xref: /linux/drivers/ata/sata_nv.c (revision f474808acb3c4b30552d9c59b181244e0300d218)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  sata_nv.c - NVIDIA nForce SATA
4  *
5  *  Copyright 2004 NVIDIA Corp.  All rights reserved.
6  *  Copyright 2004 Andrew Chew
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  No hardware documentation available outside of NVIDIA.
12  *  This driver programs the NVIDIA SATA controller in a similar
13  *  fashion as with other PCI IDE BMDMA controllers, with a few
14  *  NV-specific details such as register offsets, SATA phy location,
15  *  hotplug info, etc.
16  *
17  *  CK804/MCP04 controllers support an alternate programming interface
18  *  similar to the ADMA specification (with some modifications).
19  *  This allows the use of NCQ. Non-DMA-mapped ATA commands are still
20  *  sent through the legacy interface.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/gfp.h>
26 #include <linux/pci.h>
27 #include <linux/blkdev.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_device.h>
33 #include <linux/libata.h>
34 
35 #define DRV_NAME			"sata_nv"
36 #define DRV_VERSION			"3.5"
37 
38 #define NV_ADMA_DMA_BOUNDARY		0xffffffffUL
39 
40 enum {
41 	NV_MMIO_BAR			= 5,
42 
43 	NV_PORTS			= 2,
44 	NV_PIO_MASK			= ATA_PIO4,
45 	NV_MWDMA_MASK			= ATA_MWDMA2,
46 	NV_UDMA_MASK			= ATA_UDMA6,
47 	NV_PORT0_SCR_REG_OFFSET		= 0x00,
48 	NV_PORT1_SCR_REG_OFFSET		= 0x40,
49 
50 	/* INT_STATUS/ENABLE */
51 	NV_INT_STATUS			= 0x10,
52 	NV_INT_ENABLE			= 0x11,
53 	NV_INT_STATUS_CK804		= 0x440,
54 	NV_INT_ENABLE_CK804		= 0x441,
55 
56 	/* INT_STATUS/ENABLE bits */
57 	NV_INT_DEV			= 0x01,
58 	NV_INT_PM			= 0x02,
59 	NV_INT_ADDED			= 0x04,
60 	NV_INT_REMOVED			= 0x08,
61 
62 	NV_INT_PORT_SHIFT		= 4,	/* each port occupies 4 bits */
63 
64 	NV_INT_ALL			= 0x0f,
65 	NV_INT_MASK			= NV_INT_DEV |
66 					  NV_INT_ADDED | NV_INT_REMOVED,
67 
68 	/* INT_CONFIG */
69 	NV_INT_CONFIG			= 0x12,
70 	NV_INT_CONFIG_METHD		= 0x01, // 0 = INT, 1 = SMI
71 
72 	// For PCI config register 20
73 	NV_MCP_SATA_CFG_20		= 0x50,
74 	NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
75 	NV_MCP_SATA_CFG_20_PORT0_EN	= (1 << 17),
76 	NV_MCP_SATA_CFG_20_PORT1_EN	= (1 << 16),
77 	NV_MCP_SATA_CFG_20_PORT0_PWB_EN	= (1 << 14),
78 	NV_MCP_SATA_CFG_20_PORT1_PWB_EN	= (1 << 12),
79 
80 	NV_ADMA_MAX_CPBS		= 32,
81 	NV_ADMA_CPB_SZ			= 128,
82 	NV_ADMA_APRD_SZ			= 16,
83 	NV_ADMA_SGTBL_LEN		= (1024 - NV_ADMA_CPB_SZ) /
84 					   NV_ADMA_APRD_SZ,
85 	NV_ADMA_SGTBL_TOTAL_LEN		= NV_ADMA_SGTBL_LEN + 5,
86 	NV_ADMA_SGTBL_SZ                = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
87 	NV_ADMA_PORT_PRIV_DMA_SZ        = NV_ADMA_MAX_CPBS *
88 					   (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
89 
90 	/* BAR5 offset to ADMA general registers */
91 	NV_ADMA_GEN			= 0x400,
92 	NV_ADMA_GEN_CTL			= 0x00,
93 	NV_ADMA_NOTIFIER_CLEAR		= 0x30,
94 
95 	/* BAR5 offset to ADMA ports */
96 	NV_ADMA_PORT			= 0x480,
97 
98 	/* size of ADMA port register space  */
99 	NV_ADMA_PORT_SIZE		= 0x100,
100 
101 	/* ADMA port registers */
102 	NV_ADMA_CTL			= 0x40,
103 	NV_ADMA_CPB_COUNT		= 0x42,
104 	NV_ADMA_NEXT_CPB_IDX		= 0x43,
105 	NV_ADMA_STAT			= 0x44,
106 	NV_ADMA_CPB_BASE_LOW		= 0x48,
107 	NV_ADMA_CPB_BASE_HIGH		= 0x4C,
108 	NV_ADMA_APPEND			= 0x50,
109 	NV_ADMA_NOTIFIER		= 0x68,
110 	NV_ADMA_NOTIFIER_ERROR		= 0x6C,
111 
112 	/* NV_ADMA_CTL register bits */
113 	NV_ADMA_CTL_HOTPLUG_IEN		= (1 << 0),
114 	NV_ADMA_CTL_CHANNEL_RESET	= (1 << 5),
115 	NV_ADMA_CTL_GO			= (1 << 7),
116 	NV_ADMA_CTL_AIEN		= (1 << 8),
117 	NV_ADMA_CTL_READ_NON_COHERENT	= (1 << 11),
118 	NV_ADMA_CTL_WRITE_NON_COHERENT	= (1 << 12),
119 
120 	/* CPB response flag bits */
121 	NV_CPB_RESP_DONE		= (1 << 0),
122 	NV_CPB_RESP_ATA_ERR		= (1 << 3),
123 	NV_CPB_RESP_CMD_ERR		= (1 << 4),
124 	NV_CPB_RESP_CPB_ERR		= (1 << 7),
125 
126 	/* CPB control flag bits */
127 	NV_CPB_CTL_CPB_VALID		= (1 << 0),
128 	NV_CPB_CTL_QUEUE		= (1 << 1),
129 	NV_CPB_CTL_APRD_VALID		= (1 << 2),
130 	NV_CPB_CTL_IEN			= (1 << 3),
131 	NV_CPB_CTL_FPDMA		= (1 << 4),
132 
133 	/* APRD flags */
134 	NV_APRD_WRITE			= (1 << 1),
135 	NV_APRD_END			= (1 << 2),
136 	NV_APRD_CONT			= (1 << 3),
137 
138 	/* NV_ADMA_STAT flags */
139 	NV_ADMA_STAT_TIMEOUT		= (1 << 0),
140 	NV_ADMA_STAT_HOTUNPLUG		= (1 << 1),
141 	NV_ADMA_STAT_HOTPLUG		= (1 << 2),
142 	NV_ADMA_STAT_CPBERR		= (1 << 4),
143 	NV_ADMA_STAT_SERROR		= (1 << 5),
144 	NV_ADMA_STAT_CMD_COMPLETE	= (1 << 6),
145 	NV_ADMA_STAT_IDLE		= (1 << 8),
146 	NV_ADMA_STAT_LEGACY		= (1 << 9),
147 	NV_ADMA_STAT_STOPPED		= (1 << 10),
148 	NV_ADMA_STAT_DONE		= (1 << 12),
149 	NV_ADMA_STAT_ERR		= NV_ADMA_STAT_CPBERR |
150 					  NV_ADMA_STAT_TIMEOUT,
151 
152 	/* port flags */
153 	NV_ADMA_PORT_REGISTER_MODE	= (1 << 0),
154 	NV_ADMA_ATAPI_SETUP_COMPLETE	= (1 << 1),
155 
156 	/* MCP55 reg offset */
157 	NV_CTL_MCP55			= 0x400,
158 	NV_INT_STATUS_MCP55		= 0x440,
159 	NV_INT_ENABLE_MCP55		= 0x444,
160 	NV_NCQ_REG_MCP55		= 0x448,
161 
162 	/* MCP55 */
163 	NV_INT_ALL_MCP55		= 0xffff,
164 	NV_INT_PORT_SHIFT_MCP55		= 16,	/* each port occupies 16 bits */
165 	NV_INT_MASK_MCP55		= NV_INT_ALL_MCP55 & 0xfffd,
166 
167 	/* SWNCQ ENABLE BITS*/
168 	NV_CTL_PRI_SWNCQ		= 0x02,
169 	NV_CTL_SEC_SWNCQ		= 0x04,
170 
171 	/* SW NCQ status bits*/
172 	NV_SWNCQ_IRQ_DEV		= (1 << 0),
173 	NV_SWNCQ_IRQ_PM			= (1 << 1),
174 	NV_SWNCQ_IRQ_ADDED		= (1 << 2),
175 	NV_SWNCQ_IRQ_REMOVED		= (1 << 3),
176 
177 	NV_SWNCQ_IRQ_BACKOUT		= (1 << 4),
178 	NV_SWNCQ_IRQ_SDBFIS		= (1 << 5),
179 	NV_SWNCQ_IRQ_DHREGFIS		= (1 << 6),
180 	NV_SWNCQ_IRQ_DMASETUP		= (1 << 7),
181 
182 	NV_SWNCQ_IRQ_HOTPLUG		= NV_SWNCQ_IRQ_ADDED |
183 					  NV_SWNCQ_IRQ_REMOVED,
184 
185 };
186 
187 /* ADMA Physical Region Descriptor - one SG segment */
188 struct nv_adma_prd {
189 	__le64			addr;
190 	__le32			len;
191 	u8			flags;
192 	u8			packet_len;
193 	__le16			reserved;
194 };
195 
196 enum nv_adma_regbits {
197 	CMDEND	= (1 << 15),		/* end of command list */
198 	WNB	= (1 << 14),		/* wait-not-BSY */
199 	IGN	= (1 << 13),		/* ignore this entry */
200 	CS1n	= (1 << (4 + 8)),	/* std. PATA signals follow... */
201 	DA2	= (1 << (2 + 8)),
202 	DA1	= (1 << (1 + 8)),
203 	DA0	= (1 << (0 + 8)),
204 };
