xref: /linux/drivers/ata/sata_mv.c (revision bd7dd77c2a05c530684eea2e3af16449ae9c5d52)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 
25 /*
26  * sata_mv TODO list:
27  *
28  * --> Errata workaround for NCQ device errors.
29  *
30  * --> More errata workarounds for PCI-X.
31  *
32  * --> Complete a full errata audit for all chipsets to identify others.
33  *
34  * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
35  *
36  * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
37  *
38  * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
39  *
40  * --> Develop a low-power-consumption strategy, and implement it.
41  *
42  * --> [Experiment, low priority] Investigate interrupt coalescing.
43  *       Quite often, especially with PCI Message Signalled Interrupts (MSI),
44  *       the overhead reduced by interrupt mitigation is quite often not
45  *       worth the latency cost.
46  *
47  * --> [Experiment, Marvell value added] Is it possible to use target
48  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
49  *       creating LibATA target mode support would be very interesting.
50  *
51  *       Target mode, for those without docs, is the ability to directly
52  *       connect two SATA ports.
53  */
54 
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
73 
74 #define DRV_NAME	"sata_mv"
75 #define DRV_VERSION	"1.24"
76 
77 enum {
78 	/* BAR's are enumerated in terms of pci_resource_start() terms */
79 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
80 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
81 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
82 
83 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
84 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
85 
86 	MV_PCI_REG_BASE		= 0,
87 	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
88 	MV_IRQ_COAL_CAUSE		= (MV_IRQ_COAL_REG_BASE + 0x08),
89 	MV_IRQ_COAL_CAUSE_LO		= (MV_IRQ_COAL_REG_BASE + 0x88),
90 	MV_IRQ_COAL_CAUSE_HI		= (MV_IRQ_COAL_REG_BASE + 0x8c),
91 	MV_IRQ_COAL_THRESHOLD		= (MV_IRQ_COAL_REG_BASE + 0xcc),
92 	MV_IRQ_COAL_TIME_THRESHOLD	= (MV_IRQ_COAL_REG_BASE + 0xd0),
93 
94 	MV_SATAHC0_REG_BASE	= 0x20000,
95 	MV_FLASH_CTL_OFS	= 0x1046c,
96 	MV_GPIO_PORT_CTL_OFS	= 0x104f0,
97 	MV_RESET_CFG_OFS	= 0x180d8,
98 
99 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
100 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
101 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
102 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
103 
104 	MV_MAX_Q_DEPTH		= 32,
105 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
106 
107 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 	 * CRPB needs alignment on a 256B boundary. Size == 256B
109 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
110 	 */
111 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
112 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
113 	MV_MAX_SG_CT		= 256,
114 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
115 
116 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 	MV_PORT_HC_SHIFT	= 2,
118 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
119 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
121 
122 	/* Host Flags */
123 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
124 	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
125 
126 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
127 				  ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
128 				  ATA_FLAG_PIO_POLLING,
129 
130 	MV_6XXX_FLAGS		= MV_FLAG_IRQ_COALESCE,
131 
132 	MV_GENIIE_FLAGS		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
133 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
134 				  ATA_FLAG_NCQ | ATA_FLAG_AN,
135 
136 	CRQB_FLAG_READ		= (1 << 0),
137 	CRQB_TAG_SHIFT		= 1,
138 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
139 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
140 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
141 	CRQB_CMD_ADDR_SHIFT	= 8,
142 	CRQB_CMD_CS		= (0x2 << 11),
143 	CRQB_CMD_LAST		= (1 << 15),
144 
145 	CRPB_FLAG_STATUS_SHIFT	= 8,
146 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
147 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
148 
149 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
150 
151 	/* PCI interface registers */
152 
153 	PCI_COMMAND_OFS		= 0xc00,
154 	PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
155 
156 	PCI_MAIN_CMD_STS_OFS	= 0xd30,
157 	STOP_PCI_MASTER		= (1 << 2),
158 	PCI_MASTER_EMPTY	= (1 << 3),
159 	GLOB_SFT_RST		= (1 << 4),
160 
161 	MV_PCI_MODE_OFS		= 0xd00,
162 	MV_PCI_MODE_MASK	= 0x30,
163 
164 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
165 	MV_PCI_DISC_TIMER	= 0xd04,
166 	MV_PCI_MSI_TRIGGER	= 0xc38,
167 	MV_PCI_SERR_MASK	= 0xc28,
168 	MV_PCI_XBAR_TMOUT_OFS	= 0x1d04,
169 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
170 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
171 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
172 	MV_PCI_ERR_COMMAND	= 0x1d50,
173 
174 	PCI_IRQ_CAUSE_OFS	= 0x1d58,
175 	PCI_IRQ_MASK_OFS	= 0x1d5c,
176 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
177 
178 	PCIE_IRQ_CAUSE_OFS	= 0x1900,
179 	PCIE_IRQ_MASK_OFS	= 0x1910,
