e->rate_mtx); 2293 spin_lock_init(&fore200e->q_lock); 2294 2295 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET; 2296 2297 /* enable cp to host interrupts */ 2298 fore200e->bus->write(1, &cpq->imask); 2299 2300 if (fore200e->bus->irq_enable) 2301 fore200e->bus->irq_enable(fore200e); 2302 2303 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect); 2304 2305 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len); 2306 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len); 2307 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len); 2308 2309 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension); 2310 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension); 2311 2312 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) 2313 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) 2314 fore200e_param_bs_queue(fore200e, scheme, magn, 2315 QUEUE_SIZE_BS, 2316 fore200e_rx_buf_nbr[ scheme ][ magn ], 2317 RBD_BLK_SIZE); 2318 2319 /* issue the initialize command */ 2320 fore200e->bus->write(STATUS_PENDING, &cpq->init.status); 2321 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode); 2322 2323 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000); 2324 if (ok == 0) { 2325 printk(FORE200E "device %s initialization failed\n", fore200e->name); 2326 return -ENODEV; 2327 } 2328 2329 printk(FORE200E "device %s initialized\n", fore200e->name); 2330 2331 fore200e->state = FORE200E_STATE_INITIALIZE; 2332 return 0; 2333 } 2334 2335 2336 static void fore200e_monitor_putc(struct fore200e *fore200e, char c) 2337 { 2338 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2339 2340 #if 0 2341 printk("%c", c); 2342 #endif 2343 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send); 2344 } 2345 2346 2347 static int fore200e_monitor_getc(struct fore200e *fore200e) 2348 { 2349 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2350 unsigned long timeout = jiffies + msecs_to_jiffies(50); 2351 int c; 2352 2353 while (time_before(jiffies, timeout)) { 2354 2355 c = (int) fore200e->bus->read(&monitor->soft_uart.recv); 2356 2357 if (c & FORE200E_CP_MONITOR_UART_AVAIL) { 2358 2359 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv); 2360 #if 0 2361 printk("%c", c & 0xFF); 2362 #endif 2363 return c & 0xFF; 2364 } 2365 } 2366 2367 return -1; 2368 } 2369 2370 2371 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str) 2372 { 2373 while (*str) { 2374 2375 /* the i960 monitor doesn't accept any new character if it has something to say */ 2376 while (fore200e_monitor_getc(fore200e) >= 0); 2377 2378 fore200e_monitor_putc(fore200e, *str++); 2379 } 2380 2381 while (fore200e_monitor_getc(fore200e) >= 0); 2382 } 2383 2384 #ifdef __LITTLE_ENDIAN 2385 #define FW_EXT ".bin" 2386 #else 2387 #define FW_EXT "_ecd.bin2" 2388 #endif 2389 2390 static int fore200e_load_and_start_fw(struct fore200e *fore200e) 2391 { 2392 const struct firmware *firmware; 2393 const struct fw_header *fw_header; 2394 const __le32 *fw_data; 2395 u32 fw_size; 2396 u32 __iomem *load_addr; 2397 char buf[48]; 2398 int err; 2399 2400 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT); 2401 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) { 2402 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name); 2403 return err; 2404 } 2405 2406 fw_data = (const __le32 *)firmware->data; 2407 fw_size = firmware->size / sizeof(u32); 2408 fw_header = (const struct fw_header *)firmware->data; 2409 