1 /* 2 * sata_mv.c - Marvell SATA support 3 * 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 5 * Copyright 2005: EMC Corporation, all rights reserved. 6 * Copyright 2005 Red Hat, Inc. All rights reserved. 7 * 8 * Originally written by Brett Russ. 9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 10 * 11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; version 2 of the License. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 /* 29 * sata_mv TODO list: 30 * 31 * --> Develop a low-power-consumption strategy, and implement it. 32 * 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 34 * 35 * --> [Experiment, Marvell value added] Is it possible to use target 36 * mode to cross-connect two Linux boxes with Marvell cards? If so, 37 * creating LibATA target mode support would be very interesting. 38 * 39 * Target mode, for those without docs, is the ability to directly 40 * connect two SATA ports. 41 */ 42 43 /* 44 * 80x1-B2 errata PCI#11: 45 * 46 * Users of the 6041/6081 Rev.B2 chips (current is C0) 47 * should be careful to insert those cards only onto PCI-X bus #0, 48 * and only in device slots 0..7, not higher. The chips may not 49 * work correctly otherwise (note: this is a pretty rare condition). 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/init.h> 56 #include <linux/blkdev.h> 57 #include <linux/delay.h> 58 #include <linux/interrupt.h> 59 #include <linux/dmapool.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/device.h> 62 #include <linux/clk.h> 63 #include <linux/phy/phy.h> 64 #include <linux/platform_device.h> 65 #include <linux/ata_platform.h> 66 #include <linux/mbus.h> 67 #include <linux/bitops.h> 68 #include <linux/gfp.h> 69 #include <linux/of.h> 70 #include <linux/of_irq.h> 71 #include <scsi/scsi_host.h> 72 #include <scsi/scsi_cmnd.h> 73 #include <scsi/scsi_device.h> 74 #include <linux/libata.h> 75 76 #define DRV_NAME "sata_mv" 77 #define DRV_VERSION "1.28" 78 79 /* 80 * module options 81 */ 82 83 #ifdef CONFIG_PCI 84 static int msi; 85 module_param(msi, int, S_IRUGO); 86 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 87 #endif 88 89 static int irq_coalescing_io_count; 90 module_param(irq_coalescing_io_count, int, S_IRUGO); 91 MODULE_PARM_DESC(irq_coalescing_io_count, 92 "IRQ coalescing I/O count threshold (0..255)"); 93 94 static int irq_coalescing_usecs; 95 module_param(irq_coalescing_usecs, int, S_IRUGO); 96 MODULE_PARM_DESC(irq_coalescing_usecs, 97 "IRQ coalescing time threshold in usecs"); 98 99 enum { 100 /* BAR's are enumerated in terms of pci_resource_start() terms */ 101 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 102 MV_IO_BAR = 2, /* offset 0x18: IO space */ 103 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 104 105 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 106 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 107 108 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 109 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 110 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 111 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 112 113 MV_PCI_REG_BASE = 0, 114 115 /* 116 * Per-chip ("all ports") interrupt coalescing feature. 117 * This is only for GEN_II / GEN_IIE hardware. 118 * 119 * Coalescing defers the interrupt until either the IO_THRESHOLD 120 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 121 */ 122 COAL_REG_BASE = 0x18000, 123 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 124 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 125 126 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 127 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 128 129 /* 130 * Registers for the (unused here) transaction coalescing feature: 131 */ 132 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 133 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 134 135 SATAHC0_REG_BASE = 0x20000, 136 FLASH_CTL = 0x1046c, 137 GPIO_PORT_CTL = 0x104f0, 138 RESET_CFG = 0x180d8, 139 140 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 141 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 142 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 143 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 144 145 MV_MAX_Q_DEPTH = 32, 146 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 147 148 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 149 * CRPB needs alignment on a 256B boundary. Size == 256B 150 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 151 */ 152 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 153 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 154 MV_MAX_SG_CT = 256, 155 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 156 157 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 158 MV_PORT_HC_SHIFT = 2, 159 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 160 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 161 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 162 163 /* Host Flags */ 164 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 165 166 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, 167 168 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 169 170 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 171 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 172 173 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 174 175 CRQB_FLAG_READ = (1 << 0), 176 CRQB_TAG_SHIFT = 1, 177 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 178 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 179 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 180 CRQB_CMD_ADDR_SHIFT = 8, 181 CRQB_CMD_CS = (0x2 << 11), 182 CRQB_CMD_LAST = (1 << 15), 183 184 CRPB_FLAG_STATUS_SHIFT = 8, 185 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 186 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 187 188 EPRD_FLAG_END_OF_TBL = (1 << 31), 189 190 /* PCI interface registers */ 191 192 MV_PCI_COMMAND = 0xc00, 193 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 194 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 195 196 PCI_MAIN_CMD_STS = 0xd30, 197 STOP_PCI_MASTER = (1 << 2), 198 PCI_MASTER_EMPTY = (1 << 3), 199 GLOB_SFT_RST = (1 << 4), 200 201 MV_PCI_MODE = 0xd00, 202 MV_PCI_MODE_MASK = 0x30, 203 204 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 205 MV_PCI_DISC_TIMER = 0xd04, 206 MV_PCI_MSI_TRIGGER = 0xc38, 207 MV_PCI_SERR_MASK = 0xc28, 208 MV_PCI_XBAR_TMOUT = 0x1d04, 209 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 210 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 211 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 212 MV_PCI_ERR_COMMAND = 0x1d50, 213 214 PCI_IRQ_CAUSE = 0x1d58, 215 PCI_IRQ_MASK = 0x1d5c, 216 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 217 218 PCIE_IRQ_CAUSE = 0x1900, 219 PCIE_IRQ_MASK = 0x1910, 220 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 221 222 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 223 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 224 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 225 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 226 SOC_HC_MAIN_IRQ_MASK = 0x20024, 227 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 228 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 229 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 230 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 231 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 232 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 233 PCI_ERR = (1 << 18), 234 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 235 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 236 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 237 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 238 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 239 GPIO_INT = (1 << 22), 240 SELF_INT = (1 << 23), 241 TWSI_INT = (1 << 24), 242 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 243 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 244 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 245 246 /* SATAHC registers */ 247 HC_CFG = 0x00, 248 249 HC_IRQ_CAUSE = 0x14, 250 DMA_IRQ = (1 << 0), /* shift by port # */ 251 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 252 DEV_IRQ = (1 << 8), /* shift by port # */ 253 254 /* 255 * Per-HC (Host-Controller) interrupt coalescing feature. 256 * This is present on all chip generations. 257 * 258 * Coalescing defers the interrupt until either the IO_THRESHOLD 259 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 260 */ 261 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 262 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 263 264 SOC_LED_CTRL = 0x2c, 265 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 266 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 267 /* with dev activity LED */ 268 269 /* Shadow block registers */ 270 SHD_BLK = 0x100, 271 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 272 273 /* SATA registers */ 274 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 275 SATA_ACTIVE = 0x350, 276 FIS_IRQ_CAUSE = 0x364, 277 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 278 279 LTMODE = 0x30c, /* requires read-after-write */ 280 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 281 282 PHY_MODE2 = 0x330, 283 PHY_MODE3 = 0x310, 284 285 PHY_MODE4 = 0x314, /* requires read-after-write */ 286 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 287 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 288 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 289 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 290 291 SATA_IFCTL = 0x344, 292 SATA_TESTCTL = 0x348, 293 SATA_IFSTAT = 0x34c, 294 VENDOR_UNIQUE_FIS = 0x35c, 295 296 FISCFG = 0x360, 297 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 298 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 299 300 PHY_MODE9_GEN2 = 0x398, 301 PHY_MODE9_GEN1 = 0x39c, 302 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 303 304 MV5_PHY_MODE = 0x74, 305 MV5_LTMODE = 0x30, 306 MV5_PHY_CTL = 0x0C, 307 SATA_IFCFG = 0x050, 308 LP_PHY_CTL = 0x058, 309 LP_PHY_CTL_PIN_PU_PLL = (1 << 0), 310 LP_PHY_CTL_PIN_PU_RX = (1 << 1), 311 LP_PHY_CTL_PIN_PU_TX = (1 << 2), 312 LP_PHY_CTL_GEN_TX_3G = (1 << 5), 313 LP_PHY_CTL_GEN_RX_3G = (1 << 9), 314 315 MV_M2_PREAMP_MASK = 0x7e0, 316 317 /* Port registers */ 318 EDMA_CFG = 0, 319 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 320 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 321 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 322 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 323 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 324 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 325 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 326 327 EDMA_ERR_IRQ_CAUSE = 0x8, 328 EDMA_ERR_IRQ_MASK = 0xc, 329 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 330 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 331 EDMA_ERR_DEV = (1 << 2), /* device error */ 332 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 333 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 334 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 335 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 336 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 337 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 338 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 339 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 340 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 341 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 342 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 343 344 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 345 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 346 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 347 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 348 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 349 350 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 351 352 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 353 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 354 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 355 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 356 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 357 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 358 359 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 360 361 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 362 EDMA_ERR_OVERRUN_5 = (1 << 5), 363 EDMA_ERR_UNDERRUN_5 = (1 << 6), 364 365 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 366 EDMA_ERR_LNK_CTRL_RX_1 | 367 EDMA_ERR_LNK_CTRL_RX_3 | 368 EDMA_ERR_LNK_CTRL_TX, 369 370 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 371 EDMA_ERR_PRD_PAR | 372 EDMA_ERR_DEV_DCON | 373 EDMA_ERR_DEV_CON | 374 EDMA_ERR_SERR | 375 EDMA_ERR_SELF_DIS | 376 EDMA_ERR_CRQB_PAR | 377 EDMA_ERR_CRPB_PAR | 378 EDMA_ERR_INTRL_PAR | 379 EDMA_ERR_IORDY | 380 EDMA_ERR_LNK_CTRL_RX_2 | 381 EDMA_ERR_LNK_DATA_RX | 382 EDMA_ERR_LNK_DATA_TX | 383 EDMA_ERR_TRANS_PROTO, 384 385 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 386 EDMA_ERR_PRD_PAR | 387 EDMA_ERR_DEV_DCON | 388 EDMA_ERR_DEV_CON | 389 EDMA_ERR_OVERRUN_5 | 390 EDMA_ERR_UNDERRUN_5 | 391 EDMA_ERR_SELF_DIS_5 | 392 EDMA_ERR_CRQB_PAR | 393 EDMA_ERR_CRPB_PAR | 394 EDMA_ERR_INTRL_PAR | 395 EDMA_ERR_IORDY, 396 397 EDMA_REQ_Q_BASE_HI = 0x10, 398 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 399 400 EDMA_REQ_Q_OUT_PTR = 0x18, 401 EDMA_REQ_Q_PTR_SHIFT = 5, 402 403 EDMA_RSP_Q_BASE_HI = 0x1c, 404 EDMA_RSP_Q_IN_PTR = 0x20, 405 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 406 EDMA_RSP_Q_PTR_SHIFT = 3, 407 408 EDMA_CMD = 0x28, /* EDMA command register */ 409 EDMA_EN = (1 << 0), /* enable EDMA */ 410 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 411 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 412 413 EDMA_STATUS = 0x30, /* EDMA engine status */ 414 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 415 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 416 417 EDMA_IORDY_TMOUT = 0x34, 418 EDMA_ARB_CFG = 0x38, 419 420 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 421 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 422 423 BMDMA_CMD = 0x224, /* bmdma command register */ 424 BMDMA_STATUS = 0x228, /* bmdma status register */ 425 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 426 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 427 428 /* Host private flags (hp_flags) */ 429 MV_HP_FLAG_MSI = (1 << 0), 430 MV_HP_ERRATA_50XXB0 = (1 << 1), 431 MV_HP_ERRATA_50XXB2 = (1 << 2), 432 MV_HP_ERRATA_60X1B2 = (1 << 3), 433 MV_HP_ERRATA_60X1C0 = (1 << 4), 434 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 435 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 436 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 437 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 438 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 439 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 440 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 441 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */ 442 443 /* Port private flags (pp_flags) */ 444 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 445 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 446 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 447 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 448 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 449 }; 450 451 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 452 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 453 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 454 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 455 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 456 457 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 458 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 459 460 enum { 461 /* DMA boundary 0xffff is required by the s/g splitting 462 * we need on /length/ in mv_fill-sg(). 463 */ 464 MV_DMA_BOUNDARY = 0xffffU, 465 466 /* mask of register bits containing lower 32 bits 467 * of EDMA request queue DMA address 468 */ 469 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 470 471 /* ditto, for response queue */ 472 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 473 }; 474 475 enum chip_type { 476 chip_504x, 477 chip_508x, 478 chip_5080, 479 chip_604x, 480 chip_608x, 481 chip_6042, 482 chip_7042, 483 chip_soc, 484 }; 485 486 /* Command ReQuest Block: 32B */ 487 struct mv_crqb { 488 __le32 sg_addr; 489 __le32 sg_addr_hi; 490 __le16 ctrl_flags; 491 __le16 ata_cmd[11]; 492 }; 493 494 struct mv_crqb_iie { 495 __le32 addr; 496 __le32 addr_hi; 497 __le32 flags; 498 __le32 len; 499 __le32 ata_cmd[4]; 500 }; 501 502 /* Command ResPonse Block: 8B */ 503 struct mv_crpb { 504 __le16 id; 505 __le16 flags; 506 __le32 tmstmp; 507 }; 508 509 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 510 struct mv_sg { 511 __le32 addr; 512 __le32 flags_size; 513 __le32 addr_hi; 514 __le32 reserved; 515 }; 516 517 /* 518 * We keep a local cache of a few frequently accessed port 519 * registers here, to avoid having to read them (very slow) 520 * when switching between EDMA and non-EDMA modes. 