1 /* 2 * sata_mv.c - Marvell SATA support 3 * 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 5 * Copyright 2005: EMC Corporation, all rights reserved. 6 * Copyright 2005 Red Hat, Inc. All rights reserved. 7 * 8 * Originally written by Brett Russ. 9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 10 * 11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; version 2 of the License. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 /* 29 * sata_mv TODO list: 30 * 31 * --> Develop a low-power-consumption strategy, and implement it. 32 * 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 34 * 35 * --> [Experiment, Marvell value added] Is it possible to use target 36 * mode to cross-connect two Linux boxes with Marvell cards? If so, 37 * creating LibATA target mode support would be very interesting. 38 * 39 * Target mode, for those without docs, is the ability to directly 40 * connect two SATA ports. 41 */ 42 43 /* 44 * 80x1-B2 errata PCI#11: 45 * 46 * Users of the 6041/6081 Rev.B2 chips (current is C0) 47 * should be careful to insert those cards only onto PCI-X bus #0, 48 * and only in device slots 0..7, not higher. The chips may not 49 * work correctly otherwise (note: this is a pretty rare condition). 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/init.h> 56 #include <linux/blkdev.h> 57 #include <linux/delay.h> 58 #include <linux/interrupt.h> 59 #include <linux/dmapool.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/device.h> 62 #include <linux/clk.h> 63 #include <linux/platform_device.h> 64 #include <linux/ata_platform.h> 65 #include <linux/mbus.h> 66 #include <linux/bitops.h> 67 #include <linux/gfp.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_cmnd.h> 70 #include <scsi/scsi_device.h> 71 #include <linux/libata.h> 72 73 #define DRV_NAME "sata_mv" 74 #define DRV_VERSION "1.28" 75 76 /* 77 * module options 78 */ 79 80 static int msi; 81 #ifdef CONFIG_PCI 82 module_param(msi, int, S_IRUGO); 83 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 84 #endif 85 86 static int irq_coalescing_io_count; 87 module_param(irq_coalescing_io_count, int, S_IRUGO); 88 MODULE_PARM_DESC(irq_coalescing_io_count, 89 "IRQ coalescing I/O count threshold (0..255)"); 90 91 static int irq_coalescing_usecs; 92 module_param(irq_coalescing_usecs, int, S_IRUGO); 93 MODULE_PARM_DESC(irq_coalescing_usecs, 94 "IRQ coalescing time threshold in usecs"); 95 96 enum { 97 /* BAR's are enumerated in terms of pci_resource_start() terms */ 98 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 99 MV_IO_BAR = 2, /* offset 0x18: IO space */ 100 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 101 102 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 103 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 104 105 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 106 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 107 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 108 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 109 110 MV_PCI_REG_BASE = 0, 111 112 /* 113 * Per-chip ("all ports") interrupt coalescing feature. 114 * This is only for GEN_II / GEN_IIE hardware. 115 * 116 * Coalescing defers the interrupt until either the IO_THRESHOLD 117 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 118 */ 119 COAL_REG_BASE = 0x18000, 120 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 121 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 122 123 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 124 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 125 126 /* 127 * Registers for the (unused here) transaction coalescing feature: 128 */ 129 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 130 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 131 132 SATAHC0_REG_BASE = 0x20000, 133 FLASH_CTL = 0x1046c, 134 GPIO_PORT_CTL = 0x104f0, 135 RESET_CFG = 0x180d8, 136 137 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 138 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 139 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 140 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 141 142 MV_MAX_Q_DEPTH = 32, 143 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 144 145 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 146 * CRPB needs alignment on a 256B boundary. Size == 256B 147 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 148 */ 149 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 150 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 151 MV_MAX_SG_CT = 256, 152 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 153 154 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 155 MV_PORT_HC_SHIFT = 2, 156 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 157 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 158 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 159 160 /* Host Flags */ 161 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 162 163 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 164 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING, 165 166 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 167 168 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 169 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 170 171 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 172 173 CRQB_FLAG_READ = (1 << 0), 174 CRQB_TAG_SHIFT = 1, 175 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 176 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 177 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 178 CRQB_CMD_ADDR_SHIFT = 8, 179 CRQB_CMD_CS = (0x2 << 11), 180 CRQB_CMD_LAST = (1 << 15), 181 182 CRPB_FLAG_STATUS_SHIFT = 8, 183 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 184 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 185 186 EPRD_FLAG_END_OF_TBL = (1 << 31), 187 188 /* PCI interface registers */ 189 190 MV_PCI_COMMAND = 0xc00, 191 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 192 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 193 194 PCI_MAIN_CMD_STS = 0xd30, 195 STOP_PCI_MASTER = (1 << 2), 196 PCI_MASTER_EMPTY = (1 << 3), 197 GLOB_SFT_RST = (1 << 4), 198 199 MV_PCI_MODE = 0xd00, 200 MV_PCI_MODE_MASK = 0x30, 201 202 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 203 MV_PCI_DISC_TIMER = 0xd04, 204 MV_PCI_MSI_TRIGGER = 0xc38, 205 MV_PCI_SERR_MASK = 0xc28, 206 MV_PCI_XBAR_TMOUT = 0x1d04, 207 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 208 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 209 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 210 MV_PCI_ERR_COMMAND = 0x1d50, 211 212 PCI_IRQ_CAUSE = 0x1d58, 213 PCI_IRQ_MASK = 0x1d5c, 214 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 215 216 PCIE_IRQ_CAUSE = 0x1900, 217 PCIE_IRQ_MASK = 0x1910, 218 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 219 220 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 221 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 222 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 223 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 224 SOC_HC_MAIN_IRQ_MASK = 0x20024, 225 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 226 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 227 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 228 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 229 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 230 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 231 PCI_ERR = (1 << 18), 232 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 233 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 234 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 235 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 236 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 237 GPIO_INT = (1 << 22), 238 SELF_INT = (1 << 23), 239 TWSI_INT = (1 << 24), 240 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 241 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 242 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 243 244 /* SATAHC registers */ 245 HC_CFG = 0x00, 246 247 HC_IRQ_CAUSE = 0x14, 248 DMA_IRQ = (1 << 0), /* shift by port # */ 249 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 250 DEV_IRQ = (1 << 8), /* shift by port # */ 251 252 /* 253 * Per-HC (Host-Controller) interrupt coalescing feature. 254 * This is present on all chip generations. 255 * 256 * Coalescing defers the interrupt until either the IO_THRESHOLD 257 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 258 */ 259 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 260 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 261 262 SOC_LED_CTRL = 0x2c, 263 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 264 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 265 /* with dev activity LED */ 266 267 /* Shadow block registers */ 268 SHD_BLK = 0x100, 269 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 270 271 /* SATA registers */ 272 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 273 SATA_ACTIVE = 0x350, 274 FIS_IRQ_CAUSE = 0x364, 275 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 276 277 LTMODE = 0x30c, /* requires read-after-write */ 278 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 279 280 PHY_MODE2 = 0x330, 281 PHY_MODE3 = 0x310, 282 283 PHY_MODE4 = 0x314, /* requires read-after-write */ 284 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 285 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 286 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 287 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 288 289 SATA_IFCTL = 0x344, 290 SATA_TESTCTL = 0x348, 291 SATA_IFSTAT = 0x34c, 292 VENDOR_UNIQUE_FIS = 0x35c, 293 294 FISCFG = 0x360, 295 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 296 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 297 298 PHY_MODE9_GEN2 = 0x398, 299 PHY_MODE9_GEN1 = 0x39c, 300 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 301 302 MV5_PHY_MODE = 0x74, 303 MV5_LTMODE = 0x30, 304 MV5_PHY_CTL = 0x0C, 305 SATA_IFCFG = 0x050, 306 307 MV_M2_PREAMP_MASK = 0x7e0, 308 309 /* Port registers */ 310 EDMA_CFG = 0, 311 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 312 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 313 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 314 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 315 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 316 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 317 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 318 319 EDMA_ERR_IRQ_CAUSE = 0x8, 320 EDMA_ERR_IRQ_MASK = 0xc, 321 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 322 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 323 EDMA_ERR_DEV = (1 << 2), /* device error */ 324 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 325 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 326 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 327 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 328 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 329 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 330 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 331 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 332 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 333 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 334 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 335 336 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 337 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 338 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 339 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 340 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 341 342 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 343 344 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 345 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 346 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 347 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 348 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 349 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 350 351 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 352 353 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 354 EDMA_ERR_OVERRUN_5 = (1 << 5), 355 EDMA_ERR_UNDERRUN_5 = (1 << 6), 356 357 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 358 EDMA_ERR_LNK_CTRL_RX_1 | 359 EDMA_ERR_LNK_CTRL_RX_3 | 360 EDMA_ERR_LNK_CTRL_TX, 361 362 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 363 EDMA_ERR_PRD_PAR | 364 EDMA_ERR_DEV_DCON | 365 EDMA_ERR_DEV_CON | 366 EDMA_ERR_SERR | 367 EDMA_ERR_SELF_DIS | 368 EDMA_ERR_CRQB_PAR | 369 EDMA_ERR_CRPB_PAR | 370 EDMA_ERR_INTRL_PAR | 371 EDMA_ERR_IORDY | 372 EDMA_ERR_LNK_CTRL_RX_2 | 373 EDMA_ERR_LNK_DATA_RX | 374 EDMA_ERR_LNK_DATA_TX | 375 EDMA_ERR_TRANS_PROTO, 376 377 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 378 EDMA_ERR_PRD_PAR | 379 EDMA_ERR_DEV_DCON | 380 EDMA_ERR_DEV_CON | 381 EDMA_ERR_OVERRUN_5 | 382 EDMA_ERR_UNDERRUN_5 | 383 EDMA_ERR_SELF_DIS_5 | 384 EDMA_ERR_CRQB_PAR | 385 EDMA_ERR_CRPB_PAR | 386 EDMA_ERR_INTRL_PAR | 387 EDMA_ERR_IORDY, 388 389 EDMA_REQ_Q_BASE_HI = 0x10, 390 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 391 392 EDMA_REQ_Q_OUT_PTR = 0x18, 393 EDMA_REQ_Q_PTR_SHIFT = 5, 394 395 EDMA_RSP_Q_BASE_HI = 0x1c, 396 EDMA_RSP_Q_IN_PTR = 0x20, 397 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 398 EDMA_RSP_Q_PTR_SHIFT = 3, 399 400 EDMA_CMD = 0x28, /* EDMA command register */ 401 EDMA_EN = (1 << 0), /* enable EDMA */ 402 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 403 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 404 405 EDMA_STATUS = 0x30, /* EDMA engine status */ 406 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 407 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 408 409 EDMA_IORDY_TMOUT = 0x34, 410 EDMA_ARB_CFG = 0x38, 411 412 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 413 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 414 415 BMDMA_CMD = 0x224, /* bmdma command register */ 416 BMDMA_STATUS = 0x228, /* bmdma status register */ 417 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 418 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 419 420 /* Host private flags (hp_flags) */ 421 MV_HP_FLAG_MSI = (1 << 0), 422 MV_HP_ERRATA_50XXB0 = (1 << 1), 423 MV_HP_ERRATA_50XXB2 = (1 << 2), 424 MV_HP_ERRATA_60X1B2 = (1 << 3), 425 MV_HP_ERRATA_60X1C0 = (1 << 4), 426 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 427 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 428 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 429 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 430 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 431 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 432 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 433 434 /* Port private flags (pp_flags) */ 435 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 436 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 437 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 438 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 439 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 440 }; 441 442 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 443 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 444 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 445 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 446 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 447 448 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 449 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 450 451 enum { 452 /* DMA boundary 0xffff is required by the s/g splitting 453 * we need on /length/ in mv_fill-sg(). 454 */ 455 MV_DMA_BOUNDARY = 0xffffU, 456 457 /* mask of register bits containing lower 32 bits 458 * of EDMA request queue DMA address 459 */ 460 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 461 462 /* ditto, for response queue */ 463 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 464 }; 465 466 enum chip_type { 467 chip_504x, 468 chip_508x, 469 chip_5080, 470 chip_604x, 471 chip_608x, 472 chip_6042, 473 chip_7042, 474 chip_soc, 475 }; 476 477 /* Command ReQuest Block: 32B */ 478 struct mv_crqb { 479 __le32 sg_addr; 480 __le32 sg_addr_hi; 481 __le16 ctrl_flags; 482 __le16 ata_cmd[11]; 483 }; 484 485 struct mv_crqb_iie { 486 __le32 addr; 487 __le32 addr_hi; 488 __le32 flags; 489 __le32 len; 490 __le32 ata_cmd[4]; 491 }; 492 493 /* Command ResPonse Block: 8B */ 494 struct mv_crpb { 495 __le16 id; 496 __le16 flags; 497 __le32 tmstmp; 498 }; 499 500 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 501 struct mv_sg { 502 __le32 addr; 503 __le32 flags_size; 504 __le32 addr_hi; 505 __le32 reserved; 506 }; 507 508 /* 509 * We keep a local cache of a few frequently accessed port 510 * registers here, to avoid having to read them (very slow) 511 * when switching between EDMA and non-EDMA modes. 