180 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
181 
182 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
183 	PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
184 	PCI_HC_MAIN_IRQ_MASK_OFS  = 0x1d64,
185 	SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
186 	SOC_HC_MAIN_IRQ_MASK_OFS  = 0x20024,
187 	ERR_IRQ			= (1 << 0),	/* shift by port # */
188 	DONE_IRQ		= (1 << 1),	/* shift by port # */
189 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
190 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
191 	PCI_ERR			= (1 << 18),
192 	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
193 	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
194 	PORTS_0_3_COAL_DONE	= (1 << 8),
195 	PORTS_4_7_COAL_DONE	= (1 << 17),
196 	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
197 	GPIO_INT		= (1 << 22),
198 	SELF_INT		= (1 << 23),
199 	TWSI_INT		= (1 << 24),
200 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
201 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
202 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
203 
204 	/* SATAHC registers */
205 	HC_CFG_OFS		= 0,
206 
207 	HC_IRQ_CAUSE_OFS	= 0x14,
208 	DMA_IRQ			= (1 << 0),	/* shift by port # */
209 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
210 	DEV_IRQ			= (1 << 8),	/* shift by port # */
211 
212 	/* Shadow block registers */
213 	SHD_BLK_OFS		= 0x100,
214 	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
215 
216 	/* SATA registers */
217 	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
218 	SATA_ACTIVE_OFS		= 0x350,
219 	SATA_FIS_IRQ_CAUSE_OFS	= 0x364,
220 	SATA_FIS_IRQ_AN		= (1 << 9),	/* async notification */
221 
222 	LTMODE_OFS		= 0x30c,
223 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
224 
225 	PHY_MODE3		= 0x310,
226 	PHY_MODE4		= 0x314,
227 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
228 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
229 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
230 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
231 
232 	PHY_MODE2		= 0x330,
233 	SATA_IFCTL_OFS		= 0x344,
234 	SATA_TESTCTL_OFS	= 0x348,
235 	SATA_IFSTAT_OFS		= 0x34c,
236 	VENDOR_UNIQUE_FIS_OFS	= 0x35c,
237 
238 	FISCFG_OFS		= 0x360,
239 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
240 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
241 
242 	MV5_PHY_MODE		= 0x74,
243 	MV5_LTMODE_OFS		= 0x30,
244 	MV5_PHY_CTL_OFS		= 0x0C,
245 	SATA_INTERFACE_CFG_OFS	= 0x050,
246 
247 	MV_M2_PREAMP_MASK	= 0x7e0,
248 
249 	/* Port registers */
250 	EDMA_CFG_OFS		= 0,
251 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
252 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
253 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
254 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
255 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
256 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
257 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
258 
259 	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
260 	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
261 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
262 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
263 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
264 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
265 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
266 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
267 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
268 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
269 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
270 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
271 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
272 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
273 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
274 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
275 
276 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
277 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
278 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
279 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
280 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
281 
282 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
283 
284 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
285 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
286 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
287 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
288 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
289 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
290 
291 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
292 
293 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
294 	EDMA_ERR_OVERRUN_5	= (1 << 5),
295 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
296 
297 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
298 				  EDMA_ERR_LNK_CTRL_RX_1 |
299 				  EDMA_ERR_LNK_CTRL_RX_3 |
300 				  EDMA_ERR_LNK_CTRL_TX,
301 
302 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
303 				  EDMA_ERR_PRD_PAR |
304 				  EDMA_ERR_DEV_DCON |
305 				  EDMA_ERR_DEV_CON |
306 				  EDMA_ERR_SERR |