205 
206 /* ADMA Command Parameter Block
207    The first 5 SG segments are stored inside the Command Parameter Block itself.
208    If there are more than 5 segments the remainder are stored in a separate
209    memory area indicated by next_aprd. */
210 struct nv_adma_cpb {
211 	u8			resp_flags;    /* 0 */
212 	u8			reserved1;     /* 1 */
213 	u8			ctl_flags;     /* 2 */
214 	/* len is length of taskfile in 64 bit words */
215 	u8			len;		/* 3  */
216 	u8			tag;           /* 4 */
217 	u8			next_cpb_idx;  /* 5 */
218 	__le16			reserved2;     /* 6-7 */
219 	__le16			tf[12];        /* 8-31 */
220 	struct nv_adma_prd	aprd[5];       /* 32-111 */
221 	__le64			next_aprd;     /* 112-119 */
222 	__le64			reserved3;     /* 120-127 */
223 };
224 
225 
226 struct nv_adma_port_priv {
227 	struct nv_adma_cpb	*cpb;
228 	dma_addr_t		cpb_dma;
229 	struct nv_adma_prd	*aprd;
230 	dma_addr_t		aprd_dma;
231 	void __iomem		*ctl_block;
232 	void __iomem		*gen_block;
233 	void __iomem		*notifier_clear_block;
234 	u64			adma_dma_mask;
235 	u8			flags;
236 	int			last_issue_ncq;
237 };
238 
239 struct nv_host_priv {
240 	unsigned long		type;
241 };
242 
243 struct defer_queue {
244 	u32		defer_bits;
245 	unsigned int	head;
246 	unsigned int	tail;
247 	unsigned int	tag[ATA_MAX_QUEUE];
248 };
249 
250 enum ncq_saw_flag_list {
251 	ncq_saw_d2h	= (1U << 0),
252 	ncq_saw_dmas	= (1U << 1),
253 	ncq_saw_sdb	= (1U << 2),
254 	ncq_saw_backout	= (1U << 3),
255 };
256 
257 struct nv_swncq_port_priv {
258 	struct ata_bmdma_prd *prd;	 /* our SG list */
259 	dma_addr_t	prd_dma; /* and its DMA mapping */
260 	void __iomem	*sactive_block;
261 	void __iomem	*irq_block;
262 	void __iomem	*tag_block;
263 	u32		qc_active;
264 
265 	unsigned int	last_issue_tag;
266 
267 	/* fifo circular queue to store deferral command */
268 	struct defer_queue defer_queue;
269 
270 	/* for NCQ interrupt analysis */
271 	u32		dhfis_bits;
272 	u32		dmafis_bits;
273 	u32		sdbfis_bits;
274 
275 	unsigned int	ncq_flags;
276 };
277 
278 
279 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
280 
281 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
282 #ifdef CONFIG_PM_SLEEP
283 static int nv_pci_device_resume(struct pci_dev *pdev);
284 #endif
285 static void nv_ck804_host_stop(struct ata_host *host);
286 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
287 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
288 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
289 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val);
290 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val);
291 
292 static int nv_hardreset(struct ata_link *link, unsigned int *class,
293 			unsigned long deadline);
294 static void nv_nf2_freeze(struct ata_port *ap);
295 static void nv_nf2_thaw(struct ata_port *ap);
296 static void nv_ck804_freeze(struct ata_port *ap);
297 static void nv_ck804_thaw(struct ata_port *ap);
298 static int nv_adma_slave_config(struct scsi_device *sdev);
299 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
300 static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
301 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
302 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
303 static void nv_adma_irq_clear(struct ata_port *ap);
304 static int nv_adma_port_start(struct ata_port *ap);
305 static void nv_adma_port_stop(struct ata_port *ap);
306 #ifdef CONFIG_PM
307 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
308 static int nv_adma_port_resume(struct ata_port *ap);
309 #endif
310 static void nv_adma_freeze(struct ata_port *ap);
311 static void nv_adma_thaw(struct ata_port *ap);
312 static void nv_adma_error_handler(struct ata_port *ap);
313 static void nv_adma_host_stop(struct ata_host *host);
314 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
315 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
316 
317 static void nv_mcp55_thaw(struct ata_port *ap);
318 static void nv_mcp55_freeze(struct ata_port *ap);
319 static void nv_swncq_error_handler(struct ata_port *ap);
320 static int nv_swncq_slave_config(struct scsi_device *sdev);
321 static int nv_swncq_port_start(struct ata_port *ap);
322 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
323 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
324 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
325 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
326 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
327 #ifdef CONFIG_PM
328 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
329 static int nv_swncq_port_resume(struct ata_port *ap);
330 #endif
331 
332 enum nv_host_type
333 {
334 	GENERIC,
335 	NFORCE2,
336 	NFORCE3 = NFORCE2,	/* NF2 == NF3 as far as sata_nv is concerned */
337 	CK804,
338 	ADMA,
339 	MCP5x,
340 	SWNCQ,
341 };
342 
343 static const struct pci_device_id nv_pci_tbl[] = {
344 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
345 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
346 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
347 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
348 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
349 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
350 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
351 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x },
352 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x },
353 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x },
354 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x },
355 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
356 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
357 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
358 
359 	{ } /* terminate list */
360 };
361 
362 static struct pci_driver nv_pci_driver = {
363 	.name			= DRV_NAME,
364 	.id_table		= nv_pci_tbl,
365 	.probe			= nv_init_one,
366 #ifdef CONFIG_PM_SLEEP
367 	.suspend		= ata_pci_device_suspend,
368 	.resume			= nv_pci_device_resume,
369 #endif
370 	.remove			= ata_pci_remove_one,
371 };
372 
373 static struct scsi_host_template nv_sht = {
374 	ATA_BMDMA_SHT(DRV_NAME),
375 };
376 
377 static struct scsi_host_template nv_adma_sht = {
378 	ATA_NCQ_SHT(DRV_NAME),
379 	.can_queue		= NV_ADMA_MAX_CPBS,
380 	.sg_tablesize		= NV_ADMA_SGTBL_TOTAL_LEN,
381 	.dma_boundary		= NV_ADMA_DMA_BOUNDARY,
382 	.slave_configure	= nv_adma_slave_config,
383 };
384 
385 static struct scsi_host_template nv_swncq_sht = {
386 	ATA_NCQ_SHT(DRV_NAME),
387 	.can_queue		= ATA_MAX_QUEUE - 1,
388 	.sg_tablesize		= LIBATA_MAX_PRD,
389 	.dma_boundary		= ATA_DMA_BOUNDARY,
390 	.slave_configure	= nv_swncq_slave_config,
391 };
392 
393 /*
394  * NV SATA controllers have various different problems with hardreset
395  * protocol depending on the specific controller and device.
396  *
397  * GENERIC:
398  *
399  *  bko11195 reports that link doesn't come online after hardreset on
400  *  generic nv's and there have been several other similar reports on
401  *  linux-ide.
402  *
403  *  bko12351#c23 reports that warmplug on MCP61 doesn't work with
404  *  softreset.
405  *
406  * NF2/3:
407  *
408  *  bko3352 reports nf2/3 controllers can't determine device signature
409  *  reliably after hardreset.  The following thread reports detection
410  *  failure on cold boot with the standard debouncing timing.
411  *
412  *  http://thread.gmane.org/gmane.linux.ide/34098
413  *
414  *  bko12176 reports that hardreset fails to bring up the link during
415  *  boot on nf2.
416  *
417  * CK804:
418  *
419  *  For initial probing after boot and hot plugging, hardreset mostly
420  *  works fine on CK804 but curiously, reprobing on the initial port
421  *  by rescanning or rmmod/insmod fails to acquire the initial D2H Reg
422  *  FIS in somewhat undeterministic way.
423  *
424  * SWNCQ:
425  *
426  *  bko12351 reports that when SWNCQ is enabled, for hotplug to work,
427  *  hardreset should be used and hardreset can't report proper
428  *  signature, which suggests that mcp5x is closer to nf2 as long as
429  *  reset quirkiness is concerned.
430  *
431  *  bko12703 reports that boot probing fails for intel SSD with
432  *  hardreset.  Link fails to come online.  Softreset works fine.
433  *
434  * The failures are varied but the following patterns seem true for
435  * all flavors.
436  *
437  * - Softreset during boot always works.
438  *
439  * - Hardreset during boot sometimes fails to bring up the link on
440  *   certain comibnations and device signature acquisition is
441  *   unreliable.
442  *
443  * - Hardreset is often necessary after hotplug.
444  *
445  * So, preferring softreset for boot probing and error handling (as
446  * hardreset might bring down the link) but using hardreset for
447  * post-boot probing should work around the above issues in most
448  * cases.  Define nv_hardreset() which only kicks in for post-boot
449  * probing and use it for all variants.
