xref: /linux/drivers/ata/sata_nv.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  sata_nv.c - NVIDIA nForce SATA
3  *
4  *  Copyright 2004 NVIDIA Corp.  All rights reserved.
5  *  Copyright 2004 Andrew Chew
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2, or (at your option)
11  *  any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; see the file COPYING.  If not, write to
20  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  *
23  *  libata documentation is available via 'make {ps|pdf}docs',
24  *  as Documentation/DocBook/libata.*
25  *
26  *  No hardware documentation available outside of NVIDIA.
27  *  This driver programs the NVIDIA SATA controller in a similar
28  *  fashion as with other PCI IDE BMDMA controllers, with a few
29  *  NV-specific details such as register offsets, SATA phy location,
30  *  hotplug info, etc.
31  *
32  *  CK804/MCP04 controllers support an alternate programming interface
33  *  similar to the ADMA specification (with some modifications).
34  *  This allows the use of NCQ. Non-DMA-mapped ATA commands are still
35  *  sent through the legacy interface.
36  *
37  */
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/gfp.h>
42 #include <linux/pci.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/interrupt.h>
47 #include <linux/device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_device.h>
50 #include <linux/libata.h>
51 
52 #define DRV_NAME			"sata_nv"
53 #define DRV_VERSION			"3.5"
54 
55 #define NV_ADMA_DMA_BOUNDARY		0xffffffffUL
56 
57 enum {
58 	NV_MMIO_BAR			= 5,
59 
60 	NV_PORTS			= 2,
61 	NV_PIO_MASK			= ATA_PIO4,
62 	NV_MWDMA_MASK			= ATA_MWDMA2,
63 	NV_UDMA_MASK			= ATA_UDMA6,
64 	NV_PORT0_SCR_REG_OFFSET		= 0x00,
65 	NV_PORT1_SCR_REG_OFFSET		= 0x40,
66 
67 	/* INT_STATUS/ENABLE */
68 	NV_INT_STATUS			= 0x10,
69 	NV_INT_ENABLE			= 0x11,
70 	NV_INT_STATUS_CK804		= 0x440,
71 	NV_INT_ENABLE_CK804		= 0x441,
72 
73 	/* INT_STATUS/ENABLE bits */
74 	NV_INT_DEV			= 0x01,
75 	NV_INT_PM			= 0x02,
76 	NV_INT_ADDED			= 0x04,
77 	NV_INT_REMOVED			= 0x08,
78 
79 	NV_INT_PORT_SHIFT		= 4,	/* each port occupies 4 bits */
80 
81 	NV_INT_ALL			= 0x0f,
82 	NV_INT_MASK			= NV_INT_DEV |
83 					  NV_INT_ADDED | NV_INT_REMOVED,
84 
85 	/* INT_CONFIG */
86 	NV_INT_CONFIG			= 0x12,
87 	NV_INT_CONFIG_METHD		= 0x01, // 0 = INT, 1 = SMI
88 
89 	// For PCI config register 20
90 	NV_MCP_SATA_CFG_20		= 0x50,
91 	NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
92 	NV_MCP_SATA_CFG_20_PORT0_EN	= (1 << 17),
93 	NV_MCP_SATA_CFG_20_PORT1_EN	= (1 << 16),
94 	NV_MCP_SATA_CFG_20_PORT0_PWB_EN	= (1 << 14),
95 	NV_MCP_SATA_CFG_20_PORT1_PWB_EN	= (1 << 12),
96 
97 	NV_ADMA_MAX_CPBS		= 32,
98 	NV_ADMA_CPB_SZ			= 128,
99 	NV_ADMA_APRD_SZ			= 16,
100 	NV_ADMA_SGTBL_LEN		= (1024 - NV_ADMA_CPB_SZ) /
101 					   NV_ADMA_APRD_SZ,
102 	NV_ADMA_SGTBL_TOTAL_LEN		= NV_ADMA_SGTBL_LEN + 5,
103 	NV_ADMA_SGTBL_SZ                = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
104 	NV_ADMA_PORT_PRIV_DMA_SZ        = NV_ADMA_MAX_CPBS *
105 					   (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
106 
107 	/* BAR5 offset to ADMA general registers */
108 	NV_ADMA_GEN			= 0x400,
109 	NV_ADMA_GEN_CTL			= 0x00,
110 	NV_ADMA_NOTIFIER_CLEAR		= 0x30,
111 
112 	/* BAR5 offset to ADMA ports */
113 	NV_ADMA_PORT			= 0x480,
114 
115 	/* size of ADMA port register space  */
116 	NV_ADMA_PORT_SIZE		= 0x100,
117 
118 	/* ADMA port registers */
119 	NV_ADMA_CTL			= 0x40,
120 	NV_ADMA_CPB_COUNT		= 0x42,
121 	NV_ADMA_NEXT_CPB_IDX		= 0x43,
122 	NV_ADMA_STAT			= 0x44,
123 	NV_ADMA_CPB_BASE_LOW		= 0x48,
124 	NV_ADMA_CPB_BASE_HIGH		= 0x4C,
125 	NV_ADMA_APPEND			= 0x50,
126 	NV_ADMA_NOTIFIER		= 0x68,
127 	NV_ADMA_NOTIFIER_ERROR		= 0x6C,
128 
129 	/* NV_ADMA_CTL register bits */
130 	NV_ADMA_CTL_HOTPLUG_IEN		= (1 << 0),
131 	NV_ADMA_CTL_CHANNEL_RESET	= (1 << 5),
132 	NV_ADMA_CTL_GO			= (1 << 7),
133 	NV_ADMA_CTL_AIEN		= (1 << 8),
134 	NV_ADMA_CTL_READ_NON_COHERENT	= (1 << 11),
135 	NV_ADMA_CTL_WRITE_NON_COHERENT	= (1 << 12),
136 
137 	/* CPB response flag bits */
138 	NV_CPB_RESP_DONE		= (1 << 0),
139 	NV_CPB_RESP_ATA_ERR		= (1 << 3),
140 	NV_CPB_RESP_CMD_ERR		= (1 << 4),
141 	NV_CPB_RESP_CPB_ERR		= (1 << 7),
142 
143 	/* CPB control flag bits */
144 	NV_CPB_CTL_CPB_VALID		= (1 << 0),
145 	NV_CPB_CTL_QUEUE		= (1 << 1),
146 	NV_CPB_CTL_APRD_VALID		= (1 << 2),
147 	NV_CPB_CTL_IEN			= (1 << 3),
148 	NV_CPB_CTL_FPDMA		= (1 << 4),
149 
150 	/* APRD flags */
151 	NV_APRD_WRITE			= (1 << 1),
152 	NV_APRD_END			= (1 << 2),
153 	NV_APRD_CONT			= (1 << 3),
154 
155 	/* NV_ADMA_STAT flags */
156 	NV_ADMA_STAT_TIMEOUT		= (1 << 0),
157 	NV_ADMA_STAT_HOTUNPLUG		= (1 << 1),
158 	NV_ADMA_STAT_HOTPLUG		= (1 << 2),
159 	NV_ADMA_STAT_CPBERR		= (1 << 4),
160 	NV_ADMA_STAT_SERROR		= (1 << 5),
161 	NV_ADMA_STAT_CMD_COMPLETE	= (1 << 6),
162 	NV_ADMA_STAT_IDLE		= (1 << 8),
163 	NV_ADMA_STAT_LEGACY		= (1 << 9),
164 	NV_ADMA_STAT_STOPPED		= (1 << 10),
165 	NV_ADMA_STAT_DONE		= (1 << 12),
166 	NV_ADMA_STAT_ERR		= NV_ADMA_STAT_CPBERR |
167 					  NV_ADMA_STAT_TIMEOUT,
168 
169 	/* port flags */
170 	NV_ADMA_PORT_REGISTER_MODE	= (1 << 0),
171 	NV_ADMA_ATAPI_SETUP_COMPLETE	= (1 << 1),
172 
173 	/* MCP55 reg offset */
174 	NV_CTL_MCP55			= 0x400,
175 	NV_INT_STATUS_MCP55		= 0x440,
176 	NV_INT_ENABLE_MCP55		= 0x444,
177 	NV_NCQ_REG_MCP55		= 0x448,
178 
179 	/* MCP55 */
180 	NV_INT_ALL_MCP55		= 0xffff,
181 	NV_INT_PORT_SHIFT_MCP55		= 16,	/* each port occupies 16 bits */
182 	NV_INT_MASK_MCP55		= NV_INT_ALL_MCP55 & 0xfffd,
183 
184 	/* SWNCQ ENABLE BITS*/
185 	NV_CTL_PRI_SWNCQ		= 0x02,
186 	NV_CTL_SEC_SWNCQ		= 0x04,
187 
188 	/* SW NCQ status bits*/
189 	NV_SWNCQ_IRQ_DEV		= (1 << 0),
190 	NV_SWNCQ_IRQ_PM			= (1 << 1),
191 	NV_SWNCQ_IRQ_ADDED		= (1 << 2),
192 	NV_SWNCQ_IRQ_REMOVED		= (1 << 3),
193 
194 	NV_SWNCQ_IRQ_BACKOUT		= (1 << 4),
195 	NV_SWNCQ_IRQ_SDBFIS		= (1 << 5),
196 	NV_SWNCQ_IRQ_DHREGFIS		= (1 << 6),
197 	NV_SWNCQ_IRQ_DMASETUP		= (1 << 7),
198 
199 	NV_SWNCQ_IRQ_HOTPLUG		= NV_SWNCQ_IRQ_ADDED |
200 					  NV_SWNCQ_IRQ_REMOVED,
201 
202 };
203 
204 /* ADMA Physical Region Descriptor - one SG segment */
205 struct nv_adma_prd {
206 	__le64			addr;
207 	__le32			len;
208 	u8			flags;
209 	u8			packet_len;
210 	__le16			reserved;
211 };
212 
213 enum nv_adma_regbits {
214 	CMDEND	= (1 << 15),		/* end of command list */
215 	WNB	= (1 << 14),		/* wait-not-BSY */
216 	IGN	= (1 << 13),		/* ignore this entry */
217 	CS1n	= (1 << (4 + 8)),	/* std. PATA signals follow... */
218 	DA2	= (1 << (2 + 8)),
219 	DA1	= (1 << (1 + 8)),
220 	DA0	= (1 << (0 + 8)),
221 };
