xref: /linux/drivers/ata/sata_mv.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
72 
73 #define DRV_NAME	"sata_mv"
74 #define DRV_VERSION	"1.28"
75 
76 /*
77  * module options
78  */
79 
80 static int msi;
81 #ifdef CONFIG_PCI
82 module_param(msi, int, S_IRUGO);
83 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
84 #endif
85 
86 static int irq_coalescing_io_count;
87 module_param(irq_coalescing_io_count, int, S_IRUGO);
88 MODULE_PARM_DESC(irq_coalescing_io_count,
89 		 "IRQ coalescing I/O count threshold (0..255)");
90 
91 static int irq_coalescing_usecs;
92 module_param(irq_coalescing_usecs, int, S_IRUGO);
93 MODULE_PARM_DESC(irq_coalescing_usecs,
94 		 "IRQ coalescing time threshold in usecs");
95 
96 enum {
97 	/* BAR's are enumerated in terms of pci_resource_start() terms */
98 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
99 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
100 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
101 
102 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
103 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
104 
105 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
106 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
107 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
108 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
109 
110 	MV_PCI_REG_BASE		= 0,
111 
112 	/*
113 	 * Per-chip ("all ports") interrupt coalescing feature.
114 	 * This is only for GEN_II / GEN_IIE hardware.
115 	 *
116 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
117 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
118 	 */
119 	COAL_REG_BASE		= 0x18000,
120 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
121 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
122 
123 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
124 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
125 
126 	/*
127 	 * Registers for the (unused here) transaction coalescing feature:
128 	 */
129 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
130 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
131 
132 	SATAHC0_REG_BASE	= 0x20000,
133 	FLASH_CTL		= 0x1046c,
134 	GPIO_PORT_CTL		= 0x104f0,
135 	RESET_CFG		= 0x180d8,
136 
137 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
138 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
139 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
140 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
141 
142 	MV_MAX_Q_DEPTH		= 32,
143 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
144 
145 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
146 	 * CRPB needs alignment on a 256B boundary. Size == 256B
147 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
148 	 */
149 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
150 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
151 	MV_MAX_SG_CT		= 256,
152 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
153 
154 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
155 	MV_PORT_HC_SHIFT	= 2,
156 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
157 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
158 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
159 
160 	/* Host Flags */
161 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
162 
163 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
164 				  ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
165 
166 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
167 
168 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
169 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
170 
171 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
172 
173 	CRQB_FLAG_READ		= (1 << 0),
174 	CRQB_TAG_SHIFT		= 1,
175 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
176 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
177 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
178 	CRQB_CMD_ADDR_SHIFT	= 8,
179 	CRQB_CMD_CS		= (0x2 << 11),
180 	CRQB_CMD_LAST		= (1 << 15),
181 
182 	CRPB_FLAG_STATUS_SHIFT	= 8,
183 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
184 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
185 
186 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
187 
188 	/* PCI interface registers */
189 
190 	MV_PCI_COMMAND		= 0xc00,
191 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
192 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
193 
194 	PCI_MAIN_CMD_STS	= 0xd30,
195 	STOP_PCI_MASTER		= (1 << 2),
196 	PCI_MASTER_EMPTY	= (1 << 3),
197 	GLOB_SFT_RST		= (1 << 4),
198 
199 	MV_PCI_MODE		= 0xd00,
200 	MV_PCI_MODE_MASK	= 0x30,
201 
202 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
203 	MV_PCI_DISC_TIMER	= 0xd04,
204 	MV_PCI_MSI_TRIGGER	= 0xc38,
205 	MV_PCI_SERR_MASK	= 0xc28,
206 	MV_PCI_XBAR_TMOUT	= 0x1d04,
207 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
208 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
209 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
210 	MV_PCI_ERR_COMMAND	= 0x1d50,
211 
212 	PCI_IRQ_CAUSE		= 0x1d58,
213 	PCI_IRQ_MASK		= 0x1d5c,
214 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
215 
216 	PCIE_IRQ_CAUSE		= 0x1900,
217 	PCIE_IRQ_MASK		= 0x1910,
218 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
219 
220 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
221 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
222 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
223 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
224 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
225 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
226 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
227 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
228 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
229 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
230 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
231 	PCI_ERR			= (1 << 18),
232 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
233 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
234 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
235 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
236 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
237 	GPIO_INT		= (1 << 22),
238 	SELF_INT		= (1 << 23),
239 	TWSI_INT		= (1 << 24),
240 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
241 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
242 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
243 
244 	/* SATAHC registers */
245 	HC_CFG			= 0x00,
246 
247 	HC_IRQ_CAUSE		= 0x14,
248 	DMA_IRQ			= (1 << 0),	/* shift by port # */
249 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
250 	DEV_IRQ			= (1 << 8),	/* shift by port # */
251 
252 	/*
253 	 * Per-HC (Host-Controller) interrupt coalescing feature.
254 	 * This is present on all chip generations.
255 	 *
256 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
257 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
258 	 */
259 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
260 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
261 
262 	SOC_LED_CTRL		= 0x2c,
263 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
264 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
265 						/*  with dev activity LED */
266 
267 	/* Shadow block registers */
268 	SHD_BLK			= 0x100,
269 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
270 
271 	/* SATA registers */
272 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
273 	SATA_ACTIVE		= 0x350,
274 	FIS_IRQ_CAUSE		= 0x364,
275 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
276 
277 	LTMODE			= 0x30c,	/* requires read-after-write */
278 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
279 
280 	PHY_MODE2		= 0x330,
281 	PHY_MODE3		= 0x310,
282 
283 	PHY_MODE4		= 0x314,	/* requires read-after-write */
284 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
285 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
286 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
287 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
288 
289 	SATA_IFCTL		= 0x344,
290 	SATA_TESTCTL		= 0x348,
291 	SATA_IFSTAT		= 0x34c,
292 	VENDOR_UNIQUE_FIS	= 0x35c,
293 
294 	FISCFG			= 0x360,
295 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
296 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
297 
298 	PHY_MODE9_GEN2		= 0x398,
299 	PHY_MODE9_GEN1		= 0x39c,
300 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
301 
302 	MV5_PHY_MODE		= 0x74,
303 	MV5_LTMODE		= 0x30,
304 	MV5_PHY_CTL		= 0x0C,
305 	SATA_IFCFG		= 0x050,
306 
307 	MV_M2_PREAMP_MASK	= 0x7e0,
308 
309 	/* Port registers */
310 	EDMA_CFG		= 0,
311 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
312 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
313 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
314 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
315 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
316 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
317 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
318 
319 	EDMA_ERR_IRQ_CAUSE	= 0x8,
320 	EDMA_ERR_IRQ_MASK	= 0xc,
321 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
322 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
323 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
324 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
325 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
326 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
327 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
328 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
329 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
330 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
331 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
332 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
333 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
334 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
335 
336 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
337 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
338 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
339 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
340 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
341 
342 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
343 
344 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
345 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
346 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
347 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
348 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
349 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
350 
351 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
352 
353 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
354 	EDMA_ERR_OVERRUN_5	= (1 << 5),
355 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
356 
357 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
358 				  EDMA_ERR_LNK_CTRL_RX_1 |
359 				  EDMA_ERR_LNK_CTRL_RX_3 |
360 				  EDMA_ERR_LNK_CTRL_TX,
361 
362 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
363 				  EDMA_ERR_PRD_PAR |
364 				  EDMA_ERR_DEV_DCON |
365 				  EDMA_ERR_DEV_CON |
366 				  EDMA_ERR_SERR |
367 				  EDMA_ERR_SELF_DIS |
368 				  EDMA_ERR_CRQB_PAR |
369 				  EDMA_ERR_CRPB_PAR |
370 				  EDMA_ERR_INTRL_PAR |
371 				  EDMA_ERR_IORDY |
372 				  EDMA_ERR_LNK_CTRL_RX_2 |
373 				  EDMA_ERR_LNK_DATA_RX |
374 				  EDMA_ERR_LNK_DATA_TX |
375 				  EDMA_ERR_TRANS_PROTO,
376 
377 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
378 				  EDMA_ERR_PRD_PAR |
379 				  EDMA_ERR_DEV_DCON |
380 				  EDMA_ERR_DEV_CON |
381 				  EDMA_ERR_OVERRUN_5 |
382 				  EDMA_ERR_UNDERRUN_5 |
383 				  EDMA_ERR_SELF_DIS_5 |
384 				  EDMA_ERR_CRQB_PAR |
385 				  EDMA_ERR_CRPB_PAR |
386 				  EDMA_ERR_INTRL_PAR |
387 				  EDMA_ERR_IORDY,
388 
389 	EDMA_REQ_Q_BASE_HI	= 0x10,
390 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
391 
392 	EDMA_REQ_Q_OUT_PTR	= 0x18,
393 	EDMA_REQ_Q_PTR_SHIFT	= 5,
394 
395 	EDMA_RSP_Q_BASE_HI	= 0x1c,
396 	EDMA_RSP_Q_IN_PTR	= 0x20,
397 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
398 	EDMA_RSP_Q_PTR_SHIFT	= 3,
399 
400 	EDMA_CMD		= 0x28,		/* EDMA command register */
401 	EDMA_EN			= (1 << 0),	/* enable EDMA */
402 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
403 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
404 
405 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
406 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
407 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
408 
409 	EDMA_IORDY_TMOUT	= 0x34,
410 	EDMA_ARB_CFG		= 0x38,
411 
412 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
413 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
414 
415 	BMDMA_CMD		= 0x224,	/* bmdma command register */
416 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
417 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
418 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
419 
420 	/* Host private flags (hp_flags) */
421 	MV_HP_FLAG_MSI		= (1 << 0),
422 	MV_HP_ERRATA_50XXB0	= (1 << 1),
423 	MV_HP_ERRATA_50XXB2	= (1 << 2),
424 	MV_HP_ERRATA_60X1B2	= (1 << 3),
425 	MV_HP_ERRATA_60X1C0	= (1 << 4),
426 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
427 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
428 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
429 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
430 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
431 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
432 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
433 
434 	/* Port private flags (pp_flags) */
435 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
436 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
437 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
438 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
439 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
440 };
441 
442 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
443 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
444 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
445 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
446 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
447 
448 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
449 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
450 
451 enum {
452 	/* DMA boundary 0xffff is required by the s/g splitting
453 	 * we need on /length/ in mv_fill-sg().
454 	 */
455 	MV_DMA_BOUNDARY		= 0xffffU,
456 
457 	/* mask of register bits containing lower 32 bits
458 	 * of EDMA request queue DMA address
459 	 */
460 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
461 
462 	/* ditto, for response queue */
463 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
464 };
465 
466 enum chip_type {
467 	chip_504x,
468 	chip_508x,
469 	chip_5080,
470 	chip_604x,
471 	chip_608x,
472 	chip_6042,
473 	chip_7042,
474 	chip_soc,
475 };
476 
477 /* Command ReQuest Block: 32B */
478 struct mv_crqb {
479 	__le32			sg_addr;
480 	__le32			sg_addr_hi;
481 	__le16			ctrl_flags;
482 	__le16			ata_cmd[11];
483 };
484 
485 struct mv_crqb_iie {
486 	__le32			addr;
487 	__le32			addr_hi;
488 	__le32			flags;
489 	__le32			len;
490 	__le32			ata_cmd[4];
491 };
492 
493 /* Command ResPonse Block: 8B */
494 struct mv_crpb {
495 	__le16			id;
496 	__le16			flags;
497 	__le32			tmstmp;
498 };
499 
500 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
501 struct mv_sg {
502 	__le32			addr;
503 	__le32			flags_size;
504 	__le32			addr_hi;
505 	__le32			reserved;
506 };
507 
508 /*
509  * We keep a local cache of a few frequently accessed port
510  * registers here, to avoid having to read them (very slow)
511  * when switching between EDMA and non-EDMA modes.
512  */
513 struct mv_cached_regs {
514 	u32			fiscfg;
515 	u32			ltmode;
516 	u32			haltcond;
517 	u32			unknown_rsvd;
518 };
519 
520 struct mv_port_priv {
521 	struct mv_crqb		*crqb;
522 	dma_addr_t		crqb_dma;
523 	struct mv_crpb		*crpb;
524 	dma_addr_t		crpb_dma;
525 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
526 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
527 
528 	unsigned int		req_idx;
529 	unsigned int		resp_idx;
530 
531 	u32			pp_flags;
532 	struct mv_cached_regs	cached;
533 	unsigned int		delayed_eh_pmp_map;
534 };
535 
536 struct mv_port_signal {
537 	u32			amps;
538 	u32			pre;
539 };
540 
541 struct mv_host_priv {
542 	u32			hp_flags;
543 	unsigned int 		board_idx;
544 	u32			main_irq_mask;
545 	struct mv_port_signal	signal[8];
546 	const struct mv_hw_ops	*ops;
547 	int			n_ports;
548 	void __iomem		*base;
549 	void __iomem		*main_irq_cause_addr;
550 	void __iomem		*main_irq_mask_addr;
551 	u32			irq_cause_offset;
552 	u32			irq_mask_offset;
553 	u32			unmask_all_irqs;
554 
555 #if defined(CONFIG_HAVE_CLK)
556 	struct clk		*clk;
557 #endif
558 	/*
559 	 * These consistent DMA memory pools give us guaranteed
560 	 * alignment for hardware-accessed data structures,
561 	 * and less memory waste in accomplishing the alignment.
562 	 */
563 	struct dma_pool		*crqb_pool;
564 	struct dma_pool		*crpb_pool;
565 	struct dma_pool		*sg_tbl_pool;
566 };
567 
568 struct mv_hw_ops {
569 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
570 			   unsigned int port);
571 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
572 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
573 			   void __iomem *mmio);
574 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
575 			unsigned int n_hc);
576 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
577 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
578 };
579 
580 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
581 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
582 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
583 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
584 static int mv_port_start(struct ata_port *ap);
585 static void mv_port_stop(struct ata_port *ap);
586 static int mv_qc_defer(struct ata_queued_cmd *qc);
587 static void mv_qc_prep(struct ata_queued_cmd *qc);
588 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
589 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
590 static int mv_hardreset(struct ata_link *link, unsigned int *class,
591 			unsigned long deadline);
592 static void mv_eh_freeze(struct ata_port *ap);
593 static void mv_eh_thaw(struct ata_port *ap);
594 static void mv6_dev_config(struct ata_device *dev);
595 
596 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
597 			   unsigned int port);
598 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
599 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
600 			   void __iomem *mmio);
601 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
602 			unsigned int n_hc);
603 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
604 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
605 
606 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
607 			   unsigned int port);
608 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
609 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
610 			   void __iomem *mmio);
611 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
612 			unsigned int n_hc);
613 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
614 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
615 				      void __iomem *mmio);
616 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
617 				      void __iomem *mmio);
618 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
619 				  void __iomem *mmio, unsigned int n_hc);
620 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
621 				      void __iomem *mmio);
622 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
623 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
624 				  void __iomem *mmio, unsigned int port);
625 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
626 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
627 			     unsigned int port_no);
628 static int mv_stop_edma(struct ata_port *ap);
629 static int mv_stop_edma_engine(void __iomem *port_mmio);
630 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
631 
632 static void mv_pmp_select(struct ata_port *ap, int pmp);
633 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
634 				unsigned long deadline);
635 static int  mv_softreset(struct ata_link *link, unsigned int *class,
636 				unsigned long deadline);
637 static void mv_pmp_error_handler(struct ata_port *ap);
638 static void mv_process_crpb_entries(struct ata_port *ap,
639 					struct mv_port_priv *pp);
640 
641 static void mv_sff_irq_clear(struct ata_port *ap);
642 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
643 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
644 static void mv_bmdma_start(struct ata_queued_cmd *qc);
645 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
646 static u8   mv_bmdma_status(struct ata_port *ap);
647 static u8 mv_sff_check_status(struct ata_port *ap);
648 
649 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
650  * because we have to allow room for worst case splitting of
651  * PRDs for 64K boundaries in mv_fill_sg().