450  */
451 static struct ata_port_operations nv_generic_ops = {
452 	.inherits		= &ata_bmdma_port_ops,
453 	.lost_interrupt		= ATA_OP_NULL,
454 	.scr_read		= nv_scr_read,
455 	.scr_write		= nv_scr_write,
456 	.hardreset		= nv_hardreset,
457 };
458 
459 static struct ata_port_operations nv_nf2_ops = {
460 	.inherits		= &nv_generic_ops,
461 	.freeze			= nv_nf2_freeze,
462 	.thaw			= nv_nf2_thaw,
463 };
464 
465 static struct ata_port_operations nv_ck804_ops = {
466 	.inherits		= &nv_generic_ops,
467 	.freeze			= nv_ck804_freeze,
468 	.thaw			= nv_ck804_thaw,
469 	.host_stop		= nv_ck804_host_stop,
470 };
471 
472 static struct ata_port_operations nv_adma_ops = {
473 	.inherits		= &nv_ck804_ops,
474 
475 	.check_atapi_dma	= nv_adma_check_atapi_dma,
476 	.sff_tf_read		= nv_adma_tf_read,
477 	.qc_defer		= ata_std_qc_defer,
478 	.qc_prep		= nv_adma_qc_prep,
479 	.qc_issue		= nv_adma_qc_issue,
480 	.sff_irq_clear		= nv_adma_irq_clear,
481 
482 	.freeze			= nv_adma_freeze,
483 	.thaw			= nv_adma_thaw,
484 	.error_handler		= nv_adma_error_handler,
485 	.post_internal_cmd	= nv_adma_post_internal_cmd,
486 
487 	.port_start		= nv_adma_port_start,
488 	.port_stop		= nv_adma_port_stop,
489 #ifdef CONFIG_PM
490 	.port_suspend		= nv_adma_port_suspend,
491 	.port_resume		= nv_adma_port_resume,
492 #endif
493 	.host_stop		= nv_adma_host_stop,
494 };
495 
496 static struct ata_port_operations nv_swncq_ops = {
497 	.inherits		= &nv_generic_ops,
498 
499 	.qc_defer		= ata_std_qc_defer,
500 	.qc_prep		= nv_swncq_qc_prep,
501 	.qc_issue		= nv_swncq_qc_issue,
502 
503 	.freeze			= nv_mcp55_freeze,
504 	.thaw			= nv_mcp55_thaw,
505 	.error_handler		= nv_swncq_error_handler,
506 
507 #ifdef CONFIG_PM
508 	.port_suspend		= nv_swncq_port_suspend,
509 	.port_resume		= nv_swncq_port_resume,
510 #endif
511 	.port_start		= nv_swncq_port_start,
512 };
513 
514 struct nv_pi_priv {
515 	irq_handler_t			irq_handler;
516 	struct scsi_host_template	*sht;
517 };
518 
519 #define NV_PI_PRIV(_irq_handler, _sht) \
520 	&(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht }
521 
522 static const struct ata_port_info nv_port_info[] = {
523 	/* generic */
524 	{
525 		.flags		= ATA_FLAG_SATA,
526 		.pio_mask	= NV_PIO_MASK,
527 		.mwdma_mask	= NV_MWDMA_MASK,
528 		.udma_mask	= NV_UDMA_MASK,
529 		.port_ops	= &nv_generic_ops,
530 		.private_data	= NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
531 	},
532 	/* nforce2/3 */
533 	{
534 		.flags		= ATA_FLAG_SATA,
535 		.pio_mask	= NV_PIO_MASK,
536 		.mwdma_mask	= NV_MWDMA_MASK,
537 		.udma_mask	= NV_UDMA_MASK,
538 		.port_ops	= &nv_nf2_ops,
539 		.private_data	= NV_PI_PRIV(nv_nf2_interrupt, &nv_sht),
540 	},
541 	/* ck804 */
542 	{
543 		.flags		= ATA_FLAG_SATA,
544 		.pio_mask	= NV_PIO_MASK,
545 		.mwdma_mask	= NV_MWDMA_MASK,
546 		.udma_mask	= NV_UDMA_MASK,
547 		.port_ops	= &nv_ck804_ops,
548 		.private_data	= NV_PI_PRIV(nv_ck804_interrupt, &nv_sht),
549 	},
550 	/* ADMA */
551 	{
552 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NCQ,
553 		.pio_mask	= NV_PIO_MASK,
554 		.mwdma_mask	= NV_MWDMA_MASK,
555 		.udma_mask	= NV_UDMA_MASK,
556 		.port_ops	= &nv_adma_ops,
557 		.private_data	= NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht),
558 	},
559 	/* MCP5x */
560 	{
561 		.flags		= ATA_FLAG_SATA,
562 		.pio_mask	= NV_PIO_MASK,
563 		.mwdma_mask	= NV_MWDMA_MASK,
564 		.udma_mask	= NV_UDMA_MASK,
565 		.port_ops	= &nv_generic_ops,
566 		.private_data	= NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
567 	},
568 	/* SWNCQ */
569 	{
570 		.flags	        = ATA_FLAG_SATA | ATA_FLAG_NCQ,
571 		.pio_mask	= NV_PIO_MASK,
572 		.mwdma_mask	= NV_MWDMA_MASK,
573 		.udma_mask	= NV_UDMA_MASK,
574 		.port_ops	= &nv_swncq_ops,
575 		.private_data	= NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht),
576 	},
577 };
578 
579 MODULE_AUTHOR("NVIDIA");
580 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
581 MODULE_LICENSE("GPL");
582 MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
583 MODULE_VERSION(DRV_VERSION);
584 
585 static bool adma_enabled;
586 static bool swncq_enabled = true;
587 static bool msi_enabled;
588 
589 static void nv_adma_register_mode(struct ata_port *ap)
590 {
591 	struct nv_adma_port_priv *pp = ap->private_data;
592 	void __iomem *mmio = pp->ctl_block;
593 	u16 tmp, status;
594 	int count = 0;
595 
596 	if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
597 		return;
598 
599 	status = readw(mmio + NV_ADMA_STAT);
600 	while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
601 		ndelay(50);
602 		status = readw(mmio + NV_ADMA_STAT);
603 		count++;
604 	}
605 	if (count == 20)
606 		ata_port_warn(ap, "timeout waiting for ADMA IDLE, stat=0x%hx\n",
607 			      status);
608 
609 	tmp = readw(mmio + NV_ADMA_CTL);
610 	writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
611 
612 	count = 0;
613 	status = readw(mmio + NV_ADMA_STAT);
614 	while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
615 		ndelay(50);
616 		status = readw(mmio + NV_ADMA_STAT);
617 		count++;
618 	}
619 	if (count == 20)
620 		ata_port_warn(ap,
621 			      "timeout waiting for ADMA LEGACY, stat=0x%hx\n",
622 			      status);
623 
624 	pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
625 }
626 
627 static void nv_adma_mode(struct ata_port *ap)
628 {
629 	struct nv_adma_port_priv *pp = ap->private_data;
630 	void __iomem *mmio = pp->ctl_block;
631 	u16 tmp, status;
632 	int count = 0;
633 
634 	if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
635 		return;
636 
637 	WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
638 
639 	tmp = readw(mmio + NV_ADMA_CTL);
640 	writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
641 
642 	status = readw(mmio + NV_ADMA_STAT);
643 	while (((status & NV_ADMA_STAT_LEGACY) ||
644 	      !(status & NV_ADMA_STAT_IDLE)) && count < 20) {
645 		ndelay(50);
646 		status = readw(mmio + NV_ADMA_STAT);
647 		count++;
648 	}
649 	if (count == 20)
650 		ata_port_warn(ap,
651 			"timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
652 			status);
653 
654 	pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
655 }
656 
657 static int nv_adma_slave_config(struct scsi_device *sdev)
658 {
659 	struct ata_port *ap = ata_shost_to_port(sdev->host);
660 	struct nv_adma_port_priv *pp = ap->private_data;
661 	struct nv_adma_port_priv *port0, *port1;
662 	struct pci_dev *pdev = to_pci_dev(ap->host->dev);
663 	unsigned long segment_boundary, flags;
664 	unsigned short sg_tablesize;
665 	int rc;
666 	int adma_enable;
667 	u32 current_reg, new_reg, config_mask;
668 
669 	rc = ata_scsi_slave_config(sdev);
670 
671 	if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
672 		/* Not a proper libata device, ignore */
673 		return rc;
674 
675 	spin_lock_irqsave(ap->lock, flags);
676 
677 	if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
678 		/*
679 		 * NVIDIA reports that ADMA mode does not support ATAPI commands.
680 		 * Therefore ATAPI commands are sent through the legacy interface.
681 		 * However, the legacy interface only supports 32-bit DMA.
682 		 * Restrict DMA parameters as required by the legacy interface
683 		 * when an ATAPI device is connected.
684 		 */
685 		segment_boundary = ATA_DMA_BOUNDARY;
686 		/* Subtract 1 since an extra entry may be needed for padding, see
687 		   libata-scsi.c */
688 		sg_tablesize = LIBATA_MAX_PRD - 1;
689 
690 		/* Since the legacy DMA engine is in use, we need to disable ADMA
691 		   on the port. */
692 		adma_enable = 0;
693 		nv_adma_register_mode(ap);
694 	} else {
695 		segment_boundary = NV_ADMA_DMA_BOUNDARY;
696 		sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
697 		adma_enable = 1;
698 	}
699 
700 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
701 
702 	if (ap->port_no == 1)
703 		config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
704 			      NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
705 	else
706 		config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
707 			      NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
708 
709 	if (adma_enable) {
710 		new_reg = current_reg | config_mask;
711 		pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
712 	} else {
713 		new_reg = current_reg & ~config_mask;
714 		pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
715 	}
716 
717 	if (current_reg != new_reg)
718 		pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
719 
720 	port0 = ap->host->ports[0]->private_data;
721 	port1 = ap->host->ports[1]->private_data;
722 	if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
723 	    (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) {
724 		/*
725 		 * We have to set the DMA mask to 32-bit if either port is in
726 		 * ATAPI mode, since they are on the same PCI device which is
727 		 * used for DMA mapping.  If either SCSI device is not allocated
728 		 * yet, it's OK since that port will discover its correct
729 		 * setting when it does get allocated.
730 		 */
731 		rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
732 	} else {
733 		rc = dma_set_mask(&pdev->dev, pp->adma_dma_mask);
734 	}
735 
736 	blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
737 	blk_queue_max_segments(sdev->request_queue, sg_tablesize);
738 	ata_port_info(ap,
739 		      "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
740 		      (unsigned long long)*ap->host->dev->dma_mask,
741 		      segment_boundary, sg_tablesize);
742 
743 	spin_unlock_irqrestore(ap->lock, flags);
744 
745 	return rc;
746 }
747 
748 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
749 {
750 	struct nv_adma_port_priv *pp = qc->ap->private_data;
751 	return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
752 }
753 
754 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
755 {
756 	/* Other than when internal or pass-through commands are executed,
757 	   the only time this function will be called in ADMA mode will be
758 	   if a command fails. In the failure case we don't care about going
759 	   into register mode with ADMA commands pending, as the commands will
760 	   all shortly be aborted anyway. We assume that NCQ commands are not
761 	   issued via passthrough, which is the only way that switching into
762 	   ADMA mode could abort outstanding commands. */
763 	nv_adma_register_mode(ap);
764 
765 	ata_sff_tf_read(ap, tf);
766 }
767 
768 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
769 {
770 	unsigned int idx = 0;
771 
772 	if (tf->flags & ATA_TFLAG_ISADDR) {
773 		if (tf->flags & ATA_TFLAG_LBA48) {
774 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR   << 8) | tf->hob_feature | WNB);
775 			cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
776 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAL  << 8) | tf->hob_lbal);
777 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAM  << 8) | tf->hob_lbam);
778 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAH  << 8) | tf->hob_lbah);
779 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR    << 8) | tf->feature);
780 		} else
781 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR    << 8) | tf->feature | WNB);
782 
783 		cpb[idx++] = cpu_to_le16((ATA_REG_NSECT  << 8) | tf->nsect);
784 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAL   << 8) | tf->lbal);
785 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAM   << 8) | tf->lbam);
786 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAH   << 8) | tf->lbah);
787 	}
788 
789 	if (tf->flags & ATA_TFLAG_DEVICE)
790 		cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
791 
792 	cpb[idx++] = cpu_to_le16((ATA_REG_CMD    << 8) | tf->command | CMDEND);
793 
794 	while (idx < 12)
795 		cpb[idx++] = cpu_to_le16(IGN);
796 
797 	return idx;
798 }
799 
800 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
801 {
802 	struct nv_adma_port_priv *pp = ap->private_data;
803 	u8 flags = pp->cpb[cpb_num].resp_flags;
804 
805 	VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
806 
807 	if (unlikely((force_err ||
808 		     flags & (NV_CPB_RESP_ATA_ERR |
809 			      NV_CPB_RESP_CMD_ERR |
810 			      NV_CPB_RESP_CPB_ERR)))) {
811 		struct ata_eh_info *ehi = &ap->link.eh_info;
812 		int freeze = 0;
813 
814 		ata_ehi_clear_desc(ehi);
815 		__ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
816 		if (flags & NV_CPB_RESP_ATA_ERR) {
817 			ata_ehi_push_desc(ehi, "ATA error");
818 			ehi->err_mask |= AC_ERR_DEV;
819 		} else if (flags & NV_CPB_RESP_CMD_ERR) {
820 			ata_ehi_push_desc(ehi, "CMD error");
821 			ehi->err_mask |= AC_ERR_DEV;
822 		} else if (flags & NV_CPB_RESP_CPB_ERR) {
823 			ata_ehi_push_desc(ehi, "CPB error");
824 			ehi->err_mask |= AC_ERR_SYSTEM;
825 			freeze = 1;
826 		} else {
827 			/* notifier error, but no error in CPB flags? */
828 			ata_ehi_push_desc(ehi, "unknown");
829 			ehi->err_mask |= AC_ERR_OTHER;
830 			freeze = 1;
831 		}
832 		/* Kill all commands. EH will determine what actually failed. */
833 		if (freeze)
834 			ata_port_freeze(ap);
835 		else
836 			ata_port_abort(ap);
837 		return -1;
838 	}
839 
840 	if (likely(flags & NV_CPB_RESP_DONE))
841 		return 1;
842 	return 0;
843 }
844 
845 static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
846 {
847 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
848 
849 	/* freeze if hotplugged */
850 	if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
851 		ata_port_freeze(ap);
852 		return 1;
853 	}
854 
855 	/* bail out if not our interrupt */
856 	if (!(irq_stat & NV_INT_DEV))
857 		return 0;
858 
859 	/* DEV interrupt w/ no active qc? */
860 	if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
861 		ata_sff_check_status(ap);
862 		return 1;
863 	}
864 
865 	/* handle interrupt */
866 	return ata_bmdma_port_intr(ap, qc);
867 }
868 
869 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
870 {
871 	struct ata_host *host = dev_instance;
872 	int i, handled = 0;
873 	u32 notifier_clears[2];
874 
875 	spin_lock(&host->lock);
876 
877 	for (i = 0; i < host->n_ports; i++) {
878 		struct ata_port *ap = host->ports[i];
879 		struct nv_adma_port_priv *pp = ap->private_data;
880 		void __iomem *mmio = pp->ctl_block;
881 		u16 status;
882 		u32 gen_ctl;
883 		u32 notifier, notifier_error;
884 
885 		notifier_clears[i] = 0;
886 
887 		/* if ADMA is disabled, use standard ata interrupt handler */
888 		if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
889 			u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
890 				>> (NV_INT_PORT_SHIFT * i);
891 			handled += nv_host_intr(ap, irq_stat);
892 			continue;
893 		}
894 
895 		/* if in ATA register mode, check for standard interrupts */
896 		if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
897 			u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
898 				>> (NV_INT_PORT_SHIFT * i);
899 			if (ata_tag_valid(ap->link.active_tag))
900 				/** NV_INT_DEV indication seems unreliable
901 				    at times at least in ADMA mode. Force it
902 				    on always when a command is active, to
903 				    prevent losing interrupts. */
904 				irq_stat |= NV_INT_DEV;
905 			handled += nv_host_intr(ap, irq_stat);
906 		}
907 
908 		notifier = readl(mmio + NV_ADMA_NOTIFIER);
909 		notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
910 		notifier_clears[i] = notifier | notifier_error;
911 
912 		gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
913 
914 		if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
915 		    !notifier_error)
916 			/* Nothing to do */
917 			continue;
918 
919 		status = readw(mmio + NV_ADMA_STAT);
920 
921 		/*
922 		 * Clear status. Ensure the controller sees the
923 		 * clearing before we start looking at any of the CPB
924 		 * statuses, so that any CPB completions after this
925 		 * point in the handler will raise another interrupt.