307 				  EDMA_ERR_SELF_DIS |
308 				  EDMA_ERR_CRQB_PAR |
309 				  EDMA_ERR_CRPB_PAR |
310 				  EDMA_ERR_INTRL_PAR |
311 				  EDMA_ERR_IORDY |
312 				  EDMA_ERR_LNK_CTRL_RX_2 |
313 				  EDMA_ERR_LNK_DATA_RX |
314 				  EDMA_ERR_LNK_DATA_TX |
315 				  EDMA_ERR_TRANS_PROTO,
316 
317 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
318 				  EDMA_ERR_PRD_PAR |
319 				  EDMA_ERR_DEV_DCON |
320 				  EDMA_ERR_DEV_CON |
321 				  EDMA_ERR_OVERRUN_5 |
322 				  EDMA_ERR_UNDERRUN_5 |
323 				  EDMA_ERR_SELF_DIS_5 |
324 				  EDMA_ERR_CRQB_PAR |
325 				  EDMA_ERR_CRPB_PAR |
326 				  EDMA_ERR_INTRL_PAR |
327 				  EDMA_ERR_IORDY,
328 
329 	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
330 	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */
331 
332 	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
333 	EDMA_REQ_Q_PTR_SHIFT	= 5,
334 
335 	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
336 	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
337 	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
338 	EDMA_RSP_Q_PTR_SHIFT	= 3,
339 
340 	EDMA_CMD_OFS		= 0x28,		/* EDMA command register */
341 	EDMA_EN			= (1 << 0),	/* enable EDMA */
342 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
343 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
344 
345 	EDMA_STATUS_OFS		= 0x30,		/* EDMA engine status */
346 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
347 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
348 
349 	EDMA_IORDY_TMOUT_OFS	= 0x34,
350 	EDMA_ARB_CFG_OFS	= 0x38,
351 
352 	EDMA_HALTCOND_OFS	= 0x60,		/* GenIIe halt conditions */
353 
354 	GEN_II_NCQ_MAX_SECTORS	= 256,		/* max sects/io on Gen2 w/NCQ */
355 
356 	/* Host private flags (hp_flags) */
357 	MV_HP_FLAG_MSI		= (1 << 0),
358 	MV_HP_ERRATA_50XXB0	= (1 << 1),
359 	MV_HP_ERRATA_50XXB2	= (1 << 2),
360 	MV_HP_ERRATA_60X1B2	= (1 << 3),
361 	MV_HP_ERRATA_60X1C0	= (1 << 4),
362 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
363 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
364 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
365 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
366 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
367 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
368 
369 	/* Port private flags (pp_flags) */
370 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
371 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
372 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
373 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
374 };
375 
376 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
377 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
378 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
379 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
380 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
381 
382 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
383 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
384 
385 enum {
386 	/* DMA boundary 0xffff is required by the s/g splitting
387 	 * we need on /length/ in mv_fill-sg().
388 	 */
389 	MV_DMA_BOUNDARY		= 0xffffU,
390 
391 	/* mask of register bits containing lower 32 bits
392 	 * of EDMA request queue DMA address
393 	 */
394 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
395 
396 	/* ditto, for response queue */
397 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
398 };
399 
400 enum chip_type {
401 	chip_504x,
402 	chip_508x,
403 	chip_5080,
404 	chip_604x,
405 	chip_608x,
406 	chip_6042,
407 	chip_7042,
408 	chip_soc,
409 };
410 
411 /* Command ReQuest Block: 32B */
412 struct mv_crqb {
413 	__le32			sg_addr;
414 	__le32			sg_addr_hi;
415 	__le16			ctrl_flags;
416 	__le16			ata_cmd[11];
417 };
418 
419 struct mv_crqb_iie {
420 	__le32			addr;
421 	__le32			addr_hi;
422 	__le32			flags;
423 	__le32			len;
424 	__le32			ata_cmd[4];
425 };
426 
427 /* Command ResPonse Block: 8B */
428 struct mv_crpb {
429 	__le16			id;
430 	__le16			flags;
431 	__le32			tmstmp;
432 };
433 
434 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
435 struct mv_sg {
436 	__le32			addr;
437 	__le32			flags_size;
438 	__le32			addr_hi;
439 	__le32			reserved;
440 };
441 
442 struct mv_port_priv {
443 	struct mv_crqb		*crqb;
444 	dma_addr_t		crqb_dma;
445 	struct mv_crpb		*crpb;
446 	dma_addr_t		crpb_dma;
447 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
448 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
449 
450 	unsigned int		req_idx;
451 	unsigned int		resp_idx;
452 
453 	u32			pp_flags;
454 	unsigned int		delayed_eh_pmp_map;
455 };
456 
457 struct mv_port_signal {
458 	u32			amps;
459 	u32			pre;
460 };
461 
462 struct mv_host_priv {
463 	u32			hp_flags;
464 	u32			main_irq_mask;
465 	struct mv_port_signal	signal[8];
466 	const struct mv_hw_ops	*ops;
467 	int			n_ports;
468 	void __iomem		*base;
469 	void __iomem		*main_irq_cause_addr;
470 	void __iomem		*main_irq_mask_addr;
471 	u32			irq_cause_ofs;
472 	u32			irq_mask_ofs;
473 	u32			unmask_all_irqs;
474 	/*
475 	 * These consistent DMA memory pools give us guaranteed
476 	 * alignment for hardware-accessed data structures,
477 	 * and less memory waste in accomplishing the alignment.
