xref: /linux/drivers/ata/sata_mv.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <linux/of.h>
69 #include <linux/of_irq.h>
70 #include <scsi/scsi_host.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_device.h>
73 #include <linux/libata.h>
74 
75 #define DRV_NAME	"sata_mv"
76 #define DRV_VERSION	"1.28"
77 
78 /*
79  * module options
80  */
81 
82 #ifdef CONFIG_PCI
83 static int msi;
84 module_param(msi, int, S_IRUGO);
85 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
86 #endif
87 
88 static int irq_coalescing_io_count;
89 module_param(irq_coalescing_io_count, int, S_IRUGO);
90 MODULE_PARM_DESC(irq_coalescing_io_count,
91 		 "IRQ coalescing I/O count threshold (0..255)");
92 
93 static int irq_coalescing_usecs;
94 module_param(irq_coalescing_usecs, int, S_IRUGO);
95 MODULE_PARM_DESC(irq_coalescing_usecs,
96 		 "IRQ coalescing time threshold in usecs");
97 
98 enum {
99 	/* BAR's are enumerated in terms of pci_resource_start() terms */
100 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
101 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
102 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
103 
104 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
105 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
106 
107 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
108 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
109 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
110 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
111 
112 	MV_PCI_REG_BASE		= 0,
113 
114 	/*
115 	 * Per-chip ("all ports") interrupt coalescing feature.
116 	 * This is only for GEN_II / GEN_IIE hardware.
117 	 *
118 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
119 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
120 	 */
121 	COAL_REG_BASE		= 0x18000,
122 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
123 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
124 
125 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
126 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
127 
128 	/*
129 	 * Registers for the (unused here) transaction coalescing feature:
130 	 */
131 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
132 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
133 
134 	SATAHC0_REG_BASE	= 0x20000,
135 	FLASH_CTL		= 0x1046c,
136 	GPIO_PORT_CTL		= 0x104f0,
137 	RESET_CFG		= 0x180d8,
138 
139 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
140 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
141 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
142 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
143 
144 	MV_MAX_Q_DEPTH		= 32,
145 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
146 
147 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
148 	 * CRPB needs alignment on a 256B boundary. Size == 256B
149 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
150 	 */
151 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
152 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
153 	MV_MAX_SG_CT		= 256,
154 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
155 
156 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
157 	MV_PORT_HC_SHIFT	= 2,
158 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
159 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
160 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
161 
162 	/* Host Flags */
163 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
164 
165 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
166 
167 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
168 
169 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
170 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
171 
172 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
173 
174 	CRQB_FLAG_READ		= (1 << 0),
175 	CRQB_TAG_SHIFT		= 1,
176 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
177 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
178 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
179 	CRQB_CMD_ADDR_SHIFT	= 8,
180 	CRQB_CMD_CS		= (0x2 << 11),
181 	CRQB_CMD_LAST		= (1 << 15),
182 
183 	CRPB_FLAG_STATUS_SHIFT	= 8,
184 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
185 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
186 
187 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
188 
189 	/* PCI interface registers */
190 
191 	MV_PCI_COMMAND		= 0xc00,
192 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
193 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
194 
195 	PCI_MAIN_CMD_STS	= 0xd30,
196 	STOP_PCI_MASTER		= (1 << 2),
197 	PCI_MASTER_EMPTY	= (1 << 3),
198 	GLOB_SFT_RST		= (1 << 4),
199 
200 	MV_PCI_MODE		= 0xd00,
201 	MV_PCI_MODE_MASK	= 0x30,
202 
203 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
204 	MV_PCI_DISC_TIMER	= 0xd04,
205 	MV_PCI_MSI_TRIGGER	= 0xc38,
206 	MV_PCI_SERR_MASK	= 0xc28,
207 	MV_PCI_XBAR_TMOUT	= 0x1d04,
208 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
209 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
210 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
211 	MV_PCI_ERR_COMMAND	= 0x1d50,
212 
213 	PCI_IRQ_CAUSE		= 0x1d58,
214 	PCI_IRQ_MASK		= 0x1d5c,
215 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
216 
217 	PCIE_IRQ_CAUSE		= 0x1900,
218 	PCIE_IRQ_MASK		= 0x1910,
219 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
220 
221 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
222 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
223 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
224 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
225 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
226 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
227 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
228 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
229 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
230 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
231 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
232 	PCI_ERR			= (1 << 18),
233 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
234 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
235 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
236 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
237 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
238 	GPIO_INT		= (1 << 22),
239 	SELF_INT		= (1 << 23),
240 	TWSI_INT		= (1 << 24),
241 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
242 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
243 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
244 
245 	/* SATAHC registers */
246 	HC_CFG			= 0x00,
247 
248 	HC_IRQ_CAUSE		= 0x14,
249 	DMA_IRQ			= (1 << 0),	/* shift by port # */
250 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
251 	DEV_IRQ			= (1 << 8),	/* shift by port # */
252 
253 	/*
254 	 * Per-HC (Host-Controller) interrupt coalescing feature.
255 	 * This is present on all chip generations.
256 	 *
257 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
258 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
259 	 */
260 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
261 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
262 
263 	SOC_LED_CTRL		= 0x2c,
264 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
265 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
266 						/*  with dev activity LED */
267 
268 	/* Shadow block registers */
269 	SHD_BLK			= 0x100,
270 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
271 
272 	/* SATA registers */
273 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
274 	SATA_ACTIVE		= 0x350,
275 	FIS_IRQ_CAUSE		= 0x364,
276 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
277 
278 	LTMODE			= 0x30c,	/* requires read-after-write */
279 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
280 
281 	PHY_MODE2		= 0x330,
282 	PHY_MODE3		= 0x310,
283 
284 	PHY_MODE4		= 0x314,	/* requires read-after-write */
285 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
286 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
287 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
288 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
289 
290 	SATA_IFCTL		= 0x344,
291 	SATA_TESTCTL		= 0x348,
292 	SATA_IFSTAT		= 0x34c,
293 	VENDOR_UNIQUE_FIS	= 0x35c,
294 
295 	FISCFG			= 0x360,
296 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
297 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
298 
299 	PHY_MODE9_GEN2		= 0x398,
300 	PHY_MODE9_GEN1		= 0x39c,
301 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
302 
303 	MV5_PHY_MODE		= 0x74,
304 	MV5_LTMODE		= 0x30,
305 	MV5_PHY_CTL		= 0x0C,
306 	SATA_IFCFG		= 0x050,
307 
308 	MV_M2_PREAMP_MASK	= 0x7e0,
309 
310 	/* Port registers */
311 	EDMA_CFG		= 0,
312 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
313 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
314 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
315 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
316 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
317 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
318 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
319 
320 	EDMA_ERR_IRQ_CAUSE	= 0x8,
321 	EDMA_ERR_IRQ_MASK	= 0xc,
322 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
323 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
324 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
325 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
326 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
327 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
328 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
329 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
330 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
331 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
332 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
333 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
334 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
335 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
336 
337 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
338 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
339 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
340 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
341 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
342 
343 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
344 
345 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
346 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
347 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
348 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
349 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
350 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
351 
352 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
353 
354 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
355 	EDMA_ERR_OVERRUN_5	= (1 << 5),
356 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
357 
358 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
359 				  EDMA_ERR_LNK_CTRL_RX_1 |
360 				  EDMA_ERR_LNK_CTRL_RX_3 |
361 				  EDMA_ERR_LNK_CTRL_TX,
362 
363 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
364 				  EDMA_ERR_PRD_PAR |
365 				  EDMA_ERR_DEV_DCON |
366 				  EDMA_ERR_DEV_CON |
367 				  EDMA_ERR_SERR |
368 				  EDMA_ERR_SELF_DIS |
369 				  EDMA_ERR_CRQB_PAR |
370 				  EDMA_ERR_CRPB_PAR |
371 				  EDMA_ERR_INTRL_PAR |
372 				  EDMA_ERR_IORDY |
373 				  EDMA_ERR_LNK_CTRL_RX_2 |
374 				  EDMA_ERR_LNK_DATA_RX |
375 				  EDMA_ERR_LNK_DATA_TX |
376 				  EDMA_ERR_TRANS_PROTO,
377 
378 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
379 				  EDMA_ERR_PRD_PAR |
380 				  EDMA_ERR_DEV_DCON |
381 				  EDMA_ERR_DEV_CON |
382 				  EDMA_ERR_OVERRUN_5 |
383 				  EDMA_ERR_UNDERRUN_5 |
384 				  EDMA_ERR_SELF_DIS_5 |
385 				  EDMA_ERR_CRQB_PAR |
386 				  EDMA_ERR_CRPB_PAR |
387 				  EDMA_ERR_INTRL_PAR |
388 				  EDMA_ERR_IORDY,
389 
390 	EDMA_REQ_Q_BASE_HI	= 0x10,
391 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
392 
393 	EDMA_REQ_Q_OUT_PTR	= 0x18,
394 	EDMA_REQ_Q_PTR_SHIFT	= 5,
395 
396 	EDMA_RSP_Q_BASE_HI	= 0x1c,
397 	EDMA_RSP_Q_IN_PTR	= 0x20,
398 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
399 	EDMA_RSP_Q_PTR_SHIFT	= 3,
400 
401 	EDMA_CMD		= 0x28,		/* EDMA command register */
402 	EDMA_EN			= (1 << 0),	/* enable EDMA */
403 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
404 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
405 
406 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
407 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
408 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
409 
410 	EDMA_IORDY_TMOUT	= 0x34,
411 	EDMA_ARB_CFG		= 0x38,
412 
413 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
414 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
415 
416 	BMDMA_CMD		= 0x224,	/* bmdma command register */
417 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
418 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
419 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
420 
421 	/* Host private flags (hp_flags) */
422 	MV_HP_FLAG_MSI		= (1 << 0),
423 	MV_HP_ERRATA_50XXB0	= (1 << 1),
424 	MV_HP_ERRATA_50XXB2	= (1 << 2),
425 	MV_HP_ERRATA_60X1B2	= (1 << 3),
426 	MV_HP_ERRATA_60X1C0	= (1 << 4),
427 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
428 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
429 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
430 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
431 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
432 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
433 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
434 
435 	/* Port private flags (pp_flags) */
436 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
437 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
438 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
439 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
440 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
441 };
442 
443 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
444 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
445 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
446 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
447 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
448 
449 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
450 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
451 
452 enum {
453 	/* DMA boundary 0xffff is required by the s/g splitting
454 	 * we need on /length/ in mv_fill-sg().
455 	 */
456 	MV_DMA_BOUNDARY		= 0xffffU,
457 
458 	/* mask of register bits containing lower 32 bits
459 	 * of EDMA request queue DMA address
460 	 */
461 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
462 
463 	/* ditto, for response queue */
464 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
465 };
466 
467 enum chip_type {
468 	chip_504x,
469 	chip_508x,
470 	chip_5080,
471 	chip_604x,
472 	chip_608x,
473 	chip_6042,
474 	chip_7042,
475 	chip_soc,
476 };
477 
478 /* Command ReQuest Block: 32B */
479 struct mv_crqb {
480 	__le32			sg_addr;
481 	__le32			sg_addr_hi;
482 	__le16			ctrl_flags;
483 	__le16			ata_cmd[11];
484 };
485 
486 struct mv_crqb_iie {
487 	__le32			addr;
488 	__le32			addr_hi;
489 	__le32			flags;
490 	__le32			len;
491 	__le32			ata_cmd[4];
492 };
493 
494 /* Command ResPonse Block: 8B */
495 struct mv_crpb {
496 	__le16			id;
497 	__le16			flags;
498 	__le32			tmstmp;
499 };
500 
501 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
502 struct mv_sg {
503 	__le32			addr;
504 	__le32			flags_size;
505 	__le32			addr_hi;
506 	__le32			reserved;
507 };
508 
509 /*
510  * We keep a local cache of a few frequently accessed port
511  * registers here, to avoid having to read them (very slow)
512  * when switching between EDMA and non-EDMA modes.
513  */
514 struct mv_cached_regs {
515 	u32			fiscfg;
516 	u32			ltmode;
517 	u32			haltcond;
518 	u32			unknown_rsvd;
519 };
520 
521 struct mv_port_priv {
522 	struct mv_crqb		*crqb;
523 	dma_addr_t		crqb_dma;
524 	struct mv_crpb		*crpb;
525 	dma_addr_t		crpb_dma;
526 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
527 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
528 
529 	unsigned int		req_idx;
530 	unsigned int		resp_idx;
531 
532 	u32			pp_flags;
533 	struct mv_cached_regs	cached;
534 	unsigned int		delayed_eh_pmp_map;
535 };
536 
537 struct mv_port_signal {
538 	u32			amps;
539 	u32			pre;
540 };
541 
542 struct mv_host_priv {
543 	u32			hp_flags;
544 	unsigned int 		board_idx;
545 	u32			main_irq_mask;
546 	struct mv_port_signal	signal[8];
547 	const struct mv_hw_ops	*ops;
548 	int			n_ports;
549 	void __iomem		*base;
550 	void __iomem		*main_irq_cause_addr;
551 	void __iomem		*main_irq_mask_addr;
552 	u32			irq_cause_offset;
553 	u32			irq_mask_offset;
554 	u32			unmask_all_irqs;
555 
556 	/*
557 	 * Needed on some devices that require their clocks to be enabled.
558 	 * These are optional: if the platform device does not have any
559 	 * clocks, they won't be used.  Also, if the underlying hardware
560 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
561 	 * all the clock operations become no-ops (see clk.h).
562 	 */
563 	struct clk		*clk;
564 	struct clk              **port_clks;
565 	/*
566 	 * These consistent DMA memory pools give us guaranteed
567 	 * alignment for hardware-accessed data structures,
568 	 * and less memory waste in accomplishing the alignment.
569 	 */
570 	struct dma_pool		*crqb_pool;
571 	struct dma_pool		*crpb_pool;
572 	struct dma_pool		*sg_tbl_pool;
573 };
574 
575 struct mv_hw_ops {
576 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
577 			   unsigned int port);
578 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
579 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
580 			   void __iomem *mmio);
581 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
582 			unsigned int n_hc);
583 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
584 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
585 };
586 
587 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
588 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
589 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
590 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
591 static int mv_port_start(struct ata_port *ap);
592 static void mv_port_stop(struct ata_port *ap);
593 static int mv_qc_defer(struct ata_queued_cmd *qc);
594 static void mv_qc_prep(struct ata_queued_cmd *qc);
595 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
596 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
597 static int mv_hardreset(struct ata_link *link, unsigned int *class,
598 			unsigned long deadline);
599 static void mv_eh_freeze(struct ata_port *ap);
600 static void mv_eh_thaw(struct ata_port *ap);
601 static void mv6_dev_config(struct ata_device *dev);
602 
603 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
604 			   unsigned int port);
605 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
606 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
607 			   void __iomem *mmio);
608 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
609 			unsigned int n_hc);
610 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
611 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
612 
613 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
614 			   unsigned int port);
615 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
616 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
617 			   void __iomem *mmio);
618 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
619 			unsigned int n_hc);
620 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
621 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
622 				      void __iomem *mmio);
623 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
624 				      void __iomem *mmio);
625 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
626 				  void __iomem *mmio, unsigned int n_hc);
627 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
628 				      void __iomem *mmio);
629 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
630 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
631 				  void __iomem *mmio, unsigned int port);
632 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
633 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
634 			     unsigned int port_no);
635 static int mv_stop_edma(struct ata_port *ap);
636 static int mv_stop_edma_engine(void __iomem *port_mmio);
637 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
638 
639 static void mv_pmp_select(struct ata_port *ap, int pmp);
640 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
641 				unsigned long deadline);
642 static int  mv_softreset(struct ata_link *link, unsigned int *class,
643 				unsigned long deadline);
644 static void mv_pmp_error_handler(struct ata_port *ap);
645 static void mv_process_crpb_entries(struct ata_port *ap,
646 					struct mv_port_priv *pp);
647 
648 static void mv_sff_irq_clear(struct ata_port *ap);
649 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
650 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
651 static void mv_bmdma_start(struct ata_queued_cmd *qc);
652 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
653 static u8   mv_bmdma_status(struct ata_port *ap);
654 static u8 mv_sff_check_status(struct ata_port *ap);
655 
656 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
657  * because we have to allow room for worst case splitting of
658  * PRDs for 64K boundaries in mv_fill_sg().