926 		 */
927 		writew(status, mmio + NV_ADMA_STAT);
928 		readw(mmio + NV_ADMA_STAT); /* flush posted write */
929 		rmb();
930 
931 		handled++; /* irq handled if we got here */
932 
933 		/* freeze if hotplugged or controller error */
934 		if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
935 				       NV_ADMA_STAT_HOTUNPLUG |
936 				       NV_ADMA_STAT_TIMEOUT |
937 				       NV_ADMA_STAT_SERROR))) {
938 			struct ata_eh_info *ehi = &ap->link.eh_info;
939 
940 			ata_ehi_clear_desc(ehi);
941 			__ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
942 			if (status & NV_ADMA_STAT_TIMEOUT) {
943 				ehi->err_mask |= AC_ERR_SYSTEM;
944 				ata_ehi_push_desc(ehi, "timeout");
945 			} else if (status & NV_ADMA_STAT_HOTPLUG) {
946 				ata_ehi_hotplugged(ehi);
947 				ata_ehi_push_desc(ehi, "hotplug");
948 			} else if (status & NV_ADMA_STAT_HOTUNPLUG) {
949 				ata_ehi_hotplugged(ehi);
950 				ata_ehi_push_desc(ehi, "hot unplug");
951 			} else if (status & NV_ADMA_STAT_SERROR) {
952 				/* let EH analyze SError and figure out cause */
953 				ata_ehi_push_desc(ehi, "SError");
954 			} else
955 				ata_ehi_push_desc(ehi, "unknown");
956 			ata_port_freeze(ap);
957 			continue;
958 		}
959 
960 		if (status & (NV_ADMA_STAT_DONE |
961 			      NV_ADMA_STAT_CPBERR |
962 			      NV_ADMA_STAT_CMD_COMPLETE)) {
963 			u32 check_commands = notifier_clears[i];
964 			u32 done_mask = 0;
965 			int pos, rc;
966 
967 			if (status & NV_ADMA_STAT_CPBERR) {
968 				/* check all active commands */
969 				if (ata_tag_valid(ap->link.active_tag))
970 					check_commands = 1 <<
971 						ap->link.active_tag;
972 				else
973 					check_commands = ap->link.sactive;
974 			}
975 
976 			/* check CPBs for completed commands */
977 			while ((pos = ffs(check_commands))) {
978 				pos--;
979 				rc = nv_adma_check_cpb(ap, pos,
980 						notifier_error & (1 << pos));
981 				if (rc > 0)
982 					done_mask |= 1 << pos;
983 				else if (unlikely(rc < 0))
984 					check_commands = 0;
985 				check_commands &= ~(1 << pos);
986 			}
987 			ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
988 		}
989 	}
990 
991 	if (notifier_clears[0] || notifier_clears[1]) {
992 		/* Note: Both notifier clear registers must be written
993 		   if either is set, even if one is zero, according to NVIDIA. */
994 		struct nv_adma_port_priv *pp = host->ports[0]->private_data;
995 		writel(notifier_clears[0], pp->notifier_clear_block);
996 		pp = host->ports[1]->private_data;
997 		writel(notifier_clears[1], pp->notifier_clear_block);
998 	}
999 
1000 	spin_unlock(&host->lock);
1001 
1002 	return IRQ_RETVAL(handled);
1003 }
1004 
1005 static void nv_adma_freeze(struct ata_port *ap)
1006 {
1007 	struct nv_adma_port_priv *pp = ap->private_data;
1008 	void __iomem *mmio = pp->ctl_block;
1009 	u16 tmp;
1010 
1011 	nv_ck804_freeze(ap);
1012 
1013 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1014 		return;
1015 
1016 	/* clear any outstanding CK804 notifications */
1017 	writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1018 		ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1019 
1020 	/* Disable interrupt */
1021 	tmp = readw(mmio + NV_ADMA_CTL);
1022 	writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1023 		mmio + NV_ADMA_CTL);
1024 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1025 }
1026 
1027 static void nv_adma_thaw(struct ata_port *ap)
1028 {
1029 	struct nv_adma_port_priv *pp = ap->private_data;
1030 	void __iomem *mmio = pp->ctl_block;
1031 	u16 tmp;
1032 
1033 	nv_ck804_thaw(ap);
1034 
1035 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1036 		return;
1037 
1038 	/* Enable interrupt */
1039 	tmp = readw(mmio + NV_ADMA_CTL);
1040 	writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1041 		mmio + NV_ADMA_CTL);
1042 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1043 }
1044 
1045 static void nv_adma_irq_clear(struct ata_port *ap)
1046 {
1047 	struct nv_adma_port_priv *pp = ap->private_data;
1048 	void __iomem *mmio = pp->ctl_block;
1049 	u32 notifier_clears[2];
1050 
1051 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
1052 		ata_bmdma_irq_clear(ap);
1053 		return;
1054 	}
1055 
1056 	/* clear any outstanding CK804 notifications */
1057 	writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1058 		ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1059 
1060 	/* clear ADMA status */
1061 	writew(0xffff, mmio + NV_ADMA_STAT);
1062 
1063 	/* clear notifiers - note both ports need to be written with
1064 	   something even though we are only clearing on one */
1065 	if (ap->port_no == 0) {
1066 		notifier_clears[0] = 0xFFFFFFFF;
1067 		notifier_clears[1] = 0;
1068 	} else {
1069 		notifier_clears[0] = 0;
1070 		notifier_clears[1] = 0xFFFFFFFF;
1071 	}
1072 	pp = ap->host->ports[0]->private_data;
1073 	writel(notifier_clears[0], pp->notifier_clear_block);
1074 	pp = ap->host->ports[1]->private_data;
1075 	writel(notifier_clears[1], pp->notifier_clear_block);
1076 }
1077 
1078 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
1079 {
1080 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1081 
1082 	if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
1083 		ata_bmdma_post_internal_cmd(qc);
1084 }
1085 
1086 static int nv_adma_port_start(struct ata_port *ap)
1087 {
1088 	struct device *dev = ap->host->dev;
1089 	struct nv_adma_port_priv *pp;
1090 	int rc;
1091 	void *mem;
1092 	dma_addr_t mem_dma;
1093 	void __iomem *mmio;
1094 	struct pci_dev *pdev = to_pci_dev(dev);
1095 	u16 tmp;
1096 
1097 	VPRINTK("ENTER\n");
1098 
1099 	/*
1100 	 * Ensure DMA mask is set to 32-bit before allocating legacy PRD and
1101 	 * pad buffers.
1102 	 */
1103 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1104 	if (rc)
1105 		return rc;
1106 
1107 	/* we might fallback to bmdma, allocate bmdma resources */
1108 	rc = ata_bmdma_port_start(ap);
1109 	if (rc)
1110 		return rc;
1111 
1112 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1113 	if (!pp)
1114 		return -ENOMEM;
1115 
1116 	mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
1117 	       ap->port_no * NV_ADMA_PORT_SIZE;
1118 	pp->ctl_block = mmio;
1119 	pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
1120 	pp->notifier_clear_block = pp->gen_block +
1121 	       NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
1122 
1123 	/*
1124 	 * Now that the legacy PRD and padding buffer are allocated we can
1125 	 * try to raise the DMA mask to allocate the CPB/APRD table.