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset); 2410 2411 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n", 2412 fore200e->name, load_addr, fw_size); 2413 2414 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) { 2415 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name); 2416 goto release; 2417 } 2418 2419 for (; fw_size--; fw_data++, load_addr++) 2420 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr); 2421 2422 DPRINTK(2, "device %s firmware being started\n", fore200e->name); 2423 2424 #if defined(__sparc_v9__) 2425 /* reported to be required by SBA cards on some sparc64 hosts */ 2426 fore200e_spin(100); 2427 #endif 2428 2429 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset)); 2430 fore200e_monitor_puts(fore200e, buf); 2431 2432 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) { 2433 printk(FORE200E "device %s firmware didn't start\n", fore200e->name); 2434 goto release; 2435 } 2436 2437 printk(FORE200E "device %s firmware started\n", fore200e->name); 2438 2439 fore200e->state = FORE200E_STATE_START_FW; 2440 err = 0; 2441 2442 release: 2443 release_firmware(firmware); 2444 return err; 2445 } 2446 2447 2448 static int fore200e_register(struct fore200e *fore200e, struct device *parent) 2449 { 2450 struct atm_dev* atm_dev; 2451 2452 DPRINTK(2, "device %s being registered\n", fore200e->name); 2453 2454 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops, 2455 -1, NULL); 2456 if (atm_dev == NULL) { 2457 printk(FORE200E "unable to register device %s\n", fore200e->name); 2458 return -ENODEV; 2459 } 2460 2461 atm_dev->dev_data = fore200e; 2462 fore200e->atm_dev = atm_dev; 2463 2464 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS; 2465 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS; 2466 2467 fore200e->available_cell_rate = ATM_OC3_PCR; 2468 2469 fore200e->state = FORE200E_STATE_REGISTER; 2470 return 0; 2471 } 2472 2473 2474 static int fore200e_init(struct fore200e *fore200e, struct device *parent) 2475 { 2476 if (fore200e_register(fore200e, parent) < 0) 2477 return -ENODEV; 2478 2479 if (fore200e->bus->configure(fore200e) < 0) 2480 return -ENODEV; 2481 2482 if (fore200e->bus->map(fore200e) < 0) 2483 return -ENODEV; 2484 2485 if (fore200e_reset(fore200e, 1) < 0) 2486 return -ENODEV; 2487 2488 if (fore200e_load_and_start_fw(fore200e) < 0) 2489 return -ENODEV; 2490 2491 if (fore200e_initialize(fore200e) < 0) 2492 return -ENODEV; 2493 2494 if (fore200e_init_cmd_queue(fore200e) < 0) 2495 return -ENOMEM; 2496 2497 if (fore200e_init_tx_queue(fore200e) < 0) 2498 return -ENOMEM; 2499 2500 if (fore200e_init_rx_queue(fore200e) < 0) 2501 return -ENOMEM; 2502 2503 if (fore200e_init_bs_queue(fore200e) < 0) 2504 return -ENOMEM; 2505 2506 if (fore200e_alloc_rx_buf(fore200e) < 0) 2507 return -ENOMEM; 2508 2509 if (fore200e_get_esi(fore200e) < 0) 2510 return -EIO; 2511 2512 if (fore200e_irq_request(fore200e) < 0) 2513 return -EBUSY; 2514 2515 fore200e_supply(fore200e); 2516 2517 /* all done, board initialization is now complete */ 2518 fore200e->state = FORE200E_STATE_COMPLETE; 2519 return 0; 2520 } 2521 2522 #ifdef CONFIG_SBUS 2523 static int fore200e_sba_probe(struct platform_device *op) 2524 { 2525 struct fore200e *fore200e; 2526 static int index = 0; 2527 int err; 2528 2529 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2530 if (!fore200e) 2531 return -ENOMEM; 2532 2533 fore200e->bus = &fore200e_sbus_ops; 2534 fore200e->dev = &op->dev; 