512 */ 513 struct mv_cached_regs { 514 u32 fiscfg; 515 u32 ltmode; 516 u32 haltcond; 517 u32 unknown_rsvd; 518 }; 519 520 struct mv_port_priv { 521 struct mv_crqb *crqb; 522 dma_addr_t crqb_dma; 523 struct mv_crpb *crpb; 524 dma_addr_t crpb_dma; 525 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 526 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 527 528 unsigned int req_idx; 529 unsigned int resp_idx; 530 531 u32 pp_flags; 532 struct mv_cached_regs cached; 533 unsigned int delayed_eh_pmp_map; 534 }; 535 536 struct mv_port_signal { 537 u32 amps; 538 u32 pre; 539 }; 540 541 struct mv_host_priv { 542 u32 hp_flags; 543 unsigned int board_idx; 544 u32 main_irq_mask; 545 struct mv_port_signal signal[8]; 546 const struct mv_hw_ops *ops; 547 int n_ports; 548 void __iomem *base; 549 void __iomem *main_irq_cause_addr; 550 void __iomem *main_irq_mask_addr; 551 u32 irq_cause_offset; 552 u32 irq_mask_offset; 553 u32 unmask_all_irqs; 554 555 #if defined(CONFIG_HAVE_CLK) 556 struct clk *clk; 557 #endif 558 /* 559 * These consistent DMA memory pools give us guaranteed 560 * alignment for hardware-accessed data structures, 561 * and less memory waste in accomplishing the alignment. 562 */ 563 struct dma_pool *crqb_pool; 564 struct dma_pool *crpb_pool; 565 struct dma_pool *sg_tbl_pool; 566 }; 567 568 struct mv_hw_ops { 569 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 570 unsigned int port); 571 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 572 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 573 void __iomem *mmio); 574 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 575 unsigned int n_hc); 576 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 577 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 578 }; 579 580 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 581 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 582 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 583 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 584 static int mv_port_start(struct ata_port *ap); 585 static void mv_port_stop(struct ata_port *ap); 586 static int mv_qc_defer(struct ata_queued_cmd *qc); 587 static void mv_qc_prep(struct ata_queued_cmd *qc); 588 static void mv_qc_prep_iie(struct ata_queued_cmd *qc); 589 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 590 static int mv_hardreset(struct ata_link *link, unsigned int *class, 591 unsigned long deadline); 592 static void mv_eh_freeze(struct ata_port *ap); 593 static void mv_eh_thaw(struct ata_port *ap); 594 static void mv6_dev_config(struct ata_device *dev); 595 596 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 597 unsigned int port); 598 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 599 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 600 void __iomem *mmio); 601 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 602 unsigned int n_hc); 603 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 604 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 605 606 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 607 unsigned int port); 608 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 609 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 610 void __iomem *mmio); 611 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 612 unsigned int n_hc); 613 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 614 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 615 void __iomem *mmio); 616 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 617 void __iomem *mmio); 618 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 619 void __iomem *mmio, unsigned int n_hc); 620 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 621 void __iomem *mmio); 622 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 623 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 624 void __iomem *mmio, unsigned int port); 625 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 626 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 627 unsigned int port_no); 628 static int mv_stop_edma(struct ata_port *ap); 629 static int mv_stop_edma_engine(void __iomem *port_mmio); 630 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 631 632 static void mv_pmp_select(struct ata_port *ap, int pmp); 633 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 634 unsigned long deadline); 635 static int mv_softreset(struct ata_link *link, unsigned int *class, 636 unsigned long deadline); 637 static void mv_pmp_error_handler(struct ata_port *ap); 638 static void mv_process_crpb_entries(struct ata_port *ap, 639 struct mv_port_priv *pp); 640 641 static void mv_sff_irq_clear(struct ata_port *ap); 642 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 643 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 644 static void mv_bmdma_start(struct ata_queued_cmd *qc); 645 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 646 static u8 mv_bmdma_status(struct ata_port *ap); 647 static u8 mv_sff_check_status(struct ata_port *ap); 648 649 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 650 * because we have to allow room for worst case splitting of 651 * PRDs for 64K boundaries in mv_fill_sg(). 652 */ 653 static struct scsi_host_template mv5_sht = { 654 ATA_BASE_SHT(DRV_NAME), 655 .sg_tablesize = MV_MAX_SG_CT / 2, 656 .dma_boundary = MV_DMA_BOUNDARY, 657 }; 658 659 static struct scsi_host_template mv6_sht = { 660 ATA_NCQ_SHT(DRV_NAME), 661 .can_queue = MV_MAX_Q_DEPTH - 1, 662 .sg_tablesize = MV_MAX_SG_CT / 2, 663 .dma_boundary = MV_DMA_BOUNDARY, 664 }; 665 666 static struct ata_port_operations mv5_ops = { 667 .inherits = &ata_sff_port_ops, 668 669 .lost_interrupt = ATA_OP_NULL, 670 671 .qc_defer = mv_qc_defer, 672 .qc_prep = mv_qc_prep, 673 .qc_issue = mv_qc_issue, 674 675 .freeze = mv_eh_freeze, 676 .thaw = mv_eh_thaw, 677 .hardreset = mv_hardreset, 678 679 .scr_read = mv5_scr_read, 680 .scr_write = mv5_scr_write, 681 682 .port_start = mv_port_start, 683 .port_stop = mv_port_stop, 684 }; 685 686 static struct ata_port_operations mv6_ops = { 687 .inherits = &ata_bmdma_port_ops, 688 689 .lost_interrupt = ATA_OP_NULL, 690 691 .qc_defer = mv_qc_defer, 692 .qc_prep = mv_qc_prep, 693 .qc_issue = mv_qc_issue, 694 695 .dev_config = mv6_dev_config, 696 697 .freeze = mv_eh_freeze, 698 .thaw = mv_eh_thaw, 699 .hardreset = mv_hardreset, 700 .softreset = mv_softreset, 701 .pmp_hardreset = mv_pmp_hardreset, 702 .pmp_softreset = mv_softreset, 703 .error_handler = mv_pmp_error_handler, 704 705 .scr_read = mv_scr_read, 706 .scr_write = mv_scr_write, 707 708 .sff_check_status = mv_sff_check_status, 709 .sff_irq_clear = mv_sff_irq_clear, 710 .check_atapi_dma = mv_check_atapi_dma, 711 .bmdma_setup = mv_bmdma_setup, 712 .bmdma_start = mv_bmdma_start, 713 .bmdma_stop = mv_bmdma_stop, 714 .bmdma_status = mv_bmdma_status, 715 716 .port_start = mv_port_start, 717 .port_stop = mv_port_stop, 718 }; 719 720 static struct ata_port_operations mv_iie_ops = { 721 .inherits = &mv6_ops, 722 .dev_config = ATA_OP_NULL, 723 .qc_prep = mv_qc_prep_iie, 724 }; 725 726 static const struct ata_port_info mv_port_info[] = { 727 { /* chip_504x */ 728 .flags = MV_GEN_I_FLAGS, 729 .pio_mask = ATA_PIO4, 730 .udma_mask = ATA_UDMA6, 731 .port_ops = &mv5_ops, 732 }, 733 { /* chip_508x */ 734 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 735 .pio_mask = ATA_PIO4, 736 .udma_mask = ATA_UDMA6, 737 .port_ops = &mv5_ops, 738 }, 739 { /* chip_5080 */ 740 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 741 .pio_mask = ATA_PIO4, 742 .udma_mask = ATA_UDMA6, 743 .port_ops = &mv5_ops, 744 }, 745 { /* chip_604x */ 746 .flags = MV_GEN_II_FLAGS, 747 .pio_mask = ATA_PIO4, 748 .udma_mask = ATA_UDMA6, 749 .port_ops = &mv6_ops, 750 }, 751 { /* chip_608x */ 752 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 753 .pio_mask = ATA_PIO4, 754 .udma_mask = ATA_UDMA6, 755 .port_ops = &mv6_ops, 756 }, 757 { /* chip_6042 */ 758 .flags = MV_GEN_IIE_FLAGS, 759 .pio_mask = ATA_PIO4, 760 .udma_mask = ATA_UDMA6, 761 .port_ops = &mv_iie_ops, 762 }, 763 { /* chip_7042 */ 764 .flags = MV_GEN_IIE_FLAGS, 765 .pio_mask = ATA_PIO4, 766 .udma_mask = ATA_UDMA6, 767 .port_ops = &mv_iie_ops, 768 }, 769 { /* chip_soc */ 770 .flags = MV_GEN_IIE_FLAGS, 771 .pio_mask = ATA_PIO4, 772 .udma_mask = ATA_UDMA6, 773 .port_ops = &mv_iie_ops, 774 }, 775 }; 776 777 static const struct pci_device_id mv_pci_tbl[] = { 778 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 779 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 780 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 781 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 782 /* RocketRAID 1720/174x have different identifiers */ 783 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 784 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 785 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 786 787 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 788 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 789 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 790 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 791 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 792 793 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 794 795 /* Adaptec 1430SA */ 796 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 797 798 /* Marvell 7042 support */ 799 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 800 801 /* Highpoint RocketRAID PCIe series */ 802 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 803 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 804 805 { } /* terminate list */ 806 }; 807 808 static const struct mv_hw_ops mv5xxx_ops = { 809 .phy_errata = mv5_phy_errata, 810 .enable_leds = mv5_enable_leds, 811 .read_preamp = mv5_read_preamp, 812 .reset_hc = mv5_reset_hc, 813 .reset_flash = mv5_reset_flash, 814 .reset_bus = mv5_reset_bus, 815 }; 816 817 static const struct mv_hw_ops mv6xxx_ops = { 818 .phy_errata = mv6_phy_errata, 819 .enable_leds = mv6_enable_leds, 820 .read_preamp = mv6_read_preamp, 821 .reset_hc = mv6_reset_hc, 822 .reset_flash = mv6_reset_flash, 823 .reset_bus = mv_reset_pci_bus, 824 }; 825 826 static const struct mv_hw_ops mv_soc_ops = { 827 .phy_errata = mv6_phy_errata, 828 .enable_leds = mv_soc_enable_leds, 829 .read_preamp = mv_soc_read_preamp, 830 .reset_hc = mv_soc_reset_hc, 831 .reset_flash = mv_soc_reset_flash, 832 .reset_bus = mv_soc_reset_bus, 833 }; 834 835 static const struct mv_hw_ops mv_soc_65n_ops = { 836 .phy_errata = mv_soc_65n_phy_errata, 837 .enable_leds = mv_soc_enable_leds, 838 .reset_hc = mv_soc_reset_hc, 839 .reset_flash = mv_soc_reset_flash, 840 .reset_bus = mv_soc_reset_bus, 841 }; 842 843 /* 844 * Functions 845 */ 846 847 static inline void writelfl(unsigned long data, void __iomem *addr) 848 { 849 writel(data, addr); 850 (void) readl(addr); /* flush to avoid PCI posted write */ 851 } 852 853 static inline unsigned int mv_hc_from_port(unsigned int port) 854 { 855 return port >> MV_PORT_HC_SHIFT; 856 } 857 858 static inline unsigned int mv_hardport_from_port(unsigned int port) 859 { 860 return port & MV_PORT_MASK; 861 } 862 863 /* 864 * Consolidate some rather tricky bit shift calculations. 865 * This is hot-path stuff, so not a function. 866 * Simple code, with two return values, so macro rather than inline. 867 * 868 * port is the sole input, in range 0..7. 869 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 870 * hardport is the other output, in range 0..3. 871 * 872 * Note that port and hardport may be the same variable in some cases. 873 */ 874 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 875 { \ 876 shift = mv_hc_from_port(port) * HC_SHIFT; \ 877 hardport = mv_hardport_from_port(port); \ 878 shift += hardport * 2; \ 879 } 880 881 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 882 { 883 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 884 } 885 886 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 887 unsigned int port) 888 { 889 return mv_hc_base(base, mv_hc_from_port(port)); 890 } 891 892 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 893 { 894 return mv_hc_base_from_port(base, port) + 895 MV_SATAHC_ARBTR_REG_SZ + 896 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 897 } 898 899 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 900 { 901 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 902 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 903 904 return hc_mmio + ofs; 905 } 906 907 static inline void __iomem *mv_host_base(struct ata_host *host) 908 { 909 struct mv_host_priv *hpriv = host->private_data; 910 return hpriv->base; 911 } 912 913 static inline void __iomem *mv_ap_base(struct ata_port *ap) 914 { 915 return mv_port_base(mv_host_base(ap->host), ap->port_no); 916 } 917 918 static inline int mv_get_hc_count(unsigned long port_flags) 919 { 920 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 921 } 922 923 /** 924 * mv_save_cached_regs - (re-)initialize cached port registers 925 * @ap: the port whose registers we are caching 926 * 927 * Initialize the local cache of port registers, 928 * so that reading them over and over again can 929 * be avoided on the hotter paths of this driver. 930 * This saves a few microseconds each time we switch 931 * to/from EDMA mode to perform (eg.) a drive cache flush. 932 */ 933 static void mv_save_cached_regs(struct ata_port *ap) 934 { 935 void __iomem *port_mmio = mv_ap_base(ap); 936 struct mv_port_priv *pp = ap->private_data; 937 938 pp->cached.fiscfg = readl(port_mmio + FISCFG); 939 pp->cached.ltmode = readl(port_mmio + LTMODE); 940 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 941 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 942 } 943 944 /** 945 * mv_write_cached_reg - write to a cached port register 946 * @addr: hardware address of the register 947 * @old: pointer to cached value of the register 948 * @new: new value for the register 949 * 950 * Write a new value to a cached register, 951 * but only if the value is different from before. 952 */ 953 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 954 { 955 if (new != *old) { 956 unsigned long laddr; 957 *old = new; 958 /* 959 * Workaround for 88SX60x1-B2 FEr SATA#13: 960 * Read-after-write is needed to prevent generating 64-bit 961 * write cycles on the PCI bus for SATA interface registers 962 * at offsets ending in 0x4 or 0xc. 963 * 964 * Looks like a lot of fuss, but it avoids an unnecessary 965 * +1 usec read-after-write delay for unaffected registers. 966 */ 967 laddr = (long)addr & 0xffff; 968 if (laddr >= 0x300 && laddr <= 0x33c) { 969 laddr &= 0x000f; 970 if (laddr == 0x4 || laddr == 0xc) { 971 writelfl(new, addr); /* read after write */ 972 return; 973 } 974 } 975 writel(new, addr); /* unaffected by the errata */ 976 } 977 } 978 979 static void mv_set_edma_ptrs(void __iomem *port_mmio, 980 struct mv_host_priv *hpriv, 981 struct mv_port_priv *pp) 982 { 983 u32 index; 984 985 /* 986 * initialize request queue 987 */ 988 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 989 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 990 991 WARN_ON(pp->crqb_dma & 0x3ff); 992 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 993 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 994 port_mmio + EDMA_REQ_Q_IN_PTR); 995 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 996 997 /* 998 * initialize response queue 999 */ 1000 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1001 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 1002 1003 WARN_ON(pp->crpb_dma & 0xff); 1004 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 1005 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 1006 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 1007 port_mmio + EDMA_RSP_Q_OUT_PTR); 1008 } 1009 1010 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 1011 { 1012 /* 1013 * When writing to the main_irq_mask in hardware, 1014 * we must ensure exclusivity between the interrupt coalescing bits 1015 * and the corresponding individual port DONE_IRQ bits. 1016 * 1017 * Note that this register is really an "IRQ enable" register, 1018 * not an "IRQ mask" register as Marvell's naming might suggest. 