1126 	 */
1127 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1128 	if (rc) {
1129 		rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1130 		if (rc)
1131 			return rc;
1132 	}
1133 	pp->adma_dma_mask = *dev->dma_mask;
1134 
1135 	mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
1136 				  &mem_dma, GFP_KERNEL);
1137 	if (!mem)
1138 		return -ENOMEM;
1139 
1140 	/*
1141 	 * First item in chunk of DMA memory:
1142 	 * 128-byte command parameter block (CPB)
1143 	 * one for each command tag
1144 	 */
1145 	pp->cpb     = mem;
1146 	pp->cpb_dma = mem_dma;
1147 
1148 	writel(mem_dma & 0xFFFFFFFF, 	mmio + NV_ADMA_CPB_BASE_LOW);
1149 	writel((mem_dma >> 16) >> 16,	mmio + NV_ADMA_CPB_BASE_HIGH);
1150 
1151 	mem     += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1152 	mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1153 
1154 	/*
1155 	 * Second item: block of ADMA_SGTBL_LEN s/g entries
1156 	 */
1157 	pp->aprd = mem;
1158 	pp->aprd_dma = mem_dma;
1159 
1160 	ap->private_data = pp;
1161 
1162 	/* clear any outstanding interrupt conditions */
1163 	writew(0xffff, mmio + NV_ADMA_STAT);
1164 
1165 	/* initialize port variables */
1166 	pp->flags = NV_ADMA_PORT_REGISTER_MODE;
1167 
1168 	/* clear CPB fetch count */
1169 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1170 
1171 	/* clear GO for register mode, enable interrupt */
1172 	tmp = readw(mmio + NV_ADMA_CTL);
1173 	writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1174 		NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1175 
1176 	tmp = readw(mmio + NV_ADMA_CTL);
1177 	writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1178 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1179 	udelay(1);
1180 	writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1181 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1182 
1183 	return 0;
1184 }
1185 
1186 static void nv_adma_port_stop(struct ata_port *ap)
1187 {
1188 	struct nv_adma_port_priv *pp = ap->private_data;
1189 	void __iomem *mmio = pp->ctl_block;
1190 
1191 	VPRINTK("ENTER\n");
1192 	writew(0, mmio + NV_ADMA_CTL);
1193 }
1194 
1195 #ifdef CONFIG_PM
1196 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
1197 {
1198 	struct nv_adma_port_priv *pp = ap->private_data;
1199 	void __iomem *mmio = pp->ctl_block;
1200 
1201 	/* Go to register mode - clears GO */
1202 	nv_adma_register_mode(ap);
1203 
1204 	/* clear CPB fetch count */
1205 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1206 
1207 	/* disable interrupt, shut down port */
1208 	writew(0, mmio + NV_ADMA_CTL);
1209 
1210 	return 0;
1211 }
1212 
1213 static int nv_adma_port_resume(struct ata_port *ap)
1214 {
1215 	struct nv_adma_port_priv *pp = ap->private_data;
1216 	void __iomem *mmio = pp->ctl_block;
1217 	u16 tmp;
1218 
1219 	/* set CPB block location */
1220 	writel(pp->cpb_dma & 0xFFFFFFFF, 	mmio + NV_ADMA_CPB_BASE_LOW);
1221 	writel((pp->cpb_dma >> 16) >> 16,	mmio + NV_ADMA_CPB_BASE_HIGH);
1222 
1223 	/* clear any outstanding interrupt conditions */
1224 	writew(0xffff, mmio + NV_ADMA_STAT);
1225 
1226 	/* initialize port variables */
1227 	pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
1228 
1229 	/* clear CPB fetch count */
1230 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1231 
1232 	/* clear GO for register mode, enable interrupt */
1233 	tmp = readw(mmio + NV_ADMA_CTL);
1234 	writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1235 		NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1236 
1237 	tmp = readw(mmio + NV_ADMA_CTL);
1238 	writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1239 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1240 	udelay(1);
1241 	writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1242 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1243 
1244 	return 0;
1245 }
1246 #endif
1247 
1248 static void nv_adma_setup_port(struct ata_port *ap)
1249 {
1250 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1251 	struct ata_ioports *ioport = &ap->ioaddr;
1252 
1253 	VPRINTK("ENTER\n");
1254 
1255 	mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
1256 
1257 	ioport->cmd_addr	= mmio;
1258 	ioport->data_addr	= mmio + (ATA_REG_DATA * 4);
1259 	ioport->error_addr	=
1260 	ioport->feature_addr	= mmio + (ATA_REG_ERR * 4);
1261 	ioport->nsect_addr	= mmio + (ATA_REG_NSECT * 4);
1262 	ioport->lbal_addr	= mmio + (ATA_REG_LBAL * 4);
1263 	ioport->lbam_addr	= mmio + (ATA_REG_LBAM * 4);
1264 	ioport->lbah_addr	= mmio + (ATA_REG_LBAH * 4);
1265 	ioport->device_addr	= mmio + (ATA_REG_DEVICE * 4);
1266 	ioport->status_addr	=
1267 	ioport->command_addr	= mmio + (ATA_REG_STATUS * 4);
1268 	ioport->altstatus_addr	=
1269 	ioport->ctl_addr	= mmio + 0x20;
1270 }
1271 
1272 static int nv_adma_host_init(struct ata_host *host)
1273 {
1274 	struct pci_dev *pdev = to_pci_dev(host->dev);
1275 	unsigned int i;
1276 	u32 tmp32;
1277 
1278 	VPRINTK("ENTER\n");
1279 
1280 	/* enable ADMA on the ports */
1281 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
1282 	tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
1283 		 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
1284 		 NV_MCP_SATA_CFG_20_PORT1_EN |
1285 		 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
1286 
1287 	pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
1288 
1289 	for (i = 0; i < host->n_ports; i++)
1290 		nv_adma_setup_port(host->ports[i]);
1291 
1292 	return 0;
1293 }
1294 
1295 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
1296 			      struct scatterlist *sg,
1297 			      int idx,
1298 			      struct nv_adma_prd *aprd)
1299 {
1300 	u8 flags = 0;
1301 	if (qc->tf.flags & ATA_TFLAG_WRITE)
1302 		flags |= NV_APRD_WRITE;
1303 	if (idx == qc->n_elem - 1)
1304 		flags |= NV_APRD_END;
1305 	else if (idx != 4)
1306 		flags |= NV_APRD_CONT;
1307 
1308 	aprd->addr  = cpu_to_le64(((u64)sg_dma_address(sg)));
1309 	aprd->len   = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
1310 	aprd->flags = flags;
1311 	aprd->packet_len = 0;
1312 }
1313 
1314 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
1315 {
1316 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1317 	struct nv_adma_prd *aprd;
1318 	struct scatterlist *sg;
1319 	unsigned int si;
1320 
1321 	VPRINTK("ENTER\n");
1322 
1323 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1324 		aprd = (si < 5) ? &cpb->aprd[si] :
1325 			&pp->aprd[NV_ADMA_SGTBL_LEN * qc->hw_tag + (si-5)];
1326 		nv_adma_fill_aprd(qc, sg, si, aprd);
1327 	}
1328 	if (si > 5)
1329 		cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->hw_tag)));
1330 	else
1331 		cpb->next_aprd = cpu_to_le64(0);
1332 }
1333 
1334 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
1335 {
1336 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1337 
1338 	/* ADMA engine can only be used for non-ATAPI DMA commands,
1339 	   or interrupt-driven no-data commands. */
1340 	if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
1341 	   (qc->tf.flags & ATA_TFLAG_POLLING))
1342 		return 1;
1343 
1344 	if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
1345 	   (qc->tf.protocol == ATA_PROT_NODATA))
1346 		return 0;
1347 
1348 	return 1;
1349 }
1350 
1351 static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
1352 {
1353 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1354 	struct nv_adma_cpb *cpb = &pp->cpb[qc->hw_tag];
1355 	u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
1356 		       NV_CPB_CTL_IEN;
1357 
1358 	if (nv_adma_use_reg_mode(qc)) {
1359 		BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1360 			(qc->flags & ATA_QCFLAG_DMAMAP));
1361 		nv_adma_register_mode(qc->ap);
1362 		ata_bmdma_qc_prep(qc);
1363 		return;
1364 	}
1365 
1366 	cpb->resp_flags = NV_CPB_RESP_DONE;
1367 	wmb();
1368 	cpb->ctl_flags = 0;
1369 	wmb();
1370 
1371 	cpb->len		= 3;
1372 	cpb->tag		= qc->hw_tag;
1373 	cpb->next_cpb_idx	= 0;
1374 
1375 	/* turn on NCQ flags for NCQ commands */
1376 	if (qc->tf.protocol == ATA_PROT_NCQ)
1377 		ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
1378 
1379 	VPRINTK("qc->flags = 0x%lx\n", qc->flags);
1380 
1381 	nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
1382 
1383 	if (qc->flags & ATA_QCFLAG_DMAMAP) {
1384 		nv_adma_fill_sg(qc, cpb);
1385 		ctl_flags |= NV_CPB_CTL_APRD_VALID;
1386 	} else
1387 		memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
1388 
1389 	/* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
1390 	   until we are finished filling in all of the contents */
1391 	wmb();
1392 	cpb->ctl_flags = ctl_flags;
1393 	wmb();
1394 	cpb->resp_flags = 0;
1395 }
1396 
1397 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
1398 {
1399 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1400 	void __iomem *mmio = pp->ctl_block;
1401 	int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
1402 
1403 	VPRINTK("ENTER\n");
1404 
1405 	/* We can't handle result taskfile with NCQ commands, since
1406 	   retrieving the taskfile switches us out of ADMA mode and would abort
1407 	   existing commands. */
1408 	if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
1409 		     (qc->flags & ATA_QCFLAG_RESULT_TF))) {
1410 		ata_dev_err(qc->dev, "NCQ w/ RESULT_TF not allowed\n");
1411 		return AC_ERR_SYSTEM;
1412 	}
1413 
1414 	if (nv_adma_use_reg_mode(qc)) {
1415 		/* use ATA register mode */
1416 		VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
1417 		BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1418 			(qc->flags & ATA_QCFLAG_DMAMAP));
1419 		nv_adma_register_mode(qc->ap);
1420 		return ata_bmdma_qc_issue(qc);
1421 	} else
1422 		nv_adma_mode(qc->ap);
1423 
1424 	/* write append register, command tag in lower 8 bits
1425 	   and (number of cpbs to append -1) in top 8 bits */
1426 	wmb();
1427 
1428 	if (curr_ncq != pp->last_issue_ncq) {
1429 		/* Seems to need some delay before switching between NCQ and
1430 		   non-NCQ commands, else we get command timeouts and such. */
1431 		udelay(20);
1432 		pp->last_issue_ncq = curr_ncq;
1433 	}
1434 
1435 	writew(qc->hw_tag, mmio + NV_ADMA_APPEND);
1436 
1437 	DPRINTK("Issued tag %u\n", qc->hw_tag);
1438 
1439 	return 0;
1440 }
1441 
1442 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
1443 {
1444 	struct ata_host *host = dev_instance;
1445 	unsigned int i;
1446 	unsigned int handled = 0;
1447 	unsigned long flags;
1448 
1449 	spin_lock_irqsave(&host->lock, flags);
1450 
1451 	for (i = 0; i < host->n_ports; i++) {
1452 		struct ata_port *ap = host->ports[i];
1453 		struct ata_queued_cmd *qc;
1454 
1455 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1456 		if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
1457 			handled += ata_bmdma_port_intr(ap, qc);
1458 		} else {
1459 			/*
1460 			 * No request pending?  Clear interrupt status
1461 			 * anyway, in case there's one pending.