652  */
653 static struct scsi_host_template mv5_sht = {
654 	ATA_BASE_SHT(DRV_NAME),
655 	.sg_tablesize		= MV_MAX_SG_CT / 2,
656 	.dma_boundary		= MV_DMA_BOUNDARY,
657 };
658 
659 static struct scsi_host_template mv6_sht = {
660 	ATA_NCQ_SHT(DRV_NAME),
661 	.can_queue		= MV_MAX_Q_DEPTH - 1,
662 	.sg_tablesize		= MV_MAX_SG_CT / 2,
663 	.dma_boundary		= MV_DMA_BOUNDARY,
664 };
665 
666 static struct ata_port_operations mv5_ops = {
667 	.inherits		= &ata_sff_port_ops,
668 
669 	.lost_interrupt		= ATA_OP_NULL,
670 
671 	.qc_defer		= mv_qc_defer,
672 	.qc_prep		= mv_qc_prep,
673 	.qc_issue		= mv_qc_issue,
674 
675 	.freeze			= mv_eh_freeze,
676 	.thaw			= mv_eh_thaw,
677 	.hardreset		= mv_hardreset,
678 
679 	.scr_read		= mv5_scr_read,
680 	.scr_write		= mv5_scr_write,
681 
682 	.port_start		= mv_port_start,
683 	.port_stop		= mv_port_stop,
684 };
685 
686 static struct ata_port_operations mv6_ops = {
687 	.inherits		= &ata_bmdma_port_ops,
688 
689 	.lost_interrupt		= ATA_OP_NULL,
690 
691 	.qc_defer		= mv_qc_defer,
692 	.qc_prep		= mv_qc_prep,
693 	.qc_issue		= mv_qc_issue,
694 
695 	.dev_config             = mv6_dev_config,
696 
697 	.freeze			= mv_eh_freeze,
698 	.thaw			= mv_eh_thaw,
699 	.hardreset		= mv_hardreset,
700 	.softreset		= mv_softreset,
701 	.pmp_hardreset		= mv_pmp_hardreset,
702 	.pmp_softreset		= mv_softreset,
703 	.error_handler		= mv_pmp_error_handler,
704 
705 	.scr_read		= mv_scr_read,
706 	.scr_write		= mv_scr_write,
707 
708 	.sff_check_status	= mv_sff_check_status,
709 	.sff_irq_clear		= mv_sff_irq_clear,
710 	.check_atapi_dma	= mv_check_atapi_dma,
711 	.bmdma_setup		= mv_bmdma_setup,
712 	.bmdma_start		= mv_bmdma_start,
713 	.bmdma_stop		= mv_bmdma_stop,
714 	.bmdma_status		= mv_bmdma_status,
715 
716 	.port_start		= mv_port_start,
717 	.port_stop		= mv_port_stop,
718 };
719 
720 static struct ata_port_operations mv_iie_ops = {
721 	.inherits		= &mv6_ops,
722 	.dev_config		= ATA_OP_NULL,
723 	.qc_prep		= mv_qc_prep_iie,
724 };
725 
726 static const struct ata_port_info mv_port_info[] = {
727 	{  /* chip_504x */
728 		.flags		= MV_GEN_I_FLAGS,
729 		.pio_mask	= ATA_PIO4,
730 		.udma_mask	= ATA_UDMA6,
731 		.port_ops	= &mv5_ops,
732 	},
733 	{  /* chip_508x */
734 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
735 		.pio_mask	= ATA_PIO4,
736 		.udma_mask	= ATA_UDMA6,
737 		.port_ops	= &mv5_ops,
738 	},
739 	{  /* chip_5080 */
740 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
741 		.pio_mask	= ATA_PIO4,
742 		.udma_mask	= ATA_UDMA6,
743 		.port_ops	= &mv5_ops,
744 	},
745 	{  /* chip_604x */
746 		.flags		= MV_GEN_II_FLAGS,
747 		.pio_mask	= ATA_PIO4,
748 		.udma_mask	= ATA_UDMA6,
749 		.port_ops	= &mv6_ops,
750 	},
751 	{  /* chip_608x */
752 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
753 		.pio_mask	= ATA_PIO4,
754 		.udma_mask	= ATA_UDMA6,
755 		.port_ops	= &mv6_ops,
756 	},
757 	{  /* chip_6042 */
758 		.flags		= MV_GEN_IIE_FLAGS,
759 		.pio_mask	= ATA_PIO4,
760 		.udma_mask	= ATA_UDMA6,
761 		.port_ops	= &mv_iie_ops,
762 	},
763 	{  /* chip_7042 */
764 		.flags		= MV_GEN_IIE_FLAGS,
765 		.pio_mask	= ATA_PIO4,
766 		.udma_mask	= ATA_UDMA6,
767 		.port_ops	= &mv_iie_ops,
768 	},
769 	{  /* chip_soc */
770 		.flags		= MV_GEN_IIE_FLAGS,
771 		.pio_mask	= ATA_PIO4,
772 		.udma_mask	= ATA_UDMA6,
773 		.port_ops	= &mv_iie_ops,
774 	},
775 };
776 
777 static const struct pci_device_id mv_pci_tbl[] = {
778 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
779 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
780 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
781 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
782 	/* RocketRAID 1720/174x have different identifiers */
783 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
784 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
785 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
786 
787 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
788 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
789 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
790 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
791 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
792 
793 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
794 
795 	/* Adaptec 1430SA */
796 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
797 
798 	/* Marvell 7042 support */
799 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
800 
801 	/* Highpoint RocketRAID PCIe series */
802 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
803 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
804 
805 	{ }			/* terminate list */
806 };
807 
808 static const struct mv_hw_ops mv5xxx_ops = {
809 	.phy_errata		= mv5_phy_errata,
810 	.enable_leds		= mv5_enable_leds,
811 	.read_preamp		= mv5_read_preamp,
812 	.reset_hc		= mv5_reset_hc,
813 	.reset_flash		= mv5_reset_flash,
814 	.reset_bus		= mv5_reset_bus,
815 };
816 
817 static const struct mv_hw_ops mv6xxx_ops = {
818 	.phy_errata		= mv6_phy_errata,
819 	.enable_leds		= mv6_enable_leds,
820 	.read_preamp		= mv6_read_preamp,
821 	.reset_hc		= mv6_reset_hc,
822 	.reset_flash		= mv6_reset_flash,
823 	.reset_bus		= mv_reset_pci_bus,
824 };
825 
826 static const struct mv_hw_ops mv_soc_ops = {
827 	.phy_errata		= mv6_phy_errata,
828 	.enable_leds		= mv_soc_enable_leds,
829 	.read_preamp		= mv_soc_read_preamp,
830 	.reset_hc		= mv_soc_reset_hc,
831 	.reset_flash		= mv_soc_reset_flash,
832 	.reset_bus		= mv_soc_reset_bus,
833 };
834 
835 static const struct mv_hw_ops mv_soc_65n_ops = {
836 	.phy_errata		= mv_soc_65n_phy_errata,
837 	.enable_leds		= mv_soc_enable_leds,
838 	.reset_hc		= mv_soc_reset_hc,
839 	.reset_flash		= mv_soc_reset_flash,
840 	.reset_bus		= mv_soc_reset_bus,
841 };
842 
843 /*
844  * Functions
845  */
846 
847 static inline void writelfl(unsigned long data, void __iomem *addr)
848 {
849 	writel(data, addr);
850 	(void) readl(addr);	/* flush to avoid PCI posted write */
851 }
852 
853 static inline unsigned int mv_hc_from_port(unsigned int port)
854 {
855 	return port >> MV_PORT_HC_SHIFT;
856 }
857 
858 static inline unsigned int mv_hardport_from_port(unsigned int port)
859 {
860 	return port & MV_PORT_MASK;
861 }
862 
863 /*
864  * Consolidate some rather tricky bit shift calculations.
865  * This is hot-path stuff, so not a function.
866  * Simple code, with two return values, so macro rather than inline.
867  *
868  * port is the sole input, in range 0..7.
869  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
870  * hardport is the other output, in range 0..3.
871  *
872  * Note that port and hardport may be the same variable in some cases.
873  */
874 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
875 {								\
876 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
877 	hardport = mv_hardport_from_port(port);			\
878 	shift   += hardport * 2;				\
879 }
880 
881 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
882 {
883 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
884 }
885 
886 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
887 						 unsigned int port)
888 {
889 	return mv_hc_base(base, mv_hc_from_port(port));
890 }
891 
892 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
893 {
894 	return  mv_hc_base_from_port(base, port) +
895 		MV_SATAHC_ARBTR_REG_SZ +
896 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
897 }
898 
899 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
900 {
901 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
902 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
903 
904 	return hc_mmio + ofs;
905 }
906 
907 static inline void __iomem *mv_host_base(struct ata_host *host)
908 {
909 	struct mv_host_priv *hpriv = host->private_data;
910 	return hpriv->base;
911 }
912 
913 static inline void __iomem *mv_ap_base(struct ata_port *ap)
914 {
915 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
916 }
917 
918 static inline int mv_get_hc_count(unsigned long port_flags)
919 {
920 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
921 }
922 
923 /**
924  *      mv_save_cached_regs - (re-)initialize cached port registers
925  *      @ap: the port whose registers we are caching
926  *
927  *	Initialize the local cache of port registers,
928  *	so that reading them over and over again can
929  *	be avoided on the hotter paths of this driver.
930  *	This saves a few microseconds each time we switch
931  *	to/from EDMA mode to perform (eg.) a drive cache flush.
932  */
933 static void mv_save_cached_regs(struct ata_port *ap)
934 {
935 	void __iomem *port_mmio = mv_ap_base(ap);
936 	struct mv_port_priv *pp = ap->private_data;
937 
938 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
939 	pp->cached.ltmode = readl(port_mmio + LTMODE);
940 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
941 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
942 }
943 
944 /**
945  *      mv_write_cached_reg - write to a cached port register
946  *      @addr: hardware address of the register
947  *      @old: pointer to cached value of the register
948  *      @new: new value for the register
949  *
950  *	Write a new value to a cached register,
951  *	but only if the value is different from before.
952  */
953 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
954 {
955 	if (new != *old) {
956 		unsigned long laddr;
957 		*old = new;
958 		/*
959 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
960 		 * Read-after-write is needed to prevent generating 64-bit
961 		 * write cycles on the PCI bus for SATA interface registers
962 		 * at offsets ending in 0x4 or 0xc.
963 		 *
964 		 * Looks like a lot of fuss, but it avoids an unnecessary
965 		 * +1 usec read-after-write delay for unaffected registers.
966 		 */
967 		laddr = (long)addr & 0xffff;
968 		if (laddr >= 0x300 && laddr <= 0x33c) {
969 			laddr &= 0x000f;
970 			if (laddr == 0x4 || laddr == 0xc) {
971 				writelfl(new, addr); /* read after write */
972 				return;
973 			}
974 		}
975 		writel(new, addr); /* unaffected by the errata */
976 	}
977 }
978 
979 static void mv_set_edma_ptrs(void __iomem *port_mmio,
980 			     struct mv_host_priv *hpriv,
981 			     struct mv_port_priv *pp)
982 {
983 	u32 index;
984 
985 	/*
986 	 * initialize request queue
987 	 */
988 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
989 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
990 
991 	WARN_ON(pp->crqb_dma & 0x3ff);
992 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
993 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
994 		 port_mmio + EDMA_REQ_Q_IN_PTR);
995 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
996 
997 	/*
998 	 * initialize response queue
999 	 */
1000 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1001 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1002 
1003 	WARN_ON(pp->crpb_dma & 0xff);
1004 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1005 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1006 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1007 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1008 }
1009 
1010 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1011 {
1012 	/*
1013 	 * When writing to the main_irq_mask in hardware,
1014 	 * we must ensure exclusivity between the interrupt coalescing bits
1015 	 * and the corresponding individual port DONE_IRQ bits.
1016 	 *
1017 	 * Note that this register is really an "IRQ enable" register,
1018 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1019 	 */
1020 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1021 		mask &= ~DONE_IRQ_0_3;
1022 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1023 		mask &= ~DONE_IRQ_4_7;
1024 	writelfl(mask, hpriv->main_irq_mask_addr);
1025 }
1026 
1027 static void mv_set_main_irq_mask(struct ata_host *host,
1028 				 u32 disable_bits, u32 enable_bits)
1029 {
1030 	struct mv_host_priv *hpriv = host->private_data;
1031 	u32 old_mask, new_mask;
1032 
1033 	old_mask = hpriv->main_irq_mask;
1034 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1035 	if (new_mask != old_mask) {
1036 		hpriv->main_irq_mask = new_mask;
1037 		mv_write_main_irq_mask(new_mask, hpriv);
1038 	}
1039 }
1040 
1041 static void mv_enable_port_irqs(struct ata_port *ap,
1042 				     unsigned int port_bits)
1043 {
1044 	unsigned int shift, hardport, port = ap->port_no;
1045 	u32 disable_bits, enable_bits;
1046 
1047 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1048 
1049 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1050 	enable_bits  = port_bits << shift;
1051 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1052 }
1053 
1054 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1055 					  void __iomem *port_mmio,
1056 					  unsigned int port_irqs)
1057 {
1058 	struct mv_host_priv *hpriv = ap->host->private_data;
1059 	int hardport = mv_hardport_from_port(ap->port_no);
1060 	void __iomem *hc_mmio = mv_hc_base_from_port(
1061 				mv_host_base(ap->host), ap->port_no);
1062 	u32 hc_irq_cause;
1063 
1064 	/* clear EDMA event indicators, if any */
1065 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1066 
1067 	/* clear pending irq events */
1068 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1069 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1070 
1071 	/* clear FIS IRQ Cause */
1072 	if (IS_GEN_IIE(hpriv))
1073 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1074 
1075 	mv_enable_port_irqs(ap, port_irqs);
1076 }
1077 
1078 static void mv_set_irq_coalescing(struct ata_host *host,
1079 				  unsigned int count, unsigned int usecs)
1080 {
1081 	struct mv_host_priv *hpriv = host->private_data;
1082 	void __iomem *mmio = hpriv->base, *hc_mmio;
1083 	u32 coal_enable = 0;
1084 	unsigned long flags;
1085 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1086 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1087 							ALL_PORTS_COAL_DONE;
1088 
1089 	/* Disable IRQ coalescing if either threshold is zero */
1090 	if (!usecs || !count) {
1091 		clks = count = 0;
1092 	} else {
1093 		/* Respect maximum limits of the hardware */
1094 		clks = usecs * COAL_CLOCKS_PER_USEC;
1095 		if (clks > MAX_COAL_TIME_THRESHOLD)
1096 			clks = MAX_COAL_TIME_THRESHOLD;
1097 		if (count > MAX_COAL_IO_COUNT)
1098 			count = MAX_COAL_IO_COUNT;
1099 	}
1100 
1101 	spin_lock_irqsave(&host->lock, flags);
1102 	mv_set_main_irq_mask(host, coal_disable, 0);
1103 
1104 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1105 		/*
1106 		 * GEN_II/GEN_IIE with dual host controllers:
1107 		 * one set of global thresholds for the entire chip.
1108 		 */
1109 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1110 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1111 		/* clear leftover coal IRQ bit */
1112 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1113 		if (count)
1114 			coal_enable = ALL_PORTS_COAL_DONE;
1115 		clks = count = 0; /* force clearing of regular regs below */
1116 	}
1117 
1118 	/*
1119 	 * All chips: independent thresholds for each HC on the chip.
1120 	 */
1121 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1122 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1123 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1124 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1125 	if (count)
1126 		coal_enable |= PORTS_0_3_COAL_DONE;
1127 	if (is_dual_hc) {
1128 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1129 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1130 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1131 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1132 		if (count)
1133 			coal_enable |= PORTS_4_7_COAL_DONE;
1134 	}
1135 
1136 	mv_set_main_irq_mask(host, 0, coal_enable);
1137 	spin_unlock_irqrestore(&host->lock, flags);
1138 }
1139 
1140 /**
1141  *      mv_start_edma - Enable eDMA engine
1142  *      @base: port base address
1143  *      @pp: port private data
1144  *
1145  *      Verify the local cache of the eDMA state is accurate with a
1146  *      WARN_ON.
1147  *
1148  *      LOCKING:
1149  *      Inherited from caller.
1150  */
1151 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1152 			 struct mv_port_priv *pp, u8 protocol)
1153 {
1154 	int want_ncq = (protocol == ATA_PROT_NCQ);
1155 
1156 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1157 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1158 		if (want_ncq != using_ncq)
1159 			mv_stop_edma(ap);
1160 	}
1161 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1162 		struct mv_host_priv *hpriv = ap->host->private_data;
1163 
1164 		mv_edma_cfg(ap, want_ncq, 1);
1165 
1166 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1167 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1168 
1169 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1170 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1171 	}
1172 }
1173 
1174 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1175 {
1176 	void __iomem *port_mmio = mv_ap_base(ap);
1177 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1178 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1179 	int i;
1180 
1181 	/*
1182 	 * Wait for the EDMA engine to finish transactions in progress.