222 
223 /* ADMA Command Parameter Block
224    The first 5 SG segments are stored inside the Command Parameter Block itself.
225    If there are more than 5 segments the remainder are stored in a separate
226    memory area indicated by next_aprd. */
227 struct nv_adma_cpb {
228 	u8			resp_flags;    /* 0 */
229 	u8			reserved1;     /* 1 */
230 	u8			ctl_flags;     /* 2 */
231 	/* len is length of taskfile in 64 bit words */
232 	u8			len;		/* 3  */
233 	u8			tag;           /* 4 */
234 	u8			next_cpb_idx;  /* 5 */
235 	__le16			reserved2;     /* 6-7 */
236 	__le16			tf[12];        /* 8-31 */
237 	struct nv_adma_prd	aprd[5];       /* 32-111 */
238 	__le64			next_aprd;     /* 112-119 */
239 	__le64			reserved3;     /* 120-127 */
240 };
241 
242 
243 struct nv_adma_port_priv {
244 	struct nv_adma_cpb	*cpb;
245 	dma_addr_t		cpb_dma;
246 	struct nv_adma_prd	*aprd;
247 	dma_addr_t		aprd_dma;
248 	void __iomem		*ctl_block;
249 	void __iomem		*gen_block;
250 	void __iomem		*notifier_clear_block;
251 	u64			adma_dma_mask;
252 	u8			flags;
253 	int			last_issue_ncq;
254 };
255 
256 struct nv_host_priv {
257 	unsigned long		type;
258 };
259 
260 struct defer_queue {
261 	u32		defer_bits;
262 	unsigned int	head;
263 	unsigned int	tail;
264 	unsigned int	tag[ATA_MAX_QUEUE];
265 };
266 
267 enum ncq_saw_flag_list {
268 	ncq_saw_d2h	= (1U << 0),
269 	ncq_saw_dmas	= (1U << 1),
270 	ncq_saw_sdb	= (1U << 2),
271 	ncq_saw_backout	= (1U << 3),
272 };
273 
274 struct nv_swncq_port_priv {
275 	struct ata_bmdma_prd *prd;	 /* our SG list */
276 	dma_addr_t	prd_dma; /* and its DMA mapping */
277 	void __iomem	*sactive_block;
278 	void __iomem	*irq_block;
279 	void __iomem	*tag_block;
280 	u32		qc_active;
281 
282 	unsigned int	last_issue_tag;
283 
284 	/* fifo circular queue to store deferral command */
285 	struct defer_queue defer_queue;
286 
287 	/* for NCQ interrupt analysis */
288 	u32		dhfis_bits;
289 	u32		dmafis_bits;
290 	u32		sdbfis_bits;
291 
292 	unsigned int	ncq_flags;
293 };
294 
295 
296 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
297 
298 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
299 #ifdef CONFIG_PM
300 static int nv_pci_device_resume(struct pci_dev *pdev);
301 #endif
302 static void nv_ck804_host_stop(struct ata_host *host);
303 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
304 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
305 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
306 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val);
307 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val);
308 
309 static int nv_hardreset(struct ata_link *link, unsigned int *class,
310 			unsigned long deadline);
311 static void nv_nf2_freeze(struct ata_port *ap);
312 static void nv_nf2_thaw(struct ata_port *ap);
313 static void nv_ck804_freeze(struct ata_port *ap);
314 static void nv_ck804_thaw(struct ata_port *ap);
315 static int nv_adma_slave_config(struct scsi_device *sdev);
316 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
317 static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
318 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
319 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
320 static void nv_adma_irq_clear(struct ata_port *ap);
321 static int nv_adma_port_start(struct ata_port *ap);
322 static void nv_adma_port_stop(struct ata_port *ap);
323 #ifdef CONFIG_PM
324 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
325 static int nv_adma_port_resume(struct ata_port *ap);
326 #endif
327 static void nv_adma_freeze(struct ata_port *ap);
328 static void nv_adma_thaw(struct ata_port *ap);
329 static void nv_adma_error_handler(struct ata_port *ap);
330 static void nv_adma_host_stop(struct ata_host *host);
331 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
332 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
333 
334 static void nv_mcp55_thaw(struct ata_port *ap);
335 static void nv_mcp55_freeze(struct ata_port *ap);
336 static void nv_swncq_error_handler(struct ata_port *ap);
337 static int nv_swncq_slave_config(struct scsi_device *sdev);
338 static int nv_swncq_port_start(struct ata_port *ap);
339 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
340 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
341 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
342 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
343 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
344 #ifdef CONFIG_PM
345 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
346 static int nv_swncq_port_resume(struct ata_port *ap);
347 #endif
348 
349 enum nv_host_type
350 {
351 	GENERIC,
352 	NFORCE2,
353 	NFORCE3 = NFORCE2,	/* NF2 == NF3 as far as sata_nv is concerned */
354 	CK804,
355 	ADMA,
356 	MCP5x,
357 	SWNCQ,
358 };
359 
360 static const struct pci_device_id nv_pci_tbl[] = {
361 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
362 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
363 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
364 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
365 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
366 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
367 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
368 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x },
369 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x },
370 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x },
371 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x },
372 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
373 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
374 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
375 
376 	{ } /* terminate list */
377 };
378 
379 static struct pci_driver nv_pci_driver = {
380 	.name			= DRV_NAME,
381 	.id_table		= nv_pci_tbl,
382 	.probe			= nv_init_one,
383 #ifdef CONFIG_PM
384 	.suspend		= ata_pci_device_suspend,
385 	.resume			= nv_pci_device_resume,
386 #endif
387 	.remove			= ata_pci_remove_one,
388 };
389 
390 static struct scsi_host_template nv_sht = {
391 	ATA_BMDMA_SHT(DRV_NAME),
392 };
393 
394 static struct scsi_host_template nv_adma_sht = {
395 	ATA_NCQ_SHT(DRV_NAME),
396 	.can_queue		= NV_ADMA_MAX_CPBS,
397 	.sg_tablesize		= NV_ADMA_SGTBL_TOTAL_LEN,
398 	.dma_boundary		= NV_ADMA_DMA_BOUNDARY,
399 	.slave_configure	= nv_adma_slave_config,
400 };
401 
402 static struct scsi_host_template nv_swncq_sht = {
403 	ATA_NCQ_SHT(DRV_NAME),
404 	.can_queue		= ATA_MAX_QUEUE,
405 	.sg_tablesize		= LIBATA_MAX_PRD,
406 	.dma_boundary		= ATA_DMA_BOUNDARY,
407 	.slave_configure	= nv_swncq_slave_config,
408 };
409 
410 /*
411  * NV SATA controllers have various different problems with hardreset
412  * protocol depending on the specific controller and device.
413  *
414  * GENERIC:
415  *
416  *  bko11195 reports that link doesn't come online after hardreset on
417  *  generic nv's and there have been several other similar reports on
418  *  linux-ide.
419  *
420  *  bko12351#c23 reports that warmplug on MCP61 doesn't work with
421  *  softreset.
422  *
423  * NF2/3:
424  *
425  *  bko3352 reports nf2/3 controllers can't determine device signature
426  *  reliably after hardreset.  The following thread reports detection
427  *  failure on cold boot with the standard debouncing timing.
428  *
429  *  http://thread.gmane.org/gmane.linux.ide/34098
430  *
431  *  bko12176 reports that hardreset fails to bring up the link during
432  *  boot on nf2.
433  *
434  * CK804:
435  *
436  *  For initial probing after boot and hot plugging, hardreset mostly
437  *  works fine on CK804 but curiously, reprobing on the initial port
438  *  by rescanning or rmmod/insmod fails to acquire the initial D2H Reg
439  *  FIS in somewhat undeterministic way.
440  *
441  * SWNCQ:
442  *
443  *  bko12351 reports that when SWNCQ is enabled, for hotplug to work,
444  *  hardreset should be used and hardreset can't report proper
445  *  signature, which suggests that mcp5x is closer to nf2 as long as
446  *  reset quirkiness is concerned.
447  *
448  *  bko12703 reports that boot probing fails for intel SSD with
449  *  hardreset.  Link fails to come online.  Softreset works fine.
450  *
451  * The failures are varied but the following patterns seem true for
452  * all flavors.
453  *
454  * - Softreset during boot always works.
455  *
456  * - Hardreset during boot sometimes fails to bring up the link on
457  *   certain comibnations and device signature acquisition is
458  *   unreliable.
459  *
460  * - Hardreset is often necessary after hotplug.
461  *
462  * So, preferring softreset for boot probing and error handling (as
463  * hardreset might bring down the link) but using hardreset for
464  * post-boot probing should work around the above issues in most
465  * cases.  Define nv_hardreset() which only kicks in for post-boot
466  * probing and use it for all variants.
467  */
468 static struct ata_port_operations nv_generic_ops = {
469 	.inherits		= &ata_bmdma_port_ops,
470 	.lost_interrupt		= ATA_OP_NULL,
471 	.scr_read		= nv_scr_read,
472 	.scr_write		= nv_scr_write,
473 	.hardreset		= nv_hardreset,
474 };
475 
476 static struct ata_port_operations nv_nf2_ops = {
477 	.inherits		= &nv_generic_ops,
478 	.freeze			= nv_nf2_freeze,
479 	.thaw			= nv_nf2_thaw,
480 };
481 
482 static struct ata_port_operations nv_ck804_ops = {
483 	.inherits		= &nv_generic_ops,
484 	.freeze			= nv_ck804_freeze,
485 	.thaw			= nv_ck804_thaw,
486 	.host_stop		= nv_ck804_host_stop,
487 };
488 
489 static struct ata_port_operations nv_adma_ops = {
490 	.inherits		= &nv_ck804_ops,
491 
492 	.check_atapi_dma	= nv_adma_check_atapi_dma,
493 	.sff_tf_read		= nv_adma_tf_read,
494 	.qc_defer		= ata_std_qc_defer,
495 	.qc_prep		= nv_adma_qc_prep,
496 	.qc_issue		= nv_adma_qc_issue,
497 	.sff_irq_clear		= nv_adma_irq_clear,
498 
499 	.freeze			= nv_adma_freeze,
500 	.thaw			= nv_adma_thaw,
501 	.error_handler		= nv_adma_error_handler,
502 	.post_internal_cmd	= nv_adma_post_internal_cmd,
503 
504 	.port_start		= nv_adma_port_start,
505 	.port_stop		= nv_adma_port_stop,
506 #ifdef CONFIG_PM
507 	.port_suspend		= nv_adma_port_suspend,
508 	.port_resume		= nv_adma_port_resume,
509 #endif
510 	.host_stop		= nv_adma_host_stop,
511 };
512 
513 static struct ata_port_operations nv_swncq_ops = {
514 	.inherits		= &nv_generic_ops,
515 
516 	.qc_defer		= ata_std_qc_defer,
517 	.qc_prep		= nv_swncq_qc_prep,
518 	.qc_issue		= nv_swncq_qc_issue,
519 
520 	.freeze			= nv_mcp55_freeze,
521 	.thaw			= nv_mcp55_thaw,
522 	.error_handler		= nv_swncq_error_handler,
523 
524 #ifdef CONFIG_PM
525 	.port_suspend		= nv_swncq_port_suspend,
526 	.port_resume		= nv_swncq_port_resume,
527 #endif
528 	.port_start		= nv_swncq_port_start,
529 };
530 
531 struct nv_pi_priv {
532 	irq_handler_t			irq_handler;
533 	struct scsi_host_template	*sht;
534 };
535 
536 #define NV_PI_PRIV(_irq_handler, _sht) \
537 	&(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht }
538 
539 static const struct ata_port_info nv_port_info[] = {
540 	/* generic */
541 	{
542 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
543 		.pio_mask	= NV_PIO_MASK,
544 		.mwdma_mask	= NV_MWDMA_MASK,
545 		.udma_mask	= NV_UDMA_MASK,
546 		.port_ops	= &nv_generic_ops,
547 		.private_data	= NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
548 	},
549 	/* nforce2/3 */
550 	{
551 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
552 		.pio_mask	= NV_PIO_MASK,
553 		.mwdma_mask	= NV_MWDMA_MASK,
554 		.udma_mask	= NV_UDMA_MASK,
555 		.port_ops	= &nv_nf2_ops,
556 		.private_data	= NV_PI_PRIV(nv_nf2_interrupt, &nv_sht),
557 	},
558 	/* ck804 */
559 	{
560 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
561 		.pio_mask	= NV_PIO_MASK,
562 		.mwdma_mask	= NV_MWDMA_MASK,
563 		.udma_mask	= NV_UDMA_MASK,
564 		.port_ops	= &nv_ck804_ops,
565 		.private_data	= NV_PI_PRIV(nv_ck804_interrupt, &nv_sht),
566 	},
567 	/* ADMA */
568 	{
569 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
570 				  ATA_FLAG_MMIO | ATA_FLAG_NCQ,
571 		.pio_mask	= NV_PIO_MASK,
572 		.mwdma_mask	= NV_MWDMA_MASK,
573 		.udma_mask	= NV_UDMA_MASK,
574 		.port_ops	= &nv_adma_ops,
575 		.private_data	= NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht),
576 	},
577 	/* MCP5x */
578 	{
579 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
580 		.pio_mask	= NV_PIO_MASK,
581 		.mwdma_mask	= NV_MWDMA_MASK,
582 		.udma_mask	= NV_UDMA_MASK,
583 		.port_ops	= &nv_generic_ops,
584 		.private_data	= NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
585 	},
586 	/* SWNCQ */
587 	{
588 		.flags	        = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
589 				  ATA_FLAG_NCQ,
590 		.pio_mask	= NV_PIO_MASK,
591 		.mwdma_mask	= NV_MWDMA_MASK,
592 		.udma_mask	= NV_UDMA_MASK,
593 		.port_ops	= &nv_swncq_ops,
594 		.private_data	= NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht),
595 	},
596 };
597 
598 MODULE_AUTHOR("NVIDIA");
599 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
600 MODULE_LICENSE("GPL");
601 MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
602 MODULE_VERSION(DRV_VERSION);
603 
604 static int adma_enabled;
605 static int swncq_enabled = 1;
606 static int msi_enabled;
607 
608 static void nv_adma_register_mode(struct ata_port *ap)
609 {
610 	struct nv_adma_port_priv *pp = ap->private_data;
611 	void __iomem *mmio = pp->ctl_block;
612 	u16 tmp, status;
613 	int count = 0;
614 
615 	if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
616 		return;
617 
618 	status = readw(mmio + NV_ADMA_STAT);
619 	while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
620 		ndelay(50);
621 		status = readw(mmio + NV_ADMA_STAT);
622 		count++;
623 	}
624 	if (count == 20)
625 		ata_port_printk(ap, KERN_WARNING,
626 			"timeout waiting for ADMA IDLE, stat=0x%hx\n",
627 			status);
628 
629 	tmp = readw(mmio + NV_ADMA_CTL);
630 	writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
631 
632 	count = 0;
633 	status = readw(mmio + NV_ADMA_STAT);
634 	while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
635 		ndelay(50);
636 		status = readw(mmio + NV_ADMA_STAT);
637 		count++;
638 	}
639 	if (count == 20)
640 		ata_port_printk(ap, KERN_WARNING,
641 			 "timeout waiting for ADMA LEGACY, stat=0x%hx\n",
642 			 status);
643 
644 	pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
645 }
646 
647 static void nv_adma_mode(struct ata_port *ap)
648 {
649 	struct nv_adma_port_priv *pp = ap->private_data;
650 	void __iomem *mmio = pp->ctl_block;
651 	u16 tmp, status;
652 	int count = 0;
653 
654 	if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
655 		return;
656 
657 	WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
658 
659 	tmp = readw(mmio + NV_ADMA_CTL);
660 	writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
661 
662 	status = readw(mmio + NV_ADMA_STAT);
663 	while (((status & NV_ADMA_STAT_LEGACY) ||
664 	      !(status & NV_ADMA_STAT_IDLE)) && count < 20) {
665 		ndelay(50);
666 		status = readw(mmio + NV_ADMA_STAT);
667 		count++;
668 	}
669 	if (count == 20)
670 		ata_port_printk(ap, KERN_WARNING,
671 			"timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
672 			status);
673 
674 	pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
675 }
676 
677 static int nv_adma_slave_config(struct scsi_device *sdev)
678 {
679 	struct ata_port *ap = ata_shost_to_port(sdev->host);
680 	struct nv_adma_port_priv *pp = ap->private_data;
681 	struct nv_adma_port_priv *port0, *port1;
682 	struct scsi_device *sdev0, *sdev1;
683 	struct pci_dev *pdev = to_pci_dev(ap->host->dev);
684 	unsigned long segment_boundary, flags;
685 	unsigned short sg_tablesize;
686 	int rc;
687 	int adma_enable;
688 	u32 current_reg, new_reg, config_mask;
689 
690 	rc = ata_scsi_slave_config(sdev);
691 
692 	if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
693 		/* Not a proper libata device, ignore */
694 		return rc;
695 
696 	spin_lock_irqsave(ap->lock, flags);
697 
698 	if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
699 		/*
700 		 * NVIDIA reports that ADMA mode does not support ATAPI commands.
701 		 * Therefore ATAPI commands are sent through the legacy interface.
702 		 * However, the legacy interface only supports 32-bit DMA.
703 		 * Restrict DMA parameters as required by the legacy interface
704 		 * when an ATAPI device is connected.
705 		 */
706 		segment_boundary = ATA_DMA_BOUNDARY;
707 		/* Subtract 1 since an extra entry may be needed for padding, see
708 		   libata-scsi.c */
709 		sg_tablesize = LIBATA_MAX_PRD - 1;
710 
711 		/* Since the legacy DMA engine is in use, we need to disable ADMA
712 		   on the port. */
713 		adma_enable = 0;
714 		nv_adma_register_mode(ap);
715 	} else {
716 		segment_boundary = NV_ADMA_DMA_BOUNDARY;
717 		sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
718 		adma_enable = 1;
719 	}
720 
721 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
722 
723 	if (ap->port_no == 1)
724 		config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
725 			      NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
726 	else
727 		config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
728 			      NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
729 
730 	if (adma_enable) {
731 		new_reg = current_reg | config_mask;
732 		pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
733 	} else {
734 		new_reg = current_reg & ~config_mask;
735 		pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
736 	}
737 
738 	if (current_reg != new_reg)
739 		pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
740 
741 	port0 = ap->host->ports[0]->private_data;
742 	port1 = ap->host->ports[1]->private_data;
743 	sdev0 = ap->host->ports[0]->link.device[0].sdev;
744 	sdev1 = ap->host->ports[1]->link.device[0].sdev;
745 	if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
746 	    (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) {
747 		/** We have to set the DMA mask to 32-bit if either port is in
748 		    ATAPI mode, since they are on the same PCI device which is
749 		    used for DMA mapping. If we set the mask we also need to set
750 		    the bounce limit on both ports to ensure that the block
751 		    layer doesn't feed addresses that cause DMA mapping to
752 		    choke. If either SCSI device is not allocated yet, it's OK
753 		    since that port will discover its correct setting when it
754 		    does get allocated.
755 		    Note: Setting 32-bit mask should not fail. */
756 		if (sdev0)
757 			blk_queue_bounce_limit(sdev0->request_queue,
758 					       ATA_DMA_MASK);
759 		if (sdev1)
760 			blk_queue_bounce_limit(sdev1->request_queue,
761 					       ATA_DMA_MASK);
762 
763 		pci_set_dma_mask(pdev, ATA_DMA_MASK);
764 	} else {
765 		/** This shouldn't fail as it was set to this value before */
766 		pci_set_dma_mask(pdev, pp->adma_dma_mask);
767 		if (sdev0)
768 			blk_queue_bounce_limit(sdev0->request_queue,
769 					       pp->adma_dma_mask);
770 		if (sdev1)
771 			blk_queue_bounce_limit(sdev1->request_queue,
772 					       pp->adma_dma_mask);
773 	}
774 
775 	blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
776 	blk_queue_max_segments(sdev->request_queue, sg_tablesize);
777 	ata_port_printk(ap, KERN_INFO,
778 		"DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
779 		(unsigned long long)*ap->host->dev->dma_mask,
780 		segment_boundary, sg_tablesize);
781 
782 	spin_unlock_irqrestore(ap->lock, flags);
783 
784 	return rc;
785 }
786 
787 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
788 {
789 	struct nv_adma_port_priv *pp = qc->ap->private_data;
790 	return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
791 }
792 
793 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
794 {
795 	/* Other than when internal or pass-through commands are executed,
796 	   the only time this function will be called in ADMA mode will be
797 	   if a command fails. In the failure case we don't care about going
798 	   into register mode with ADMA commands pending, as the commands will
799 	   all shortly be aborted anyway. We assume that NCQ commands are not
800 	   issued via passthrough, which is the only way that switching into
801 	   ADMA mode could abort outstanding commands. */
802 	nv_adma_register_mode(ap);
803 
804 	ata_sff_tf_read(ap, tf);
805 }
806 
807 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
808 {
809 	unsigned int idx = 0;
810 
811 	if (tf->flags & ATA_TFLAG_ISADDR) {
812 		if (tf->flags & ATA_TFLAG_LBA48) {
813 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR   << 8) | tf->hob_feature | WNB);
814 			cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
815 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAL  << 8) | tf->hob_lbal);
816 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAM  << 8) | tf->hob_lbam);
817 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAH  << 8) | tf->hob_lbah);
818 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR    << 8) | tf->feature);
819 		} else
820 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR    << 8) | tf->feature | WNB);
821 
822 		cpb[idx++] = cpu_to_le16((ATA_REG_NSECT  << 8) | tf->nsect);
823 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAL   << 8) | tf->lbal);
824 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAM   << 8) | tf->lbam);
825 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAH   << 8) | tf->lbah);
826 	}
827 
828 	if (tf->flags & ATA_TFLAG_DEVICE)
829 		cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
830 
831 	cpb[idx++] = cpu_to_le16((ATA_REG_CMD    << 8) | tf->command | CMDEND);
832 
833 	while (idx < 12)
834 		cpb[idx++] = cpu_to_le16(IGN);
835 
836 	return idx;
837 }
838 
839 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
840 {
841 	struct nv_adma_port_priv *pp = ap->private_data;
842 	u8 flags = pp->cpb[cpb_num].resp_flags;
843 
844 	VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