1019 */ 1020 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1021 mask &= ~DONE_IRQ_0_3; 1022 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1023 mask &= ~DONE_IRQ_4_7; 1024 writelfl(mask, hpriv->main_irq_mask_addr); 1025 } 1026 1027 static void mv_set_main_irq_mask(struct ata_host *host, 1028 u32 disable_bits, u32 enable_bits) 1029 { 1030 struct mv_host_priv *hpriv = host->private_data; 1031 u32 old_mask, new_mask; 1032 1033 old_mask = hpriv->main_irq_mask; 1034 new_mask = (old_mask & ~disable_bits) | enable_bits; 1035 if (new_mask != old_mask) { 1036 hpriv->main_irq_mask = new_mask; 1037 mv_write_main_irq_mask(new_mask, hpriv); 1038 } 1039 } 1040 1041 static void mv_enable_port_irqs(struct ata_port *ap, 1042 unsigned int port_bits) 1043 { 1044 unsigned int shift, hardport, port = ap->port_no; 1045 u32 disable_bits, enable_bits; 1046 1047 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1048 1049 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1050 enable_bits = port_bits << shift; 1051 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1052 } 1053 1054 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1055 void __iomem *port_mmio, 1056 unsigned int port_irqs) 1057 { 1058 struct mv_host_priv *hpriv = ap->host->private_data; 1059 int hardport = mv_hardport_from_port(ap->port_no); 1060 void __iomem *hc_mmio = mv_hc_base_from_port( 1061 mv_host_base(ap->host), ap->port_no); 1062 u32 hc_irq_cause; 1063 1064 /* clear EDMA event indicators, if any */ 1065 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1066 1067 /* clear pending irq events */ 1068 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1069 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1070 1071 /* clear FIS IRQ Cause */ 1072 if (IS_GEN_IIE(hpriv)) 1073 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1074 1075 mv_enable_port_irqs(ap, port_irqs); 1076 } 1077 1078 static void mv_set_irq_coalescing(struct ata_host *host, 1079 unsigned int count, unsigned int usecs) 1080 { 1081 struct mv_host_priv *hpriv = host->private_data; 1082 void __iomem *mmio = hpriv->base, *hc_mmio; 1083 u32 coal_enable = 0; 1084 unsigned long flags; 1085 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1086 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1087 ALL_PORTS_COAL_DONE; 1088 1089 /* Disable IRQ coalescing if either threshold is zero */ 1090 if (!usecs || !count) { 1091 clks = count = 0; 1092 } else { 1093 /* Respect maximum limits of the hardware */ 1094 clks = usecs * COAL_CLOCKS_PER_USEC; 1095 if (clks > MAX_COAL_TIME_THRESHOLD) 1096 clks = MAX_COAL_TIME_THRESHOLD; 1097 if (count > MAX_COAL_IO_COUNT) 1098 count = MAX_COAL_IO_COUNT; 1099 } 1100 1101 spin_lock_irqsave(&host->lock, flags); 1102 mv_set_main_irq_mask(host, coal_disable, 0); 1103 1104 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1105 /* 1106 * GEN_II/GEN_IIE with dual host controllers: 1107 * one set of global thresholds for the entire chip. 1108 */ 1109 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1110 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1111 /* clear leftover coal IRQ bit */ 1112 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1113 if (count) 1114 coal_enable = ALL_PORTS_COAL_DONE; 1115 clks = count = 0; /* force clearing of regular regs below */ 1116 } 1117 1118 /* 1119 * All chips: independent thresholds for each HC on the chip. 1120 */ 1121 hc_mmio = mv_hc_base_from_port(mmio, 0); 1122 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1123 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1124 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1125 if (count) 1126 coal_enable |= PORTS_0_3_COAL_DONE; 1127 if (is_dual_hc) { 1128 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1129 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1130 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1131 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1132 if (count) 1133 coal_enable |= PORTS_4_7_COAL_DONE; 1134 } 1135 1136 mv_set_main_irq_mask(host, 0, coal_enable); 1137 spin_unlock_irqrestore(&host->lock, flags); 1138 } 1139 1140 /** 1141 * mv_start_edma - Enable eDMA engine 1142 * @base: port base address 1143 * @pp: port private data 1144 * 1145 * Verify the local cache of the eDMA state is accurate with a 1146 * WARN_ON. 1147 * 1148 * LOCKING: 1149 * Inherited from caller. 1150 */ 1151 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1152 struct mv_port_priv *pp, u8 protocol) 1153 { 1154 int want_ncq = (protocol == ATA_PROT_NCQ); 1155 1156 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1157 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1158 if (want_ncq != using_ncq) 1159 mv_stop_edma(ap); 1160 } 1161 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1162 struct mv_host_priv *hpriv = ap->host->private_data; 1163 1164 mv_edma_cfg(ap, want_ncq, 1); 1165 1166 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1167 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1168 1169 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1170 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1171 } 1172 } 1173 1174 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1175 { 1176 void __iomem *port_mmio = mv_ap_base(ap); 1177 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1178 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1179 int i; 1180 1181 /* 1182 * Wait for the EDMA engine to finish transactions in progress. 1183 * No idea what a good "timeout" value might be, but measurements 1184 * indicate that it often requires hundreds of microseconds 1185 * with two drives in-use. So we use the 15msec value above 1186 * as a rough guess at what even more drives might require. 1187 */ 1188 for (i = 0; i < timeout; ++i) { 1189 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1190 if ((edma_stat & empty_idle) == empty_idle) 1191 break; 1192 udelay(per_loop); 1193 } 1194 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */ 1195 } 1196 1197 /** 1198 * mv_stop_edma_engine - Disable eDMA engine 1199 * @port_mmio: io base address 1200 * 1201 * LOCKING: 1202 * Inherited from caller. 1203 */ 1204 static int mv_stop_edma_engine(void __iomem *port_mmio) 1205 { 1206 int i; 1207 1208 /* Disable eDMA. The disable bit auto clears. */ 1209 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1210 1211 /* Wait for the chip to confirm eDMA is off. */ 1212 for (i = 10000; i > 0; i--) { 1213 u32 reg = readl(port_mmio + EDMA_CMD); 1214 if (!(reg & EDMA_EN)) 1215 return 0; 1216 udelay(10); 1217 } 1218 return -EIO; 1219 } 1220 1221 static int mv_stop_edma(struct ata_port *ap) 1222 { 1223 void __iomem *port_mmio = mv_ap_base(ap); 1224 struct mv_port_priv *pp = ap->private_data; 1225 int err = 0; 1226 1227 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1228 return 0; 1229 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1230 mv_wait_for_edma_empty_idle(ap); 1231 if (mv_stop_edma_engine(port_mmio)) { 1232 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n"); 1233 err = -EIO; 1234 } 1235 mv_edma_cfg(ap, 0, 0); 1236 return err; 1237 } 1238 1239 #ifdef ATA_DEBUG 1240 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1241 { 1242 int b, w; 1243 for (b = 0; b < bytes; ) { 1244 DPRINTK("%p: ", start + b); 1245 for (w = 0; b < bytes && w < 4; w++) { 1246 printk("%08x ", readl(start + b)); 1247 b += sizeof(u32); 1248 } 1249 printk("\n"); 1250 } 1251 } 1252 #endif 1253 1254 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1255 { 1256 #ifdef ATA_DEBUG 1257 int b, w; 1258 u32 dw; 1259 for (b = 0; b < bytes; ) { 1260 DPRINTK("%02x: ", b); 1261 for (w = 0; b < bytes && w < 4; w++) { 1262 (void) pci_read_config_dword(pdev, b, &dw); 1263 printk("%08x ", dw); 1264 b += sizeof(u32); 1265 } 1266 printk("\n"); 1267 } 1268 #endif 1269 } 1270 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1271 struct pci_dev *pdev) 1272 { 1273 #ifdef ATA_DEBUG 1274 void __iomem *hc_base = mv_hc_base(mmio_base, 1275 port >> MV_PORT_HC_SHIFT); 1276 void __iomem *port_base; 1277 int start_port, num_ports, p, start_hc, num_hcs, hc; 1278 1279 if (0 > port) { 1280 start_hc = start_port = 0; 1281 num_ports = 8; /* shld be benign for 4 port devs */ 1282 num_hcs = 2; 1283 } else { 1284 start_hc = port >> MV_PORT_HC_SHIFT; 1285 start_port = port; 1286 num_ports = num_hcs = 1; 1287 } 1288 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1289 num_ports > 1 ? num_ports - 1 : start_port); 1290 1291 if (NULL != pdev) { 1292 DPRINTK("PCI config space regs:\n"); 1293 mv_dump_pci_cfg(pdev, 0x68); 1294 } 1295 DPRINTK("PCI regs:\n"); 1296 mv_dump_mem(mmio_base+0xc00, 0x3c); 1297 mv_dump_mem(mmio_base+0xd00, 0x34); 1298 mv_dump_mem(mmio_base+0xf00, 0x4); 1299 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1300 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1301 hc_base = mv_hc_base(mmio_base, hc); 1302 DPRINTK("HC regs (HC %i):\n", hc); 1303 mv_dump_mem(hc_base, 0x1c); 1304 } 1305 for (p = start_port; p < start_port + num_ports; p++) { 1306 port_base = mv_port_base(mmio_base, p); 1307 DPRINTK("EDMA regs (port %i):\n", p); 1308 mv_dump_mem(port_base, 0x54); 1309 DPRINTK("SATA regs (port %i):\n", p); 1310 mv_dump_mem(port_base+0x300, 0x60); 1311 } 1312 #endif 1313 } 1314 1315 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1316 { 1317 unsigned int ofs; 1318 1319 switch (sc_reg_in) { 1320 case SCR_STATUS: 1321 case SCR_CONTROL: 1322 case SCR_ERROR: 1323 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1324 break; 1325 case SCR_ACTIVE: 1326 ofs = SATA_ACTIVE; /* active is not with the others */ 1327 break; 1328 default: 1329 ofs = 0xffffffffU; 1330 break; 1331 } 1332 return ofs; 1333 } 1334 1335 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1336 { 1337 unsigned int ofs = mv_scr_offset(sc_reg_in); 1338 1339 if (ofs != 0xffffffffU) { 1340 *val = readl(mv_ap_base(link->ap) + ofs); 1341 return 0; 1342 } else 1343 return -EINVAL; 1344 } 1345 1346 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1347 { 1348 unsigned int ofs = mv_scr_offset(sc_reg_in); 1349 1350 if (ofs != 0xffffffffU) { 1351 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1352 if (sc_reg_in == SCR_CONTROL) { 1353 /* 1354 * Workaround for 88SX60x1 FEr SATA#26: 1355 * 1356 * COMRESETs have to take care not to accidently 1357 * put the drive to sleep when writing SCR_CONTROL. 1358 * Setting bits 12..15 prevents this problem. 1359 * 1360 * So if we see an outbound COMMRESET, set those bits. 1361 * Ditto for the followup write that clears the reset. 1362 * 1363 * The proprietary driver does this for 1364 * all chip versions, and so do we. 1365 */ 1366 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1367 val |= 0xf000; 1368 } 1369 writelfl(val, addr); 1370 return 0; 1371 } else 1372 return -EINVAL; 1373 } 1374 1375 static void mv6_dev_config(struct ata_device *adev) 1376 { 1377 /* 1378 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1379 * 1380 * Gen-II does not support NCQ over a port multiplier 1381 * (no FIS-based switching). 1382 */ 1383 if (adev->flags & ATA_DFLAG_NCQ) { 1384 if (sata_pmp_attached(adev->link->ap)) { 1385 adev->flags &= ~ATA_DFLAG_NCQ; 1386 ata_dev_printk(adev, KERN_INFO, 1387 "NCQ disabled for command-based switching\n"); 1388 } 1389 } 1390 } 1391 1392 static int mv_qc_defer(struct ata_queued_cmd *qc) 1393 { 1394 struct ata_link *link = qc->dev->link; 1395 struct ata_port *ap = link->ap; 1396 struct mv_port_priv *pp = ap->private_data; 1397 1398 /* 1399 * Don't allow new commands if we're in a delayed EH state 1400 * for NCQ and/or FIS-based switching. 1401 */ 1402 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1403 return ATA_DEFER_PORT; 1404 1405 /* PIO commands need exclusive link: no other commands [DMA or PIO] 1406 * can run concurrently. 1407 * set excl_link when we want to send a PIO command in DMA mode 1408 * or a non-NCQ command in NCQ mode. 1409 * When we receive a command from that link, and there are no 1410 * outstanding commands, mark a flag to clear excl_link and let 1411 * the command go through. 1412 */ 1413 if (unlikely(ap->excl_link)) { 1414 if (link == ap->excl_link) { 1415 if (ap->nr_active_links) 1416 return ATA_DEFER_PORT; 1417 qc->flags |= ATA_QCFLAG_CLEAR_EXCL; 1418 return 0; 1419 } else 1420 return ATA_DEFER_PORT; 1421 } 1422 1423 /* 1424 * If the port is completely idle, then allow the new qc. 1425 */ 1426 if (ap->nr_active_links == 0) 1427 return 0; 1428 1429 /* 1430 * The port is operating in host queuing mode (EDMA) with NCQ 1431 * enabled, allow multiple NCQ commands. EDMA also allows 1432 * queueing multiple DMA commands but libata core currently 1433 * doesn't allow it. 1434 */ 1435 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1436 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { 1437 if (ata_is_ncq(qc->tf.protocol)) 1438 return 0; 1439 else { 1440 ap->excl_link = link; 1441 return ATA_DEFER_PORT; 1442 } 1443 } 1444 1445 return ATA_DEFER_PORT; 1446 } 1447 1448 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1449 { 1450 struct mv_port_priv *pp = ap->private_data; 1451 void __iomem *port_mmio; 1452 1453 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1454 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1455 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1456 1457 ltmode = *old_ltmode & ~LTMODE_BIT8; 1458 haltcond = *old_haltcond | EDMA_ERR_DEV; 1459 1460 if (want_fbs) { 1461 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1462 ltmode = *old_ltmode | LTMODE_BIT8; 1463 if (want_ncq) 1464 haltcond &= ~EDMA_ERR_DEV; 1465 else 1466 fiscfg |= FISCFG_WAIT_DEV_ERR; 1467 } else { 1468 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1469 } 1470 1471 port_mmio = mv_ap_base(ap); 1472 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1473 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1474 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1475 } 1476 1477 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1478 { 1479 struct mv_host_priv *hpriv = ap->host->private_data; 1480 u32 old, new; 1481 1482 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1483 old = readl(hpriv->base + GPIO_PORT_CTL); 1484 if (want_ncq) 1485 new = old | (1 << 22); 1486 else 1487 new = old & ~(1 << 22); 1488 if (new != old) 1489 writel(new, hpriv->base + GPIO_PORT_CTL); 1490 } 1491 1492 /** 1493 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1494 * @ap: Port being initialized 1495 * 1496 * There are two DMA modes on these chips: basic DMA, and EDMA. 1497 * 1498 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1499 * of basic DMA on the GEN_IIE versions of the chips. 1500 * 1501 * This bit survives EDMA resets, and must be set for basic DMA 1502 * to function, and should be cleared when EDMA is active. 1503 */ 1504 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1505 { 1506 struct mv_port_priv *pp = ap->private_data; 1507 u32 new, *old = &pp->cached.unknown_rsvd; 1508 1509 if (enable_bmdma) 1510 new = *old | 1; 1511 else 1512 new = *old & ~1; 1513 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1514 } 1515 1516 /* 1517 * SOC chips have an issue whereby the HDD LEDs don't always blink 1518 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1519 * of the SOC takes care of it, generating a steady blink rate when 1520 * any drive on the chip is active. 1521 * 1522 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1523 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1524 * 1525 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1526 * LED operation works then, and provides better (more accurate) feedback. 1527 * 1528 * Note that this code assumes that an SOC never has more than one HC onboard. 1529 */ 1530 static void mv_soc_led_blink_enable(struct ata_port *ap) 1531 { 1532 struct ata_host *host = ap->host; 1533 struct mv_host_priv *hpriv = host->private_data; 1534 void __iomem *hc_mmio; 1535 u32 led_ctrl; 1536 1537 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1538 return; 1539 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1540 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1541 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1542 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1543 } 1544 1545 static void mv_soc_led_blink_disable(struct ata_port *ap) 1546 { 1547 struct ata_host *host = ap->host; 1548 struct mv_host_priv *hpriv = host->private_data; 1549 void __iomem *hc_mmio; 1550 u32 led_ctrl; 1551 unsigned int port; 1552 1553 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1554 return; 1555 1556 /* disable led-blink only if no ports are using NCQ */ 1557 for (port = 0; port < hpriv->n_ports; port++) { 1558 struct ata_port *this_ap = host->ports[port]; 1559 struct mv_port_priv *pp = this_ap->private_data; 1560 1561 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1562 return; 1563 } 1564 1565 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1566 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1567 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1568 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1569 } 1570 1571 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1572 { 1573 u32 cfg; 1574 struct mv_port_priv *pp = ap->private_data; 1575 struct mv_host_priv *hpriv = ap->host->private_data; 1576 void __iomem *port_mmio = mv_ap_base(ap); 1577 1578 /* set up non-NCQ EDMA configuration */ 1579 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1580 pp->pp_flags &= 1581 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1582 1583 if (IS_GEN_I(hpriv)) 1584 cfg |= (1 << 8); /* enab config burst size mask */ 1585 1586 else if (IS_GEN_II(hpriv)) { 1587 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1588 mv_60x1_errata_sata25(ap, want_ncq); 1589 1590 } else if (IS_GEN_IIE(hpriv)) { 1591 int want_fbs = sata_pmp_attached(ap); 1592 /* 1593 * Possible future enhancement: 1594 * 1595 * The chip can use FBS with non-NCQ, if we allow it, 1596 * But first we need to have the error handling in place 1597 * for this mode (datasheet section 7.3.15.4.2.3). 