2535 fore200e->irq = op->archdata.irqs[0]; 2536 fore200e->phys_base = op->resource[0].start; 2537 2538 sprintf(fore200e->name, "SBA-200E-%d", index); 2539 2540 err = fore200e_init(fore200e, &op->dev); 2541 if (err < 0) { 2542 fore200e_shutdown(fore200e); 2543 kfree(fore200e); 2544 return err; 2545 } 2546 2547 index++; 2548 dev_set_drvdata(&op->dev, fore200e); 2549 2550 return 0; 2551 } 2552 2553 static int fore200e_sba_remove(struct platform_device *op) 2554 { 2555 struct fore200e *fore200e = dev_get_drvdata(&op->dev); 2556 2557 fore200e_shutdown(fore200e); 2558 kfree(fore200e); 2559 2560 return 0; 2561 } 2562 2563 static const struct of_device_id fore200e_sba_match[] = { 2564 { 2565 .name = SBA200E_PROM_NAME, 2566 }, 2567 {}, 2568 }; 2569 MODULE_DEVICE_TABLE(of, fore200e_sba_match); 2570 2571 static struct platform_driver fore200e_sba_driver = { 2572 .driver = { 2573 .name = "fore_200e", 2574 .of_match_table = fore200e_sba_match, 2575 }, 2576 .probe = fore200e_sba_probe, 2577 .remove = fore200e_sba_remove, 2578 }; 2579 #endif 2580 2581 #ifdef CONFIG_PCI 2582 static int fore200e_pca_detect(struct pci_dev *pci_dev, 2583 const struct pci_device_id *pci_ent) 2584 { 2585 struct fore200e* fore200e; 2586 int err = 0; 2587 static int index = 0; 2588 2589 if (pci_enable_device(pci_dev)) { 2590 err = -EINVAL; 2591 goto out; 2592 } 2593 2594 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) { 2595 err = -EINVAL; 2596 goto out; 2597 } 2598 2599 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2600 if (fore200e == NULL) { 2601 err = -ENOMEM; 2602 goto out_disable; 2603 } 2604 2605 fore200e->bus = &fore200e_pci_ops; 2606 fore200e->dev = &pci_dev->dev; 2607 fore200e->irq = pci_dev->irq; 2608 fore200e->phys_base = pci_resource_start(pci_dev, 0); 2609 2610 sprintf(fore200e->name, "PCA-200E-%d", index - 1); 2611 2612 pci_set_master(pci_dev); 2613 2614 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n", 2615 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); 2616 2617 sprintf(fore200e->name, "PCA-200E-%d", index); 2618 2619 err = fore200e_init(fore200e, &pci_dev->dev); 2620 if (err < 0) { 2621 fore200e_shutdown(fore200e); 2622 goto out_free; 2623 } 2624 2625 ++index; 2626 pci_set_drvdata(pci_dev, fore200e); 2627 2628 out: 2629 return err; 2630 2631 out_free: 2632 kfree(fore200e); 2633 out_disable: 2634 pci_disable_device(pci_dev); 2635 goto out; 2636 } 2637 2638 2639 static void fore200e_pca_remove_one(struct pci_dev *pci_dev) 2640 { 2641 struct fore200e *fore200e; 2642 2643 fore200e = pci_get_drvdata(pci_dev); 2644 2645 fore200e_shutdown(fore200e); 2646 kfree(fore200e); 2647 pci_disable_device(pci_dev); 2648 } 2649 2650 2651 static const struct pci_device_id fore200e_pca_tbl[] = { 2652 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID }, 2653 { 0, } 2654 }; 2655 2656 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl); 2657 2658 static struct pci_driver fore200e_pca_driver = { 2659 .name = "fore_200e", 2660 .probe = fore200e_pca_detect, 2661 .remove = fore200e_pca_remove_one, 2662 .id_table = fore200e_pca_tbl, 2663 }; 2664 #endif 2665 2666 static int __init fore200e_module_init(void) 2667 { 2668 int err = 0; 2669 2670 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n"); 2671 2672 #ifdef CONFIG_SBUS 2673 err = platform_driver_register(&fore200e_sba_driver); 2674 if (err) 2675 return err; 2676 #endif 2677 2678 #ifdef CONFIG_PCI 2679 err = pci_register_driver(&fore200e_pca_driver); 2680 #endif 2681 2682 #ifdef CONFIG_SBUS 2683 if (err) 2684 platform_driver_unregister(&fore200e_sba_driver); 2685 #endif 2686 2687 return err; 2688 } 2689 2690 static void __exit fore200e_module_cleanup(void) 2691 { 2692 #ifdef CONFIG_PCI 2693 pci_unregister_driver(&fore200e_pca_driver); 2694 #endif 2695 #ifdef CONFIG_SBUS 2696 platform_driver_unregister(&fore200e_sba_driver); 2697 #endif 2698 } 2699 2700 static int 2701 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page) 2702 { 2703 struct fore200e* fore200e = FORE200E_DEV(dev); 2704 struct fore200e_vcc* fore200e_vcc; 2705 struct atm_vcc* vcc; 2706 int i, len, left = *pos; 2707 unsigned long flags; 2708 2709 if (!left--) { 2710 2711 if (fore200e_getstats(fore200e) < 0) 2712 return -EIO; 2713 2714 len = sprintf(page,"\n" 2715 " device:\n" 2716 " internal name:\t\t%s\n", fore200e->name); 2717 2718 /* print bus-specific information */ 2719 if (fore200e->bus->proc_read) 2720 len += fore200e->bus->proc_read(fore200e, page + len); 2721 2722 len += sprintf(page + len, 2723 " interrupt line:\t\t%s\n" 2724 " physical base address:\t0x%p\n" 2725 " virtual base address:\t0x%p\n" 2726 " factory address (ESI):\t%pM\n" 2727 " board serial number:\t\t%d\n\n", 2728 fore200e_irq_itoa(fore200e->irq), 2729 (void*)fore200e->phys_base, 2730 fore200e->virt_base, 2731 fore200e->esi, 2732 fore200e->esi[4] * 256 + fore200e->esi[5]); 2733 2734 return len; 2735 } 2736 2737 if (!left--) 2738 return sprintf(page, 2739 " free small bufs, scheme 1:\t%d\n" 2740 " free large bufs, scheme 1:\t%d\n" 2741 " free small bufs, scheme 2:\t%d\n" 2742 " free large bufs, scheme 2:\t%d\n", 2743 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count, 2744 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count, 2745 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count, 2746 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count); 2747 2748 if (!left--) { 2749 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat); 2750 2751 len = sprintf(page,"\n\n" 2752 " cell processor:\n" 2753 " heartbeat state:\t\t"); 2754 2755 if (hb >> 16 != 0xDEAD) 2756 len += sprintf(page + len, "0x%08x\n", hb); 2757 else 2758 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF); 2759 2760 return len; 2761 } 2762 2763 if (!left--) { 2764 static const char* media_name[] = { 2765 "unshielded twisted pair", 2766 "multimode optical fiber ST", 2767 "multimode optical fiber SC", 2768 "single-mode optical fiber ST", 2769 "single-mode optical fiber SC", 2770 "unknown" 2771 }; 2772 2773 static const char* oc3_mode[] = { 2774 "normal operation", 2775 "diagnostic loopback", 2776 "line loopback", 2777 "unknown" 2778 }; 2779 2780 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release); 2781 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release); 2782 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision); 2783 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type)); 2784 u32 oc3_index; 2785 2786 if (media_index > 4) 2787 media_index = 5; 2788 2789 switch (fore200e->loop_mode) { 2790 case ATM_LM_NONE: oc3_index = 0; 2791 break; 2792 case ATM_LM_LOC_PHY: oc3_index = 1; 2793 break; 2794 case ATM_LM_RMT_PHY: oc3_index = 2; 2795 break; 2796 default: oc3_index = 3; 2797 } 2798 2799 return sprintf(page, 2800 " firmware release:\t\t%d.%d.%d\n" 2801 " monitor release:\t\t%d.