521 */ 522 struct mv_cached_regs { 523 u32 fiscfg; 524 u32 ltmode; 525 u32 haltcond; 526 u32 unknown_rsvd; 527 }; 528 529 struct mv_port_priv { 530 struct mv_crqb *crqb; 531 dma_addr_t crqb_dma; 532 struct mv_crpb *crpb; 533 dma_addr_t crpb_dma; 534 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 535 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 536 537 unsigned int req_idx; 538 unsigned int resp_idx; 539 540 u32 pp_flags; 541 struct mv_cached_regs cached; 542 unsigned int delayed_eh_pmp_map; 543 }; 544 545 struct mv_port_signal { 546 u32 amps; 547 u32 pre; 548 }; 549 550 struct mv_host_priv { 551 u32 hp_flags; 552 unsigned int board_idx; 553 u32 main_irq_mask; 554 struct mv_port_signal signal[8]; 555 const struct mv_hw_ops *ops; 556 int n_ports; 557 void __iomem *base; 558 void __iomem *main_irq_cause_addr; 559 void __iomem *main_irq_mask_addr; 560 u32 irq_cause_offset; 561 u32 irq_mask_offset; 562 u32 unmask_all_irqs; 563 564 /* 565 * Needed on some devices that require their clocks to be enabled. 566 * These are optional: if the platform device does not have any 567 * clocks, they won't be used. Also, if the underlying hardware 568 * does not support the common clock framework (CONFIG_HAVE_CLK=n), 569 * all the clock operations become no-ops (see clk.h). 570 */ 571 struct clk *clk; 572 struct clk **port_clks; 573 /* 574 * Some devices have a SATA PHY which can be enabled/disabled 575 * in order to save power. These are optional: if the platform 576 * devices does not have any phy, they won't be used. 577 */ 578 struct phy **port_phys; 579 /* 580 * These consistent DMA memory pools give us guaranteed 581 * alignment for hardware-accessed data structures, 582 * and less memory waste in accomplishing the alignment. 583 */ 584 struct dma_pool *crqb_pool; 585 struct dma_pool *crpb_pool; 586 struct dma_pool *sg_tbl_pool; 587 }; 588 589 struct mv_hw_ops { 590 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 591 unsigned int port); 592 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 593 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 594 void __iomem *mmio); 595 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 596 unsigned int n_hc); 597 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 598 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 599 }; 600 601 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 602 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 603 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 604 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 605 static int mv_port_start(struct ata_port *ap); 606 static void mv_port_stop(struct ata_port *ap); 607 static int mv_qc_defer(struct ata_queued_cmd *qc); 608 static void mv_qc_prep(struct ata_queued_cmd *qc); 609 static void mv_qc_prep_iie(struct ata_queued_cmd *qc); 610 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 611 static int mv_hardreset(struct ata_link *link, unsigned int *class, 612 unsigned long deadline); 613 static void mv_eh_freeze(struct ata_port *ap); 614 static void mv_eh_thaw(struct ata_port *ap); 615 static void mv6_dev_config(struct ata_device *dev); 616 617 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 618 unsigned int port); 619 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 620 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 621 void __iomem *mmio); 622 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 623 unsigned int n_hc); 624 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 625 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 626 627 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 628 unsigned int port); 629 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 630 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 631 void __iomem *mmio); 632 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 633 unsigned int n_hc); 634 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 635 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 636 void __iomem *mmio); 637 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 638 void __iomem *mmio); 639 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 640 void __iomem *mmio, unsigned int n_hc); 641 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 642 void __iomem *mmio); 643 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 644 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 645 void __iomem *mmio, unsigned int port); 646 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 647 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 648 unsigned int port_no); 649 static int mv_stop_edma(struct ata_port *ap); 650 static int mv_stop_edma_engine(void __iomem *port_mmio); 651 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 652 653 static void mv_pmp_select(struct ata_port *ap, int pmp); 654 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 655 unsigned long deadline); 656 static int mv_softreset(struct ata_link *link, unsigned int *class, 657 unsigned long deadline); 658 static void mv_pmp_error_handler(struct ata_port *ap); 659 static void mv_process_crpb_entries(struct ata_port *ap, 660 struct mv_port_priv *pp); 661 662 static void mv_sff_irq_clear(struct ata_port *ap); 663 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 664 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 665 static void mv_bmdma_start(struct ata_queued_cmd *qc); 666 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 667 static u8 mv_bmdma_status(struct ata_port *ap); 668 static u8 mv_sff_check_status(struct ata_port *ap); 669 670 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 671 * because we have to allow room for worst case splitting of 672 * PRDs for 64K boundaries in mv_fill_sg(). 673 */ 674 #ifdef CONFIG_PCI 675 static struct scsi_host_template mv5_sht = { 676 ATA_BASE_SHT(DRV_NAME), 677 .sg_tablesize = MV_MAX_SG_CT / 2, 678 .dma_boundary = MV_DMA_BOUNDARY, 679 }; 680 #endif 681 static struct scsi_host_template mv6_sht = { 682 ATA_NCQ_SHT(DRV_NAME), 683 .can_queue = MV_MAX_Q_DEPTH - 1, 684 .sg_tablesize = MV_MAX_SG_CT / 2, 685 .dma_boundary = MV_DMA_BOUNDARY, 686 }; 687 688 static struct ata_port_operations mv5_ops = { 689 .inherits = &ata_sff_port_ops, 690 691 .lost_interrupt = ATA_OP_NULL, 692 693 .qc_defer = mv_qc_defer, 694 .qc_prep = mv_qc_prep, 695 .qc_issue = mv_qc_issue, 696 697 .freeze = mv_eh_freeze, 698 .thaw = mv_eh_thaw, 699 .hardreset = mv_hardreset, 700 701 .scr_read = mv5_scr_read, 702 .scr_write = mv5_scr_write, 703 704 .port_start = mv_port_start, 705 .port_stop = mv_port_stop, 706 }; 707 708 static struct ata_port_operations mv6_ops = { 709 .inherits = &ata_bmdma_port_ops, 710 711 .lost_interrupt = ATA_OP_NULL, 712 713 .qc_defer = mv_qc_defer, 714 .qc_prep = mv_qc_prep, 715 .qc_issue = mv_qc_issue, 716 717 .dev_config = mv6_dev_config, 718 719 .freeze = mv_eh_freeze, 720 .thaw = mv_eh_thaw, 721 .hardreset = mv_hardreset, 722 .softreset = mv_softreset, 723 .pmp_hardreset = mv_pmp_hardreset, 724 .pmp_softreset = mv_softreset, 725 .error_handler = mv_pmp_error_handler, 726 727 .scr_read = mv_scr_read, 728 .scr_write = mv_scr_write, 729 730 .sff_check_status = mv_sff_check_status, 731 .sff_irq_clear = mv_sff_irq_clear, 732 .check_atapi_dma = mv_check_atapi_dma, 733 .bmdma_setup = mv_bmdma_setup, 734 .bmdma_start = mv_bmdma_start, 735 .bmdma_stop = mv_bmdma_stop, 736 .bmdma_status = mv_bmdma_status, 737 738 .port_start = mv_port_start, 739 .port_stop = mv_port_stop, 740 }; 741 742 static struct ata_port_operations mv_iie_ops = { 743 .inherits = &mv6_ops, 744 .dev_config = ATA_OP_NULL, 745 .qc_prep = mv_qc_prep_iie, 746 }; 747 748 static const struct ata_port_info mv_port_info[] = { 749 { /* chip_504x */ 750 .flags = MV_GEN_I_FLAGS, 751 .pio_mask = ATA_PIO4, 752 .udma_mask = ATA_UDMA6, 753 .port_ops = &mv5_ops, 754 }, 755 { /* chip_508x */ 756 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 757 .pio_mask = ATA_PIO4, 758 .udma_mask = ATA_UDMA6, 759 .port_ops = &mv5_ops, 760 }, 761 { /* chip_5080 */ 762 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 763 .pio_mask = ATA_PIO4, 764 .udma_mask = ATA_UDMA6, 765 .port_ops = &mv5_ops, 766 }, 767 { /* chip_604x */ 768 .flags = MV_GEN_II_FLAGS, 769 .pio_mask = ATA_PIO4, 770 .udma_mask = ATA_UDMA6, 771 .port_ops = &mv6_ops, 772 }, 773 { /* chip_608x */ 774 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 775 .pio_mask = ATA_PIO4, 776 .udma_mask = ATA_UDMA6, 777 .port_ops = &mv6_ops, 778 }, 779 { /* chip_6042 */ 780 .flags = MV_GEN_IIE_FLAGS, 781 .pio_mask = ATA_PIO4, 782 .udma_mask = ATA_UDMA6, 783 .port_ops = &mv_iie_ops, 784 }, 785 { /* chip_7042 */ 786 .flags = MV_GEN_IIE_FLAGS, 787 .pio_mask = ATA_PIO4, 788 .udma_mask = ATA_UDMA6, 789 .port_ops = &mv_iie_ops, 790 }, 791 { /* chip_soc */ 792 .flags = MV_GEN_IIE_FLAGS, 793 .pio_mask = ATA_PIO4, 794 .udma_mask = ATA_UDMA6, 795 .port_ops = &mv_iie_ops, 796 }, 797 }; 798 799 static const struct pci_device_id mv_pci_tbl[] = { 800 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 801 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 802 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 803 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 804 /* RocketRAID 1720/174x have different identifiers */ 805 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 806 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 807 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 808 809 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 810 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 811 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 812 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 813 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 814 815 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 816 817 /* Adaptec 1430SA */ 818 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 819 820 /* Marvell 7042 support */ 821 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 822 823 /* Highpoint RocketRAID PCIe series */ 824 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 825 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 826 827 { } /* terminate list */ 828 }; 829 830 static const struct mv_hw_ops mv5xxx_ops = { 831 .phy_errata = mv5_phy_errata, 832 .enable_leds = mv5_enable_leds, 833 .read_preamp = mv5_read_preamp, 834 .reset_hc = mv5_reset_hc, 835 .reset_flash = mv5_reset_flash, 836 .reset_bus = mv5_reset_bus, 837 }; 838 839 static const struct mv_hw_ops mv6xxx_ops = { 840 .phy_errata = mv6_phy_errata, 841 .enable_leds = mv6_enable_leds, 842 .read_preamp = mv6_read_preamp, 843 .reset_hc = mv6_reset_hc, 844 .reset_flash = mv6_reset_flash, 845 .reset_bus = mv_reset_pci_bus, 846 }; 847 848 static const struct mv_hw_ops mv_soc_ops = { 849 .phy_errata = mv6_phy_errata, 850 .enable_leds = mv_soc_enable_leds, 851 .read_preamp = mv_soc_read_preamp, 852 .reset_hc = mv_soc_reset_hc, 853 .reset_flash = mv_soc_reset_flash, 854 .reset_bus = mv_soc_reset_bus, 855 }; 856 857 static const struct mv_hw_ops mv_soc_65n_ops = { 858 .phy_errata = mv_soc_65n_phy_errata, 859 .enable_leds = mv_soc_enable_leds, 860 .reset_hc = mv_soc_reset_hc, 861 .reset_flash = mv_soc_reset_flash, 862 .reset_bus = mv_soc_reset_bus, 863 }; 864 865 /* 866 * Functions 867 */ 868 869 static inline void writelfl(unsigned long data, void __iomem *addr) 870 { 871 writel(data, addr); 872 (void) readl(addr); /* flush to avoid PCI posted write */ 873 } 874 875 static inline unsigned int mv_hc_from_port(unsigned int port) 876 { 877 return port >> MV_PORT_HC_SHIFT; 878 } 879 880 static inline unsigned int mv_hardport_from_port(unsigned int port) 881 { 882 return port & MV_PORT_MASK; 883 } 884 885 /* 886 * Consolidate some rather tricky bit shift calculations. 887 * This is hot-path stuff, so not a function. 888 * Simple code, with two return values, so macro rather than inline. 889 * 890 * port is the sole input, in range 0..7. 891 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 892 * hardport is the other output, in range 0..3. 893 * 894 * Note that port and hardport may be the same variable in some cases. 895 */ 896 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 897 { \ 898 shift = mv_hc_from_port(port) * HC_SHIFT; \ 899 hardport = mv_hardport_from_port(port); \ 900 shift += hardport * 2; \ 901 } 902 903 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 904 { 905 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 906 } 907 908 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 909 unsigned int port) 910 { 911 return mv_hc_base(base, mv_hc_from_port(port)); 912 } 913 914 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 915 { 916 return mv_hc_base_from_port(base, port) + 917 MV_SATAHC_ARBTR_REG_SZ + 918 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 919 } 920 921 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 922 { 923 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 924 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 925 926 return hc_mmio + ofs; 927 } 928 929 static inline void __iomem *mv_host_base(struct ata_host *host) 930 { 931 struct mv_host_priv *hpriv = host->private_data; 932 return hpriv->base; 933 } 934 935 static inline void __iomem *mv_ap_base(struct ata_port *ap) 936 { 937 return mv_port_base(mv_host_base(ap->host), ap->port_no); 938 } 939 940 static inline int mv_get_hc_count(unsigned long port_flags) 941 { 942 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 943 } 944 945 /** 946 * mv_save_cached_regs - (re-)initialize cached port registers 947 * @ap: the port whose registers we are caching 948 * 949 * Initialize the local cache of port registers, 950 * so that reading them over and over again can 951 * be avoided on the hotter paths of this driver. 952 * This saves a few microseconds each time we switch 953 * to/from EDMA mode to perform (eg.) a drive cache flush. 954 */ 955 static void mv_save_cached_regs(struct ata_port *ap) 956 { 957 void __iomem *port_mmio = mv_ap_base(ap); 958 struct mv_port_priv *pp = ap->private_data; 959 960 pp->cached.fiscfg = readl(port_mmio + FISCFG); 961 pp->cached.ltmode = readl(port_mmio + LTMODE); 962 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 963 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 964 } 965 966 /** 967 * mv_write_cached_reg - write to a cached port register 968 * @addr: hardware address of the register 969 * @old: pointer to cached value of the register 970 * @new: new value for the register 971 * 972 * Write a new value to a cached register, 973 * but only if the value is different from before. 974 */ 975 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 976 { 977 if (new != *old) { 978 unsigned long laddr; 979 *old = new; 980 /* 981 * Workaround for 88SX60x1-B2 FEr SATA#13: 982 * Read-after-write is needed to prevent generating 64-bit 983 * write cycles on the PCI bus for SATA interface registers 984 * at offsets ending in 0x4 or 0xc. 985 * 986 * Looks like a lot of fuss, but it avoids an unnecessary 987 * +1 usec read-after-write delay for unaffected registers. 988 */ 989 laddr = (long)addr & 0xffff; 990 if (laddr >= 0x300 && laddr <= 0x33c) { 991 laddr &= 0x000f; 992 if (laddr == 0x4 || laddr == 0xc) { 993 writelfl(new, addr); /* read after write */ 994 return; 995 } 996 } 997 writel(new, addr); /* unaffected by the errata */ 998 } 999 } 1000 1001 static void mv_set_edma_ptrs(void __iomem *port_mmio, 1002 struct mv_host_priv *hpriv, 1003 struct mv_port_priv *pp) 1004 { 1005 u32 index; 1006 1007 /* 1008 * initialize request queue 1009 */ 1010 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1011 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 1012 1013 WARN_ON(pp->crqb_dma & 0x3ff); 1014 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 1015 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 1016 port_mmio + EDMA_REQ_Q_IN_PTR); 1017 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 1018 1019 /* 1020 * initialize response queue 1021 */ 1022 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1023 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 1024 1025 WARN_ON(pp->crpb_dma & 0xff); 1026 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 1027 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 1028 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 1029 port_mmio + EDMA_RSP_Q_OUT_PTR); 1030 } 1031 1032 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 1033 { 1034 /* 1035 * When writing to the main_irq_mask in hardware, 1036 * we must ensure exclusivity between the interrupt coalescing bits 1037 * and the corresponding individual port DONE_IRQ bits. 1038 * 1039 * Note that this register is really an "IRQ enable" register, 1040 * not an "IRQ mask" register as Marvell's naming might suggest. 