1462 			 */
1463 			ap->ops->sff_check_status(ap);
1464 		}
1465 	}
1466 
1467 	spin_unlock_irqrestore(&host->lock, flags);
1468 
1469 	return IRQ_RETVAL(handled);
1470 }
1471 
1472 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
1473 {
1474 	int i, handled = 0;
1475 
1476 	for (i = 0; i < host->n_ports; i++) {
1477 		handled += nv_host_intr(host->ports[i], irq_stat);
1478 		irq_stat >>= NV_INT_PORT_SHIFT;
1479 	}
1480 
1481 	return IRQ_RETVAL(handled);
1482 }
1483 
1484 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
1485 {
1486 	struct ata_host *host = dev_instance;
1487 	u8 irq_stat;
1488 	irqreturn_t ret;
1489 
1490 	spin_lock(&host->lock);
1491 	irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
1492 	ret = nv_do_interrupt(host, irq_stat);
1493 	spin_unlock(&host->lock);
1494 
1495 	return ret;
1496 }
1497 
1498 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
1499 {
1500 	struct ata_host *host = dev_instance;
1501 	u8 irq_stat;
1502 	irqreturn_t ret;
1503 
1504 	spin_lock(&host->lock);
1505 	irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1506 	ret = nv_do_interrupt(host, irq_stat);
1507 	spin_unlock(&host->lock);
1508 
1509 	return ret;
1510 }
1511 
1512 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val)
1513 {
1514 	if (sc_reg > SCR_CONTROL)
1515 		return -EINVAL;
1516 
1517 	*val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4));
1518 	return 0;
1519 }
1520 
1521 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val)
1522 {
1523 	if (sc_reg > SCR_CONTROL)
1524 		return -EINVAL;
1525 
1526 	iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
1527 	return 0;
1528 }
1529 
1530 static int nv_hardreset(struct ata_link *link, unsigned int *class,
1531 			unsigned long deadline)
1532 {
1533 	struct ata_eh_context *ehc = &link->eh_context;
1534 
1535 	/* Do hardreset iff it's post-boot probing, please read the
1536 	 * comment above port ops for details.
1537 	 */
1538 	if (!(link->ap->pflags & ATA_PFLAG_LOADING) &&
1539 	    !ata_dev_enabled(link->device))
1540 		sata_link_hardreset(link, sata_deb_timing_hotplug, deadline,
1541 				    NULL, NULL);
1542 	else {
1543 		const unsigned long *timing = sata_ehc_deb_timing(ehc);
1544 		int rc;
1545 
1546 		if (!(ehc->i.flags & ATA_EHI_QUIET))
1547 			ata_link_info(link,
1548 				      "nv: skipping hardreset on occupied port\n");
1549 
1550 		/* make sure the link is online */
1551 		rc = sata_link_resume(link, timing, deadline);
1552 		/* whine about phy resume failure but proceed */
1553 		if (rc && rc != -EOPNOTSUPP)
1554 			ata_link_warn(link, "failed to resume link (errno=%d)\n",
1555 				      rc);
1556 	}
1557 
1558 	/* device signature acquisition is unreliable */
1559 	return -EAGAIN;
1560 }
1561 
1562 static void nv_nf2_freeze(struct ata_port *ap)
1563 {
1564 	void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1565 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1566 	u8 mask;
1567 
1568 	mask = ioread8(scr_addr + NV_INT_ENABLE);
1569 	mask &= ~(NV_INT_ALL << shift);
1570 	iowrite8(mask, scr_addr + NV_INT_ENABLE);
1571 }
1572 
1573 static void nv_nf2_thaw(struct ata_port *ap)
1574 {
1575 	void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1576 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1577 	u8 mask;
1578 
1579 	iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
1580 
1581 	mask = ioread8(scr_addr + NV_INT_ENABLE);
1582 	mask |= (NV_INT_MASK << shift);
1583 	iowrite8(mask, scr_addr + NV_INT_ENABLE);
1584 }
1585 
1586 static void nv_ck804_freeze(struct ata_port *ap)
1587 {
1588 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1589 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1590 	u8 mask;
1591 
1592 	mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1593 	mask &= ~(NV_INT_ALL << shift);
1594 	writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1595 }
1596 
1597 static void nv_ck804_thaw(struct ata_port *ap)
1598 {
1599 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1600 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1601 	u8 mask;
1602 
1603 	writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
1604 
1605 	mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1606 	mask |= (NV_INT_MASK << shift);
1607 	writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1608 }
1609 
1610 static void nv_mcp55_freeze(struct ata_port *ap)
1611 {
1612 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1613 	int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1614 	u32 mask;
1615 
1616 	writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1617 
1618 	mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1619 	mask &= ~(NV_INT_ALL_MCP55 << shift);
1620 	writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1621 }
1622 
1623 static void nv_mcp55_thaw(struct ata_port *ap)
1624 {
1625 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1626 	int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1627 	u32 mask;
1628 
1629 	writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1630 
1631 	mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1632 	mask |= (NV_INT_MASK_MCP55 << shift);
1633 	writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1634 }
1635 
1636 static void nv_adma_error_handler(struct ata_port *ap)
1637 {
1638 	struct nv_adma_port_priv *pp = ap->private_data;
1639 	if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
1640 		void __iomem *mmio = pp->ctl_block;
1641 		int i;
1642 		u16 tmp;
1643 
1644 		if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
1645 			u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
1646 			u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
1647 			u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
1648 			u32 status = readw(mmio + NV_ADMA_STAT);
1649 			u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
1650 			u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
1651 
1652 			ata_port_err(ap,
1653 				"EH in ADMA mode, notifier 0x%X "
1654 				"notifier_error 0x%X gen_ctl 0x%X status 0x%X "
1655 				"next cpb count 0x%X next cpb idx 0x%x\n",
1656 				notifier, notifier_error, gen_ctl, status,
1657 				cpb_count, next_cpb_idx);
1658 
1659 			for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
1660 				struct nv_adma_cpb *cpb = &pp->cpb[i];
1661 				if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
1662 				    ap->link.sactive & (1 << i))
1663 					ata_port_err(ap,
1664 						"CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
1665 						i, cpb->ctl_flags, cpb->resp_flags);
1666 			}
1667 		}
1668 
1669 		/* Push us back into port register mode for error handling. */
1670 		nv_adma_register_mode(ap);
1671 
1672 		/* Mark all of the CPBs as invalid to prevent them from
1673 		   being executed */
1674 		for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
1675 			pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
1676 
1677 		/* clear CPB fetch count */
1678 		writew(0, mmio + NV_ADMA_CPB_COUNT);
1679 
1680 		/* Reset channel */
1681 		tmp = readw(mmio + NV_ADMA_CTL);
1682 		writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1683 		readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1684 		udelay(1);
1685 		writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1686 		readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1687 	}
1688 
1689 	ata_bmdma_error_handler(ap);
1690 }
1691 
1692 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
1693 {
1694 	struct nv_swncq_port_priv *pp = ap->private_data;
1695 	struct defer_queue *dq = &pp->defer_queue;
1696 
1697 	/* queue is full */
1698 	WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
1699 	dq->defer_bits |= (1 << qc->hw_tag);
1700 	dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->hw_tag;
1701 }
1702 
1703 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
1704 {
1705 	struct nv_swncq_port_priv *pp = ap->private_data;
1706 	struct defer_queue *dq = &pp->defer_queue;
1707 	unsigned int tag;
1708 
1709 	if (dq->head == dq->tail)	/* null queue */
1710 		return NULL;
1711 
1712 	tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
1713 	dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
1714 	WARN_ON(!(dq->defer_bits & (1 << tag)));
1715 	dq->defer_bits &= ~(1 << tag);
1716 
1717 	return ata_qc_from_tag(ap, tag);
1718 }
1719 
1720 static void nv_swncq_fis_reinit(struct ata_port *ap)
1721 {
1722 	struct nv_swncq_port_priv *pp = ap->private_data;
1723 
1724 	pp->dhfis_bits = 0;
1725 	pp->dmafis_bits = 0;
1726 	pp->sdbfis_bits = 0;
1727 	pp->ncq_flags = 0;
1728 }
1729 
1730 static void nv_swncq_pp_reinit(struct ata_port *ap)
1731 {
1732 	struct nv_swncq_port_priv *pp = ap->private_data;
1733 	struct defer_queue *dq = &pp->defer_queue;
1734 
1735 	dq->head = 0;
1736 	dq->tail = 0;
1737 	dq->defer_bits = 0;
1738 	pp->qc_active = 0;
1739 	pp->last_issue_tag = ATA_TAG_POISON;
1740 	nv_swncq_fis_reinit(ap);
1741 }
1742 
1743 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
1744 {
1745 	struct nv_swncq_port_priv *pp = ap->private_data;
1746 
1747 	writew(fis, pp->irq_block);
1748 }
1749 
1750 static void __ata_bmdma_stop(struct ata_port *ap)
1751 {
1752 	struct ata_queued_cmd qc;
1753 
1754 	qc.ap = ap;
1755 	ata_bmdma_stop(&qc);
1756 }
1757 
1758 static void nv_swncq_ncq_stop(struct ata_port *ap)
1759 {
1760 	struct nv_swncq_port_priv *pp = ap->private_data;
1761 	unsigned int i;
1762 	u32 sactive;
1763 	u32 done_mask;
1764 
1765 	ata_port_err(ap, "EH in SWNCQ mode,QC:qc_active 0x%llX sactive 0x%X\n",
1766 		     ap->qc_active, ap->link.sactive);
1767 	ata_port_err(ap,
1768 		"SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n  "
1769 		"dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
1770 		pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
1771 		pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
1772 