845 
846 	if (unlikely((force_err ||
847 		     flags & (NV_CPB_RESP_ATA_ERR |
848 			      NV_CPB_RESP_CMD_ERR |
849 			      NV_CPB_RESP_CPB_ERR)))) {
850 		struct ata_eh_info *ehi = &ap->link.eh_info;
851 		int freeze = 0;
852 
853 		ata_ehi_clear_desc(ehi);
854 		__ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
855 		if (flags & NV_CPB_RESP_ATA_ERR) {
856 			ata_ehi_push_desc(ehi, "ATA error");
857 			ehi->err_mask |= AC_ERR_DEV;
858 		} else if (flags & NV_CPB_RESP_CMD_ERR) {
859 			ata_ehi_push_desc(ehi, "CMD error");
860 			ehi->err_mask |= AC_ERR_DEV;
861 		} else if (flags & NV_CPB_RESP_CPB_ERR) {
862 			ata_ehi_push_desc(ehi, "CPB error");
863 			ehi->err_mask |= AC_ERR_SYSTEM;
864 			freeze = 1;
865 		} else {
866 			/* notifier error, but no error in CPB flags? */
867 			ata_ehi_push_desc(ehi, "unknown");
868 			ehi->err_mask |= AC_ERR_OTHER;
869 			freeze = 1;
870 		}
871 		/* Kill all commands. EH will determine what actually failed. */
872 		if (freeze)
873 			ata_port_freeze(ap);
874 		else
875 			ata_port_abort(ap);
876 		return 1;
877 	}
878 
879 	if (likely(flags & NV_CPB_RESP_DONE)) {
880 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num);
881 		VPRINTK("CPB flags done, flags=0x%x\n", flags);
882 		if (likely(qc)) {
883 			DPRINTK("Completing qc from tag %d\n", cpb_num);
884 			ata_qc_complete(qc);
885 		} else {
886 			struct ata_eh_info *ehi = &ap->link.eh_info;
887 			/* Notifier bits set without a command may indicate the drive
888 			   is misbehaving. Raise host state machine violation on this
889 			   condition. */
890 			ata_port_printk(ap, KERN_ERR,
891 					"notifier for tag %d with no cmd?\n",
892 					cpb_num);
893 			ehi->err_mask |= AC_ERR_HSM;
894 			ehi->action |= ATA_EH_RESET;
895 			ata_port_freeze(ap);
896 			return 1;
897 		}
898 	}
899 	return 0;
900 }
901 
902 static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
903 {
904 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
905 
906 	/* freeze if hotplugged */
907 	if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
908 		ata_port_freeze(ap);
909 		return 1;
910 	}
911 
912 	/* bail out if not our interrupt */
913 	if (!(irq_stat & NV_INT_DEV))
914 		return 0;
915 
916 	/* DEV interrupt w/ no active qc? */
917 	if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
918 		ata_sff_check_status(ap);
919 		return 1;
920 	}
921 
922 	/* handle interrupt */
923 	return ata_bmdma_port_intr(ap, qc);
924 }
925 
926 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
927 {
928 	struct ata_host *host = dev_instance;
929 	int i, handled = 0;
930 	u32 notifier_clears[2];
931 
932 	spin_lock(&host->lock);
933 
934 	for (i = 0; i < host->n_ports; i++) {
935 		struct ata_port *ap = host->ports[i];
936 		struct nv_adma_port_priv *pp = ap->private_data;
937 		void __iomem *mmio = pp->ctl_block;
938 		u16 status;
939 		u32 gen_ctl;
940 		u32 notifier, notifier_error;
941 
942 		notifier_clears[i] = 0;
943 
944 		/* if ADMA is disabled, use standard ata interrupt handler */
945 		if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
946 			u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
947 				>> (NV_INT_PORT_SHIFT * i);
948 			handled += nv_host_intr(ap, irq_stat);
949 			continue;
950 		}
951 
952 		/* if in ATA register mode, check for standard interrupts */
953 		if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
954 			u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
955 				>> (NV_INT_PORT_SHIFT * i);
956 			if (ata_tag_valid(ap->link.active_tag))
957 				/** NV_INT_DEV indication seems unreliable
958 				    at times at least in ADMA mode. Force it
959 				    on always when a command is active, to
960 				    prevent losing interrupts. */
961 				irq_stat |= NV_INT_DEV;
962 			handled += nv_host_intr(ap, irq_stat);
963 		}
964 
965 		notifier = readl(mmio + NV_ADMA_NOTIFIER);
966 		notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
967 		notifier_clears[i] = notifier | notifier_error;
968 
969 		gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
970 
971 		if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
972 		    !notifier_error)
973 			/* Nothing to do */
974 			continue;
975 
976 		status = readw(mmio + NV_ADMA_STAT);
977 
978 		/*
979 		 * Clear status. Ensure the controller sees the
980 		 * clearing before we start looking at any of the CPB
981 		 * statuses, so that any CPB completions after this
982 		 * point in the handler will raise another interrupt.
983 		 */
984 		writew(status, mmio + NV_ADMA_STAT);
985 		readw(mmio + NV_ADMA_STAT); /* flush posted write */
986 		rmb();
987 
988 		handled++; /* irq handled if we got here */
989 
990 		/* freeze if hotplugged or controller error */
991 		if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
992 				       NV_ADMA_STAT_HOTUNPLUG |
993 				       NV_ADMA_STAT_TIMEOUT |
994 				       NV_ADMA_STAT_SERROR))) {
995 			struct ata_eh_info *ehi = &ap->link.eh_info;
996 
997 			ata_ehi_clear_desc(ehi);
998 			__ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
999 			if (status & NV_ADMA_STAT_TIMEOUT) {
1000 				ehi->err_mask |= AC_ERR_SYSTEM;
1001 				ata_ehi_push_desc(ehi, "timeout");
1002 			} else if (status & NV_ADMA_STAT_HOTPLUG) {
1003 				ata_ehi_hotplugged(ehi);
1004 				ata_ehi_push_desc(ehi, "hotplug");
1005 			} else if (status & NV_ADMA_STAT_HOTUNPLUG) {
1006 				ata_ehi_hotplugged(ehi);
1007 				ata_ehi_push_desc(ehi, "hot unplug");
1008 			} else if (status & NV_ADMA_STAT_SERROR) {
1009 				/* let EH analyze SError and figure out cause */
1010 				ata_ehi_push_desc(ehi, "SError");
1011 			} else
1012 				ata_ehi_push_desc(ehi, "unknown");
1013 			ata_port_freeze(ap);
1014 			continue;
1015 		}
1016 
1017 		if (status & (NV_ADMA_STAT_DONE |
1018 			      NV_ADMA_STAT_CPBERR |
1019 			      NV_ADMA_STAT_CMD_COMPLETE)) {
1020 			u32 check_commands = notifier_clears[i];
1021 			int pos, rc;
1022 
1023 			if (status & NV_ADMA_STAT_CPBERR) {
1024 				/* check all active commands */
1025 				if (ata_tag_valid(ap->link.active_tag))
1026 					check_commands = 1 <<
1027 						ap->link.active_tag;
1028 				else
1029 					check_commands = ap->link.sactive;
1030 			}
1031 
1032 			/* check CPBs for completed commands */
1033 			while ((pos = ffs(check_commands))) {
1034 				pos--;
1035 				rc = nv_adma_check_cpb(ap, pos,
1036 						notifier_error & (1 << pos));
1037 				if (unlikely(rc))
1038 					check_commands = 0;
1039 				check_commands &= ~(1 << pos);
1040 			}
1041 		}
1042 	}
1043 
1044 	if (notifier_clears[0] || notifier_clears[1]) {
1045 		/* Note: Both notifier clear registers must be written
1046 		   if either is set, even if one is zero, according to NVIDIA. */
1047 		struct nv_adma_port_priv *pp = host->ports[0]->private_data;
1048 		writel(notifier_clears[0], pp->notifier_clear_block);
1049 		pp = host->ports[1]->private_data;
1050 		writel(notifier_clears[1], pp->notifier_clear_block);
1051 	}
1052 
1053 	spin_unlock(&host->lock);
1054 
1055 	return IRQ_RETVAL(handled);
1056 }
1057 
1058 static void nv_adma_freeze(struct ata_port *ap)
1059 {
1060 	struct nv_adma_port_priv *pp = ap->private_data;
1061 	void __iomem *mmio = pp->ctl_block;
1062 	u16 tmp;
1063 
1064 	nv_ck804_freeze(ap);
1065 
1066 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1067 		return;
1068 
1069 	/* clear any outstanding CK804 notifications */
1070 	writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1071 		ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1072 
1073 	/* Disable interrupt */
1074 	tmp = readw(mmio + NV_ADMA_CTL);
1075 	writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1076 		mmio + NV_ADMA_CTL);
1077 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1078 }
1079 
1080 static void nv_adma_thaw(struct ata_port *ap)
1081 {
1082 	struct nv_adma_port_priv *pp = ap->private_data;
1083 	void __iomem *mmio = pp->ctl_block;
1084 	u16 tmp;
1085 
1086 	nv_ck804_thaw(ap);
1087 
1088 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1089 		return;
1090 
1091 	/* Enable interrupt */
1092 	tmp = readw(mmio + NV_ADMA_CTL);
1093 	writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1094 		mmio + NV_ADMA_CTL);
1095 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1096 }
1097 
1098 static void nv_adma_irq_clear(struct ata_port *ap)
1099 {
1100 	struct nv_adma_port_priv *pp = ap->private_data;
1101 	void __iomem *mmio = pp->ctl_block;
1102 	u32 notifier_clears[2];
1103 
1104 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
1105 		ata_bmdma_irq_clear(ap);
1106 		return;
1107 	}
1108 
1109 	/* clear any outstanding CK804 notifications */
1110 	writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1111 		ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1112 
1113 	/* clear ADMA status */
1114 	writew(0xffff, mmio + NV_ADMA_STAT);
1115 
1116 	/* clear notifiers - note both ports need to be written with
1117 	   something even though we are only clearing on one */
1118 	if (ap->port_no == 0) {
1119 		notifier_clears[0] = 0xFFFFFFFF;
1120 		notifier_clears[1] = 0;
1121 	} else {
1122 		notifier_clears[0] = 0;
1123 		notifier_clears[1] = 0xFFFFFFFF;
1124 	}
1125 	pp = ap->host->ports[0]->private_data;
1126 	writel(notifier_clears[0], pp->notifier_clear_block);
1127 	pp = ap->host->ports[1]->private_data;
1128 	writel(notifier_clears[1], pp->notifier_clear_block);
1129 }
1130 
1131 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
1132 {
1133 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1134 
1135 	if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
1136 		ata_bmdma_post_internal_cmd(qc);
1137 }
1138 
1139 static int nv_adma_port_start(struct ata_port *ap)
1140 {
1141 	struct device *dev = ap->host->dev;
1142 	struct nv_adma_port_priv *pp;
1143 	int rc;
1144 	void *mem;
1145 	dma_addr_t mem_dma;
1146 	void __iomem *mmio;
1147 	struct pci_dev *pdev = to_pci_dev(dev);
1148 	u16 tmp;
1149 
1150 	VPRINTK("ENTER\n");
1151 
1152 	/* Ensure DMA mask is set to 32-bit before allocating legacy PRD and
1153 	   pad buffers */
1154 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1155 	if (rc)
1156 		return rc;
1157 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1158 	if (rc)
1159 		return rc;
1160 
1161 	/* we might fallback to bmdma, allocate bmdma resources */
1162 	rc = ata_bmdma_port_start(ap);
1163 	if (rc)
1164 		return rc;
1165 
1166 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1167 	if (!pp)
1168 		return -ENOMEM;
1169 
1170 	mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
1171 	       ap->port_no * NV_ADMA_PORT_SIZE;
1172 	pp->ctl_block = mmio;
1173 	pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
1174 	pp->notifier_clear_block = pp->gen_block +
1175 	       NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
1176 
1177 	/* Now that the legacy PRD and padding buffer are allocated we can
1178 	   safely raise the DMA mask to allocate the CPB/APRD table.