1041 */ 1042 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1043 mask &= ~DONE_IRQ_0_3; 1044 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1045 mask &= ~DONE_IRQ_4_7; 1046 writelfl(mask, hpriv->main_irq_mask_addr); 1047 } 1048 1049 static void mv_set_main_irq_mask(struct ata_host *host, 1050 u32 disable_bits, u32 enable_bits) 1051 { 1052 struct mv_host_priv *hpriv = host->private_data; 1053 u32 old_mask, new_mask; 1054 1055 old_mask = hpriv->main_irq_mask; 1056 new_mask = (old_mask & ~disable_bits) | enable_bits; 1057 if (new_mask != old_mask) { 1058 hpriv->main_irq_mask = new_mask; 1059 mv_write_main_irq_mask(new_mask, hpriv); 1060 } 1061 } 1062 1063 static void mv_enable_port_irqs(struct ata_port *ap, 1064 unsigned int port_bits) 1065 { 1066 unsigned int shift, hardport, port = ap->port_no; 1067 u32 disable_bits, enable_bits; 1068 1069 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1070 1071 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1072 enable_bits = port_bits << shift; 1073 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1074 } 1075 1076 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1077 void __iomem *port_mmio, 1078 unsigned int port_irqs) 1079 { 1080 struct mv_host_priv *hpriv = ap->host->private_data; 1081 int hardport = mv_hardport_from_port(ap->port_no); 1082 void __iomem *hc_mmio = mv_hc_base_from_port( 1083 mv_host_base(ap->host), ap->port_no); 1084 u32 hc_irq_cause; 1085 1086 /* clear EDMA event indicators, if any */ 1087 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1088 1089 /* clear pending irq events */ 1090 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1091 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1092 1093 /* clear FIS IRQ Cause */ 1094 if (IS_GEN_IIE(hpriv)) 1095 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1096 1097 mv_enable_port_irqs(ap, port_irqs); 1098 } 1099 1100 static void mv_set_irq_coalescing(struct ata_host *host, 1101 unsigned int count, unsigned int usecs) 1102 { 1103 struct mv_host_priv *hpriv = host->private_data; 1104 void __iomem *mmio = hpriv->base, *hc_mmio; 1105 u32 coal_enable = 0; 1106 unsigned long flags; 1107 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1108 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1109 ALL_PORTS_COAL_DONE; 1110 1111 /* Disable IRQ coalescing if either threshold is zero */ 1112 if (!usecs || !count) { 1113 clks = count = 0; 1114 } else { 1115 /* Respect maximum limits of the hardware */ 1116 clks = usecs * COAL_CLOCKS_PER_USEC; 1117 if (clks > MAX_COAL_TIME_THRESHOLD) 1118 clks = MAX_COAL_TIME_THRESHOLD; 1119 if (count > MAX_COAL_IO_COUNT) 1120 count = MAX_COAL_IO_COUNT; 1121 } 1122 1123 spin_lock_irqsave(&host->lock, flags); 1124 mv_set_main_irq_mask(host, coal_disable, 0); 1125 1126 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1127 /* 1128 * GEN_II/GEN_IIE with dual host controllers: 1129 * one set of global thresholds for the entire chip. 1130 */ 1131 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1132 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1133 /* clear leftover coal IRQ bit */ 1134 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1135 if (count) 1136 coal_enable = ALL_PORTS_COAL_DONE; 1137 clks = count = 0; /* force clearing of regular regs below */ 1138 } 1139 1140 /* 1141 * All chips: independent thresholds for each HC on the chip. 1142 */ 1143 hc_mmio = mv_hc_base_from_port(mmio, 0); 1144 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1145 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1146 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1147 if (count) 1148 coal_enable |= PORTS_0_3_COAL_DONE; 1149 if (is_dual_hc) { 1150 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1151 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1152 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1153 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1154 if (count) 1155 coal_enable |= PORTS_4_7_COAL_DONE; 1156 } 1157 1158 mv_set_main_irq_mask(host, 0, coal_enable); 1159 spin_unlock_irqrestore(&host->lock, flags); 1160 } 1161 1162 /** 1163 * mv_start_edma - Enable eDMA engine 1164 * @base: port base address 1165 * @pp: port private data 1166 * 1167 * Verify the local cache of the eDMA state is accurate with a 1168 * WARN_ON. 1169 * 1170 * LOCKING: 1171 * Inherited from caller. 1172 */ 1173 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1174 struct mv_port_priv *pp, u8 protocol) 1175 { 1176 int want_ncq = (protocol == ATA_PROT_NCQ); 1177 1178 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1179 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1180 if (want_ncq != using_ncq) 1181 mv_stop_edma(ap); 1182 } 1183 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1184 struct mv_host_priv *hpriv = ap->host->private_data; 1185 1186 mv_edma_cfg(ap, want_ncq, 1); 1187 1188 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1189 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1190 1191 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1192 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1193 } 1194 } 1195 1196 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1197 { 1198 void __iomem *port_mmio = mv_ap_base(ap); 1199 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1200 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1201 int i; 1202 1203 /* 1204 * Wait for the EDMA engine to finish transactions in progress. 1205 * No idea what a good "timeout" value might be, but measurements 1206 * indicate that it often requires hundreds of microseconds 1207 * with two drives in-use. So we use the 15msec value above 1208 * as a rough guess at what even more drives might require. 1209 */ 1210 for (i = 0; i < timeout; ++i) { 1211 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1212 if ((edma_stat & empty_idle) == empty_idle) 1213 break; 1214 udelay(per_loop); 1215 } 1216 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ 1217 } 1218 1219 /** 1220 * mv_stop_edma_engine - Disable eDMA engine 1221 * @port_mmio: io base address 1222 * 1223 * LOCKING: 1224 * Inherited from caller. 1225 */ 1226 static int mv_stop_edma_engine(void __iomem *port_mmio) 1227 { 1228 int i; 1229 1230 /* Disable eDMA. The disable bit auto clears. */ 1231 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1232 1233 /* Wait for the chip to confirm eDMA is off. */ 1234 for (i = 10000; i > 0; i--) { 1235 u32 reg = readl(port_mmio + EDMA_CMD); 1236 if (!(reg & EDMA_EN)) 1237 return 0; 1238 udelay(10); 1239 } 1240 return -EIO; 1241 } 1242 1243 static int mv_stop_edma(struct ata_port *ap) 1244 { 1245 void __iomem *port_mmio = mv_ap_base(ap); 1246 struct mv_port_priv *pp = ap->private_data; 1247 int err = 0; 1248 1249 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1250 return 0; 1251 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1252 mv_wait_for_edma_empty_idle(ap); 1253 if (mv_stop_edma_engine(port_mmio)) { 1254 ata_port_err(ap, "Unable to stop eDMA\n"); 1255 err = -EIO; 1256 } 1257 mv_edma_cfg(ap, 0, 0); 1258 return err; 1259 } 1260 1261 #ifdef ATA_DEBUG 1262 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1263 { 1264 int b, w; 1265 for (b = 0; b < bytes; ) { 1266 DPRINTK("%p: ", start + b); 1267 for (w = 0; b < bytes && w < 4; w++) { 1268 printk("%08x ", readl(start + b)); 1269 b += sizeof(u32); 1270 } 1271 printk("\n"); 1272 } 1273 } 1274 #endif 1275 #if defined(ATA_DEBUG) || defined(CONFIG_PCI) 1276 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1277 { 1278 #ifdef ATA_DEBUG 1279 int b, w; 1280 u32 dw; 1281 for (b = 0; b < bytes; ) { 1282 DPRINTK("%02x: ", b); 1283 for (w = 0; b < bytes && w < 4; w++) { 1284 (void) pci_read_config_dword(pdev, b, &dw); 1285 printk("%08x ", dw); 1286 b += sizeof(u32); 1287 } 1288 printk("\n"); 1289 } 1290 #endif 1291 } 1292 #endif 1293 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1294 struct pci_dev *pdev) 1295 { 1296 #ifdef ATA_DEBUG 1297 void __iomem *hc_base = mv_hc_base(mmio_base, 1298 port >> MV_PORT_HC_SHIFT); 1299 void __iomem *port_base; 1300 int start_port, num_ports, p, start_hc, num_hcs, hc; 1301 1302 if (0 > port) { 1303 start_hc = start_port = 0; 1304 num_ports = 8; /* shld be benign for 4 port devs */ 1305 num_hcs = 2; 1306 } else { 1307 start_hc = port >> MV_PORT_HC_SHIFT; 1308 start_port = port; 1309 num_ports = num_hcs = 1; 1310 } 1311 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1312 num_ports > 1 ? num_ports - 1 : start_port); 1313 1314 if (NULL != pdev) { 1315 DPRINTK("PCI config space regs:\n"); 1316 mv_dump_pci_cfg(pdev, 0x68); 1317 } 1318 DPRINTK("PCI regs:\n"); 1319 mv_dump_mem(mmio_base+0xc00, 0x3c); 1320 mv_dump_mem(mmio_base+0xd00, 0x34); 1321 mv_dump_mem(mmio_base+0xf00, 0x4); 1322 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1323 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1324 hc_base = mv_hc_base(mmio_base, hc); 1325 DPRINTK("HC regs (HC %i):\n", hc); 1326 mv_dump_mem(hc_base, 0x1c); 1327 } 1328 for (p = start_port; p < start_port + num_ports; p++) { 1329 port_base = mv_port_base(mmio_base, p); 1330 DPRINTK("EDMA regs (port %i):\n", p); 1331 mv_dump_mem(port_base, 0x54); 1332 DPRINTK("SATA regs (port %i):\n", p); 1333 mv_dump_mem(port_base+0x300, 0x60); 1334 } 1335 #endif 1336 } 1337 1338 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1339 { 1340 unsigned int ofs; 1341 1342 switch (sc_reg_in) { 1343 case SCR_STATUS: 1344 case SCR_CONTROL: 1345 case SCR_ERROR: 1346 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1347 break; 1348 case SCR_ACTIVE: 1349 ofs = SATA_ACTIVE; /* active is not with the others */ 1350 break; 1351 default: 1352 ofs = 0xffffffffU; 1353 break; 1354 } 1355 return ofs; 1356 } 1357 1358 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1359 { 1360 unsigned int ofs = mv_scr_offset(sc_reg_in); 1361 1362 if (ofs != 0xffffffffU) { 1363 *val = readl(mv_ap_base(link->ap) + ofs); 1364 return 0; 1365 } else 1366 return -EINVAL; 1367 } 1368 1369 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1370 { 1371 unsigned int ofs = mv_scr_offset(sc_reg_in); 1372 1373 if (ofs != 0xffffffffU) { 1374 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1375 struct mv_host_priv *hpriv = link->ap->host->private_data; 1376 if (sc_reg_in == SCR_CONTROL) { 1377 /* 1378 * Workaround for 88SX60x1 FEr SATA#26: 1379 * 1380 * COMRESETs have to take care not to accidentally 1381 * put the drive to sleep when writing SCR_CONTROL. 1382 * Setting bits 12..15 prevents this problem. 1383 * 1384 * So if we see an outbound COMMRESET, set those bits. 1385 * Ditto for the followup write that clears the reset. 1386 * 1387 * The proprietary driver does this for 1388 * all chip versions, and so do we. 1389 */ 1390 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1391 val |= 0xf000; 1392 1393 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) { 1394 void __iomem *lp_phy_addr = 1395 mv_ap_base(link->ap) + LP_PHY_CTL; 1396 /* 1397 * Set PHY speed according to SControl speed. 1398 */ 1399 u32 lp_phy_val = 1400 LP_PHY_CTL_PIN_PU_PLL | 1401 LP_PHY_CTL_PIN_PU_RX | 1402 LP_PHY_CTL_PIN_PU_TX; 1403 1404 if ((val & 0xf0) != 0x10) 1405 lp_phy_val |= 1406 LP_PHY_CTL_GEN_TX_3G | 1407 LP_PHY_CTL_GEN_RX_3G; 1408 1409 writelfl(lp_phy_val, lp_phy_addr); 1410 } 1411 } 1412 writelfl(val, addr); 1413 return 0; 1414 } else 1415 return -EINVAL; 1416 } 1417 1418 static void mv6_dev_config(struct ata_device *adev) 1419 { 1420 /* 1421 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1422 * 1423 * Gen-II does not support NCQ over a port multiplier 1424 * (no FIS-based switching). 1425 */ 1426 if (adev->flags & ATA_DFLAG_NCQ) { 1427 if (sata_pmp_attached(adev->link->ap)) { 1428 adev->flags &= ~ATA_DFLAG_NCQ; 1429 ata_dev_info(adev, 1430 "NCQ disabled for command-based switching\n"); 1431 } 1432 } 1433 } 1434 1435 static int mv_qc_defer(struct ata_queued_cmd *qc) 1436 { 1437 struct ata_link *link = qc->dev->link; 1438 struct ata_port *ap = link->ap; 1439 struct mv_port_priv *pp = ap->private_data; 1440 1441 /* 1442 * Don't allow new commands if we're in a delayed EH state 1443 * for NCQ and/or FIS-based switching. 1444 */ 1445 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1446 return ATA_DEFER_PORT; 1447 1448 /* PIO commands need exclusive link: no other commands [DMA or PIO] 1449 * can run concurrently. 1450 * set excl_link when we want to send a PIO command in DMA mode 1451 * or a non-NCQ command in NCQ mode. 1452 * When we receive a command from that link, and there are no 1453 * outstanding commands, mark a flag to clear excl_link and let 1454 * the command go through. 1455 */ 1456 if (unlikely(ap->excl_link)) { 1457 if (link == ap->excl_link) { 1458 if (ap->nr_active_links) 1459 return ATA_DEFER_PORT; 1460 qc->flags |= ATA_QCFLAG_CLEAR_EXCL; 1461 return 0; 1462 } else 1463 return ATA_DEFER_PORT; 1464 } 1465 1466 /* 1467 * If the port is completely idle, then allow the new qc. 1468 */ 1469 if (ap->nr_active_links == 0) 1470 return 0; 1471 1472 /* 1473 * The port is operating in host queuing mode (EDMA) with NCQ 1474 * enabled, allow multiple NCQ commands. EDMA also allows 1475 * queueing multiple DMA commands but libata core currently 1476 * doesn't allow it. 1477 */ 1478 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1479 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { 1480 if (ata_is_ncq(qc->tf.protocol)) 1481 return 0; 1482 else { 1483 ap->excl_link = link; 1484 return ATA_DEFER_PORT; 1485 } 1486 } 1487 1488 return ATA_DEFER_PORT; 1489 } 1490 1491 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1492 { 1493 struct mv_port_priv *pp = ap->private_data; 1494 void __iomem *port_mmio; 1495 1496 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1497 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1498 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1499 1500 ltmode = *old_ltmode & ~LTMODE_BIT8; 1501 haltcond = *old_haltcond | EDMA_ERR_DEV; 1502 1503 if (want_fbs) { 1504 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1505 ltmode = *old_ltmode | LTMODE_BIT8; 1506 if (want_ncq) 1507 haltcond &= ~EDMA_ERR_DEV; 1508 else 1509 fiscfg |= FISCFG_WAIT_DEV_ERR; 1510 } else { 1511 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1512 } 1513 1514 port_mmio = mv_ap_base(ap); 1515 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1516 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1517 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1518 } 1519 1520 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1521 { 1522 struct mv_host_priv *hpriv = ap->host->private_data; 1523 u32 old, new; 1524 1525 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1526 old = readl(hpriv->base + GPIO_PORT_CTL); 1527 if (want_ncq) 1528 new = old | (1 << 22); 1529 else 1530 new = old & ~(1 << 22); 1531 if (new != old) 1532 writel(new, hpriv->base + GPIO_PORT_CTL); 1533 } 1534 1535 /** 1536 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1537 * @ap: Port being initialized 1538 * 1539 * There are two DMA modes on these chips: basic DMA, and EDMA. 1540 * 1541 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1542 * of basic DMA on the GEN_IIE versions of the chips. 1543 * 1544 * This bit survives EDMA resets, and must be set for basic DMA 1545 * to function, and should be cleared when EDMA is active. 1546 */ 1547 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1548 { 1549 struct mv_port_priv *pp = ap->private_data; 1550 u32 new, *old = &pp->cached.unknown_rsvd; 1551 1552 if (enable_bmdma) 1553 new = *old | 1; 1554 else 1555 new = *old & ~1; 1556 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1557 } 1558 1559 /* 1560 * SOC chips have an issue whereby the HDD LEDs don't always blink 1561 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1562 * of the SOC takes care of it, generating a steady blink rate when 1563 * any drive on the chip is active. 1564 * 1565 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1566 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1567 * 1568 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1569 * LED operation works then, and provides better (more accurate) feedback. 1570 * 1571 * Note that this code assumes that an SOC never has more than one HC onboard. 1572 */ 1573 static void mv_soc_led_blink_enable(struct ata_port *ap) 1574 { 1575 struct ata_host *host = ap->host; 1576 struct mv_host_priv *hpriv = host->private_data; 1577 void __iomem *hc_mmio; 1578 u32 led_ctrl; 1579 1580 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1581 return; 1582 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1583 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1584 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1585 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1586 } 1587 1588 static void mv_soc_led_blink_disable(struct ata_port *ap) 1589 { 1590 struct ata_host *host = ap->host; 1591 struct mv_host_priv *hpriv = host->private_data; 1592 void __iomem *hc_mmio; 1593 u32 led_ctrl; 1594 unsigned int port; 1595 1596 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1597 return; 1598 1599 /* disable led-blink only if no ports are using NCQ */ 1600 for (port = 0; port < hpriv->n_ports; port++) { 1601 struct ata_port *this_ap = host->ports[port]; 1602 struct mv_port_priv *pp = this_ap->private_data; 1603 1604 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1605 return; 1606 } 1607 1608 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1609 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1610 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1611 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1612 } 1613 1614 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1615 { 1616 u32 cfg; 1617 struct mv_port_priv *pp = ap->private_data; 1618 struct mv_host_priv *hpriv = ap->host->private_data; 1619 void __iomem *port_mmio = mv_ap_base(ap); 1620 1621 /* set up non-NCQ EDMA configuration */ 1622 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1623 pp->pp_flags &= 1624 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1625 1626 if (IS_GEN_I(hpriv)) 1627 cfg |= (1 << 8); /* enab config burst size mask */ 1628 1629 else if (IS_GEN_II(hpriv)) { 1630 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1631 mv_60x1_errata_sata25(ap, want_ncq); 1632 1633 } else if (IS_GEN_IIE(hpriv)) { 1634 int want_fbs = sata_pmp_attached(ap); 1635 /* 1636 * Possible future enhancement: 1637 * 1638 * The chip can use FBS with non-NCQ, if we allow it, 1639 * But first we need to have the error handling in place 1640 * for this mode (datasheet section 7.3.15.4.2.3). 