478 	 */
479 	struct dma_pool		*crqb_pool;
480 	struct dma_pool		*crpb_pool;
481 	struct dma_pool		*sg_tbl_pool;
482 };
483 
484 struct mv_hw_ops {
485 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
486 			   unsigned int port);
487 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
488 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
489 			   void __iomem *mmio);
490 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
491 			unsigned int n_hc);
492 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
493 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
494 };
495 
496 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
497 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
498 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
499 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
500 static int mv_port_start(struct ata_port *ap);
501 static void mv_port_stop(struct ata_port *ap);
502 static int mv_qc_defer(struct ata_queued_cmd *qc);
503 static void mv_qc_prep(struct ata_queued_cmd *qc);
504 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
505 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
506 static int mv_hardreset(struct ata_link *link, unsigned int *class,
507 			unsigned long deadline);
508 static void mv_eh_freeze(struct ata_port *ap);
509 static void mv_eh_thaw(struct ata_port *ap);
510 static void mv6_dev_config(struct ata_device *dev);
511 
512 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
513 			   unsigned int port);
514 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
515 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
516 			   void __iomem *mmio);
517 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
518 			unsigned int n_hc);
519 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
520 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
521 
522 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
523 			   unsigned int port);
524 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
525 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
526 			   void __iomem *mmio);
527 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
528 			unsigned int n_hc);
529 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
530 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
531 				      void __iomem *mmio);
532 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
533 				      void __iomem *mmio);
534 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
535 				  void __iomem *mmio, unsigned int n_hc);
536 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
537 				      void __iomem *mmio);
538 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
539 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
540 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
541 			     unsigned int port_no);
542 static int mv_stop_edma(struct ata_port *ap);
543 static int mv_stop_edma_engine(void __iomem *port_mmio);
544 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
545 
546 static void mv_pmp_select(struct ata_port *ap, int pmp);
547 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
548 				unsigned long deadline);
549 static int  mv_softreset(struct ata_link *link, unsigned int *class,
550 				unsigned long deadline);
551 static void mv_pmp_error_handler(struct ata_port *ap);
552 static void mv_process_crpb_entries(struct ata_port *ap,
553 					struct mv_port_priv *pp);
554 
555 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
556  * because we have to allow room for worst case splitting of
557  * PRDs for 64K boundaries in mv_fill_sg().
558  */
559 static struct scsi_host_template mv5_sht = {
560 	ATA_BASE_SHT(DRV_NAME),
561 	.sg_tablesize		= MV_MAX_SG_CT / 2,
562 	.dma_boundary		= MV_DMA_BOUNDARY,
563 };
564 
565 static struct scsi_host_template mv6_sht = {
566 	ATA_NCQ_SHT(DRV_NAME),
567 	.can_queue		= MV_MAX_Q_DEPTH - 1,
568 	.sg_tablesize		= MV_MAX_SG_CT / 2,
569 	.dma_boundary		= MV_DMA_BOUNDARY,
570 };
571 
572 static struct ata_port_operations mv5_ops = {
573 	.inherits		= &ata_sff_port_ops,
574 
575 	.qc_defer		= mv_qc_defer,
576 	.qc_prep		= mv_qc_prep,
577 	.qc_issue		= mv_qc_issue,
578 
579 	.freeze			= mv_eh_freeze,
580 	.thaw			= mv_eh_thaw,
581 	.hardreset		= mv_hardreset,
582 	.error_handler		= ata_std_error_handler, /* avoid SFF EH */
583 	.post_internal_cmd	= ATA_OP_NULL,
584 
585 	.scr_read		= mv5_scr_read,
586 	.scr_write		= mv5_scr_write,
587 
588 	.port_start		= mv_port_start,
589 	.port_stop		= mv_port_stop,
590 };
591 
592 static struct ata_port_operations mv6_ops = {
593 	.inherits		= &mv5_ops,
594 	.dev_config             = mv6_dev_config,
595 	.scr_read		= mv_scr_read,