%d\n" 2802 " media type:\t\t\t%s\n" 2803 " OC-3 revision:\t\t0x%x\n" 2804 " OC-3 mode:\t\t\t%s", 2805 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24, 2806 mon960_release >> 16, mon960_release << 16 >> 16, 2807 media_name[ media_index ], 2808 oc3_revision, 2809 oc3_mode[ oc3_index ]); 2810 } 2811 2812 if (!left--) { 2813 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor; 2814 2815 return sprintf(page, 2816 "\n\n" 2817 " monitor:\n" 2818 " version number:\t\t%d\n" 2819 " boot status word:\t\t0x%08x\n", 2820 fore200e->bus->read(&cp_monitor->mon_version), 2821 fore200e->bus->read(&cp_monitor->bstat)); 2822 } 2823 2824 if (!left--) 2825 return sprintf(page, 2826 "\n" 2827 " device statistics:\n" 2828 " 4b5b:\n" 2829 " crc_header_errors:\t\t%10u\n" 2830 " framing_errors:\t\t%10u\n", 2831 be32_to_cpu(fore200e->stats->phy.crc_header_errors), 2832 be32_to_cpu(fore200e->stats->phy.framing_errors)); 2833 2834 if (!left--) 2835 return sprintf(page, "\n" 2836 " OC-3:\n" 2837 " section_bip8_errors:\t%10u\n" 2838 " path_bip8_errors:\t\t%10u\n" 2839 " line_bip24_errors:\t\t%10u\n" 2840 " line_febe_errors:\t\t%10u\n" 2841 " path_febe_errors:\t\t%10u\n" 2842 " corr_hcs_errors:\t\t%10u\n" 2843 " ucorr_hcs_errors:\t\t%10u\n", 2844 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors), 2845 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors), 2846 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors), 2847 be32_to_cpu(fore200e->stats->oc3.line_febe_errors), 2848 be32_to_cpu(fore200e->stats->oc3.path_febe_errors), 2849 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors), 2850 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors)); 2851 2852 if (!left--) 2853 return sprintf(page,"\n" 2854 " ATM:\t\t\t\t cells\n" 2855 " TX:\t\t\t%10u\n" 2856 " RX:\t\t\t%10u\n" 2857 " vpi out of range:\t\t%10u\n" 2858 " vpi no conn:\t\t%10u\n" 2859 " vci out of range:\t\t%10u\n" 2860 " vci no conn:\t\t%10u\n", 2861 be32_to_cpu(fore200e->stats->atm.cells_transmitted), 2862 be32_to_cpu(fore200e->stats->atm.cells_received), 2863 be32_to_cpu(fore200e->stats->atm.vpi_bad_range), 2864 be32_to_cpu(fore200e->stats->atm.vpi_no_conn), 2865 be32_to_cpu(fore200e->stats->atm.vci_bad_range), 2866 be32_to_cpu(fore200e->stats->atm.vci_no_conn)); 2867 2868 if (!left--) 2869 return sprintf(page,"\n" 2870 " AAL0:\t\t\t cells\n" 2871 " TX:\t\t\t%10u\n" 2872 " RX:\t\t\t%10u\n" 2873 " dropped:\t\t\t%10u\n", 2874 be32_to_cpu(fore200e->stats->aal0.cells_transmitted), 2875 be32_to_cpu(fore200e->stats->aal0.cells_received), 2876 be32_to_cpu(fore200e->stats->aal0.cells_dropped)); 2877 2878 if (!left--) 2879 return sprintf(page,"\n" 2880 " AAL3/4:\n" 2881 " SAR sublayer:\t\t cells\n" 2882 " TX:\t\t\t%10u\n" 2883 " RX:\t\t\t%10u\n" 2884 " dropped:\t\t\t%10u\n" 2885 " CRC errors:\t\t%10u\n" 2886 " protocol errors:\t\t%10u\n\n" 2887 " CS sublayer:\t\t PDUs\n" 2888 " TX:\t\t\t%10u\n" 2889 " RX:\t\t\t%10u\n" 2890 " dropped:\t\t\t%10u\n" 2891 " protocol errors:\t\t%10u\n", 2892 be32_to_cpu(fore200e->stats->aal34.cells_transmitted), 2893 be32_to_cpu(fore200e->stats->aal34.cells_received), 2894 be32_to_cpu(fore200e->stats->aal34.cells_dropped), 2895 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors), 2896 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors), 2897 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted), 2898 be32_to_cpu(fore200e->stats->aal34.cspdus_received), 2899 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped), 2900 