1179 	   These are allowed to fail since we store the value that ends up
1180 	   being used to set as the bounce limit in slave_config later if
1181 	   needed. */
1182 	pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1183 	pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1184 	pp->adma_dma_mask = *dev->dma_mask;
1185 
1186 	mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
1187 				  &mem_dma, GFP_KERNEL);
1188 	if (!mem)
1189 		return -ENOMEM;
1190 	memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ);
1191 
1192 	/*
1193 	 * First item in chunk of DMA memory:
1194 	 * 128-byte command parameter block (CPB)
1195 	 * one for each command tag
1196 	 */
1197 	pp->cpb     = mem;
1198 	pp->cpb_dma = mem_dma;
1199 
1200 	writel(mem_dma & 0xFFFFFFFF, 	mmio + NV_ADMA_CPB_BASE_LOW);
1201 	writel((mem_dma >> 16) >> 16,	mmio + NV_ADMA_CPB_BASE_HIGH);
1202 
1203 	mem     += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1204 	mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1205 
1206 	/*
1207 	 * Second item: block of ADMA_SGTBL_LEN s/g entries
1208 	 */
1209 	pp->aprd = mem;
1210 	pp->aprd_dma = mem_dma;
1211 
1212 	ap->private_data = pp;
1213 
1214 	/* clear any outstanding interrupt conditions */
1215 	writew(0xffff, mmio + NV_ADMA_STAT);
1216 
1217 	/* initialize port variables */
1218 	pp->flags = NV_ADMA_PORT_REGISTER_MODE;
1219 
1220 	/* clear CPB fetch count */
1221 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1222 
1223 	/* clear GO for register mode, enable interrupt */
1224 	tmp = readw(mmio + NV_ADMA_CTL);
1225 	writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1226 		NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1227 
1228 	tmp = readw(mmio + NV_ADMA_CTL);
1229 	writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1230 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1231 	udelay(1);
1232 	writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1233 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1234 
1235 	return 0;
1236 }
1237 
1238 static void nv_adma_port_stop(struct ata_port *ap)
1239 {
1240 	struct nv_adma_port_priv *pp = ap->private_data;
1241 	void __iomem *mmio = pp->ctl_block;
1242 
1243 	VPRINTK("ENTER\n");
1244 	writew(0, mmio + NV_ADMA_CTL);
1245 }
1246 
1247 #ifdef CONFIG_PM
1248 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
1249 {
1250 	struct nv_adma_port_priv *pp = ap->private_data;
1251 	void __iomem *mmio = pp->ctl_block;
1252 
1253 	/* Go to register mode - clears GO */
1254 	nv_adma_register_mode(ap);
1255 
1256 	/* clear CPB fetch count */
1257 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1258 
1259 	/* disable interrupt, shut down port */
1260 	writew(0, mmio + NV_ADMA_CTL);
1261 
1262 	return 0;
1263 }
1264 
1265 static int nv_adma_port_resume(struct ata_port *ap)
1266 {
1267 	struct nv_adma_port_priv *pp = ap->private_data;
1268 	void __iomem *mmio = pp->ctl_block;
1269 	u16 tmp;
1270 
1271 	/* set CPB block location */
1272 	writel(pp->cpb_dma & 0xFFFFFFFF, 	mmio + NV_ADMA_CPB_BASE_LOW);
1273 	writel((pp->cpb_dma >> 16) >> 16,	mmio + NV_ADMA_CPB_BASE_HIGH);
1274 
1275 	/* clear any outstanding interrupt conditions */
1276 	writew(0xffff, mmio + NV_ADMA_STAT);
1277 
1278 	/* initialize port variables */
1279 	pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
1280 
1281 	/* clear CPB fetch count */
1282 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1283 
1284 	/* clear GO for register mode, enable interrupt */
1285 	tmp = readw(mmio + NV_ADMA_CTL);
1286 	writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1287 		NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1288 
1289 	tmp = readw(mmio + NV_ADMA_CTL);
1290 	writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1291 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1292 	udelay(1);
1293 	writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1294 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1295 
1296 	return 0;
1297 }
1298 #endif
1299 
1300 static void nv_adma_setup_port(struct ata_port *ap)
1301 {
1302 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1303 	struct ata_ioports *ioport = &ap->ioaddr;
1304 
1305 	VPRINTK("ENTER\n");
1306 
1307 	mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
1308 
1309 	ioport->cmd_addr	= mmio;
1310 	ioport->data_addr	= mmio + (ATA_REG_DATA * 4);
1311 	ioport->error_addr	=
1312 	ioport->feature_addr	= mmio + (ATA_REG_ERR * 4);
1313 	ioport->nsect_addr	= mmio + (ATA_REG_NSECT * 4);
1314 	ioport->lbal_addr	= mmio + (ATA_REG_LBAL * 4);
1315 	ioport->lbam_addr	= mmio + (ATA_REG_LBAM * 4);
1316 	ioport->lbah_addr	= mmio + (ATA_REG_LBAH * 4);
1317 	ioport->device_addr	= mmio + (ATA_REG_DEVICE * 4);
1318 	ioport->status_addr	=
1319 	ioport->command_addr	= mmio + (ATA_REG_STATUS * 4);
1320 	ioport->altstatus_addr	=
1321 	ioport->ctl_addr	= mmio + 0x20;
1322 }
1323 
1324 static int nv_adma_host_init(struct ata_host *host)
1325 {
1326 	struct pci_dev *pdev = to_pci_dev(host->dev);
1327 	unsigned int i;
1328 	u32 tmp32;
1329 
1330 	VPRINTK("ENTER\n");
1331 
1332 	/* enable ADMA on the ports */
1333 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
1334 	tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
1335 		 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
1336 		 NV_MCP_SATA_CFG_20_PORT1_EN |
1337 		 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
1338 
1339 	pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
1340 
1341 	for (i = 0; i < host->n_ports; i++)
1342 		nv_adma_setup_port(host->ports[i]);
1343 
1344 	return 0;
1345 }
1346 
1347 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
1348 			      struct scatterlist *sg,
1349 			      int idx,
1350 			      struct nv_adma_prd *aprd)
1351 {
1352 	u8 flags = 0;
1353 	if (qc->tf.flags & ATA_TFLAG_WRITE)
1354 		flags |= NV_APRD_WRITE;
1355 	if (idx == qc->n_elem - 1)
1356 		flags |= NV_APRD_END;
1357 	else if (idx != 4)
1358 		flags |= NV_APRD_CONT;
1359 
1360 	aprd->addr  = cpu_to_le64(((u64)sg_dma_address(sg)));
1361 	aprd->len   = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
1362 	aprd->flags = flags;
1363 	aprd->packet_len = 0;
1364 }
1365 
1366 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
1367 {
1368 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1369 	struct nv_adma_prd *aprd;
1370 	struct scatterlist *sg;
1371 	unsigned int si;
1372 
1373 	VPRINTK("ENTER\n");
1374 
1375 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1376 		aprd = (si < 5) ? &cpb->aprd[si] :
1377 			       &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)];
1378 		nv_adma_fill_aprd(qc, sg, si, aprd);
1379 	}
1380 	if (si > 5)
1381 		cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag)));
1382 	else
1383 		cpb->next_aprd = cpu_to_le64(0);
1384 }
1385 
1386 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
1387 {
1388 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1389 
1390 	/* ADMA engine can only be used for non-ATAPI DMA commands,
1391 	   or interrupt-driven no-data commands. */
1392 	if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
1393 	   (qc->tf.flags & ATA_TFLAG_POLLING))
1394 		return 1;
1395 
1396 	if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
1397 	   (qc->tf.protocol == ATA_PROT_NODATA))
1398 		return 0;
1399 
1400 	return 1;
1401 }
1402 
1403 static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
1404 {
1405 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1406 	struct nv_adma_cpb *cpb = &pp->cpb[qc->tag];
1407 	u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
1408 		       NV_CPB_CTL_IEN;
1409 
1410 	if (nv_adma_use_reg_mode(qc)) {
1411 		BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1412 			(qc->flags & ATA_QCFLAG_DMAMAP));
1413 		nv_adma_register_mode(qc->ap);
1414 		ata_bmdma_qc_prep(qc);
1415 		return;
1416 	}
1417 
1418 	cpb->resp_flags = NV_CPB_RESP_DONE;
1419 	wmb();
1420 	cpb->ctl_flags = 0;
1421 	wmb();
1422 
1423 	cpb->len		= 3;
1424 	cpb->tag		= qc->tag;
1425 	cpb->next_cpb_idx	= 0;
1426 
1427 	/* turn on NCQ flags for NCQ commands */
1428 	if (qc->tf.protocol == ATA_PROT_NCQ)
1429 		ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
1430 
1431 	VPRINTK("qc->flags = 0x%lx\n", qc->flags);
1432 
1433 	nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
1434 
1435 	if (qc->flags & ATA_QCFLAG_DMAMAP) {
1436 		nv_adma_fill_sg(qc, cpb);
1437 		ctl_flags |= NV_CPB_CTL_APRD_VALID;
1438 	} else
1439 		memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
1440 
1441 	/* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
1442 	   until we are finished filling in all of the contents */
1443 	wmb();
1444 	cpb->ctl_flags = ctl_flags;
1445 	wmb();
1446 	cpb->resp_flags = 0;
1447 }
1448 
1449 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
1450 {
1451 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1452 	void __iomem *mmio = pp->ctl_block;
1453 	int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
1454 
1455 	VPRINTK("ENTER\n");
1456 
1457 	/* We can't handle result taskfile with NCQ commands, since
1458 	   retrieving the taskfile switches us out of ADMA mode and would abort
1459 	   existing commands. */
1460 	if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
1461 		     (qc->flags & ATA_QCFLAG_RESULT_TF))) {
1462 		ata_dev_printk(qc->dev, KERN_ERR,
1463 			"NCQ w/ RESULT_TF not allowed\n");
1464 		return AC_ERR_SYSTEM;
1465 	}
1466 
1467 	if (nv_adma_use_reg_mode(qc)) {
1468 		/* use ATA register mode */
1469 		VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
1470 		BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1471 			(qc->flags & ATA_QCFLAG_DMAMAP));
1472 		nv_adma_register_mode(qc->ap);
1473 		return ata_bmdma_qc_issue(qc);
1474 	} else
1475 		nv_adma_mode(qc->ap);
1476 
1477 	/* write append register, command tag in lower 8 bits
1478 	   and (number of cpbs to append -1) in top 8 bits */
1479 	wmb();
1480 
1481 	if (curr_ncq != pp->last_issue_ncq) {
1482 		/* Seems to need some delay before switching between NCQ and
1483 		   non-NCQ commands, else we get command timeouts and such. */
1484 		udelay(20);
1485 		pp->last_issue_ncq = curr_ncq;
1486 	}
1487 
1488 	writew(qc->tag, mmio + NV_ADMA_APPEND);
1489 
1490 	DPRINTK("Issued tag %u\n", qc->tag);
1491 
1492 	return 0;
1493 }
1494 
1495 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
1496 {
1497 	struct ata_host *host = dev_instance;
1498 	unsigned int i;
1499 	unsigned int handled = 0;
1500 	unsigned long flags;
1501 
1502 	spin_lock_irqsave(&host->lock, flags);
1503 
1504 	for (i = 0; i < host->n_ports; i++) {
1505 		struct ata_port *ap = host->ports[i];
1506 		struct ata_queued_cmd *qc;
1507 
1508 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1509 		if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
1510 			handled += ata_bmdma_port_intr(ap, qc);
1511 		} else {
1512 			/*
1513 			 * No request pending?  Clear interrupt status
1514 			 * anyway, in case there's one pending.