1641 * So disallow non-NCQ FBS for now. 1642 */ 1643 want_fbs &= want_ncq; 1644 1645 mv_config_fbs(ap, want_ncq, want_fbs); 1646 1647 if (want_fbs) { 1648 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1649 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1650 } 1651 1652 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1653 if (want_edma) { 1654 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1655 if (!IS_SOC(hpriv)) 1656 cfg |= (1 << 18); /* enab early completion */ 1657 } 1658 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1659 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1660 mv_bmdma_enable_iie(ap, !want_edma); 1661 1662 if (IS_SOC(hpriv)) { 1663 if (want_ncq) 1664 mv_soc_led_blink_enable(ap); 1665 else 1666 mv_soc_led_blink_disable(ap); 1667 } 1668 } 1669 1670 if (want_ncq) { 1671 cfg |= EDMA_CFG_NCQ; 1672 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1673 } 1674 1675 writelfl(cfg, port_mmio + EDMA_CFG); 1676 } 1677 1678 static void mv_port_free_dma_mem(struct ata_port *ap) 1679 { 1680 struct mv_host_priv *hpriv = ap->host->private_data; 1681 struct mv_port_priv *pp = ap->private_data; 1682 int tag; 1683 1684 if (pp->crqb) { 1685 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1686 pp->crqb = NULL; 1687 } 1688 if (pp->crpb) { 1689 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1690 pp->crpb = NULL; 1691 } 1692 /* 1693 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1694 * For later hardware, we have one unique sg_tbl per NCQ tag. 1695 */ 1696 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1697 if (pp->sg_tbl[tag]) { 1698 if (tag == 0 || !IS_GEN_I(hpriv)) 1699 dma_pool_free(hpriv->sg_tbl_pool, 1700 pp->sg_tbl[tag], 1701 pp->sg_tbl_dma[tag]); 1702 pp->sg_tbl[tag] = NULL; 1703 } 1704 } 1705 } 1706 1707 /** 1708 * mv_port_start - Port specific init/start routine. 1709 * @ap: ATA channel to manipulate 1710 * 1711 * Allocate and point to DMA memory, init port private memory, 1712 * zero indices. 1713 * 1714 * LOCKING: 1715 * Inherited from caller. 1716 */ 1717 static int mv_port_start(struct ata_port *ap) 1718 { 1719 struct device *dev = ap->host->dev; 1720 struct mv_host_priv *hpriv = ap->host->private_data; 1721 struct mv_port_priv *pp; 1722 unsigned long flags; 1723 int tag; 1724 1725 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1726 if (!pp) 1727 return -ENOMEM; 1728 ap->private_data = pp; 1729 1730 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1731 if (!pp->crqb) 1732 return -ENOMEM; 1733 memset(pp->crqb, 0, MV_CRQB_Q_SZ); 1734 1735 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1736 if (!pp->crpb) 1737 goto out_port_free_dma_mem; 1738 memset(pp->crpb, 0, MV_CRPB_Q_SZ); 1739 1740 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1741 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1742 ap->flags |= ATA_FLAG_AN; 1743 /* 1744 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1745 * For later hardware, we need one unique sg_tbl per NCQ tag. 1746 */ 1747 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1748 if (tag == 0 || !IS_GEN_I(hpriv)) { 1749 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1750 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1751 if (!pp->sg_tbl[tag]) 1752 goto out_port_free_dma_mem; 1753 } else { 1754 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1755 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1756 } 1757 } 1758 1759 spin_lock_irqsave(ap->lock, flags); 1760 mv_save_cached_regs(ap); 1761 mv_edma_cfg(ap, 0, 0); 1762 spin_unlock_irqrestore(ap->lock, flags); 1763 1764 return 0; 1765 1766 out_port_free_dma_mem: 1767 mv_port_free_dma_mem(ap); 1768 return -ENOMEM; 1769 } 1770 1771 /** 1772 * mv_port_stop - Port specific cleanup/stop routine. 1773 * @ap: ATA channel to manipulate 1774 * 1775 * Stop DMA, cleanup port memory. 1776 * 1777 * LOCKING: 1778 * This routine uses the host lock to protect the DMA stop. 1779 */ 1780 static void mv_port_stop(struct ata_port *ap) 1781 { 1782 unsigned long flags; 1783 1784 spin_lock_irqsave(ap->lock, flags); 1785 mv_stop_edma(ap); 1786 mv_enable_port_irqs(ap, 0); 1787 spin_unlock_irqrestore(ap->lock, flags); 1788 mv_port_free_dma_mem(ap); 1789 } 1790 1791 /** 1792 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1793 * @qc: queued command whose SG list to source from 1794 * 1795 * Populate the SG list and mark the last entry. 1796 * 1797 * LOCKING: 1798 * Inherited from caller. 1799 */ 1800 static void mv_fill_sg(struct ata_queued_cmd *qc) 1801 { 1802 struct mv_port_priv *pp = qc->ap->private_data; 1803 struct scatterlist *sg; 1804 struct mv_sg *mv_sg, *last_sg = NULL; 1805 unsigned int si; 1806 1807 mv_sg = pp->sg_tbl[qc->tag]; 1808 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1809 dma_addr_t addr = sg_dma_address(sg); 1810 u32 sg_len = sg_dma_len(sg); 1811 1812 while (sg_len) { 1813 u32 offset = addr & 0xffff; 1814 u32 len = sg_len; 1815 1816 if (offset + len > 0x10000) 1817 len = 0x10000 - offset; 1818 1819 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1820 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1821 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1822 mv_sg->reserved = 0; 1823 1824 sg_len -= len; 1825 addr += len; 1826 1827 last_sg = mv_sg; 1828 mv_sg++; 1829 } 1830 } 1831 1832 if (likely(last_sg)) 1833 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1834 mb(); /* ensure data structure is visible to the chipset */ 1835 } 1836 1837 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1838 { 1839 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1840 (last ? CRQB_CMD_LAST : 0); 1841 *cmdw = cpu_to_le16(tmp); 1842 } 1843 1844 /** 1845 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1846 * @ap: Port associated with this ATA transaction. 1847 * 1848 * We need this only for ATAPI bmdma transactions, 1849 * as otherwise we experience spurious interrupts 1850 * after libata-sff handles the bmdma interrupts. 1851 */ 1852 static void mv_sff_irq_clear(struct ata_port *ap) 1853 { 1854 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1855 } 1856 1857 /** 1858 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1859 * @qc: queued command to check for chipset/DMA compatibility. 1860 * 1861 * The bmdma engines cannot handle speculative data sizes 1862 * (bytecount under/over flow). So only allow DMA for 1863 * data transfer commands with known data sizes. 1864 * 1865 * LOCKING: 1866 * Inherited from caller. 1867 */ 1868 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1869 { 1870 struct scsi_cmnd *scmd = qc->scsicmd; 1871 1872 if (scmd) { 1873 switch (scmd->cmnd[0]) { 1874 case READ_6: 1875 case READ_10: 1876 case READ_12: 1877 case WRITE_6: 1878 case WRITE_10: 1879 case WRITE_12: 1880 case GPCMD_READ_CD: 1881 case GPCMD_SEND_DVD_STRUCTURE: 1882 case GPCMD_SEND_CUE_SHEET: 1883 return 0; /* DMA is safe */ 1884 } 1885 } 1886 return -EOPNOTSUPP; /* use PIO instead */ 1887 } 1888 1889 /** 1890 * mv_bmdma_setup - Set up BMDMA transaction 1891 * @qc: queued command to prepare DMA for. 1892 * 1893 * LOCKING: 1894 * Inherited from caller. 1895 */ 1896 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1897 { 1898 struct ata_port *ap = qc->ap; 1899 void __iomem *port_mmio = mv_ap_base(ap); 1900 struct mv_port_priv *pp = ap->private_data; 1901 1902 mv_fill_sg(qc); 1903 1904 /* clear all DMA cmd bits */ 1905 writel(0, port_mmio + BMDMA_CMD); 1906 1907 /* load PRD table addr. */ 1908 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, 1909 port_mmio + BMDMA_PRD_HIGH); 1910 writelfl(pp->sg_tbl_dma[qc->tag], 1911 port_mmio + BMDMA_PRD_LOW); 1912 1913 /* issue r/w command */ 1914 ap->ops->sff_exec_command(ap, &qc->tf); 1915 } 1916 1917 /** 1918 * mv_bmdma_start - Start a BMDMA transaction 1919 * @qc: queued command to start DMA on. 1920 * 1921 * LOCKING: 1922 * Inherited from caller. 1923 */ 1924 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1925 { 1926 struct ata_port *ap = qc->ap; 1927 void __iomem *port_mmio = mv_ap_base(ap); 1928 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1929 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1930 1931 /* start host DMA transaction */ 1932 writelfl(cmd, port_mmio + BMDMA_CMD); 1933 } 1934 1935 /** 1936 * mv_bmdma_stop - Stop BMDMA transfer 1937 * @qc: queued command to stop DMA on. 1938 * 1939 * Clears the ATA_DMA_START flag in the bmdma control register 1940 * 1941 * LOCKING: 1942 * Inherited from caller. 1943 */ 1944 static void mv_bmdma_stop_ap(struct ata_port *ap) 1945 { 1946 void __iomem *port_mmio = mv_ap_base(ap); 1947 u32 cmd; 1948 1949 /* clear start/stop bit */ 1950 cmd = readl(port_mmio + BMDMA_CMD); 1951 if (cmd & ATA_DMA_START) { 1952 cmd &= ~ATA_DMA_START; 1953 writelfl(cmd, port_mmio + BMDMA_CMD); 1954 1955 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1956 ata_sff_dma_pause(ap); 1957 } 1958 } 1959 1960 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1961 { 1962 mv_bmdma_stop_ap(qc->ap); 1963 } 1964 1965 /** 1966 * mv_bmdma_status - Read BMDMA status 1967 * @ap: port for which to retrieve DMA status. 1968 * 1969 * Read and return equivalent of the sff BMDMA status register. 1970 * 1971 * LOCKING: 1972 * Inherited from caller. 1973 */ 1974 static u8 mv_bmdma_status(struct ata_port *ap) 1975 { 1976 void __iomem *port_mmio = mv_ap_base(ap); 1977 u32 reg, status; 1978 1979 /* 1980 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1981 * and the ATA_DMA_INTR bit doesn't exist. 1982 */ 1983 reg = readl(port_mmio + BMDMA_STATUS); 1984 if (reg & ATA_DMA_ACTIVE) 1985 status = ATA_DMA_ACTIVE; 1986 else if (reg & ATA_DMA_ERR) 1987 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1988 else { 1989 /* 1990 * Just because DMA_ACTIVE is 0 (DMA completed), 1991 * this does _not_ mean the device is "done". 1992 * So we should not yet be signalling ATA_DMA_INTR 1993 * in some cases. Eg. DSM/TRIM, and perhaps others. 1994 */ 1995 mv_bmdma_stop_ap(ap); 1996 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) 1997 status = 0; 1998 else 1999 status = ATA_DMA_INTR; 2000 } 2001 return status; 2002 } 2003 2004 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 2005 { 2006 struct ata_taskfile *tf = &qc->tf; 2007 /* 2008 * Workaround for 88SX60x1 FEr SATA#24. 2009 * 2010 * Chip may corrupt WRITEs if multi_count >= 4kB. 2011 * Note that READs are unaffected. 2012 * 2013 * It's not clear if this errata really means "4K bytes", 2014 * or if it always happens for multi_count > 7 2015 * regardless of device sector_size. 2016 * 2017 * So, for safety, any write with multi_count > 7 2018 * gets converted here into a regular PIO write instead: 2019 */ 2020 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 2021 if (qc->dev->multi_count > 7) { 2022 switch (tf->command) { 2023 case ATA_CMD_WRITE_MULTI: 2024 tf->command = ATA_CMD_PIO_WRITE; 2025 break; 2026 case ATA_CMD_WRITE_MULTI_FUA_EXT: 2027 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 2028 /* fall through */ 2029 case ATA_CMD_WRITE_MULTI_EXT: 2030 tf->command = ATA_CMD_PIO_WRITE_EXT; 2031 break; 2032 } 2033 } 2034 } 2035 } 2036 2037 /** 2038 * mv_qc_prep - Host specific command preparation. 2039 * @qc: queued command to prepare 2040 * 2041 * This routine simply redirects to the general purpose routine 2042 * if command is not DMA. Else, it handles prep of the CRQB 2043 * (command request block), does some sanity checking, and calls 2044 * the SG load routine. 2045 * 2046 * LOCKING: 2047 * Inherited from caller. 2048 */ 2049 static void mv_qc_prep(struct ata_queued_cmd *qc) 2050 { 2051 struct ata_port *ap = qc->ap; 2052 struct mv_port_priv *pp = ap->private_data; 2053 __le16 *cw; 2054 struct ata_taskfile *tf = &qc->tf; 2055 u16 flags = 0; 2056 unsigned in_index; 2057 2058 switch (tf->protocol) { 2059 case ATA_PROT_DMA: 2060 if (tf->command == ATA_CMD_DSM) 2061 return; 2062 /* fall-thru */ 2063 case ATA_PROT_NCQ: 2064 break; /* continue below */ 2065 case ATA_PROT_PIO: 2066 mv_rw_multi_errata_sata24(qc); 2067 return; 2068 default: 2069 return; 2070 } 2071 2072 /* Fill in command request block 2073 */ 2074 if (!(tf->flags & ATA_TFLAG_WRITE)) 2075 flags |= CRQB_FLAG_READ; 2076 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2077 flags |= qc->tag << CRQB_TAG_SHIFT; 2078 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2079 2080 /* get current queue index from software */ 2081 in_index = pp->req_idx; 2082 2083 pp->crqb[in_index].sg_addr = 2084 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2085 pp->crqb[in_index].sg_addr_hi = 2086 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2087 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 2088 2089 cw = &pp->crqb[in_index].ata_cmd[0]; 2090 2091 /* Sadly, the CRQB cannot accommodate all registers--there are 2092 * only 11 bytes...so we must pick and choose required 2093 * registers based on the command. So, we drop feature and 2094 * hob_feature for [RW] DMA commands, but they are needed for 2095 * NCQ. NCQ will drop hob_nsect, which is not needed there 2096 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 2097 */ 2098 switch (tf->command) { 2099 case ATA_CMD_READ: 2100 case ATA_CMD_READ_EXT: 2101 case ATA_CMD_WRITE: 2102 case ATA_CMD_WRITE_EXT: 2103 case ATA_CMD_WRITE_FUA_EXT: 2104 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 2105 break; 2106 case ATA_CMD_FPDMA_READ: 2107 case ATA_CMD_FPDMA_WRITE: 2108 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2109 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2110 break; 2111 default: 2112 /* The only other commands EDMA supports in non-queued and 2113 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2114 * of which are defined/used by Linux. If we get here, this 2115 * driver needs work. 2116 * 2117 * FIXME: modify libata to give qc_prep a return value and 2118 * return error here. 2119 */ 2120 BUG_ON(tf->command); 2121 break; 2122 } 2123 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2124 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2125 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2126 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2127 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2128 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2129 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2130 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2131 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2132 2133 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2134 return; 2135 mv_fill_sg(qc); 2136 } 2137 2138 /** 2139 * mv_qc_prep_iie - Host specific command preparation. 2140 * @qc: queued command to prepare 2141 * 2142 * This routine simply redirects to the general purpose routine 2143 * if command is not DMA. Else, it handles prep of the CRQB 2144 * (command request block), does some sanity checking, and calls 2145 * the SG load routine. 2146 * 2147 * LOCKING: 2148 * Inherited from caller. 2149 */ 2150 static void mv_qc_prep_iie(struct ata_queued_cmd *qc) 2151 { 2152 struct ata_port *ap = qc->ap; 2153 struct mv_port_priv *pp = ap->private_data; 2154 struct mv_crqb_iie *crqb; 2155 struct ata_taskfile *tf = &qc->tf; 2156 unsigned in_index; 2157 u32 flags = 0; 2158 2159 if ((tf->protocol != ATA_PROT_DMA) && 2160 (tf->protocol != ATA_PROT_NCQ)) 2161 return; 2162 if (tf->command == ATA_CMD_DSM) 2163 return; /* use bmdma for this */ 2164 2165 /* Fill in Gen IIE command request block */ 2166 if (!(tf->flags & ATA_TFLAG_WRITE)) 2167 flags |= CRQB_FLAG_READ; 2168 2169 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2170 flags |= qc->tag << CRQB_TAG_SHIFT; 2171 flags |= qc->tag << CRQB_HOSTQ_SHIFT; 2172 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2173 2174 /* get current queue index from software */ 2175 in_index = pp->req_idx; 2176 2177 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2178 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2179 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2180 crqb->flags = cpu_to_le32(flags); 2181 2182 crqb->ata_cmd[0] = cpu_to_le32( 2183 (tf->command << 16) | 2184 (tf->feature << 24) 2185 ); 2186 crqb->ata_cmd[1] = cpu_to_le32( 2187 (tf->lbal << 0) | 2188 (tf->lbam << 8) | 2189 (tf->lbah << 16) | 2190 (tf->device << 24) 2191 ); 2192 crqb->ata_cmd[2] = cpu_to_le32( 2193 (tf->hob_lbal << 0) | 2194 (tf->hob_lbam << 8) | 2195 (tf->hob_lbah << 16) | 2196 (tf->hob_feature << 24) 2197 ); 2198 crqb->ata_cmd[3] = cpu_to_le32( 2199 (tf->nsect << 0) | 2200 (tf->hob_nsect << 8) 2201 ); 2202 2203 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2204 return; 2205 mv_fill_sg(qc); 2206 } 2207 2208 /** 2209 * mv_sff_check_status - fetch device status, if valid 2210 * @ap: ATA port to fetch status from 2211 * 2212 * When using command issue via mv_qc_issue_fis(), 2213 * the initial ATA_BUSY state does not show up in the 2214 * ATA status (shadow) register. This can confuse libata! 