1598 * So disallow non-NCQ FBS for now. 1599 */ 1600 want_fbs &= want_ncq; 1601 1602 mv_config_fbs(ap, want_ncq, want_fbs); 1603 1604 if (want_fbs) { 1605 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1606 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1607 } 1608 1609 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1610 if (want_edma) { 1611 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1612 if (!IS_SOC(hpriv)) 1613 cfg |= (1 << 18); /* enab early completion */ 1614 } 1615 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1616 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1617 mv_bmdma_enable_iie(ap, !want_edma); 1618 1619 if (IS_SOC(hpriv)) { 1620 if (want_ncq) 1621 mv_soc_led_blink_enable(ap); 1622 else 1623 mv_soc_led_blink_disable(ap); 1624 } 1625 } 1626 1627 if (want_ncq) { 1628 cfg |= EDMA_CFG_NCQ; 1629 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1630 } 1631 1632 writelfl(cfg, port_mmio + EDMA_CFG); 1633 } 1634 1635 static void mv_port_free_dma_mem(struct ata_port *ap) 1636 { 1637 struct mv_host_priv *hpriv = ap->host->private_data; 1638 struct mv_port_priv *pp = ap->private_data; 1639 int tag; 1640 1641 if (pp->crqb) { 1642 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1643 pp->crqb = NULL; 1644 } 1645 if (pp->crpb) { 1646 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1647 pp->crpb = NULL; 1648 } 1649 /* 1650 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1651 * For later hardware, we have one unique sg_tbl per NCQ tag. 1652 */ 1653 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1654 if (pp->sg_tbl[tag]) { 1655 if (tag == 0 || !IS_GEN_I(hpriv)) 1656 dma_pool_free(hpriv->sg_tbl_pool, 1657 pp->sg_tbl[tag], 1658 pp->sg_tbl_dma[tag]); 1659 pp->sg_tbl[tag] = NULL; 1660 } 1661 } 1662 } 1663 1664 /** 1665 * mv_port_start - Port specific init/start routine. 1666 * @ap: ATA channel to manipulate 1667 * 1668 * Allocate and point to DMA memory, init port private memory, 1669 * zero indices. 1670 * 1671 * LOCKING: 1672 * Inherited from caller. 1673 */ 1674 static int mv_port_start(struct ata_port *ap) 1675 { 1676 struct device *dev = ap->host->dev; 1677 struct mv_host_priv *hpriv = ap->host->private_data; 1678 struct mv_port_priv *pp; 1679 unsigned long flags; 1680 int tag; 1681 1682 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1683 if (!pp) 1684 return -ENOMEM; 1685 ap->private_data = pp; 1686 1687 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1688 if (!pp->crqb) 1689 return -ENOMEM; 1690 memset(pp->crqb, 0, MV_CRQB_Q_SZ); 1691 1692 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1693 if (!pp->crpb) 1694 goto out_port_free_dma_mem; 1695 memset(pp->crpb, 0, MV_CRPB_Q_SZ); 1696 1697 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1698 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1699 ap->flags |= ATA_FLAG_AN; 1700 /* 1701 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1702 * For later hardware, we need one unique sg_tbl per NCQ tag. 1703 */ 1704 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1705 if (tag == 0 || !IS_GEN_I(hpriv)) { 1706 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1707 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1708 if (!pp->sg_tbl[tag]) 1709 goto out_port_free_dma_mem; 1710 } else { 1711 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1712 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1713 } 1714 } 1715 1716 spin_lock_irqsave(ap->lock, flags); 1717 mv_save_cached_regs(ap); 1718 mv_edma_cfg(ap, 0, 0); 1719 spin_unlock_irqrestore(ap->lock, flags); 1720 1721 return 0; 1722 1723 out_port_free_dma_mem: 1724 mv_port_free_dma_mem(ap); 1725 return -ENOMEM; 1726 } 1727 1728 /** 1729 * mv_port_stop - Port specific cleanup/stop routine. 1730 * @ap: ATA channel to manipulate 1731 * 1732 * Stop DMA, cleanup port memory. 1733 * 1734 * LOCKING: 1735 * This routine uses the host lock to protect the DMA stop. 1736 */ 1737 static void mv_port_stop(struct ata_port *ap) 1738 { 1739 unsigned long flags; 1740 1741 spin_lock_irqsave(ap->lock, flags); 1742 mv_stop_edma(ap); 1743 mv_enable_port_irqs(ap, 0); 1744 spin_unlock_irqrestore(ap->lock, flags); 1745 mv_port_free_dma_mem(ap); 1746 } 1747 1748 /** 1749 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1750 * @qc: queued command whose SG list to source from 1751 * 1752 * Populate the SG list and mark the last entry. 1753 * 1754 * LOCKING: 1755 * Inherited from caller. 1756 */ 1757 static void mv_fill_sg(struct ata_queued_cmd *qc) 1758 { 1759 struct mv_port_priv *pp = qc->ap->private_data; 1760 struct scatterlist *sg; 1761 struct mv_sg *mv_sg, *last_sg = NULL; 1762 unsigned int si; 1763 1764 mv_sg = pp->sg_tbl[qc->tag]; 1765 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1766 dma_addr_t addr = sg_dma_address(sg); 1767 u32 sg_len = sg_dma_len(sg); 1768 1769 while (sg_len) { 1770 u32 offset = addr & 0xffff; 1771 u32 len = sg_len; 1772 1773 if (offset + len > 0x10000) 1774 len = 0x10000 - offset; 1775 1776 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1777 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1778 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1779 mv_sg->reserved = 0; 1780 1781 sg_len -= len; 1782 addr += len; 1783 1784 last_sg = mv_sg; 1785 mv_sg++; 1786 } 1787 } 1788 1789 if (likely(last_sg)) 1790 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1791 mb(); /* ensure data structure is visible to the chipset */ 1792 } 1793 1794 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1795 { 1796 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1797 (last ? CRQB_CMD_LAST : 0); 1798 *cmdw = cpu_to_le16(tmp); 1799 } 1800 1801 /** 1802 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1803 * @ap: Port associated with this ATA transaction. 1804 * 1805 * We need this only for ATAPI bmdma transactions, 1806 * as otherwise we experience spurious interrupts 1807 * after libata-sff handles the bmdma interrupts. 1808 */ 1809 static void mv_sff_irq_clear(struct ata_port *ap) 1810 { 1811 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1812 } 1813 1814 /** 1815 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1816 * @qc: queued command to check for chipset/DMA compatibility. 1817 * 1818 * The bmdma engines cannot handle speculative data sizes 1819 * (bytecount under/over flow). So only allow DMA for 1820 * data transfer commands with known data sizes. 1821 * 1822 * LOCKING: 1823 * Inherited from caller. 1824 */ 1825 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1826 { 1827 struct scsi_cmnd *scmd = qc->scsicmd; 1828 1829 if (scmd) { 1830 switch (scmd->cmnd[0]) { 1831 case READ_6: 1832 case READ_10: 1833 case READ_12: 1834 case WRITE_6: 1835 case WRITE_10: 1836 case WRITE_12: 1837 case GPCMD_READ_CD: 1838 case GPCMD_SEND_DVD_STRUCTURE: 1839 case GPCMD_SEND_CUE_SHEET: 1840 return 0; /* DMA is safe */ 1841 } 1842 } 1843 return -EOPNOTSUPP; /* use PIO instead */ 1844 } 1845 1846 /** 1847 * mv_bmdma_setup - Set up BMDMA transaction 1848 * @qc: queued command to prepare DMA for. 1849 * 1850 * LOCKING: 1851 * Inherited from caller. 1852 */ 1853 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1854 { 1855 struct ata_port *ap = qc->ap; 1856 void __iomem *port_mmio = mv_ap_base(ap); 1857 struct mv_port_priv *pp = ap->private_data; 1858 1859 mv_fill_sg(qc); 1860 1861 /* clear all DMA cmd bits */ 1862 writel(0, port_mmio + BMDMA_CMD); 1863 1864 /* load PRD table addr. */ 1865 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, 1866 port_mmio + BMDMA_PRD_HIGH); 1867 writelfl(pp->sg_tbl_dma[qc->tag], 1868 port_mmio + BMDMA_PRD_LOW); 1869 1870 /* issue r/w command */ 1871 ap->ops->sff_exec_command(ap, &qc->tf); 1872 } 1873 1874 /** 1875 * mv_bmdma_start - Start a BMDMA transaction 1876 * @qc: queued command to start DMA on. 1877 * 1878 * LOCKING: 1879 * Inherited from caller. 1880 */ 1881 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1882 { 1883 struct ata_port *ap = qc->ap; 1884 void __iomem *port_mmio = mv_ap_base(ap); 1885 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1886 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1887 1888 /* start host DMA transaction */ 1889 writelfl(cmd, port_mmio + BMDMA_CMD); 1890 } 1891 1892 /** 1893 * mv_bmdma_stop - Stop BMDMA transfer 1894 * @qc: queued command to stop DMA on. 1895 * 1896 * Clears the ATA_DMA_START flag in the bmdma control register 1897 * 1898 * LOCKING: 1899 * Inherited from caller. 1900 */ 1901 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1902 { 1903 struct ata_port *ap = qc->ap; 1904 void __iomem *port_mmio = mv_ap_base(ap); 1905 u32 cmd; 1906 1907 /* clear start/stop bit */ 1908 cmd = readl(port_mmio + BMDMA_CMD); 1909 cmd &= ~ATA_DMA_START; 1910 writelfl(cmd, port_mmio + BMDMA_CMD); 1911 1912 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1913 ata_sff_dma_pause(ap); 1914 } 1915 1916 /** 1917 * mv_bmdma_status - Read BMDMA status 1918 * @ap: port for which to retrieve DMA status. 1919 * 1920 * Read and return equivalent of the sff BMDMA status register. 1921 * 1922 * LOCKING: 1923 * Inherited from caller. 1924 */ 1925 static u8 mv_bmdma_status(struct ata_port *ap) 1926 { 1927 void __iomem *port_mmio = mv_ap_base(ap); 1928 u32 reg, status; 1929 1930 /* 1931 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1932 * and the ATA_DMA_INTR bit doesn't exist. 1933 */ 1934 reg = readl(port_mmio + BMDMA_STATUS); 1935 if (reg & ATA_DMA_ACTIVE) 1936 status = ATA_DMA_ACTIVE; 1937 else 1938 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1939 return status; 1940 } 1941 1942 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 1943 { 1944 struct ata_taskfile *tf = &qc->tf; 1945 /* 1946 * Workaround for 88SX60x1 FEr SATA#24. 1947 * 1948 * Chip may corrupt WRITEs if multi_count >= 4kB. 1949 * Note that READs are unaffected. 1950 * 1951 * It's not clear if this errata really means "4K bytes", 1952 * or if it always happens for multi_count > 7 1953 * regardless of device sector_size. 1954 * 1955 * So, for safety, any write with multi_count > 7 1956 * gets converted here into a regular PIO write instead: 1957 */ 1958 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 1959 if (qc->dev->multi_count > 7) { 1960 switch (tf->command) { 1961 case ATA_CMD_WRITE_MULTI: 1962 tf->command = ATA_CMD_PIO_WRITE; 1963 break; 1964 case ATA_CMD_WRITE_MULTI_FUA_EXT: 1965 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 1966 /* fall through */ 1967 case ATA_CMD_WRITE_MULTI_EXT: 1968 tf->command = ATA_CMD_PIO_WRITE_EXT; 1969 break; 1970 } 1971 } 1972 } 1973 } 1974 1975 /** 1976 * mv_qc_prep - Host specific command preparation. 1977 * @qc: queued command to prepare 1978 * 1979 * This routine simply redirects to the general purpose routine 1980 * if command is not DMA. Else, it handles prep of the CRQB 1981 * (command request block), does some sanity checking, and calls 1982 * the SG load routine. 1983 * 1984 * LOCKING: 1985 * Inherited from caller. 1986 */ 1987 static void mv_qc_prep(struct ata_queued_cmd *qc) 1988 { 1989 struct ata_port *ap = qc->ap; 1990 struct mv_port_priv *pp = ap->private_data; 1991 __le16 *cw; 1992 struct ata_taskfile *tf = &qc->tf; 1993 u16 flags = 0; 1994 unsigned in_index; 1995 1996 switch (tf->protocol) { 1997 case ATA_PROT_DMA: 1998 case ATA_PROT_NCQ: 1999 break; /* continue below */ 2000 case ATA_PROT_PIO: 2001 mv_rw_multi_errata_sata24(qc); 2002 return; 2003 default: 2004 return; 2005 } 2006 2007 /* Fill in command request block 2008 */ 2009 if (!(tf->flags & ATA_TFLAG_WRITE)) 2010 flags |= CRQB_FLAG_READ; 2011 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2012 flags |= qc->tag << CRQB_TAG_SHIFT; 2013 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2014 2015 /* get current queue index from software */ 2016 in_index = pp->req_idx; 2017 2018 pp->crqb[in_index].sg_addr = 2019 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2020 pp->crqb[in_index].sg_addr_hi = 2021 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2022 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 2023 2024 cw = &pp->crqb[in_index].ata_cmd[0]; 2025 2026 /* Sadly, the CRQB cannot accomodate all registers--there are 2027 * only 11 bytes...so we must pick and choose required 2028 * registers based on the command. So, we drop feature and 2029 * hob_feature for [RW] DMA commands, but they are needed for 2030 * NCQ. NCQ will drop hob_nsect, which is not needed there 2031 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 2032 */ 2033 switch (tf->command) { 2034 case ATA_CMD_READ: 2035 case ATA_CMD_READ_EXT: 2036 case ATA_CMD_WRITE: 2037 case ATA_CMD_WRITE_EXT: 2038 case ATA_CMD_WRITE_FUA_EXT: 2039 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 2040 break; 2041 case ATA_CMD_FPDMA_READ: 2042 case ATA_CMD_FPDMA_WRITE: 2043 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2044 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2045 break; 2046 default: 2047 /* The only other commands EDMA supports in non-queued and 2048 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2049 * of which are defined/used by Linux. If we get here, this 2050 * driver needs work. 2051 * 2052 * FIXME: modify libata to give qc_prep a return value and 2053 * return error here. 2054 */ 2055 BUG_ON(tf->command); 2056 break; 2057 } 2058 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2059 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2060 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2061 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2062 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2063 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2064 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2065 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2066 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2067 2068 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2069 return; 2070 mv_fill_sg(qc); 2071 } 2072 2073 /** 2074 * mv_qc_prep_iie - Host specific command preparation. 2075 * @qc: queued command to prepare 2076 * 2077 * This routine simply redirects to the general purpose routine 2078 * if command is not DMA. Else, it handles prep of the CRQB 2079 * (command request block), does some sanity checking, and calls 2080 * the SG load routine. 2081 * 2082 * LOCKING: 2083 * Inherited from caller. 2084 */ 2085 static void mv_qc_prep_iie(struct ata_queued_cmd *qc) 2086 { 2087 struct ata_port *ap = qc->ap; 2088 struct mv_port_priv *pp = ap->private_data; 2089 struct mv_crqb_iie *crqb; 2090 struct ata_taskfile *tf = &qc->tf; 2091 unsigned in_index; 2092 u32 flags = 0; 2093 2094 if ((tf->protocol != ATA_PROT_DMA) && 2095 (tf->protocol != ATA_PROT_NCQ)) 2096 return; 2097 2098 /* Fill in Gen IIE command request block */ 2099 if (!(tf->flags & ATA_TFLAG_WRITE)) 2100 flags |= CRQB_FLAG_READ; 2101 2102 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2103 flags |= qc->tag << CRQB_TAG_SHIFT; 2104 flags |= qc->tag << CRQB_HOSTQ_SHIFT; 2105 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2106 2107 /* get current queue index from software */ 2108 in_index = pp->req_idx; 2109 2110 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2111 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2112 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2113 crqb->flags = cpu_to_le32(flags); 2114 2115 crqb->ata_cmd[0] = cpu_to_le32( 2116 (tf->command << 16) | 2117 (tf->feature << 24) 2118 ); 2119 crqb->ata_cmd[1] = cpu_to_le32( 2120 (tf->lbal << 0) | 2121 (tf->lbam << 8) | 2122 (tf->lbah << 16) | 2123 (tf->device << 24) 2124 ); 2125 crqb->ata_cmd[2] = cpu_to_le32( 2126 (tf->hob_lbal << 0) | 2127 (tf->hob_lbam << 8) | 2128 (tf->hob_lbah << 16) | 2129 (tf->hob_feature << 24) 2130 ); 2131 crqb->ata_cmd[3] = cpu_to_le32( 2132 (tf->nsect << 0) | 2133 (tf->hob_nsect << 8) 2134 ); 2135 2136 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2137 return; 2138 mv_fill_sg(qc); 2139 } 2140 2141 /** 2142 * mv_sff_check_status - fetch device status, if valid 2143 * @ap: ATA port to fetch status from 2144 * 2145 * When using command issue via mv_qc_issue_fis(), 2146 * the initial ATA_BUSY state does not show up in the 2147 * ATA status (shadow) register. This can confuse libata! 