1515 			 */
1516 			ap->ops->sff_check_status(ap);
1517 		}
1518 	}
1519 
1520 	spin_unlock_irqrestore(&host->lock, flags);
1521 
1522 	return IRQ_RETVAL(handled);
1523 }
1524 
1525 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
1526 {
1527 	int i, handled = 0;
1528 
1529 	for (i = 0; i < host->n_ports; i++) {
1530 		handled += nv_host_intr(host->ports[i], irq_stat);
1531 		irq_stat >>= NV_INT_PORT_SHIFT;
1532 	}
1533 
1534 	return IRQ_RETVAL(handled);
1535 }
1536 
1537 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
1538 {
1539 	struct ata_host *host = dev_instance;
1540 	u8 irq_stat;
1541 	irqreturn_t ret;
1542 
1543 	spin_lock(&host->lock);
1544 	irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
1545 	ret = nv_do_interrupt(host, irq_stat);
1546 	spin_unlock(&host->lock);
1547 
1548 	return ret;
1549 }
1550 
1551 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
1552 {
1553 	struct ata_host *host = dev_instance;
1554 	u8 irq_stat;
1555 	irqreturn_t ret;
1556 
1557 	spin_lock(&host->lock);
1558 	irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1559 	ret = nv_do_interrupt(host, irq_stat);
1560 	spin_unlock(&host->lock);
1561 
1562 	return ret;
1563 }
1564 
1565 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val)
1566 {
1567 	if (sc_reg > SCR_CONTROL)
1568 		return -EINVAL;
1569 
1570 	*val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4));
1571 	return 0;
1572 }
1573 
1574 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val)
1575 {
1576 	if (sc_reg > SCR_CONTROL)
1577 		return -EINVAL;
1578 
1579 	iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
1580 	return 0;
1581 }
1582 
1583 static int nv_hardreset(struct ata_link *link, unsigned int *class,
1584 			unsigned long deadline)
1585 {
1586 	struct ata_eh_context *ehc = &link->eh_context;
1587 
1588 	/* Do hardreset iff it's post-boot probing, please read the
1589 	 * comment above port ops for details.
1590 	 */
1591 	if (!(link->ap->pflags & ATA_PFLAG_LOADING) &&
1592 	    !ata_dev_enabled(link->device))
1593 		sata_link_hardreset(link, sata_deb_timing_hotplug, deadline,
1594 				    NULL, NULL);
1595 	else {
1596 		const unsigned long *timing = sata_ehc_deb_timing(ehc);
1597 		int rc;
1598 
1599 		if (!(ehc->i.flags & ATA_EHI_QUIET))
1600 			ata_link_printk(link, KERN_INFO, "nv: skipping "
1601 					"hardreset on occupied port\n");
1602 
1603 		/* make sure the link is online */
1604 		rc = sata_link_resume(link, timing, deadline);
1605 		/* whine about phy resume failure but proceed */
1606 		if (rc && rc != -EOPNOTSUPP)
1607 			ata_link_printk(link, KERN_WARNING, "failed to resume "
1608 					"link (errno=%d)\n", rc);
1609 	}
1610 
1611 	/* device signature acquisition is unreliable */
1612 	return -EAGAIN;
1613 }
1614 
1615 static void nv_nf2_freeze(struct ata_port *ap)
1616 {
1617 	void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1618 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1619 	u8 mask;
1620 
1621 	mask = ioread8(scr_addr + NV_INT_ENABLE);
1622 	mask &= ~(NV_INT_ALL << shift);
1623 	iowrite8(mask, scr_addr + NV_INT_ENABLE);
1624 }
1625 
1626 static void nv_nf2_thaw(struct ata_port *ap)
1627 {
1628 	void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1629 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1630 	u8 mask;
1631 
1632 	iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
1633 
1634 	mask = ioread8(scr_addr + NV_INT_ENABLE);
1635 	mask |= (NV_INT_MASK << shift);
1636 	iowrite8(mask, scr_addr + NV_INT_ENABLE);
1637 }
1638 
1639 static void nv_ck804_freeze(struct ata_port *ap)
1640 {
1641 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1642 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1643 	u8 mask;
1644 
1645 	mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1646 	mask &= ~(NV_INT_ALL << shift);
1647 	writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1648 }
1649 
1650 static void nv_ck804_thaw(struct ata_port *ap)
1651 {
1652 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1653 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1654 	u8 mask;
1655 
1656 	writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
1657 
1658 	mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1659 	mask |= (NV_INT_MASK << shift);
1660 	writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1661 }
1662 
1663 static void nv_mcp55_freeze(struct ata_port *ap)
1664 {
1665 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1666 	int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1667 	u32 mask;
1668 
1669 	writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1670 
1671 	mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1672 	mask &= ~(NV_INT_ALL_MCP55 << shift);
1673 	writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1674 }
1675 
1676 static void nv_mcp55_thaw(struct ata_port *ap)
1677 {
1678 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1679 	int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1680 	u32 mask;
1681 
1682 	writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1683 
1684 	mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1685 	mask |= (NV_INT_MASK_MCP55 << shift);
1686 	writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1687 }
1688 
1689 static void nv_adma_error_handler(struct ata_port *ap)
1690 {
1691 	struct nv_adma_port_priv *pp = ap->private_data;
1692 	if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
1693 		void __iomem *mmio = pp->ctl_block;
1694 		int i;
1695 		u16 tmp;
1696 
1697 		if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
1698 			u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
1699 			u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
1700 			u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
1701 			u32 status = readw(mmio + NV_ADMA_STAT);
1702 			u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
1703 			u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
1704 
1705 			ata_port_printk(ap, KERN_ERR,
1706 				"EH in ADMA mode, notifier 0x%X "
1707 				"notifier_error 0x%X gen_ctl 0x%X status 0x%X "
1708 				"next cpb count 0x%X next cpb idx 0x%x\n",
1709 				notifier, notifier_error, gen_ctl, status,
1710 				cpb_count, next_cpb_idx);
1711 
1712 			for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
1713 				struct nv_adma_cpb *cpb = &pp->cpb[i];
1714 				if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
1715 				    ap->link.sactive & (1 << i))
1716 					ata_port_printk(ap, KERN_ERR,
1717 						"CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
1718 						i, cpb->ctl_flags, cpb->resp_flags);
1719 			}
1720 		}
1721 
1722 		/* Push us back into port register mode for error handling. */
1723 		nv_adma_register_mode(ap);
1724 
1725 		/* Mark all of the CPBs as invalid to prevent them from
1726 		   being executed */
1727 		for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
1728 			pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
1729 
1730 		/* clear CPB fetch count */
1731 		writew(0, mmio + NV_ADMA_CPB_COUNT);
1732 
1733 		/* Reset channel */
1734 		tmp = readw(mmio + NV_ADMA_CTL);
1735 		writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1736 		readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1737 		udelay(1);
1738 		writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1739 		readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1740 	}
1741 
1742 	ata_bmdma_error_handler(ap);
1743 }
1744 
1745 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
1746 {
1747 	struct nv_swncq_port_priv *pp = ap->private_data;
1748 	struct defer_queue *dq = &pp->defer_queue;
1749 
1750 	/* queue is full */
1751 	WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
1752 	dq->defer_bits |= (1 << qc->tag);
1753 	dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag;
1754 }
1755 
1756 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
1757 {
1758 	struct nv_swncq_port_priv *pp = ap->private_data;
1759 	struct defer_queue *dq = &pp->defer_queue;
1760 	unsigned int tag;
1761 
1762 	if (dq->head == dq->tail)	/* null queue */
1763 		return NULL;
1764 
1765 	tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
1766 	dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
1767 	WARN_ON(!(dq->defer_bits & (1 << tag)));
1768 	dq->defer_bits &= ~(1 << tag);
1769 
1770 	return ata_qc_from_tag(ap, tag);
1771 }
1772 
1773 static void nv_swncq_fis_reinit(struct ata_port *ap)
1774 {
1775 	struct nv_swncq_port_priv *pp = ap->private_data;
1776 
1777 	pp->dhfis_bits = 0;
1778 	pp->dmafis_bits = 0;
1779 	pp->sdbfis_bits = 0;
1780 	pp->ncq_flags = 0;
1781 }
1782 
1783 static void nv_swncq_pp_reinit(struct ata_port *ap)
1784 {
1785 	struct nv_swncq_port_priv *pp = ap->private_data;
1786 	struct defer_queue *dq = &pp->defer_queue;
1787 
1788 	dq->head = 0;
1789 	dq->tail = 0;
1790 	dq->defer_bits = 0;
1791 	pp->qc_active = 0;
1792 	pp->last_issue_tag = ATA_TAG_POISON;
1793 	nv_swncq_fis_reinit(ap);
1794 }
1795 
1796 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
1797 {
1798 	struct nv_swncq_port_priv *pp = ap->private_data;
1799 
1800 	writew(fis, pp->irq_block);
1801 }
1802 
1803 static void __ata_bmdma_stop(struct ata_port *ap)
1804 {
1805 	struct ata_queued_cmd qc;
1806 
1807 	qc.ap = ap;
1808 	ata_bmdma_stop(&qc);
1809 }
1810 
1811 static void nv_swncq_ncq_stop(struct ata_port *ap)
1812 {
1813 	struct nv_swncq_port_priv *pp = ap->private_data;
1814 	unsigned int i;
1815 	u32 sactive;
1816 	u32 done_mask;
1817 
1818 	ata_port_printk(ap, KERN_ERR,
1819 			"EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n",
1820 			ap->qc_active, ap->link.sactive);
1821 	ata_port_printk(ap, KERN_ERR,
1822 		"SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n  "
1823 		"dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
1824 		pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
1825 		pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
1826 
1827 	ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n",
1828 			ap->ops->sff_check_status(ap),
1829 			ioread8(ap->ioaddr.error_addr));
1830 
1831 	sactive = readl(pp->sactive_block);
1832 	done_mask = pp->qc_active ^ sactive;
1833 
