xref: /linux/drivers/ata/sata_vsc.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  sata_vsc.c - Vitesse VSC7174 4 port DPA SATA
3  *
4  *  Maintained by:  Jeremy Higdon @ SGI
5  * 		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2004 SGI
9  *
10  *  Bits from Jeff Garzik, Copyright RedHat, Inc.
11  *
12  *
13  *  This program is free software; you can redistribute it and/or modify
14  *  it under the terms of the GNU General Public License as published by
15  *  the Free Software Foundation; either version 2, or (at your option)
16  *  any later version.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License
24  *  along with this program; see the file COPYING.  If not, write to
25  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  *
28  *  libata documentation is available via 'make {ps|pdf}docs',
29  *  as Documentation/DocBook/libata.*
30  *
31  *  Vitesse hardware documentation presumably available under NDA.
32  *  Intel 31244 (same hardware interface) documentation presumably
33  *  available from http://developer.intel.com/
34  *
35  */
36 
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/libata.h>
47 
48 #define DRV_NAME	"sata_vsc"
49 #define DRV_VERSION	"2.3"
50 
51 enum {
52 	VSC_MMIO_BAR			= 0,
53 
54 	/* Interrupt register offsets (from chip base address) */
55 	VSC_SATA_INT_STAT_OFFSET	= 0x00,
56 	VSC_SATA_INT_MASK_OFFSET	= 0x04,
57 
58 	/* Taskfile registers offsets */
59 	VSC_SATA_TF_CMD_OFFSET		= 0x00,
60 	VSC_SATA_TF_DATA_OFFSET		= 0x00,
61 	VSC_SATA_TF_ERROR_OFFSET	= 0x04,
62 	VSC_SATA_TF_FEATURE_OFFSET	= 0x06,
63 	VSC_SATA_TF_NSECT_OFFSET	= 0x08,
64 	VSC_SATA_TF_LBAL_OFFSET		= 0x0c,
65 	VSC_SATA_TF_LBAM_OFFSET		= 0x10,
66 	VSC_SATA_TF_LBAH_OFFSET		= 0x14,
67 	VSC_SATA_TF_DEVICE_OFFSET	= 0x18,
68 	VSC_SATA_TF_STATUS_OFFSET	= 0x1c,
69 	VSC_SATA_TF_COMMAND_OFFSET	= 0x1d,
70 	VSC_SATA_TF_ALTSTATUS_OFFSET	= 0x28,
71 	VSC_SATA_TF_CTL_OFFSET		= 0x29,
72 
73 	/* DMA base */
74 	VSC_SATA_UP_DESCRIPTOR_OFFSET	= 0x64,
75 	VSC_SATA_UP_DATA_BUFFER_OFFSET	= 0x6C,
76 	VSC_SATA_DMA_CMD_OFFSET		= 0x70,
77 
78 	/* SCRs base */
79 	VSC_SATA_SCR_STATUS_OFFSET	= 0x100,
80 	VSC_SATA_SCR_ERROR_OFFSET	= 0x104,
81 	VSC_SATA_SCR_CONTROL_OFFSET	= 0x108,
82 
83 	/* Port stride */
84 	VSC_SATA_PORT_OFFSET		= 0x200,
85 
86 	/* Error interrupt status bit offsets */
87 	VSC_SATA_INT_ERROR_CRC		= 0x40,
88 	VSC_SATA_INT_ERROR_T		= 0x20,
89 	VSC_SATA_INT_ERROR_P		= 0x10,
90 	VSC_SATA_INT_ERROR_R		= 0x8,
91 	VSC_SATA_INT_ERROR_E		= 0x4,
92 	VSC_SATA_INT_ERROR_M		= 0x2,
93 	VSC_SATA_INT_PHY_CHANGE		= 0x1,
94 	VSC_SATA_INT_ERROR = (VSC_SATA_INT_ERROR_CRC  | VSC_SATA_INT_ERROR_T | \
95 			      VSC_SATA_INT_ERROR_P    | VSC_SATA_INT_ERROR_R | \
96 			      VSC_SATA_INT_ERROR_E    | VSC_SATA_INT_ERROR_M | \
97 			      VSC_SATA_INT_PHY_CHANGE),
98 };
99 
100 static int vsc_sata_scr_read(struct ata_link *link,
101 			     unsigned int sc_reg, u32 *val)
102 {
103 	if (sc_reg > SCR_CONTROL)
104 		return -EINVAL;
105 	*val = readl(link->ap->ioaddr.scr_addr + (sc_reg * 4));
106 	return 0;
107 }
108 
109 
110 static int vsc_sata_scr_write(struct ata_link *link,
111 			      unsigned int sc_reg, u32 val)
112 {
113 	if (sc_reg > SCR_CONTROL)
114 		return -EINVAL;
115 	writel(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
116 	return 0;
117 }
118 
119 
120 static void vsc_freeze(struct ata_port *ap)
121 {
122 	void __iomem *mask_addr;
123 
124 	mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
125 		VSC_SATA_INT_MASK_OFFSET + ap->port_no;
126 
127 	writeb(0, mask_addr);
128 }
129 
130 
131 static void vsc_thaw(struct ata_port *ap)
132 {
133 	void __iomem *mask_addr;
134 
135 	mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
136 		VSC_SATA_INT_MASK_OFFSET + ap->port_no;
137 
138 	writeb(0xff, mask_addr);