659  */
660 #ifdef CONFIG_PCI
661 static struct scsi_host_template mv5_sht = {
662 	ATA_BASE_SHT(DRV_NAME),
663 	.sg_tablesize		= MV_MAX_SG_CT / 2,
664 	.dma_boundary		= MV_DMA_BOUNDARY,
665 };
666 #endif
667 static struct scsi_host_template mv6_sht = {
668 	ATA_NCQ_SHT(DRV_NAME),
669 	.can_queue		= MV_MAX_Q_DEPTH - 1,
670 	.sg_tablesize		= MV_MAX_SG_CT / 2,
671 	.dma_boundary		= MV_DMA_BOUNDARY,
672 };
673 
674 static struct ata_port_operations mv5_ops = {
675 	.inherits		= &ata_sff_port_ops,
676 
677 	.lost_interrupt		= ATA_OP_NULL,
678 
679 	.qc_defer		= mv_qc_defer,
680 	.qc_prep		= mv_qc_prep,
681 	.qc_issue		= mv_qc_issue,
682 
683 	.freeze			= mv_eh_freeze,
684 	.thaw			= mv_eh_thaw,
685 	.hardreset		= mv_hardreset,
686 
687 	.scr_read		= mv5_scr_read,
688 	.scr_write		= mv5_scr_write,
689 
690 	.port_start		= mv_port_start,
691 	.port_stop		= mv_port_stop,
692 };
693 
694 static struct ata_port_operations mv6_ops = {
695 	.inherits		= &ata_bmdma_port_ops,
696 
697 	.lost_interrupt		= ATA_OP_NULL,
698 
699 	.qc_defer		= mv_qc_defer,
700 	.qc_prep		= mv_qc_prep,
701 	.qc_issue		= mv_qc_issue,
702 
703 	.dev_config             = mv6_dev_config,
704 
705 	.freeze			= mv_eh_freeze,
706 	.thaw			= mv_eh_thaw,
707 	.hardreset		= mv_hardreset,
708 	.softreset		= mv_softreset,
709 	.pmp_hardreset		= mv_pmp_hardreset,
710 	.pmp_softreset		= mv_softreset,
711 	.error_handler		= mv_pmp_error_handler,
712 
713 	.scr_read		= mv_scr_read,
714 	.scr_write		= mv_scr_write,
715 
716 	.sff_check_status	= mv_sff_check_status,
717 	.sff_irq_clear		= mv_sff_irq_clear,
718 	.check_atapi_dma	= mv_check_atapi_dma,
719 	.bmdma_setup		= mv_bmdma_setup,
720 	.bmdma_start		= mv_bmdma_start,
721 	.bmdma_stop		= mv_bmdma_stop,
722 	.bmdma_status		= mv_bmdma_status,
723 
724 	.port_start		= mv_port_start,
725 	.port_stop		= mv_port_stop,
726 };
727 
728 static struct ata_port_operations mv_iie_ops = {
729 	.inherits		= &mv6_ops,
730 	.dev_config		= ATA_OP_NULL,
731 	.qc_prep		= mv_qc_prep_iie,
732 };
733 
734 static const struct ata_port_info mv_port_info[] = {
735 	{  /* chip_504x */
736 		.flags		= MV_GEN_I_FLAGS,
737 		.pio_mask	= ATA_PIO4,
738 		.udma_mask	= ATA_UDMA6,
739 		.port_ops	= &mv5_ops,
740 	},
741 	{  /* chip_508x */
742 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
743 		.pio_mask	= ATA_PIO4,
744 		.udma_mask	= ATA_UDMA6,
745 		.port_ops	= &mv5_ops,
746 	},
747 	{  /* chip_5080 */
748 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
749 		.pio_mask	= ATA_PIO4,
750 		.udma_mask	= ATA_UDMA6,
751 		.port_ops	= &mv5_ops,
752 	},
753 	{  /* chip_604x */
754 		.flags		= MV_GEN_II_FLAGS,
755 		.pio_mask	= ATA_PIO4,
756 		.udma_mask	= ATA_UDMA6,
757 		.port_ops	= &mv6_ops,
758 	},
759 	{  /* chip_608x */
760 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
761 		.pio_mask	= ATA_PIO4,
762 		.udma_mask	= ATA_UDMA6,
763 		.port_ops	= &mv6_ops,
764 	},
765 	{  /* chip_6042 */
766 		.flags		= MV_GEN_IIE_FLAGS,
767 		.pio_mask	= ATA_PIO4,
768 		.udma_mask	= ATA_UDMA6,
769 		.port_ops	= &mv_iie_ops,
770 	},
771 	{  /* chip_7042 */
772 		.flags		= MV_GEN_IIE_FLAGS,
773 		.pio_mask	= ATA_PIO4,
774 		.udma_mask	= ATA_UDMA6,
775 		.port_ops	= &mv_iie_ops,
776 	},
777 	{  /* chip_soc */
778 		.flags		= MV_GEN_IIE_FLAGS,
779 		.pio_mask	= ATA_PIO4,
780 		.udma_mask	= ATA_UDMA6,
781 		.port_ops	= &mv_iie_ops,
782 	},
783 };
784 
785 static const struct pci_device_id mv_pci_tbl[] = {
786 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
787 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
788 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
789 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
790 	/* RocketRAID 1720/174x have different identifiers */
791 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
792 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
793 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
794 
795 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
796 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
797 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
798 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
799 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
800 
801 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
802 
803 	/* Adaptec 1430SA */
804 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
805 
806 	/* Marvell 7042 support */
807 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
808 
809 	/* Highpoint RocketRAID PCIe series */
810 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
811 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
812 
813 	{ }			/* terminate list */
814 };
815 
816 static const struct mv_hw_ops mv5xxx_ops = {
817 	.phy_errata		= mv5_phy_errata,
818 	.enable_leds		= mv5_enable_leds,
819 	.read_preamp		= mv5_read_preamp,
820 	.reset_hc		= mv5_reset_hc,
821 	.reset_flash		= mv5_reset_flash,
822 	.reset_bus		= mv5_reset_bus,
823 };
824 
825 static const struct mv_hw_ops mv6xxx_ops = {
826 	.phy_errata		= mv6_phy_errata,
827 	.enable_leds		= mv6_enable_leds,
828 	.read_preamp		= mv6_read_preamp,
829 	.reset_hc		= mv6_reset_hc,
830 	.reset_flash		= mv6_reset_flash,
831 	.reset_bus		= mv_reset_pci_bus,
832 };
833 
834 static const struct mv_hw_ops mv_soc_ops = {
835 	.phy_errata		= mv6_phy_errata,
836 	.enable_leds		= mv_soc_enable_leds,
837 	.read_preamp		= mv_soc_read_preamp,
838 	.reset_hc		= mv_soc_reset_hc,
839 	.reset_flash		= mv_soc_reset_flash,
840 	.reset_bus		= mv_soc_reset_bus,
841 };
842 
843 static const struct mv_hw_ops mv_soc_65n_ops = {
844 	.phy_errata		= mv_soc_65n_phy_errata,
845 	.enable_leds		= mv_soc_enable_leds,
846 	.reset_hc		= mv_soc_reset_hc,
847 	.reset_flash		= mv_soc_reset_flash,
848 	.reset_bus		= mv_soc_reset_bus,
849 };
850 
851 /*
852  * Functions
853  */
854 
855 static inline void writelfl(unsigned long data, void __iomem *addr)
856 {
857 	writel(data, addr);
858 	(void) readl(addr);	/* flush to avoid PCI posted write */
859 }
860 
861 static inline unsigned int mv_hc_from_port(unsigned int port)
862 {
863 	return port >> MV_PORT_HC_SHIFT;
864 }
865 
866 static inline unsigned int mv_hardport_from_port(unsigned int port)
867 {
868 	return port & MV_PORT_MASK;
869 }
870 
871 /*
872  * Consolidate some rather tricky bit shift calculations.
873  * This is hot-path stuff, so not a function.
874  * Simple code, with two return values, so macro rather than inline.
875  *
876  * port is the sole input, in range 0..7.
877  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
878  * hardport is the other output, in range 0..3.
879  *
880  * Note that port and hardport may be the same variable in some cases.
881  */
882 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
883 {								\
884 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
885 	hardport = mv_hardport_from_port(port);			\
886 	shift   += hardport * 2;				\
887 }
888 
889 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
890 {
891 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
892 }
893 
894 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
895 						 unsigned int port)
896 {
897 	return mv_hc_base(base, mv_hc_from_port(port));
898 }
899 
900 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
901 {
902 	return  mv_hc_base_from_port(base, port) +
903 		MV_SATAHC_ARBTR_REG_SZ +
904 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
905 }
906 
907 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
908 {
909 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
910 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
911 
912 	return hc_mmio + ofs;
913 }
914 
915 static inline void __iomem *mv_host_base(struct ata_host *host)
916 {
917 	struct mv_host_priv *hpriv = host->private_data;
918 	return hpriv->base;
919 }
920 
921 static inline void __iomem *mv_ap_base(struct ata_port *ap)
922 {
923 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
924 }
925 
926 static inline int mv_get_hc_count(unsigned long port_flags)
927 {
928 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
929 }
930 
931 /**
932  *      mv_save_cached_regs - (re-)initialize cached port registers
933  *      @ap: the port whose registers we are caching
934  *
935  *	Initialize the local cache of port registers,
936  *	so that reading them over and over again can
937  *	be avoided on the hotter paths of this driver.
938  *	This saves a few microseconds each time we switch
939  *	to/from EDMA mode to perform (eg.) a drive cache flush.
940  */
941 static void mv_save_cached_regs(struct ata_port *ap)
942 {
943 	void __iomem *port_mmio = mv_ap_base(ap);
944 	struct mv_port_priv *pp = ap->private_data;
945 
946 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
947 	pp->cached.ltmode = readl(port_mmio + LTMODE);
948 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
949 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
950 }
951 
952 /**
953  *      mv_write_cached_reg - write to a cached port register
954  *      @addr: hardware address of the register
955  *      @old: pointer to cached value of the register
956  *      @new: new value for the register
957  *
958  *	Write a new value to a cached register,
959  *	but only if the value is different from before.
960  */
961 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
962 {
963 	if (new != *old) {
964 		unsigned long laddr;
965 		*old = new;
966 		/*
967 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
968 		 * Read-after-write is needed to prevent generating 64-bit
969 		 * write cycles on the PCI bus for SATA interface registers
970 		 * at offsets ending in 0x4 or 0xc.
971 		 *
972 		 * Looks like a lot of fuss, but it avoids an unnecessary
973 		 * +1 usec read-after-write delay for unaffected registers.
974 		 */
975 		laddr = (long)addr & 0xffff;
976 		if (laddr >= 0x300 && laddr <= 0x33c) {
977 			laddr &= 0x000f;
978 			if (laddr == 0x4 || laddr == 0xc) {
979 				writelfl(new, addr); /* read after write */
980 				return;
981 			}
982 		}
983 		writel(new, addr); /* unaffected by the errata */
984 	}
985 }
986 
987 static void mv_set_edma_ptrs(void __iomem *port_mmio,
988 			     struct mv_host_priv *hpriv,
989 			     struct mv_port_priv *pp)
990 {
991 	u32 index;
992 
993 	/*
994 	 * initialize request queue
995 	 */
996 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
997 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
998 
999 	WARN_ON(pp->crqb_dma & 0x3ff);
1000 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1001 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1002 		 port_mmio + EDMA_REQ_Q_IN_PTR);
1003 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1004 
1005 	/*
1006 	 * initialize response queue
1007 	 */
1008 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1009 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1010 
1011 	WARN_ON(pp->crpb_dma & 0xff);
1012 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1013 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1014 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1015 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1016 }
1017 
1018 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1019 {
1020 	/*
1021 	 * When writing to the main_irq_mask in hardware,
1022 	 * we must ensure exclusivity between the interrupt coalescing bits
1023 	 * and the corresponding individual port DONE_IRQ bits.
1024 	 *
1025 	 * Note that this register is really an "IRQ enable" register,
1026 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1027 	 */
1028 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1029 		mask &= ~DONE_IRQ_0_3;
1030 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1031 		mask &= ~DONE_IRQ_4_7;
1032 	writelfl(mask, hpriv->main_irq_mask_addr);
1033 }
1034 
1035 static void mv_set_main_irq_mask(struct ata_host *host,
1036 				 u32 disable_bits, u32 enable_bits)
1037 {
1038 	struct mv_host_priv *hpriv = host->private_data;
1039 	u32 old_mask, new_mask;
1040 
1041 	old_mask = hpriv->main_irq_mask;
1042 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1043 	if (new_mask != old_mask) {
1044 		hpriv->main_irq_mask = new_mask;
1045 		mv_write_main_irq_mask(new_mask, hpriv);
1046 	}
1047 }
1048 
1049 static void mv_enable_port_irqs(struct ata_port *ap,
1050 				     unsigned int port_bits)
1051 {
1052 	unsigned int shift, hardport, port = ap->port_no;
1053 	u32 disable_bits, enable_bits;
1054 
1055 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1056 
1057 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1058 	enable_bits  = port_bits << shift;
1059 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1060 }
1061 
1062 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1063 					  void __iomem *port_mmio,
1064 					  unsigned int port_irqs)
1065 {
1066 	struct mv_host_priv *hpriv = ap->host->private_data;
1067 	int hardport = mv_hardport_from_port(ap->port_no);
1068 	void __iomem *hc_mmio = mv_hc_base_from_port(
1069 				mv_host_base(ap->host), ap->port_no);
1070 	u32 hc_irq_cause;
1071 
1072 	/* clear EDMA event indicators, if any */
1073 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1074 
1075 	/* clear pending irq events */
1076 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1077 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1078 
1079 	/* clear FIS IRQ Cause */
1080 	if (IS_GEN_IIE(hpriv))
1081 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1082 
1083 	mv_enable_port_irqs(ap, port_irqs);
1084 }
1085 
1086 static void mv_set_irq_coalescing(struct ata_host *host,
1087 				  unsigned int count, unsigned int usecs)
1088 {
1089 	struct mv_host_priv *hpriv = host->private_data;
1090 	void __iomem *mmio = hpriv->base, *hc_mmio;
1091 	u32 coal_enable = 0;
1092 	unsigned long flags;
1093 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1094 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1095 							ALL_PORTS_COAL_DONE;
1096 
1097 	/* Disable IRQ coalescing if either threshold is zero */
1098 	if (!usecs || !count) {
1099 		clks = count = 0;
1100 	} else {
1101 		/* Respect maximum limits of the hardware */
1102 		clks = usecs * COAL_CLOCKS_PER_USEC;
1103 		if (clks > MAX_COAL_TIME_THRESHOLD)
1104 			clks = MAX_COAL_TIME_THRESHOLD;
1105 		if (count > MAX_COAL_IO_COUNT)
1106 			count = MAX_COAL_IO_COUNT;
1107 	}
1108 
1109 	spin_lock_irqsave(&host->lock, flags);
1110 	mv_set_main_irq_mask(host, coal_disable, 0);
1111 
1112 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1113 		/*
1114 		 * GEN_II/GEN_IIE with dual host controllers:
1115 		 * one set of global thresholds for the entire chip.
1116 		 */
1117 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1118 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1119 		/* clear leftover coal IRQ bit */
1120 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1121 		if (count)
1122 			coal_enable = ALL_PORTS_COAL_DONE;
1123 		clks = count = 0; /* force clearing of regular regs below */
1124 	}
1125 
1126 	/*
1127 	 * All chips: independent thresholds for each HC on the chip.
1128 	 */
1129 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1130 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1131 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1132 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1133 	if (count)
1134 		coal_enable |= PORTS_0_3_COAL_DONE;
1135 	if (is_dual_hc) {
1136 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1137 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1138 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1139 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1140 		if (count)
1141 			coal_enable |= PORTS_4_7_COAL_DONE;
1142 	}
1143 
1144 	mv_set_main_irq_mask(host, 0, coal_enable);
1145 	spin_unlock_irqrestore(&host->lock, flags);
1146 }
1147 
1148 /**
1149  *      mv_start_edma - Enable eDMA engine
1150  *      @base: port base address
1151  *      @pp: port private data
1152  *
1153  *      Verify the local cache of the eDMA state is accurate with a
1154  *      WARN_ON.
1155  *
1156  *      LOCKING:
1157  *      Inherited from caller.
1158  */
1159 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1160 			 struct mv_port_priv *pp, u8 protocol)
1161 {
1162 	int want_ncq = (protocol == ATA_PROT_NCQ);
1163 
1164 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1165 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1166 		if (want_ncq != using_ncq)
1167 			mv_stop_edma(ap);
1168 	}
1169 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1170 		struct mv_host_priv *hpriv = ap->host->private_data;
1171 
1172 		mv_edma_cfg(ap, want_ncq, 1);
1173 
1174 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1175 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1176 
1177 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1178 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1179 	}
1180 }
1181 
1182 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1183 {
1184 	void __iomem *port_mmio = mv_ap_base(ap);
1185 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1186 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1187 	int i;
1188 
1189 	/*
1190 	 * Wait for the EDMA engine to finish transactions in progress.