1183 	 * No idea what a good "timeout" value might be, but measurements
1184 	 * indicate that it often requires hundreds of microseconds
1185 	 * with two drives in-use.  So we use the 15msec value above
1186 	 * as a rough guess at what even more drives might require.
1187 	 */
1188 	for (i = 0; i < timeout; ++i) {
1189 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1190 		if ((edma_stat & empty_idle) == empty_idle)
1191 			break;
1192 		udelay(per_loop);
1193 	}
1194 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1195 }
1196 
1197 /**
1198  *      mv_stop_edma_engine - Disable eDMA engine
1199  *      @port_mmio: io base address
1200  *
1201  *      LOCKING:
1202  *      Inherited from caller.
1203  */
1204 static int mv_stop_edma_engine(void __iomem *port_mmio)
1205 {
1206 	int i;
1207 
1208 	/* Disable eDMA.  The disable bit auto clears. */
1209 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1210 
1211 	/* Wait for the chip to confirm eDMA is off. */
1212 	for (i = 10000; i > 0; i--) {
1213 		u32 reg = readl(port_mmio + EDMA_CMD);
1214 		if (!(reg & EDMA_EN))
1215 			return 0;
1216 		udelay(10);
1217 	}
1218 	return -EIO;
1219 }
1220 
1221 static int mv_stop_edma(struct ata_port *ap)
1222 {
1223 	void __iomem *port_mmio = mv_ap_base(ap);
1224 	struct mv_port_priv *pp = ap->private_data;
1225 	int err = 0;
1226 
1227 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1228 		return 0;
1229 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1230 	mv_wait_for_edma_empty_idle(ap);
1231 	if (mv_stop_edma_engine(port_mmio)) {
1232 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1233 		err = -EIO;
1234 	}
1235 	mv_edma_cfg(ap, 0, 0);
1236 	return err;
1237 }
1238 
1239 #ifdef ATA_DEBUG
1240 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1241 {
1242 	int b, w;
1243 	for (b = 0; b < bytes; ) {
1244 		DPRINTK("%p: ", start + b);
1245 		for (w = 0; b < bytes && w < 4; w++) {
1246 			printk("%08x ", readl(start + b));
1247 			b += sizeof(u32);
1248 		}
1249 		printk("\n");
1250 	}
1251 }
1252 #endif
1253 
1254 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1255 {
1256 #ifdef ATA_DEBUG
1257 	int b, w;
1258 	u32 dw;
1259 	for (b = 0; b < bytes; ) {
1260 		DPRINTK("%02x: ", b);
1261 		for (w = 0; b < bytes && w < 4; w++) {
1262 			(void) pci_read_config_dword(pdev, b, &dw);
1263 			printk("%08x ", dw);
1264 			b += sizeof(u32);
1265 		}
1266 		printk("\n");
1267 	}
1268 #endif
1269 }
1270 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1271 			     struct pci_dev *pdev)
1272 {
1273 #ifdef ATA_DEBUG
1274 	void __iomem *hc_base = mv_hc_base(mmio_base,
1275 					   port >> MV_PORT_HC_SHIFT);
1276 	void __iomem *port_base;
1277 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1278 
1279 	if (0 > port) {
1280 		start_hc = start_port = 0;
1281 		num_ports = 8;		/* shld be benign for 4 port devs */
1282 		num_hcs = 2;
1283 	} else {
1284 		start_hc = port >> MV_PORT_HC_SHIFT;
1285 		start_port = port;
1286 		num_ports = num_hcs = 1;
1287 	}
1288 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1289 		num_ports > 1 ? num_ports - 1 : start_port);
1290 
1291 	if (NULL != pdev) {
1292 		DPRINTK("PCI config space regs:\n");
1293 		mv_dump_pci_cfg(pdev, 0x68);
1294 	}
1295 	DPRINTK("PCI regs:\n");
1296 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1297 	mv_dump_mem(mmio_base+0xd00, 0x34);
1298 	mv_dump_mem(mmio_base+0xf00, 0x4);
1299 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1300 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1301 		hc_base = mv_hc_base(mmio_base, hc);
1302 		DPRINTK("HC regs (HC %i):\n", hc);
1303 		mv_dump_mem(hc_base, 0x1c);
1304 	}
1305 	for (p = start_port; p < start_port + num_ports; p++) {
1306 		port_base = mv_port_base(mmio_base, p);
1307 		DPRINTK("EDMA regs (port %i):\n", p);
1308 		mv_dump_mem(port_base, 0x54);
1309 		DPRINTK("SATA regs (port %i):\n", p);
1310 		mv_dump_mem(port_base+0x300, 0x60);
1311 	}
1312 #endif
1313 }
1314 
1315 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1316 {
1317 	unsigned int ofs;
1318 
1319 	switch (sc_reg_in) {
1320 	case SCR_STATUS:
1321 	case SCR_CONTROL:
1322 	case SCR_ERROR:
1323 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1324 		break;
1325 	case SCR_ACTIVE:
1326 		ofs = SATA_ACTIVE;   /* active is not with the others */
1327 		break;
1328 	default:
1329 		ofs = 0xffffffffU;
1330 		break;
1331 	}
1332 	return ofs;
1333 }
1334 
1335 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1336 {
1337 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1338 
1339 	if (ofs != 0xffffffffU) {
1340 		*val = readl(mv_ap_base(link->ap) + ofs);
1341 		return 0;
1342 	} else
1343 		return -EINVAL;
1344 }
1345 
1346 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1347 {
1348 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1349 
1350 	if (ofs != 0xffffffffU) {
1351 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1352 		if (sc_reg_in == SCR_CONTROL) {
1353 			/*
1354 			 * Workaround for 88SX60x1 FEr SATA#26:
1355 			 *
1356 			 * COMRESETs have to take care not to accidently
1357 			 * put the drive to sleep when writing SCR_CONTROL.
1358 			 * Setting bits 12..15 prevents this problem.
1359 			 *
1360 			 * So if we see an outbound COMMRESET, set those bits.
1361 			 * Ditto for the followup write that clears the reset.
1362 			 *
1363 			 * The proprietary driver does this for
1364 			 * all chip versions, and so do we.
1365 			 */
1366 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1367 				val |= 0xf000;
1368 		}
1369 		writelfl(val, addr);
1370 		return 0;
1371 	} else
1372 		return -EINVAL;
1373 }
1374 
1375 static void mv6_dev_config(struct ata_device *adev)
1376 {
1377 	/*
1378 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1379 	 *
1380 	 * Gen-II does not support NCQ over a port multiplier
1381 	 *  (no FIS-based switching).
1382 	 */
1383 	if (adev->flags & ATA_DFLAG_NCQ) {
1384 		if (sata_pmp_attached(adev->link->ap)) {
1385 			adev->flags &= ~ATA_DFLAG_NCQ;
1386 			ata_dev_printk(adev, KERN_INFO,
1387 				"NCQ disabled for command-based switching\n");
1388 		}
1389 	}
1390 }
1391 
1392 static int mv_qc_defer(struct ata_queued_cmd *qc)
1393 {
1394 	struct ata_link *link = qc->dev->link;
1395 	struct ata_port *ap = link->ap;
1396 	struct mv_port_priv *pp = ap->private_data;
1397 
1398 	/*
1399 	 * Don't allow new commands if we're in a delayed EH state
1400 	 * for NCQ and/or FIS-based switching.
1401 	 */
1402 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1403 		return ATA_DEFER_PORT;
1404 
1405 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1406 	 * can run concurrently.
1407 	 * set excl_link when we want to send a PIO command in DMA mode
1408 	 * or a non-NCQ command in NCQ mode.
1409 	 * When we receive a command from that link, and there are no
1410 	 * outstanding commands, mark a flag to clear excl_link and let
1411 	 * the command go through.
1412 	 */
1413 	if (unlikely(ap->excl_link)) {
1414 		if (link == ap->excl_link) {
1415 			if (ap->nr_active_links)
1416 				return ATA_DEFER_PORT;
1417 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1418 			return 0;
1419 		} else
1420 			return ATA_DEFER_PORT;
1421 	}
1422 
1423 	/*
1424 	 * If the port is completely idle, then allow the new qc.
1425 	 */
1426 	if (ap->nr_active_links == 0)
1427 		return 0;
1428 
1429 	/*
1430 	 * The port is operating in host queuing mode (EDMA) with NCQ
1431 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1432 	 * queueing multiple DMA commands but libata core currently
1433 	 * doesn't allow it.
1434 	 */
1435 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1436 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1437 		if (ata_is_ncq(qc->tf.protocol))
1438 			return 0;
1439 		else {
1440 			ap->excl_link = link;
1441 			return ATA_DEFER_PORT;
1442 		}
1443 	}
1444 
1445 	return ATA_DEFER_PORT;
1446 }
1447 
1448 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1449 {
1450 	struct mv_port_priv *pp = ap->private_data;
1451 	void __iomem *port_mmio;
1452 
1453 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1454 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1455 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1456 
1457 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1458 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1459 
1460 	if (want_fbs) {
1461 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1462 		ltmode = *old_ltmode | LTMODE_BIT8;
1463 		if (want_ncq)
1464 			haltcond &= ~EDMA_ERR_DEV;
1465 		else
1466 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1467 	} else {
1468 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1469 	}
1470 
1471 	port_mmio = mv_ap_base(ap);
1472 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1473 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1474 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1475 }
1476 
1477 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1478 {
1479 	struct mv_host_priv *hpriv = ap->host->private_data;
1480 	u32 old, new;
1481 
1482 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1483 	old = readl(hpriv->base + GPIO_PORT_CTL);
1484 	if (want_ncq)
1485 		new = old | (1 << 22);
1486 	else
1487 		new = old & ~(1 << 22);
1488 	if (new != old)
1489 		writel(new, hpriv->base + GPIO_PORT_CTL);
1490 }
1491 
1492 /**
1493  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1494  *	@ap: Port being initialized
1495  *
1496  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1497  *
1498  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1499  *	of basic DMA on the GEN_IIE versions of the chips.
1500  *
1501  *	This bit survives EDMA resets, and must be set for basic DMA
1502  *	to function, and should be cleared when EDMA is active.
1503  */
1504 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1505 {
1506 	struct mv_port_priv *pp = ap->private_data;
1507 	u32 new, *old = &pp->cached.unknown_rsvd;
1508 
1509 	if (enable_bmdma)
1510 		new = *old | 1;
1511 	else
1512 		new = *old & ~1;
1513 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1514 }
1515 
1516 /*
1517  * SOC chips have an issue whereby the HDD LEDs don't always blink
1518  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1519  * of the SOC takes care of it, generating a steady blink rate when
1520  * any drive on the chip is active.
1521  *
1522  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1523  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1524  *
1525  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1526  * LED operation works then, and provides better (more accurate) feedback.
1527  *
1528  * Note that this code assumes that an SOC never has more than one HC onboard.
1529  */
1530 static void mv_soc_led_blink_enable(struct ata_port *ap)
1531 {
1532 	struct ata_host *host = ap->host;
1533 	struct mv_host_priv *hpriv = host->private_data;
1534 	void __iomem *hc_mmio;
1535 	u32 led_ctrl;
1536 
1537 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1538 		return;
1539 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1540 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1541 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1542 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1543 }
1544 
1545 static void mv_soc_led_blink_disable(struct ata_port *ap)
1546 {
1547 	struct ata_host *host = ap->host;
1548 	struct mv_host_priv *hpriv = host->private_data;
1549 	void __iomem *hc_mmio;
1550 	u32 led_ctrl;
1551 	unsigned int port;
1552 
1553 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1554 		return;
1555 
1556 	/* disable led-blink only if no ports are using NCQ */
1557 	for (port = 0; port < hpriv->n_ports; port++) {
1558 		struct ata_port *this_ap = host->ports[port];
1559 		struct mv_port_priv *pp = this_ap->private_data;
1560 
1561 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1562 			return;
1563 	}
1564 
1565 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1566 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1567 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1569 }
1570 
1571 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1572 {
1573 	u32 cfg;
1574 	struct mv_port_priv *pp    = ap->private_data;
1575 	struct mv_host_priv *hpriv = ap->host->private_data;
1576 	void __iomem *port_mmio    = mv_ap_base(ap);
1577 
1578 	/* set up non-NCQ EDMA configuration */
1579 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1580 	pp->pp_flags &=
1581 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1582 
1583 	if (IS_GEN_I(hpriv))
1584 		cfg |= (1 << 8);	/* enab config burst size mask */
1585 
1586 	else if (IS_GEN_II(hpriv)) {
1587 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1588 		mv_60x1_errata_sata25(ap, want_ncq);
1589 
1590 	} else if (IS_GEN_IIE(hpriv)) {
1591 		int want_fbs = sata_pmp_attached(ap);
1592 		/*
1593 		 * Possible future enhancement:
1594 		 *
1595 		 * The chip can use FBS with non-NCQ, if we allow it,
1596 		 * But first we need to have the error handling in place
1597 		 * for this mode (datasheet section 7.3.15.4.2.3).
1598 		 * So disallow non-NCQ FBS for now.
1599 		 */
1600 		want_fbs &= want_ncq;
1601 
1602 		mv_config_fbs(ap, want_ncq, want_fbs);
1603 
1604 		if (want_fbs) {
1605 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1606 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1607 		}
1608 
1609 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1610 		if (want_edma) {
1611 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1612 			if (!IS_SOC(hpriv))
1613 				cfg |= (1 << 18); /* enab early completion */
1614 		}
1615 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1616 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1617 		mv_bmdma_enable_iie(ap, !want_edma);
1618 
1619 		if (IS_SOC(hpriv)) {
1620 			if (want_ncq)
1621 				mv_soc_led_blink_enable(ap);
1622 			else
1623 				mv_soc_led_blink_disable(ap);
1624 		}
1625 	}
1626 
1627 	if (want_ncq) {
1628 		cfg |= EDMA_CFG_NCQ;
1629 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1630 	}
1631 
1632 	writelfl(cfg, port_mmio + EDMA_CFG);
1633 }
1634 
1635 static void mv_port_free_dma_mem(struct ata_port *ap)
1636 {
1637 	struct mv_host_priv *hpriv = ap->host->private_data;
1638 	struct mv_port_priv *pp = ap->private_data;
1639 	int tag;
1640 
1641 	if (pp->crqb) {
1642 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1643 		pp->crqb = NULL;
1644 	}
1645 	if (pp->crpb) {
1646 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1647 		pp->crpb = NULL;
1648 	}
1649 	/*
1650 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1651 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1652 	 */
1653 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1654 		if (pp->sg_tbl[tag]) {
1655 			if (tag == 0 || !IS_GEN_I(hpriv))
1656 				dma_pool_free(hpriv->sg_tbl_pool,
1657 					      pp->sg_tbl[tag],
1658 					      pp->sg_tbl_dma[tag]);
1659 			pp->sg_tbl[tag] = NULL;
1660 		}
1661 	}
1662 }
1663 
1664 /**
1665  *      mv_port_start - Port specific init/start routine.
1666  *      @ap: ATA channel to manipulate
1667  *
1668  *      Allocate and point to DMA memory, init port private memory,
1669  *      zero indices.
1670  *
1671  *      LOCKING:
1672  *      Inherited from caller.
1673  */
1674 static int mv_port_start(struct ata_port *ap)
1675 {
1676 	struct device *dev = ap->host->dev;
1677 	struct mv_host_priv *hpriv = ap->host->private_data;
1678 	struct mv_port_priv *pp;
1679 	unsigned long flags;
1680 	int tag;
1681 
1682 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1683 	if (!pp)
1684 		return -ENOMEM;
1685 	ap->private_data = pp;
1686 
1687 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1688 	if (!pp->crqb)
1689 		return -ENOMEM;
1690 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1691 
1692 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1693 	if (!pp->crpb)
1694 		goto out_port_free_dma_mem;
1695 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1696 
1697 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1698 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1699 		ap->flags |= ATA_FLAG_AN;
1700 	/*
1701 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1702 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1703 	 */
1704 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1705 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1706 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1707 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1708 			if (!pp->sg_tbl[tag])
1709 				goto out_port_free_dma_mem;
1710 		} else {
1711 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1712 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1713 		}
1714 	}
1715 
1716 	spin_lock_irqsave(ap->lock, flags);
1717 	mv_save_cached_regs(ap);
1718 	mv_edma_cfg(ap, 0, 0);
1719 	spin_unlock_irqrestore(ap->lock, flags);
1720 
1721 	return 0;
1722 
1723 out_port_free_dma_mem:
1724 	mv_port_free_dma_mem(ap);
1725 	return -ENOMEM;
1726 }
1727 
1728 /**
1729  *      mv_port_stop - Port specific cleanup/stop routine.