139 }
140 
141 
142 static void vsc_intr_mask_update(struct ata_port *ap, u8 ctl)
143 {
144 	void __iomem *mask_addr;
145 	u8 mask;
146 
147 	mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
148 		VSC_SATA_INT_MASK_OFFSET + ap->port_no;
149 	mask = readb(mask_addr);
150 	if (ctl & ATA_NIEN)
151 		mask |= 0x80;
152 	else
153 		mask &= 0x7F;
154 	writeb(mask, mask_addr);
155 }
156 
157 
158 static void vsc_sata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
159 {
160 	struct ata_ioports *ioaddr = &ap->ioaddr;
161 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
162 
163 	/*
164 	 * The only thing the ctl register is used for is SRST.
165 	 * That is not enabled or disabled via tf_load.
166 	 * However, if ATA_NIEN is changed, then we need to change
167 	 * the interrupt register.
168 	 */
169 	if ((tf->ctl & ATA_NIEN) != (ap->last_ctl & ATA_NIEN)) {
170 		ap->last_ctl = tf->ctl;
171 		vsc_intr_mask_update(ap, tf->ctl & ATA_NIEN);
172 	}
173 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
174 		writew(tf->feature | (((u16)tf->hob_feature) << 8),
175 		       ioaddr->feature_addr);
176 		writew(tf->nsect | (((u16)tf->hob_nsect) << 8),
177 		       ioaddr->nsect_addr);
178 		writew(tf->lbal | (((u16)tf->hob_lbal) << 8),
179 		       ioaddr->lbal_addr);
180 		writew(tf->lbam | (((u16)tf->hob_lbam) << 8),
181 		       ioaddr->lbam_addr);
182 		writew(tf->lbah | (((u16)tf->hob_lbah) << 8),
183 		       ioaddr->lbah_addr);
184 	} else if (is_addr) {
185 		writew(tf->feature, ioaddr->feature_addr);
186 		writew(tf->nsect, ioaddr->nsect_addr);
187 		writew(tf->lbal, ioaddr->lbal_addr);
188 		writew(tf->lbam, ioaddr->lbam_addr);
189 		writew(tf->lbah, ioaddr->lbah_addr);
190 	}
191 
192 	if (tf->flags & ATA_TFLAG_DEVICE)
193 		writeb(tf->device, ioaddr->device_addr);
194 
195 	ata_wait_idle(ap);
196 }
197 
198 
199 static void vsc_sata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
200 {
201 	struct ata_ioports *ioaddr = &ap->ioaddr;
202 	u16 nsect, lbal, lbam, lbah, feature;
203 
204 	tf->command = ata_sff_check_status(ap);
205 	tf->device = readw(ioaddr->device_addr);
206 	feature = readw(ioaddr->error_addr);
207 	nsect = readw(ioaddr->nsect_addr);
208 	lbal = readw(ioaddr->lbal_addr);
209 	lbam = readw(ioaddr->lbam_addr);
210 	lbah = readw(ioaddr->lbah_addr);
211 
212 	tf->feature = feature;
213 	tf->nsect = nsect;
214 	tf->lbal = lbal;
215 	tf->lbam = lbam;
216 	tf->lbah = lbah;
217 
218 	if (tf->flags & ATA_TFLAG_LBA48) {
219 		tf->hob_feature = feature >> 8;
220 		tf->hob_nsect = nsect >> 8;
221 		tf->hob_lbal = lbal >> 8;
222 		tf->hob_lbam = lbam >> 8;
223 		tf->hob_lbah = lbah >> 8;
224 	}
225 }
226 
227 static inline void vsc_error_intr(u8 port_status, struct ata_port *ap)
228 {
229 	if (port_status & (VSC_SATA_INT_PHY_CHANGE | VSC_SATA_INT_ERROR_M))
230 		ata_port_freeze(ap);
231 	else
232 		ata_port_abort(ap);
233 }
234 
235 static void vsc_port_intr(u8 port_status, struct ata_port *ap)
236 {
237 	struct ata_queued_cmd *qc;
238 	int handled = 0;
239 
240 	if (unlikely(port_status & VSC_SATA_INT_ERROR)) {
241 		vsc_error_intr(port_status, ap);
242 		return;
243 	}
244 
245 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
246 	if (qc && likely(!(qc->tf.flags & ATA_TFLAG_POLLING)))
247 		handled = ata_bmdma_port_intr(ap, qc);
248 
249 	/* We received an interrupt during a polled command,
250 	 * or some other spurious condition.  Interrupt reporting
251 	 * with this hardware is fairly reliable so it is safe to
252 	 * simply clear the interrupt
253 	 */
254 	if (unlikely(!handled))
255 		ap->ops->sff_check_status(ap);
256 }
257 
258 /*
259  * vsc_sata_interrupt
260  *
261  * Read the interrupt register and process for the devices that have
262  * them pending.