1191 	 * No idea what a good "timeout" value might be, but measurements
1192 	 * indicate that it often requires hundreds of microseconds
1193 	 * with two drives in-use.  So we use the 15msec value above
1194 	 * as a rough guess at what even more drives might require.
1195 	 */
1196 	for (i = 0; i < timeout; ++i) {
1197 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1198 		if ((edma_stat & empty_idle) == empty_idle)
1199 			break;
1200 		udelay(per_loop);
1201 	}
1202 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1203 }
1204 
1205 /**
1206  *      mv_stop_edma_engine - Disable eDMA engine
1207  *      @port_mmio: io base address
1208  *
1209  *      LOCKING:
1210  *      Inherited from caller.
1211  */
1212 static int mv_stop_edma_engine(void __iomem *port_mmio)
1213 {
1214 	int i;
1215 
1216 	/* Disable eDMA.  The disable bit auto clears. */
1217 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1218 
1219 	/* Wait for the chip to confirm eDMA is off. */
1220 	for (i = 10000; i > 0; i--) {
1221 		u32 reg = readl(port_mmio + EDMA_CMD);
1222 		if (!(reg & EDMA_EN))
1223 			return 0;
1224 		udelay(10);
1225 	}
1226 	return -EIO;
1227 }
1228 
1229 static int mv_stop_edma(struct ata_port *ap)
1230 {
1231 	void __iomem *port_mmio = mv_ap_base(ap);
1232 	struct mv_port_priv *pp = ap->private_data;
1233 	int err = 0;
1234 
1235 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1236 		return 0;
1237 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1238 	mv_wait_for_edma_empty_idle(ap);
1239 	if (mv_stop_edma_engine(port_mmio)) {
1240 		ata_port_err(ap, "Unable to stop eDMA\n");
1241 		err = -EIO;
1242 	}
1243 	mv_edma_cfg(ap, 0, 0);
1244 	return err;
1245 }
1246 
1247 #ifdef ATA_DEBUG
1248 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1249 {
1250 	int b, w;
1251 	for (b = 0; b < bytes; ) {
1252 		DPRINTK("%p: ", start + b);
1253 		for (w = 0; b < bytes && w < 4; w++) {
1254 			printk("%08x ", readl(start + b));
1255 			b += sizeof(u32);
1256 		}
1257 		printk("\n");
1258 	}
1259 }
1260 #endif
1261 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1262 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1263 {
1264 #ifdef ATA_DEBUG
1265 	int b, w;
1266 	u32 dw;
1267 	for (b = 0; b < bytes; ) {
1268 		DPRINTK("%02x: ", b);
1269 		for (w = 0; b < bytes && w < 4; w++) {
1270 			(void) pci_read_config_dword(pdev, b, &dw);
1271 			printk("%08x ", dw);
1272 			b += sizeof(u32);
1273 		}
1274 		printk("\n");
1275 	}
1276 #endif
1277 }
1278 #endif
1279 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1280 			     struct pci_dev *pdev)
1281 {
1282 #ifdef ATA_DEBUG
1283 	void __iomem *hc_base = mv_hc_base(mmio_base,
1284 					   port >> MV_PORT_HC_SHIFT);
1285 	void __iomem *port_base;
1286 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1287 
1288 	if (0 > port) {
1289 		start_hc = start_port = 0;
1290 		num_ports = 8;		/* shld be benign for 4 port devs */
1291 		num_hcs = 2;
1292 	} else {
1293 		start_hc = port >> MV_PORT_HC_SHIFT;
1294 		start_port = port;
1295 		num_ports = num_hcs = 1;
1296 	}
1297 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1298 		num_ports > 1 ? num_ports - 1 : start_port);
1299 
1300 	if (NULL != pdev) {
1301 		DPRINTK("PCI config space regs:\n");
1302 		mv_dump_pci_cfg(pdev, 0x68);
1303 	}
1304 	DPRINTK("PCI regs:\n");
1305 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1306 	mv_dump_mem(mmio_base+0xd00, 0x34);
1307 	mv_dump_mem(mmio_base+0xf00, 0x4);
1308 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1309 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1310 		hc_base = mv_hc_base(mmio_base, hc);
1311 		DPRINTK("HC regs (HC %i):\n", hc);
1312 		mv_dump_mem(hc_base, 0x1c);
1313 	}
1314 	for (p = start_port; p < start_port + num_ports; p++) {
1315 		port_base = mv_port_base(mmio_base, p);
1316 		DPRINTK("EDMA regs (port %i):\n", p);
1317 		mv_dump_mem(port_base, 0x54);
1318 		DPRINTK("SATA regs (port %i):\n", p);
1319 		mv_dump_mem(port_base+0x300, 0x60);
1320 	}
1321 #endif
1322 }
1323 
1324 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1325 {
1326 	unsigned int ofs;
1327 
1328 	switch (sc_reg_in) {
1329 	case SCR_STATUS:
1330 	case SCR_CONTROL:
1331 	case SCR_ERROR:
1332 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1333 		break;
1334 	case SCR_ACTIVE:
1335 		ofs = SATA_ACTIVE;   /* active is not with the others */
1336 		break;
1337 	default:
1338 		ofs = 0xffffffffU;
1339 		break;
1340 	}
1341 	return ofs;
1342 }
1343 
1344 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1345 {
1346 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1347 
1348 	if (ofs != 0xffffffffU) {
1349 		*val = readl(mv_ap_base(link->ap) + ofs);
1350 		return 0;
1351 	} else
1352 		return -EINVAL;
1353 }
1354 
1355 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1356 {
1357 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1358 
1359 	if (ofs != 0xffffffffU) {
1360 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1361 		if (sc_reg_in == SCR_CONTROL) {
1362 			/*
1363 			 * Workaround for 88SX60x1 FEr SATA#26:
1364 			 *
1365 			 * COMRESETs have to take care not to accidentally
1366 			 * put the drive to sleep when writing SCR_CONTROL.
1367 			 * Setting bits 12..15 prevents this problem.
1368 			 *
1369 			 * So if we see an outbound COMMRESET, set those bits.
1370 			 * Ditto for the followup write that clears the reset.
1371 			 *
1372 			 * The proprietary driver does this for
1373 			 * all chip versions, and so do we.
1374 			 */
1375 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1376 				val |= 0xf000;
1377 		}
1378 		writelfl(val, addr);
1379 		return 0;
1380 	} else
1381 		return -EINVAL;
1382 }
1383 
1384 static void mv6_dev_config(struct ata_device *adev)
1385 {
1386 	/*
1387 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1388 	 *
1389 	 * Gen-II does not support NCQ over a port multiplier
1390 	 *  (no FIS-based switching).
1391 	 */
1392 	if (adev->flags & ATA_DFLAG_NCQ) {
1393 		if (sata_pmp_attached(adev->link->ap)) {
1394 			adev->flags &= ~ATA_DFLAG_NCQ;
1395 			ata_dev_info(adev,
1396 				"NCQ disabled for command-based switching\n");
1397 		}
1398 	}
1399 }
1400 
1401 static int mv_qc_defer(struct ata_queued_cmd *qc)
1402 {
1403 	struct ata_link *link = qc->dev->link;
1404 	struct ata_port *ap = link->ap;
1405 	struct mv_port_priv *pp = ap->private_data;
1406 
1407 	/*
1408 	 * Don't allow new commands if we're in a delayed EH state
1409 	 * for NCQ and/or FIS-based switching.
1410 	 */
1411 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1412 		return ATA_DEFER_PORT;
1413 
1414 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1415 	 * can run concurrently.
1416 	 * set excl_link when we want to send a PIO command in DMA mode
1417 	 * or a non-NCQ command in NCQ mode.
1418 	 * When we receive a command from that link, and there are no
1419 	 * outstanding commands, mark a flag to clear excl_link and let
1420 	 * the command go through.
1421 	 */
1422 	if (unlikely(ap->excl_link)) {
1423 		if (link == ap->excl_link) {
1424 			if (ap->nr_active_links)
1425 				return ATA_DEFER_PORT;
1426 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1427 			return 0;
1428 		} else
1429 			return ATA_DEFER_PORT;
1430 	}
1431 
1432 	/*
1433 	 * If the port is completely idle, then allow the new qc.
1434 	 */
1435 	if (ap->nr_active_links == 0)
1436 		return 0;
1437 
1438 	/*
1439 	 * The port is operating in host queuing mode (EDMA) with NCQ
1440 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1441 	 * queueing multiple DMA commands but libata core currently
1442 	 * doesn't allow it.
1443 	 */
1444 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1445 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1446 		if (ata_is_ncq(qc->tf.protocol))
1447 			return 0;
1448 		else {
1449 			ap->excl_link = link;
1450 			return ATA_DEFER_PORT;
1451 		}
1452 	}
1453 
1454 	return ATA_DEFER_PORT;
1455 }
1456 
1457 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1458 {
1459 	struct mv_port_priv *pp = ap->private_data;
1460 	void __iomem *port_mmio;
1461 
1462 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1463 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1464 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1465 
1466 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1467 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1468 
1469 	if (want_fbs) {
1470 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1471 		ltmode = *old_ltmode | LTMODE_BIT8;
1472 		if (want_ncq)
1473 			haltcond &= ~EDMA_ERR_DEV;
1474 		else
1475 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1476 	} else {
1477 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1478 	}
1479 
1480 	port_mmio = mv_ap_base(ap);
1481 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1482 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1483 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1484 }
1485 
1486 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1487 {
1488 	struct mv_host_priv *hpriv = ap->host->private_data;
1489 	u32 old, new;
1490 
1491 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1492 	old = readl(hpriv->base + GPIO_PORT_CTL);
1493 	if (want_ncq)
1494 		new = old | (1 << 22);
1495 	else
1496 		new = old & ~(1 << 22);
1497 	if (new != old)
1498 		writel(new, hpriv->base + GPIO_PORT_CTL);
1499 }
1500 
1501 /**
1502  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1503  *	@ap: Port being initialized
1504  *
1505  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1506  *
1507  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1508  *	of basic DMA on the GEN_IIE versions of the chips.
1509  *
1510  *	This bit survives EDMA resets, and must be set for basic DMA
1511  *	to function, and should be cleared when EDMA is active.
1512  */
1513 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1514 {
1515 	struct mv_port_priv *pp = ap->private_data;
1516 	u32 new, *old = &pp->cached.unknown_rsvd;
1517 
1518 	if (enable_bmdma)
1519 		new = *old | 1;
1520 	else
1521 		new = *old & ~1;
1522 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1523 }
1524 
1525 /*
1526  * SOC chips have an issue whereby the HDD LEDs don't always blink
1527  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1528  * of the SOC takes care of it, generating a steady blink rate when
1529  * any drive on the chip is active.
1530  *
1531  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1532  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1533  *
1534  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1535  * LED operation works then, and provides better (more accurate) feedback.
1536  *
1537  * Note that this code assumes that an SOC never has more than one HC onboard.
1538  */
1539 static void mv_soc_led_blink_enable(struct ata_port *ap)
1540 {
1541 	struct ata_host *host = ap->host;
1542 	struct mv_host_priv *hpriv = host->private_data;
1543 	void __iomem *hc_mmio;
1544 	u32 led_ctrl;
1545 
1546 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1547 		return;
1548 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1549 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1550 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1551 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1552 }
1553 
1554 static void mv_soc_led_blink_disable(struct ata_port *ap)
1555 {
1556 	struct ata_host *host = ap->host;
1557 	struct mv_host_priv *hpriv = host->private_data;
1558 	void __iomem *hc_mmio;
1559 	u32 led_ctrl;
1560 	unsigned int port;
1561 
1562 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1563 		return;
1564 
1565 	/* disable led-blink only if no ports are using NCQ */
1566 	for (port = 0; port < hpriv->n_ports; port++) {
1567 		struct ata_port *this_ap = host->ports[port];
1568 		struct mv_port_priv *pp = this_ap->private_data;
1569 
1570 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1571 			return;
1572 	}
1573 
1574 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1575 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1576 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1577 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1578 }
1579 
1580 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1581 {
1582 	u32 cfg;
1583 	struct mv_port_priv *pp    = ap->private_data;
1584 	struct mv_host_priv *hpriv = ap->host->private_data;
1585 	void __iomem *port_mmio    = mv_ap_base(ap);
1586 
1587 	/* set up non-NCQ EDMA configuration */
1588 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1589 	pp->pp_flags &=
1590 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1591 
1592 	if (IS_GEN_I(hpriv))
1593 		cfg |= (1 << 8);	/* enab config burst size mask */
1594 
1595 	else if (IS_GEN_II(hpriv)) {
1596 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1597 		mv_60x1_errata_sata25(ap, want_ncq);
1598 
1599 	} else if (IS_GEN_IIE(hpriv)) {
1600 		int want_fbs = sata_pmp_attached(ap);
1601 		/*
1602 		 * Possible future enhancement:
1603 		 *
1604 		 * The chip can use FBS with non-NCQ, if we allow it,
1605 		 * But first we need to have the error handling in place
1606 		 * for this mode (datasheet section 7.3.15.4.2.3).
1607 		 * So disallow non-NCQ FBS for now.
1608 		 */
1609 		want_fbs &= want_ncq;
1610 
1611 		mv_config_fbs(ap, want_ncq, want_fbs);
1612 
1613 		if (want_fbs) {
1614 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1615 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1616 		}
1617 
1618 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1619 		if (want_edma) {
1620 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1621 			if (!IS_SOC(hpriv))
1622 				cfg |= (1 << 18); /* enab early completion */
1623 		}
1624 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1625 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1626 		mv_bmdma_enable_iie(ap, !want_edma);
1627 
1628 		if (IS_SOC(hpriv)) {
1629 			if (want_ncq)
1630 				mv_soc_led_blink_enable(ap);
1631 			else
1632 				mv_soc_led_blink_disable(ap);
1633 		}
1634 	}
1635 
1636 	if (want_ncq) {
1637 		cfg |= EDMA_CFG_NCQ;
1638 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1639 	}
1640 
1641 	writelfl(cfg, port_mmio + EDMA_CFG);
1642 }
1643 
1644 static void mv_port_free_dma_mem(struct ata_port *ap)
1645 {
1646 	struct mv_host_priv *hpriv = ap->host->private_data;
1647 	struct mv_port_priv *pp = ap->private_data;
1648 	int tag;
1649 
1650 	if (pp->crqb) {
1651 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1652 		pp->crqb = NULL;
1653 	}
1654 	if (pp->crpb) {
1655 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1656 		pp->crpb = NULL;
1657 	}
1658 	/*
1659 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1660 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1661 	 */
1662 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1663 		if (pp->sg_tbl[tag]) {
1664 			if (tag == 0 || !IS_GEN_I(hpriv))
1665 				dma_pool_free(hpriv->sg_tbl_pool,
1666 					      pp->sg_tbl[tag],
1667 					      pp->sg_tbl_dma[tag]);
1668 			pp->sg_tbl[tag] = NULL;
1669 		}
1670 	}
1671 }
1672 
1673 /**
1674  *      mv_port_start - Port specific init/start routine.
1675  *      @ap: ATA channel to manipulate
1676  *
1677  *      Allocate and point to DMA memory, init port private memory,
1678  *      zero indices.
1679  *
1680  *      LOCKING:
1681  *      Inherited from caller.
1682  */
1683 static int mv_port_start(struct ata_port *ap)
1684 {
1685 	struct device *dev = ap->host->dev;
1686 	struct mv_host_priv *hpriv = ap->host->private_data;
1687 	struct mv_port_priv *pp;
1688 	unsigned long flags;
1689 	int tag;
1690 
1691 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1692 	if (!pp)
1693 		return -ENOMEM;
1694 	ap->private_data = pp;
1695 
1696 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1697 	if (!pp->crqb)
1698 		return -ENOMEM;
1699 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1700 
1701 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1702 	if (!pp->crpb)
1703 		goto out_port_free_dma_mem;
1704 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1705 
1706 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1707 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1708 		ap->flags |= ATA_FLAG_AN;
1709 	/*
1710 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1711 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1712 	 */
1713 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1714 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1715 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1716 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1717 			if (!pp->sg_tbl[tag])
1718 				goto out_port_free_dma_mem;
1719 		} else {
1720 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1721 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1722 		}
1723 	}
1724 
1725 	spin_lock_irqsave(ap->lock, flags);
1726 	mv_save_cached_regs(ap);
1727 	mv_edma_cfg(ap, 0, 0);
1728 	spin_unlock_irqrestore(ap->lock, flags);
1729 
1730 	return 0;
1731 
1732 out_port_free_dma_mem:
1733 	mv_port_free_dma_mem(ap);
1734 	return -ENOMEM;
1735 }
1736 
1737 /**
1738  *      mv_port_stop - Port specific cleanup/stop routine.
1739  *      @ap: ATA channel to manipulate
1740  *
1741  *      Stop DMA, cleanup port memory.