1730  *      @ap: ATA channel to manipulate
1731  *
1732  *      Stop DMA, cleanup port memory.
1733  *
1734  *      LOCKING:
1735  *      This routine uses the host lock to protect the DMA stop.
1736  */
1737 static void mv_port_stop(struct ata_port *ap)
1738 {
1739 	unsigned long flags;
1740 
1741 	spin_lock_irqsave(ap->lock, flags);
1742 	mv_stop_edma(ap);
1743 	mv_enable_port_irqs(ap, 0);
1744 	spin_unlock_irqrestore(ap->lock, flags);
1745 	mv_port_free_dma_mem(ap);
1746 }
1747 
1748 /**
1749  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1750  *      @qc: queued command whose SG list to source from
1751  *
1752  *      Populate the SG list and mark the last entry.
1753  *
1754  *      LOCKING:
1755  *      Inherited from caller.
1756  */
1757 static void mv_fill_sg(struct ata_queued_cmd *qc)
1758 {
1759 	struct mv_port_priv *pp = qc->ap->private_data;
1760 	struct scatterlist *sg;
1761 	struct mv_sg *mv_sg, *last_sg = NULL;
1762 	unsigned int si;
1763 
1764 	mv_sg = pp->sg_tbl[qc->tag];
1765 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1766 		dma_addr_t addr = sg_dma_address(sg);
1767 		u32 sg_len = sg_dma_len(sg);
1768 
1769 		while (sg_len) {
1770 			u32 offset = addr & 0xffff;
1771 			u32 len = sg_len;
1772 
1773 			if (offset + len > 0x10000)
1774 				len = 0x10000 - offset;
1775 
1776 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1777 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1778 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1779 			mv_sg->reserved = 0;
1780 
1781 			sg_len -= len;
1782 			addr += len;
1783 
1784 			last_sg = mv_sg;
1785 			mv_sg++;
1786 		}
1787 	}
1788 
1789 	if (likely(last_sg))
1790 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1791 	mb(); /* ensure data structure is visible to the chipset */
1792 }
1793 
1794 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1795 {
1796 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1797 		(last ? CRQB_CMD_LAST : 0);
1798 	*cmdw = cpu_to_le16(tmp);
1799 }
1800 
1801 /**
1802  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1803  *	@ap: Port associated with this ATA transaction.
1804  *
1805  *	We need this only for ATAPI bmdma transactions,
1806  *	as otherwise we experience spurious interrupts
1807  *	after libata-sff handles the bmdma interrupts.
1808  */
1809 static void mv_sff_irq_clear(struct ata_port *ap)
1810 {
1811 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1812 }
1813 
1814 /**
1815  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1816  *	@qc: queued command to check for chipset/DMA compatibility.
1817  *
1818  *	The bmdma engines cannot handle speculative data sizes
1819  *	(bytecount under/over flow).  So only allow DMA for
1820  *	data transfer commands with known data sizes.
1821  *
1822  *	LOCKING:
1823  *	Inherited from caller.
1824  */
1825 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1826 {
1827 	struct scsi_cmnd *scmd = qc->scsicmd;
1828 
1829 	if (scmd) {
1830 		switch (scmd->cmnd[0]) {
1831 		case READ_6:
1832 		case READ_10:
1833 		case READ_12:
1834 		case WRITE_6:
1835 		case WRITE_10:
1836 		case WRITE_12:
1837 		case GPCMD_READ_CD:
1838 		case GPCMD_SEND_DVD_STRUCTURE:
1839 		case GPCMD_SEND_CUE_SHEET:
1840 			return 0; /* DMA is safe */
1841 		}
1842 	}
1843 	return -EOPNOTSUPP; /* use PIO instead */
1844 }
1845 
1846 /**
1847  *	mv_bmdma_setup - Set up BMDMA transaction
1848  *	@qc: queued command to prepare DMA for.
1849  *
1850  *	LOCKING:
1851  *	Inherited from caller.
1852  */
1853 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1854 {
1855 	struct ata_port *ap = qc->ap;
1856 	void __iomem *port_mmio = mv_ap_base(ap);
1857 	struct mv_port_priv *pp = ap->private_data;
1858 
1859 	mv_fill_sg(qc);
1860 
1861 	/* clear all DMA cmd bits */
1862 	writel(0, port_mmio + BMDMA_CMD);
1863 
1864 	/* load PRD table addr. */
1865 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1866 		port_mmio + BMDMA_PRD_HIGH);
1867 	writelfl(pp->sg_tbl_dma[qc->tag],
1868 		port_mmio + BMDMA_PRD_LOW);
1869 
1870 	/* issue r/w command */
1871 	ap->ops->sff_exec_command(ap, &qc->tf);
1872 }
1873 
1874 /**
1875  *	mv_bmdma_start - Start a BMDMA transaction
1876  *	@qc: queued command to start DMA on.
1877  *
1878  *	LOCKING:
1879  *	Inherited from caller.
1880  */
1881 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1882 {
1883 	struct ata_port *ap = qc->ap;
1884 	void __iomem *port_mmio = mv_ap_base(ap);
1885 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1886 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1887 
1888 	/* start host DMA transaction */
1889 	writelfl(cmd, port_mmio + BMDMA_CMD);
1890 }
1891 
1892 /**
1893  *	mv_bmdma_stop - Stop BMDMA transfer
1894  *	@qc: queued command to stop DMA on.
1895  *
1896  *	Clears the ATA_DMA_START flag in the bmdma control register
1897  *
1898  *	LOCKING:
1899  *	Inherited from caller.
1900  */
1901 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1902 {
1903 	struct ata_port *ap = qc->ap;
1904 	void __iomem *port_mmio = mv_ap_base(ap);
1905 	u32 cmd;
1906 
1907 	/* clear start/stop bit */
1908 	cmd = readl(port_mmio + BMDMA_CMD);
1909 	cmd &= ~ATA_DMA_START;
1910 	writelfl(cmd, port_mmio + BMDMA_CMD);
1911 
1912 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1913 	ata_sff_dma_pause(ap);
1914 }
1915 
1916 /**
1917  *	mv_bmdma_status - Read BMDMA status
1918  *	@ap: port for which to retrieve DMA status.
1919  *
1920  *	Read and return equivalent of the sff BMDMA status register.
1921  *
1922  *	LOCKING:
1923  *	Inherited from caller.
1924  */
1925 static u8 mv_bmdma_status(struct ata_port *ap)
1926 {
1927 	void __iomem *port_mmio = mv_ap_base(ap);
1928 	u32 reg, status;
1929 
1930 	/*
1931 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1932 	 * and the ATA_DMA_INTR bit doesn't exist.
1933 	 */
1934 	reg = readl(port_mmio + BMDMA_STATUS);
1935 	if (reg & ATA_DMA_ACTIVE)
1936 		status = ATA_DMA_ACTIVE;
1937 	else
1938 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1939 	return status;
1940 }
1941 
1942 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1943 {
1944 	struct ata_taskfile *tf = &qc->tf;
1945 	/*
1946 	 * Workaround for 88SX60x1 FEr SATA#24.
1947 	 *
1948 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1949 	 * Note that READs are unaffected.
1950 	 *
1951 	 * It's not clear if this errata really means "4K bytes",
1952 	 * or if it always happens for multi_count > 7
1953 	 * regardless of device sector_size.
1954 	 *
1955 	 * So, for safety, any write with multi_count > 7
1956 	 * gets converted here into a regular PIO write instead:
1957 	 */
1958 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1959 		if (qc->dev->multi_count > 7) {
1960 			switch (tf->command) {
1961 			case ATA_CMD_WRITE_MULTI:
1962 				tf->command = ATA_CMD_PIO_WRITE;
1963 				break;
1964 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1965 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1966 				/* fall through */
1967 			case ATA_CMD_WRITE_MULTI_EXT:
1968 				tf->command = ATA_CMD_PIO_WRITE_EXT;
1969 				break;
1970 			}
1971 		}
1972 	}
1973 }
1974 
1975 /**
1976  *      mv_qc_prep - Host specific command preparation.
1977  *      @qc: queued command to prepare
1978  *
1979  *      This routine simply redirects to the general purpose routine
1980  *      if command is not DMA.  Else, it handles prep of the CRQB
1981  *      (command request block), does some sanity checking, and calls
1982  *      the SG load routine.
1983  *
1984  *      LOCKING:
1985  *      Inherited from caller.
1986  */
1987 static void mv_qc_prep(struct ata_queued_cmd *qc)
1988 {
1989 	struct ata_port *ap = qc->ap;
1990 	struct mv_port_priv *pp = ap->private_data;
1991 	__le16 *cw;
1992 	struct ata_taskfile *tf = &qc->tf;
1993 	u16 flags = 0;
1994 	unsigned in_index;
1995 
1996 	switch (tf->protocol) {
1997 	case ATA_PROT_DMA:
1998 	case ATA_PROT_NCQ:
1999 		break;	/* continue below */
2000 	case ATA_PROT_PIO:
2001 		mv_rw_multi_errata_sata24(qc);
2002 		return;
2003 	default:
2004 		return;
2005 	}
2006 
2007 	/* Fill in command request block
2008 	 */
2009 	if (!(tf->flags & ATA_TFLAG_WRITE))
2010 		flags |= CRQB_FLAG_READ;
2011 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2012 	flags |= qc->tag << CRQB_TAG_SHIFT;
2013 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2014 
2015 	/* get current queue index from software */
2016 	in_index = pp->req_idx;
2017 
2018 	pp->crqb[in_index].sg_addr =
2019 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2020 	pp->crqb[in_index].sg_addr_hi =
2021 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2022 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2023 
2024 	cw = &pp->crqb[in_index].ata_cmd[0];
2025 
2026 	/* Sadly, the CRQB cannot accomodate all registers--there are
2027 	 * only 11 bytes...so we must pick and choose required
2028 	 * registers based on the command.  So, we drop feature and
2029 	 * hob_feature for [RW] DMA commands, but they are needed for
2030 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2031 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2032 	 */
2033 	switch (tf->command) {
2034 	case ATA_CMD_READ:
2035 	case ATA_CMD_READ_EXT:
2036 	case ATA_CMD_WRITE:
2037 	case ATA_CMD_WRITE_EXT:
2038 	case ATA_CMD_WRITE_FUA_EXT:
2039 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2040 		break;
2041 	case ATA_CMD_FPDMA_READ:
2042 	case ATA_CMD_FPDMA_WRITE:
2043 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2044 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2045 		break;
2046 	default:
2047 		/* The only other commands EDMA supports in non-queued and
2048 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2049 		 * of which are defined/used by Linux.  If we get here, this
2050 		 * driver needs work.
2051 		 *
2052 		 * FIXME: modify libata to give qc_prep a return value and
2053 		 * return error here.
2054 		 */
2055 		BUG_ON(tf->command);
2056 		break;
2057 	}
2058 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2059 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2060 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2061 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2062 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2063 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2064 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2065 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2066 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2067 
2068 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2069 		return;
2070 	mv_fill_sg(qc);
2071 }
2072 
2073 /**
2074  *      mv_qc_prep_iie - Host specific command preparation.
2075  *      @qc: queued command to prepare
2076  *
2077  *      This routine simply redirects to the general purpose routine
2078  *      if command is not DMA.  Else, it handles prep of the CRQB
2079  *      (command request block), does some sanity checking, and calls
2080  *      the SG load routine.
2081  *
2082  *      LOCKING:
2083  *      Inherited from caller.
2084  */
2085 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2086 {
2087 	struct ata_port *ap = qc->ap;
2088 	struct mv_port_priv *pp = ap->private_data;
2089 	struct mv_crqb_iie *crqb;
2090 	struct ata_taskfile *tf = &qc->tf;
2091 	unsigned in_index;
2092 	u32 flags = 0;
2093 
2094 	if ((tf->protocol != ATA_PROT_DMA) &&
2095 	    (tf->protocol != ATA_PROT_NCQ))
2096 		return;
2097 
2098 	/* Fill in Gen IIE command request block */
2099 	if (!(tf->flags & ATA_TFLAG_WRITE))
2100 		flags |= CRQB_FLAG_READ;
2101 
2102 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2103 	flags |= qc->tag << CRQB_TAG_SHIFT;
2104 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2105 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2106 
2107 	/* get current queue index from software */
2108 	in_index = pp->req_idx;
2109 
2110 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2111 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2112 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2113 	crqb->flags = cpu_to_le32(flags);
2114 
2115 	crqb->ata_cmd[0] = cpu_to_le32(
2116 			(tf->command << 16) |
2117 			(tf->feature << 24)
2118 		);
2119 	crqb->ata_cmd[1] = cpu_to_le32(
2120 			(tf->lbal << 0) |
2121 			(tf->lbam << 8) |
2122 			(tf->lbah << 16) |
2123 			(tf->device << 24)
2124 		);
2125 	crqb->ata_cmd[2] = cpu_to_le32(
2126 			(tf->hob_lbal << 0) |
2127 			(tf->hob_lbam << 8) |
2128 			(tf->hob_lbah << 16) |
2129 			(tf->hob_feature << 24)
2130 		);
2131 	crqb->ata_cmd[3] = cpu_to_le32(
2132 			(tf->nsect << 0) |
2133 			(tf->hob_nsect << 8)
2134 		);
2135 
2136 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2137 		return;
2138 	mv_fill_sg(qc);
2139 }
2140 
2141 /**
2142  *	mv_sff_check_status - fetch device status, if valid
2143  *	@ap: ATA port to fetch status from
2144  *
2145  *	When using command issue via mv_qc_issue_fis(),
2146  *	the initial ATA_BUSY state does not show up in the
2147  *	ATA status (shadow) register.  This can confuse libata!
2148  *
2149  *	So we have a hook here to fake ATA_BUSY for that situation,
2150  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2151  *
2152  *	The rest of the time, it simply returns the ATA status register.
2153  */
2154 static u8 mv_sff_check_status(struct ata_port *ap)
2155 {
2156 	u8 stat = ioread8(ap->ioaddr.status_addr);
2157 	struct mv_port_priv *pp = ap->private_data;
2158 
2159 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2160 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2161 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2162 		else
2163 			stat = ATA_BUSY;
2164 	}
2165 	return stat;
2166 }
2167 
2168 /**
2169  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2170  *	@fis: fis to be sent
2171  *	@nwords: number of 32-bit words in the fis
2172  */
2173 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2174 {
2175 	void __iomem *port_mmio = mv_ap_base(ap);
2176 	u32 ifctl, old_ifctl, ifstat;
2177 	int i, timeout = 200, final_word = nwords - 1;
2178 
2179 	/* Initiate FIS transmission mode */
2180 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2181 	ifctl = 0x100 | (old_ifctl & 0xf);
2182 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2183 
2184 	/* Send all words of the FIS except for the final word */
2185 	for (i = 0; i < final_word; ++i)
2186 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2187 
2188 	/* Flag end-of-transmission, and then send the final word */
2189 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2190 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2191 
2192 	/*
2193 	 * Wait for FIS transmission to complete.
2194 	 * This typically takes just a single iteration.
2195 	 */
2196 	do {
2197 		ifstat = readl(port_mmio + SATA_IFSTAT);
2198 	} while (!(ifstat & 0x1000) && --timeout);
2199 
2200 	/* Restore original port configuration */
2201 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2202 
2203 	/* See if it worked */
2204 	if ((ifstat & 0x3000) != 0x1000) {
2205 		ata_port_printk(ap, KERN_WARNING,
2206 				"%s transmission error, ifstat=%08x\n",
2207 				__func__, ifstat);
2208 		return AC_ERR_OTHER;
2209 	}
2210 	return 0;
2211 }
2212 
2213 /**
2214  *	mv_qc_issue_fis - Issue a command directly as a FIS
2215  *	@qc: queued command to start
2216  *
2217  *	Note that the ATA shadow registers are not updated
2218  *	after command issue, so the device will appear "READY"
2219  *	if polled, even while it is BUSY processing the command.
2220  *
2221  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2222  *
2223  *	Note: we don't get updated shadow regs on *completion*
2224  *	of non-data commands. So avoid sending them via this function,
2225  *	as they will appear to have completed immediately.
2226  *
2227  *	GEN_IIE has special registers that we could get the result tf from,
2228  *	but earlier chipsets do not.  For now, we ignore those registers.