596 	.scr_write		= mv_scr_write,
597 
598 	.pmp_hardreset		= mv_pmp_hardreset,
599 	.pmp_softreset		= mv_softreset,
600 	.softreset		= mv_softreset,
601 	.error_handler		= mv_pmp_error_handler,
602 };
603 
604 static struct ata_port_operations mv_iie_ops = {
605 	.inherits		= &mv6_ops,
606 	.dev_config		= ATA_OP_NULL,
607 	.qc_prep		= mv_qc_prep_iie,
608 };
609 
610 static const struct ata_port_info mv_port_info[] = {
611 	{  /* chip_504x */
612 		.flags		= MV_COMMON_FLAGS,
613 		.pio_mask	= 0x1f,	/* pio0-4 */
614 		.udma_mask	= ATA_UDMA6,
615 		.port_ops	= &mv5_ops,
616 	},
617 	{  /* chip_508x */
618 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
619 		.pio_mask	= 0x1f,	/* pio0-4 */
620 		.udma_mask	= ATA_UDMA6,
621 		.port_ops	= &mv5_ops,
622 	},
623 	{  /* chip_5080 */
624 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
625 		.pio_mask	= 0x1f,	/* pio0-4 */
626 		.udma_mask	= ATA_UDMA6,
627 		.port_ops	= &mv5_ops,
628 	},
629 	{  /* chip_604x */
630 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
631 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
632 				  ATA_FLAG_NCQ,
633 		.pio_mask	= 0x1f,	/* pio0-4 */
634 		.udma_mask	= ATA_UDMA6,
635 		.port_ops	= &mv6_ops,
636 	},
637 	{  /* chip_608x */
638 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
639 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
640 				  ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
641 		.pio_mask	= 0x1f,	/* pio0-4 */
642 		.udma_mask	= ATA_UDMA6,
643 		.port_ops	= &mv6_ops,
644 	},
645 	{  /* chip_6042 */
646 		.flags		= MV_GENIIE_FLAGS,
647 		.pio_mask	= 0x1f,	/* pio0-4 */
648 		.udma_mask	= ATA_UDMA6,
649 		.port_ops	= &mv_iie_ops,
650 	},
651 	{  /* chip_7042 */
652 		.flags		= MV_GENIIE_FLAGS,
653 		.pio_mask	= 0x1f,	/* pio0-4 */
654 		.udma_mask	= ATA_UDMA6,
655 		.port_ops	= &mv_iie_ops,
656 	},
657 	{  /* chip_soc */
658 		.flags		= MV_GENIIE_FLAGS,
659 		.pio_mask	= 0x1f,	/* pio0-4 */
660 		.udma_mask	= ATA_UDMA6,
661 		.port_ops	= &mv_iie_ops,
662 	},
663 };
664 
665 static const struct pci_device_id mv_pci_tbl[] = {
666 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
667 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
668 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
669 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
670 	/* RocketRAID 1720/174x have different identifiers */
671 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
672 	{ PCI_VDEVICE(TTI, 0x1740), chip_508x },
673 	{ PCI_VDEVICE(TTI, 0x1742), chip_508x },
674 
675 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
676 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
677 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
678 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
679 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
680 
681 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
682 
683 	/* Adaptec 1430SA */
684 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
685 
686 	/* Marvell 7042 support */
687 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
688 
689 	/* Highpoint RocketRAID PCIe series */
690 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
691 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
692 
693 	{ }			/* terminate list */
694 };
695 
696 static const struct mv_hw_ops mv5xxx_ops = {
697 	.phy_errata		= mv5_phy_errata,
698 	.enable_leds		= mv5_enable_leds,
699 	.read_preamp		= mv5_read_preamp,
700 	.reset_hc		= mv5_reset_hc,
701 	.reset_flash		= mv5_reset_flash,
702 	.reset_bus		= mv5_reset_bus,
703 };
704 
705 static const struct mv_hw_ops mv6xxx_ops = {
706 	.phy_errata		= mv6_phy_errata,
707 	.enable_leds		= mv6_enable_leds,
708 	.read_preamp		= mv6_read_preamp,
709 	.reset_hc		= mv6_reset_hc,
710 	.reset_flash		= mv6_reset_flash,
711 	.reset_bus		= mv_reset_pci_bus,
712 };
713 
714 static const struct mv_hw_ops mv_soc_ops = {
715 	.phy_errata		= mv6_phy_errata,
716 	.enable_leds		= mv_soc_enable_leds,
717 	.read_preamp		= mv_soc_read_preamp,
718 	.reset_hc		= mv_soc_reset_hc,
719 	.reset_flash		= mv_soc_reset_flash,
720 	.reset_bus		= mv_soc_reset_bus,
721 };
722 
723 /*
724  * Functions
725  */
726 
727 static inline void writelfl(unsigned long data, void __iomem *addr)
728 {
729 	writel(data, addr);
730 	(void) readl(addr);	/* flush to avoid PCI posted write */
731 }
732 
733 static inline unsigned int mv_hc_from_port(unsigned int port)
734 {
735 	return port >> MV_PORT_HC_SHIFT;
736 }
737 
738 static inline unsigned int mv_hardport_from_port(unsigned int port)
739 {
740 	return port & MV_PORT_MASK;
741 }
742 
743 /*
744  * Consolidate some rather tricky bit shift calculations.