1742  *
1743  *      LOCKING:
1744  *      This routine uses the host lock to protect the DMA stop.
1745  */
1746 static void mv_port_stop(struct ata_port *ap)
1747 {
1748 	unsigned long flags;
1749 
1750 	spin_lock_irqsave(ap->lock, flags);
1751 	mv_stop_edma(ap);
1752 	mv_enable_port_irqs(ap, 0);
1753 	spin_unlock_irqrestore(ap->lock, flags);
1754 	mv_port_free_dma_mem(ap);
1755 }
1756 
1757 /**
1758  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1759  *      @qc: queued command whose SG list to source from
1760  *
1761  *      Populate the SG list and mark the last entry.
1762  *
1763  *      LOCKING:
1764  *      Inherited from caller.
1765  */
1766 static void mv_fill_sg(struct ata_queued_cmd *qc)
1767 {
1768 	struct mv_port_priv *pp = qc->ap->private_data;
1769 	struct scatterlist *sg;
1770 	struct mv_sg *mv_sg, *last_sg = NULL;
1771 	unsigned int si;
1772 
1773 	mv_sg = pp->sg_tbl[qc->tag];
1774 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1775 		dma_addr_t addr = sg_dma_address(sg);
1776 		u32 sg_len = sg_dma_len(sg);
1777 
1778 		while (sg_len) {
1779 			u32 offset = addr & 0xffff;
1780 			u32 len = sg_len;
1781 
1782 			if (offset + len > 0x10000)
1783 				len = 0x10000 - offset;
1784 
1785 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1786 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1787 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1788 			mv_sg->reserved = 0;
1789 
1790 			sg_len -= len;
1791 			addr += len;
1792 
1793 			last_sg = mv_sg;
1794 			mv_sg++;
1795 		}
1796 	}
1797 
1798 	if (likely(last_sg))
1799 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1800 	mb(); /* ensure data structure is visible to the chipset */
1801 }
1802 
1803 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1804 {
1805 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1806 		(last ? CRQB_CMD_LAST : 0);
1807 	*cmdw = cpu_to_le16(tmp);
1808 }
1809 
1810 /**
1811  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1812  *	@ap: Port associated with this ATA transaction.
1813  *
1814  *	We need this only for ATAPI bmdma transactions,
1815  *	as otherwise we experience spurious interrupts
1816  *	after libata-sff handles the bmdma interrupts.
1817  */
1818 static void mv_sff_irq_clear(struct ata_port *ap)
1819 {
1820 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1821 }
1822 
1823 /**
1824  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1825  *	@qc: queued command to check for chipset/DMA compatibility.
1826  *
1827  *	The bmdma engines cannot handle speculative data sizes
1828  *	(bytecount under/over flow).  So only allow DMA for
1829  *	data transfer commands with known data sizes.
1830  *
1831  *	LOCKING:
1832  *	Inherited from caller.
1833  */
1834 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1835 {
1836 	struct scsi_cmnd *scmd = qc->scsicmd;
1837 
1838 	if (scmd) {
1839 		switch (scmd->cmnd[0]) {
1840 		case READ_6:
1841 		case READ_10:
1842 		case READ_12:
1843 		case WRITE_6:
1844 		case WRITE_10:
1845 		case WRITE_12:
1846 		case GPCMD_READ_CD:
1847 		case GPCMD_SEND_DVD_STRUCTURE:
1848 		case GPCMD_SEND_CUE_SHEET:
1849 			return 0; /* DMA is safe */
1850 		}
1851 	}
1852 	return -EOPNOTSUPP; /* use PIO instead */
1853 }
1854 
1855 /**
1856  *	mv_bmdma_setup - Set up BMDMA transaction
1857  *	@qc: queued command to prepare DMA for.
1858  *
1859  *	LOCKING:
1860  *	Inherited from caller.
1861  */
1862 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1863 {
1864 	struct ata_port *ap = qc->ap;
1865 	void __iomem *port_mmio = mv_ap_base(ap);
1866 	struct mv_port_priv *pp = ap->private_data;
1867 
1868 	mv_fill_sg(qc);
1869 
1870 	/* clear all DMA cmd bits */
1871 	writel(0, port_mmio + BMDMA_CMD);
1872 
1873 	/* load PRD table addr. */
1874 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1875 		port_mmio + BMDMA_PRD_HIGH);
1876 	writelfl(pp->sg_tbl_dma[qc->tag],
1877 		port_mmio + BMDMA_PRD_LOW);
1878 
1879 	/* issue r/w command */
1880 	ap->ops->sff_exec_command(ap, &qc->tf);
1881 }
1882 
1883 /**
1884  *	mv_bmdma_start - Start a BMDMA transaction
1885  *	@qc: queued command to start DMA on.
1886  *
1887  *	LOCKING:
1888  *	Inherited from caller.
1889  */
1890 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1891 {
1892 	struct ata_port *ap = qc->ap;
1893 	void __iomem *port_mmio = mv_ap_base(ap);
1894 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1895 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1896 
1897 	/* start host DMA transaction */
1898 	writelfl(cmd, port_mmio + BMDMA_CMD);
1899 }
1900 
1901 /**
1902  *	mv_bmdma_stop - Stop BMDMA transfer
1903  *	@qc: queued command to stop DMA on.
1904  *
1905  *	Clears the ATA_DMA_START flag in the bmdma control register
1906  *
1907  *	LOCKING:
1908  *	Inherited from caller.
1909  */
1910 static void mv_bmdma_stop_ap(struct ata_port *ap)
1911 {
1912 	void __iomem *port_mmio = mv_ap_base(ap);
1913 	u32 cmd;
1914 
1915 	/* clear start/stop bit */
1916 	cmd = readl(port_mmio + BMDMA_CMD);
1917 	if (cmd & ATA_DMA_START) {
1918 		cmd &= ~ATA_DMA_START;
1919 		writelfl(cmd, port_mmio + BMDMA_CMD);
1920 
1921 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1922 		ata_sff_dma_pause(ap);
1923 	}
1924 }
1925 
1926 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1927 {
1928 	mv_bmdma_stop_ap(qc->ap);
1929 }
1930 
1931 /**
1932  *	mv_bmdma_status - Read BMDMA status
1933  *	@ap: port for which to retrieve DMA status.
1934  *
1935  *	Read and return equivalent of the sff BMDMA status register.
1936  *
1937  *	LOCKING:
1938  *	Inherited from caller.
1939  */
1940 static u8 mv_bmdma_status(struct ata_port *ap)
1941 {
1942 	void __iomem *port_mmio = mv_ap_base(ap);
1943 	u32 reg, status;
1944 
1945 	/*
1946 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1947 	 * and the ATA_DMA_INTR bit doesn't exist.
1948 	 */
1949 	reg = readl(port_mmio + BMDMA_STATUS);
1950 	if (reg & ATA_DMA_ACTIVE)
1951 		status = ATA_DMA_ACTIVE;
1952 	else if (reg & ATA_DMA_ERR)
1953 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1954 	else {
1955 		/*
1956 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1957 		 * this does _not_ mean the device is "done".
1958 		 * So we should not yet be signalling ATA_DMA_INTR
1959 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1960 		 */
1961 		mv_bmdma_stop_ap(ap);
1962 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1963 			status = 0;
1964 		else
1965 			status = ATA_DMA_INTR;
1966 	}
1967 	return status;
1968 }
1969 
1970 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1971 {
1972 	struct ata_taskfile *tf = &qc->tf;
1973 	/*
1974 	 * Workaround for 88SX60x1 FEr SATA#24.
1975 	 *
1976 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1977 	 * Note that READs are unaffected.
1978 	 *
1979 	 * It's not clear if this errata really means "4K bytes",
1980 	 * or if it always happens for multi_count > 7
1981 	 * regardless of device sector_size.
1982 	 *
1983 	 * So, for safety, any write with multi_count > 7
1984 	 * gets converted here into a regular PIO write instead:
1985 	 */
1986 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1987 		if (qc->dev->multi_count > 7) {
1988 			switch (tf->command) {
1989 			case ATA_CMD_WRITE_MULTI:
1990 				tf->command = ATA_CMD_PIO_WRITE;
1991 				break;
1992 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1993 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1994 				/* fall through */
1995 			case ATA_CMD_WRITE_MULTI_EXT:
1996 				tf->command = ATA_CMD_PIO_WRITE_EXT;
1997 				break;
1998 			}
1999 		}
2000 	}
2001 }
2002 
2003 /**
2004  *      mv_qc_prep - Host specific command preparation.
2005  *      @qc: queued command to prepare
2006  *
2007  *      This routine simply redirects to the general purpose routine
2008  *      if command is not DMA.  Else, it handles prep of the CRQB
2009  *      (command request block), does some sanity checking, and calls
2010  *      the SG load routine.
2011  *
2012  *      LOCKING:
2013  *      Inherited from caller.
2014  */
2015 static void mv_qc_prep(struct ata_queued_cmd *qc)
2016 {
2017 	struct ata_port *ap = qc->ap;
2018 	struct mv_port_priv *pp = ap->private_data;
2019 	__le16 *cw;
2020 	struct ata_taskfile *tf = &qc->tf;
2021 	u16 flags = 0;
2022 	unsigned in_index;
2023 
2024 	switch (tf->protocol) {
2025 	case ATA_PROT_DMA:
2026 		if (tf->command == ATA_CMD_DSM)
2027 			return;
2028 		/* fall-thru */
2029 	case ATA_PROT_NCQ:
2030 		break;	/* continue below */
2031 	case ATA_PROT_PIO:
2032 		mv_rw_multi_errata_sata24(qc);
2033 		return;
2034 	default:
2035 		return;
2036 	}
2037 
2038 	/* Fill in command request block
2039 	 */
2040 	if (!(tf->flags & ATA_TFLAG_WRITE))
2041 		flags |= CRQB_FLAG_READ;
2042 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2043 	flags |= qc->tag << CRQB_TAG_SHIFT;
2044 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2045 
2046 	/* get current queue index from software */
2047 	in_index = pp->req_idx;
2048 
2049 	pp->crqb[in_index].sg_addr =
2050 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2051 	pp->crqb[in_index].sg_addr_hi =
2052 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2053 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2054 
2055 	cw = &pp->crqb[in_index].ata_cmd[0];
2056 
2057 	/* Sadly, the CRQB cannot accommodate all registers--there are
2058 	 * only 11 bytes...so we must pick and choose required
2059 	 * registers based on the command.  So, we drop feature and
2060 	 * hob_feature for [RW] DMA commands, but they are needed for
2061 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2062 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2063 	 */
2064 	switch (tf->command) {
2065 	case ATA_CMD_READ:
2066 	case ATA_CMD_READ_EXT:
2067 	case ATA_CMD_WRITE:
2068 	case ATA_CMD_WRITE_EXT:
2069 	case ATA_CMD_WRITE_FUA_EXT:
2070 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2071 		break;
2072 	case ATA_CMD_FPDMA_READ:
2073 	case ATA_CMD_FPDMA_WRITE:
2074 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2075 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2076 		break;
2077 	default:
2078 		/* The only other commands EDMA supports in non-queued and
2079 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2080 		 * of which are defined/used by Linux.  If we get here, this
2081 		 * driver needs work.
2082 		 *
2083 		 * FIXME: modify libata to give qc_prep a return value and
2084 		 * return error here.
2085 		 */
2086 		BUG_ON(tf->command);
2087 		break;
2088 	}
2089 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2090 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2091 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2092 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2093 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2094 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2095 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2096 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2097 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2098 
2099 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2100 		return;
2101 	mv_fill_sg(qc);
2102 }
2103 
2104 /**
2105  *      mv_qc_prep_iie - Host specific command preparation.
2106  *      @qc: queued command to prepare
2107  *
2108  *      This routine simply redirects to the general purpose routine
2109  *      if command is not DMA.  Else, it handles prep of the CRQB
2110  *      (command request block), does some sanity checking, and calls
2111  *      the SG load routine.
2112  *
2113  *      LOCKING:
2114  *      Inherited from caller.
2115  */
2116 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2117 {
2118 	struct ata_port *ap = qc->ap;
2119 	struct mv_port_priv *pp = ap->private_data;
2120 	struct mv_crqb_iie *crqb;
2121 	struct ata_taskfile *tf = &qc->tf;
2122 	unsigned in_index;
2123 	u32 flags = 0;
2124 
2125 	if ((tf->protocol != ATA_PROT_DMA) &&
2126 	    (tf->protocol != ATA_PROT_NCQ))
2127 		return;
2128 	if (tf->command == ATA_CMD_DSM)
2129 		return;  /* use bmdma for this */
2130 
2131 	/* Fill in Gen IIE command request block */
2132 	if (!(tf->flags & ATA_TFLAG_WRITE))
2133 		flags |= CRQB_FLAG_READ;
2134 
2135 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2136 	flags |= qc->tag << CRQB_TAG_SHIFT;
2137 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2138 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2139 
2140 	/* get current queue index from software */
2141 	in_index = pp->req_idx;
2142 
2143 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2144 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2145 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2146 	crqb->flags = cpu_to_le32(flags);
2147 
2148 	crqb->ata_cmd[0] = cpu_to_le32(
2149 			(tf->command << 16) |
2150 			(tf->feature << 24)
2151 		);
2152 	crqb->ata_cmd[1] = cpu_to_le32(
2153 			(tf->lbal << 0) |
2154 			(tf->lbam << 8) |
2155 			(tf->lbah << 16) |
2156 			(tf->device << 24)
2157 		);
2158 	crqb->ata_cmd[2] = cpu_to_le32(
2159 			(tf->hob_lbal << 0) |
2160 			(tf->hob_lbam << 8) |
2161 			(tf->hob_lbah << 16) |
2162 			(tf->hob_feature << 24)
2163 		);
2164 	crqb->ata_cmd[3] = cpu_to_le32(
2165 			(tf->nsect << 0) |
2166 			(tf->hob_nsect << 8)
2167 		);
2168 
2169 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2170 		return;
2171 	mv_fill_sg(qc);
2172 }
2173 
2174 /**
2175  *	mv_sff_check_status - fetch device status, if valid
2176  *	@ap: ATA port to fetch status from
2177  *
2178  *	When using command issue via mv_qc_issue_fis(),
2179  *	the initial ATA_BUSY state does not show up in the
2180  *	ATA status (shadow) register.  This can confuse libata!
2181  *
2182  *	So we have a hook here to fake ATA_BUSY for that situation,
2183  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2184  *
2185  *	The rest of the time, it simply returns the ATA status register.
2186  */
2187 static u8 mv_sff_check_status(struct ata_port *ap)
2188 {
2189 	u8 stat = ioread8(ap->ioaddr.status_addr);
2190 	struct mv_port_priv *pp = ap->private_data;
2191 
2192 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2193 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2194 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2195 		else
2196 			stat = ATA_BUSY;
2197 	}
2198 	return stat;
2199 }
2200 
2201 /**
2202  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2203  *	@fis: fis to be sent
2204  *	@nwords: number of 32-bit words in the fis
2205  */
2206 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2207 {
2208 	void __iomem *port_mmio = mv_ap_base(ap);
2209 	u32 ifctl, old_ifctl, ifstat;
2210 	int i, timeout = 200, final_word = nwords - 1;
2211 
2212 	/* Initiate FIS transmission mode */
2213 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2214 	ifctl = 0x100 | (old_ifctl & 0xf);
2215 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2216 
2217 	/* Send all words of the FIS except for the final word */
2218 	for (i = 0; i < final_word; ++i)
2219 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2220 
2221 	/* Flag end-of-transmission, and then send the final word */
2222 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2223 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2224 
2225 	/*
2226 	 * Wait for FIS transmission to complete.
2227 	 * This typically takes just a single iteration.
2228 	 */
2229 	do {
2230 		ifstat = readl(port_mmio + SATA_IFSTAT);
2231 	} while (!(ifstat & 0x1000) && --timeout);
2232 
2233 	/* Restore original port configuration */
2234 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2235 
2236 	/* See if it worked */
2237 	if ((ifstat & 0x3000) != 0x1000) {
2238 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2239 			      __func__, ifstat);
2240 		return AC_ERR_OTHER;
2241 	}
2242 	return 0;
2243 }
2244 
2245 /**
2246  *	mv_qc_issue_fis - Issue a command directly as a FIS
2247  *	@qc: queued command to start
2248  *
2249  *	Note that the ATA shadow registers are not updated
2250  *	after command issue, so the device will appear "READY"
2251  *	if polled, even while it is BUSY processing the command.
2252  *
2253  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2254  *
2255  *	Note: we don't get updated shadow regs on *completion*
2256  *	of non-data commands. So avoid sending them via this function,
2257  *	as they will appear to have completed immediately.
2258  *
2259  *	GEN_IIE has special registers that we could get the result tf from,
2260  *	but earlier chipsets do not.  For now, we ignore those registers.