1834 	ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n");
1835 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
1836 		u8 err = 0;
1837 		if (pp->qc_active & (1 << i))
1838 			err = 0;
1839 		else if (done_mask & (1 << i))
1840 			err = 1;
1841 		else
1842 			continue;
1843 
1844 		ata_port_printk(ap, KERN_ERR,
1845 				"tag 0x%x: %01x %01x %01x %01x %s\n", i,
1846 				(pp->dhfis_bits >> i) & 0x1,
1847 				(pp->dmafis_bits >> i) & 0x1,
1848 				(pp->sdbfis_bits >> i) & 0x1,
1849 				(sactive >> i) & 0x1,
1850 				(err ? "error! tag doesn't exit" : " "));
1851 	}
1852 
1853 	nv_swncq_pp_reinit(ap);
1854 	ap->ops->sff_irq_clear(ap);
1855 	__ata_bmdma_stop(ap);
1856 	nv_swncq_irq_clear(ap, 0xffff);
1857 }
1858 
1859 static void nv_swncq_error_handler(struct ata_port *ap)
1860 {
1861 	struct ata_eh_context *ehc = &ap->link.eh_context;
1862 
1863 	if (ap->link.sactive) {
1864 		nv_swncq_ncq_stop(ap);
1865 		ehc->i.action |= ATA_EH_RESET;
1866 	}
1867 
1868 	ata_bmdma_error_handler(ap);
1869 }
1870 
1871 #ifdef CONFIG_PM
1872 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
1873 {
1874 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1875 	u32 tmp;
1876 
1877 	/* clear irq */
1878 	writel(~0, mmio + NV_INT_STATUS_MCP55);
1879 
1880 	/* disable irq */
1881 	writel(0, mmio + NV_INT_ENABLE_MCP55);
1882 
1883 	/* disable swncq */
1884 	tmp = readl(mmio + NV_CTL_MCP55);
1885 	tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
1886 	writel(tmp, mmio + NV_CTL_MCP55);
1887 
1888 	return 0;
1889 }
1890 
1891 static int nv_swncq_port_resume(struct ata_port *ap)
1892 {
1893 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1894 	u32 tmp;
1895 
1896 	/* clear irq */
1897 	writel(~0, mmio + NV_INT_STATUS_MCP55);
1898 
1899 	/* enable irq */
1900 	writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1901 
1902 	/* enable swncq */
1903 	tmp = readl(mmio + NV_CTL_MCP55);
1904 	writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1905 
1906 	return 0;
1907 }
1908 #endif
1909 
1910 static void nv_swncq_host_init(struct ata_host *host)
1911 {
1912 	u32 tmp;
1913 	void __iomem *mmio = host->iomap[NV_MMIO_BAR];
1914 	struct pci_dev *pdev = to_pci_dev(host->dev);
1915 	u8 regval;
1916 
1917 	/* disable  ECO 398 */
1918 	pci_read_config_byte(pdev, 0x7f, &regval);
1919 	regval &= ~(1 << 7);
1920 	pci_write_config_byte(pdev, 0x7f, regval);
1921 
1922 	/* enable swncq */
1923 	tmp = readl(mmio + NV_CTL_MCP55);
1924 	VPRINTK("HOST_CTL:0x%X\n", tmp);
1925 	writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1926 
1927 	/* enable irq intr */
1928 	tmp = readl(mmio + NV_INT_ENABLE_MCP55);
1929 	VPRINTK("HOST_ENABLE:0x%X\n", tmp);
1930 	writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1931 
1932 	/*  clear port irq */
1933 	writel(~0x0, mmio + NV_INT_STATUS_MCP55);
1934 }
1935 
1936 static int nv_swncq_slave_config(struct scsi_device *sdev)
1937 {
1938 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1939 	struct pci_dev *pdev = to_pci_dev(ap->host->dev);
1940 	struct ata_device *dev;
1941 	int rc;
1942 	u8 rev;
1943 	u8 check_maxtor = 0;
1944 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
1945 
1946 	rc = ata_scsi_slave_config(sdev);
1947 	if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
1948 		/* Not a proper libata device, ignore */
1949 		return rc;
1950 
1951 	dev = &ap->link.device[sdev->id];
1952 	if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
1953 		return rc;
1954 
1955 	/* if MCP51 and Maxtor, then disable ncq */
1956 	if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
1957 		pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
1958 		check_maxtor = 1;
1959 
1960 	/* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
1961 	if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
1962 		pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
1963 		pci_read_config_byte(pdev, 0x8, &rev);
1964 		if (rev <= 0xa2)
1965 			check_maxtor = 1;
1966 	}
1967 
1968 	if (!check_maxtor)
1969 		return rc;
1970 
1971 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
1972 
1973 	if (strncmp(model_num, "Maxtor", 6) == 0) {
1974 		ata_scsi_change_queue_depth(sdev, 1, SCSI_QDEPTH_DEFAULT);
1975 		ata_dev_printk(dev, KERN_NOTICE,
1976 			"Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth);
1977 	}
1978 
1979 	return rc;
1980 }
1981 
1982 static int nv_swncq_port_start(struct ata_port *ap)
1983 {
1984 	struct device *dev = ap->host->dev;
1985 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1986 	struct nv_swncq_port_priv *pp;
1987 	int rc;
1988 
1989 	/* we might fallback to bmdma, allocate bmdma resources */
1990 	rc = ata_bmdma_port_start(ap);
1991 	if (rc)
1992 		return rc;
1993 
1994 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1995 	if (!pp)
1996 		return -ENOMEM;
1997 
1998 	pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
1999 				      &pp->prd_dma, GFP_KERNEL);
2000 	if (!pp->prd)
2001 		return -ENOMEM;
2002 	memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE);
2003 
2004 	ap->private_data = pp;
2005 	pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
2006 	pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
2007 	pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
2008 
2009 	return 0;
2010 }
2011 
2012 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
2013 {
2014 	if (qc->tf.protocol != ATA_PROT_NCQ) {
2015 		ata_bmdma_qc_prep(qc);
2016 		return;
2017 	}
2018 
2019 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2020 		return;
2021 
2022 	nv_swncq_fill_sg(qc);
2023 }
2024 
2025 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
2026 {
2027 	struct ata_port *ap = qc->ap;
2028 	struct scatterlist *sg;
2029 	struct nv_swncq_port_priv *pp = ap->private_data;
2030 	struct ata_bmdma_prd *prd;
2031 	unsigned int si, idx;
2032 
2033 	prd = pp->prd + ATA_MAX_PRD * qc->tag;
2034 
2035 	idx = 0;
2036 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2037 		u32 addr, offset;
2038 		u32 sg_len, len;
2039 
2040 		addr = (u32)sg_dma_address(sg);
2041 		sg_len = sg_dma_len(sg);
2042 
2043 		while (sg_len) {
2044 			offset = addr & 0xffff;
2045 			len = sg_len;
2046 			if ((offset + sg_len) > 0x10000)
2047 				len = 0x10000 - offset;
2048 
2049 			prd[idx].addr = cpu_to_le32(addr);
2050 			prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2051 
2052 			idx++;
2053 			sg_len -= len;
2054 			addr += len;
2055 		}
2056 	}
2057 
2058 	prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2059 }
2060 
2061 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
2062 					  struct ata_queued_cmd *qc)
2063 {
2064 	struct nv_swncq_port_priv *pp = ap->private_data;
2065 
2066 	if (qc == NULL)
2067 		return 0;
2068 
2069 	DPRINTK("Enter\n");
2070 
2071 	writel((1 << qc->tag), pp->sactive_block);
2072 	pp->last_issue_tag = qc->tag;
2073 	pp->dhfis_bits &= ~(1 << qc->tag);
2074 	pp->dmafis_bits &= ~(1 << qc->tag);
2075 	pp->qc_active |= (0x1 << qc->tag);
2076 
2077 	ap->ops->sff_tf_load(ap, &qc->tf);	 /* load tf registers */
2078 	ap->ops->sff_exec_command(ap, &qc->tf);
2079 
2080 	DPRINTK("Issued tag %u\n", qc->tag);
2081 
2082 	return 0;
2083 }
2084 
2085 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
2086 {
2087 	struct ata_port *ap = qc->ap;
2088 	struct nv_swncq_port_priv *pp = ap->private_data;
2089 
2090 	if (qc->tf.protocol != ATA_PROT_NCQ)
2091 		return ata_bmdma_qc_issue(qc);
2092 
2093 	DPRINTK("Enter\n");
2094 
2095 	if (!pp->qc_active)
2096 		nv_swncq_issue_atacmd(ap, qc);
2097 	else
2098 		nv_swncq_qc_to_dq(ap, qc);	/* add qc to defer queue */
2099 
2100 	return 0;
2101 }
2102 
2103 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
2104 {
2105 	u32 serror;
2106 	struct ata_eh_info *ehi = &ap->link.eh_info;
2107 
2108 	ata_ehi_clear_desc(ehi);
2109 
2110 	/* AHCI needs SError cleared; otherwise, it might lock up */
2111 	sata_scr_read(&ap->link, SCR_ERROR, &serror);
2112 	sata_scr_write(&ap->link, SCR_ERROR, serror);
2113 
2114 	/* analyze @irq_stat */
2115 	if (fis & NV_SWNCQ_IRQ_ADDED)
2116 		ata_ehi_push_desc(ehi, "hot plug");
2117 	else if (fis & NV_SWNCQ_IRQ_REMOVED)
2118 		ata_ehi_push_desc(ehi, "hot unplug");
2119 
2120 	ata_ehi_hotplugged(ehi);
2121 
2122 	/* okay, let's hand over to EH */
2123 	ehi->serror |= serror;
2124 
2125 	ata_port_freeze(ap);
2126 }
2127 
2128 static int nv_swncq_sdbfis(struct ata_port *ap)
2129 {
2130 	struct ata_queued_cmd *qc;
2131 	struct nv_swncq_port_priv *pp = ap->private_data;
2132 	struct ata_eh_info *ehi = &ap->link.eh_info;
2133 	u32 sactive;
2134 	u32 done_mask;
2135 	int i;
2136 	u8 host_stat;
2137 	u8 lack_dhfis = 0;
2138 
2139 	host_stat = ap->ops->bmdma_status(ap);
2140 	if (unlikely(host_stat & ATA_DMA_ERR)) {
2141 		/* error when transfering data to/from memory */
2142 		ata_ehi_clear_desc(ehi);
2143 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2144 		ehi->err_mask |= AC_ERR_HOST_BUS;
2145 		ehi->action |= ATA_EH_RESET;
2146 		return -EINVAL;
2147 	}
2148 
2149 	ap->ops->sff_irq_clear(ap);
2150 	__ata_bmdma_stop(ap);
2151 
2152 	sactive = readl(pp->sactive_block);
2153 	done_mask = pp->qc_active ^ sactive;
2154 
2155 	if (unlikely(done_mask & sactive)) {
2156 		ata_ehi_clear_desc(ehi);
2157 		ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition"
2158 				  "(%08x->%08x)", pp->qc_active, sactive);
2159 		ehi->err_mask |= AC_ERR_HSM;
2160 		ehi->action |= ATA_EH_RESET;
2161 		return -EINVAL;
2162 	}
2163 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
2164 		if (!(done_mask & (1 << i)))
2165 			continue;
2166 
2167 		qc = ata_qc_from_tag(ap, i);
2168 		if (qc) {
2169 			ata_qc_complete(qc);
2170 			pp->qc_active &= ~(1 << i);
2171 			pp->dhfis_bits &= ~(1 << i);
2172 			pp->dmafis_bits &= ~(1 << i);
2173 			pp->sdbfis_bits |= (1 << i);
2174 		}
2175 	}
2176 
2177 	if (!ap->qc_active) {
2178 		DPRINTK("over\n");
2179 		nv_swncq_pp_reinit(ap);
2180 		return 0;
2181 	}
2182 
2183 	if (pp->qc_active & pp->dhfis_bits)
2184 		return 0;
2185 
2186 	if ((pp->ncq_flags & ncq_saw_backout) ||
2187 	    (pp->qc_active ^ pp->dhfis_bits))
2188 		/* if the controller can't get a device to host register FIS,
2189 		 * The driver needs to reissue the new command.