745  * This is hot-path stuff, so not a function.
746  * Simple code, with two return values, so macro rather than inline.
747  *
748  * port is the sole input, in range 0..7.
749  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
750  * hardport is the other output, in range 0..3.
751  *
752  * Note that port and hardport may be the same variable in some cases.
753  */
754 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
755 {								\
756 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
757 	hardport = mv_hardport_from_port(port);			\
758 	shift   += hardport * 2;				\
759 }
760 
761 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
762 {
763 	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
764 }
765 
766 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
767 						 unsigned int port)
768 {
769 	return mv_hc_base(base, mv_hc_from_port(port));
770 }
771 
772 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
773 {
774 	return  mv_hc_base_from_port(base, port) +
775 		MV_SATAHC_ARBTR_REG_SZ +
776 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
777 }
778 
779 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
780 {
781 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
782 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
783 
784 	return hc_mmio + ofs;
785 }
786 
787 static inline void __iomem *mv_host_base(struct ata_host *host)
788 {
789 	struct mv_host_priv *hpriv = host->private_data;
790 	return hpriv->base;
791 }
792 
793 static inline void __iomem *mv_ap_base(struct ata_port *ap)
794 {
795 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
796 }
797 
798 static inline int mv_get_hc_count(unsigned long port_flags)
799 {
800 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
801 }
802 
803 static void mv_set_edma_ptrs(void __iomem *port_mmio,
804 			     struct mv_host_priv *hpriv,
805 			     struct mv_port_priv *pp)
806 {
807 	u32 index;
808 
809 	/*
810 	 * initialize request queue
811 	 */
812 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
813 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
814 
815 	WARN_ON(pp->crqb_dma & 0x3ff);
816 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
817 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
818 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
819 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
820 
821 	/*
822 	 * initialize response queue
823 	 */
824 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
825 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
826 
827 	WARN_ON(pp->crpb_dma & 0xff);
828 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
829 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
830 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
831 		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
832 }
833 
834 static void mv_set_main_irq_mask(struct ata_host *host,
835 				 u32 disable_bits, u32 enable_bits)
836 {
837 	struct mv_host_priv *hpriv = host->private_data;
838 	u32 old_mask, new_mask;
839 
840 	old_mask = hpriv->main_irq_mask;
841 	new_mask = (old_mask & ~disable_bits) | enable_bits;
842 	if (new_mask != old_mask) {
843 		hpriv->main_irq_mask = new_mask;
844 		writelfl(new_mask, hpriv->main_irq_mask_addr);
845 	}
846 }
847 
848 static void mv_enable_port_irqs(struct ata_port *ap,
849 				     unsigned int port_bits)
850 {
851 	unsigned int shift, hardport, port = ap->port_no;
852 	u32 disable_bits, enable_bits;
853 
854 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
855 
856 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
857 	enable_bits  = port_bits << shift;
858 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
859 }
860 
861 /**
862  *      mv_start_dma - Enable eDMA engine
863  *      @base: port base address
864  *      @pp: port private data
865  *
866  *      Verify the local cache of the eDMA state is accurate with a
867  *      WARN_ON.
868  *
869  *      LOCKING:
870  *      Inherited from caller.