2261  */
2262 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2263 {
2264 	struct ata_port *ap = qc->ap;
2265 	struct mv_port_priv *pp = ap->private_data;
2266 	struct ata_link *link = qc->dev->link;
2267 	u32 fis[5];
2268 	int err = 0;
2269 
2270 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2271 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2272 	if (err)
2273 		return err;
2274 
2275 	switch (qc->tf.protocol) {
2276 	case ATAPI_PROT_PIO:
2277 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2278 		/* fall through */
2279 	case ATAPI_PROT_NODATA:
2280 		ap->hsm_task_state = HSM_ST_FIRST;
2281 		break;
2282 	case ATA_PROT_PIO:
2283 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2284 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2285 			ap->hsm_task_state = HSM_ST_FIRST;
2286 		else
2287 			ap->hsm_task_state = HSM_ST;
2288 		break;
2289 	default:
2290 		ap->hsm_task_state = HSM_ST_LAST;
2291 		break;
2292 	}
2293 
2294 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2295 		ata_sff_queue_pio_task(link, 0);
2296 	return 0;
2297 }
2298 
2299 /**
2300  *      mv_qc_issue - Initiate a command to the host
2301  *      @qc: queued command to start
2302  *
2303  *      This routine simply redirects to the general purpose routine
2304  *      if command is not DMA.  Else, it sanity checks our local
2305  *      caches of the request producer/consumer indices then enables
2306  *      DMA and bumps the request producer index.
2307  *
2308  *      LOCKING:
2309  *      Inherited from caller.
2310  */
2311 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2312 {
2313 	static int limit_warnings = 10;
2314 	struct ata_port *ap = qc->ap;
2315 	void __iomem *port_mmio = mv_ap_base(ap);
2316 	struct mv_port_priv *pp = ap->private_data;
2317 	u32 in_index;
2318 	unsigned int port_irqs;
2319 
2320 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2321 
2322 	switch (qc->tf.protocol) {
2323 	case ATA_PROT_DMA:
2324 		if (qc->tf.command == ATA_CMD_DSM) {
2325 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2326 				return AC_ERR_OTHER;
2327 			break;  /* use bmdma for this */
2328 		}
2329 		/* fall thru */
2330 	case ATA_PROT_NCQ:
2331 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2332 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2333 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2334 
2335 		/* Write the request in pointer to kick the EDMA to life */
2336 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2337 					port_mmio + EDMA_REQ_Q_IN_PTR);
2338 		return 0;
2339 
2340 	case ATA_PROT_PIO:
2341 		/*
2342 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2343 		 *
2344 		 * Someday, we might implement special polling workarounds
2345 		 * for these, but it all seems rather unnecessary since we
2346 		 * normally use only DMA for commands which transfer more
2347 		 * than a single block of data.
2348 		 *
2349 		 * Much of the time, this could just work regardless.
2350 		 * So for now, just log the incident, and allow the attempt.
2351 		 */
2352 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2353 			--limit_warnings;
2354 			ata_link_warn(qc->dev->link, DRV_NAME
2355 				      ": attempting PIO w/multiple DRQ: "
2356 				      "this may fail due to h/w errata\n");
2357 		}
2358 		/* drop through */
2359 	case ATA_PROT_NODATA:
2360 	case ATAPI_PROT_PIO:
2361 	case ATAPI_PROT_NODATA:
2362 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2363 			qc->tf.flags |= ATA_TFLAG_POLLING;
2364 		break;
2365 	}
2366 
2367 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2368 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2369 	else
2370 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2371 
2372 	/*
2373 	 * We're about to send a non-EDMA capable command to the
2374 	 * port.  Turn off EDMA so there won't be problems accessing
2375 	 * shadow block, etc registers.
2376 	 */
2377 	mv_stop_edma(ap);
2378 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2379 	mv_pmp_select(ap, qc->dev->link->pmp);
2380 
2381 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2382 		struct mv_host_priv *hpriv = ap->host->private_data;
2383 		/*
2384 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2385 		 *
2386 		 * After any NCQ error, the READ_LOG_EXT command
2387 		 * from libata-eh *must* use mv_qc_issue_fis().
2388 		 * Otherwise it might fail, due to chip errata.
2389 		 *
2390 		 * Rather than special-case it, we'll just *always*
2391 		 * use this method here for READ_LOG_EXT, making for
2392 		 * easier testing.
2393 		 */
2394 		if (IS_GEN_II(hpriv))
2395 			return mv_qc_issue_fis(qc);
2396 	}
2397 	return ata_bmdma_qc_issue(qc);
2398 }
2399 
2400 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2401 {
2402 	struct mv_port_priv *pp = ap->private_data;
2403 	struct ata_queued_cmd *qc;
2404 
2405 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2406 		return NULL;
2407 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2408 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2409 		return qc;
2410 	return NULL;
2411 }
2412 
2413 static void mv_pmp_error_handler(struct ata_port *ap)
2414 {
2415 	unsigned int pmp, pmp_map;
2416 	struct mv_port_priv *pp = ap->private_data;
2417 
2418 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2419 		/*
2420 		 * Perform NCQ error analysis on failed PMPs
2421 		 * before we freeze the port entirely.
2422 		 *
2423 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2424 		 */
2425 		pmp_map = pp->delayed_eh_pmp_map;
2426 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2427 		for (pmp = 0; pmp_map != 0; pmp++) {
2428 			unsigned int this_pmp = (1 << pmp);
2429 			if (pmp_map & this_pmp) {
2430 				struct ata_link *link = &ap->pmp_link[pmp];
2431 				pmp_map &= ~this_pmp;
2432 				ata_eh_analyze_ncq_error(link);
2433 			}
2434 		}
2435 		ata_port_freeze(ap);
2436 	}
2437 	sata_pmp_error_handler(ap);
2438 }
2439 
2440 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2441 {
2442 	void __iomem *port_mmio = mv_ap_base(ap);
2443 
2444 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2445 }
2446 
2447 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2448 {
2449 	struct ata_eh_info *ehi;
2450 	unsigned int pmp;
2451 
2452 	/*
2453 	 * Initialize EH info for PMPs which saw device errors
2454 	 */
2455 	ehi = &ap->link.eh_info;
2456 	for (pmp = 0; pmp_map != 0; pmp++) {
2457 		unsigned int this_pmp = (1 << pmp);
2458 		if (pmp_map & this_pmp) {
2459 			struct ata_link *link = &ap->pmp_link[pmp];
2460 
2461 			pmp_map &= ~this_pmp;
2462 			ehi = &link->eh_info;
2463 			ata_ehi_clear_desc(ehi);
2464 			ata_ehi_push_desc(ehi, "dev err");
2465 			ehi->err_mask |= AC_ERR_DEV;
2466 			ehi->action |= ATA_EH_RESET;
2467 			ata_link_abort(link);
2468 		}
2469 	}
2470 }
2471 
2472 static int mv_req_q_empty(struct ata_port *ap)
2473 {
2474 	void __iomem *port_mmio = mv_ap_base(ap);
2475 	u32 in_ptr, out_ptr;
2476 
2477 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2478 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2479 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2480 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2481 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2482 }
2483 
2484 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2485 {
2486 	struct mv_port_priv *pp = ap->private_data;
2487 	int failed_links;
2488 	unsigned int old_map, new_map;
2489 
2490 	/*
2491 	 * Device error during FBS+NCQ operation:
2492 	 *
2493 	 * Set a port flag to prevent further I/O being enqueued.
2494 	 * Leave the EDMA running to drain outstanding commands from this port.
2495 	 * Perform the post-mortem/EH only when all responses are complete.
2496 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2497 	 */
2498 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2499 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2500 		pp->delayed_eh_pmp_map = 0;
2501 	}
2502 	old_map = pp->delayed_eh_pmp_map;
2503 	new_map = old_map | mv_get_err_pmp_map(ap);
2504 
2505 	if (old_map != new_map) {
2506 		pp->delayed_eh_pmp_map = new_map;
2507 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2508 	}
2509 	failed_links = hweight16(new_map);
2510 
2511 	ata_port_info(ap,
2512 		      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2513 		      __func__, pp->delayed_eh_pmp_map,
2514 		      ap->qc_active, failed_links,
2515 		      ap->nr_active_links);
2516 
2517 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2518 		mv_process_crpb_entries(ap, pp);
2519 		mv_stop_edma(ap);
2520 		mv_eh_freeze(ap);
2521 		ata_port_info(ap, "%s: done\n", __func__);
2522 		return 1;	/* handled */
2523 	}
2524 	ata_port_info(ap, "%s: waiting\n", __func__);
2525 	return 1;	/* handled */
2526 }
2527 
2528 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2529 {
2530 	/*
2531 	 * Possible future enhancement:
2532 	 *
2533 	 * FBS+non-NCQ operation is not yet implemented.
2534 	 * See related notes in mv_edma_cfg().
2535 	 *
2536 	 * Device error during FBS+non-NCQ operation:
2537 	 *
2538 	 * We need to snapshot the shadow registers for each failed command.
2539 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2540 	 */
2541 	return 0;	/* not handled */
2542 }
2543 
2544 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2545 {
2546 	struct mv_port_priv *pp = ap->private_data;
2547 
2548 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2549 		return 0;	/* EDMA was not active: not handled */
2550 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2551 		return 0;	/* FBS was not active: not handled */
2552 
2553 	if (!(edma_err_cause & EDMA_ERR_DEV))
2554 		return 0;	/* non DEV error: not handled */
2555 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2556 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2557 		return 0;	/* other problems: not handled */
2558 
2559 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2560 		/*
2561 		 * EDMA should NOT have self-disabled for this case.
2562 		 * If it did, then something is wrong elsewhere,
2563 		 * and we cannot handle it here.
2564 		 */
2565 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2566 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2567 				      __func__, edma_err_cause, pp->pp_flags);
2568 			return 0; /* not handled */
2569 		}
2570 		return mv_handle_fbs_ncq_dev_err(ap);
2571 	} else {
2572 		/*
2573 		 * EDMA should have self-disabled for this case.
2574 		 * If it did not, then something is wrong elsewhere,
2575 		 * and we cannot handle it here.
2576 		 */
2577 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2578 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2579 				      __func__, edma_err_cause, pp->pp_flags);
2580 			return 0; /* not handled */
2581 		}
2582 		return mv_handle_fbs_non_ncq_dev_err(ap);
2583 	}
2584 	return 0;	/* not handled */
2585 }
2586 
2587 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2588 {
2589 	struct ata_eh_info *ehi = &ap->link.eh_info;
2590 	char *when = "idle";
2591 
2592 	ata_ehi_clear_desc(ehi);
2593 	if (edma_was_enabled) {
2594 		when = "EDMA enabled";
2595 	} else {
2596 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2597 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2598 			when = "polling";
2599 	}
2600 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2601 	ehi->err_mask |= AC_ERR_OTHER;
2602 	ehi->action   |= ATA_EH_RESET;
2603 	ata_port_freeze(ap);
2604 }
2605 
2606 /**
2607  *      mv_err_intr - Handle error interrupts on the port
2608  *      @ap: ATA channel to manipulate
2609  *
2610  *      Most cases require a full reset of the chip's state machine,
2611  *      which also performs a COMRESET.
2612  *      Also, if the port disabled DMA, update our cached copy to match.
2613  *
2614  *      LOCKING:
2615  *      Inherited from caller.
2616  */
2617 static void mv_err_intr(struct ata_port *ap)
2618 {
2619 	void __iomem *port_mmio = mv_ap_base(ap);
2620 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2621 	u32 fis_cause = 0;
2622 	struct mv_port_priv *pp = ap->private_data;
2623 	struct mv_host_priv *hpriv = ap->host->private_data;
2624 	unsigned int action = 0, err_mask = 0;
2625 	struct ata_eh_info *ehi = &ap->link.eh_info;
2626 	struct ata_queued_cmd *qc;
2627 	int abort = 0;
2628 
2629 	/*
2630 	 * Read and clear the SError and err_cause bits.
2631 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2632 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2633 	 */
2634 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2635 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2636 
2637 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2638 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2639 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2640 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2641 	}
2642 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2643 
2644 	if (edma_err_cause & EDMA_ERR_DEV) {
2645 		/*
2646 		 * Device errors during FIS-based switching operation
2647 		 * require special handling.
2648 		 */
2649 		if (mv_handle_dev_err(ap, edma_err_cause))
2650 			return;
2651 	}
2652 
2653 	qc = mv_get_active_qc(ap);
2654 	ata_ehi_clear_desc(ehi);
2655 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2656 			  edma_err_cause, pp->pp_flags);
2657 
2658 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2659 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2660 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2661 			u32 ec = edma_err_cause &
2662 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2663 			sata_async_notification(ap);
2664 			if (!ec)
2665 				return; /* Just an AN; no need for the nukes */
2666 			ata_ehi_push_desc(ehi, "SDB notify");
2667 		}
2668 	}
2669 	/*
2670 	 * All generations share these EDMA error cause bits:
2671 	 */
2672 	if (edma_err_cause & EDMA_ERR_DEV) {
2673 		err_mask |= AC_ERR_DEV;
2674 		action |= ATA_EH_RESET;
2675 		ata_ehi_push_desc(ehi, "dev error");
2676 	}
2677 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2678 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2679 			EDMA_ERR_INTRL_PAR)) {
2680 		err_mask |= AC_ERR_ATA_BUS;
2681 		action |= ATA_EH_RESET;
2682 		ata_ehi_push_desc(ehi, "parity error");
2683 	}
2684 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2685 		ata_ehi_hotplugged(ehi);
2686 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2687 			"dev disconnect" : "dev connect");
2688 		action |= ATA_EH_RESET;
2689 	}
2690 
2691 	/*
2692 	 * Gen-I has a different SELF_DIS bit,
2693 	 * different FREEZE bits, and no SERR bit:
2694 	 */
2695 	if (IS_GEN_I(hpriv)) {
2696 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2697 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2698 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2699 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2700 		}
2701 	} else {
2702 		eh_freeze_mask = EDMA_EH_FREEZE;
2703 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2704 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2705 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2706 		}
2707 		if (edma_err_cause & EDMA_ERR_SERR) {
2708 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2709 			err_mask |= AC_ERR_ATA_BUS;
2710 			action |= ATA_EH_RESET;
2711 		}
2712 	}
2713 
2714 	if (!err_mask) {
2715 		err_mask = AC_ERR_OTHER;
2716 		action |= ATA_EH_RESET;
2717 	}
2718 
2719 	ehi->serror |= serr;
2720 	ehi->action |= action;
2721 
2722 	if (qc)
2723 		qc->err_mask |= err_mask;
2724 	else
2725 		ehi->err_mask |= err_mask;
2726 
2727 	if (err_mask == AC_ERR_DEV) {
2728 		/*
2729 		 * Cannot do ata_port_freeze() here,
2730 		 * because it would kill PIO access,
2731 		 * which is needed for further diagnosis.
2732 		 */
2733 		mv_eh_freeze(ap);
2734 		abort = 1;
2735 	} else if (edma_err_cause & eh_freeze_mask) {
2736 		/*
2737 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2738 		 */
2739 		ata_port_freeze(ap);
2740 	} else {
2741 		abort = 1;
2742 	}
2743 
2744 	if (abort) {
2745 		if (qc)
2746 			ata_link_abort(qc->dev->link);
2747 		else
2748 			ata_port_abort(ap);
2749 	}
2750 }
2751 
2752 static bool mv_process_crpb_response(struct ata_port *ap,
2753 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2754 {
2755 	u8 ata_status;
2756 	u16 edma_status = le16_to_cpu(response->flags);
2757 
2758 	/*
2759 	 * edma_status from a response queue entry:
2760 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2761 	 *   MSB is saved ATA status from command completion.
2762 	 */
2763 	if (!ncq_enabled) {
2764 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2765 		if (err_cause) {
2766 			/*
2767 			 * Error will be seen/handled by
2768 			 * mv_err_intr().  So do nothing at all here.