2148 * 2149 * So we have a hook here to fake ATA_BUSY for that situation, 2150 * until the first time a BUSY, DRQ, or ERR bit is seen. 2151 * 2152 * The rest of the time, it simply returns the ATA status register. 2153 */ 2154 static u8 mv_sff_check_status(struct ata_port *ap) 2155 { 2156 u8 stat = ioread8(ap->ioaddr.status_addr); 2157 struct mv_port_priv *pp = ap->private_data; 2158 2159 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2160 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2161 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2162 else 2163 stat = ATA_BUSY; 2164 } 2165 return stat; 2166 } 2167 2168 /** 2169 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2170 * @fis: fis to be sent 2171 * @nwords: number of 32-bit words in the fis 2172 */ 2173 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2174 { 2175 void __iomem *port_mmio = mv_ap_base(ap); 2176 u32 ifctl, old_ifctl, ifstat; 2177 int i, timeout = 200, final_word = nwords - 1; 2178 2179 /* Initiate FIS transmission mode */ 2180 old_ifctl = readl(port_mmio + SATA_IFCTL); 2181 ifctl = 0x100 | (old_ifctl & 0xf); 2182 writelfl(ifctl, port_mmio + SATA_IFCTL); 2183 2184 /* Send all words of the FIS except for the final word */ 2185 for (i = 0; i < final_word; ++i) 2186 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2187 2188 /* Flag end-of-transmission, and then send the final word */ 2189 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2190 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2191 2192 /* 2193 * Wait for FIS transmission to complete. 2194 * This typically takes just a single iteration. 2195 */ 2196 do { 2197 ifstat = readl(port_mmio + SATA_IFSTAT); 2198 } while (!(ifstat & 0x1000) && --timeout); 2199 2200 /* Restore original port configuration */ 2201 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2202 2203 /* See if it worked */ 2204 if ((ifstat & 0x3000) != 0x1000) { 2205 ata_port_printk(ap, KERN_WARNING, 2206 "%s transmission error, ifstat=%08x\n", 2207 __func__, ifstat); 2208 return AC_ERR_OTHER; 2209 } 2210 return 0; 2211 } 2212 2213 /** 2214 * mv_qc_issue_fis - Issue a command directly as a FIS 2215 * @qc: queued command to start 2216 * 2217 * Note that the ATA shadow registers are not updated 2218 * after command issue, so the device will appear "READY" 2219 * if polled, even while it is BUSY processing the command. 2220 * 2221 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2222 * 2223 * Note: we don't get updated shadow regs on *completion* 2224 * of non-data commands. So avoid sending them via this function, 2225 * as they will appear to have completed immediately. 2226 * 2227 * GEN_IIE has special registers that we could get the result tf from, 2228 * but earlier chipsets do not. For now, we ignore those registers. 2229 */ 2230 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2231 { 2232 struct ata_port *ap = qc->ap; 2233 struct mv_port_priv *pp = ap->private_data; 2234 struct ata_link *link = qc->dev->link; 2235 u32 fis[5]; 2236 int err = 0; 2237 2238 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2239 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); 2240 if (err) 2241 return err; 2242 2243 switch (qc->tf.protocol) { 2244 case ATAPI_PROT_PIO: 2245 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2246 /* fall through */ 2247 case ATAPI_PROT_NODATA: 2248 ap->hsm_task_state = HSM_ST_FIRST; 2249 break; 2250 case ATA_PROT_PIO: 2251 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2252 if (qc->tf.flags & ATA_TFLAG_WRITE) 2253 ap->hsm_task_state = HSM_ST_FIRST; 2254 else 2255 ap->hsm_task_state = HSM_ST; 2256 break; 2257 default: 2258 ap->hsm_task_state = HSM_ST_LAST; 2259 break; 2260 } 2261 2262 if (qc->tf.flags & ATA_TFLAG_POLLING) 2263 ata_sff_queue_pio_task(ap, 0); 2264 return 0; 2265 } 2266 2267 /** 2268 * mv_qc_issue - Initiate a command to the host 2269 * @qc: queued command to start 2270 * 2271 * This routine simply redirects to the general purpose routine 2272 * if command is not DMA. Else, it sanity checks our local 2273 * caches of the request producer/consumer indices then enables 2274 * DMA and bumps the request producer index. 2275 * 2276 * LOCKING: 2277 * Inherited from caller. 2278 */ 2279 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2280 { 2281 static int limit_warnings = 10; 2282 struct ata_port *ap = qc->ap; 2283 void __iomem *port_mmio = mv_ap_base(ap); 2284 struct mv_port_priv *pp = ap->private_data; 2285 u32 in_index; 2286 unsigned int port_irqs; 2287 2288 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2289 2290 switch (qc->tf.protocol) { 2291 case ATA_PROT_DMA: 2292 case ATA_PROT_NCQ: 2293 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2294 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2295 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2296 2297 /* Write the request in pointer to kick the EDMA to life */ 2298 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2299 port_mmio + EDMA_REQ_Q_IN_PTR); 2300 return 0; 2301 2302 case ATA_PROT_PIO: 2303 /* 2304 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2305 * 2306 * Someday, we might implement special polling workarounds 2307 * for these, but it all seems rather unnecessary since we 2308 * normally use only DMA for commands which transfer more 2309 * than a single block of data. 2310 * 2311 * Much of the time, this could just work regardless. 2312 * So for now, just log the incident, and allow the attempt. 2313 */ 2314 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2315 --limit_warnings; 2316 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME 2317 ": attempting PIO w/multiple DRQ: " 2318 "this may fail due to h/w errata\n"); 2319 } 2320 /* drop through */ 2321 case ATA_PROT_NODATA: 2322 case ATAPI_PROT_PIO: 2323 case ATAPI_PROT_NODATA: 2324 if (ap->flags & ATA_FLAG_PIO_POLLING) 2325 qc->tf.flags |= ATA_TFLAG_POLLING; 2326 break; 2327 } 2328 2329 if (qc->tf.flags & ATA_TFLAG_POLLING) 2330 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2331 else 2332 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2333 2334 /* 2335 * We're about to send a non-EDMA capable command to the 2336 * port. Turn off EDMA so there won't be problems accessing 2337 * shadow block, etc registers. 2338 */ 2339 mv_stop_edma(ap); 2340 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2341 mv_pmp_select(ap, qc->dev->link->pmp); 2342 2343 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2344 struct mv_host_priv *hpriv = ap->host->private_data; 2345 /* 2346 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2347 * 2348 * After any NCQ error, the READ_LOG_EXT command 2349 * from libata-eh *must* use mv_qc_issue_fis(). 2350 * Otherwise it might fail, due to chip errata. 2351 * 2352 * Rather than special-case it, we'll just *always* 2353 * use this method here for READ_LOG_EXT, making for 2354 * easier testing. 2355 */ 2356 if (IS_GEN_II(hpriv)) 2357 return mv_qc_issue_fis(qc); 2358 } 2359 return ata_bmdma_qc_issue(qc); 2360 } 2361 2362 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2363 { 2364 struct mv_port_priv *pp = ap->private_data; 2365 struct ata_queued_cmd *qc; 2366 2367 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2368 return NULL; 2369 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2370 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) 2371 return qc; 2372 return NULL; 2373 } 2374 2375 static void mv_pmp_error_handler(struct ata_port *ap) 2376 { 2377 unsigned int pmp, pmp_map; 2378 struct mv_port_priv *pp = ap->private_data; 2379 2380 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2381 /* 2382 * Perform NCQ error analysis on failed PMPs 2383 * before we freeze the port entirely. 2384 * 2385 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2386 */ 2387 pmp_map = pp->delayed_eh_pmp_map; 2388 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2389 for (pmp = 0; pmp_map != 0; pmp++) { 2390 unsigned int this_pmp = (1 << pmp); 2391 if (pmp_map & this_pmp) { 2392 struct ata_link *link = &ap->pmp_link[pmp]; 2393 pmp_map &= ~this_pmp; 2394 ata_eh_analyze_ncq_error(link); 2395 } 2396 } 2397 ata_port_freeze(ap); 2398 } 2399 sata_pmp_error_handler(ap); 2400 } 2401 2402 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2403 { 2404 void __iomem *port_mmio = mv_ap_base(ap); 2405 2406 return readl(port_mmio + SATA_TESTCTL) >> 16; 2407 } 2408 2409 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2410 { 2411 struct ata_eh_info *ehi; 2412 unsigned int pmp; 2413 2414 /* 2415 * Initialize EH info for PMPs which saw device errors 2416 */ 2417 ehi = &ap->link.eh_info; 2418 for (pmp = 0; pmp_map != 0; pmp++) { 2419 unsigned int this_pmp = (1 << pmp); 2420 if (pmp_map & this_pmp) { 2421 struct ata_link *link = &ap->pmp_link[pmp]; 2422 2423 pmp_map &= ~this_pmp; 2424 ehi = &link->eh_info; 2425 ata_ehi_clear_desc(ehi); 2426 ata_ehi_push_desc(ehi, "dev err"); 2427 ehi->err_mask |= AC_ERR_DEV; 2428 ehi->action |= ATA_EH_RESET; 2429 ata_link_abort(link); 2430 } 2431 } 2432 } 2433 2434 static int mv_req_q_empty(struct ata_port *ap) 2435 { 2436 void __iomem *port_mmio = mv_ap_base(ap); 2437 u32 in_ptr, out_ptr; 2438 2439 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2440 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2441 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2442 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2443 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2444 } 2445 2446 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2447 { 2448 struct mv_port_priv *pp = ap->private_data; 2449 int failed_links; 2450 unsigned int old_map, new_map; 2451 2452 /* 2453 * Device error during FBS+NCQ operation: 2454 * 2455 * Set a port flag to prevent further I/O being enqueued. 2456 * Leave the EDMA running to drain outstanding commands from this port. 2457 * Perform the post-mortem/EH only when all responses are complete. 2458 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2459 */ 2460 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2461 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2462 pp->delayed_eh_pmp_map = 0; 2463 } 2464 old_map = pp->delayed_eh_pmp_map; 2465 new_map = old_map | mv_get_err_pmp_map(ap); 2466 2467 if (old_map != new_map) { 2468 pp->delayed_eh_pmp_map = new_map; 2469 mv_pmp_eh_prep(ap, new_map & ~old_map); 2470 } 2471 failed_links = hweight16(new_map); 2472 2473 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x " 2474 "failed_links=%d nr_active_links=%d\n", 2475 __func__, pp->delayed_eh_pmp_map, 2476 ap->qc_active, failed_links, 2477 ap->nr_active_links); 2478 2479 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2480 mv_process_crpb_entries(ap, pp); 2481 mv_stop_edma(ap); 2482 mv_eh_freeze(ap); 2483 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__); 2484 return 1; /* handled */ 2485 } 2486 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__); 2487 return 1; /* handled */ 2488 } 2489 2490 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2491 { 2492 /* 2493 * Possible future enhancement: 2494 * 2495 * FBS+non-NCQ operation is not yet implemented. 2496 * See related notes in mv_edma_cfg(). 2497 * 2498 * Device error during FBS+non-NCQ operation: 2499 * 2500 * We need to snapshot the shadow registers for each failed command. 2501 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2502 */ 2503 return 0; /* not handled */ 2504 } 2505 2506 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2507 { 2508 struct mv_port_priv *pp = ap->private_data; 2509 2510 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2511 return 0; /* EDMA was not active: not handled */ 2512 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2513 return 0; /* FBS was not active: not handled */ 2514 2515 if (!(edma_err_cause & EDMA_ERR_DEV)) 2516 return 0; /* non DEV error: not handled */ 2517 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2518 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2519 return 0; /* other problems: not handled */ 2520 2521 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2522 /* 2523 * EDMA should NOT have self-disabled for this case. 2524 * If it did, then something is wrong elsewhere, 2525 * and we cannot handle it here. 2526 */ 2527 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2528 ata_port_printk(ap, KERN_WARNING, 2529 "%s: err_cause=0x%x pp_flags=0x%x\n", 2530 __func__, edma_err_cause, pp->pp_flags); 2531 return 0; /* not handled */ 2532 } 2533 return mv_handle_fbs_ncq_dev_err(ap); 2534 } else { 2535 /* 2536 * EDMA should have self-disabled for this case. 2537 * If it did not, then something is wrong elsewhere, 2538 * and we cannot handle it here. 2539 */ 2540 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2541 ata_port_printk(ap, KERN_WARNING, 2542 "%s: err_cause=0x%x pp_flags=0x%x\n", 2543 __func__, edma_err_cause, pp->pp_flags); 2544 return 0; /* not handled */ 2545 } 2546 return mv_handle_fbs_non_ncq_dev_err(ap); 2547 } 2548 return 0; /* not handled */ 2549 } 2550 2551 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2552 { 2553 struct ata_eh_info *ehi = &ap->link.eh_info; 2554 char *when = "idle"; 2555 2556 ata_ehi_clear_desc(ehi); 2557 if (edma_was_enabled) { 2558 when = "EDMA enabled"; 2559 } else { 2560 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2561 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2562 when = "polling"; 2563 } 2564 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2565 ehi->err_mask |= AC_ERR_OTHER; 2566 ehi->action |= ATA_EH_RESET; 2567 ata_port_freeze(ap); 2568 } 2569 2570 /** 2571 * mv_err_intr - Handle error interrupts on the port 2572 * @ap: ATA channel to manipulate 2573 * 2574 * Most cases require a full reset of the chip's state machine, 2575 * which also performs a COMRESET. 2576 * Also, if the port disabled DMA, update our cached copy to match. 2577 * 2578 * LOCKING: 2579 * Inherited from caller. 2580 */ 2581 static void mv_err_intr(struct ata_port *ap) 2582 { 2583 void __iomem *port_mmio = mv_ap_base(ap); 2584 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2585 u32 fis_cause = 0; 2586 struct mv_port_priv *pp = ap->private_data; 2587 struct mv_host_priv *hpriv = ap->host->private_data; 2588 unsigned int action = 0, err_mask = 0; 2589 struct ata_eh_info *ehi = &ap->link.eh_info; 2590 struct ata_queued_cmd *qc; 2591 int abort = 0; 2592 2593 /* 2594 * Read and clear the SError and err_cause bits. 2595 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2596 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2597 */ 2598 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2599 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2600 2601 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2602 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2603 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2604 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2605 } 2606 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2607 2608 if (edma_err_cause & EDMA_ERR_DEV) { 2609 /* 2610 * Device errors during FIS-based switching operation 2611 * require special handling. 2612 */ 2613 if (mv_handle_dev_err(ap, edma_err_cause)) 2614 return; 2615 } 2616 2617 qc = mv_get_active_qc(ap); 2618 ata_ehi_clear_desc(ehi); 2619 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2620 edma_err_cause, pp->pp_flags); 2621 2622 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2623 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2624 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2625 u32 ec = edma_err_cause & 2626 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2627 sata_async_notification(ap); 2628 if (!ec) 2629 return; /* Just an AN; no need for the nukes */ 2630 ata_ehi_push_desc(ehi, "SDB notify"); 2631 } 2632 } 2633 /* 2634 * All generations share these EDMA error cause bits: 2635 */ 2636 if (edma_err_cause & EDMA_ERR_DEV) { 2637 err_mask |= AC_ERR_DEV; 2638 action |= ATA_EH_RESET; 2639 ata_ehi_push_desc(ehi, "dev error"); 2640 } 2641 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2642 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2643 EDMA_ERR_INTRL_PAR)) { 2644 err_mask |= AC_ERR_ATA_BUS; 2645 action |= ATA_EH_RESET; 2646 ata_ehi_push_desc(ehi, "parity error"); 2647 } 2648 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2649 ata_ehi_hotplugged(ehi); 2650 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2651 "dev disconnect" : "dev connect"); 2652 action |= ATA_EH_RESET; 2653 } 2654 2655 /* 2656 * Gen-I has a different SELF_DIS bit, 2657 * different FREEZE bits, and no SERR bit: 2658 */ 2659 if (IS_GEN_I(hpriv)) { 2660 eh_freeze_mask = EDMA_EH_FREEZE_5; 2661 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2662 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2663 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2664 } 2665 } else { 2666 eh_freeze_mask = EDMA_EH_FREEZE; 2667 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2668 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2669 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2670 } 2671 if (edma_err_cause & EDMA_ERR_SERR) { 2672 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2673 err_mask |= AC_ERR_ATA_BUS; 2674 action |= ATA_EH_RESET; 2675 } 2676 } 2677 2678 if (!err_mask) { 2679 err_mask = AC_ERR_OTHER; 2680 action |= ATA_EH_RESET; 2681 } 2682 2683 ehi->serror |= serr; 2684 ehi->action |= action; 2685 2686 if (qc) 2687 qc->err_mask |= err_mask; 2688 else 2689 ehi->err_mask |= err_mask; 2690 2691 if (err_mask == AC_ERR_DEV) { 2692 /* 2693 * Cannot do ata_port_freeze() here, 2694 * because it would kill PIO access, 2695 * which is needed for further diagnosis. 