1773 	ata_port_err(ap, "ATA_REG 0x%X ERR_REG 0x%X\n",
1774 		     ap->ops->sff_check_status(ap),
1775 		     ioread8(ap->ioaddr.error_addr));
1776 
1777 	sactive = readl(pp->sactive_block);
1778 	done_mask = pp->qc_active ^ sactive;
1779 
1780 	ata_port_err(ap, "tag : dhfis dmafis sdbfis sactive\n");
1781 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
1782 		u8 err = 0;
1783 		if (pp->qc_active & (1 << i))
1784 			err = 0;
1785 		else if (done_mask & (1 << i))
1786 			err = 1;
1787 		else
1788 			continue;
1789 
1790 		ata_port_err(ap,
1791 			     "tag 0x%x: %01x %01x %01x %01x %s\n", i,
1792 			     (pp->dhfis_bits >> i) & 0x1,
1793 			     (pp->dmafis_bits >> i) & 0x1,
1794 			     (pp->sdbfis_bits >> i) & 0x1,
1795 			     (sactive >> i) & 0x1,
1796 			     (err ? "error! tag doesn't exit" : " "));
1797 	}
1798 
1799 	nv_swncq_pp_reinit(ap);
1800 	ap->ops->sff_irq_clear(ap);
1801 	__ata_bmdma_stop(ap);
1802 	nv_swncq_irq_clear(ap, 0xffff);
1803 }
1804 
1805 static void nv_swncq_error_handler(struct ata_port *ap)
1806 {
1807 	struct ata_eh_context *ehc = &ap->link.eh_context;
1808 
1809 	if (ap->link.sactive) {
1810 		nv_swncq_ncq_stop(ap);
1811 		ehc->i.action |= ATA_EH_RESET;
1812 	}
1813 
1814 	ata_bmdma_error_handler(ap);
1815 }
1816 
1817 #ifdef CONFIG_PM
1818 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
1819 {
1820 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1821 	u32 tmp;
1822 
1823 	/* clear irq */
1824 	writel(~0, mmio + NV_INT_STATUS_MCP55);
1825 
1826 	/* disable irq */
1827 	writel(0, mmio + NV_INT_ENABLE_MCP55);
1828 
1829 	/* disable swncq */
1830 	tmp = readl(mmio + NV_CTL_MCP55);
1831 	tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
1832 	writel(tmp, mmio + NV_CTL_MCP55);
1833 
1834 	return 0;
1835 }
1836 
1837 static int nv_swncq_port_resume(struct ata_port *ap)
1838 {
1839 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1840 	u32 tmp;
1841 
1842 	/* clear irq */
1843 	writel(~0, mmio + NV_INT_STATUS_MCP55);
1844 
1845 	/* enable irq */
1846 	writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1847 
1848 	/* enable swncq */
1849 	tmp = readl(mmio + NV_CTL_MCP55);
1850 	writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1851 
1852 	return 0;
1853 }
1854 #endif
1855 
1856 static void nv_swncq_host_init(struct ata_host *host)
1857 {
1858 	u32 tmp;
1859 	void __iomem *mmio = host->iomap[NV_MMIO_BAR];
1860 	struct pci_dev *pdev = to_pci_dev(host->dev);
1861 	u8 regval;
1862 
1863 	/* disable  ECO 398 */
1864 	pci_read_config_byte(pdev, 0x7f, &regval);
1865 	regval &= ~(1 << 7);
1866 	pci_write_config_byte(pdev, 0x7f, regval);
1867 
1868 	/* enable swncq */
1869 	tmp = readl(mmio + NV_CTL_MCP55);
1870 	VPRINTK("HOST_CTL:0x%X\n", tmp);
1871 	writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1872 
1873 	/* enable irq intr */
1874 	tmp = readl(mmio + NV_INT_ENABLE_MCP55);
1875 	VPRINTK("HOST_ENABLE:0x%X\n", tmp);
1876 	writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1877 
1878 	/*  clear port irq */
1879 	writel(~0x0, mmio + NV_INT_STATUS_MCP55);
1880 }
1881 
1882 static int nv_swncq_slave_config(struct scsi_device *sdev)
1883 {
1884 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1885 	struct pci_dev *pdev = to_pci_dev(ap->host->dev);
1886 	struct ata_device *dev;
1887 	int rc;
1888 	u8 rev;
1889 	u8 check_maxtor = 0;
1890 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
1891 
1892 	rc = ata_scsi_slave_config(sdev);
1893 	if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
1894 		/* Not a proper libata device, ignore */
1895 		return rc;
1896 
1897 	dev = &ap->link.device[sdev->id];
1898 	if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
1899 		return rc;
1900 
1901 	/* if MCP51 and Maxtor, then disable ncq */
1902 	if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
1903 		pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
1904 		check_maxtor = 1;
1905 
1906 	/* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
1907 	if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
1908 		pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
1909 		pci_read_config_byte(pdev, 0x8, &rev);
1910 		if (rev <= 0xa2)
1911 			check_maxtor = 1;
1912 	}
1913 
1914 	if (!check_maxtor)
1915 		return rc;
1916 
1917 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
1918 
1919 	if (strncmp(model_num, "Maxtor", 6) == 0) {
1920 		ata_scsi_change_queue_depth(sdev, 1);
1921 		ata_dev_notice(dev, "Disabling SWNCQ mode (depth %x)\n",
1922 			       sdev->queue_depth);
1923 	}
1924 
1925 	return rc;
1926 }
1927 
1928 static int nv_swncq_port_start(struct ata_port *ap)
1929 {
1930 	struct device *dev = ap->host->dev;
1931 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1932 	struct nv_swncq_port_priv *pp;
1933 	int rc;
1934 
1935 	/* we might fallback to bmdma, allocate bmdma resources */
1936 	rc = ata_bmdma_port_start(ap);
1937 	if (rc)
1938 		return rc;
1939 
1940 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1941 	if (!pp)
1942 		return -ENOMEM;
1943 
1944 	pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
1945 				      &pp->prd_dma, GFP_KERNEL);
1946 	if (!pp->prd)
1947 		return -ENOMEM;
1948 
1949 	ap->private_data = pp;
1950 	pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
1951 	pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
1952 	pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
1953 
1954 	return 0;
1955 }
1956 
1957 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
1958 {
1959 	if (qc->tf.protocol != ATA_PROT_NCQ) {
1960 		ata_bmdma_qc_prep(qc);
1961 		return;
1962 	}
1963 
1964 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1965 		return;
1966 
1967 	nv_swncq_fill_sg(qc);
1968 }
1969 
1970 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
1971 {
1972 	struct ata_port *ap = qc->ap;
1973 	struct scatterlist *sg;
1974 	struct nv_swncq_port_priv *pp = ap->private_data;
1975 	struct ata_bmdma_prd *prd;
1976 	unsigned int si, idx;
1977 
1978 	prd = pp->prd + ATA_MAX_PRD * qc->hw_tag;
1979 
1980 	idx = 0;
1981 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1982 		u32 addr, offset;
1983 		u32 sg_len, len;
1984 
1985 		addr = (u32)sg_dma_address(sg);
1986 		sg_len = sg_dma_len(sg);
1987 
1988 		while (sg_len) {
1989 			offset = addr & 0xffff;
1990 			len = sg_len;
1991 			if ((offset + sg_len) > 0x10000)
1992 				len = 0x10000 - offset;
1993 
1994 			prd[idx].addr = cpu_to_le32(addr);
1995 			prd[idx].flags_len = cpu_to_le32(len & 0xffff);
1996 
1997 			idx++;
1998 			sg_len -= len;
1999 			addr += len;
2000 		}
2001 	}
2002 
2003 	prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2004 }
2005 
2006 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
2007 					  struct ata_queued_cmd *qc)
2008 {
2009 	struct nv_swncq_port_priv *pp = ap->private_data;
2010 
2011 	if (qc == NULL)
2012 		return 0;
2013 
2014 	DPRINTK("Enter\n");
2015 
2016 	writel((1 << qc->hw_tag), pp->sactive_block);
2017 	pp->last_issue_tag = qc->hw_tag;
2018 	pp->dhfis_bits &= ~(1 << qc->hw_tag);
2019 	pp->dmafis_bits &= ~(1 << qc->hw_tag);
2020 	pp->qc_active |= (0x1 << qc->hw_tag);
2021 
2022 	ap->ops->sff_tf_load(ap, &qc->tf);	 /* load tf registers */
2023 	ap->ops->sff_exec_command(ap, &qc->tf);
2024 
2025 	DPRINTK("Issued tag %u\n", qc->hw_tag);
2026 
2027 	return 0;
2028 }
2029 
2030 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
2031 {
2032 	struct ata_port *ap = qc->ap;
2033 	struct nv_swncq_port_priv *pp = ap->private_data;
2034 
2035 	if (qc->tf.protocol != ATA_PROT_NCQ)
2036 		return ata_bmdma_qc_issue(qc);
2037 
2038 	DPRINTK("Enter\n");
2039 
2040 	if (!pp->qc_active)
2041 		nv_swncq_issue_atacmd(ap, qc);
2042 	else
2043 		nv_swncq_qc_to_dq(ap, qc);	/* add qc to defer queue */
2044 
2045 	return 0;
2046 }
2047 
2048 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
2049 {
2050 	u32 serror;
2051 	struct ata_eh_info *ehi = &ap->link.eh_info;
2052 
2053 	ata_ehi_clear_desc(ehi);
2054 
2055 	/* AHCI needs SError cleared; otherwise, it might lock up */
2056 	sata_scr_read(&ap->link, SCR_ERROR, &serror);
2057 	sata_scr_write(&ap->link, SCR_ERROR, serror);
2058 
2059 	/* analyze @irq_stat */
2060 	if (fis & NV_SWNCQ_IRQ_ADDED)
2061 		ata_ehi_push_desc(ehi, "hot plug");
2062 	else if (fis & NV_SWNCQ_IRQ_REMOVED)
2063 		ata_ehi_push_desc(ehi, "hot unplug");
2064 
2065 	ata_ehi_hotplugged(ehi);
2066 
2067 	/* okay, let's hand over to EH */
2068 	ehi->serror |= serror;
2069 
2070 	ata_port_freeze(ap);
2071 }
2072 
2073 static int nv_swncq_sdbfis(struct ata_port *ap)
2074 {
2075 	struct ata_queued_cmd *qc;
2076 	struct nv_swncq_port_priv *pp = ap->private_data;
2077 	struct ata_eh_info *ehi = &ap->link.eh_info;
2078 	u32 sactive;
2079 	u32 done_mask;
2080 	u8 host_stat;
2081 	u8 lack_dhfis = 0;
2082 
2083 	host_stat = ap->ops->bmdma_status(ap);
2084 	if (unlikely(host_stat & ATA_DMA_ERR)) {
2085 		/* error when transferring data to/from memory */
2086 		ata_ehi_clear_desc(ehi);
2087 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2088 		ehi->err_mask |= AC_ERR_HOST_BUS;
2089 		ehi->action |= ATA_EH_RESET;
2090 		return -EINVAL;
2091 	}
2092 
2093 	ap->ops->sff_irq_clear(ap);
2094 	__ata_bmdma_stop(ap);
2095 
2096 	sactive = readl(pp->sactive_block);
2097 	done_mask = pp->qc_active ^ sactive;
2098 
2099 	pp->qc_active &= ~done_mask;
2100 	pp->dhfis_bits &= ~done_mask;
2101 	pp->dmafis_bits &= ~done_mask;
2102 	pp->sdbfis_bits |= done_mask;
2103 	ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2104 
2105 	if (!ap->qc_active) {
2106 		DPRINTK("over\n");
2107 		nv_swncq_pp_reinit(ap);
2108 		return 0;
2109 	}
2110 
2111 	if (pp->qc_active & pp->dhfis_bits)
2112 		return 0;
2113 
2114 	if ((pp->ncq_flags & ncq_saw_backout) ||
2115 	    (pp->qc_active ^ pp->dhfis_bits))
2116 		/* if the controller can't get a device to host register FIS,
2117 		 * The driver needs to reissue the new command.