2769 			 */
2770 			return false;
2771 		}
2772 	}
2773 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2774 	if (!ac_err_mask(ata_status))
2775 		return true;
2776 	/* else: leave it for mv_err_intr() */
2777 	return false;
2778 }
2779 
2780 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2781 {
2782 	void __iomem *port_mmio = mv_ap_base(ap);
2783 	struct mv_host_priv *hpriv = ap->host->private_data;
2784 	u32 in_index;
2785 	bool work_done = false;
2786 	u32 done_mask = 0;
2787 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2788 
2789 	/* Get the hardware queue position index */
2790 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2791 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2792 
2793 	/* Process new responses from since the last time we looked */
2794 	while (in_index != pp->resp_idx) {
2795 		unsigned int tag;
2796 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2797 
2798 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2799 
2800 		if (IS_GEN_I(hpriv)) {
2801 			/* 50xx: no NCQ, only one command active at a time */
2802 			tag = ap->link.active_tag;
2803 		} else {
2804 			/* Gen II/IIE: get command tag from CRPB entry */
2805 			tag = le16_to_cpu(response->id) & 0x1f;
2806 		}
2807 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2808 			done_mask |= 1 << tag;
2809 		work_done = true;
2810 	}
2811 
2812 	if (work_done) {
2813 		ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2814 
2815 		/* Update the software queue position index in hardware */
2816 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2817 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2818 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2819 	}
2820 }
2821 
2822 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2823 {
2824 	struct mv_port_priv *pp;
2825 	int edma_was_enabled;
2826 
2827 	/*
2828 	 * Grab a snapshot of the EDMA_EN flag setting,
2829 	 * so that we have a consistent view for this port,
2830 	 * even if something we call of our routines changes it.
2831 	 */
2832 	pp = ap->private_data;
2833 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2834 	/*
2835 	 * Process completed CRPB response(s) before other events.
2836 	 */
2837 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2838 		mv_process_crpb_entries(ap, pp);
2839 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2840 			mv_handle_fbs_ncq_dev_err(ap);
2841 	}
2842 	/*
2843 	 * Handle chip-reported errors, or continue on to handle PIO.
2844 	 */
2845 	if (unlikely(port_cause & ERR_IRQ)) {
2846 		mv_err_intr(ap);
2847 	} else if (!edma_was_enabled) {
2848 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2849 		if (qc)
2850 			ata_bmdma_port_intr(ap, qc);
2851 		else
2852 			mv_unexpected_intr(ap, edma_was_enabled);
2853 	}
2854 }
2855 
2856 /**
2857  *      mv_host_intr - Handle all interrupts on the given host controller
2858  *      @host: host specific structure
2859  *      @main_irq_cause: Main interrupt cause register for the chip.
2860  *
2861  *      LOCKING:
2862  *      Inherited from caller.
2863  */
2864 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2865 {
2866 	struct mv_host_priv *hpriv = host->private_data;
2867 	void __iomem *mmio = hpriv->base, *hc_mmio;
2868 	unsigned int handled = 0, port;
2869 
2870 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2871 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2872 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2873 
2874 	for (port = 0; port < hpriv->n_ports; port++) {
2875 		struct ata_port *ap = host->ports[port];
2876 		unsigned int p, shift, hardport, port_cause;
2877 
2878 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2879 		/*
2880 		 * Each hc within the host has its own hc_irq_cause register,
2881 		 * where the interrupting ports bits get ack'd.
2882 		 */
2883 		if (hardport == 0) {	/* first port on this hc ? */
2884 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2885 			u32 port_mask, ack_irqs;
2886 			/*
2887 			 * Skip this entire hc if nothing pending for any ports
2888 			 */
2889 			if (!hc_cause) {
2890 				port += MV_PORTS_PER_HC - 1;
2891 				continue;
2892 			}
2893 			/*
2894 			 * We don't need/want to read the hc_irq_cause register,
2895 			 * because doing so hurts performance, and
2896 			 * main_irq_cause already gives us everything we need.
2897 			 *
2898 			 * But we do have to *write* to the hc_irq_cause to ack
2899 			 * the ports that we are handling this time through.
2900 			 *
2901 			 * This requires that we create a bitmap for those
2902 			 * ports which interrupted us, and use that bitmap
2903 			 * to ack (only) those ports via hc_irq_cause.
2904 			 */
2905 			ack_irqs = 0;
2906 			if (hc_cause & PORTS_0_3_COAL_DONE)
2907 				ack_irqs = HC_COAL_IRQ;
2908 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2909 				if ((port + p) >= hpriv->n_ports)
2910 					break;
2911 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2912 				if (hc_cause & port_mask)
2913 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2914 			}
2915 			hc_mmio = mv_hc_base_from_port(mmio, port);
2916 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2917 			handled = 1;
2918 		}
2919 		/*
2920 		 * Handle interrupts signalled for this port:
2921 		 */
2922 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2923 		if (port_cause)
2924 			mv_port_intr(ap, port_cause);
2925 	}
2926 	return handled;
2927 }
2928 
2929 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2930 {
2931 	struct mv_host_priv *hpriv = host->private_data;
2932 	struct ata_port *ap;
2933 	struct ata_queued_cmd *qc;
2934 	struct ata_eh_info *ehi;
2935 	unsigned int i, err_mask, printed = 0;
2936 	u32 err_cause;
2937 
2938 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2939 
2940 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2941 
2942 	DPRINTK("All regs @ PCI error\n");
2943 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2944 
2945 	writelfl(0, mmio + hpriv->irq_cause_offset);
2946 
2947 	for (i = 0; i < host->n_ports; i++) {
2948 		ap = host->ports[i];
2949 		if (!ata_link_offline(&ap->link)) {
2950 			ehi = &ap->link.eh_info;
2951 			ata_ehi_clear_desc(ehi);
2952 			if (!printed++)
2953 				ata_ehi_push_desc(ehi,
2954 					"PCI err cause 0x%08x", err_cause);
2955 			err_mask = AC_ERR_HOST_BUS;
2956 			ehi->action = ATA_EH_RESET;
2957 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2958 			if (qc)
2959 				qc->err_mask |= err_mask;
2960 			else
2961 				ehi->err_mask |= err_mask;
2962 
2963 			ata_port_freeze(ap);
2964 		}
2965 	}
2966 	return 1;	/* handled */
2967 }
2968 
2969 /**
2970  *      mv_interrupt - Main interrupt event handler
2971  *      @irq: unused
2972  *      @dev_instance: private data; in this case the host structure
2973  *
2974  *      Read the read only register to determine if any host
2975  *      controllers have pending interrupts.  If so, call lower level
2976  *      routine to handle.  Also check for PCI errors which are only
2977  *      reported here.
2978  *
2979  *      LOCKING:
2980  *      This routine holds the host lock while processing pending
2981  *      interrupts.
2982  */
2983 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2984 {
2985 	struct ata_host *host = dev_instance;
2986 	struct mv_host_priv *hpriv = host->private_data;
2987 	unsigned int handled = 0;
2988 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2989 	u32 main_irq_cause, pending_irqs;
2990 
2991 	spin_lock(&host->lock);
2992 
2993 	/* for MSI:  block new interrupts while in here */
2994 	if (using_msi)
2995 		mv_write_main_irq_mask(0, hpriv);
2996 
2997 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2998 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2999 	/*
3000 	 * Deal with cases where we either have nothing pending, or have read
3001 	 * a bogus register value which can indicate HW removal or PCI fault.
3002 	 */
3003 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3004 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3005 			handled = mv_pci_error(host, hpriv->base);
3006 		else
3007 			handled = mv_host_intr(host, pending_irqs);
3008 	}
3009 
3010 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3011 	if (using_msi)
3012 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3013 
3014 	spin_unlock(&host->lock);
3015 
3016 	return IRQ_RETVAL(handled);
3017 }
3018 
3019 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3020 {
3021 	unsigned int ofs;
3022 
3023 	switch (sc_reg_in) {
3024 	case SCR_STATUS:
3025 	case SCR_ERROR:
3026 	case SCR_CONTROL:
3027 		ofs = sc_reg_in * sizeof(u32);
3028 		break;
3029 	default:
3030 		ofs = 0xffffffffU;
3031 		break;
3032 	}
3033 	return ofs;
3034 }
3035 
3036 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3037 {
3038 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3039 	void __iomem *mmio = hpriv->base;
3040 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3041 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3042 
3043 	if (ofs != 0xffffffffU) {
3044 		*val = readl(addr + ofs);
3045 		return 0;
3046 	} else
3047 		return -EINVAL;
3048 }
3049 
3050 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3051 {
3052 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3053 	void __iomem *mmio = hpriv->base;
3054 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3055 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3056 
3057 	if (ofs != 0xffffffffU) {
3058 		writelfl(val, addr + ofs);
3059 		return 0;
3060 	} else
3061 		return -EINVAL;
3062 }
3063 
3064 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3065 {
3066 	struct pci_dev *pdev = to_pci_dev(host->dev);
3067 	int early_5080;
3068 
3069 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3070 
3071 	if (!early_5080) {
3072 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3073 		tmp |= (1 << 0);
3074 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3075 	}
3076 
3077 	mv_reset_pci_bus(host, mmio);
3078 }
3079 
3080 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3081 {
3082 	writel(0x0fcfffff, mmio + FLASH_CTL);
3083 }
3084 
3085 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3086 			   void __iomem *mmio)
3087 {
3088 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3089 	u32 tmp;
3090 
3091 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3092 
3093 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3094 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3095 }
3096 
3097 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3098 {
3099 	u32 tmp;
3100 
3101 	writel(0, mmio + GPIO_PORT_CTL);
3102 
3103 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3104 
3105 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3106 	tmp |= ~(1 << 0);
3107 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3108 }
3109 
3110 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3111 			   unsigned int port)
3112 {
3113 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3114 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3115 	u32 tmp;
3116 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3117 
3118 	if (fix_apm_sq) {
3119 		tmp = readl(phy_mmio + MV5_LTMODE);
3120 		tmp |= (1 << 19);
3121 		writel(tmp, phy_mmio + MV5_LTMODE);
3122 
3123 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3124 		tmp &= ~0x3;
3125 		tmp |= 0x1;
3126 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3127 	}
3128 
3129 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3130 	tmp &= ~mask;
3131 	tmp |= hpriv->signal[port].pre;
3132 	tmp |= hpriv->signal[port].amps;
3133 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3134 }
3135 
3136 
3137 #undef ZERO
3138 #define ZERO(reg) writel(0, port_mmio + (reg))
3139 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3140 			     unsigned int port)
3141 {
3142 	void __iomem *port_mmio = mv_port_base(mmio, port);
3143 
3144 	mv_reset_channel(hpriv, mmio, port);
3145 
3146 	ZERO(0x028);	/* command */
3147 	writel(0x11f, port_mmio + EDMA_CFG);
3148 	ZERO(0x004);	/* timer */
3149 	ZERO(0x008);	/* irq err cause */
3150 	ZERO(0x00c);	/* irq err mask */
3151 	ZERO(0x010);	/* rq bah */
3152 	ZERO(0x014);	/* rq inp */
3153 	ZERO(0x018);	/* rq outp */
3154 	ZERO(0x01c);	/* respq bah */
3155 	ZERO(0x024);	/* respq outp */
3156 	ZERO(0x020);	/* respq inp */
3157 	ZERO(0x02c);	/* test control */
3158 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3159 }
3160 #undef ZERO
3161 
3162 #define ZERO(reg) writel(0, hc_mmio + (reg))
3163 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3164 			unsigned int hc)
3165 {
3166 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3167 	u32 tmp;
3168 
3169 	ZERO(0x00c);
3170 	ZERO(0x010);
3171 	ZERO(0x014);
3172 	ZERO(0x018);
3173 
3174 	tmp = readl(hc_mmio + 0x20);
3175 	tmp &= 0x1c1c1c1c;
3176 	tmp |= 0x03030303;
3177 	writel(tmp, hc_mmio + 0x20);
3178 }
3179 #undef ZERO
3180 
3181 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3182 			unsigned int n_hc)
3183 {
3184 	unsigned int hc, port;
3185 
3186 	for (hc = 0; hc < n_hc; hc++) {
3187 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3188 			mv5_reset_hc_port(hpriv, mmio,
3189 					  (hc * MV_PORTS_PER_HC) + port);
3190 
3191 		mv5_reset_one_hc(hpriv, mmio, hc);
3192 	}
3193 
3194 	return 0;
3195 }
3196 
3197 #undef ZERO
3198 #define ZERO(reg) writel(0, mmio + (reg))
3199 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3200 {
3201 	struct mv_host_priv *hpriv = host->private_data;
3202 	u32 tmp;
3203 
3204 	tmp = readl(mmio + MV_PCI_MODE);
3205 	tmp &= 0xff00ffff;
3206 	writel(tmp, mmio + MV_PCI_MODE);
3207 
3208 	ZERO(MV_PCI_DISC_TIMER);
3209 	ZERO(MV_PCI_MSI_TRIGGER);
3210 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3211 	ZERO(MV_PCI_SERR_MASK);
3212 	ZERO(hpriv->irq_cause_offset);
3213 	ZERO(hpriv->irq_mask_offset);
3214 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3215 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3216 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3217 	ZERO(MV_PCI_ERR_COMMAND);
3218 }
3219 #undef ZERO
3220 
3221 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3222 {
3223 	u32 tmp;
3224 
3225 	mv5_reset_flash(hpriv, mmio);
3226 
3227 	tmp = readl(mmio + GPIO_PORT_CTL);
3228 	tmp &= 0x3;
3229 	tmp |= (1 << 5) | (1 << 6);
3230 	writel(tmp, mmio + GPIO_PORT_CTL);
3231 }
3232 
3233 /**
3234  *      mv6_reset_hc - Perform the 6xxx global soft reset
3235  *      @mmio: base address of the HBA
3236  *
3237  *      This routine only applies to 6xxx parts.
3238  *
3239  *      LOCKING:
3240  *      Inherited from caller.
3241  */
3242 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3243 			unsigned int n_hc)
3244 {
3245 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3246 	int i, rc = 0;
3247 	u32 t;
3248 
3249 	/* Following procedure defined in PCI "main command and status
3250 	 * register" table.
3251 	 */
3252 	t = readl(reg);
3253 	writel(t | STOP_PCI_MASTER, reg);
3254 
3255 	for (i = 0; i < 1000; i++) {
3256 		udelay(1);
3257 		t = readl(reg);
3258 		if (PCI_MASTER_EMPTY & t)
3259 			break;
3260 	}
3261 	if (!(PCI_MASTER_EMPTY & t)) {
3262 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3263 		rc = 1;
3264 		goto done;
3265 	}
3266 
3267 	/* set reset */
3268 	i = 5;
3269 	do {
3270 		writel(t | GLOB_SFT_RST, reg);
3271 		t = readl(reg);
3272 		udelay(1);
3273 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3274 
3275 	if (!(GLOB_SFT_RST & t)) {
3276 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3277 		rc = 1;
3278 		goto done;
3279 	}
3280 
3281 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3282 	i = 5;
3283 	do {
3284 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3285 		t = readl(reg);
3286 		udelay(1);
3287 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3288 
3289 	if (GLOB_SFT_RST & t) {
3290 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3291 		rc = 1;
3292 	}
3293 done:
3294 	return rc;
3295 }
3296 
3297 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3298 			   void __iomem *mmio)
3299 {
3300 	void __iomem *port_mmio;
3301 	u32 tmp;
3302 
3303 	tmp = readl(mmio + RESET_CFG);
3304 	if ((tmp & (1 << 0)) == 0) {
3305 		hpriv->signal[idx].amps = 0x7 << 8;
3306 		hpriv->signal[idx].pre = 0x1 << 5;
3307 		return;
3308 	}
3309 
3310 	port_mmio = mv_port_base(mmio, idx);
3311 	tmp = readl(port_mmio + PHY_MODE2);
3312 
3313 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3314 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3315 }
3316 
3317 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3318 {
3319 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3320 }
3321 
3322 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3323 			   unsigned int port)
3324 {
3325 	void __iomem *port_mmio = mv_port_base(mmio, port);
3326 
3327 	u32 hp_flags = hpriv->hp_flags;
3328 	int fix_phy_mode2 =
3329 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3330 	int fix_phy_mode4 =
3331 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3332 	u32 m2, m3;
3333 
3334 	if (fix_phy_mode2) {
3335 		m2 = readl(port_mmio + PHY_MODE2);
3336 		m2 &= ~(1 << 16);
3337 		m2 |= (1 << 31);
3338 		writel(m2, port_mmio + PHY_MODE2);
3339 
3340 		udelay(200);
3341 
3342 		m2 = readl(port_mmio + PHY_MODE2);
3343 		m2 &= ~((1 << 16) | (1 << 31));
3344 		writel(m2, port_mmio + PHY_MODE2);
3345 
3346 		udelay(200);
3347 	}
3348 
3349 	/*
3350 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3351 	 * Achieves better receiver noise performance than the h/w default:
3352 	 */
3353 	m3 = readl(port_mmio + PHY_MODE3);
3354 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3355 
3356 	/* Guideline 88F5182 (GL# SATA-S11) */
3357 	if (IS_SOC(hpriv))
3358 		m3 &= ~0x1c;
3359 
3360 	if (fix_phy_mode4) {
3361 		u32 m4 = readl(port_mmio + PHY_MODE4);
3362 		/*
3363 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3364 		 * For earlier chipsets, force only the internal config field
3365 		 *  (workaround for errata FEr SATA#10 part 1).