2215 * 2216 * So we have a hook here to fake ATA_BUSY for that situation, 2217 * until the first time a BUSY, DRQ, or ERR bit is seen. 2218 * 2219 * The rest of the time, it simply returns the ATA status register. 2220 */ 2221 static u8 mv_sff_check_status(struct ata_port *ap) 2222 { 2223 u8 stat = ioread8(ap->ioaddr.status_addr); 2224 struct mv_port_priv *pp = ap->private_data; 2225 2226 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2227 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2228 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2229 else 2230 stat = ATA_BUSY; 2231 } 2232 return stat; 2233 } 2234 2235 /** 2236 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2237 * @fis: fis to be sent 2238 * @nwords: number of 32-bit words in the fis 2239 */ 2240 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2241 { 2242 void __iomem *port_mmio = mv_ap_base(ap); 2243 u32 ifctl, old_ifctl, ifstat; 2244 int i, timeout = 200, final_word = nwords - 1; 2245 2246 /* Initiate FIS transmission mode */ 2247 old_ifctl = readl(port_mmio + SATA_IFCTL); 2248 ifctl = 0x100 | (old_ifctl & 0xf); 2249 writelfl(ifctl, port_mmio + SATA_IFCTL); 2250 2251 /* Send all words of the FIS except for the final word */ 2252 for (i = 0; i < final_word; ++i) 2253 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2254 2255 /* Flag end-of-transmission, and then send the final word */ 2256 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2257 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2258 2259 /* 2260 * Wait for FIS transmission to complete. 2261 * This typically takes just a single iteration. 2262 */ 2263 do { 2264 ifstat = readl(port_mmio + SATA_IFSTAT); 2265 } while (!(ifstat & 0x1000) && --timeout); 2266 2267 /* Restore original port configuration */ 2268 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2269 2270 /* See if it worked */ 2271 if ((ifstat & 0x3000) != 0x1000) { 2272 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", 2273 __func__, ifstat); 2274 return AC_ERR_OTHER; 2275 } 2276 return 0; 2277 } 2278 2279 /** 2280 * mv_qc_issue_fis - Issue a command directly as a FIS 2281 * @qc: queued command to start 2282 * 2283 * Note that the ATA shadow registers are not updated 2284 * after command issue, so the device will appear "READY" 2285 * if polled, even while it is BUSY processing the command. 2286 * 2287 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2288 * 2289 * Note: we don't get updated shadow regs on *completion* 2290 * of non-data commands. So avoid sending them via this function, 2291 * as they will appear to have completed immediately. 2292 * 2293 * GEN_IIE has special registers that we could get the result tf from, 2294 * but earlier chipsets do not. For now, we ignore those registers. 2295 */ 2296 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2297 { 2298 struct ata_port *ap = qc->ap; 2299 struct mv_port_priv *pp = ap->private_data; 2300 struct ata_link *link = qc->dev->link; 2301 u32 fis[5]; 2302 int err = 0; 2303 2304 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2305 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); 2306 if (err) 2307 return err; 2308 2309 switch (qc->tf.protocol) { 2310 case ATAPI_PROT_PIO: 2311 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2312 /* fall through */ 2313 case ATAPI_PROT_NODATA: 2314 ap->hsm_task_state = HSM_ST_FIRST; 2315 break; 2316 case ATA_PROT_PIO: 2317 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2318 if (qc->tf.flags & ATA_TFLAG_WRITE) 2319 ap->hsm_task_state = HSM_ST_FIRST; 2320 else 2321 ap->hsm_task_state = HSM_ST; 2322 break; 2323 default: 2324 ap->hsm_task_state = HSM_ST_LAST; 2325 break; 2326 } 2327 2328 if (qc->tf.flags & ATA_TFLAG_POLLING) 2329 ata_sff_queue_pio_task(link, 0); 2330 return 0; 2331 } 2332 2333 /** 2334 * mv_qc_issue - Initiate a command to the host 2335 * @qc: queued command to start 2336 * 2337 * This routine simply redirects to the general purpose routine 2338 * if command is not DMA. Else, it sanity checks our local 2339 * caches of the request producer/consumer indices then enables 2340 * DMA and bumps the request producer index. 2341 * 2342 * LOCKING: 2343 * Inherited from caller. 2344 */ 2345 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2346 { 2347 static int limit_warnings = 10; 2348 struct ata_port *ap = qc->ap; 2349 void __iomem *port_mmio = mv_ap_base(ap); 2350 struct mv_port_priv *pp = ap->private_data; 2351 u32 in_index; 2352 unsigned int port_irqs; 2353 2354 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2355 2356 switch (qc->tf.protocol) { 2357 case ATA_PROT_DMA: 2358 if (qc->tf.command == ATA_CMD_DSM) { 2359 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */ 2360 return AC_ERR_OTHER; 2361 break; /* use bmdma for this */ 2362 } 2363 /* fall thru */ 2364 case ATA_PROT_NCQ: 2365 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2366 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2367 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2368 2369 /* Write the request in pointer to kick the EDMA to life */ 2370 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2371 port_mmio + EDMA_REQ_Q_IN_PTR); 2372 return 0; 2373 2374 case ATA_PROT_PIO: 2375 /* 2376 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2377 * 2378 * Someday, we might implement special polling workarounds 2379 * for these, but it all seems rather unnecessary since we 2380 * normally use only DMA for commands which transfer more 2381 * than a single block of data. 2382 * 2383 * Much of the time, this could just work regardless. 2384 * So for now, just log the incident, and allow the attempt. 2385 */ 2386 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2387 --limit_warnings; 2388 ata_link_warn(qc->dev->link, DRV_NAME 2389 ": attempting PIO w/multiple DRQ: " 2390 "this may fail due to h/w errata\n"); 2391 } 2392 /* drop through */ 2393 case ATA_PROT_NODATA: 2394 case ATAPI_PROT_PIO: 2395 case ATAPI_PROT_NODATA: 2396 if (ap->flags & ATA_FLAG_PIO_POLLING) 2397 qc->tf.flags |= ATA_TFLAG_POLLING; 2398 break; 2399 } 2400 2401 if (qc->tf.flags & ATA_TFLAG_POLLING) 2402 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2403 else 2404 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2405 2406 /* 2407 * We're about to send a non-EDMA capable command to the 2408 * port. Turn off EDMA so there won't be problems accessing 2409 * shadow block, etc registers. 2410 */ 2411 mv_stop_edma(ap); 2412 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2413 mv_pmp_select(ap, qc->dev->link->pmp); 2414 2415 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2416 struct mv_host_priv *hpriv = ap->host->private_data; 2417 /* 2418 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2419 * 2420 * After any NCQ error, the READ_LOG_EXT command 2421 * from libata-eh *must* use mv_qc_issue_fis(). 2422 * Otherwise it might fail, due to chip errata. 2423 * 2424 * Rather than special-case it, we'll just *always* 2425 * use this method here for READ_LOG_EXT, making for 2426 * easier testing. 2427 */ 2428 if (IS_GEN_II(hpriv)) 2429 return mv_qc_issue_fis(qc); 2430 } 2431 return ata_bmdma_qc_issue(qc); 2432 } 2433 2434 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2435 { 2436 struct mv_port_priv *pp = ap->private_data; 2437 struct ata_queued_cmd *qc; 2438 2439 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2440 return NULL; 2441 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2442 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) 2443 return qc; 2444 return NULL; 2445 } 2446 2447 static void mv_pmp_error_handler(struct ata_port *ap) 2448 { 2449 unsigned int pmp, pmp_map; 2450 struct mv_port_priv *pp = ap->private_data; 2451 2452 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2453 /* 2454 * Perform NCQ error analysis on failed PMPs 2455 * before we freeze the port entirely. 2456 * 2457 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2458 */ 2459 pmp_map = pp->delayed_eh_pmp_map; 2460 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2461 for (pmp = 0; pmp_map != 0; pmp++) { 2462 unsigned int this_pmp = (1 << pmp); 2463 if (pmp_map & this_pmp) { 2464 struct ata_link *link = &ap->pmp_link[pmp]; 2465 pmp_map &= ~this_pmp; 2466 ata_eh_analyze_ncq_error(link); 2467 } 2468 } 2469 ata_port_freeze(ap); 2470 } 2471 sata_pmp_error_handler(ap); 2472 } 2473 2474 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2475 { 2476 void __iomem *port_mmio = mv_ap_base(ap); 2477 2478 return readl(port_mmio + SATA_TESTCTL) >> 16; 2479 } 2480 2481 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2482 { 2483 struct ata_eh_info *ehi; 2484 unsigned int pmp; 2485 2486 /* 2487 * Initialize EH info for PMPs which saw device errors 2488 */ 2489 ehi = &ap->link.eh_info; 2490 for (pmp = 0; pmp_map != 0; pmp++) { 2491 unsigned int this_pmp = (1 << pmp); 2492 if (pmp_map & this_pmp) { 2493 struct ata_link *link = &ap->pmp_link[pmp]; 2494 2495 pmp_map &= ~this_pmp; 2496 ehi = &link->eh_info; 2497 ata_ehi_clear_desc(ehi); 2498 ata_ehi_push_desc(ehi, "dev err"); 2499 ehi->err_mask |= AC_ERR_DEV; 2500 ehi->action |= ATA_EH_RESET; 2501 ata_link_abort(link); 2502 } 2503 } 2504 } 2505 2506 static int mv_req_q_empty(struct ata_port *ap) 2507 { 2508 void __iomem *port_mmio = mv_ap_base(ap); 2509 u32 in_ptr, out_ptr; 2510 2511 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2512 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2513 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2514 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2515 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2516 } 2517 2518 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2519 { 2520 struct mv_port_priv *pp = ap->private_data; 2521 int failed_links; 2522 unsigned int old_map, new_map; 2523 2524 /* 2525 * Device error during FBS+NCQ operation: 2526 * 2527 * Set a port flag to prevent further I/O being enqueued. 2528 * Leave the EDMA running to drain outstanding commands from this port. 2529 * Perform the post-mortem/EH only when all responses are complete. 2530 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2531 */ 2532 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2533 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2534 pp->delayed_eh_pmp_map = 0; 2535 } 2536 old_map = pp->delayed_eh_pmp_map; 2537 new_map = old_map | mv_get_err_pmp_map(ap); 2538 2539 if (old_map != new_map) { 2540 pp->delayed_eh_pmp_map = new_map; 2541 mv_pmp_eh_prep(ap, new_map & ~old_map); 2542 } 2543 failed_links = hweight16(new_map); 2544 2545 ata_port_info(ap, 2546 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n", 2547 __func__, pp->delayed_eh_pmp_map, 2548 ap->qc_active, failed_links, 2549 ap->nr_active_links); 2550 2551 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2552 mv_process_crpb_entries(ap, pp); 2553 mv_stop_edma(ap); 2554 mv_eh_freeze(ap); 2555 ata_port_info(ap, "%s: done\n", __func__); 2556 return 1; /* handled */ 2557 } 2558 ata_port_info(ap, "%s: waiting\n", __func__); 2559 return 1; /* handled */ 2560 } 2561 2562 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2563 { 2564 /* 2565 * Possible future enhancement: 2566 * 2567 * FBS+non-NCQ operation is not yet implemented. 2568 * See related notes in mv_edma_cfg(). 2569 * 2570 * Device error during FBS+non-NCQ operation: 2571 * 2572 * We need to snapshot the shadow registers for each failed command. 2573 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2574 */ 2575 return 0; /* not handled */ 2576 } 2577 2578 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2579 { 2580 struct mv_port_priv *pp = ap->private_data; 2581 2582 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2583 return 0; /* EDMA was not active: not handled */ 2584 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2585 return 0; /* FBS was not active: not handled */ 2586 2587 if (!(edma_err_cause & EDMA_ERR_DEV)) 2588 return 0; /* non DEV error: not handled */ 2589 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2590 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2591 return 0; /* other problems: not handled */ 2592 2593 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2594 /* 2595 * EDMA should NOT have self-disabled for this case. 2596 * If it did, then something is wrong elsewhere, 2597 * and we cannot handle it here. 2598 */ 2599 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2600 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2601 __func__, edma_err_cause, pp->pp_flags); 2602 return 0; /* not handled */ 2603 } 2604 return mv_handle_fbs_ncq_dev_err(ap); 2605 } else { 2606 /* 2607 * EDMA should have self-disabled for this case. 2608 * If it did not, then something is wrong elsewhere, 2609 * and we cannot handle it here. 2610 */ 2611 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2612 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2613 __func__, edma_err_cause, pp->pp_flags); 2614 return 0; /* not handled */ 2615 } 2616 return mv_handle_fbs_non_ncq_dev_err(ap); 2617 } 2618 return 0; /* not handled */ 2619 } 2620 2621 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2622 { 2623 struct ata_eh_info *ehi = &ap->link.eh_info; 2624 char *when = "idle"; 2625 2626 ata_ehi_clear_desc(ehi); 2627 if (edma_was_enabled) { 2628 when = "EDMA enabled"; 2629 } else { 2630 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2631 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2632 when = "polling"; 2633 } 2634 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2635 ehi->err_mask |= AC_ERR_OTHER; 2636 ehi->action |= ATA_EH_RESET; 2637 ata_port_freeze(ap); 2638 } 2639 2640 /** 2641 * mv_err_intr - Handle error interrupts on the port 2642 * @ap: ATA channel to manipulate 2643 * 2644 * Most cases require a full reset of the chip's state machine, 2645 * which also performs a COMRESET. 2646 * Also, if the port disabled DMA, update our cached copy to match. 2647 * 2648 * LOCKING: 2649 * Inherited from caller. 2650 */ 2651 static void mv_err_intr(struct ata_port *ap) 2652 { 2653 void __iomem *port_mmio = mv_ap_base(ap); 2654 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2655 u32 fis_cause = 0; 2656 struct mv_port_priv *pp = ap->private_data; 2657 struct mv_host_priv *hpriv = ap->host->private_data; 2658 unsigned int action = 0, err_mask = 0; 2659 struct ata_eh_info *ehi = &ap->link.eh_info; 2660 struct ata_queued_cmd *qc; 2661 int abort = 0; 2662 2663 /* 2664 * Read and clear the SError and err_cause bits. 2665 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2666 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2667 */ 2668 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2669 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2670 2671 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2672 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2673 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2674 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2675 } 2676 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2677 2678 if (edma_err_cause & EDMA_ERR_DEV) { 2679 /* 2680 * Device errors during FIS-based switching operation 2681 * require special handling. 2682 */ 2683 if (mv_handle_dev_err(ap, edma_err_cause)) 2684 return; 2685 } 2686 2687 qc = mv_get_active_qc(ap); 2688 ata_ehi_clear_desc(ehi); 2689 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2690 edma_err_cause, pp->pp_flags); 2691 2692 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2693 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2694 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2695 u32 ec = edma_err_cause & 2696 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2697 sata_async_notification(ap); 2698 if (!ec) 2699 return; /* Just an AN; no need for the nukes */ 2700 ata_ehi_push_desc(ehi, "SDB notify"); 2701 } 2702 } 2703 /* 2704 * All generations share these EDMA error cause bits: 2705 */ 2706 if (edma_err_cause & EDMA_ERR_DEV) { 2707 err_mask |= AC_ERR_DEV; 2708 action |= ATA_EH_RESET; 2709 ata_ehi_push_desc(ehi, "dev error"); 2710 } 2711 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2712 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2713 EDMA_ERR_INTRL_PAR)) { 2714 err_mask |= AC_ERR_ATA_BUS; 2715 action |= ATA_EH_RESET; 2716 ata_ehi_push_desc(ehi, "parity error"); 2717 } 2718 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2719 ata_ehi_hotplugged(ehi); 2720 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2721 "dev disconnect" : "dev connect"); 2722 action |= ATA_EH_RESET; 2723 } 2724 2725 /* 2726 * Gen-I has a different SELF_DIS bit, 2727 * different FREEZE bits, and no SERR bit: 2728 */ 2729 if (IS_GEN_I(hpriv)) { 2730 eh_freeze_mask = EDMA_EH_FREEZE_5; 2731 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2732 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2733 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2734 } 2735 } else { 2736 eh_freeze_mask = EDMA_EH_FREEZE; 2737 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2738 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2739 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2740 } 2741 if (edma_err_cause & EDMA_ERR_SERR) { 2742 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2743 err_mask |= AC_ERR_ATA_BUS; 2744 action |= ATA_EH_RESET; 2745 } 2746 } 2747 2748 if (!err_mask) { 2749 err_mask = AC_ERR_OTHER; 2750 action |= ATA_EH_RESET; 2751 } 2752 2753 ehi->serror |= serr; 2754 ehi->action |= action; 2755 2756 if (qc) 2757 qc->err_mask |= err_mask; 2758 else 2759 ehi->err_mask |= err_mask; 2760 2761 if (err_mask == AC_ERR_DEV) { 2762 /* 2763 * Cannot do ata_port_freeze() here, 2764 * because it would kill PIO access, 2765 * which is needed for further diagnosis. 