263  */
264 static irqreturn_t vsc_sata_interrupt(int irq, void *dev_instance)
265 {
266 	struct ata_host *host = dev_instance;
267 	unsigned int i;
268 	unsigned int handled = 0;
269 	u32 status;
270 
271 	status = readl(host->iomap[VSC_MMIO_BAR] + VSC_SATA_INT_STAT_OFFSET);
272 
273 	if (unlikely(status == 0xffffffff || status == 0)) {
274 		if (status)
275 			dev_err(host->dev,
276 				": IRQ status == 0xffffffff, PCI fault or device removal?\n");
277 		goto out;
278 	}
279 
280 	spin_lock(&host->lock);
281 
282 	for (i = 0; i < host->n_ports; i++) {
283 		u8 port_status = (status >> (8 * i)) & 0xff;
284 		if (port_status) {
285 			vsc_port_intr(port_status, host->ports[i]);
286 			handled++;
287 		}
288 	}
289 
290 	spin_unlock(&host->lock);
291 out:
292 	return IRQ_RETVAL(handled);
293 }
294 
295 
296 static struct scsi_host_template vsc_sata_sht = {
297 	ATA_BMDMA_SHT(DRV_NAME),
298 };
299 
300 
301 static struct ata_port_operations vsc_sata_ops = {
302 	.inherits		= &ata_bmdma_port_ops,
303 	/* The IRQ handling is not quite standard SFF behaviour so we
304 	   cannot use the default lost interrupt handler */
305 	.lost_interrupt		= ATA_OP_NULL,
306 	.sff_tf_load		= vsc_sata_tf_load,
307 	.sff_tf_read		= vsc_sata_tf_read,
308 	.freeze			= vsc_freeze,
309 	.thaw			= vsc_thaw,
310 	.scr_read		= vsc_sata_scr_read,
311 	.scr_write		= vsc_sata_scr_write,
312 };
313 
314 static void vsc_sata_setup_port(struct ata_ioports *port, void __iomem *base)
315 {
316 	port->cmd_addr		= base + VSC_SATA_TF_CMD_OFFSET;
317 	port->data_addr		= base + VSC_SATA_TF_DATA_OFFSET;
318 	port->error_addr	= base + VSC_SATA_TF_ERROR_OFFSET;
319 	port->feature_addr	= base + VSC_SATA_TF_FEATURE_OFFSET;
320 	port->nsect_addr	= base + VSC_SATA_TF_NSECT_OFFSET;
321 	port->lbal_addr		= base + VSC_SATA_TF_LBAL_OFFSET;
322 	port->lbam_addr		= base + VSC_SATA_TF_LBAM_OFFSET;
323 	port->lbah_addr		= base + VSC_SATA_TF_LBAH_OFFSET;
324 	port->device_addr	= base + VSC_SATA_TF_DEVICE_OFFSET;
325 	port->status_addr	= base + VSC_SATA_TF_STATUS_OFFSET;
326 	port->command_addr	= base + VSC_SATA_TF_COMMAND_OFFSET;
327 	port->altstatus_addr	= base + VSC_SATA_TF_ALTSTATUS_OFFSET;
328 	port->ctl_addr		= base + VSC_SATA_TF_CTL_OFFSET;
329 	port->bmdma_addr	= base + VSC_SATA_DMA_CMD_OFFSET;
330 	port->scr_addr		= base + VSC_SATA_SCR_STATUS_OFFSET;
331 	writel(0, base + VSC_SATA_UP_DESCRIPTOR_OFFSET);
332 	writel(0, base + VSC_SATA_UP_DATA_BUFFER_OFFSET);
333 }
334 
335 
336 static int vsc_sata_init_one(struct pci_dev *pdev,
337 			     const struct pci_device_id *ent)
338 {
339 	static const struct ata_port_info pi = {
340 		.flags		= ATA_FLAG_SATA,
341 		.pio_mask	= ATA_PIO4,
342 		.mwdma_mask	= ATA_MWDMA2,
343 		.udma_mask	= ATA_UDMA6,
344 		.port_ops	= &vsc_sata_ops,
345 	};
346 	const struct ata_port_info *ppi[] = { &pi, NULL };
347 	struct ata_host *host;
348 	void __iomem *mmio_base;
349 	int i, rc;
350 	u8 cls;