3366 		 */
3367 		if (IS_GEN_IIE(hpriv))
3368 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3369 		else
3370 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3371 		writel(m4, port_mmio + PHY_MODE4);
3372 	}
3373 	/*
3374 	 * Workaround for 60x1-B2 errata SATA#13:
3375 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3376 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3377 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3378 	 */
3379 	writel(m3, port_mmio + PHY_MODE3);
3380 
3381 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3382 	m2 = readl(port_mmio + PHY_MODE2);
3383 
3384 	m2 &= ~MV_M2_PREAMP_MASK;
3385 	m2 |= hpriv->signal[port].amps;
3386 	m2 |= hpriv->signal[port].pre;
3387 	m2 &= ~(1 << 16);
3388 
3389 	/* according to mvSata 3.6.1, some IIE values are fixed */
3390 	if (IS_GEN_IIE(hpriv)) {
3391 		m2 &= ~0xC30FF01F;
3392 		m2 |= 0x0000900F;
3393 	}
3394 
3395 	writel(m2, port_mmio + PHY_MODE2);
3396 }
3397 
3398 /* TODO: use the generic LED interface to configure the SATA Presence */
3399 /* & Acitivy LEDs on the board */
3400 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3401 				      void __iomem *mmio)
3402 {
3403 	return;
3404 }
3405 
3406 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3407 			   void __iomem *mmio)
3408 {
3409 	void __iomem *port_mmio;
3410 	u32 tmp;
3411 
3412 	port_mmio = mv_port_base(mmio, idx);
3413 	tmp = readl(port_mmio + PHY_MODE2);
3414 
3415 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3416 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3417 }
3418 
3419 #undef ZERO
3420 #define ZERO(reg) writel(0, port_mmio + (reg))
3421 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3422 					void __iomem *mmio, unsigned int port)
3423 {
3424 	void __iomem *port_mmio = mv_port_base(mmio, port);
3425 
3426 	mv_reset_channel(hpriv, mmio, port);
3427 
3428 	ZERO(0x028);		/* command */
3429 	writel(0x101f, port_mmio + EDMA_CFG);
3430 	ZERO(0x004);		/* timer */
3431 	ZERO(0x008);		/* irq err cause */
3432 	ZERO(0x00c);		/* irq err mask */
3433 	ZERO(0x010);		/* rq bah */
3434 	ZERO(0x014);		/* rq inp */
3435 	ZERO(0x018);		/* rq outp */
3436 	ZERO(0x01c);		/* respq bah */
3437 	ZERO(0x024);		/* respq outp */
3438 	ZERO(0x020);		/* respq inp */
3439 	ZERO(0x02c);		/* test control */
3440 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3441 }
3442 
3443 #undef ZERO
3444 
3445 #define ZERO(reg) writel(0, hc_mmio + (reg))
3446 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3447 				       void __iomem *mmio)
3448 {
3449 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3450 
3451 	ZERO(0x00c);
3452 	ZERO(0x010);
3453 	ZERO(0x014);
3454 
3455 }
3456 
3457 #undef ZERO
3458 
3459 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3460 				  void __iomem *mmio, unsigned int n_hc)
3461 {
3462 	unsigned int port;
3463 
3464 	for (port = 0; port < hpriv->n_ports; port++)
3465 		mv_soc_reset_hc_port(hpriv, mmio, port);
3466 
3467 	mv_soc_reset_one_hc(hpriv, mmio);
3468 
3469 	return 0;
3470 }
3471 
3472 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3473 				      void __iomem *mmio)
3474 {
3475 	return;
3476 }
3477 
3478 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3479 {
3480 	return;
3481 }
3482 
3483 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3484 				  void __iomem *mmio, unsigned int port)
3485 {
3486 	void __iomem *port_mmio = mv_port_base(mmio, port);
3487 	u32	reg;
3488 
3489 	reg = readl(port_mmio + PHY_MODE3);
3490 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3491 	reg |= (0x1 << 27);
3492 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3493 	reg |= (0x1 << 29);
3494 	writel(reg, port_mmio + PHY_MODE3);
3495 
3496 	reg = readl(port_mmio + PHY_MODE4);
3497 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3498 	reg |= (0x1 << 16);
3499 	writel(reg, port_mmio + PHY_MODE4);
3500 
3501 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3502 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3503 	reg |= 0x8;
3504 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3505 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3506 
3507 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3508 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3509 	reg |= 0x8;
3510 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3511 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3512 }
3513 
3514 /**
3515  *	soc_is_65 - check if the soc is 65 nano device
3516  *
3517  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3518  *	register, this register should contain non-zero value and it exists only
3519  *	in the 65 nano devices, when reading it from older devices we get 0.
3520  */
3521 static bool soc_is_65n(struct mv_host_priv *hpriv)
3522 {
3523 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3524 
3525 	if (readl(port0_mmio + PHYCFG_OFS))
3526 		return true;
3527 	return false;
3528 }
3529 
3530 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3531 {
3532 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3533 
3534 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3535 	if (want_gen2i)
3536 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3537 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3538 }
3539 
3540 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3541 			     unsigned int port_no)
3542 {
3543 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3544 
3545 	/*
3546 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3547 	 * (but doesn't say what the problem might be).  So we first try
3548 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3549 	 */
3550 	mv_stop_edma_engine(port_mmio);
3551 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3552 
3553 	if (!IS_GEN_I(hpriv)) {
3554 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3555 		mv_setup_ifcfg(port_mmio, 1);
3556 	}
3557 	/*
3558 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3559 	 * link, and physical layers.  It resets all SATA interface registers
3560 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3561 	 */
3562 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3563 	udelay(25);	/* allow reset propagation */
3564 	writelfl(0, port_mmio + EDMA_CMD);
3565 
3566 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3567 
3568 	if (IS_GEN_I(hpriv))
3569 		mdelay(1);
3570 }
3571 
3572 static void mv_pmp_select(struct ata_port *ap, int pmp)
3573 {
3574 	if (sata_pmp_supported(ap)) {
3575 		void __iomem *port_mmio = mv_ap_base(ap);
3576 		u32 reg = readl(port_mmio + SATA_IFCTL);
3577 		int old = reg & 0xf;
3578 
3579 		if (old != pmp) {
3580 			reg = (reg & ~0xf) | pmp;
3581 			writelfl(reg, port_mmio + SATA_IFCTL);
3582 		}
3583 	}
3584 }
3585 
3586 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3587 				unsigned long deadline)
3588 {
3589 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3590 	return sata_std_hardreset(link, class, deadline);
3591 }
3592 
3593 static int mv_softreset(struct ata_link *link, unsigned int *class,
3594 				unsigned long deadline)
3595 {
3596 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3597 	return ata_sff_softreset(link, class, deadline);
3598 }
3599 
3600 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3601 			unsigned long deadline)
3602 {
3603 	struct ata_port *ap = link->ap;
3604 	struct mv_host_priv *hpriv = ap->host->private_data;
3605 	struct mv_port_priv *pp = ap->private_data;
3606 	void __iomem *mmio = hpriv->base;
3607 	int rc, attempts = 0, extra = 0;
3608 	u32 sstatus;
3609 	bool online;
3610 
3611 	mv_reset_channel(hpriv, mmio, ap->port_no);
3612 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3613 	pp->pp_flags &=
3614 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3615 
3616 	/* Workaround for errata FEr SATA#10 (part 2) */
3617 	do {
3618 		const unsigned long *timing =
3619 				sata_ehc_deb_timing(&link->eh_context);
3620 
3621 		rc = sata_link_hardreset(link, timing, deadline + extra,
3622 					 &online, NULL);
3623 		rc = online ? -EAGAIN : rc;
3624 		if (rc)
3625 			return rc;
3626 		sata_scr_read(link, SCR_STATUS, &sstatus);
3627 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3628 			/* Force 1.5gb/s link speed and try again */
3629 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3630 			if (time_after(jiffies + HZ, deadline))
3631 				extra = HZ; /* only extend it once, max */
3632 		}
3633 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3634 	mv_save_cached_regs(ap);
3635 	mv_edma_cfg(ap, 0, 0);
3636 
3637 	return rc;
3638 }
3639 
3640 static void mv_eh_freeze(struct ata_port *ap)
3641 {
3642 	mv_stop_edma(ap);
3643 	mv_enable_port_irqs(ap, 0);
3644 }
3645 
3646 static void mv_eh_thaw(struct ata_port *ap)
3647 {
3648 	struct mv_host_priv *hpriv = ap->host->private_data;
3649 	unsigned int port = ap->port_no;
3650 	unsigned int hardport = mv_hardport_from_port(port);
3651 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3652 	void __iomem *port_mmio = mv_ap_base(ap);
3653 	u32 hc_irq_cause;
3654 
3655 	/* clear EDMA errors on this port */
3656 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3657 
3658 	/* clear pending irq events */
3659 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3660 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3661 
3662 	mv_enable_port_irqs(ap, ERR_IRQ);
3663 }
3664 
3665 /**
3666  *      mv_port_init - Perform some early initialization on a single port.
3667  *      @port: libata data structure storing shadow register addresses
3668  *      @port_mmio: base address of the port
3669  *
3670  *      Initialize shadow register mmio addresses, clear outstanding
3671  *      interrupts on the port, and unmask interrupts for the future
3672  *      start of the port.
3673  *
3674  *      LOCKING:
3675  *      Inherited from caller.
3676  */
3677 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3678 {
3679 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3680 
3681 	/* PIO related setup
3682 	 */
3683 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3684 	port->error_addr =
3685 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3686 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3687 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3688 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3689 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3690 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3691 	port->status_addr =
3692 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3693 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3694 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3695 
3696 	/* Clear any currently outstanding port interrupt conditions */
3697 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3698 	writelfl(readl(serr), serr);
3699 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3700 
3701 	/* unmask all non-transient EDMA error interrupts */
3702 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3703 
3704 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3705 		readl(port_mmio + EDMA_CFG),
3706 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3707 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3708 }
3709 
3710 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3711 {
3712 	struct mv_host_priv *hpriv = host->private_data;
3713 	void __iomem *mmio = hpriv->base;
3714 	u32 reg;
3715 
3716 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3717 		return 0;	/* not PCI-X capable */
3718 	reg = readl(mmio + MV_PCI_MODE);
3719 	if ((reg & MV_PCI_MODE_MASK) == 0)
3720 		return 0;	/* conventional PCI mode */
3721 	return 1;	/* chip is in PCI-X mode */
3722 }
3723 
3724 static int mv_pci_cut_through_okay(struct ata_host *host)
3725 {
3726 	struct mv_host_priv *hpriv = host->private_data;
3727 	void __iomem *mmio = hpriv->base;
3728 	u32 reg;
3729 
3730 	if (!mv_in_pcix_mode(host)) {
3731 		reg = readl(mmio + MV_PCI_COMMAND);
3732 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3733 			return 0; /* not okay */
3734 	}
3735 	return 1; /* okay */
3736 }
3737 
3738 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3739 {
3740 	struct mv_host_priv *hpriv = host->private_data;
3741 	void __iomem *mmio = hpriv->base;
3742 
3743 	/* workaround for 60x1-B2 errata PCI#7 */
3744 	if (mv_in_pcix_mode(host)) {
3745 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3746 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3747 	}
3748 }
3749 
3750 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3751 {
3752 	struct pci_dev *pdev = to_pci_dev(host->dev);
3753 	struct mv_host_priv *hpriv = host->private_data;
3754 	u32 hp_flags = hpriv->hp_flags;
3755 
3756 	switch (board_idx) {
3757 	case chip_5080:
3758 		hpriv->ops = &mv5xxx_ops;
3759 		hp_flags |= MV_HP_GEN_I;
3760 
3761 		switch (pdev->revision) {
3762 		case 0x1:
3763 			hp_flags |= MV_HP_ERRATA_50XXB0;
3764 			break;
3765 		case 0x3:
3766 			hp_flags |= MV_HP_ERRATA_50XXB2;
3767 			break;
3768 		default:
3769 			dev_warn(&pdev->dev,
3770 				 "Applying 50XXB2 workarounds to unknown rev\n");
3771 			hp_flags |= MV_HP_ERRATA_50XXB2;
3772 			break;
3773 		}
3774 		break;
3775 
3776 	case chip_504x:
3777 	case chip_508x:
3778 		hpriv->ops = &mv5xxx_ops;
3779 		hp_flags |= MV_HP_GEN_I;
3780 
3781 		switch (pdev->revision) {
3782 		case 0x0:
3783 			hp_flags |= MV_HP_ERRATA_50XXB0;
3784 			break;
3785 		case 0x3:
3786 			hp_flags |= MV_HP_ERRATA_50XXB2;
3787 			break;
3788 		default:
3789 			dev_warn(&pdev->dev,
3790 				 "Applying B2 workarounds to unknown rev\n");
3791 			hp_flags |= MV_HP_ERRATA_50XXB2;
3792 			break;
3793 		}
3794 		break;
3795 
3796 	case chip_604x:
3797 	case chip_608x:
3798 		hpriv->ops = &mv6xxx_ops;
3799 		hp_flags |= MV_HP_GEN_II;
3800 
3801 		switch (pdev->revision) {
3802 		case 0x7:
3803 			mv_60x1b2_errata_pci7(host);
3804 			hp_flags |= MV_HP_ERRATA_60X1B2;
3805 			break;
3806 		case 0x9:
3807 			hp_flags |= MV_HP_ERRATA_60X1C0;
3808 			break;
3809 		default:
3810 			dev_warn(&pdev->dev,
3811 				 "Applying B2 workarounds to unknown rev\n");
3812 			hp_flags |= MV_HP_ERRATA_60X1B2;
3813 			break;
3814 		}
3815 		break;
3816 
3817 	case chip_7042:
3818 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3819 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3820 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3821 		{
3822 			/*
3823 			 * Highpoint RocketRAID PCIe 23xx series cards:
3824 			 *
3825 			 * Unconfigured drives are treated as "Legacy"
3826 			 * by the BIOS, and it overwrites sector 8 with
3827 			 * a "Lgcy" metadata block prior to Linux boot.
3828 			 *
3829 			 * Configured drives (RAID or JBOD) leave sector 8
3830 			 * alone, but instead overwrite a high numbered
3831 			 * sector for the RAID metadata.  This sector can
3832 			 * be determined exactly, by truncating the physical
3833 			 * drive capacity to a nice even GB value.
3834 			 *
3835 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3836 			 *
3837 			 * Warn the user, lest they think we're just buggy.
3838 			 */
3839 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3840 				" BIOS CORRUPTS DATA on all attached drives,"
3841 				" regardless of if/how they are configured."
3842 				" BEWARE!\n");
3843 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3844 				" use sectors 8-9 on \"Legacy\" drives,"
3845 				" and avoid the final two gigabytes on"
3846 				" all RocketRAID BIOS initialized drives.\n");
3847 		}
3848 		/* drop through */
3849 	case chip_6042:
3850 		hpriv->ops = &mv6xxx_ops;
3851 		hp_flags |= MV_HP_GEN_IIE;
3852 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3853 			hp_flags |= MV_HP_CUT_THROUGH;
3854 
3855 		switch (pdev->revision) {
3856 		case 0x2: /* Rev.B0: the first/only public release */
3857 			hp_flags |= MV_HP_ERRATA_60X1C0;
3858 			break;
3859 		default:
3860 			dev_warn(&pdev->dev,
3861 				 "Applying 60X1C0 workarounds to unknown rev\n");
3862 			hp_flags |= MV_HP_ERRATA_60X1C0;
3863 			break;
3864 		}
3865 		break;
3866 	case chip_soc:
3867 		if (soc_is_65n(hpriv))
3868 			hpriv->ops = &mv_soc_65n_ops;
3869 		else
3870 			hpriv->ops = &mv_soc_ops;
3871 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3872 			MV_HP_ERRATA_60X1C0;
3873 		break;
3874 
3875 	default:
3876 		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3877 		return 1;
3878 	}
3879 
3880 	hpriv->hp_flags = hp_flags;
3881 	if (hp_flags & MV_HP_PCIE) {
3882 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3883 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3884 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3885 	} else {
3886 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3887 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3888 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3889 	}
3890 
3891 	return 0;
3892 }
3893 
3894 /**
3895  *      mv_init_host - Perform some early initialization of the host.
3896  *	@host: ATA host to initialize
3897  *
3898  *      If possible, do an early global reset of the host.  Then do
3899  *      our port init and clear/unmask all/relevant host interrupts.
3900  *
3901  *      LOCKING:
3902  *      Inherited from caller.