871  */
872 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
873 			 struct mv_port_priv *pp, u8 protocol)
874 {
875 	int want_ncq = (protocol == ATA_PROT_NCQ);
876 
877 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
878 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
879 		if (want_ncq != using_ncq)
880 			mv_stop_edma(ap);
881 	}
882 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
883 		struct mv_host_priv *hpriv = ap->host->private_data;
884 		int hardport = mv_hardport_from_port(ap->port_no);
885 		void __iomem *hc_mmio = mv_hc_base_from_port(
886 					mv_host_base(ap->host), hardport);
887 		u32 hc_irq_cause, ipending;
888 
889 		/* clear EDMA event indicators, if any */
890 		writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
891 
892 		/* clear EDMA interrupt indicator, if any */
893 		hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
894 		ipending = (DEV_IRQ | DMA_IRQ) << hardport;
895 		if (hc_irq_cause & ipending) {
896 			writelfl(hc_irq_cause & ~ipending,
897 				 hc_mmio + HC_IRQ_CAUSE_OFS);
898 		}
899 
900 		mv_edma_cfg(ap, want_ncq);
901 
902 		/* clear FIS IRQ Cause */
903 		if (IS_GEN_IIE(hpriv))
904 			writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
905 
906 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
907 		mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
908 
909 		writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
910 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
911 	}
912 }
913 
914 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
915 {
916 	void __iomem *port_mmio = mv_ap_base(ap);
917 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
918 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
919 	int i;
920 
921 	/*
922 	 * Wait for the EDMA engine to finish transactions in progress.
923 	 * No idea what a good "timeout" value might be, but measurements
924 	 * indicate that it often requires hundreds of microseconds
925 	 * with two drives in-use.  So we use the 15msec value above
926 	 * as a rough guess at what even more drives might require.
927 	 */
928 	for (i = 0; i < timeout; ++i) {
929 		u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
930 		if ((edma_stat & empty_idle) == empty_idle)
931 			break;
932 		udelay(per_loop);
933 	}
934 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
935 }
936 
937 /**
938  *      mv_stop_edma_engine - Disable eDMA engine
939  *      @port_mmio: io base address
940  *
941  *      LOCKING:
942  *      Inherited from caller.
943  */
944 static int mv_stop_edma_engine(void __iomem *port_mmio)
945 {
946 	int i;
947 
948 	/* Disable eDMA.  The disable bit auto clears. */
949 	writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
950 
951 	/* Wait for the chip to confirm eDMA is off. */
952 	for (i = 10000; i > 0; i--) {
953 		u32 reg = readl(port_mmio + EDMA_CMD_OFS);
954 		if (!(reg & EDMA_EN))
955 			return 0;
956 		udelay(10);
957 	}
958 	return -EIO;
959 }
960 
961 static int mv_stop_edma(struct ata_port *ap)
962 {
963 	void __iomem *port_mmio = mv_ap_base(ap);
964 	struct mv_port_priv *pp = ap->private_data;
965 
966 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
967 		return 0;
968 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
969 	mv_wait_for_edma_empty_idle(ap);
970 	if (mv_stop_edma_engine(port_mmio)) {
971 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
972 		return -EIO;
973 	}
974 	return 0;
975 }
976 
977 #ifdef ATA_DEBUG
978 static void mv_dump_mem(void __iomem *start, unsigned bytes)
979 {
980 	int b, w;
981 	for (b = 0; b < bytes; ) {
982 		DPRINTK("%p: ", start + b);
983 		for (w = 0; b < bytes && w < 4; w++) {
984 			printk("%08x ", readl(start + b));
985 			b += sizeof(u32);
986 		}
987 		printk("\n");
988 	}
989 }
990 #endif
991 
992 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
993 {
994 #ifdef ATA_DEBUG
995 	int b, w;
996 	u32 dw;
997 	for (b = 0; b < bytes; ) {
998 		DPRINTK("%02x: ", b);
999 		for (w = 0; b < bytes && w < 4; w++) {
1000 			(void) pci_read_config_dword(pdev, b, &dw);
1001 			printk("%08x ", dw);
1002 			b += sizeof(u32);
1003 		}
1004 		printk("\n");
1005 	}
1006 #endif
1007 }
1008 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1009 			     struct pci_dev *pdev)
1010 {
1011 #ifdef ATA_DEBUG
1012 	void __iomem *hc_base = mv_hc_base(mmio_base,
1013 					   port >> MV_PORT_HC_SHIFT);
1014 	void __iomem *port_base;
1015 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1016 
1017 	if (0 > port) {