351 
352 	ata_print_version_once(&pdev->dev, DRV_VERSION);
353 
354 	/* allocate host */
355 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 4);
356 	if (!host)
357 		return -ENOMEM;
358 
359 	rc = pcim_enable_device(pdev);
360 	if (rc)
361 		return rc;
362 
363 	/* check if we have needed resource mapped */
364 	if (pci_resource_len(pdev, 0) == 0)
365 		return -ENODEV;
366 
367 	/* map IO regions and initialize host accordingly */
368 	rc = pcim_iomap_regions(pdev, 1 << VSC_MMIO_BAR, DRV_NAME);
369 	if (rc == -EBUSY)
370 		pcim_pin_device(pdev);
371 	if (rc)
372 		return rc;
373 	host->iomap = pcim_iomap_table(pdev);
374 
375 	mmio_base = host->iomap[VSC_MMIO_BAR];
376 
377 	for (i = 0; i < host->n_ports; i++) {
378 		struct ata_port *ap = host->ports[i];
379 		unsigned int offset = (i + 1) * VSC_SATA_PORT_OFFSET;
380 
381 		vsc_sata_setup_port(&ap->ioaddr, mmio_base + offset);
382 
383 		ata_port_pbar_desc(ap, VSC_MMIO_BAR, -1, "mmio");
384 		ata_port_pbar_desc(ap, VSC_MMIO_BAR, offset, "port");
385 	}
386 
387 	/*
388 	 * Use 32 bit DMA mask, because 64 bit address support is poor.
389 	 */
390 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
391 	if (rc)
392 		return rc;
393 	rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
394 	if (rc)
395 		return rc;
396 
397 	/*
398 	 * Due to a bug in the chip, the default cache line size can't be
399 	 * used (unless the default is non-zero).
400 	 */
401 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cls);
402 	if (cls == 0x00)
403 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x80);
404 
405 	if (pci_enable_msi(pdev) == 0)
406 		pci_intx(pdev, 0);
407 
408 	/*
409 	 * Config offset 0x98 is "Extended Control and Status Register 0"
410 	 * Default value is (1 << 28).  All bits except bit 28 are reserved in
411 	 * DPA mode.  If bit 28 is set, LED 0 reflects all ports' activity.
412 	 * If bit 28 is clear, each port has its own LED.
413 	 */
414 	pci_write_config_dword(pdev, 0x98, 0);
415 
416 	pci_set_master(pdev);
417 	return ata_host_activate(host, pdev->irq, vsc_sata_interrupt,
418 				 IRQF_SHARED, &vsc_sata_sht);
419 }
420 
421 static const struct pci_device_id vsc_sata_pci_tbl[] = {
422 	{ PCI_VENDOR_ID_VITESSE, 0x7174,
423 	  PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 },
424 	{ PCI_VENDOR_ID_INTEL, 0x3200,
425 	  PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 },
426 
427 	{ }	/* terminate list */
428 };
429 
430 static struct pci_driver vsc_sata_pci_driver = {
431 	.name			= DRV_NAME,
432 	.id_table		= vsc_sata_pci_tbl,
433 	.probe			= vsc_sata_init_one,
434 	.remove			= ata_pci_remove_one,
435 };
436 
437 module_pci_driver(vsc_sata_pci_driver);
438 
439 MODULE_AUTHOR("Jeremy Higdon");
440 MODULE_DESCRIPTION("low-level driver for Vitesse VSC7174 SATA controller");
441 MODULE_LICENSE("GPL");
442 MODULE_DEVICE_TABLE(pci, vsc_sata_pci_tbl);
443 MODULE_VERSION(DRV_VERSION);
444