2118 		 */
2119 		lack_dhfis = 1;
2120 
2121 	DPRINTK("id 0x%x QC: qc_active 0x%x,"
2122 		"SWNCQ:qc_active 0x%X defer_bits %X "
2123 		"dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
2124 		ap->print_id, ap->qc_active, pp->qc_active,
2125 		pp->defer_queue.defer_bits, pp->dhfis_bits,
2126 		pp->dmafis_bits, pp->last_issue_tag);
2127 
2128 	nv_swncq_fis_reinit(ap);
2129 
2130 	if (lack_dhfis) {
2131 		qc = ata_qc_from_tag(ap, pp->last_issue_tag);
2132 		nv_swncq_issue_atacmd(ap, qc);
2133 		return 0;
2134 	}
2135 
2136 	if (pp->defer_queue.defer_bits) {
2137 		/* send deferral queue command */
2138 		qc = nv_swncq_qc_from_dq(ap);
2139 		WARN_ON(qc == NULL);
2140 		nv_swncq_issue_atacmd(ap, qc);
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static inline u32 nv_swncq_tag(struct ata_port *ap)
2147 {
2148 	struct nv_swncq_port_priv *pp = ap->private_data;
2149 	u32 tag;
2150 
2151 	tag = readb(pp->tag_block) >> 2;
2152 	return (tag & 0x1f);
2153 }
2154 
2155 static void nv_swncq_dmafis(struct ata_port *ap)
2156 {
2157 	struct ata_queued_cmd *qc;
2158 	unsigned int rw;
2159 	u8 dmactl;
2160 	u32 tag;
2161 	struct nv_swncq_port_priv *pp = ap->private_data;
2162 
2163 	__ata_bmdma_stop(ap);
2164 	tag = nv_swncq_tag(ap);
2165 
2166 	DPRINTK("dma setup tag 0x%x\n", tag);
2167 	qc = ata_qc_from_tag(ap, tag);
2168 
2169 	if (unlikely(!qc))
2170 		return;
2171 
2172 	rw = qc->tf.flags & ATA_TFLAG_WRITE;
2173 
2174 	/* load PRD table addr. */
2175 	iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->hw_tag,
2176 		  ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2177 
2178 	/* specify data direction, triple-check start bit is clear */
2179 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2180 	dmactl &= ~ATA_DMA_WR;
2181 	if (!rw)
2182 		dmactl |= ATA_DMA_WR;
2183 
2184 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2185 }
2186 
2187 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
2188 {
2189 	struct nv_swncq_port_priv *pp = ap->private_data;
2190 	struct ata_queued_cmd *qc;
2191 	struct ata_eh_info *ehi = &ap->link.eh_info;
2192 	u32 serror;
2193 	u8 ata_stat;
2194 
2195 	ata_stat = ap->ops->sff_check_status(ap);
2196 	nv_swncq_irq_clear(ap, fis);
2197 	if (!fis)
2198 		return;
2199 
2200 	if (ap->pflags & ATA_PFLAG_FROZEN)
2201 		return;
2202 
2203 	if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
2204 		nv_swncq_hotplug(ap, fis);
2205 		return;
2206 	}
2207 
2208 	if (!pp->qc_active)
2209 		return;
2210 
2211 	if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror))
2212 		return;
2213 	ap->ops->scr_write(&ap->link, SCR_ERROR, serror);
2214 
2215 	if (ata_stat & ATA_ERR) {
2216 		ata_ehi_clear_desc(ehi);
2217 		ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
2218 		ehi->err_mask |= AC_ERR_DEV;
2219 		ehi->serror |= serror;
2220 		ehi->action |= ATA_EH_RESET;
2221 		ata_port_freeze(ap);
2222 		return;
2223 	}
2224 
2225 	if (fis & NV_SWNCQ_IRQ_BACKOUT) {
2226 		/* If the IRQ is backout, driver must issue
2227 		 * the new command again some time later.
2228 		 */
2229 		pp->ncq_flags |= ncq_saw_backout;
2230 	}
2231 
2232 	if (fis & NV_SWNCQ_IRQ_SDBFIS) {
2233 		pp->ncq_flags |= ncq_saw_sdb;
2234 		DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
2235 			"dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
2236 			ap->print_id, pp->qc_active, pp->dhfis_bits,
2237 			pp->dmafis_bits, readl(pp->sactive_block));
2238 		if (nv_swncq_sdbfis(ap) < 0)
2239 			goto irq_error;
2240 	}
2241 
2242 	if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
2243 		/* The interrupt indicates the new command
2244 		 * was transmitted correctly to the drive.
2245 		 */
2246 		pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
2247 		pp->ncq_flags |= ncq_saw_d2h;
2248 		if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
2249 			ata_ehi_push_desc(ehi, "illegal fis transaction");
2250 			ehi->err_mask |= AC_ERR_HSM;
2251 			ehi->action |= ATA_EH_RESET;
2252 			goto irq_error;
2253 		}
2254 
2255 		if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
2256 		    !(pp->ncq_flags & ncq_saw_dmas)) {
2257 			ata_stat = ap->ops->sff_check_status(ap);
2258 			if (ata_stat & ATA_BUSY)
2259 				goto irq_exit;
2260 
2261 			if (pp->defer_queue.defer_bits) {
2262 				DPRINTK("send next command\n");
2263 				qc = nv_swncq_qc_from_dq(ap);
2264 				nv_swncq_issue_atacmd(ap, qc);
2265 			}
2266 		}
2267 	}
2268 
2269 	if (fis & NV_SWNCQ_IRQ_DMASETUP) {
2270 		/* program the dma controller with appropriate PRD buffers
2271 		 * and start the DMA transfer for requested command.
2272 		 */
2273 		pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
2274 		pp->ncq_flags |= ncq_saw_dmas;
2275 		nv_swncq_dmafis(ap);
2276 	}
2277 
2278 irq_exit:
2279 	return;
2280 irq_error:
2281 	ata_ehi_push_desc(ehi, "fis:0x%x", fis);
2282 	ata_port_freeze(ap);
2283 	return;
2284 }
2285 
2286 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
2287 {
2288 	struct ata_host *host = dev_instance;
2289 	unsigned int i;
2290 	unsigned int handled = 0;
2291 	unsigned long flags;
2292 	u32 irq_stat;
2293 
2294 	spin_lock_irqsave(&host->lock, flags);
2295 
2296 	irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
2297 
2298 	for (i = 0; i < host->n_ports; i++) {
2299 		struct ata_port *ap = host->ports[i];
2300 
2301 		if (ap->link.sactive) {
2302 			nv_swncq_host_interrupt(ap, (u16)irq_stat);
2303 			handled = 1;
2304 		} else {
2305 			if (irq_stat)	/* reserve Hotplug */
2306 				nv_swncq_irq_clear(ap, 0xfff0);
2307 
2308 			handled += nv_host_intr(ap, (u8)irq_stat);
2309 		}
2310 		irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
2311 	}
2312 
2313 	spin_unlock_irqrestore(&host->lock, flags);
2314 
2315 	return IRQ_RETVAL(handled);
2316 }
2317 
2318 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2319 {
2320 	const struct ata_port_info *ppi[] = { NULL, NULL };
2321 	struct nv_pi_priv *ipriv;
2322 	struct ata_host *host;
2323 	struct nv_host_priv *hpriv;
2324 	int rc;
2325 	u32 bar;
2326 	void __iomem *base;
2327 	unsigned long type = ent->driver_data;
2328 
2329         // Make sure this is a SATA controller by counting the number of bars
2330         // (NVIDIA SATA controllers will always have six bars).  Otherwise,
2331         // it's an IDE controller and we ignore it.
2332 	for (bar = 0; bar < 6; bar++)
2333 		if (pci_resource_start(pdev, bar) == 0)
2334 			return -ENODEV;
2335 
2336 	ata_print_version_once(&pdev->dev, DRV_VERSION);
2337 
2338 	rc = pcim_enable_device(pdev);
2339 	if (rc)
2340 		return rc;
2341 
2342 	/* determine type and allocate host */
2343 	if (type == CK804 && adma_enabled) {
2344 		dev_notice(&pdev->dev, "Using ADMA mode\n");
2345 		type = ADMA;
2346 	} else if (type == MCP5x && swncq_enabled) {
2347 		dev_notice(&pdev->dev, "Using SWNCQ mode\n");
2348 		type = SWNCQ;
2349 	}
2350 
2351 	ppi[0] = &nv_port_info[type];
2352 	ipriv = ppi[0]->private_data;
2353 	rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2354 	if (rc)
2355 		return rc;
2356 
2357 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2358 	if (!hpriv)
2359 		return -ENOMEM;
2360 	hpriv->type = type;
2361 	host->private_data = hpriv;
2362 
2363 	/* request and iomap NV_MMIO_BAR */
2364 	rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
2365 	if (rc)
2366 		return rc;
2367 
2368 	/* configure SCR access */
2369 	base = host->iomap[NV_MMIO_BAR];
2370 	host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
2371 	host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
2372 
2373 	/* enable SATA space for CK804 */
2374 	if (type >= CK804) {
2375 		u8 regval;
2376 
2377 		pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2378 		regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2379 		pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2380 	}
2381 
2382 	/* init ADMA */
2383 	if (type == ADMA) {
2384 		rc = nv_adma_host_init(host);
2385 		if (rc)
2386 			return rc;
2387 	} else if (type == SWNCQ)
2388 		nv_swncq_host_init(host);
2389 
2390 	if (msi_enabled) {
2391 		dev_notice(&pdev->dev, "Using MSI\n");
2392 		pci_enable_msi(pdev);
2393 	}
2394 
2395 	pci_set_master(pdev);
2396 	return ata_pci_sff_activate_host(host, ipriv->irq_handler, ipriv->sht);
2397 }
2398 
2399 #ifdef CONFIG_PM_SLEEP
2400 static int nv_pci_device_resume(struct pci_dev *pdev)
2401 {
2402 	struct ata_host *host = pci_get_drvdata(pdev);
2403 	struct nv_host_priv *hpriv = host->private_data;
2404 	int rc;
2405 
2406 	rc = ata_pci_device_do_resume(pdev);
2407 	if (rc)
2408 		return rc;
2409 
2410 	if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
2411 		if (hpriv->type >= CK804) {
2412 			u8 regval;
2413 
2414 			pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2415 			regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2416 			pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2417 		}
2418 		if (hpriv->type == ADMA) {
2419 			u32 tmp32;
2420 			struct nv_adma_port_priv *pp;
2421 			/* enable/disable ADMA on the ports appropriately */
2422 			pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2423 
2424 			pp = host->ports[0]->private_data;
2425 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2426 				tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2427 					   NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2428 			else
2429 				tmp32 |=  (NV_MCP_SATA_CFG_20_PORT0_EN |
2430 					   NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2431 			pp = host->ports[1]->private_data;
2432 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2433 				tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
2434 					   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2435 			else
2436 				tmp32 |=  (NV_MCP_SATA_CFG_20_PORT1_EN |
2437 					   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2438 
2439 			pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2440 		}
2441 	}
2442 
2443 	ata_host_resume(host);
2444 
2445 	return 0;
2446 }
2447 #endif
2448 
2449 static void nv_ck804_host_stop(struct ata_host *host)
2450 {
2451 	struct pci_dev *pdev = to_pci_dev(host->dev);
2452 	u8 regval;
2453 
2454 	/* disable SATA space for CK804 */
2455 	pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2456 	regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2457 	pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2458 }
2459 
2460 static void nv_adma_host_stop(struct ata_host *host)
2461 {
2462 	struct pci_dev *pdev = to_pci_dev(host->dev);
2463 	u32 tmp32;
2464 
2465 	/* disable ADMA on the ports */
2466 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2467 	tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2468 		   NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
2469 		   NV_MCP_SATA_CFG_20_PORT1_EN |
2470 		   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2471 
2472 	pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2473 
2474 	nv_ck804_host_stop(host);
2475 }
2476 
2477 module_pci_driver(nv_pci_driver);
2478 
2479 module_param_named(adma, adma_enabled, bool, 0444);
2480 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)");
2481 module_param_named(swncq, swncq_enabled, bool, 0444);
2482 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)");
2483 module_param_named(msi, msi_enabled, bool, 0444);
2484 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)");
2485