2696 */ 2697 mv_eh_freeze(ap); 2698 abort = 1; 2699 } else if (edma_err_cause & eh_freeze_mask) { 2700 /* 2701 * Note to self: ata_port_freeze() calls ata_port_abort() 2702 */ 2703 ata_port_freeze(ap); 2704 } else { 2705 abort = 1; 2706 } 2707 2708 if (abort) { 2709 if (qc) 2710 ata_link_abort(qc->dev->link); 2711 else 2712 ata_port_abort(ap); 2713 } 2714 } 2715 2716 static void mv_process_crpb_response(struct ata_port *ap, 2717 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2718 { 2719 u8 ata_status; 2720 u16 edma_status = le16_to_cpu(response->flags); 2721 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag); 2722 2723 if (unlikely(!qc)) { 2724 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n", 2725 __func__, tag); 2726 return; 2727 } 2728 2729 /* 2730 * edma_status from a response queue entry: 2731 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2732 * MSB is saved ATA status from command completion. 2733 */ 2734 if (!ncq_enabled) { 2735 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2736 if (err_cause) { 2737 /* 2738 * Error will be seen/handled by 2739 * mv_err_intr(). So do nothing at all here. 2740 */ 2741 return; 2742 } 2743 } 2744 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2745 if (!ac_err_mask(ata_status)) 2746 ata_qc_complete(qc); 2747 /* else: leave it for mv_err_intr() */ 2748 } 2749 2750 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2751 { 2752 void __iomem *port_mmio = mv_ap_base(ap); 2753 struct mv_host_priv *hpriv = ap->host->private_data; 2754 u32 in_index; 2755 bool work_done = false; 2756 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2757 2758 /* Get the hardware queue position index */ 2759 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2760 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2761 2762 /* Process new responses from since the last time we looked */ 2763 while (in_index != pp->resp_idx) { 2764 unsigned int tag; 2765 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2766 2767 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2768 2769 if (IS_GEN_I(hpriv)) { 2770 /* 50xx: no NCQ, only one command active at a time */ 2771 tag = ap->link.active_tag; 2772 } else { 2773 /* Gen II/IIE: get command tag from CRPB entry */ 2774 tag = le16_to_cpu(response->id) & 0x1f; 2775 } 2776 mv_process_crpb_response(ap, response, tag, ncq_enabled); 2777 work_done = true; 2778 } 2779 2780 /* Update the software queue position index in hardware */ 2781 if (work_done) 2782 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2783 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2784 port_mmio + EDMA_RSP_Q_OUT_PTR); 2785 } 2786 2787 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2788 { 2789 struct mv_port_priv *pp; 2790 int edma_was_enabled; 2791 2792 /* 2793 * Grab a snapshot of the EDMA_EN flag setting, 2794 * so that we have a consistent view for this port, 2795 * even if something we call of our routines changes it. 2796 */ 2797 pp = ap->private_data; 2798 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2799 /* 2800 * Process completed CRPB response(s) before other events. 2801 */ 2802 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2803 mv_process_crpb_entries(ap, pp); 2804 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2805 mv_handle_fbs_ncq_dev_err(ap); 2806 } 2807 /* 2808 * Handle chip-reported errors, or continue on to handle PIO. 2809 */ 2810 if (unlikely(port_cause & ERR_IRQ)) { 2811 mv_err_intr(ap); 2812 } else if (!edma_was_enabled) { 2813 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2814 if (qc) 2815 ata_bmdma_port_intr(ap, qc); 2816 else 2817 mv_unexpected_intr(ap, edma_was_enabled); 2818 } 2819 } 2820 2821 /** 2822 * mv_host_intr - Handle all interrupts on the given host controller 2823 * @host: host specific structure 2824 * @main_irq_cause: Main interrupt cause register for the chip. 2825 * 2826 * LOCKING: 2827 * Inherited from caller. 2828 */ 2829 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2830 { 2831 struct mv_host_priv *hpriv = host->private_data; 2832 void __iomem *mmio = hpriv->base, *hc_mmio; 2833 unsigned int handled = 0, port; 2834 2835 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2836 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2837 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2838 2839 for (port = 0; port < hpriv->n_ports; port++) { 2840 struct ata_port *ap = host->ports[port]; 2841 unsigned int p, shift, hardport, port_cause; 2842 2843 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2844 /* 2845 * Each hc within the host has its own hc_irq_cause register, 2846 * where the interrupting ports bits get ack'd. 2847 */ 2848 if (hardport == 0) { /* first port on this hc ? */ 2849 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2850 u32 port_mask, ack_irqs; 2851 /* 2852 * Skip this entire hc if nothing pending for any ports 2853 */ 2854 if (!hc_cause) { 2855 port += MV_PORTS_PER_HC - 1; 2856 continue; 2857 } 2858 /* 2859 * We don't need/want to read the hc_irq_cause register, 2860 * because doing so hurts performance, and 2861 * main_irq_cause already gives us everything we need. 2862 * 2863 * But we do have to *write* to the hc_irq_cause to ack 2864 * the ports that we are handling this time through. 2865 * 2866 * This requires that we create a bitmap for those 2867 * ports which interrupted us, and use that bitmap 2868 * to ack (only) those ports via hc_irq_cause. 2869 */ 2870 ack_irqs = 0; 2871 if (hc_cause & PORTS_0_3_COAL_DONE) 2872 ack_irqs = HC_COAL_IRQ; 2873 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2874 if ((port + p) >= hpriv->n_ports) 2875 break; 2876 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2877 if (hc_cause & port_mask) 2878 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2879 } 2880 hc_mmio = mv_hc_base_from_port(mmio, port); 2881 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2882 handled = 1; 2883 } 2884 /* 2885 * Handle interrupts signalled for this port: 2886 */ 2887 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2888 if (port_cause) 2889 mv_port_intr(ap, port_cause); 2890 } 2891 return handled; 2892 } 2893 2894 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2895 { 2896 struct mv_host_priv *hpriv = host->private_data; 2897 struct ata_port *ap; 2898 struct ata_queued_cmd *qc; 2899 struct ata_eh_info *ehi; 2900 unsigned int i, err_mask, printed = 0; 2901 u32 err_cause; 2902 2903 err_cause = readl(mmio + hpriv->irq_cause_offset); 2904 2905 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", 2906 err_cause); 2907 2908 DPRINTK("All regs @ PCI error\n"); 2909 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2910 2911 writelfl(0, mmio + hpriv->irq_cause_offset); 2912 2913 for (i = 0; i < host->n_ports; i++) { 2914 ap = host->ports[i]; 2915 if (!ata_link_offline(&ap->link)) { 2916 ehi = &ap->link.eh_info; 2917 ata_ehi_clear_desc(ehi); 2918 if (!printed++) 2919 ata_ehi_push_desc(ehi, 2920 "PCI err cause 0x%08x", err_cause); 2921 err_mask = AC_ERR_HOST_BUS; 2922 ehi->action = ATA_EH_RESET; 2923 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2924 if (qc) 2925 qc->err_mask |= err_mask; 2926 else 2927 ehi->err_mask |= err_mask; 2928 2929 ata_port_freeze(ap); 2930 } 2931 } 2932 return 1; /* handled */ 2933 } 2934 2935 /** 2936 * mv_interrupt - Main interrupt event handler 2937 * @irq: unused 2938 * @dev_instance: private data; in this case the host structure 2939 * 2940 * Read the read only register to determine if any host 2941 * controllers have pending interrupts. If so, call lower level 2942 * routine to handle. Also check for PCI errors which are only 2943 * reported here. 2944 * 2945 * LOCKING: 2946 * This routine holds the host lock while processing pending 2947 * interrupts. 2948 */ 2949 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 2950 { 2951 struct ata_host *host = dev_instance; 2952 struct mv_host_priv *hpriv = host->private_data; 2953 unsigned int handled = 0; 2954 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 2955 u32 main_irq_cause, pending_irqs; 2956 2957 spin_lock(&host->lock); 2958 2959 /* for MSI: block new interrupts while in here */ 2960 if (using_msi) 2961 mv_write_main_irq_mask(0, hpriv); 2962 2963 main_irq_cause = readl(hpriv->main_irq_cause_addr); 2964 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 2965 /* 2966 * Deal with cases where we either have nothing pending, or have read 2967 * a bogus register value which can indicate HW removal or PCI fault. 2968 */ 2969 if (pending_irqs && main_irq_cause != 0xffffffffU) { 2970 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 2971 handled = mv_pci_error(host, hpriv->base); 2972 else 2973 handled = mv_host_intr(host, pending_irqs); 2974 } 2975 2976 /* for MSI: unmask; interrupt cause bits will retrigger now */ 2977 if (using_msi) 2978 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 2979 2980 spin_unlock(&host->lock); 2981 2982 return IRQ_RETVAL(handled); 2983 } 2984 2985 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 2986 { 2987 unsigned int ofs; 2988 2989 switch (sc_reg_in) { 2990 case SCR_STATUS: 2991 case SCR_ERROR: 2992 case SCR_CONTROL: 2993 ofs = sc_reg_in * sizeof(u32); 2994 break; 2995 default: 2996 ofs = 0xffffffffU; 2997 break; 2998 } 2999 return ofs; 3000 } 3001 3002 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 3003 { 3004 struct mv_host_priv *hpriv = link->ap->host->private_data; 3005 void __iomem *mmio = hpriv->base; 3006 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3007 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3008 3009 if (ofs != 0xffffffffU) { 3010 *val = readl(addr + ofs); 3011 return 0; 3012 } else 3013 return -EINVAL; 3014 } 3015 3016 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 3017 { 3018 struct mv_host_priv *hpriv = link->ap->host->private_data; 3019 void __iomem *mmio = hpriv->base; 3020 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3021 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3022 3023 if (ofs != 0xffffffffU) { 3024 writelfl(val, addr + ofs); 3025 return 0; 3026 } else 3027 return -EINVAL; 3028 } 3029 3030 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 3031 { 3032 struct pci_dev *pdev = to_pci_dev(host->dev); 3033 int early_5080; 3034 3035 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3036 3037 if (!early_5080) { 3038 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3039 tmp |= (1 << 0); 3040 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3041 } 3042 3043 mv_reset_pci_bus(host, mmio); 3044 } 3045 3046 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3047 { 3048 writel(0x0fcfffff, mmio + FLASH_CTL); 3049 } 3050 3051 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3052 void __iomem *mmio) 3053 { 3054 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3055 u32 tmp; 3056 3057 tmp = readl(phy_mmio + MV5_PHY_MODE); 3058 3059 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3060 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3061 } 3062 3063 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3064 { 3065 u32 tmp; 3066 3067 writel(0, mmio + GPIO_PORT_CTL); 3068 3069 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3070 3071 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3072 tmp |= ~(1 << 0); 3073 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3074 } 3075 3076 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3077 unsigned int port) 3078 { 3079 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3080 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3081 u32 tmp; 3082 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3083 3084 if (fix_apm_sq) { 3085 tmp = readl(phy_mmio + MV5_LTMODE); 3086 tmp |= (1 << 19); 3087 writel(tmp, phy_mmio + MV5_LTMODE); 3088 3089 tmp = readl(phy_mmio + MV5_PHY_CTL); 3090 tmp &= ~0x3; 3091 tmp |= 0x1; 3092 writel(tmp, phy_mmio + MV5_PHY_CTL); 3093 } 3094 3095 tmp = readl(phy_mmio + MV5_PHY_MODE); 3096 tmp &= ~mask; 3097 tmp |= hpriv->signal[port].pre; 3098 tmp |= hpriv->signal[port].amps; 3099 writel(tmp, phy_mmio + MV5_PHY_MODE); 3100 } 3101 3102 3103 #undef ZERO 3104 #define ZERO(reg) writel(0, port_mmio + (reg)) 3105 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3106 unsigned int port) 3107 { 3108 void __iomem *port_mmio = mv_port_base(mmio, port); 3109 3110 mv_reset_channel(hpriv, mmio, port); 3111 3112 ZERO(0x028); /* command */ 3113 writel(0x11f, port_mmio + EDMA_CFG); 3114 ZERO(0x004); /* timer */ 3115 ZERO(0x008); /* irq err cause */ 3116 ZERO(0x00c); /* irq err mask */ 3117 ZERO(0x010); /* rq bah */ 3118 ZERO(0x014); /* rq inp */ 3119 ZERO(0x018); /* rq outp */ 3120 ZERO(0x01c); /* respq bah */ 3121 ZERO(0x024); /* respq outp */ 3122 ZERO(0x020); /* respq inp */ 3123 ZERO(0x02c); /* test control */ 3124 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3125 } 3126 #undef ZERO 3127 3128 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3129 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3130 unsigned int hc) 3131 { 3132 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3133 u32 tmp; 3134 3135 ZERO(0x00c); 3136 ZERO(0x010); 3137 ZERO(0x014); 3138 ZERO(0x018); 3139 3140 tmp = readl(hc_mmio + 0x20); 3141 tmp &= 0x1c1c1c1c; 3142 tmp |= 0x03030303; 3143 writel(tmp, hc_mmio + 0x20); 3144 } 3145 #undef ZERO 3146 3147 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3148 unsigned int n_hc) 3149 { 3150 unsigned int hc, port; 3151 3152 for (hc = 0; hc < n_hc; hc++) { 3153 for (port = 0; port < MV_PORTS_PER_HC; port++) 3154 mv5_reset_hc_port(hpriv, mmio, 3155 (hc * MV_PORTS_PER_HC) + port); 3156 3157 mv5_reset_one_hc(hpriv, mmio, hc); 3158 } 3159 3160 return 0; 3161 } 3162 3163 #undef ZERO 3164 #define ZERO(reg) writel(0, mmio + (reg)) 3165 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3166 { 3167 struct mv_host_priv *hpriv = host->private_data; 3168 u32 tmp; 3169 3170 tmp = readl(mmio + MV_PCI_MODE); 3171 tmp &= 0xff00ffff; 3172 writel(tmp, mmio + MV_PCI_MODE); 3173 3174 ZERO(MV_PCI_DISC_TIMER); 3175 ZERO(MV_PCI_MSI_TRIGGER); 3176 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3177 ZERO(MV_PCI_SERR_MASK); 3178 ZERO(hpriv->irq_cause_offset); 3179 ZERO(hpriv->irq_mask_offset); 3180 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3181 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3182 ZERO(MV_PCI_ERR_ATTRIBUTE); 3183 ZERO(MV_PCI_ERR_COMMAND); 3184 } 3185 #undef ZERO 3186 3187 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3188 { 3189 u32 tmp; 3190 3191 mv5_reset_flash(hpriv, mmio); 3192 3193 tmp = readl(mmio + GPIO_PORT_CTL); 3194 tmp &= 0x3; 3195 tmp |= (1 << 5) | (1 << 6); 3196 writel(tmp, mmio + GPIO_PORT_CTL); 3197 } 3198 3199 /** 3200 * mv6_reset_hc - Perform the 6xxx global soft reset 3201 * @mmio: base address of the HBA 3202 * 3203 * This routine only applies to 6xxx parts. 3204 * 3205 * LOCKING: 3206 * Inherited from caller. 3207 */ 3208 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3209 unsigned int n_hc) 3210 { 3211 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3212 int i, rc = 0; 3213 u32 t; 3214 3215 /* Following procedure defined in PCI "main command and status 3216 * register" table. 3217 */ 3218 t = readl(reg); 3219 writel(t | STOP_PCI_MASTER, reg); 3220 3221 for (i = 0; i < 1000; i++) { 3222 udelay(1); 3223 t = readl(reg); 3224 if (PCI_MASTER_EMPTY & t) 3225 break; 3226 } 3227 if (!