2190 		 */
2191 		lack_dhfis = 1;
2192 
2193 	DPRINTK("id 0x%x QC: qc_active 0x%x,"
2194 		"SWNCQ:qc_active 0x%X defer_bits %X "
2195 		"dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
2196 		ap->print_id, ap->qc_active, pp->qc_active,
2197 		pp->defer_queue.defer_bits, pp->dhfis_bits,
2198 		pp->dmafis_bits, pp->last_issue_tag);
2199 
2200 	nv_swncq_fis_reinit(ap);
2201 
2202 	if (lack_dhfis) {
2203 		qc = ata_qc_from_tag(ap, pp->last_issue_tag);
2204 		nv_swncq_issue_atacmd(ap, qc);
2205 		return 0;
2206 	}
2207 
2208 	if (pp->defer_queue.defer_bits) {
2209 		/* send deferral queue command */
2210 		qc = nv_swncq_qc_from_dq(ap);
2211 		WARN_ON(qc == NULL);
2212 		nv_swncq_issue_atacmd(ap, qc);
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 static inline u32 nv_swncq_tag(struct ata_port *ap)
2219 {
2220 	struct nv_swncq_port_priv *pp = ap->private_data;
2221 	u32 tag;
2222 
2223 	tag = readb(pp->tag_block) >> 2;
2224 	return (tag & 0x1f);
2225 }
2226 
2227 static void nv_swncq_dmafis(struct ata_port *ap)
2228 {
2229 	struct ata_queued_cmd *qc;
2230 	unsigned int rw;
2231 	u8 dmactl;
2232 	u32 tag;
2233 	struct nv_swncq_port_priv *pp = ap->private_data;
2234 
2235 	__ata_bmdma_stop(ap);
2236 	tag = nv_swncq_tag(ap);
2237 
2238 	DPRINTK("dma setup tag 0x%x\n", tag);
2239 	qc = ata_qc_from_tag(ap, tag);
2240 
2241 	if (unlikely(!qc))
2242 		return;
2243 
2244 	rw = qc->tf.flags & ATA_TFLAG_WRITE;
2245 
2246 	/* load PRD table addr. */
2247 	iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag,
2248 		  ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2249 
2250 	/* specify data direction, triple-check start bit is clear */
2251 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2252 	dmactl &= ~ATA_DMA_WR;
2253 	if (!rw)
2254 		dmactl |= ATA_DMA_WR;
2255 
2256 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2257 }
2258 
2259 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
2260 {
2261 	struct nv_swncq_port_priv *pp = ap->private_data;
2262 	struct ata_queued_cmd *qc;
2263 	struct ata_eh_info *ehi = &ap->link.eh_info;
2264 	u32 serror;
2265 	u8 ata_stat;
2266 
2267 	ata_stat = ap->ops->sff_check_status(ap);
2268 	nv_swncq_irq_clear(ap, fis);
2269 	if (!fis)
2270 		return;
2271 
2272 	if (ap->pflags & ATA_PFLAG_FROZEN)
2273 		return;
2274 
2275 	if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
2276 		nv_swncq_hotplug(ap, fis);
2277 		return;
2278 	}
2279 
2280 	if (!pp->qc_active)
2281 		return;
2282 
2283 	if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror))
2284 		return;
2285 	ap->ops->scr_write(&ap->link, SCR_ERROR, serror);
2286 
2287 	if (ata_stat & ATA_ERR) {
2288 		ata_ehi_clear_desc(ehi);
2289 		ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
2290 		ehi->err_mask |= AC_ERR_DEV;
2291 		ehi->serror |= serror;
2292 		ehi->action |= ATA_EH_RESET;
2293 		ata_port_freeze(ap);
2294 		return;
2295 	}
2296 
2297 	if (fis & NV_SWNCQ_IRQ_BACKOUT) {
2298 		/* If the IRQ is backout, driver must issue
2299 		 * the new command again some time later.
2300 		 */
2301 		pp->ncq_flags |= ncq_saw_backout;
2302 	}
2303 
2304 	if (fis & NV_SWNCQ_IRQ_SDBFIS) {
2305 		pp->ncq_flags |= ncq_saw_sdb;
2306 		DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
2307 			"dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
2308 			ap->print_id, pp->qc_active, pp->dhfis_bits,
2309 			pp->dmafis_bits, readl(pp->sactive_block));
2310 		if (nv_swncq_sdbfis(ap) < 0)
2311 			goto irq_error;
2312 	}
2313 
2314 	if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
2315 		/* The interrupt indicates the new command
2316 		 * was transmitted correctly to the drive.
2317 		 */
2318 		pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
2319 		pp->ncq_flags |= ncq_saw_d2h;
2320 		if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
2321 			ata_ehi_push_desc(ehi, "illegal fis transaction");
2322 			ehi->err_mask |= AC_ERR_HSM;
2323 			ehi->action |= ATA_EH_RESET;
2324 			goto irq_error;
2325 		}
2326 
2327 		if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
2328 		    !(pp->ncq_flags & ncq_saw_dmas)) {
2329 			ata_stat = ap->ops->sff_check_status(ap);
2330 			if (ata_stat & ATA_BUSY)
2331 				goto irq_exit;
2332 
2333 			if (pp->defer_queue.defer_bits) {
2334 				DPRINTK("send next command\n");
2335 				qc = nv_swncq_qc_from_dq(ap);
2336 				nv_swncq_issue_atacmd(ap, qc);
2337 			}
2338 		}
2339 	}
2340 
2341 	if (fis & NV_SWNCQ_IRQ_DMASETUP) {
2342 		/* program the dma controller with appropriate PRD buffers
2343 		 * and start the DMA transfer for requested command.
2344 		 */
2345 		pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
2346 		pp->ncq_flags |= ncq_saw_dmas;
2347 		nv_swncq_dmafis(ap);
2348 	}
2349 
2350 irq_exit:
2351 	return;
2352 irq_error:
2353 	ata_ehi_push_desc(ehi, "fis:0x%x", fis);
2354 	ata_port_freeze(ap);
2355 	return;
2356 }
2357 
2358 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
2359 {
2360 	struct ata_host *host = dev_instance;
2361 	unsigned int i;
2362 	unsigned int handled = 0;
2363 	unsigned long flags;
2364 	u32 irq_stat;
2365 
2366 	spin_lock_irqsave(&host->lock, flags);
2367 
2368 	irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
2369 
2370 	for (i = 0; i < host->n_ports; i++) {
2371 		struct ata_port *ap = host->ports[i];
2372 
2373 		if (ap->link.sactive) {
2374 			nv_swncq_host_interrupt(ap, (u16)irq_stat);
2375 			handled = 1;
2376 		} else {
2377 			if (irq_stat)	/* reserve Hotplug */
2378 				nv_swncq_irq_clear(ap, 0xfff0);
2379 
2380 			handled += nv_host_intr(ap, (u8)irq_stat);
2381 		}
2382 		irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
2383 	}
2384 
2385 	spin_unlock_irqrestore(&host->lock, flags);
2386 
2387 	return IRQ_RETVAL(handled);
2388 }
2389 
2390 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2391 {
2392 	static int printed_version;
2393 	const struct ata_port_info *ppi[] = { NULL, NULL };
2394 	struct nv_pi_priv *ipriv;
2395 	struct ata_host *host;
2396 	struct nv_host_priv *hpriv;
2397 	int rc;
2398 	u32 bar;
2399 	void __iomem *base;
2400 	unsigned long type = ent->driver_data;
2401 
2402         // Make sure this is a SATA controller by counting the number of bars
2403         // (NVIDIA SATA controllers will always have six bars).  Otherwise,
2404         // it's an IDE controller and we ignore it.
2405 	for (bar = 0; bar < 6; bar++)
2406 		if (pci_resource_start(pdev, bar) == 0)
2407 			return -ENODEV;
2408 
2409 	if (!printed_version++)
2410 		dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
2411 
2412 	rc = pcim_enable_device(pdev);
2413 	if (rc)
2414 		return rc;
2415 
2416 	/* determine type and allocate host */
2417 	if (type == CK804 && adma_enabled) {
2418 		dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n");
2419 		type = ADMA;
2420 	} else if (type == MCP5x && swncq_enabled) {
2421 		dev_printk(KERN_NOTICE, &pdev->dev, "Using SWNCQ mode\n");
2422 		type = SWNCQ;
2423 	}
2424 
2425 	ppi[0] = &nv_port_info[type];
2426 	ipriv = ppi[0]->private_data;
2427 	rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2428 	if (rc)
2429 		return rc;
2430 
2431 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2432 	if (!hpriv)
2433 		return -ENOMEM;
2434 	hpriv->type = type;
2435 	host->private_data = hpriv;
2436 
2437 	/* request and iomap NV_MMIO_BAR */
2438 	rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
2439 	if (rc)
2440 		return rc;
2441 
2442 	/* configure SCR access */
2443 	base = host->iomap[NV_MMIO_BAR];
2444 	host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
2445 	host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
2446 
2447 	/* enable SATA space for CK804 */
2448 	if (type >= CK804) {
2449 		u8 regval;
2450 
2451 		pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2452 		regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2453 		pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2454 	}
2455 
2456 	/* init ADMA */
2457 	if (type == ADMA) {
2458 		rc = nv_adma_host_init(host);
2459 		if (rc)
2460 			return rc;
2461 	} else if (type == SWNCQ)
2462 		nv_swncq_host_init(host);
2463 
2464 	if (msi_enabled) {
2465 		dev_printk(KERN_NOTICE, &pdev->dev, "Using MSI\n");
2466 		pci_enable_msi(pdev);
2467 	}
2468 
2469 	pci_set_master(pdev);
2470 	return ata_pci_sff_activate_host(host, ipriv->irq_handler, ipriv->sht);
2471 }
2472 
2473 #ifdef CONFIG_PM
2474 static int nv_pci_device_resume(struct pci_dev *pdev)
2475 {
2476 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
2477 	struct nv_host_priv *hpriv = host->private_data;
2478 	int rc;
2479 
2480 	rc = ata_pci_device_do_resume(pdev);
2481 	if (rc)
2482 		return rc;
2483 
2484 	if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
2485 		if (hpriv->type >= CK804) {
2486 			u8 regval;
2487 
2488 			pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2489 			regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2490 			pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2491 		}
2492 		if (hpriv->type == ADMA) {
2493 			u32 tmp32;
2494 			struct nv_adma_port_priv *pp;
2495 			/* enable/disable ADMA on the ports appropriately */
2496 			pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2497 
2498 			pp = host->ports[0]->private_data;
2499 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2500 				tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2501 					   NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2502 			else
2503 				tmp32 |=  (NV_MCP_SATA_CFG_20_PORT0_EN |
2504 					   NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2505 			pp = host->ports[1]->private_data;
2506 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2507 				tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
2508 					   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2509 			else
2510 				tmp32 |=  (NV_MCP_SATA_CFG_20_PORT1_EN |
2511 					   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2512 
2513 			pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2514 		}
2515 	}
2516 
2517 	ata_host_resume(host);
2518 
2519 	return 0;
2520 }
2521 #endif
2522 
2523 static void nv_ck804_host_stop(struct ata_host *host)
2524 {
2525 	struct pci_dev *pdev = to_pci_dev(host->dev);
2526 	u8 regval;
2527 
2528 	/* disable SATA space for CK804 */
2529 	pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2530 	regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2531 	pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2532 }
2533 
2534 static void nv_adma_host_stop(struct ata_host *host)
2535 {
2536 	struct pci_dev *pdev = to_pci_dev(host->dev);
2537 	u32 tmp32;
2538 
2539 	/* disable ADMA on the ports */
2540 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2541 	tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2542 		   NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
2543 		   NV_MCP_SATA_CFG_20_PORT1_EN |
2544 		   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2545 
2546 	pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2547 
2548 	nv_ck804_host_stop(host);
2549 }
2550 
2551 static int __init nv_init(void)
2552 {
2553 	return pci_register_driver(&nv_pci_driver);
2554 }
2555 
2556 static void __exit nv_exit(void)
2557 {
2558 	pci_unregister_driver(&nv_pci_driver);
2559 }
2560 
2561 module_init(nv_init);
2562 module_exit(nv_exit);
2563 module_param_named(adma, adma_enabled, bool, 0444);
2564 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)");
2565 module_param_named(swncq, swncq_enabled, bool, 0444);
2566 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)");
2567 module_param_named(msi, msi_enabled, bool, 0444);
2568 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)");
2569 
2570