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors)); 2901 2902 if (!left--) 2903 return sprintf(page,"\n" 2904 " AAL5:\n" 2905 " SAR sublayer:\t\t cells\n" 2906 " TX:\t\t\t%10u\n" 2907 " RX:\t\t\t%10u\n" 2908 " dropped:\t\t\t%10u\n" 2909 " congestions:\t\t%10u\n\n" 2910 " CS sublayer:\t\t PDUs\n" 2911 " TX:\t\t\t%10u\n" 2912 " RX:\t\t\t%10u\n" 2913 " dropped:\t\t\t%10u\n" 2914 " CRC errors:\t\t%10u\n" 2915 " protocol errors:\t\t%10u\n", 2916 be32_to_cpu(fore200e->stats->aal5.cells_transmitted), 2917 be32_to_cpu(fore200e->stats->aal5.cells_received), 2918 be32_to_cpu(fore200e->stats->aal5.cells_dropped), 2919 be32_to_cpu(fore200e->stats->aal5.congestion_experienced), 2920 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted), 2921 be32_to_cpu(fore200e->stats->aal5.cspdus_received), 2922 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped), 2923 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors), 2924 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors)); 2925 2926 if (!left--) 2927 return sprintf(page,"\n" 2928 " AUX:\t\t allocation failures\n" 2929 " small b1:\t\t\t%10u\n" 2930 " large b1:\t\t\t%10u\n" 2931 " small b2:\t\t\t%10u\n" 2932 " large b2:\t\t\t%10u\n" 2933 " RX PDUs:\t\t\t%10u\n" 2934 " TX PDUs:\t\t\t%10lu\n", 2935 be32_to_cpu(fore200e->stats->aux.small_b1_failed), 2936 be32_to_cpu(fore200e->stats->aux.large_b1_failed), 2937 be32_to_cpu(fore200e->stats->aux.small_b2_failed), 2938 be32_to_cpu(fore200e->stats->aux.large_b2_failed), 2939 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed), 2940 fore200e->tx_sat); 2941 2942 if (!left--) 2943 return sprintf(page,"\n" 2944 " receive carrier:\t\t\t%s\n", 2945 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!"); 2946 2947 if (!left--) { 2948 return sprintf(page,"\n" 2949 " VCCs:\n address VPI VCI AAL " 2950 "TX PDUs TX min/max size RX PDUs RX min/max size\n"); 2951 } 2952 2953 for (i = 0; i < NBR_CONNECT; i++) { 2954 2955 vcc = fore200e->vc_map[i].vcc; 2956 2957 if (vcc == NULL) 2958 continue; 2959 2960 spin_lock_irqsave(&fore200e->q_lock, flags); 2961 2962 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) { 2963 2964 fore200e_vcc = FORE200E_VCC(vcc); 2965 ASSERT(fore200e_vcc); 2966 2967 len = sprintf(page, 2968 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", 2969 vcc, 2970 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 2971 fore200e_vcc->tx_pdu, 2972 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu, 2973 fore200e_vcc->tx_max_pdu, 2974 fore200e_vcc->rx_pdu, 2975 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu, 2976 fore200e_vcc->rx_max_pdu); 2977 2978 spin_unlock_irqrestore(&fore200e->q_lock, flags); 2979 return len; 2980 } 2981 2982 spin_unlock_irqrestore(&fore200e->q_lock, flags); 2983 } 2984 2985 return 0; 2986 } 2987 2988 module_init(fore200e_module_init); 2989 module_exit(fore200e_module_cleanup); 2990 2991 2992 static const struct atmdev_ops fore200e_ops = { 2993 .open = fore200e_open, 2994 .close = fore200e_close, 2995 .ioctl = fore200e_ioctl, 2996 .send = fore200e_send, 2997 .change_qos = fore200e_change_qos, 2998 .proc_read = fore200e_proc_read, 2999 .owner = THIS_MODULE 3000 }; 3001 3002 MODULE_LICENSE("GPL"); 3003 #ifdef CONFIG_PCI 3004 #ifdef __LITTLE_ENDIAN__ 3005 MODULE_FIRMWARE("pca200e.bin"); 3006 #else 3007 MODULE_FIRMWARE("pca200e_ecd.bin2"); 3008 #endif 3009 #endif /* CONFIG_PCI */ 3010 #ifdef CONFIG_SBUS 3011 MODULE_FIRMWARE("sba200e_ecd.bin2"); 3012 #endif 3013