(PCI_MASTER_EMPTY & t)) { 3228 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3229 rc = 1; 3230 goto done; 3231 } 3232 3233 /* set reset */ 3234 i = 5; 3235 do { 3236 writel(t | GLOB_SFT_RST, reg); 3237 t = readl(reg); 3238 udelay(1); 3239 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3240 3241 if (!(GLOB_SFT_RST & t)) { 3242 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3243 rc = 1; 3244 goto done; 3245 } 3246 3247 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3248 i = 5; 3249 do { 3250 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3251 t = readl(reg); 3252 udelay(1); 3253 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3254 3255 if (GLOB_SFT_RST & t) { 3256 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3257 rc = 1; 3258 } 3259 done: 3260 return rc; 3261 } 3262 3263 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3264 void __iomem *mmio) 3265 { 3266 void __iomem *port_mmio; 3267 u32 tmp; 3268 3269 tmp = readl(mmio + RESET_CFG); 3270 if ((tmp & (1 << 0)) == 0) { 3271 hpriv->signal[idx].amps = 0x7 << 8; 3272 hpriv->signal[idx].pre = 0x1 << 5; 3273 return; 3274 } 3275 3276 port_mmio = mv_port_base(mmio, idx); 3277 tmp = readl(port_mmio + PHY_MODE2); 3278 3279 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3280 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3281 } 3282 3283 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3284 { 3285 writel(0x00000060, mmio + GPIO_PORT_CTL); 3286 } 3287 3288 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3289 unsigned int port) 3290 { 3291 void __iomem *port_mmio = mv_port_base(mmio, port); 3292 3293 u32 hp_flags = hpriv->hp_flags; 3294 int fix_phy_mode2 = 3295 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3296 int fix_phy_mode4 = 3297 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3298 u32 m2, m3; 3299 3300 if (fix_phy_mode2) { 3301 m2 = readl(port_mmio + PHY_MODE2); 3302 m2 &= ~(1 << 16); 3303 m2 |= (1 << 31); 3304 writel(m2, port_mmio + PHY_MODE2); 3305 3306 udelay(200); 3307 3308 m2 = readl(port_mmio + PHY_MODE2); 3309 m2 &= ~((1 << 16) | (1 << 31)); 3310 writel(m2, port_mmio + PHY_MODE2); 3311 3312 udelay(200); 3313 } 3314 3315 /* 3316 * Gen-II/IIe PHY_MODE3 errata RM#2: 3317 * Achieves better receiver noise performance than the h/w default: 3318 */ 3319 m3 = readl(port_mmio + PHY_MODE3); 3320 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3321 3322 /* Guideline 88F5182 (GL# SATA-S11) */ 3323 if (IS_SOC(hpriv)) 3324 m3 &= ~0x1c; 3325 3326 if (fix_phy_mode4) { 3327 u32 m4 = readl(port_mmio + PHY_MODE4); 3328 /* 3329 * Enforce reserved-bit restrictions on GenIIe devices only. 3330 * For earlier chipsets, force only the internal config field 3331 * (workaround for errata FEr SATA#10 part 1). 3332 */ 3333 if (IS_GEN_IIE(hpriv)) 3334 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3335 else 3336 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3337 writel(m4, port_mmio + PHY_MODE4); 3338 } 3339 /* 3340 * Workaround for 60x1-B2 errata SATA#13: 3341 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3342 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3343 * Or ensure we use writelfl() when writing PHY_MODE4. 3344 */ 3345 writel(m3, port_mmio + PHY_MODE3); 3346 3347 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3348 m2 = readl(port_mmio + PHY_MODE2); 3349 3350 m2 &= ~MV_M2_PREAMP_MASK; 3351 m2 |= hpriv->signal[port].amps; 3352 m2 |= hpriv->signal[port].pre; 3353 m2 &= ~(1 << 16); 3354 3355 /* according to mvSata 3.6.1, some IIE values are fixed */ 3356 if (IS_GEN_IIE(hpriv)) { 3357 m2 &= ~0xC30FF01F; 3358 m2 |= 0x0000900F; 3359 } 3360 3361 writel(m2, port_mmio + PHY_MODE2); 3362 } 3363 3364 /* TODO: use the generic LED interface to configure the SATA Presence */ 3365 /* & Acitivy LEDs on the board */ 3366 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3367 void __iomem *mmio) 3368 { 3369 return; 3370 } 3371 3372 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3373 void __iomem *mmio) 3374 { 3375 void __iomem *port_mmio; 3376 u32 tmp; 3377 3378 port_mmio = mv_port_base(mmio, idx); 3379 tmp = readl(port_mmio + PHY_MODE2); 3380 3381 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3382 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3383 } 3384 3385 #undef ZERO 3386 #define ZERO(reg) writel(0, port_mmio + (reg)) 3387 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3388 void __iomem *mmio, unsigned int port) 3389 { 3390 void __iomem *port_mmio = mv_port_base(mmio, port); 3391 3392 mv_reset_channel(hpriv, mmio, port); 3393 3394 ZERO(0x028); /* command */ 3395 writel(0x101f, port_mmio + EDMA_CFG); 3396 ZERO(0x004); /* timer */ 3397 ZERO(0x008); /* irq err cause */ 3398 ZERO(0x00c); /* irq err mask */ 3399 ZERO(0x010); /* rq bah */ 3400 ZERO(0x014); /* rq inp */ 3401 ZERO(0x018); /* rq outp */ 3402 ZERO(0x01c); /* respq bah */ 3403 ZERO(0x024); /* respq outp */ 3404 ZERO(0x020); /* respq inp */ 3405 ZERO(0x02c); /* test control */ 3406 writel(0x800, port_mmio + EDMA_IORDY_TMOUT); 3407 } 3408 3409 #undef ZERO 3410 3411 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3412 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3413 void __iomem *mmio) 3414 { 3415 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3416 3417 ZERO(0x00c); 3418 ZERO(0x010); 3419 ZERO(0x014); 3420 3421 } 3422 3423 #undef ZERO 3424 3425 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3426 void __iomem *mmio, unsigned int n_hc) 3427 { 3428 unsigned int port; 3429 3430 for (port = 0; port < hpriv->n_ports; port++) 3431 mv_soc_reset_hc_port(hpriv, mmio, port); 3432 3433 mv_soc_reset_one_hc(hpriv, mmio); 3434 3435 return 0; 3436 } 3437 3438 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3439 void __iomem *mmio) 3440 { 3441 return; 3442 } 3443 3444 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3445 { 3446 return; 3447 } 3448 3449 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3450 void __iomem *mmio, unsigned int port) 3451 { 3452 void __iomem *port_mmio = mv_port_base(mmio, port); 3453 u32 reg; 3454 3455 reg = readl(port_mmio + PHY_MODE3); 3456 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3457 reg |= (0x1 << 27); 3458 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3459 reg |= (0x1 << 29); 3460 writel(reg, port_mmio + PHY_MODE3); 3461 3462 reg = readl(port_mmio + PHY_MODE4); 3463 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3464 reg |= (0x1 << 16); 3465 writel(reg, port_mmio + PHY_MODE4); 3466 3467 reg = readl(port_mmio + PHY_MODE9_GEN2); 3468 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3469 reg |= 0x8; 3470 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3471 writel(reg, port_mmio + PHY_MODE9_GEN2); 3472 3473 reg = readl(port_mmio + PHY_MODE9_GEN1); 3474 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3475 reg |= 0x8; 3476 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3477 writel(reg, port_mmio + PHY_MODE9_GEN1); 3478 } 3479 3480 /** 3481 * soc_is_65 - check if the soc is 65 nano device 3482 * 3483 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3484 * register, this register should contain non-zero value and it exists only 3485 * in the 65 nano devices, when reading it from older devices we get 0. 3486 */ 3487 static bool soc_is_65n(struct mv_host_priv *hpriv) 3488 { 3489 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3490 3491 if (readl(port0_mmio + PHYCFG_OFS)) 3492 return true; 3493 return false; 3494 } 3495 3496 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3497 { 3498 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3499 3500 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3501 if (want_gen2i) 3502 ifcfg |= (1 << 7); /* enable gen2i speed */ 3503 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3504 } 3505 3506 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3507 unsigned int port_no) 3508 { 3509 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3510 3511 /* 3512 * The datasheet warns against setting EDMA_RESET when EDMA is active 3513 * (but doesn't say what the problem might be). So we first try 3514 * to disable the EDMA engine before doing the EDMA_RESET operation. 3515 */ 3516 mv_stop_edma_engine(port_mmio); 3517 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3518 3519 if (!IS_GEN_I(hpriv)) { 3520 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3521 mv_setup_ifcfg(port_mmio, 1); 3522 } 3523 /* 3524 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3525 * link, and physical layers. It resets all SATA interface registers 3526 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3527 */ 3528 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3529 udelay(25); /* allow reset propagation */ 3530 writelfl(0, port_mmio + EDMA_CMD); 3531 3532 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3533 3534 if (IS_GEN_I(hpriv)) 3535 mdelay(1); 3536 } 3537 3538 static void mv_pmp_select(struct ata_port *ap, int pmp) 3539 { 3540 if (sata_pmp_supported(ap)) { 3541 void __iomem *port_mmio = mv_ap_base(ap); 3542 u32 reg = readl(port_mmio + SATA_IFCTL); 3543 int old = reg & 0xf; 3544 3545 if (old != pmp) { 3546 reg = (reg & ~0xf) | pmp; 3547 writelfl(reg, port_mmio + SATA_IFCTL); 3548 } 3549 } 3550 } 3551 3552 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3553 unsigned long deadline) 3554 { 3555 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3556 return sata_std_hardreset(link, class, deadline); 3557 } 3558 3559 static int mv_softreset(struct ata_link *link, unsigned int *class, 3560 unsigned long deadline) 3561 { 3562 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3563 return ata_sff_softreset(link, class, deadline); 3564 } 3565 3566 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3567 unsigned long deadline) 3568 { 3569 struct ata_port *ap = link->ap; 3570 struct mv_host_priv *hpriv = ap->host->private_data; 3571 struct mv_port_priv *pp = ap->private_data; 3572 void __iomem *mmio = hpriv->base; 3573 int rc, attempts = 0, extra = 0; 3574 u32 sstatus; 3575 bool online; 3576 3577 mv_reset_channel(hpriv, mmio, ap->port_no); 3578 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3579 pp->pp_flags &= 3580 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3581 3582 /* Workaround for errata FEr SATA#10 (part 2) */ 3583 do { 3584 const unsigned long *timing = 3585 sata_ehc_deb_timing(&link->eh_context); 3586 3587 rc = sata_link_hardreset(link, timing, deadline + extra, 3588 &online, NULL); 3589 rc = online ? -EAGAIN : rc; 3590 if (rc) 3591 return rc; 3592 sata_scr_read(link, SCR_STATUS, &sstatus); 3593 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3594 /* Force 1.5gb/s link speed and try again */ 3595 mv_setup_ifcfg(mv_ap_base(ap), 0); 3596 if (time_after(jiffies + HZ, deadline)) 3597 extra = HZ; /* only extend it once, max */ 3598 } 3599 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3600 mv_save_cached_regs(ap); 3601 mv_edma_cfg(ap, 0, 0); 3602 3603 return rc; 3604 } 3605 3606 static void mv_eh_freeze(struct ata_port *ap) 3607 { 3608 mv_stop_edma(ap); 3609 mv_enable_port_irqs(ap, 0); 3610 } 3611 3612 static void mv_eh_thaw(struct ata_port *ap) 3613 { 3614 struct mv_host_priv *hpriv = ap->host->private_data; 3615 unsigned int port = ap->port_no; 3616 unsigned int hardport = mv_hardport_from_port(port); 3617 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3618 void __iomem *port_mmio = mv_ap_base(ap); 3619 u32 hc_irq_cause; 3620 3621 /* clear EDMA errors on this port */ 3622 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3623 3624 /* clear pending irq events */ 3625 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3626 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3627 3628 mv_enable_port_irqs(ap, ERR_IRQ); 3629 } 3630 3631 /** 3632 * mv_port_init - Perform some early initialization on a single port. 3633 * @port: libata data structure storing shadow register addresses 3634 * @port_mmio: base address of the port 3635 * 3636 * Initialize shadow register mmio addresses, clear outstanding 3637 * interrupts on the port, and unmask interrupts for the future 3638 * start of the port. 3639 * 3640 * LOCKING: 3641 * Inherited from caller. 3642 */ 3643 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3644 { 3645 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3646 3647 /* PIO related setup 3648 */ 3649 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3650 port->error_addr = 3651 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3652 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3653 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3654 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3655 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3656 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3657 port->status_addr = 3658 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3659 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3660 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3661 3662 /* Clear any currently outstanding port interrupt conditions */ 3663 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3664 writelfl(readl(serr), serr); 3665 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3666 3667 /* unmask all non-transient EDMA error interrupts */ 3668 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3669 3670 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3671 readl(port_mmio + EDMA_CFG), 3672 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3673 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3674 } 3675 3676 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3677 { 3678 struct mv_host_priv *hpriv = host->private_data; 3679 void __iomem *mmio = hpriv->base; 3680 u32 reg; 3681 3682 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3683 return 0; /* not PCI-X capable */ 3684 reg = readl(mmio + MV_PCI_MODE); 3685 if ((reg & MV_PCI_MODE_MASK) == 0) 3686 return 0; /* conventional PCI mode */ 3687 return 1; /* chip is in PCI-X mode */ 3688 } 3689 3690 static int mv_pci_cut_through_okay(struct ata_host *host) 3691 { 3692 struct mv_host_priv *hpriv = host->private_data; 3693 void __iomem *mmio = hpriv->base; 3694 u32 reg; 3695 3696 if (!mv_in_pcix_mode(host)) { 3697 reg = readl(mmio + MV_PCI_COMMAND); 3698 if (reg & MV_PCI_COMMAND_MRDTRIG) 3699 return 0; /* not okay */ 3700 } 3701 return 1; /* okay */ 3702 } 3703 3704 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3705 { 3706 struct mv_host_priv *hpriv = host->private_data; 3707 void __iomem *mmio = hpriv->base; 3708 3709 /* workaround for 60x1-B2 errata PCI#7 */ 3710 if (mv_in_pcix_mode(host)) { 3711 u32 reg = readl(mmio + MV_PCI_COMMAND); 3712 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3713 } 3714 } 3715 3716 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3717 { 3718 struct pci_dev *pdev = to_pci_dev(host->dev); 3719 struct mv_host_priv *hpriv = host->private_data; 3720 u32 hp_flags = hpriv->hp_flags; 3721 3722 switch (board_idx) { 3723 case chip_5080: 3724 hpriv->ops = &mv5xxx_ops; 3725 hp_flags |= MV_HP_GEN_I; 3726 3727 switch (pdev->revision) { 3728 case 0x1: 3729 hp_flags |= MV_HP_ERRATA_50XXB0; 3730 break; 3731 case 0x3: 3732 hp_flags |= MV_HP_ERRATA_50XXB2; 3733 break; 3734 default: 3735 dev_printk(KERN_WARNING, &pdev->dev, 3736 "Applying 50XXB2 workarounds to unknown rev\n"); 3737 hp_flags |= MV_HP_ERRATA_50XXB2; 3738 break; 3739 } 3740 break; 3741 3742 case chip_504x: 3743 case chip_508x: 3744 hpriv->ops = &mv5xxx_ops; 3745 hp_flags |= MV_HP_GEN_I; 3746 3747 switch (pdev->revision) { 3748 case 0x0: 3749 hp_flags |= MV_HP_ERRATA_50XXB0; 3750 break; 3751 case 0x3: 3752 hp_flags |= MV_HP_ERRATA_50XXB2; 3753 break; 3754 default: 3755 dev_printk(KERN_WARNING, &pdev->dev, 3756 "Applying B2 workarounds to unknown rev\n"); 3757 hp_flags |= MV_HP_ERRATA_50XXB2; 3758 break; 3759 } 3760 break; 3761 3762 case chip_604x: 3763 case chip_608x: 3764 hpriv->ops = &mv6xxx_ops; 3765 hp_flags |= MV_HP_GEN_II; 3766 3767 switch (pdev->revision) { 3768 case 0x7: 3769 mv_60x1b2_errata_pci7(host); 3770 hp_flags |= MV_HP_ERRATA_60X1B2; 3771 break; 3772 case 0x9: 3773 hp_flags |= MV_HP_ERRATA_60X1C0; 3774 break; 3775 default: 3776 dev_printk(KERN_WARNING, &pdev->dev, 3777 "Applying B2 workarounds to unknown rev\n"); 3778 hp_flags |= MV_HP_ERRATA_60X1B2; 3779 break; 3780 } 3781 break; 3782 3783 case chip_7042: 3784 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3785 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3786 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3787 { 3788 /* 3789 * Highpoint RocketRAID PCIe 23xx series cards: 3790 * 3791 * Unconfigured drives are treated as "Legacy" 3792 * by the BIOS, and it overwrites sector 8 with 3793 * a "Lgcy" metadata block prior to Linux boot. 3794 * 3795 * Configured drives (RAID or JBOD) leave sector 8 3796 * alone, but instead overwrite a high numbered 3797 * sector for the RAID metadata. This sector can 3798 * be determined exactly, by truncating the physical 3799 * drive capacity to a nice even GB value. 