3903  */
3904 static int mv_init_host(struct ata_host *host)
3905 {
3906 	int rc = 0, n_hc, port, hc;
3907 	struct mv_host_priv *hpriv = host->private_data;
3908 	void __iomem *mmio = hpriv->base;
3909 
3910 	rc = mv_chip_id(host, hpriv->board_idx);
3911 	if (rc)
3912 		goto done;
3913 
3914 	if (IS_SOC(hpriv)) {
3915 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3916 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3917 	} else {
3918 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3919 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3920 	}
3921 
3922 	/* initialize shadow irq mask with register's value */
3923 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3924 
3925 	/* global interrupt mask: 0 == mask everything */
3926 	mv_set_main_irq_mask(host, ~0, 0);
3927 
3928 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3929 
3930 	for (port = 0; port < host->n_ports; port++)
3931 		if (hpriv->ops->read_preamp)
3932 			hpriv->ops->read_preamp(hpriv, port, mmio);
3933 
3934 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3935 	if (rc)
3936 		goto done;
3937 
3938 	hpriv->ops->reset_flash(hpriv, mmio);
3939 	hpriv->ops->reset_bus(host, mmio);
3940 	hpriv->ops->enable_leds(hpriv, mmio);
3941 
3942 	for (port = 0; port < host->n_ports; port++) {
3943 		struct ata_port *ap = host->ports[port];
3944 		void __iomem *port_mmio = mv_port_base(mmio, port);
3945 
3946 		mv_port_init(&ap->ioaddr, port_mmio);
3947 	}
3948 
3949 	for (hc = 0; hc < n_hc; hc++) {
3950 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3951 
3952 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3953 			"(before clear)=0x%08x\n", hc,
3954 			readl(hc_mmio + HC_CFG),
3955 			readl(hc_mmio + HC_IRQ_CAUSE));
3956 
3957 		/* Clear any currently outstanding hc interrupt conditions */
3958 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3959 	}
3960 
3961 	if (!IS_SOC(hpriv)) {
3962 		/* Clear any currently outstanding host interrupt conditions */
3963 		writelfl(0, mmio + hpriv->irq_cause_offset);
3964 
3965 		/* and unmask interrupt generation for host regs */
3966 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3967 	}
3968 
3969 	/*
3970 	 * enable only global host interrupts for now.
3971 	 * The per-port interrupts get done later as ports are set up.
3972 	 */
3973 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3974 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3975 				    irq_coalescing_usecs);
3976 done:
3977 	return rc;
3978 }
3979 
3980 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3981 {
3982 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3983 							     MV_CRQB_Q_SZ, 0);
3984 	if (!hpriv->crqb_pool)
3985 		return -ENOMEM;
3986 
3987 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3988 							     MV_CRPB_Q_SZ, 0);
3989 	if (!hpriv->crpb_pool)
3990 		return -ENOMEM;
3991 
3992 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3993 							     MV_SG_TBL_SZ, 0);
3994 	if (!hpriv->sg_tbl_pool)
3995 		return -ENOMEM;
3996 
3997 	return 0;
3998 }
3999 
4000 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4001 				 const struct mbus_dram_target_info *dram)
4002 {
4003 	int i;
4004 
4005 	for (i = 0; i < 4; i++) {
4006 		writel(0, hpriv->base + WINDOW_CTRL(i));
4007 		writel(0, hpriv->base + WINDOW_BASE(i));
4008 	}
4009 
4010 	for (i = 0; i < dram->num_cs; i++) {
4011 		const struct mbus_dram_window *cs = dram->cs + i;
4012 
4013 		writel(((cs->size - 1) & 0xffff0000) |
4014 			(cs->mbus_attr << 8) |
4015 			(dram->mbus_dram_target_id << 4) | 1,
4016 			hpriv->base + WINDOW_CTRL(i));
4017 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4018 	}
4019 }
4020 
4021 /**
4022  *      mv_platform_probe - handle a positive probe of an soc Marvell
4023  *      host
4024  *      @pdev: platform device found
4025  *
4026  *      LOCKING:
4027  *      Inherited from caller.
4028  */
4029 static int mv_platform_probe(struct platform_device *pdev)
4030 {
4031 	const struct mv_sata_platform_data *mv_platform_data;
4032 	const struct mbus_dram_target_info *dram;
4033 	const struct ata_port_info *ppi[] =
4034 	    { &mv_port_info[chip_soc], NULL };
4035 	struct ata_host *host;
4036 	struct mv_host_priv *hpriv;
4037 	struct resource *res;
4038 	int n_ports = 0, irq = 0;
4039 	int rc;
4040 	int port;
4041 
4042 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4043 
4044 	/*
4045 	 * Simple resource validation ..
4046 	 */
4047 	if (unlikely(pdev->num_resources != 2)) {
4048 		dev_err(&pdev->dev, "invalid number of resources\n");
4049 		return -EINVAL;
4050 	}
4051 
4052 	/*
4053 	 * Get the register base first
4054 	 */
4055 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4056 	if (res == NULL)
4057 		return -EINVAL;
4058 
4059 	/* allocate host */
4060 	if (pdev->dev.of_node) {
4061 		of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4062 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4063 	} else {
4064 		mv_platform_data = dev_get_platdata(&pdev->dev);
4065 		n_ports = mv_platform_data->n_ports;
4066 		irq = platform_get_irq(pdev, 0);
4067 	}
4068 
4069 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4070 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4071 
4072 	if (!host || !hpriv)
4073 		return -ENOMEM;
4074 	hpriv->port_clks = devm_kzalloc(&pdev->dev,
4075 					sizeof(struct clk *) * n_ports,
4076 					GFP_KERNEL);
4077 	if (!hpriv->port_clks)
4078 		return -ENOMEM;
4079 	host->private_data = hpriv;
4080 	hpriv->n_ports = n_ports;
4081 	hpriv->board_idx = chip_soc;
4082 
4083 	host->iomap = NULL;
4084 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4085 				   resource_size(res));
4086 	hpriv->base -= SATAHC0_REG_BASE;
4087 
4088 	hpriv->clk = clk_get(&pdev->dev, NULL);
4089 	if (IS_ERR(hpriv->clk))
4090 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4091 	else
4092 		clk_prepare_enable(hpriv->clk);
4093 
4094 	for (port = 0; port < n_ports; port++) {
4095 		char port_number[16];
4096 		sprintf(port_number, "%d", port);
4097 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4098 		if (!IS_ERR(hpriv->port_clks[port]))
4099 			clk_prepare_enable(hpriv->port_clks[port]);
4100 	}
4101 
4102 	/*
4103 	 * (Re-)program MBUS remapping windows if we are asked to.
4104 	 */
4105 	dram = mv_mbus_dram_info();
4106 	if (dram)
4107 		mv_conf_mbus_windows(hpriv, dram);
4108 
4109 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4110 	if (rc)
4111 		goto err;
4112 
4113 	/* initialize adapter */
4114 	rc = mv_init_host(host);
4115 	if (rc)
4116 		goto err;
4117 
4118 	dev_info(&pdev->dev, "slots %u ports %d\n",
4119 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4120 
4121 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4122 	if (!rc)
4123 		return 0;
4124 
4125 err:
4126 	if (!IS_ERR(hpriv->clk)) {
4127 		clk_disable_unprepare(hpriv->clk);
4128 		clk_put(hpriv->clk);
4129 	}
4130 	for (port = 0; port < n_ports; port++) {
4131 		if (!IS_ERR(hpriv->port_clks[port])) {
4132 			clk_disable_unprepare(hpriv->port_clks[port]);
4133 			clk_put(hpriv->port_clks[port]);
4134 		}
4135 	}
4136 
4137 	return rc;
4138 }
4139 
4140 /*
4141  *
4142  *      mv_platform_remove    -       unplug a platform interface
4143  *      @pdev: platform device
4144  *
4145  *      A platform bus SATA device has been unplugged. Perform the needed
4146  *      cleanup. Also called on module unload for any active devices.
4147  */
4148 static int mv_platform_remove(struct platform_device *pdev)
4149 {
4150 	struct ata_host *host = platform_get_drvdata(pdev);
4151 	struct mv_host_priv *hpriv = host->private_data;
4152 	int port;
4153 	ata_host_detach(host);
4154 
4155 	if (!IS_ERR(hpriv->clk)) {
4156 		clk_disable_unprepare(hpriv->clk);
4157 		clk_put(hpriv->clk);
4158 	}
4159 	for (port = 0; port < host->n_ports; port++) {
4160 		if (!IS_ERR(hpriv->port_clks[port])) {
4161 			clk_disable_unprepare(hpriv->port_clks[port]);
4162 			clk_put(hpriv->port_clks[port]);
4163 		}
4164 	}
4165 	return 0;
4166 }
4167 
4168 #ifdef CONFIG_PM
4169 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4170 {
4171 	struct ata_host *host = platform_get_drvdata(pdev);
4172 	if (host)
4173 		return ata_host_suspend(host, state);
4174 	else
4175 		return 0;
4176 }
4177 
4178 static int mv_platform_resume(struct platform_device *pdev)
4179 {
4180 	struct ata_host *host = platform_get_drvdata(pdev);
4181 	const struct mbus_dram_target_info *dram;
4182 	int ret;
4183 
4184 	if (host) {
4185 		struct mv_host_priv *hpriv = host->private_data;
4186 
4187 		/*
4188 		 * (Re-)program MBUS remapping windows if we are asked to.
4189 		 */
4190 		dram = mv_mbus_dram_info();
4191 		if (dram)
4192 			mv_conf_mbus_windows(hpriv, dram);
4193 
4194 		/* initialize adapter */
4195 		ret = mv_init_host(host);
4196 		if (ret) {
4197 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4198 			return ret;
4199 		}
4200 		ata_host_resume(host);
4201 	}
4202 
4203 	return 0;
4204 }
4205 #else
4206 #define mv_platform_suspend NULL
4207 #define mv_platform_resume NULL
4208 #endif
4209 
4210 #ifdef CONFIG_OF
4211 static struct of_device_id mv_sata_dt_ids[] = {
4212 	{ .compatible = "marvell,orion-sata", },
4213 	{},
4214 };
4215 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4216 #endif
4217 
4218 static struct platform_driver mv_platform_driver = {
4219 	.probe		= mv_platform_probe,
4220 	.remove		= mv_platform_remove,
4221 	.suspend	= mv_platform_suspend,
4222 	.resume		= mv_platform_resume,
4223 	.driver		= {
4224 		.name = DRV_NAME,
4225 		.owner = THIS_MODULE,
4226 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4227 	},
4228 };
4229 
4230 
4231 #ifdef CONFIG_PCI
4232 static int mv_pci_init_one(struct pci_dev *pdev,
4233 			   const struct pci_device_id *ent);
4234 #ifdef CONFIG_PM
4235 static int mv_pci_device_resume(struct pci_dev *pdev);
4236 #endif
4237 
4238 
4239 static struct pci_driver mv_pci_driver = {
4240 	.name			= DRV_NAME,
4241 	.id_table		= mv_pci_tbl,
4242 	.probe			= mv_pci_init_one,
4243 	.remove			= ata_pci_remove_one,
4244 #ifdef CONFIG_PM
4245 	.suspend		= ata_pci_device_suspend,
4246 	.resume			= mv_pci_device_resume,
4247 #endif
4248 
4249 };
4250 
4251 /* move to PCI layer or libata core? */
4252 static int pci_go_64(struct pci_dev *pdev)
4253 {
4254 	int rc;
4255 
4256 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4257 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4258 		if (rc) {
4259 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4260 			if (rc) {
4261 				dev_err(&pdev->dev,
4262 					"64-bit DMA enable failed\n");
4263 				return rc;
4264 			}
4265 		}
4266 	} else {
4267 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4268 		if (rc) {
4269 			dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4270 			return rc;
4271 		}
4272 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4273 		if (rc) {
4274 			dev_err(&pdev->dev,
4275 				"32-bit consistent DMA enable failed\n");
4276 			return rc;
4277 		}
4278 	}
4279 
4280 	return rc;
4281 }
4282 
4283 /**
4284  *      mv_print_info - Dump key info to kernel log for perusal.
4285  *      @host: ATA host to print info about
4286  *
4287  *      FIXME: complete this.
4288  *
4289  *      LOCKING:
4290  *      Inherited from caller.
4291  */
4292 static void mv_print_info(struct ata_host *host)
4293 {
4294 	struct pci_dev *pdev = to_pci_dev(host->dev);
4295 	struct mv_host_priv *hpriv = host->private_data;
4296 	u8 scc;
4297 	const char *scc_s, *gen;
4298 
4299 	/* Use this to determine the HW stepping of the chip so we know
4300 	 * what errata to workaround
4301 	 */
4302 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4303 	if (scc == 0)
4304 		scc_s = "SCSI";
4305 	else if (scc == 0x01)
4306 		scc_s = "RAID";
4307 	else
4308 		scc_s = "?";
4309 
4310 	if (IS_GEN_I(hpriv))
4311 		gen = "I";
4312 	else if (IS_GEN_II(hpriv))
4313 		gen = "II";
4314 	else if (IS_GEN_IIE(hpriv))
4315 		gen = "IIE";
4316 	else
4317 		gen = "?";
4318 
4319 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4320 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4321 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4322 }
4323 
4324 /**
4325  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4326  *      @pdev: PCI device found
4327  *      @ent: PCI device ID entry for the matched host
4328  *
4329  *      LOCKING:
4330  *      Inherited from caller.
4331  */
4332 static int mv_pci_init_one(struct pci_dev *pdev,
4333 			   const struct pci_device_id *ent)
4334 {
4335 	unsigned int board_idx = (unsigned int)ent->driver_data;
4336 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4337 	struct ata_host *host;
4338 	struct mv_host_priv *hpriv;
4339 	int n_ports, port, rc;
4340 
4341 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4342 
4343 	/* allocate host */
4344 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4345 
4346 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4347 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4348 	if (!host || !hpriv)
4349 		return -ENOMEM;
4350 	host->private_data = hpriv;
4351 	hpriv->n_ports = n_ports;
4352 	hpriv->board_idx = board_idx;
4353 
4354 	/* acquire resources */
4355 	rc = pcim_enable_device(pdev);
4356 	if (rc)
4357 		return rc;
4358 
4359 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4360 	if (rc == -EBUSY)
4361 		pcim_pin_device(pdev);
4362 	if (rc)
4363 		return rc;
4364 	host->iomap = pcim_iomap_table(pdev);
4365 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4366 
4367 	rc = pci_go_64(pdev);
4368 	if (rc)
4369 		return rc;
4370 
4371 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4372 	if (rc)
4373 		return rc;
4374 
4375 	for (port = 0; port < host->n_ports; port++) {
4376 		struct ata_port *ap = host->ports[port];
4377 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4378 		unsigned int offset = port_mmio - hpriv->base;
4379 
4380 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4381 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4382 	}
4383 
4384 	/* initialize adapter */
4385 	rc = mv_init_host(host);
4386 	if (rc)
4387 		return rc;
4388 
4389 	/* Enable message-switched interrupts, if requested */
4390 	if (msi && pci_enable_msi(pdev) == 0)
4391 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4392 
4393 	mv_dump_pci_cfg(pdev, 0x68);
4394 	mv_print_info(host);
4395 
4396 	pci_set_master(pdev);
4397 	pci_try_set_mwi(pdev);
4398 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4399 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4400 }
4401 
4402 #ifdef CONFIG_PM
4403 static int mv_pci_device_resume(struct pci_dev *pdev)
4404 {
4405 	struct ata_host *host = pci_get_drvdata(pdev);
4406 	int rc;
4407 
4408 	rc = ata_pci_device_do_resume(pdev);
4409 	if (rc)
4410 		return rc;
4411 
4412 	/* initialize adapter */
4413 	rc = mv_init_host(host);
4414 	if (rc)
4415 		return rc;
4416 
4417 	ata_host_resume(host);
4418 
4419 	return 0;
4420 }
4421 #endif
4422 #endif
4423 
4424 static int __init mv_init(void)
4425 {
4426 	int rc = -ENODEV;
4427 #ifdef CONFIG_PCI
4428 	rc = pci_register_driver(&mv_pci_driver);
4429 	if (rc < 0)
4430 		return rc;
4431 #endif
4432 	rc = platform_driver_register(&mv_platform_driver);
4433 
4434 #ifdef CONFIG_PCI
4435 	if (rc < 0)
4436 		pci_unregister_driver(&mv_pci_driver);
4437 #endif
4438 	return rc;
4439 }
4440 
4441 static void __exit mv_exit(void)
4442 {
4443 #ifdef CONFIG_PCI
4444 	pci_unregister_driver(&mv_pci_driver);
4445 #endif
4446 	platform_driver_unregister(&mv_platform_driver);
4447 }
4448 
4449 MODULE_AUTHOR("Brett Russ");
4450 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4451 MODULE_LICENSE("GPL");
4452 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4453 MODULE_VERSION(DRV_VERSION);
4454 MODULE_ALIAS("platform:" DRV_NAME);
4455 
4456 module_init(mv_init);
4457 module_exit(mv_exit);
4458