2229  */
2230 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2231 {
2232 	struct ata_port *ap = qc->ap;
2233 	struct mv_port_priv *pp = ap->private_data;
2234 	struct ata_link *link = qc->dev->link;
2235 	u32 fis[5];
2236 	int err = 0;
2237 
2238 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2239 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2240 	if (err)
2241 		return err;
2242 
2243 	switch (qc->tf.protocol) {
2244 	case ATAPI_PROT_PIO:
2245 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2246 		/* fall through */
2247 	case ATAPI_PROT_NODATA:
2248 		ap->hsm_task_state = HSM_ST_FIRST;
2249 		break;
2250 	case ATA_PROT_PIO:
2251 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2252 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2253 			ap->hsm_task_state = HSM_ST_FIRST;
2254 		else
2255 			ap->hsm_task_state = HSM_ST;
2256 		break;
2257 	default:
2258 		ap->hsm_task_state = HSM_ST_LAST;
2259 		break;
2260 	}
2261 
2262 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2263 		ata_sff_queue_pio_task(ap, 0);
2264 	return 0;
2265 }
2266 
2267 /**
2268  *      mv_qc_issue - Initiate a command to the host
2269  *      @qc: queued command to start
2270  *
2271  *      This routine simply redirects to the general purpose routine
2272  *      if command is not DMA.  Else, it sanity checks our local
2273  *      caches of the request producer/consumer indices then enables
2274  *      DMA and bumps the request producer index.
2275  *
2276  *      LOCKING:
2277  *      Inherited from caller.
2278  */
2279 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2280 {
2281 	static int limit_warnings = 10;
2282 	struct ata_port *ap = qc->ap;
2283 	void __iomem *port_mmio = mv_ap_base(ap);
2284 	struct mv_port_priv *pp = ap->private_data;
2285 	u32 in_index;
2286 	unsigned int port_irqs;
2287 
2288 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2289 
2290 	switch (qc->tf.protocol) {
2291 	case ATA_PROT_DMA:
2292 	case ATA_PROT_NCQ:
2293 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2294 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2295 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2296 
2297 		/* Write the request in pointer to kick the EDMA to life */
2298 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2299 					port_mmio + EDMA_REQ_Q_IN_PTR);
2300 		return 0;
2301 
2302 	case ATA_PROT_PIO:
2303 		/*
2304 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2305 		 *
2306 		 * Someday, we might implement special polling workarounds
2307 		 * for these, but it all seems rather unnecessary since we
2308 		 * normally use only DMA for commands which transfer more
2309 		 * than a single block of data.
2310 		 *
2311 		 * Much of the time, this could just work regardless.
2312 		 * So for now, just log the incident, and allow the attempt.
2313 		 */
2314 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2315 			--limit_warnings;
2316 			ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2317 					": attempting PIO w/multiple DRQ: "
2318 					"this may fail due to h/w errata\n");
2319 		}
2320 		/* drop through */
2321 	case ATA_PROT_NODATA:
2322 	case ATAPI_PROT_PIO:
2323 	case ATAPI_PROT_NODATA:
2324 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2325 			qc->tf.flags |= ATA_TFLAG_POLLING;
2326 		break;
2327 	}
2328 
2329 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2330 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2331 	else
2332 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2333 
2334 	/*
2335 	 * We're about to send a non-EDMA capable command to the
2336 	 * port.  Turn off EDMA so there won't be problems accessing
2337 	 * shadow block, etc registers.
2338 	 */
2339 	mv_stop_edma(ap);
2340 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2341 	mv_pmp_select(ap, qc->dev->link->pmp);
2342 
2343 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2344 		struct mv_host_priv *hpriv = ap->host->private_data;
2345 		/*
2346 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2347 		 *
2348 		 * After any NCQ error, the READ_LOG_EXT command
2349 		 * from libata-eh *must* use mv_qc_issue_fis().
2350 		 * Otherwise it might fail, due to chip errata.
2351 		 *
2352 		 * Rather than special-case it, we'll just *always*
2353 		 * use this method here for READ_LOG_EXT, making for
2354 		 * easier testing.
2355 		 */
2356 		if (IS_GEN_II(hpriv))
2357 			return mv_qc_issue_fis(qc);
2358 	}
2359 	return ata_bmdma_qc_issue(qc);
2360 }
2361 
2362 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2363 {
2364 	struct mv_port_priv *pp = ap->private_data;
2365 	struct ata_queued_cmd *qc;
2366 
2367 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2368 		return NULL;
2369 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2370 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2371 		return qc;
2372 	return NULL;
2373 }
2374 
2375 static void mv_pmp_error_handler(struct ata_port *ap)
2376 {
2377 	unsigned int pmp, pmp_map;
2378 	struct mv_port_priv *pp = ap->private_data;
2379 
2380 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2381 		/*
2382 		 * Perform NCQ error analysis on failed PMPs
2383 		 * before we freeze the port entirely.
2384 		 *
2385 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2386 		 */
2387 		pmp_map = pp->delayed_eh_pmp_map;
2388 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2389 		for (pmp = 0; pmp_map != 0; pmp++) {
2390 			unsigned int this_pmp = (1 << pmp);
2391 			if (pmp_map & this_pmp) {
2392 				struct ata_link *link = &ap->pmp_link[pmp];
2393 				pmp_map &= ~this_pmp;
2394 				ata_eh_analyze_ncq_error(link);
2395 			}
2396 		}
2397 		ata_port_freeze(ap);
2398 	}
2399 	sata_pmp_error_handler(ap);
2400 }
2401 
2402 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2403 {
2404 	void __iomem *port_mmio = mv_ap_base(ap);
2405 
2406 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2407 }
2408 
2409 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2410 {
2411 	struct ata_eh_info *ehi;
2412 	unsigned int pmp;
2413 
2414 	/*
2415 	 * Initialize EH info for PMPs which saw device errors
2416 	 */
2417 	ehi = &ap->link.eh_info;
2418 	for (pmp = 0; pmp_map != 0; pmp++) {
2419 		unsigned int this_pmp = (1 << pmp);
2420 		if (pmp_map & this_pmp) {
2421 			struct ata_link *link = &ap->pmp_link[pmp];
2422 
2423 			pmp_map &= ~this_pmp;
2424 			ehi = &link->eh_info;
2425 			ata_ehi_clear_desc(ehi);
2426 			ata_ehi_push_desc(ehi, "dev err");
2427 			ehi->err_mask |= AC_ERR_DEV;
2428 			ehi->action |= ATA_EH_RESET;
2429 			ata_link_abort(link);
2430 		}
2431 	}
2432 }
2433 
2434 static int mv_req_q_empty(struct ata_port *ap)
2435 {
2436 	void __iomem *port_mmio = mv_ap_base(ap);
2437 	u32 in_ptr, out_ptr;
2438 
2439 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2440 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2441 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2442 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2443 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2444 }
2445 
2446 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2447 {
2448 	struct mv_port_priv *pp = ap->private_data;
2449 	int failed_links;
2450 	unsigned int old_map, new_map;
2451 
2452 	/*
2453 	 * Device error during FBS+NCQ operation:
2454 	 *
2455 	 * Set a port flag to prevent further I/O being enqueued.
2456 	 * Leave the EDMA running to drain outstanding commands from this port.
2457 	 * Perform the post-mortem/EH only when all responses are complete.
2458 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2459 	 */
2460 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2461 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2462 		pp->delayed_eh_pmp_map = 0;
2463 	}
2464 	old_map = pp->delayed_eh_pmp_map;
2465 	new_map = old_map | mv_get_err_pmp_map(ap);
2466 
2467 	if (old_map != new_map) {
2468 		pp->delayed_eh_pmp_map = new_map;
2469 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2470 	}
2471 	failed_links = hweight16(new_map);
2472 
2473 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2474 			"failed_links=%d nr_active_links=%d\n",
2475 			__func__, pp->delayed_eh_pmp_map,
2476 			ap->qc_active, failed_links,
2477 			ap->nr_active_links);
2478 
2479 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2480 		mv_process_crpb_entries(ap, pp);
2481 		mv_stop_edma(ap);
2482 		mv_eh_freeze(ap);
2483 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2484 		return 1;	/* handled */
2485 	}
2486 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2487 	return 1;	/* handled */
2488 }
2489 
2490 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2491 {
2492 	/*
2493 	 * Possible future enhancement:
2494 	 *
2495 	 * FBS+non-NCQ operation is not yet implemented.
2496 	 * See related notes in mv_edma_cfg().
2497 	 *
2498 	 * Device error during FBS+non-NCQ operation:
2499 	 *
2500 	 * We need to snapshot the shadow registers for each failed command.
2501 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2502 	 */
2503 	return 0;	/* not handled */
2504 }
2505 
2506 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2507 {
2508 	struct mv_port_priv *pp = ap->private_data;
2509 
2510 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2511 		return 0;	/* EDMA was not active: not handled */
2512 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2513 		return 0;	/* FBS was not active: not handled */
2514 
2515 	if (!(edma_err_cause & EDMA_ERR_DEV))
2516 		return 0;	/* non DEV error: not handled */
2517 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2518 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2519 		return 0;	/* other problems: not handled */
2520 
2521 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2522 		/*
2523 		 * EDMA should NOT have self-disabled for this case.
2524 		 * If it did, then something is wrong elsewhere,
2525 		 * and we cannot handle it here.
2526 		 */
2527 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2528 			ata_port_printk(ap, KERN_WARNING,
2529 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2530 				__func__, edma_err_cause, pp->pp_flags);
2531 			return 0; /* not handled */
2532 		}
2533 		return mv_handle_fbs_ncq_dev_err(ap);
2534 	} else {
2535 		/*
2536 		 * EDMA should have self-disabled for this case.
2537 		 * If it did not, then something is wrong elsewhere,
2538 		 * and we cannot handle it here.
2539 		 */
2540 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2541 			ata_port_printk(ap, KERN_WARNING,
2542 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2543 				__func__, edma_err_cause, pp->pp_flags);
2544 			return 0; /* not handled */
2545 		}
2546 		return mv_handle_fbs_non_ncq_dev_err(ap);
2547 	}
2548 	return 0;	/* not handled */
2549 }
2550 
2551 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2552 {
2553 	struct ata_eh_info *ehi = &ap->link.eh_info;
2554 	char *when = "idle";
2555 
2556 	ata_ehi_clear_desc(ehi);
2557 	if (edma_was_enabled) {
2558 		when = "EDMA enabled";
2559 	} else {
2560 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2561 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2562 			when = "polling";
2563 	}
2564 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2565 	ehi->err_mask |= AC_ERR_OTHER;
2566 	ehi->action   |= ATA_EH_RESET;
2567 	ata_port_freeze(ap);
2568 }
2569 
2570 /**
2571  *      mv_err_intr - Handle error interrupts on the port
2572  *      @ap: ATA channel to manipulate
2573  *
2574  *      Most cases require a full reset of the chip's state machine,
2575  *      which also performs a COMRESET.
2576  *      Also, if the port disabled DMA, update our cached copy to match.
2577  *
2578  *      LOCKING:
2579  *      Inherited from caller.
2580  */
2581 static void mv_err_intr(struct ata_port *ap)
2582 {
2583 	void __iomem *port_mmio = mv_ap_base(ap);
2584 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2585 	u32 fis_cause = 0;
2586 	struct mv_port_priv *pp = ap->private_data;
2587 	struct mv_host_priv *hpriv = ap->host->private_data;
2588 	unsigned int action = 0, err_mask = 0;
2589 	struct ata_eh_info *ehi = &ap->link.eh_info;
2590 	struct ata_queued_cmd *qc;
2591 	int abort = 0;
2592 
2593 	/*
2594 	 * Read and clear the SError and err_cause bits.
2595 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2596 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2597 	 */
2598 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2599 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2600 
2601 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2602 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2603 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2604 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2605 	}
2606 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2607 
2608 	if (edma_err_cause & EDMA_ERR_DEV) {
2609 		/*
2610 		 * Device errors during FIS-based switching operation
2611 		 * require special handling.
2612 		 */
2613 		if (mv_handle_dev_err(ap, edma_err_cause))
2614 			return;
2615 	}
2616 
2617 	qc = mv_get_active_qc(ap);
2618 	ata_ehi_clear_desc(ehi);
2619 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2620 			  edma_err_cause, pp->pp_flags);
2621 
2622 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2623 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2624 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2625 			u32 ec = edma_err_cause &
2626 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2627 			sata_async_notification(ap);
2628 			if (!ec)
2629 				return; /* Just an AN; no need for the nukes */
2630 			ata_ehi_push_desc(ehi, "SDB notify");
2631 		}
2632 	}
2633 	/*
2634 	 * All generations share these EDMA error cause bits:
2635 	 */
2636 	if (edma_err_cause & EDMA_ERR_DEV) {
2637 		err_mask |= AC_ERR_DEV;
2638 		action |= ATA_EH_RESET;
2639 		ata_ehi_push_desc(ehi, "dev error");
2640 	}
2641 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2642 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2643 			EDMA_ERR_INTRL_PAR)) {
2644 		err_mask |= AC_ERR_ATA_BUS;
2645 		action |= ATA_EH_RESET;
2646 		ata_ehi_push_desc(ehi, "parity error");
2647 	}
2648 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2649 		ata_ehi_hotplugged(ehi);
2650 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2651 			"dev disconnect" : "dev connect");
2652 		action |= ATA_EH_RESET;
2653 	}
2654 
2655 	/*
2656 	 * Gen-I has a different SELF_DIS bit,
2657 	 * different FREEZE bits, and no SERR bit:
2658 	 */
2659 	if (IS_GEN_I(hpriv)) {
2660 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2661 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2662 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2663 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2664 		}
2665 	} else {
2666 		eh_freeze_mask = EDMA_EH_FREEZE;
2667 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2668 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2669 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2670 		}
2671 		if (edma_err_cause & EDMA_ERR_SERR) {
2672 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2673 			err_mask |= AC_ERR_ATA_BUS;
2674 			action |= ATA_EH_RESET;
2675 		}
2676 	}
2677 
2678 	if (!err_mask) {
2679 		err_mask = AC_ERR_OTHER;
2680 		action |= ATA_EH_RESET;
2681 	}
2682 
2683 	ehi->serror |= serr;
2684 	ehi->action |= action;
2685 
2686 	if (qc)
2687 		qc->err_mask |= err_mask;
2688 	else
2689 		ehi->err_mask |= err_mask;
2690 
2691 	if (err_mask == AC_ERR_DEV) {
2692 		/*
2693 		 * Cannot do ata_port_freeze() here,
2694 		 * because it would kill PIO access,
2695 		 * which is needed for further diagnosis.
2696 		 */
2697 		mv_eh_freeze(ap);
2698 		abort = 1;
2699 	} else if (edma_err_cause & eh_freeze_mask) {
2700 		/*
2701 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2702 		 */
2703 		ata_port_freeze(ap);
2704 	} else {
2705 		abort = 1;
2706 	}
2707 
2708 	if (abort) {
2709 		if (qc)
2710 			ata_link_abort(qc->dev->link);
2711 		else
2712 			ata_port_abort(ap);
2713 	}
2714 }
2715 
2716 static void mv_process_crpb_response(struct ata_port *ap,
2717 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2718 {
2719 	u8 ata_status;
2720 	u16 edma_status = le16_to_cpu(response->flags);
2721 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2722 
2723 	if (unlikely(!qc)) {
2724 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2725 				__func__, tag);
2726 		return;
2727 	}
2728 
2729 	/*
2730 	 * edma_status from a response queue entry:
2731 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2732 	 *   MSB is saved ATA status from command completion.
2733 	 */
2734 	if (!ncq_enabled) {
2735 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2736 		if (err_cause) {
2737 			/*
2738 			 * Error will be seen/handled by
2739 			 * mv_err_intr().  So do nothing at all here.