3800 * 3801 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3802 * 3803 * Warn the user, lest they think we're just buggy. 3804 */ 3805 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3806 " BIOS CORRUPTS DATA on all attached drives," 3807 " regardless of if/how they are configured." 3808 " BEWARE!\n"); 3809 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3810 " use sectors 8-9 on \"Legacy\" drives," 3811 " and avoid the final two gigabytes on" 3812 " all RocketRAID BIOS initialized drives.\n"); 3813 } 3814 /* drop through */ 3815 case chip_6042: 3816 hpriv->ops = &mv6xxx_ops; 3817 hp_flags |= MV_HP_GEN_IIE; 3818 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3819 hp_flags |= MV_HP_CUT_THROUGH; 3820 3821 switch (pdev->revision) { 3822 case 0x2: /* Rev.B0: the first/only public release */ 3823 hp_flags |= MV_HP_ERRATA_60X1C0; 3824 break; 3825 default: 3826 dev_printk(KERN_WARNING, &pdev->dev, 3827 "Applying 60X1C0 workarounds to unknown rev\n"); 3828 hp_flags |= MV_HP_ERRATA_60X1C0; 3829 break; 3830 } 3831 break; 3832 case chip_soc: 3833 if (soc_is_65n(hpriv)) 3834 hpriv->ops = &mv_soc_65n_ops; 3835 else 3836 hpriv->ops = &mv_soc_ops; 3837 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3838 MV_HP_ERRATA_60X1C0; 3839 break; 3840 3841 default: 3842 dev_printk(KERN_ERR, host->dev, 3843 "BUG: invalid board index %u\n", board_idx); 3844 return 1; 3845 } 3846 3847 hpriv->hp_flags = hp_flags; 3848 if (hp_flags & MV_HP_PCIE) { 3849 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3850 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3851 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3852 } else { 3853 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3854 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3855 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3856 } 3857 3858 return 0; 3859 } 3860 3861 /** 3862 * mv_init_host - Perform some early initialization of the host. 3863 * @host: ATA host to initialize 3864 * 3865 * If possible, do an early global reset of the host. Then do 3866 * our port init and clear/unmask all/relevant host interrupts. 3867 * 3868 * LOCKING: 3869 * Inherited from caller. 3870 */ 3871 static int mv_init_host(struct ata_host *host) 3872 { 3873 int rc = 0, n_hc, port, hc; 3874 struct mv_host_priv *hpriv = host->private_data; 3875 void __iomem *mmio = hpriv->base; 3876 3877 rc = mv_chip_id(host, hpriv->board_idx); 3878 if (rc) 3879 goto done; 3880 3881 if (IS_SOC(hpriv)) { 3882 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3883 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3884 } else { 3885 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3886 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3887 } 3888 3889 /* initialize shadow irq mask with register's value */ 3890 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3891 3892 /* global interrupt mask: 0 == mask everything */ 3893 mv_set_main_irq_mask(host, ~0, 0); 3894 3895 n_hc = mv_get_hc_count(host->ports[0]->flags); 3896 3897 for (port = 0; port < host->n_ports; port++) 3898 if (hpriv->ops->read_preamp) 3899 hpriv->ops->read_preamp(hpriv, port, mmio); 3900 3901 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3902 if (rc) 3903 goto done; 3904 3905 hpriv->ops->reset_flash(hpriv, mmio); 3906 hpriv->ops->reset_bus(host, mmio); 3907 hpriv->ops->enable_leds(hpriv, mmio); 3908 3909 for (port = 0; port < host->n_ports; port++) { 3910 struct ata_port *ap = host->ports[port]; 3911 void __iomem *port_mmio = mv_port_base(mmio, port); 3912 3913 mv_port_init(&ap->ioaddr, port_mmio); 3914 } 3915 3916 for (hc = 0; hc < n_hc; hc++) { 3917 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3918 3919 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3920 "(before clear)=0x%08x\n", hc, 3921 readl(hc_mmio + HC_CFG), 3922 readl(hc_mmio + HC_IRQ_CAUSE)); 3923 3924 /* Clear any currently outstanding hc interrupt conditions */ 3925 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3926 } 3927 3928 if (!IS_SOC(hpriv)) { 3929 /* Clear any currently outstanding host interrupt conditions */ 3930 writelfl(0, mmio + hpriv->irq_cause_offset); 3931 3932 /* and unmask interrupt generation for host regs */ 3933 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 3934 } 3935 3936 /* 3937 * enable only global host interrupts for now. 3938 * The per-port interrupts get done later as ports are set up. 3939 */ 3940 mv_set_main_irq_mask(host, 0, PCI_ERR); 3941 mv_set_irq_coalescing(host, irq_coalescing_io_count, 3942 irq_coalescing_usecs); 3943 done: 3944 return rc; 3945 } 3946 3947 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 3948 { 3949 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 3950 MV_CRQB_Q_SZ, 0); 3951 if (!hpriv->crqb_pool) 3952 return -ENOMEM; 3953 3954 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 3955 MV_CRPB_Q_SZ, 0); 3956 if (!hpriv->crpb_pool) 3957 return -ENOMEM; 3958 3959 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 3960 MV_SG_TBL_SZ, 0); 3961 if (!hpriv->sg_tbl_pool) 3962 return -ENOMEM; 3963 3964 return 0; 3965 } 3966 3967 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 3968 struct mbus_dram_target_info *dram) 3969 { 3970 int i; 3971 3972 for (i = 0; i < 4; i++) { 3973 writel(0, hpriv->base + WINDOW_CTRL(i)); 3974 writel(0, hpriv->base + WINDOW_BASE(i)); 3975 } 3976 3977 for (i = 0; i < dram->num_cs; i++) { 3978 struct mbus_dram_window *cs = dram->cs + i; 3979 3980 writel(((cs->size - 1) & 0xffff0000) | 3981 (cs->mbus_attr << 8) | 3982 (dram->mbus_dram_target_id << 4) | 1, 3983 hpriv->base + WINDOW_CTRL(i)); 3984 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 3985 } 3986 } 3987 3988 /** 3989 * mv_platform_probe - handle a positive probe of an soc Marvell 3990 * host 3991 * @pdev: platform device found 3992 * 3993 * LOCKING: 3994 * Inherited from caller. 3995 */ 3996 static int mv_platform_probe(struct platform_device *pdev) 3997 { 3998 static int printed_version; 3999 const struct mv_sata_platform_data *mv_platform_data; 4000 const struct ata_port_info *ppi[] = 4001 { &mv_port_info[chip_soc], NULL }; 4002 struct ata_host *host; 4003 struct mv_host_priv *hpriv; 4004 struct resource *res; 4005 int n_ports, rc; 4006 4007 if (!printed_version++) 4008 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); 4009 4010 /* 4011 * Simple resource validation .. 4012 */ 4013 if (unlikely(pdev->num_resources != 2)) { 4014 dev_err(&pdev->dev, "invalid number of resources\n"); 4015 return -EINVAL; 4016 } 4017 4018 /* 4019 * Get the register base first 4020 */ 4021 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4022 if (res == NULL) 4023 return -EINVAL; 4024 4025 /* allocate host */ 4026 mv_platform_data = pdev->dev.platform_data; 4027 n_ports = mv_platform_data->n_ports; 4028 4029 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4030 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4031 4032 if (!host || !hpriv) 4033 return -ENOMEM; 4034 host->private_data = hpriv; 4035 hpriv->n_ports = n_ports; 4036 hpriv->board_idx = chip_soc; 4037 4038 host->iomap = NULL; 4039 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4040 resource_size(res)); 4041 hpriv->base -= SATAHC0_REG_BASE; 4042 4043 #if defined(CONFIG_HAVE_CLK) 4044 hpriv->clk = clk_get(&pdev->dev, NULL); 4045 if (IS_ERR(hpriv->clk)) 4046 dev_notice(&pdev->dev, "cannot get clkdev\n"); 4047 else 4048 clk_enable(hpriv->clk); 4049 #endif 4050 4051 /* 4052 * (Re-)program MBUS remapping windows if we are asked to. 4053 */ 4054 if (mv_platform_data->dram != NULL) 4055 mv_conf_mbus_windows(hpriv, mv_platform_data->dram); 4056 4057 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4058 if (rc) 4059 goto err; 4060 4061 /* initialize adapter */ 4062 rc = mv_init_host(host); 4063 if (rc) 4064 goto err; 4065 4066 dev_printk(KERN_INFO, &pdev->dev, 4067 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH, 4068 host->n_ports); 4069 4070 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt, 4071 IRQF_SHARED, &mv6_sht); 4072 err: 4073 #if defined(CONFIG_HAVE_CLK) 4074 if (!IS_ERR(hpriv->clk)) { 4075 clk_disable(hpriv->clk); 4076 clk_put(hpriv->clk); 4077 } 4078 #endif 4079 4080 return rc; 4081 } 4082 4083 /* 4084 * 4085 * mv_platform_remove - unplug a platform interface 4086 * @pdev: platform device 4087 * 4088 * A platform bus SATA device has been unplugged. Perform the needed 4089 * cleanup. Also called on module unload for any active devices. 4090 */ 4091 static int __devexit mv_platform_remove(struct platform_device *pdev) 4092 { 4093 struct device *dev = &pdev->dev; 4094 struct ata_host *host = dev_get_drvdata(dev); 4095 #if defined(CONFIG_HAVE_CLK) 4096 struct mv_host_priv *hpriv = host->private_data; 4097 #endif 4098 ata_host_detach(host); 4099 4100 #if defined(CONFIG_HAVE_CLK) 4101 if (!IS_ERR(hpriv->clk)) { 4102 clk_disable(hpriv->clk); 4103 clk_put(hpriv->clk); 4104 } 4105 #endif 4106 return 0; 4107 } 4108 4109 #ifdef CONFIG_PM 4110 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) 4111 { 4112 struct ata_host *host = dev_get_drvdata(&pdev->dev); 4113 if (host) 4114 return ata_host_suspend(host, state); 4115 else 4116 return 0; 4117 } 4118 4119 static int mv_platform_resume(struct platform_device *pdev) 4120 { 4121 struct ata_host *host = dev_get_drvdata(&pdev->dev); 4122 int ret; 4123 4124 if (host) { 4125 struct mv_host_priv *hpriv = host->private_data; 4126 const struct mv_sata_platform_data *mv_platform_data = \ 4127 pdev->dev.platform_data; 4128 /* 4129 * (Re-)program MBUS remapping windows if we are asked to. 4130 */ 4131 if (mv_platform_data->dram != NULL) 4132 mv_conf_mbus_windows(hpriv, mv_platform_data->dram); 4133 4134 /* initialize adapter */ 4135 ret = mv_init_host(host); 4136 if (ret) { 4137 printk(KERN_ERR DRV_NAME ": Error during HW init\n"); 4138 return ret; 4139 } 4140 ata_host_resume(host); 4141 } 4142 4143 return 0; 4144 } 4145 #else 4146 #define mv_platform_suspend NULL 4147 #define mv_platform_resume NULL 4148 #endif 4149 4150 static struct platform_driver mv_platform_driver = { 4151 .probe = mv_platform_probe, 4152 .remove = __devexit_p(mv_platform_remove), 4153 .suspend = mv_platform_suspend, 4154 .resume = mv_platform_resume, 4155 .driver = { 4156 .name = DRV_NAME, 4157 .owner = THIS_MODULE, 4158 }, 4159 }; 4160 4161 4162 #ifdef CONFIG_PCI 4163 static int mv_pci_init_one(struct pci_dev *pdev, 4164 const struct pci_device_id *ent); 4165 #ifdef CONFIG_PM 4166 static int mv_pci_device_resume(struct pci_dev *pdev); 4167 #endif 4168 4169 4170 static struct pci_driver mv_pci_driver = { 4171 .name = DRV_NAME, 4172 .id_table = mv_pci_tbl, 4173 .probe = mv_pci_init_one, 4174 .remove = ata_pci_remove_one, 4175 #ifdef CONFIG_PM 4176 .suspend = ata_pci_device_suspend, 4177 .resume = mv_pci_device_resume, 4178 #endif 4179 4180 }; 4181 4182 /* move to PCI layer or libata core? */ 4183 static int pci_go_64(struct pci_dev *pdev) 4184 { 4185 int rc; 4186 4187 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4188 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4189 if (rc) { 4190 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4191 if (rc) { 4192 dev_printk(KERN_ERR, &pdev->dev, 4193 "64-bit DMA enable failed\n"); 4194 return rc; 4195 } 4196 } 4197 } else { 4198 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4199 if (rc) { 4200 dev_printk(KERN_ERR, &pdev->dev, 4201 "32-bit DMA enable failed\n"); 4202 return rc; 4203 } 4204 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4205 if (rc) { 4206 dev_printk(KERN_ERR, &pdev->dev, 4207 "32-bit consistent DMA enable failed\n"); 4208 return rc; 4209 } 4210 } 4211 4212 return rc; 4213 } 4214 4215 /** 4216 * mv_print_info - Dump key info to kernel log for perusal. 4217 * @host: ATA host to print info about 4218 * 4219 * FIXME: complete this. 4220 * 4221 * LOCKING: 4222 * Inherited from caller. 4223 */ 4224 static void mv_print_info(struct ata_host *host) 4225 { 4226 struct pci_dev *pdev = to_pci_dev(host->dev); 4227 struct mv_host_priv *hpriv = host->private_data; 4228 u8 scc; 4229 const char *scc_s, *gen; 4230 4231 /* Use this to determine the HW stepping of the chip so we know 4232 * what errata to workaround 4233 */ 4234 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4235 if (scc == 0) 4236 scc_s = "SCSI"; 4237 else if (scc == 0x01) 4238 scc_s = "RAID"; 4239 else 4240 scc_s = "?"; 4241 4242 if (IS_GEN_I(hpriv)) 4243 gen = "I"; 4244 else if (IS_GEN_II(hpriv)) 4245 gen = "II"; 4246 else if (IS_GEN_IIE(hpriv)) 4247 gen = "IIE"; 4248 else 4249 gen = "?"; 4250 4251 dev_printk(KERN_INFO, &pdev->dev, 4252 "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4253 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4254 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4255 } 4256 4257 /** 4258 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4259 * @pdev: PCI device found 4260 * @ent: PCI device ID entry for the matched host 4261 * 4262 * LOCKING: 4263 * Inherited from caller. 4264 */ 4265 static int mv_pci_init_one(struct pci_dev *pdev, 4266 const struct pci_device_id *ent) 4267 { 4268 static int printed_version; 4269 unsigned int board_idx = (unsigned int)ent->driver_data; 4270 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4271 struct ata_host *host; 4272 struct mv_host_priv *hpriv; 4273 int n_ports, port, rc; 4274 4275 if (!printed_version++) 4276 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); 4277 4278 /* allocate host */ 4279 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4280 4281 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4282 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4283 if (!host || !hpriv) 4284 return -ENOMEM; 4285 host->private_data = hpriv; 4286 hpriv->n_ports = n_ports; 4287 hpriv->board_idx = board_idx; 4288 4289 /* acquire resources */ 4290 rc = pcim_enable_device(pdev); 4291 if (rc) 4292 return rc; 4293 4294 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4295 if (rc == -EBUSY) 4296 pcim_pin_device(pdev); 4297 if (rc) 4298 return rc; 4299 host->iomap = pcim_iomap_table(pdev); 4300 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4301 4302 rc = pci_go_64(pdev); 4303 if (rc) 4304 return rc; 4305 4306 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4307 if (rc) 4308 return rc; 4309 4310 for (port = 0; port < host->n_ports; port++) { 4311 struct ata_port *ap = host->ports[port]; 4312 void __iomem *port_mmio = mv_port_base(hpriv->base, port); 4313 unsigned int offset = port_mmio - hpriv->base; 4314 4315 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 4316 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 4317 } 4318 4319 /* initialize adapter */ 4320 rc = mv_init_host(host); 4321 if (rc) 4322 return rc; 4323 4324 /* Enable message-switched interrupts, if requested */ 4325 if (msi && pci_enable_msi(pdev) == 0) 4326 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4327 4328 mv_dump_pci_cfg(pdev, 0x68); 4329 mv_print_info(host); 4330 4331 pci_set_master(pdev); 4332 pci_try_set_mwi(pdev); 4333 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4334 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4335 } 4336 4337 #ifdef CONFIG_PM 4338 static int mv_pci_device_resume(struct pci_dev *pdev) 4339 { 4340 struct ata_host *host = dev_get_drvdata(&pdev->dev); 4341 int rc; 4342 4343 rc = ata_pci_device_do_resume(pdev); 4344 if (rc) 4345 return rc; 4346 4347 /* initialize adapter */ 4348 rc = mv_init_host(host); 4349 if (rc) 4350 return rc; 4351 4352 ata_host_resume(host); 4353 4354 return 0; 4355 } 4356 #endif 4357 #endif 4358 4359 static int mv_platform_probe(struct platform_device *pdev); 4360 static int __devexit mv_platform_remove(struct platform_device *pdev); 4361 4362 static int __init mv_init(void) 4363 { 4364 int rc = -ENODEV; 4365 #ifdef CONFIG_PCI 4366 rc = pci_register_driver(&mv_pci_driver); 4367 if (rc < 0) 4368 return rc; 4369 #endif 4370 rc = platform_driver_register(&mv_platform_driver); 4371 4372 #ifdef CONFIG_PCI 4373 if (rc < 0) 4374 pci_unregister_driver(&mv_pci_driver); 4375 #endif 4376 return rc; 4377 } 4378 4379 static void __exit mv_exit(void) 4380 { 4381 #ifdef CONFIG_PCI 4382 pci_unregister_driver(&mv_pci_driver); 4383 #endif 4384 platform_driver_unregister(&mv_platform_driver); 4385 } 4386 4387 MODULE_AUTHOR("Brett Russ"); 4388 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4389 MODULE_LICENSE("GPL"); 4390 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4391 MODULE_VERSION(DRV_VERSION); 4392 MODULE_ALIAS("platform:" DRV_NAME); 4393 4394 module_init(mv_init); 4395 module_exit(mv_exit); 4396