2766 */ 2767 mv_eh_freeze(ap); 2768 abort = 1; 2769 } else if (edma_err_cause & eh_freeze_mask) { 2770 /* 2771 * Note to self: ata_port_freeze() calls ata_port_abort() 2772 */ 2773 ata_port_freeze(ap); 2774 } else { 2775 abort = 1; 2776 } 2777 2778 if (abort) { 2779 if (qc) 2780 ata_link_abort(qc->dev->link); 2781 else 2782 ata_port_abort(ap); 2783 } 2784 } 2785 2786 static bool mv_process_crpb_response(struct ata_port *ap, 2787 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2788 { 2789 u8 ata_status; 2790 u16 edma_status = le16_to_cpu(response->flags); 2791 2792 /* 2793 * edma_status from a response queue entry: 2794 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2795 * MSB is saved ATA status from command completion. 2796 */ 2797 if (!ncq_enabled) { 2798 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2799 if (err_cause) { 2800 /* 2801 * Error will be seen/handled by 2802 * mv_err_intr(). So do nothing at all here. 2803 */ 2804 return false; 2805 } 2806 } 2807 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2808 if (!ac_err_mask(ata_status)) 2809 return true; 2810 /* else: leave it for mv_err_intr() */ 2811 return false; 2812 } 2813 2814 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2815 { 2816 void __iomem *port_mmio = mv_ap_base(ap); 2817 struct mv_host_priv *hpriv = ap->host->private_data; 2818 u32 in_index; 2819 bool work_done = false; 2820 u32 done_mask = 0; 2821 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2822 2823 /* Get the hardware queue position index */ 2824 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2825 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2826 2827 /* Process new responses from since the last time we looked */ 2828 while (in_index != pp->resp_idx) { 2829 unsigned int tag; 2830 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2831 2832 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2833 2834 if (IS_GEN_I(hpriv)) { 2835 /* 50xx: no NCQ, only one command active at a time */ 2836 tag = ap->link.active_tag; 2837 } else { 2838 /* Gen II/IIE: get command tag from CRPB entry */ 2839 tag = le16_to_cpu(response->id) & 0x1f; 2840 } 2841 if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) 2842 done_mask |= 1 << tag; 2843 work_done = true; 2844 } 2845 2846 if (work_done) { 2847 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 2848 2849 /* Update the software queue position index in hardware */ 2850 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2851 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2852 port_mmio + EDMA_RSP_Q_OUT_PTR); 2853 } 2854 } 2855 2856 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2857 { 2858 struct mv_port_priv *pp; 2859 int edma_was_enabled; 2860 2861 /* 2862 * Grab a snapshot of the EDMA_EN flag setting, 2863 * so that we have a consistent view for this port, 2864 * even if something we call of our routines changes it. 2865 */ 2866 pp = ap->private_data; 2867 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2868 /* 2869 * Process completed CRPB response(s) before other events. 2870 */ 2871 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2872 mv_process_crpb_entries(ap, pp); 2873 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2874 mv_handle_fbs_ncq_dev_err(ap); 2875 } 2876 /* 2877 * Handle chip-reported errors, or continue on to handle PIO. 2878 */ 2879 if (unlikely(port_cause & ERR_IRQ)) { 2880 mv_err_intr(ap); 2881 } else if (!edma_was_enabled) { 2882 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2883 if (qc) 2884 ata_bmdma_port_intr(ap, qc); 2885 else 2886 mv_unexpected_intr(ap, edma_was_enabled); 2887 } 2888 } 2889 2890 /** 2891 * mv_host_intr - Handle all interrupts on the given host controller 2892 * @host: host specific structure 2893 * @main_irq_cause: Main interrupt cause register for the chip. 2894 * 2895 * LOCKING: 2896 * Inherited from caller. 2897 */ 2898 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2899 { 2900 struct mv_host_priv *hpriv = host->private_data; 2901 void __iomem *mmio = hpriv->base, *hc_mmio; 2902 unsigned int handled = 0, port; 2903 2904 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2905 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2906 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2907 2908 for (port = 0; port < hpriv->n_ports; port++) { 2909 struct ata_port *ap = host->ports[port]; 2910 unsigned int p, shift, hardport, port_cause; 2911 2912 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2913 /* 2914 * Each hc within the host has its own hc_irq_cause register, 2915 * where the interrupting ports bits get ack'd. 2916 */ 2917 if (hardport == 0) { /* first port on this hc ? */ 2918 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2919 u32 port_mask, ack_irqs; 2920 /* 2921 * Skip this entire hc if nothing pending for any ports 2922 */ 2923 if (!hc_cause) { 2924 port += MV_PORTS_PER_HC - 1; 2925 continue; 2926 } 2927 /* 2928 * We don't need/want to read the hc_irq_cause register, 2929 * because doing so hurts performance, and 2930 * main_irq_cause already gives us everything we need. 2931 * 2932 * But we do have to *write* to the hc_irq_cause to ack 2933 * the ports that we are handling this time through. 2934 * 2935 * This requires that we create a bitmap for those 2936 * ports which interrupted us, and use that bitmap 2937 * to ack (only) those ports via hc_irq_cause. 2938 */ 2939 ack_irqs = 0; 2940 if (hc_cause & PORTS_0_3_COAL_DONE) 2941 ack_irqs = HC_COAL_IRQ; 2942 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2943 if ((port + p) >= hpriv->n_ports) 2944 break; 2945 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2946 if (hc_cause & port_mask) 2947 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2948 } 2949 hc_mmio = mv_hc_base_from_port(mmio, port); 2950 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2951 handled = 1; 2952 } 2953 /* 2954 * Handle interrupts signalled for this port: 2955 */ 2956 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2957 if (port_cause) 2958 mv_port_intr(ap, port_cause); 2959 } 2960 return handled; 2961 } 2962 2963 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2964 { 2965 struct mv_host_priv *hpriv = host->private_data; 2966 struct ata_port *ap; 2967 struct ata_queued_cmd *qc; 2968 struct ata_eh_info *ehi; 2969 unsigned int i, err_mask, printed = 0; 2970 u32 err_cause; 2971 2972 err_cause = readl(mmio + hpriv->irq_cause_offset); 2973 2974 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); 2975 2976 DPRINTK("All regs @ PCI error\n"); 2977 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2978 2979 writelfl(0, mmio + hpriv->irq_cause_offset); 2980 2981 for (i = 0; i < host->n_ports; i++) { 2982 ap = host->ports[i]; 2983 if (!ata_link_offline(&ap->link)) { 2984 ehi = &ap->link.eh_info; 2985 ata_ehi_clear_desc(ehi); 2986 if (!printed++) 2987 ata_ehi_push_desc(ehi, 2988 "PCI err cause 0x%08x", err_cause); 2989 err_mask = AC_ERR_HOST_BUS; 2990 ehi->action = ATA_EH_RESET; 2991 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2992 if (qc) 2993 qc->err_mask |= err_mask; 2994 else 2995 ehi->err_mask |= err_mask; 2996 2997 ata_port_freeze(ap); 2998 } 2999 } 3000 return 1; /* handled */ 3001 } 3002 3003 /** 3004 * mv_interrupt - Main interrupt event handler 3005 * @irq: unused 3006 * @dev_instance: private data; in this case the host structure 3007 * 3008 * Read the read only register to determine if any host 3009 * controllers have pending interrupts. If so, call lower level 3010 * routine to handle. Also check for PCI errors which are only 3011 * reported here. 3012 * 3013 * LOCKING: 3014 * This routine holds the host lock while processing pending 3015 * interrupts. 3016 */ 3017 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 3018 { 3019 struct ata_host *host = dev_instance; 3020 struct mv_host_priv *hpriv = host->private_data; 3021 unsigned int handled = 0; 3022 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 3023 u32 main_irq_cause, pending_irqs; 3024 3025 spin_lock(&host->lock); 3026 3027 /* for MSI: block new interrupts while in here */ 3028 if (using_msi) 3029 mv_write_main_irq_mask(0, hpriv); 3030 3031 main_irq_cause = readl(hpriv->main_irq_cause_addr); 3032 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 3033 /* 3034 * Deal with cases where we either have nothing pending, or have read 3035 * a bogus register value which can indicate HW removal or PCI fault. 3036 */ 3037 if (pending_irqs && main_irq_cause != 0xffffffffU) { 3038 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 3039 handled = mv_pci_error(host, hpriv->base); 3040 else 3041 handled = mv_host_intr(host, pending_irqs); 3042 } 3043 3044 /* for MSI: unmask; interrupt cause bits will retrigger now */ 3045 if (using_msi) 3046 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 3047 3048 spin_unlock(&host->lock); 3049 3050 return IRQ_RETVAL(handled); 3051 } 3052 3053 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 3054 { 3055 unsigned int ofs; 3056 3057 switch (sc_reg_in) { 3058 case SCR_STATUS: 3059 case SCR_ERROR: 3060 case SCR_CONTROL: 3061 ofs = sc_reg_in * sizeof(u32); 3062 break; 3063 default: 3064 ofs = 0xffffffffU; 3065 break; 3066 } 3067 return ofs; 3068 } 3069 3070 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 3071 { 3072 struct mv_host_priv *hpriv = link->ap->host->private_data; 3073 void __iomem *mmio = hpriv->base; 3074 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3075 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3076 3077 if (ofs != 0xffffffffU) { 3078 *val = readl(addr + ofs); 3079 return 0; 3080 } else 3081 return -EINVAL; 3082 } 3083 3084 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 3085 { 3086 struct mv_host_priv *hpriv = link->ap->host->private_data; 3087 void __iomem *mmio = hpriv->base; 3088 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3089 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3090 3091 if (ofs != 0xffffffffU) { 3092 writelfl(val, addr + ofs); 3093 return 0; 3094 } else 3095 return -EINVAL; 3096 } 3097 3098 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 3099 { 3100 struct pci_dev *pdev = to_pci_dev(host->dev); 3101 int early_5080; 3102 3103 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3104 3105 if (!early_5080) { 3106 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3107 tmp |= (1 << 0); 3108 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3109 } 3110 3111 mv_reset_pci_bus(host, mmio); 3112 } 3113 3114 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3115 { 3116 writel(0x0fcfffff, mmio + FLASH_CTL); 3117 } 3118 3119 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3120 void __iomem *mmio) 3121 { 3122 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3123 u32 tmp; 3124 3125 tmp = readl(phy_mmio + MV5_PHY_MODE); 3126 3127 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3128 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3129 } 3130 3131 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3132 { 3133 u32 tmp; 3134 3135 writel(0, mmio + GPIO_PORT_CTL); 3136 3137 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3138 3139 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3140 tmp |= ~(1 << 0); 3141 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3142 } 3143 3144 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3145 unsigned int port) 3146 { 3147 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3148 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3149 u32 tmp; 3150 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3151 3152 if (fix_apm_sq) { 3153 tmp = readl(phy_mmio + MV5_LTMODE); 3154 tmp |= (1 << 19); 3155 writel(tmp, phy_mmio + MV5_LTMODE); 3156 3157 tmp = readl(phy_mmio + MV5_PHY_CTL); 3158 tmp &= ~0x3; 3159 tmp |= 0x1; 3160 writel(tmp, phy_mmio + MV5_PHY_CTL); 3161 } 3162 3163 tmp = readl(phy_mmio + MV5_PHY_MODE); 3164 tmp &= ~mask; 3165 tmp |= hpriv->signal[port].pre; 3166 tmp |= hpriv->signal[port].amps; 3167 writel(tmp, phy_mmio + MV5_PHY_MODE); 3168 } 3169 3170 3171 #undef ZERO 3172 #define ZERO(reg) writel(0, port_mmio + (reg)) 3173 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3174 unsigned int port) 3175 { 3176 void __iomem *port_mmio = mv_port_base(mmio, port); 3177 3178 mv_reset_channel(hpriv, mmio, port); 3179 3180 ZERO(0x028); /* command */ 3181 writel(0x11f, port_mmio + EDMA_CFG); 3182 ZERO(0x004); /* timer */ 3183 ZERO(0x008); /* irq err cause */ 3184 ZERO(0x00c); /* irq err mask */ 3185 ZERO(0x010); /* rq bah */ 3186 ZERO(0x014); /* rq inp */ 3187 ZERO(0x018); /* rq outp */ 3188 ZERO(0x01c); /* respq bah */ 3189 ZERO(0x024); /* respq outp */ 3190 ZERO(0x020); /* respq inp */ 3191 ZERO(0x02c); /* test control */ 3192 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3193 } 3194 #undef ZERO 3195 3196 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3197 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3198 unsigned int hc) 3199 { 3200 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3201 u32 tmp; 3202 3203 ZERO(0x00c); 3204 ZERO(0x010); 3205 ZERO(0x014); 3206 ZERO(0x018); 3207 3208 tmp = readl(hc_mmio + 0x20); 3209 tmp &= 0x1c1c1c1c; 3210 tmp |= 0x03030303; 3211 writel(tmp, hc_mmio + 0x20); 3212 } 3213 #undef ZERO 3214 3215 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3216 unsigned int n_hc) 3217 { 3218 unsigned int hc, port; 3219 3220 for (hc = 0; hc < n_hc; hc++) { 3221 for (port = 0; port < MV_PORTS_PER_HC; port++) 3222 mv5_reset_hc_port(hpriv, mmio, 3223 (hc * MV_PORTS_PER_HC) + port); 3224 3225 mv5_reset_one_hc(hpriv, mmio, hc); 3226 } 3227 3228 return 0; 3229 } 3230 3231 #undef ZERO 3232 #define ZERO(reg) writel(0, mmio + (reg)) 3233 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3234 { 3235 struct mv_host_priv *hpriv = host->private_data; 3236 u32 tmp; 3237 3238 tmp = readl(mmio + MV_PCI_MODE); 3239 tmp &= 0xff00ffff; 3240 writel(tmp, mmio + MV_PCI_MODE); 3241 3242 ZERO(MV_PCI_DISC_TIMER); 3243 ZERO(MV_PCI_MSI_TRIGGER); 3244 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3245 ZERO(MV_PCI_SERR_MASK); 3246 ZERO(hpriv->irq_cause_offset); 3247 ZERO(hpriv->irq_mask_offset); 3248 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3249 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3250 ZERO(MV_PCI_ERR_ATTRIBUTE); 3251 ZERO(MV_PCI_ERR_COMMAND); 3252 } 3253 #undef ZERO 3254 3255 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3256 { 3257 u32 tmp; 3258 3259 mv5_reset_flash(hpriv, mmio); 3260 3261 tmp = readl(mmio + GPIO_PORT_CTL); 3262 tmp &= 0x3; 3263 tmp |= (1 << 5) | (1 << 6); 3264 writel(tmp, mmio + GPIO_PORT_CTL); 3265 } 3266 3267 /** 3268 * mv6_reset_hc - Perform the 6xxx global soft reset 3269 * @mmio: base address of the HBA 3270 * 3271 * This routine only applies to 6xxx parts. 3272 * 3273 * LOCKING: 3274 * Inherited from caller. 3275 */ 3276 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3277 unsigned int n_hc) 3278 { 3279 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3280 int i, rc = 0; 3281 u32 t; 3282 3283 /* Following procedure defined in PCI "main command and status 3284 * register" table. 3285 */ 3286 t = readl(reg); 3287 writel(t | STOP_PCI_MASTER, reg); 3288 3289 for (i = 0; i < 1000; i++) { 3290 udelay(1); 3291 t = readl(reg); 3292 if (PCI_MASTER_EMPTY & t) 3293 break; 3294 } 3295 if (!(PCI_MASTER_EMPTY & t)) { 3296 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3297 rc = 1; 3298 goto done; 3299 } 3300 3301 /* set reset */ 3302 i = 5; 3303 do { 3304 writel(t | GLOB_SFT_RST, reg); 3305 t = readl(reg); 3306 udelay(1); 3307 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3308 3309 if (!