2740 			 */
2741 			return;
2742 		}
2743 	}
2744 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2745 	if (!ac_err_mask(ata_status))
2746 		ata_qc_complete(qc);
2747 	/* else: leave it for mv_err_intr() */
2748 }
2749 
2750 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2751 {
2752 	void __iomem *port_mmio = mv_ap_base(ap);
2753 	struct mv_host_priv *hpriv = ap->host->private_data;
2754 	u32 in_index;
2755 	bool work_done = false;
2756 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2757 
2758 	/* Get the hardware queue position index */
2759 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2760 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2761 
2762 	/* Process new responses from since the last time we looked */
2763 	while (in_index != pp->resp_idx) {
2764 		unsigned int tag;
2765 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2766 
2767 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2768 
2769 		if (IS_GEN_I(hpriv)) {
2770 			/* 50xx: no NCQ, only one command active at a time */
2771 			tag = ap->link.active_tag;
2772 		} else {
2773 			/* Gen II/IIE: get command tag from CRPB entry */
2774 			tag = le16_to_cpu(response->id) & 0x1f;
2775 		}
2776 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2777 		work_done = true;
2778 	}
2779 
2780 	/* Update the software queue position index in hardware */
2781 	if (work_done)
2782 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2783 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2784 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2785 }
2786 
2787 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2788 {
2789 	struct mv_port_priv *pp;
2790 	int edma_was_enabled;
2791 
2792 	/*
2793 	 * Grab a snapshot of the EDMA_EN flag setting,
2794 	 * so that we have a consistent view for this port,
2795 	 * even if something we call of our routines changes it.
2796 	 */
2797 	pp = ap->private_data;
2798 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2799 	/*
2800 	 * Process completed CRPB response(s) before other events.
2801 	 */
2802 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2803 		mv_process_crpb_entries(ap, pp);
2804 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2805 			mv_handle_fbs_ncq_dev_err(ap);
2806 	}
2807 	/*
2808 	 * Handle chip-reported errors, or continue on to handle PIO.
2809 	 */
2810 	if (unlikely(port_cause & ERR_IRQ)) {
2811 		mv_err_intr(ap);
2812 	} else if (!edma_was_enabled) {
2813 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2814 		if (qc)
2815 			ata_bmdma_port_intr(ap, qc);
2816 		else
2817 			mv_unexpected_intr(ap, edma_was_enabled);
2818 	}
2819 }
2820 
2821 /**
2822  *      mv_host_intr - Handle all interrupts on the given host controller
2823  *      @host: host specific structure
2824  *      @main_irq_cause: Main interrupt cause register for the chip.
2825  *
2826  *      LOCKING:
2827  *      Inherited from caller.
2828  */
2829 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2830 {
2831 	struct mv_host_priv *hpriv = host->private_data;
2832 	void __iomem *mmio = hpriv->base, *hc_mmio;
2833 	unsigned int handled = 0, port;
2834 
2835 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2836 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2837 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2838 
2839 	for (port = 0; port < hpriv->n_ports; port++) {
2840 		struct ata_port *ap = host->ports[port];
2841 		unsigned int p, shift, hardport, port_cause;
2842 
2843 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2844 		/*
2845 		 * Each hc within the host has its own hc_irq_cause register,
2846 		 * where the interrupting ports bits get ack'd.
2847 		 */
2848 		if (hardport == 0) {	/* first port on this hc ? */
2849 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2850 			u32 port_mask, ack_irqs;
2851 			/*
2852 			 * Skip this entire hc if nothing pending for any ports
2853 			 */
2854 			if (!hc_cause) {
2855 				port += MV_PORTS_PER_HC - 1;
2856 				continue;
2857 			}
2858 			/*
2859 			 * We don't need/want to read the hc_irq_cause register,
2860 			 * because doing so hurts performance, and
2861 			 * main_irq_cause already gives us everything we need.
2862 			 *
2863 			 * But we do have to *write* to the hc_irq_cause to ack
2864 			 * the ports that we are handling this time through.
2865 			 *
2866 			 * This requires that we create a bitmap for those
2867 			 * ports which interrupted us, and use that bitmap
2868 			 * to ack (only) those ports via hc_irq_cause.
2869 			 */
2870 			ack_irqs = 0;
2871 			if (hc_cause & PORTS_0_3_COAL_DONE)
2872 				ack_irqs = HC_COAL_IRQ;
2873 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2874 				if ((port + p) >= hpriv->n_ports)
2875 					break;
2876 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2877 				if (hc_cause & port_mask)
2878 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2879 			}
2880 			hc_mmio = mv_hc_base_from_port(mmio, port);
2881 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2882 			handled = 1;
2883 		}
2884 		/*
2885 		 * Handle interrupts signalled for this port:
2886 		 */
2887 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2888 		if (port_cause)
2889 			mv_port_intr(ap, port_cause);
2890 	}
2891 	return handled;
2892 }
2893 
2894 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2895 {
2896 	struct mv_host_priv *hpriv = host->private_data;
2897 	struct ata_port *ap;
2898 	struct ata_queued_cmd *qc;
2899 	struct ata_eh_info *ehi;
2900 	unsigned int i, err_mask, printed = 0;
2901 	u32 err_cause;
2902 
2903 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2904 
2905 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2906 		   err_cause);
2907 
2908 	DPRINTK("All regs @ PCI error\n");
2909 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2910 
2911 	writelfl(0, mmio + hpriv->irq_cause_offset);
2912 
2913 	for (i = 0; i < host->n_ports; i++) {
2914 		ap = host->ports[i];
2915 		if (!ata_link_offline(&ap->link)) {
2916 			ehi = &ap->link.eh_info;
2917 			ata_ehi_clear_desc(ehi);
2918 			if (!printed++)
2919 				ata_ehi_push_desc(ehi,
2920 					"PCI err cause 0x%08x", err_cause);
2921 			err_mask = AC_ERR_HOST_BUS;
2922 			ehi->action = ATA_EH_RESET;
2923 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2924 			if (qc)
2925 				qc->err_mask |= err_mask;
2926 			else
2927 				ehi->err_mask |= err_mask;
2928 
2929 			ata_port_freeze(ap);
2930 		}
2931 	}
2932 	return 1;	/* handled */
2933 }
2934 
2935 /**
2936  *      mv_interrupt - Main interrupt event handler
2937  *      @irq: unused
2938  *      @dev_instance: private data; in this case the host structure
2939  *
2940  *      Read the read only register to determine if any host
2941  *      controllers have pending interrupts.  If so, call lower level
2942  *      routine to handle.  Also check for PCI errors which are only
2943  *      reported here.
2944  *
2945  *      LOCKING:
2946  *      This routine holds the host lock while processing pending
2947  *      interrupts.
2948  */
2949 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2950 {
2951 	struct ata_host *host = dev_instance;
2952 	struct mv_host_priv *hpriv = host->private_data;
2953 	unsigned int handled = 0;
2954 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2955 	u32 main_irq_cause, pending_irqs;
2956 
2957 	spin_lock(&host->lock);
2958 
2959 	/* for MSI:  block new interrupts while in here */
2960 	if (using_msi)
2961 		mv_write_main_irq_mask(0, hpriv);
2962 
2963 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2964 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2965 	/*
2966 	 * Deal with cases where we either have nothing pending, or have read
2967 	 * a bogus register value which can indicate HW removal or PCI fault.
2968 	 */
2969 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2970 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2971 			handled = mv_pci_error(host, hpriv->base);
2972 		else
2973 			handled = mv_host_intr(host, pending_irqs);
2974 	}
2975 
2976 	/* for MSI: unmask; interrupt cause bits will retrigger now */
2977 	if (using_msi)
2978 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2979 
2980 	spin_unlock(&host->lock);
2981 
2982 	return IRQ_RETVAL(handled);
2983 }
2984 
2985 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2986 {
2987 	unsigned int ofs;
2988 
2989 	switch (sc_reg_in) {
2990 	case SCR_STATUS:
2991 	case SCR_ERROR:
2992 	case SCR_CONTROL:
2993 		ofs = sc_reg_in * sizeof(u32);
2994 		break;
2995 	default:
2996 		ofs = 0xffffffffU;
2997 		break;
2998 	}
2999 	return ofs;
3000 }
3001 
3002 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3003 {
3004 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3005 	void __iomem *mmio = hpriv->base;
3006 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3007 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3008 
3009 	if (ofs != 0xffffffffU) {
3010 		*val = readl(addr + ofs);
3011 		return 0;
3012 	} else
3013 		return -EINVAL;
3014 }
3015 
3016 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3017 {
3018 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3019 	void __iomem *mmio = hpriv->base;
3020 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3021 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3022 
3023 	if (ofs != 0xffffffffU) {
3024 		writelfl(val, addr + ofs);
3025 		return 0;
3026 	} else
3027 		return -EINVAL;
3028 }
3029 
3030 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3031 {
3032 	struct pci_dev *pdev = to_pci_dev(host->dev);
3033 	int early_5080;
3034 
3035 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3036 
3037 	if (!early_5080) {
3038 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3039 		tmp |= (1 << 0);
3040 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3041 	}
3042 
3043 	mv_reset_pci_bus(host, mmio);
3044 }
3045 
3046 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3047 {
3048 	writel(0x0fcfffff, mmio + FLASH_CTL);
3049 }
3050 
3051 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3052 			   void __iomem *mmio)
3053 {
3054 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3055 	u32 tmp;
3056 
3057 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3058 
3059 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3060 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3061 }
3062 
3063 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3064 {
3065 	u32 tmp;
3066 
3067 	writel(0, mmio + GPIO_PORT_CTL);
3068 
3069 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3070 
3071 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3072 	tmp |= ~(1 << 0);
3073 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3074 }
3075 
3076 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3077 			   unsigned int port)
3078 {
3079 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3080 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3081 	u32 tmp;
3082 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3083 
3084 	if (fix_apm_sq) {
3085 		tmp = readl(phy_mmio + MV5_LTMODE);
3086 		tmp |= (1 << 19);
3087 		writel(tmp, phy_mmio + MV5_LTMODE);
3088 
3089 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3090 		tmp &= ~0x3;
3091 		tmp |= 0x1;
3092 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3093 	}
3094 
3095 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3096 	tmp &= ~mask;
3097 	tmp |= hpriv->signal[port].pre;
3098 	tmp |= hpriv->signal[port].amps;
3099 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3100 }
3101 
3102 
3103 #undef ZERO
3104 #define ZERO(reg) writel(0, port_mmio + (reg))
3105 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3106 			     unsigned int port)
3107 {
3108 	void __iomem *port_mmio = mv_port_base(mmio, port);
3109 
3110 	mv_reset_channel(hpriv, mmio, port);
3111 
3112 	ZERO(0x028);	/* command */
3113 	writel(0x11f, port_mmio + EDMA_CFG);
3114 	ZERO(0x004);	/* timer */
3115 	ZERO(0x008);	/* irq err cause */
3116 	ZERO(0x00c);	/* irq err mask */
3117 	ZERO(0x010);	/* rq bah */
3118 	ZERO(0x014);	/* rq inp */
3119 	ZERO(0x018);	/* rq outp */
3120 	ZERO(0x01c);	/* respq bah */
3121 	ZERO(0x024);	/* respq outp */
3122 	ZERO(0x020);	/* respq inp */
3123 	ZERO(0x02c);	/* test control */
3124 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3125 }
3126 #undef ZERO
3127 
3128 #define ZERO(reg) writel(0, hc_mmio + (reg))
3129 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3130 			unsigned int hc)
3131 {
3132 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3133 	u32 tmp;
3134 
3135 	ZERO(0x00c);
3136 	ZERO(0x010);
3137 	ZERO(0x014);
3138 	ZERO(0x018);
3139 
3140 	tmp = readl(hc_mmio + 0x20);
3141 	tmp &= 0x1c1c1c1c;
3142 	tmp |= 0x03030303;
3143 	writel(tmp, hc_mmio + 0x20);
3144 }
3145 #undef ZERO
3146 
3147 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3148 			unsigned int n_hc)
3149 {
3150 	unsigned int hc, port;
3151 
3152 	for (hc = 0; hc < n_hc; hc++) {
3153 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3154 			mv5_reset_hc_port(hpriv, mmio,
3155 					  (hc * MV_PORTS_PER_HC) + port);
3156 
3157 		mv5_reset_one_hc(hpriv, mmio, hc);
3158 	}
3159 
3160 	return 0;
3161 }
3162 
3163 #undef ZERO
3164 #define ZERO(reg) writel(0, mmio + (reg))
3165 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3166 {
3167 	struct mv_host_priv *hpriv = host->private_data;
3168 	u32 tmp;
3169 
3170 	tmp = readl(mmio + MV_PCI_MODE);
3171 	tmp &= 0xff00ffff;
3172 	writel(tmp, mmio + MV_PCI_MODE);
3173 
3174 	ZERO(MV_PCI_DISC_TIMER);
3175 	ZERO(MV_PCI_MSI_TRIGGER);
3176 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3177 	ZERO(MV_PCI_SERR_MASK);
3178 	ZERO(hpriv->irq_cause_offset);
3179 	ZERO(hpriv->irq_mask_offset);
3180 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3181 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3182 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3183 	ZERO(MV_PCI_ERR_COMMAND);
3184 }
3185 #undef ZERO
3186 
3187 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3188 {
3189 	u32 tmp;
3190 
3191 	mv5_reset_flash(hpriv, mmio);
3192 
3193 	tmp = readl(mmio + GPIO_PORT_CTL);
3194 	tmp &= 0x3;
3195 	tmp |= (1 << 5) | (1 << 6);
3196 	writel(tmp, mmio + GPIO_PORT_CTL);
3197 }
3198 
3199 /**
3200  *      mv6_reset_hc - Perform the 6xxx global soft reset
3201  *      @mmio: base address of the HBA
3202  *
3203  *      This routine only applies to 6xxx parts.
3204  *
3205  *      LOCKING:
3206  *      Inherited from caller.
3207  */
3208 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3209 			unsigned int n_hc)
3210 {
3211 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3212 	int i, rc = 0;
3213 	u32 t;
3214 
3215 	/* Following procedure defined in PCI "main command and status
3216 	 * register" table.
3217 	 */
3218 	t = readl(reg);
3219 	writel(t | STOP_PCI_MASTER, reg);
3220 
3221 	for (i = 0; i < 1000; i++) {
3222 		udelay(1);
3223 		t = readl(reg);
3224 		if (PCI_MASTER_EMPTY & t)
3225 			break;
3226 	}
3227 	if (!(PCI_MASTER_EMPTY & t)) {
3228 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3229 		rc = 1;
3230 		goto done;
3231 	}
3232 
3233 	/* set reset */
3234 	i = 5;
3235 	do {
3236 		writel(t | GLOB_SFT_RST, reg);
3237 		t = readl(reg);
3238 		udelay(1);
3239 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3240 
3241 	if (!(GLOB_SFT_RST & t)) {
3242 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3243 		rc = 1;
3244 		goto done;
3245 	}
3246 
3247 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3248 	i = 5;
3249 	do {
3250 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3251 		t = readl(reg);
3252 		udelay(1);
3253 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3254 
3255 	if (GLOB_SFT_RST & t) {
3256 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3257 		rc = 1;
3258 	}
3259 done:
3260 	return rc;
3261 }
3262 
3263 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3264 			   void __iomem *mmio)
3265 {
3266 	void __iomem *port_mmio;
3267 	u32 tmp;
3268 
3269 	tmp = readl(mmio + RESET_CFG);
3270 	if ((tmp & (1 << 0)) == 0) {
3271 		hpriv->signal[idx].amps = 0x7 << 8;
3272 		hpriv->signal[idx].pre = 0x1 << 5;
3273 		return;
3274 	}
3275 
3276 	port_mmio = mv_port_base(mmio, idx);
3277 	tmp = readl(port_mmio + PHY_MODE2);
3278 
3279 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3280 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3281 }
3282 
3283 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3284 {
3285 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3286 }
3287 
3288 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3289 			   unsigned int port)
3290 {
3291 	void __iomem *port_mmio = mv_port_base(mmio, port);
3292 
3293 	u32 hp_flags = hpriv->hp_flags;
3294 	int fix_phy_mode2 =
3295 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3296 	int fix_phy_mode4 =
3297 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3298 	u32 m2, m3;
3299 
3300 	if (fix_phy_mode2) {
3301 		m2 = readl(port_mmio + PHY_MODE2);
3302 		m2 &= ~(1 << 16);
3303 		m2 |= (1 << 31);
3304 		writel(m2, port_mmio + PHY_MODE2);
3305 
3306 		udelay(200);
3307 
3308 		m2 = readl(port_mmio + PHY_MODE2);
3309 		m2 &= ~((1 << 16) | (1 << 31));
3310 		writel(m2, port_mmio + PHY_MODE2);
3311 
3312 		udelay(200);
3313 	}
3314 
3315 	/*
3316 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3317 	 * Achieves better receiver noise performance than the h/w default:
3318 	 */
3319 	m3 = readl(port_mmio + PHY_MODE3);
3320 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3321 
3322 	/* Guideline 88F5182 (GL# SATA-S11) */
3323 	if (IS_SOC(hpriv))
3324 		m3 &= ~0x1c;
3325 
3326 	if (fix_phy_mode4) {
3327 		u32 m4 = readl(port_mmio + PHY_MODE4);
3328 		/*
3329 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3330 		 * For earlier chipsets, force only the internal config field
3331 		 *  (workaround for errata FEr SATA#10 part 1).