(GLOB_SFT_RST & t)) { 3310 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3311 rc = 1; 3312 goto done; 3313 } 3314 3315 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3316 i = 5; 3317 do { 3318 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3319 t = readl(reg); 3320 udelay(1); 3321 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3322 3323 if (GLOB_SFT_RST & t) { 3324 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3325 rc = 1; 3326 } 3327 done: 3328 return rc; 3329 } 3330 3331 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3332 void __iomem *mmio) 3333 { 3334 void __iomem *port_mmio; 3335 u32 tmp; 3336 3337 tmp = readl(mmio + RESET_CFG); 3338 if ((tmp & (1 << 0)) == 0) { 3339 hpriv->signal[idx].amps = 0x7 << 8; 3340 hpriv->signal[idx].pre = 0x1 << 5; 3341 return; 3342 } 3343 3344 port_mmio = mv_port_base(mmio, idx); 3345 tmp = readl(port_mmio + PHY_MODE2); 3346 3347 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3348 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3349 } 3350 3351 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3352 { 3353 writel(0x00000060, mmio + GPIO_PORT_CTL); 3354 } 3355 3356 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3357 unsigned int port) 3358 { 3359 void __iomem *port_mmio = mv_port_base(mmio, port); 3360 3361 u32 hp_flags = hpriv->hp_flags; 3362 int fix_phy_mode2 = 3363 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3364 int fix_phy_mode4 = 3365 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3366 u32 m2, m3; 3367 3368 if (fix_phy_mode2) { 3369 m2 = readl(port_mmio + PHY_MODE2); 3370 m2 &= ~(1 << 16); 3371 m2 |= (1 << 31); 3372 writel(m2, port_mmio + PHY_MODE2); 3373 3374 udelay(200); 3375 3376 m2 = readl(port_mmio + PHY_MODE2); 3377 m2 &= ~((1 << 16) | (1 << 31)); 3378 writel(m2, port_mmio + PHY_MODE2); 3379 3380 udelay(200); 3381 } 3382 3383 /* 3384 * Gen-II/IIe PHY_MODE3 errata RM#2: 3385 * Achieves better receiver noise performance than the h/w default: 3386 */ 3387 m3 = readl(port_mmio + PHY_MODE3); 3388 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3389 3390 /* Guideline 88F5182 (GL# SATA-S11) */ 3391 if (IS_SOC(hpriv)) 3392 m3 &= ~0x1c; 3393 3394 if (fix_phy_mode4) { 3395 u32 m4 = readl(port_mmio + PHY_MODE4); 3396 /* 3397 * Enforce reserved-bit restrictions on GenIIe devices only. 3398 * For earlier chipsets, force only the internal config field 3399 * (workaround for errata FEr SATA#10 part 1). 3400 */ 3401 if (IS_GEN_IIE(hpriv)) 3402 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3403 else 3404 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3405 writel(m4, port_mmio + PHY_MODE4); 3406 } 3407 /* 3408 * Workaround for 60x1-B2 errata SATA#13: 3409 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3410 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3411 * Or ensure we use writelfl() when writing PHY_MODE4. 3412 */ 3413 writel(m3, port_mmio + PHY_MODE3); 3414 3415 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3416 m2 = readl(port_mmio + PHY_MODE2); 3417 3418 m2 &= ~MV_M2_PREAMP_MASK; 3419 m2 |= hpriv->signal[port].amps; 3420 m2 |= hpriv->signal[port].pre; 3421 m2 &= ~(1 << 16); 3422 3423 /* according to mvSata 3.6.1, some IIE values are fixed */ 3424 if (IS_GEN_IIE(hpriv)) { 3425 m2 &= ~0xC30FF01F; 3426 m2 |= 0x0000900F; 3427 } 3428 3429 writel(m2, port_mmio + PHY_MODE2); 3430 } 3431 3432 /* TODO: use the generic LED interface to configure the SATA Presence */ 3433 /* & Acitivy LEDs on the board */ 3434 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3435 void __iomem *mmio) 3436 { 3437 return; 3438 } 3439 3440 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3441 void __iomem *mmio) 3442 { 3443 void __iomem *port_mmio; 3444 u32 tmp; 3445 3446 port_mmio = mv_port_base(mmio, idx); 3447 tmp = readl(port_mmio + PHY_MODE2); 3448 3449 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3450 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3451 } 3452 3453 #undef ZERO 3454 #define ZERO(reg) writel(0, port_mmio + (reg)) 3455 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3456 void __iomem *mmio, unsigned int port) 3457 { 3458 void __iomem *port_mmio = mv_port_base(mmio, port); 3459 3460 mv_reset_channel(hpriv, mmio, port); 3461 3462 ZERO(0x028); /* command */ 3463 writel(0x101f, port_mmio + EDMA_CFG); 3464 ZERO(0x004); /* timer */ 3465 ZERO(0x008); /* irq err cause */ 3466 ZERO(0x00c); /* irq err mask */ 3467 ZERO(0x010); /* rq bah */ 3468 ZERO(0x014); /* rq inp */ 3469 ZERO(0x018); /* rq outp */ 3470 ZERO(0x01c); /* respq bah */ 3471 ZERO(0x024); /* respq outp */ 3472 ZERO(0x020); /* respq inp */ 3473 ZERO(0x02c); /* test control */ 3474 writel(0x800, port_mmio + EDMA_IORDY_TMOUT); 3475 } 3476 3477 #undef ZERO 3478 3479 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3480 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3481 void __iomem *mmio) 3482 { 3483 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3484 3485 ZERO(0x00c); 3486 ZERO(0x010); 3487 ZERO(0x014); 3488 3489 } 3490 3491 #undef ZERO 3492 3493 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3494 void __iomem *mmio, unsigned int n_hc) 3495 { 3496 unsigned int port; 3497 3498 for (port = 0; port < hpriv->n_ports; port++) 3499 mv_soc_reset_hc_port(hpriv, mmio, port); 3500 3501 mv_soc_reset_one_hc(hpriv, mmio); 3502 3503 return 0; 3504 } 3505 3506 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3507 void __iomem *mmio) 3508 { 3509 return; 3510 } 3511 3512 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3513 { 3514 return; 3515 } 3516 3517 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3518 void __iomem *mmio, unsigned int port) 3519 { 3520 void __iomem *port_mmio = mv_port_base(mmio, port); 3521 u32 reg; 3522 3523 reg = readl(port_mmio + PHY_MODE3); 3524 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3525 reg |= (0x1 << 27); 3526 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3527 reg |= (0x1 << 29); 3528 writel(reg, port_mmio + PHY_MODE3); 3529 3530 reg = readl(port_mmio + PHY_MODE4); 3531 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3532 reg |= (0x1 << 16); 3533 writel(reg, port_mmio + PHY_MODE4); 3534 3535 reg = readl(port_mmio + PHY_MODE9_GEN2); 3536 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3537 reg |= 0x8; 3538 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3539 writel(reg, port_mmio + PHY_MODE9_GEN2); 3540 3541 reg = readl(port_mmio + PHY_MODE9_GEN1); 3542 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3543 reg |= 0x8; 3544 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3545 writel(reg, port_mmio + PHY_MODE9_GEN1); 3546 } 3547 3548 /** 3549 * soc_is_65 - check if the soc is 65 nano device 3550 * 3551 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3552 * register, this register should contain non-zero value and it exists only 3553 * in the 65 nano devices, when reading it from older devices we get 0. 3554 */ 3555 static bool soc_is_65n(struct mv_host_priv *hpriv) 3556 { 3557 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3558 3559 if (readl(port0_mmio + PHYCFG_OFS)) 3560 return true; 3561 return false; 3562 } 3563 3564 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3565 { 3566 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3567 3568 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3569 if (want_gen2i) 3570 ifcfg |= (1 << 7); /* enable gen2i speed */ 3571 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3572 } 3573 3574 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3575 unsigned int port_no) 3576 { 3577 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3578 3579 /* 3580 * The datasheet warns against setting EDMA_RESET when EDMA is active 3581 * (but doesn't say what the problem might be). So we first try 3582 * to disable the EDMA engine before doing the EDMA_RESET operation. 3583 */ 3584 mv_stop_edma_engine(port_mmio); 3585 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3586 3587 if (!IS_GEN_I(hpriv)) { 3588 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3589 mv_setup_ifcfg(port_mmio, 1); 3590 } 3591 /* 3592 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3593 * link, and physical layers. It resets all SATA interface registers 3594 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3595 */ 3596 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3597 udelay(25); /* allow reset propagation */ 3598 writelfl(0, port_mmio + EDMA_CMD); 3599 3600 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3601 3602 if (IS_GEN_I(hpriv)) 3603 mdelay(1); 3604 } 3605 3606 static void mv_pmp_select(struct ata_port *ap, int pmp) 3607 { 3608 if (sata_pmp_supported(ap)) { 3609 void __iomem *port_mmio = mv_ap_base(ap); 3610 u32 reg = readl(port_mmio + SATA_IFCTL); 3611 int old = reg & 0xf; 3612 3613 if (old != pmp) { 3614 reg = (reg & ~0xf) | pmp; 3615 writelfl(reg, port_mmio + SATA_IFCTL); 3616 } 3617 } 3618 } 3619 3620 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3621 unsigned long deadline) 3622 { 3623 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3624 return sata_std_hardreset(link, class, deadline); 3625 } 3626 3627 static int mv_softreset(struct ata_link *link, unsigned int *class, 3628 unsigned long deadline) 3629 { 3630 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3631 return ata_sff_softreset(link, class, deadline); 3632 } 3633 3634 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3635 unsigned long deadline) 3636 { 3637 struct ata_port *ap = link->ap; 3638 struct mv_host_priv *hpriv = ap->host->private_data; 3639 struct mv_port_priv *pp = ap->private_data; 3640 void __iomem *mmio = hpriv->base; 3641 int rc, attempts = 0, extra = 0; 3642 u32 sstatus; 3643 bool online; 3644 3645 mv_reset_channel(hpriv, mmio, ap->port_no); 3646 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3647 pp->pp_flags &= 3648 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3649 3650 /* Workaround for errata FEr SATA#10 (part 2) */ 3651 do { 3652 const unsigned long *timing = 3653 sata_ehc_deb_timing(&link->eh_context); 3654 3655 rc = sata_link_hardreset(link, timing, deadline + extra, 3656 &online, NULL); 3657 rc = online ? -EAGAIN : rc; 3658 if (rc) 3659 return rc; 3660 sata_scr_read(link, SCR_STATUS, &sstatus); 3661 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3662 /* Force 1.5gb/s link speed and try again */ 3663 mv_setup_ifcfg(mv_ap_base(ap), 0); 3664 if (time_after(jiffies + HZ, deadline)) 3665 extra = HZ; /* only extend it once, max */ 3666 } 3667 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3668 mv_save_cached_regs(ap); 3669 mv_edma_cfg(ap, 0, 0); 3670 3671 return rc; 3672 } 3673 3674 static void mv_eh_freeze(struct ata_port *ap) 3675 { 3676 mv_stop_edma(ap); 3677 mv_enable_port_irqs(ap, 0); 3678 } 3679 3680 static void mv_eh_thaw(struct ata_port *ap) 3681 { 3682 struct mv_host_priv *hpriv = ap->host->private_data; 3683 unsigned int port = ap->port_no; 3684 unsigned int hardport = mv_hardport_from_port(port); 3685 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3686 void __iomem *port_mmio = mv_ap_base(ap); 3687 u32 hc_irq_cause; 3688 3689 /* clear EDMA errors on this port */ 3690 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3691 3692 /* clear pending irq events */ 3693 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3694 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3695 3696 mv_enable_port_irqs(ap, ERR_IRQ); 3697 } 3698 3699 /** 3700 * mv_port_init - Perform some early initialization on a single port. 3701 * @port: libata data structure storing shadow register addresses 3702 * @port_mmio: base address of the port 3703 * 3704 * Initialize shadow register mmio addresses, clear outstanding 3705 * interrupts on the port, and unmask interrupts for the future 3706 * start of the port. 3707 * 3708 * LOCKING: 3709 * Inherited from caller. 3710 */ 3711 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3712 { 3713 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3714 3715 /* PIO related setup 3716 */ 3717 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3718 port->error_addr = 3719 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3720 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3721 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3722 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3723 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3724 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3725 port->status_addr = 3726 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3727 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3728 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3729 3730 /* Clear any currently outstanding port interrupt conditions */ 3731 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3732 writelfl(readl(serr), serr); 3733 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3734 3735 /* unmask all non-transient EDMA error interrupts */ 3736 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3737 3738 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3739 readl(port_mmio + EDMA_CFG), 3740 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3741 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3742 } 3743 3744 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3745 { 3746 struct mv_host_priv *hpriv = host->private_data; 3747 void __iomem *mmio = hpriv->base; 3748 u32 reg; 3749 3750 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3751 return 0; /* not PCI-X capable */ 3752 reg = readl(mmio + MV_PCI_MODE); 3753 if ((reg & MV_PCI_MODE_MASK) == 0) 3754 return 0; /* conventional PCI mode */ 3755 return 1; /* chip is in PCI-X mode */ 3756 } 3757 3758 static int mv_pci_cut_through_okay(struct ata_host *host) 3759 { 3760 struct mv_host_priv *hpriv = host->private_data; 3761 void __iomem *mmio = hpriv->base; 3762 u32 reg; 3763 3764 if (!mv_in_pcix_mode(host)) { 3765 reg = readl(mmio + MV_PCI_COMMAND); 3766 if (reg & MV_PCI_COMMAND_MRDTRIG) 3767 return 0; /* not okay */ 3768 } 3769 return 1; /* okay */ 3770 } 3771 3772 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3773 { 3774 struct mv_host_priv *hpriv = host->private_data; 3775 void __iomem *mmio = hpriv->base; 3776 3777 /* workaround for 60x1-B2 errata PCI#7 */ 3778 if (mv_in_pcix_mode(host)) { 3779 u32 reg = readl(mmio + MV_PCI_COMMAND); 3780 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3781 } 3782 } 3783 3784 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3785 { 3786 struct pci_dev *pdev = to_pci_dev(host->dev); 3787 struct mv_host_priv *hpriv = host->private_data; 3788 u32 hp_flags = hpriv->hp_flags; 3789 3790 switch (board_idx) { 3791 case chip_5080: 3792 hpriv->ops = &mv5xxx_ops; 3793 hp_flags |= MV_HP_GEN_I; 3794 3795 switch (pdev->revision) { 3796 case 0x1: 3797 hp_flags |= MV_HP_ERRATA_50XXB0; 3798 break; 3799 case 0x3: 3800 hp_flags |= MV_HP_ERRATA_50XXB2; 3801 break; 3802 default: 3803 dev_warn(&pdev->dev, 3804 "Applying 50XXB2 workarounds to unknown rev\n"); 3805 hp_flags |= MV_HP_ERRATA_50XXB2; 3806 break; 3807 } 3808 break; 3809 3810 case chip_504x: 3811 case chip_508x: 3812 hpriv->ops = &mv5xxx_ops; 3813 hp_flags |= MV_HP_GEN_I; 3814 3815 switch (pdev->revision) { 3816 case 0x0: 3817 hp_flags |= MV_HP_ERRATA_50XXB0; 3818 break; 3819 case 0x3: 3820 hp_flags |= MV_HP_ERRATA_50XXB2; 3821 break; 3822 default: 3823 dev_warn(&pdev->dev, 3824 "Applying B2 workarounds to unknown rev\n"); 3825 hp_flags |= MV_HP_ERRATA_50XXB2; 3826 break; 3827 } 3828 break; 3829 3830 case chip_604x: 3831 case chip_608x: 3832 hpriv->ops = &mv6xxx_ops; 3833 hp_flags |= MV_HP_GEN_II; 3834 3835 switch (pdev->revision) { 3836 case 0x7: 3837 mv_60x1b2_errata_pci7(host); 3838 hp_flags |= MV_HP_ERRATA_60X1B2; 3839 break; 3840 case 0x9: 3841 hp_flags |= MV_HP_ERRATA_60X1C0; 3842 break; 3843 default: 3844 dev_warn(&pdev->dev, 3845 "Applying B2 workarounds to unknown rev\n"); 3846 hp_flags |= MV_HP_ERRATA_60X1B2; 3847 break; 3848 } 3849 break; 3850 3851 case chip_7042: 3852 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3853 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3854 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3855 { 3856 /* 3857 * Highpoint RocketRAID PCIe 23xx series cards: 3858 * 3859 * Unconfigured drives are treated as "Legacy" 3860 * by the BIOS, and it overwrites sector 8 with 3861 * a "Lgcy" metadata block prior to Linux boot. 3862 * 3863 * Configured drives (RAID or JBOD) leave sector 8 3864 * alone, but instead overwrite a high numbered 3865 * sector for the RAID metadata. This sector can 3866 * be determined exactly, by truncating the physical 3867 * drive capacity to a nice even GB value. 3868 * 3869 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3870 * 3871 * Warn the user, lest they think we're just buggy. 3872 */ 3873 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3874 " BIOS CORRUPTS DATA on all attached drives," 3875 " regardless of if/how they are configured." 3876 " BEWARE!\n"); 3877 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3878 " use sectors 8-9 on \"Legacy\" drives," 3879 " and avoid the final two gigabytes on" 3880 " all RocketRAID BIOS initialized drives.\n"); 3881 } 3882 /* drop through */ 3883 case chip_6042: 3884 hpriv->ops = &mv6xxx_ops; 3885 hp_flags |= MV_HP_GEN_IIE; 3886 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3887 hp_flags |= MV_HP_CUT_THROUGH; 3888 3889 switch (pdev->revision) { 3890 case 0x2: /* Rev.B0: the first/only public release */ 3891 hp_flags |= MV_HP_ERRATA_60X1C0; 3892 break; 3893 default: 3894 dev_warn(&pdev->dev, 3895 "Applying 60X1C0 workarounds to unknown rev\n"); 3896 hp_flags |= MV_HP_ERRATA_60X1C0; 3897 break; 3898 } 3899 break; 3900 case chip_soc: 3901 if (soc_is_65n(hpriv)) 3902 hpriv->ops = &mv_soc_65n_ops; 3903 else 3904 hpriv->ops = &mv_soc_ops; 3905 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3906 MV_HP_ERRATA_60X1C0; 3907 break; 3908 3909 default: 3910 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); 3911 return 1; 3912 } 3913 3914 hpriv->hp_flags = hp_flags; 3915 if (hp_flags & MV_HP_PCIE) { 3916 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3917 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3918 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3919 } else { 3920 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3921 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3922 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3923 } 3924 3925 return 0; 3926 } 3927 3928 /** 3929 * mv_init_host - Perform some early initialization of the host. 3930 * @host: ATA host to initialize 3931 * 3932 * If possible, do an early global reset of the host. Then do 3933 * our port init and clear/unmask all/relevant host interrupts. 3934 * 3935 * LOCKING: 3936 * Inherited from caller. 3937 */ 3938 static int mv_init_host(struct ata_host *host) 3939 { 3940 int rc = 0, n_hc, port, hc; 3941 struct mv_host_priv *hpriv = host->private_data; 3942 void __iomem *mmio = hpriv->base; 3943 3944 rc = mv_chip_id(host, hpriv->board_idx); 3945 if (rc) 3946 goto done; 3947 3948 if (IS_SOC(hpriv)) { 3949 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3950 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3951 } else { 3952 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3953 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3954 } 3955 3956 /* initialize shadow irq mask with register's value */ 3957 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3958 3959 /* global interrupt mask: 0 == mask everything */ 3960 mv_set_main_irq_mask(host, ~0, 0); 3961 3962 n_hc = mv_get_hc_count(host->ports[0]->flags); 3963 3964 for (port = 0; port < host->n_ports; port++) 3965 if (hpriv->ops->read_preamp) 3966 hpriv->ops->read_preamp(hpriv, port, mmio); 3967 3968 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3969 if (rc) 3970 goto done; 3971 3972 hpriv->ops->reset_flash(hpriv, mmio); 3973 hpriv->ops->reset_bus(host, mmio); 3974 hpriv->ops->enable_leds(hpriv, mmio); 3975 3976 for (port = 0; port < host->n_ports; port++) { 3977 struct ata_port *ap = host->ports[port]; 3978 void __iomem *port_mmio = mv_port_base(mmio, port); 3979 3980 mv_port_init(&ap->ioaddr, port_mmio); 3981 } 3982 3983 for (hc = 0; hc < n_hc; hc++) { 3984 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3985 3986 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3987 "(before clear)=0x%08x\n", hc, 3988 readl(hc_mmio + HC_CFG), 3989 readl(hc_mmio + HC_IRQ_CAUSE)); 3990 3991 /* Clear any currently outstanding hc interrupt conditions */ 3992 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3993 } 3994 3995 if (!IS_SOC(hpriv)) { 3996 /* Clear any currently outstanding host interrupt conditions */ 3997 writelfl(0, mmio + hpriv->irq_cause_offset); 3998 3999 /* and unmask interrupt generation for host regs */ 4000 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 4001 } 4002 4003 /* 4004 * enable only global host interrupts for now. 4005 * The per-port interrupts get done later as ports are set up. 4006 */ 4007 mv_set_main_irq_mask(host, 0, PCI_ERR); 4008 mv_set_irq_coalescing(host, irq_coalescing_io_count, 4009 irq_coalescing_usecs); 4010 done: 4011 return rc; 4012 } 4013 4014 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 4015 { 4016 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 4017 MV_CRQB_Q_SZ, 0); 4018 if (!hpriv->crqb_pool) 4019 return -ENOMEM; 4020 4021 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 4022 MV_CRPB_Q_SZ, 0); 4023 if (!hpriv->crpb_pool) 4024 return -ENOMEM; 4025 4026 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 4027 MV_SG_TBL_SZ, 0); 4028 if (!hpriv->sg_tbl_pool) 4029 return -ENOMEM; 4030 4031 return 0; 4032 } 4033 4034 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 4035 const struct mbus_dram_target_info *dram) 4036 { 4037 int i; 4038 4039 for (i = 0; i < 4; i++) { 4040 writel(0, hpriv->base + WINDOW_CTRL(i)); 4041 writel(0, hpriv->base + WINDOW_BASE(i)); 4042 } 4043 4044 for (i = 0; i < dram->num_cs; i++) { 4045 const struct mbus_dram_window *cs = dram->cs + i; 4046 4047 writel(((cs->size - 1) & 0xffff0000) | 4048 (cs->mbus_attr << 8) | 4049 (dram->mbus_dram_target_id << 4) | 1, 4050 hpriv->base + WINDOW_CTRL(i)); 4051 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 4052 } 4053 } 4054 4055 /** 4056 * mv_platform_probe - handle a positive probe of an soc Marvell 4057 * host 4058 * @pdev: platform device found 4059 * 4060 * LOCKING: 4061 * Inherited from caller. 4062 */ 4063 static int mv_platform_probe(struct platform_device *pdev) 4064 { 4065 const struct mv_sata_platform_data *mv_platform_data; 4066 const struct mbus_dram_target_info *dram; 4067 const struct ata_port_info *ppi[] = 4068 { &mv_port_info[chip_soc], NULL }; 4069 struct ata_host *host; 4070 struct mv_host_priv *hpriv; 4071 struct resource *res; 4072 int n_ports = 0, irq = 0; 4073 int rc; 4074 int port; 4075 4076 ata_print_version_once(&pdev->dev, DRV_VERSION); 4077 4078 /* 4079 * Simple resource validation .. 4080 */ 4081 if (unlikely(pdev->num_resources != 2)) { 4082 dev_err(&pdev->dev, "invalid number of resources\n"); 4083 return -EINVAL; 4084 } 4085 4086 /* 4087 * Get the register base first 4088 */ 4089 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4090 if (res == NULL) 4091 return -EINVAL; 4092 4093 /* allocate host */ 4094 if (pdev->dev.of_node) { 4095 of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports); 4096 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 4097 } else { 4098 mv_platform_data = dev_get_platdata(&pdev->dev); 4099 n_ports = mv_platform_data->n_ports; 4100 irq = platform_get_irq(pdev, 0); 4101 } 4102 4103 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4104 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4105 4106 if (!host || !hpriv) 4107 return -ENOMEM; 4108 hpriv->port_clks = devm_kzalloc(&pdev->dev, 4109 sizeof(struct clk *) * n_ports, 4110 GFP_KERNEL); 4111 if (!hpriv->port_clks) 4112 return -ENOMEM; 4113 hpriv->port_phys = devm_kzalloc(&pdev->dev, 4114 sizeof(struct phy *) * n_ports, 4115 GFP_KERNEL); 4116 if (!hpriv->port_phys) 4117 return -ENOMEM; 4118 host->private_data = hpriv; 4119 hpriv->board_idx = chip_soc; 4120 4121 host->iomap = NULL; 4122 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4123 resource_size(res)); 4124 hpriv->base -= SATAHC0_REG_BASE; 4125 4126 hpriv->clk = clk_get(&pdev->dev, NULL); 4127 if (IS_ERR(hpriv->clk)) 4128 dev_notice(&pdev->dev, "cannot get optional clkdev\n"); 4129 else 4130 clk_prepare_enable(hpriv->clk); 4131 4132 for (port = 0; port < n_ports; port++) { 4133 char port_number[16]; 4134 sprintf(port_number, "%d", port); 4135 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number); 4136 if (!IS_ERR(hpriv->port_clks[port])) 4137 clk_prepare_enable(hpriv->port_clks[port]); 4138 4139 sprintf(port_number, "port%d", port); 4140 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev, 4141 port_number); 4142 if (IS_ERR(hpriv->port_phys[port])) { 4143 rc = PTR_ERR(hpriv->port_phys[port]); 4144 hpriv->port_phys[port] = NULL; 4145 if (rc != -EPROBE_DEFER) 4146 dev_warn(&pdev->dev, "error getting phy %d", rc); 4147 4148 /* Cleanup only the initialized ports */ 4149 hpriv->n_ports = port; 4150 goto err; 4151 } else 4152 phy_power_on(hpriv->port_phys[port]); 4153 } 4154 4155 /* All the ports have been initialized */ 4156 hpriv->n_ports = n_ports; 4157 4158 /* 4159 * (Re-)program MBUS remapping windows if we are asked to. 4160 */ 4161 dram = mv_mbus_dram_info(); 4162 if (dram) 4163 mv_conf_mbus_windows(hpriv, dram); 4164 4165 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4166 if (rc) 4167 goto err; 4168 4169 /* 4170 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be 4171 * updated in the LP_PHY_CTL register. 4172 */ 4173 if (pdev->dev.of_node && 4174 of_device_is_compatible(pdev->dev.of_node, 4175 "marvell,armada-370-sata")) 4176 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL; 4177 4178 /* initialize adapter */ 4179 rc = mv_init_host(host); 4180 if (rc) 4181 goto err; 4182 4183 dev_info(&pdev->dev, "slots %u ports %d\n", 4184 (unsigned)MV_MAX_Q_DEPTH, host->n_ports); 4185 4186 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht); 4187 if (!rc) 4188 return 0; 4189 4190 err: 4191 if (!IS_ERR(hpriv->clk)) { 4192 clk_disable_unprepare(hpriv->clk); 4193 clk_put(hpriv->clk); 4194 } 4195 for (port = 0; port < hpriv->n_ports; port++) { 4196 if (!IS_ERR(hpriv->port_clks[port])) { 4197 clk_disable_unprepare(hpriv->port_clks[port]); 4198 clk_put(hpriv->port_clks[port]); 4199 } 4200 phy_power_off(hpriv->port_phys[port]); 4201 } 4202 4203 return rc; 4204 } 4205 4206 /* 4207 * 4208 * mv_platform_remove - unplug a platform interface 4209 * @pdev: platform device 4210 * 4211 * A platform bus SATA device has been unplugged. Perform the needed 4212 * cleanup. Also called on module unload for any active devices. 4213 */ 4214 static int mv_platform_remove(struct platform_device *pdev) 4215 { 4216 struct ata_host *host = platform_get_drvdata(pdev); 4217 struct mv_host_priv *hpriv = host->private_data; 4218 int port; 4219 ata_host_detach(host); 4220 4221 if (!IS_ERR(hpriv->clk)) { 4222 clk_disable_unprepare(hpriv->clk); 4223 clk_put(hpriv->clk); 4224 } 4225 for (port = 0; port < host->n_ports; port++) { 4226 if (!IS_ERR(hpriv->port_clks[port])) { 4227 clk_disable_unprepare(hpriv->port_clks[port]); 4228 clk_put(hpriv->port_clks[port]); 4229 } 4230 phy_power_off(hpriv->port_phys[port]); 4231 } 4232 return 0; 4233 } 4234 4235 #ifdef CONFIG_PM_SLEEP 4236 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) 4237 { 4238 struct ata_host *host = platform_get_drvdata(pdev); 4239 if (host) 4240 return ata_host_suspend(host, state); 4241 else 4242 return 0; 4243 } 4244 4245 static int mv_platform_resume(struct platform_device *pdev) 4246 { 4247 struct ata_host *host = platform_get_drvdata(pdev); 4248 const struct mbus_dram_target_info *dram; 4249 int ret; 4250 4251 if (host) { 4252 struct mv_host_priv *hpriv = host->private_data; 4253 4254 /* 4255 * (Re-)program MBUS remapping windows if we are asked to. 4256 */ 4257 dram = mv_mbus_dram_info(); 4258 if (dram) 4259 mv_conf_mbus_windows(hpriv, dram); 4260 4261 /* initialize adapter */ 4262 ret = mv_init_host(host); 4263 if (ret) { 4264 printk(KERN_ERR DRV_NAME ": Error during HW init\n"); 4265 return ret; 4266 } 4267 ata_host_resume(host); 4268 } 4269 4270 return 0; 4271 } 4272 #else 4273 #define mv_platform_suspend NULL 4274 #define mv_platform_resume NULL 4275 #endif 4276 4277 #ifdef CONFIG_OF 4278 static struct of_device_id mv_sata_dt_ids[] = { 4279 { .compatible = "marvell,armada-370-sata", }, 4280 { .compatible = "marvell,orion-sata", }, 4281 {}, 4282 }; 4283 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids); 4284 #endif 4285 4286 static struct platform_driver mv_platform_driver = { 4287 .probe = mv_platform_probe, 4288 .remove = mv_platform_remove, 4289 .suspend = mv_platform_suspend, 4290 .resume = mv_platform_resume, 4291 .driver = { 4292 .name = DRV_NAME, 4293 .of_match_table = of_match_ptr(mv_sata_dt_ids), 4294 }, 4295 }; 4296 4297 4298 #ifdef CONFIG_PCI 4299 static int mv_pci_init_one(struct pci_dev *pdev, 4300 const struct pci_device_id *ent); 4301 #ifdef CONFIG_PM_SLEEP 4302 static int mv_pci_device_resume(struct pci_dev *pdev); 4303 #endif 4304 4305 4306 static struct pci_driver mv_pci_driver = { 4307 .name = DRV_NAME, 4308 .id_table = mv_pci_tbl, 4309 .probe = mv_pci_init_one, 4310 .remove = ata_pci_remove_one, 4311 #ifdef CONFIG_PM_SLEEP 4312 .suspend = ata_pci_device_suspend, 4313 .resume = mv_pci_device_resume, 4314 #endif 4315 4316 }; 4317 4318 /* move to PCI layer or libata core? */ 4319 static int pci_go_64(struct pci_dev *pdev) 4320 { 4321 int rc; 4322 4323 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 4324 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 4325 if (rc) { 4326 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 4327 if (rc) { 4328 dev_err(&pdev->dev, 4329 "64-bit DMA enable failed\n"); 4330 return rc; 4331 } 4332 } 4333 } else { 4334 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 4335 if (rc) { 4336 dev_err(&pdev->dev, "32-bit DMA enable failed\n"); 4337 return rc; 4338 } 4339 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 4340 if (rc) { 4341 dev_err(&pdev->dev, 4342 "32-bit consistent DMA enable failed\n"); 4343 return rc; 4344 } 4345 } 4346 4347 return rc; 4348 } 4349 4350 /** 4351 * mv_print_info - Dump key info to kernel log for perusal. 4352 * @host: ATA host to print info about 4353 * 4354 * FIXME: complete this. 4355 * 4356 * LOCKING: 4357 * Inherited from caller. 4358 */ 4359 static void mv_print_info(struct ata_host *host) 4360 { 4361 struct pci_dev *pdev = to_pci_dev(host->dev); 4362 struct mv_host_priv *hpriv = host->private_data; 4363 u8 scc; 4364 const char *scc_s, *gen; 4365 4366 /* Use this to determine the HW stepping of the chip so we know 4367 * what errata to workaround 4368 */ 4369 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4370 if (scc == 0) 4371 scc_s = "SCSI"; 4372 else if (scc == 0x01) 4373 scc_s = "RAID"; 4374 else 4375 scc_s = "?"; 4376 4377 if (IS_GEN_I(hpriv)) 4378 gen = "I"; 4379 else if (IS_GEN_II(hpriv)) 4380 gen = "II"; 4381 else if (IS_GEN_IIE(hpriv)) 4382 gen = "IIE"; 4383 else 4384 gen = "?"; 4385 4386 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4387 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4388 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4389 } 4390 4391 /** 4392 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4393 * @pdev: PCI device found 4394 * @ent: PCI device ID entry for the matched host 4395 * 4396 * LOCKING: 4397 * Inherited from caller. 4398 */ 4399 static int mv_pci_init_one(struct pci_dev *pdev, 4400 const struct pci_device_id *ent) 4401 { 4402 unsigned int board_idx = (unsigned int)ent->driver_data; 4403 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4404 struct ata_host *host; 4405 struct mv_host_priv *hpriv; 4406 int n_ports, port, rc; 4407 4408 ata_print_version_once(&pdev->dev, DRV_VERSION); 4409 4410 /* allocate host */ 4411 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4412 4413 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4414 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4415 if (!host || !hpriv) 4416 return -ENOMEM; 4417 host->private_data = hpriv; 4418 hpriv->n_ports = n_ports; 4419 hpriv->board_idx = board_idx; 4420 4421 /* acquire resources */ 4422 rc = pcim_enable_device(pdev); 4423 if (rc) 4424 return rc; 4425 4426 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4427 if (rc == -EBUSY) 4428 pcim_pin_device(pdev); 4429 if (rc) 4430 return rc; 4431 host->iomap = pcim_iomap_table(pdev); 4432 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4433 4434 rc = pci_go_64(pdev); 4435 if (rc) 4436 return rc; 4437 4438 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4439 if (rc) 4440 return rc; 4441 4442 for (port = 0; port < host->n_ports; port++) { 4443 struct ata_port *ap = host->ports[port]; 4444 void __iomem *port_mmio = mv_port_base(hpriv->base, port); 4445 unsigned int offset = port_mmio - hpriv->base; 4446 4447 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 4448 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 4449 } 4450 4451 /* initialize adapter */ 4452 rc = mv_init_host(host); 4453 if (rc) 4454 return rc; 4455 4456 /* Enable message-switched interrupts, if requested */ 4457 if (msi && pci_enable_msi(pdev) == 0) 4458 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4459 4460 mv_dump_pci_cfg(pdev, 0x68); 4461 mv_print_info(host); 4462 4463 pci_set_master(pdev); 4464 pci_try_set_mwi(pdev); 4465 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4466 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4467 } 4468 4469 #ifdef CONFIG_PM_SLEEP 4470 static int mv_pci_device_resume(struct pci_dev *pdev) 4471 { 4472 struct ata_host *host = pci_get_drvdata(pdev); 4473 int rc; 4474 4475 rc = ata_pci_device_do_resume(pdev); 4476 if (rc) 4477 return rc; 4478 4479 /* initialize adapter */ 4480 rc = mv_init_host(host); 4481 if (rc) 4482 return rc; 4483 4484 ata_host_resume(host); 4485 4486 return 0; 4487 } 4488 #endif 4489 #endif 4490 4491 static int __init mv_init(void) 4492 { 4493 int rc = -ENODEV; 4494 #ifdef CONFIG_PCI 4495 rc = pci_register_driver(&mv_pci_driver); 4496 if (rc < 0) 4497 return rc; 4498 #endif 4499 rc = platform_driver_register(&mv_platform_driver); 4500 4501 #ifdef CONFIG_PCI 4502 if (rc < 0) 4503 pci_unregister_driver(&mv_pci_driver); 4504 #endif 4505 return rc; 4506 } 4507 4508 static void __exit mv_exit(void) 4509 { 4510 #ifdef CONFIG_PCI 4511 pci_unregister_driver(&mv_pci_driver); 4512 #endif 4513 platform_driver_unregister(&mv_platform_driver); 4514 } 4515 4516 MODULE_AUTHOR("Brett Russ"); 4517 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4518 MODULE_LICENSE("GPL"); 4519 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4520 MODULE_VERSION(DRV_VERSION); 4521 MODULE_ALIAS("platform:" DRV_NAME); 4522 4523 module_init(mv_init); 4524 module_exit(mv_exit); 4525