3332 		 */
3333 		if (IS_GEN_IIE(hpriv))
3334 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3335 		else
3336 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3337 		writel(m4, port_mmio + PHY_MODE4);
3338 	}
3339 	/*
3340 	 * Workaround for 60x1-B2 errata SATA#13:
3341 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3342 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3343 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3344 	 */
3345 	writel(m3, port_mmio + PHY_MODE3);
3346 
3347 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3348 	m2 = readl(port_mmio + PHY_MODE2);
3349 
3350 	m2 &= ~MV_M2_PREAMP_MASK;
3351 	m2 |= hpriv->signal[port].amps;
3352 	m2 |= hpriv->signal[port].pre;
3353 	m2 &= ~(1 << 16);
3354 
3355 	/* according to mvSata 3.6.1, some IIE values are fixed */
3356 	if (IS_GEN_IIE(hpriv)) {
3357 		m2 &= ~0xC30FF01F;
3358 		m2 |= 0x0000900F;
3359 	}
3360 
3361 	writel(m2, port_mmio + PHY_MODE2);
3362 }
3363 
3364 /* TODO: use the generic LED interface to configure the SATA Presence */
3365 /* & Acitivy LEDs on the board */
3366 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3367 				      void __iomem *mmio)
3368 {
3369 	return;
3370 }
3371 
3372 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3373 			   void __iomem *mmio)
3374 {
3375 	void __iomem *port_mmio;
3376 	u32 tmp;
3377 
3378 	port_mmio = mv_port_base(mmio, idx);
3379 	tmp = readl(port_mmio + PHY_MODE2);
3380 
3381 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3382 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3383 }
3384 
3385 #undef ZERO
3386 #define ZERO(reg) writel(0, port_mmio + (reg))
3387 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3388 					void __iomem *mmio, unsigned int port)
3389 {
3390 	void __iomem *port_mmio = mv_port_base(mmio, port);
3391 
3392 	mv_reset_channel(hpriv, mmio, port);
3393 
3394 	ZERO(0x028);		/* command */
3395 	writel(0x101f, port_mmio + EDMA_CFG);
3396 	ZERO(0x004);		/* timer */
3397 	ZERO(0x008);		/* irq err cause */
3398 	ZERO(0x00c);		/* irq err mask */
3399 	ZERO(0x010);		/* rq bah */
3400 	ZERO(0x014);		/* rq inp */
3401 	ZERO(0x018);		/* rq outp */
3402 	ZERO(0x01c);		/* respq bah */
3403 	ZERO(0x024);		/* respq outp */
3404 	ZERO(0x020);		/* respq inp */
3405 	ZERO(0x02c);		/* test control */
3406 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3407 }
3408 
3409 #undef ZERO
3410 
3411 #define ZERO(reg) writel(0, hc_mmio + (reg))
3412 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3413 				       void __iomem *mmio)
3414 {
3415 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3416 
3417 	ZERO(0x00c);
3418 	ZERO(0x010);
3419 	ZERO(0x014);
3420 
3421 }
3422 
3423 #undef ZERO
3424 
3425 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3426 				  void __iomem *mmio, unsigned int n_hc)
3427 {
3428 	unsigned int port;
3429 
3430 	for (port = 0; port < hpriv->n_ports; port++)
3431 		mv_soc_reset_hc_port(hpriv, mmio, port);
3432 
3433 	mv_soc_reset_one_hc(hpriv, mmio);
3434 
3435 	return 0;
3436 }
3437 
3438 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3439 				      void __iomem *mmio)
3440 {
3441 	return;
3442 }
3443 
3444 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3445 {
3446 	return;
3447 }
3448 
3449 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3450 				  void __iomem *mmio, unsigned int port)
3451 {
3452 	void __iomem *port_mmio = mv_port_base(mmio, port);
3453 	u32	reg;
3454 
3455 	reg = readl(port_mmio + PHY_MODE3);
3456 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3457 	reg |= (0x1 << 27);
3458 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3459 	reg |= (0x1 << 29);
3460 	writel(reg, port_mmio + PHY_MODE3);
3461 
3462 	reg = readl(port_mmio + PHY_MODE4);
3463 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3464 	reg |= (0x1 << 16);
3465 	writel(reg, port_mmio + PHY_MODE4);
3466 
3467 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3468 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3469 	reg |= 0x8;
3470 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3471 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3472 
3473 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3474 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3475 	reg |= 0x8;
3476 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3477 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3478 }
3479 
3480 /**
3481  *	soc_is_65 - check if the soc is 65 nano device
3482  *
3483  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3484  *	register, this register should contain non-zero value and it exists only
3485  *	in the 65 nano devices, when reading it from older devices we get 0.
3486  */
3487 static bool soc_is_65n(struct mv_host_priv *hpriv)
3488 {
3489 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3490 
3491 	if (readl(port0_mmio + PHYCFG_OFS))
3492 		return true;
3493 	return false;
3494 }
3495 
3496 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3497 {
3498 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3499 
3500 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3501 	if (want_gen2i)
3502 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3503 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3504 }
3505 
3506 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3507 			     unsigned int port_no)
3508 {
3509 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3510 
3511 	/*
3512 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3513 	 * (but doesn't say what the problem might be).  So we first try
3514 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3515 	 */
3516 	mv_stop_edma_engine(port_mmio);
3517 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3518 
3519 	if (!IS_GEN_I(hpriv)) {
3520 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3521 		mv_setup_ifcfg(port_mmio, 1);
3522 	}
3523 	/*
3524 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3525 	 * link, and physical layers.  It resets all SATA interface registers
3526 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3527 	 */
3528 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3529 	udelay(25);	/* allow reset propagation */
3530 	writelfl(0, port_mmio + EDMA_CMD);
3531 
3532 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3533 
3534 	if (IS_GEN_I(hpriv))
3535 		mdelay(1);
3536 }
3537 
3538 static void mv_pmp_select(struct ata_port *ap, int pmp)
3539 {
3540 	if (sata_pmp_supported(ap)) {
3541 		void __iomem *port_mmio = mv_ap_base(ap);
3542 		u32 reg = readl(port_mmio + SATA_IFCTL);
3543 		int old = reg & 0xf;
3544 
3545 		if (old != pmp) {
3546 			reg = (reg & ~0xf) | pmp;
3547 			writelfl(reg, port_mmio + SATA_IFCTL);
3548 		}
3549 	}
3550 }
3551 
3552 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3553 				unsigned long deadline)
3554 {
3555 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3556 	return sata_std_hardreset(link, class, deadline);
3557 }
3558 
3559 static int mv_softreset(struct ata_link *link, unsigned int *class,
3560 				unsigned long deadline)
3561 {
3562 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3563 	return ata_sff_softreset(link, class, deadline);
3564 }
3565 
3566 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3567 			unsigned long deadline)
3568 {
3569 	struct ata_port *ap = link->ap;
3570 	struct mv_host_priv *hpriv = ap->host->private_data;
3571 	struct mv_port_priv *pp = ap->private_data;
3572 	void __iomem *mmio = hpriv->base;
3573 	int rc, attempts = 0, extra = 0;
3574 	u32 sstatus;
3575 	bool online;
3576 
3577 	mv_reset_channel(hpriv, mmio, ap->port_no);
3578 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3579 	pp->pp_flags &=
3580 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3581 
3582 	/* Workaround for errata FEr SATA#10 (part 2) */
3583 	do {
3584 		const unsigned long *timing =
3585 				sata_ehc_deb_timing(&link->eh_context);
3586 
3587 		rc = sata_link_hardreset(link, timing, deadline + extra,
3588 					 &online, NULL);
3589 		rc = online ? -EAGAIN : rc;
3590 		if (rc)
3591 			return rc;
3592 		sata_scr_read(link, SCR_STATUS, &sstatus);
3593 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3594 			/* Force 1.5gb/s link speed and try again */
3595 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3596 			if (time_after(jiffies + HZ, deadline))
3597 				extra = HZ; /* only extend it once, max */
3598 		}
3599 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3600 	mv_save_cached_regs(ap);
3601 	mv_edma_cfg(ap, 0, 0);
3602 
3603 	return rc;
3604 }
3605 
3606 static void mv_eh_freeze(struct ata_port *ap)
3607 {
3608 	mv_stop_edma(ap);
3609 	mv_enable_port_irqs(ap, 0);
3610 }
3611 
3612 static void mv_eh_thaw(struct ata_port *ap)
3613 {
3614 	struct mv_host_priv *hpriv = ap->host->private_data;
3615 	unsigned int port = ap->port_no;
3616 	unsigned int hardport = mv_hardport_from_port(port);
3617 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3618 	void __iomem *port_mmio = mv_ap_base(ap);
3619 	u32 hc_irq_cause;
3620 
3621 	/* clear EDMA errors on this port */
3622 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3623 
3624 	/* clear pending irq events */
3625 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3626 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3627 
3628 	mv_enable_port_irqs(ap, ERR_IRQ);
3629 }
3630 
3631 /**
3632  *      mv_port_init - Perform some early initialization on a single port.
3633  *      @port: libata data structure storing shadow register addresses
3634  *      @port_mmio: base address of the port
3635  *
3636  *      Initialize shadow register mmio addresses, clear outstanding
3637  *      interrupts on the port, and unmask interrupts for the future
3638  *      start of the port.
3639  *
3640  *      LOCKING:
3641  *      Inherited from caller.
3642  */
3643 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3644 {
3645 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3646 
3647 	/* PIO related setup
3648 	 */
3649 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3650 	port->error_addr =
3651 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3652 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3653 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3654 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3655 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3656 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3657 	port->status_addr =
3658 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3659 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3660 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3661 
3662 	/* Clear any currently outstanding port interrupt conditions */
3663 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3664 	writelfl(readl(serr), serr);
3665 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3666 
3667 	/* unmask all non-transient EDMA error interrupts */
3668 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3669 
3670 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3671 		readl(port_mmio + EDMA_CFG),
3672 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3673 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3674 }
3675 
3676 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3677 {
3678 	struct mv_host_priv *hpriv = host->private_data;
3679 	void __iomem *mmio = hpriv->base;
3680 	u32 reg;
3681 
3682 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3683 		return 0;	/* not PCI-X capable */
3684 	reg = readl(mmio + MV_PCI_MODE);
3685 	if ((reg & MV_PCI_MODE_MASK) == 0)
3686 		return 0;	/* conventional PCI mode */
3687 	return 1;	/* chip is in PCI-X mode */
3688 }
3689 
3690 static int mv_pci_cut_through_okay(struct ata_host *host)
3691 {
3692 	struct mv_host_priv *hpriv = host->private_data;
3693 	void __iomem *mmio = hpriv->base;
3694 	u32 reg;
3695 
3696 	if (!mv_in_pcix_mode(host)) {
3697 		reg = readl(mmio + MV_PCI_COMMAND);
3698 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3699 			return 0; /* not okay */
3700 	}
3701 	return 1; /* okay */
3702 }
3703 
3704 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3705 {
3706 	struct mv_host_priv *hpriv = host->private_data;
3707 	void __iomem *mmio = hpriv->base;
3708 
3709 	/* workaround for 60x1-B2 errata PCI#7 */
3710 	if (mv_in_pcix_mode(host)) {
3711 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3712 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3713 	}
3714 }
3715 
3716 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3717 {
3718 	struct pci_dev *pdev = to_pci_dev(host->dev);
3719 	struct mv_host_priv *hpriv = host->private_data;
3720 	u32 hp_flags = hpriv->hp_flags;
3721 
3722 	switch (board_idx) {
3723 	case chip_5080:
3724 		hpriv->ops = &mv5xxx_ops;
3725 		hp_flags |= MV_HP_GEN_I;
3726 
3727 		switch (pdev->revision) {
3728 		case 0x1:
3729 			hp_flags |= MV_HP_ERRATA_50XXB0;
3730 			break;
3731 		case 0x3:
3732 			hp_flags |= MV_HP_ERRATA_50XXB2;
3733 			break;
3734 		default:
3735 			dev_printk(KERN_WARNING, &pdev->dev,
3736 			   "Applying 50XXB2 workarounds to unknown rev\n");
3737 			hp_flags |= MV_HP_ERRATA_50XXB2;
3738 			break;
3739 		}
3740 		break;
3741 
3742 	case chip_504x:
3743 	case chip_508x:
3744 		hpriv->ops = &mv5xxx_ops;
3745 		hp_flags |= MV_HP_GEN_I;
3746 
3747 		switch (pdev->revision) {
3748 		case 0x0:
3749 			hp_flags |= MV_HP_ERRATA_50XXB0;
3750 			break;
3751 		case 0x3:
3752 			hp_flags |= MV_HP_ERRATA_50XXB2;
3753 			break;
3754 		default:
3755 			dev_printk(KERN_WARNING, &pdev->dev,
3756 			   "Applying B2 workarounds to unknown rev\n");
3757 			hp_flags |= MV_HP_ERRATA_50XXB2;
3758 			break;
3759 		}
3760 		break;
3761 
3762 	case chip_604x:
3763 	case chip_608x:
3764 		hpriv->ops = &mv6xxx_ops;
3765 		hp_flags |= MV_HP_GEN_II;
3766 
3767 		switch (pdev->revision) {
3768 		case 0x7:
3769 			mv_60x1b2_errata_pci7(host);
3770 			hp_flags |= MV_HP_ERRATA_60X1B2;
3771 			break;
3772 		case 0x9:
3773 			hp_flags |= MV_HP_ERRATA_60X1C0;
3774 			break;
3775 		default:
3776 			dev_printk(KERN_WARNING, &pdev->dev,
3777 				   "Applying B2 workarounds to unknown rev\n");
3778 			hp_flags |= MV_HP_ERRATA_60X1B2;
3779 			break;
3780 		}
3781 		break;
3782 
3783 	case chip_7042:
3784 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3785 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3786 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3787 		{
3788 			/*
3789 			 * Highpoint RocketRAID PCIe 23xx series cards:
3790 			 *
3791 			 * Unconfigured drives are treated as "Legacy"
3792 			 * by the BIOS, and it overwrites sector 8 with
3793 			 * a "Lgcy" metadata block prior to Linux boot.
3794 			 *
3795 			 * Configured drives (RAID or JBOD) leave sector 8
3796 			 * alone, but instead overwrite a high numbered
3797 			 * sector for the RAID metadata.  This sector can
3798 			 * be determined exactly, by truncating the physical
3799 			 * drive capacity to a nice even GB value.
3800 			 *
3801 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3802 			 *
3803 			 * Warn the user, lest they think we're just buggy.
3804 			 */
3805 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3806 				" BIOS CORRUPTS DATA on all attached drives,"
3807 				" regardless of if/how they are configured."
3808 				" BEWARE!\n");
3809 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3810 				" use sectors 8-9 on \"Legacy\" drives,"
3811 				" and avoid the final two gigabytes on"
3812 				" all RocketRAID BIOS initialized drives.\n");
3813 		}
3814 		/* drop through */
3815 	case chip_6042:
3816 		hpriv->ops = &mv6xxx_ops;
3817 		hp_flags |= MV_HP_GEN_IIE;
3818 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3819 			hp_flags |= MV_HP_CUT_THROUGH;
3820 
3821 		switch (pdev->revision) {
3822 		case 0x2: /* Rev.B0: the first/only public release */
3823 			hp_flags |= MV_HP_ERRATA_60X1C0;
3824 			break;
3825 		default:
3826 			dev_printk(KERN_WARNING, &pdev->dev,
3827 			   "Applying 60X1C0 workarounds to unknown rev\n");
3828 			hp_flags |= MV_HP_ERRATA_60X1C0;
3829 			break;
3830 		}
3831 		break;
3832 	case chip_soc:
3833 		if (soc_is_65n(hpriv))
3834 			hpriv->ops = &mv_soc_65n_ops;
3835 		else
3836 			hpriv->ops = &mv_soc_ops;
3837 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3838 			MV_HP_ERRATA_60X1C0;
3839 		break;
3840 
3841 	default:
3842 		dev_printk(KERN_ERR, host->dev,
3843 			   "BUG: invalid board index %u\n", board_idx);
3844 		return 1;
3845 	}
3846 
3847 	hpriv->hp_flags = hp_flags;
3848 	if (hp_flags & MV_HP_PCIE) {
3849 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3850 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3851 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3852 	} else {
3853 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3854 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3855 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3856 	}
3857 
3858 	return 0;
3859 }
3860 
3861 /**
3862  *      mv_init_host - Perform some early initialization of the host.
3863  *	@host: ATA host to initialize
3864  *
3865  *      If possible, do an early global reset of the host.  Then do
3866  *      our port init and clear/unmask all/relevant host interrupts.
3867  *
3868  *      LOCKING:
3869  *      Inherited from caller.
3870  */
3871 static int mv_init_host(struct ata_host *host)
3872 {
3873 	int rc = 0, n_hc, port, hc;
3874 	struct mv_host_priv *hpriv = host->private_data;
3875 	void __iomem *mmio = hpriv->base;
3876 
3877 	rc = mv_chip_id(host, hpriv->board_idx);
3878 	if (rc)
3879 		goto done;
3880 
3881 	if (IS_SOC(hpriv)) {
3882 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3883 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3884 	} else {
3885 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3886 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3887 	}
3888 
3889 	/* initialize shadow irq mask with register's value */
3890 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3891 
3892 	/* global interrupt mask: 0 == mask everything */
3893 	mv_set_main_irq_mask(host, ~0, 0);
3894 
3895 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3896 
3897 	for (port = 0; port < host->n_ports; port++)
3898 		if (hpriv->ops->read_preamp)
3899 			hpriv->ops->read_preamp(hpriv, port, mmio);
3900 
3901 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3902 	if (rc)
3903 		goto done;
3904 
3905 	hpriv->ops->reset_flash(hpriv, mmio);
3906 	hpriv->ops->reset_bus(host, mmio);
3907 	hpriv->ops->enable_leds(hpriv, mmio);
3908 
3909 	for (port = 0; port < host->n_ports; port++) {
3910 		struct ata_port *ap = host->ports[port];
3911 		void __iomem *port_mmio = mv_port_base(mmio, port);
3912 
3913 		mv_port_init(&ap->ioaddr, port_mmio);
3914 	}
3915 
3916 	for (hc = 0; hc < n_hc; hc++) {
3917 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3918 
3919 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3920 			"(before clear)=0x%08x\n", hc,
3921 			readl(hc_mmio + HC_CFG),
3922 			readl(hc_mmio + HC_IRQ_CAUSE));
3923 
3924 		/* Clear any currently outstanding hc interrupt conditions */
3925 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3926 	}
3927 
3928 	if (!IS_SOC(hpriv)) {
3929 		/* Clear any currently outstanding host interrupt conditions */
3930 		writelfl(0, mmio + hpriv->irq_cause_offset);
3931 
3932 		/* and unmask interrupt generation for host regs */
3933 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3934 	}
3935 
3936 	/*
3937 	 * enable only global host interrupts for now.
3938 	 * The per-port interrupts get done later as ports are set up.
3939 	 */
3940 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3941 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3942 				    irq_coalescing_usecs);
3943 done:
3944 	return rc;
3945 }
3946 
3947 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3948 {
3949 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3950 							     MV_CRQB_Q_SZ, 0);
3951 	if (!hpriv->crqb_pool)
3952 		return -ENOMEM;
3953 
3954 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3955 							     MV_CRPB_Q_SZ, 0);
3956 	if (!hpriv->crpb_pool)
3957 		return -ENOMEM;
3958 
3959 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3960 							     MV_SG_TBL_SZ, 0);
3961 	if (!hpriv->sg_tbl_pool)
3962 		return -ENOMEM;
3963 
3964 	return 0;
3965 }
3966 
3967 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3968 				 struct mbus_dram_target_info *dram)
3969 {
3970 	int i;
3971 
3972 	for (i = 0; i < 4; i++) {
3973 		writel(0, hpriv->base + WINDOW_CTRL(i));
3974 		writel(0, hpriv->base + WINDOW_BASE(i));
3975 	}
3976 
3977 	for (i = 0; i < dram->num_cs; i++) {
3978 		struct mbus_dram_window *cs = dram->cs + i;
3979 
3980 		writel(((cs->size - 1) & 0xffff0000) |
3981 			(cs->mbus_attr << 8) |
3982 			(dram->mbus_dram_target_id << 4) | 1,
3983 			hpriv->base + WINDOW_CTRL(i));
3984 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3985 	}
3986 }
3987 
3988 /**
3989  *      mv_platform_probe - handle a positive probe of an soc Marvell
3990  *      host
3991  *      @pdev: platform device found
3992  *
3993  *      LOCKING:
3994  *      Inherited from caller.
3995  */
3996 static int mv_platform_probe(struct platform_device *pdev)
3997 {
3998 	static int printed_version;
3999 	const struct mv_sata_platform_data *mv_platform_data;
4000 	const struct ata_port_info *ppi[] =
4001 	    { &mv_port_info[chip_soc], NULL };
4002 	struct ata_host *host;
4003 	struct mv_host_priv *hpriv;
4004 	struct resource *res;
4005 	int n_ports, rc;
4006 
4007 	if (!printed_version++)
4008 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4009 
4010 	/*
4011 	 * Simple resource validation ..
4012 	 */
4013 	if (unlikely(pdev->num_resources != 2)) {
4014 		dev_err(&pdev->dev, "invalid number of resources\n");
4015 		return -EINVAL;
4016 	}
4017 
4018 	/*
4019 	 * Get the register base first
4020 	 */
4021 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4022 	if (res == NULL)
4023 		return -EINVAL;
4024 
4025 	/* allocate host */
4026 	mv_platform_data = pdev->dev.platform_data;
4027 	n_ports = mv_platform_data->n_ports;
4028 
4029 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4030 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4031 
4032 	if (!host || !hpriv)
4033 		return -ENOMEM;
4034 	host->private_data = hpriv;
4035 	hpriv->n_ports = n_ports;
4036 	hpriv->board_idx = chip_soc;
4037 
4038 	host->iomap = NULL;
4039 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4040 				   resource_size(res));
4041 	hpriv->base -= SATAHC0_REG_BASE;
4042 
4043 #if defined(CONFIG_HAVE_CLK)
4044 	hpriv->clk = clk_get(&pdev->dev, NULL);
4045 	if (IS_ERR(hpriv->clk))
4046 		dev_notice(&pdev->dev, "cannot get clkdev\n");
4047 	else
4048 		clk_enable(hpriv->clk);
4049 #endif
4050 
4051 	/*
4052 	 * (Re-)program MBUS remapping windows if we are asked to.
4053 	 */
4054 	if (mv_platform_data->dram != NULL)
4055 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4056 
4057 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4058 	if (rc)
4059 		goto err;
4060 
4061 	/* initialize adapter */
4062 	rc = mv_init_host(host);
4063 	if (rc)
4064 		goto err;
4065 
4066 	dev_printk(KERN_INFO, &pdev->dev,
4067 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4068 		   host->n_ports);
4069 
4070 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4071 				 IRQF_SHARED, &mv6_sht);
4072 err:
4073 #if defined(CONFIG_HAVE_CLK)
4074 	if (!IS_ERR(hpriv->clk)) {
4075 		clk_disable(hpriv->clk);
4076 		clk_put(hpriv->clk);
4077 	}
4078 #endif
4079 
4080 	return rc;
4081 }
4082 
4083 /*
4084  *
4085  *      mv_platform_remove    -       unplug a platform interface
4086  *      @pdev: platform device
4087  *
4088  *      A platform bus SATA device has been unplugged. Perform the needed
4089  *      cleanup. Also called on module unload for any active devices.
4090  */
4091 static int __devexit mv_platform_remove(struct platform_device *pdev)
4092 {
4093 	struct device *dev = &pdev->dev;
4094 	struct ata_host *host = dev_get_drvdata(dev);
4095 #if defined(CONFIG_HAVE_CLK)
4096 	struct mv_host_priv *hpriv = host->private_data;
4097 #endif
4098 	ata_host_detach(host);
4099 
4100 #if defined(CONFIG_HAVE_CLK)
4101 	if (!IS_ERR(hpriv->clk)) {
4102 		clk_disable(hpriv->clk);
4103 		clk_put(hpriv->clk);
4104 	}
4105 #endif
4106 	return 0;
4107 }
4108 
4109 #ifdef CONFIG_PM
4110 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4111 {
4112 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
4113 	if (host)
4114 		return ata_host_suspend(host, state);
4115 	else
4116 		return 0;
4117 }
4118 
4119 static int mv_platform_resume(struct platform_device *pdev)
4120 {
4121 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
4122 	int ret;
4123 
4124 	if (host) {
4125 		struct mv_host_priv *hpriv = host->private_data;
4126 		const struct mv_sata_platform_data *mv_platform_data = \
4127 			pdev->dev.platform_data;
4128 		/*
4129 		 * (Re-)program MBUS remapping windows if we are asked to.
4130 		 */
4131 		if (mv_platform_data->dram != NULL)
4132 			mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4133 
4134 		/* initialize adapter */
4135 		ret = mv_init_host(host);
4136 		if (ret) {
4137 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4138 			return ret;
4139 		}
4140 		ata_host_resume(host);
4141 	}
4142 
4143 	return 0;
4144 }
4145 #else
4146 #define mv_platform_suspend NULL
4147 #define mv_platform_resume NULL
4148 #endif
4149 
4150 static struct platform_driver mv_platform_driver = {
4151 	.probe			= mv_platform_probe,
4152 	.remove			= __devexit_p(mv_platform_remove),
4153 	.suspend		= mv_platform_suspend,
4154 	.resume			= mv_platform_resume,
4155 	.driver			= {
4156 				   .name = DRV_NAME,
4157 				   .owner = THIS_MODULE,
4158 				  },
4159 };
4160 
4161 
4162 #ifdef CONFIG_PCI
4163 static int mv_pci_init_one(struct pci_dev *pdev,
4164 			   const struct pci_device_id *ent);
4165 #ifdef CONFIG_PM
4166 static int mv_pci_device_resume(struct pci_dev *pdev);
4167 #endif
4168 
4169 
4170 static struct pci_driver mv_pci_driver = {
4171 	.name			= DRV_NAME,
4172 	.id_table		= mv_pci_tbl,
4173 	.probe			= mv_pci_init_one,
4174 	.remove			= ata_pci_remove_one,
4175 #ifdef CONFIG_PM
4176 	.suspend		= ata_pci_device_suspend,
4177 	.resume			= mv_pci_device_resume,
4178 #endif
4179 
4180 };
4181 
4182 /* move to PCI layer or libata core? */
4183 static int pci_go_64(struct pci_dev *pdev)
4184 {
4185 	int rc;
4186 
4187 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4188 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4189 		if (rc) {
4190 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4191 			if (rc) {
4192 				dev_printk(KERN_ERR, &pdev->dev,
4193 					   "64-bit DMA enable failed\n");
4194 				return rc;
4195 			}
4196 		}
4197 	} else {
4198 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4199 		if (rc) {
4200 			dev_printk(KERN_ERR, &pdev->dev,
4201 				   "32-bit DMA enable failed\n");
4202 			return rc;
4203 		}
4204 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4205 		if (rc) {
4206 			dev_printk(KERN_ERR, &pdev->dev,
4207 				   "32-bit consistent DMA enable failed\n");
4208 			return rc;
4209 		}
4210 	}
4211 
4212 	return rc;
4213 }
4214 
4215 /**
4216  *      mv_print_info - Dump key info to kernel log for perusal.
4217  *      @host: ATA host to print info about
4218  *
4219  *      FIXME: complete this.
4220  *
4221  *      LOCKING:
4222  *      Inherited from caller.
4223  */
4224 static void mv_print_info(struct ata_host *host)
4225 {
4226 	struct pci_dev *pdev = to_pci_dev(host->dev);
4227 	struct mv_host_priv *hpriv = host->private_data;
4228 	u8 scc;
4229 	const char *scc_s, *gen;
4230 
4231 	/* Use this to determine the HW stepping of the chip so we know
4232 	 * what errata to workaround
4233 	 */
4234 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4235 	if (scc == 0)
4236 		scc_s = "SCSI";
4237 	else if (scc == 0x01)
4238 		scc_s = "RAID";
4239 	else
4240 		scc_s = "?";
4241 
4242 	if (IS_GEN_I(hpriv))
4243 		gen = "I";
4244 	else if (IS_GEN_II(hpriv))
4245 		gen = "II";
4246 	else if (IS_GEN_IIE(hpriv))
4247 		gen = "IIE";
4248 	else
4249 		gen = "?";
4250 
4251 	dev_printk(KERN_INFO, &pdev->dev,
4252 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4253 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4254 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4255 }
4256 
4257 /**
4258  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4259  *      @pdev: PCI device found
4260  *      @ent: PCI device ID entry for the matched host
4261  *
4262  *      LOCKING:
4263  *      Inherited from caller.
4264  */
4265 static int mv_pci_init_one(struct pci_dev *pdev,
4266 			   const struct pci_device_id *ent)
4267 {
4268 	static int printed_version;
4269 	unsigned int board_idx = (unsigned int)ent->driver_data;
4270 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4271 	struct ata_host *host;
4272 	struct mv_host_priv *hpriv;
4273 	int n_ports, port, rc;
4274 
4275 	if (!printed_version++)
4276 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4277 
4278 	/* allocate host */
4279 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4280 
4281 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4282 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4283 	if (!host || !hpriv)
4284 		return -ENOMEM;
4285 	host->private_data = hpriv;
4286 	hpriv->n_ports = n_ports;
4287 	hpriv->board_idx = board_idx;
4288 
4289 	/* acquire resources */
4290 	rc = pcim_enable_device(pdev);
4291 	if (rc)
4292 		return rc;
4293 
4294 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4295 	if (rc == -EBUSY)
4296 		pcim_pin_device(pdev);
4297 	if (rc)
4298 		return rc;
4299 	host->iomap = pcim_iomap_table(pdev);
4300 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4301 
4302 	rc = pci_go_64(pdev);
4303 	if (rc)
4304 		return rc;
4305 
4306 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4307 	if (rc)
4308 		return rc;
4309 
4310 	for (port = 0; port < host->n_ports; port++) {
4311 		struct ata_port *ap = host->ports[port];
4312 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4313 		unsigned int offset = port_mmio - hpriv->base;
4314 
4315 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4316 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4317 	}
4318 
4319 	/* initialize adapter */
4320 	rc = mv_init_host(host);
4321 	if (rc)
4322 		return rc;
4323 
4324 	/* Enable message-switched interrupts, if requested */
4325 	if (msi && pci_enable_msi(pdev) == 0)
4326 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4327 
4328 	mv_dump_pci_cfg(pdev, 0x68);
4329 	mv_print_info(host);
4330 
4331 	pci_set_master(pdev);
4332 	pci_try_set_mwi(pdev);
4333 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4334 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4335 }
4336 
4337 #ifdef CONFIG_PM
4338 static int mv_pci_device_resume(struct pci_dev *pdev)
4339 {
4340 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
4341 	int rc;
4342 
4343 	rc = ata_pci_device_do_resume(pdev);
4344 	if (rc)
4345 		return rc;
4346 
4347 	/* initialize adapter */
4348 	rc = mv_init_host(host);
4349 	if (rc)
4350 		return rc;
4351 
4352 	ata_host_resume(host);
4353 
4354 	return 0;
4355 }
4356 #endif
4357 #endif
4358 
4359 static int mv_platform_probe(struct platform_device *pdev);
4360 static int __devexit mv_platform_remove(struct platform_device *pdev);
4361 
4362 static int __init mv_init(void)
4363 {
4364 	int rc = -ENODEV;
4365 #ifdef CONFIG_PCI
4366 	rc = pci_register_driver(&mv_pci_driver);
4367 	if (rc < 0)
4368 		return rc;
4369 #endif
4370 	rc = platform_driver_register(&mv_platform_driver);
4371 
4372 #ifdef CONFIG_PCI
4373 	if (rc < 0)
4374 		pci_unregister_driver(&mv_pci_driver);
4375 #endif
4376 	return rc;
4377 }
4378 
4379 static void __exit mv_exit(void)
4380 {
4381 #ifdef CONFIG_PCI
4382 	pci_unregister_driver(&mv_pci_driver);
4383 #endif
4384 	platform_driver_unregister(&mv_platform_driver);
4385 }
4386 
4387 MODULE_AUTHOR("Brett Russ");
4388 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4389 MODULE_LICENSE("GPL");
4390 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4391 MODULE_VERSION(DRV_VERSION);
4392 MODULE_ALIAS("platform:" DRV_NAME);
4393 
4394 module_init(mv_init);
4395 module_exit(mv_exit);
4396