1018 		start_hc = start_port = 0;
1019 		num_ports = 8;		/* shld be benign for 4 port devs */
1020 		num_hcs = 2;
1021 	} else {
1022 		start_hc = port >> MV_PORT_HC_SHIFT;
1023 		start_port = port;
1024 		num_ports = num_hcs = 1;
1025 	}
1026 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1027 		num_ports > 1 ? num_ports - 1 : start_port);
1028 
1029 	if (NULL != pdev) {
1030 		DPRINTK("PCI config space regs:\n");
1031 		mv_dump_pci_cfg(pdev, 0x68);
1032 	}
1033 	DPRINTK("PCI regs:\n");
1034 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1035 	mv_dump_mem(mmio_base+0xd00, 0x34);
1036 	mv_dump_mem(mmio_base+0xf00, 0x4);
1037 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1038 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1039 		hc_base = mv_hc_base(mmio_base, hc);
1040 		DPRINTK("HC regs (HC %i):\n", hc);
1041 		mv_dump_mem(hc_base, 0x1c);
1042 	}
1043 	for (p = start_port; p < start_port + num_ports; p++) {
1044 		port_base = mv_port_base(mmio_base, p);
1045 		DPRINTK("EDMA regs (port %i):\n", p);
1046 		mv_dump_mem(port_base, 0x54);
1047 		DPRINTK("SATA regs (port %i):\n", p);
1048 		mv_dump_mem(port_base+0x300, 0x60);
1049 	}
1050 #endif
1051 }
1052 
1053 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1054 {
1055 	unsigned int ofs;
1056 
1057 	switch (sc_reg_in) {
1058 	case SCR_STATUS:
1059 	case SCR_CONTROL:
1060 	case SCR_ERROR:
1061 		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1062 		break;
1063 	case SCR_ACTIVE:
1064 		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
1065 		break;
1066 	default:
1067 		ofs = 0xffffffffU;
1068 		break;
1069 	}
1070 	return ofs;
1071 }
1072 
1073 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1074 {
1075 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1076 
1077 	if (ofs != 0xffffffffU) {
1078 		*val = readl(mv_ap_base(link->ap) + ofs);
1079 		return 0;
1080 	} else
1081 		return -EINVAL;
1082 }
1083 
1084 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1085 {
1086 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1087 
1088 	if (ofs != 0xffffffffU) {
1089 		writelfl(val, mv_ap_base(link->ap) + ofs);
1090 		return 0;
1091 	} else
1092 		return -EINVAL;
1093 }
1094 
1095 static void mv6_dev_config(struct ata_device *adev)
1096 {
1097 	/*
1098 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1099 	 *
1100 	 * Gen-II does not support NCQ over a port multiplier
1101 	 *  (no FIS-based switching).
1102 	 *
1103 	 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1104 	 * See mv_qc_prep() for more info.
1105 	 */
1106 	if (adev->flags & ATA_DFLAG_NCQ) {
1107 		if (sata_pmp_attached(adev->link->ap)) {
1108 			adev->flags &= ~ATA_DFLAG_NCQ;
1109 			ata_dev_printk(adev, KERN_INFO,
1110 				"NCQ disabled for command-based switching\n");
1111 		} else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1112 			adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1113 			ata_dev_printk(adev, KERN_INFO,
1114 				"max_sectors limited to %u for NCQ\n",
1115 				adev->max_sectors);
1116 		}
1117 	}
1118 }
1119 
1120 static int mv_qc_defer(struct ata_queued_cmd *qc)
1121 {
1122 	struct ata_link *link = qc->dev->link;
1123 	struct ata_port *ap = link->ap;
1124 	struct mv_port_priv *pp = ap->private_data;
1125 
1126 	/*
1127 	 * Don't allow new commands if we're in a delayed EH state
1128 	 * for NCQ and/or FIS-based switching.
1129 	 */
1130 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1131 		return ATA_DEFER_PORT;
1132 	/*
1133 	 * If the port is completely idle, then allow the new qc.
1134 	 */
1135 	if (ap->nr_active_links == 0)
1136 		return 0;
1137 
1138 	/*
1139 	 * The port is operating in host queuing mode (EDMA) with NCQ
1140 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1141 	 * queueing multiple DMA commands but libata core currently
1142 	 * doesn't allow it.
1143 	 */
1144 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1145 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
1146 		return 0;
1147 
1148 	return ATA_DEFER_PORT;
1149 }
1150 
1151 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1152 {
1153 	u32 new_fiscfg, old_fiscfg;
1154 	u32 new_ltmode, old_ltmode;
1155 	u32 new_haltcond, old_haltcond;
1156 
1157 	old_fiscfg   = readl(port_mmio + FISCFG_OFS);
1158 	old_ltmode   = readl(port_mmio + LTMODE_OFS);
1159 	old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1160 
1161 	new_fiscfg   = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1162 	new_ltmode   = old_ltmode & ~LTMODE_BIT8;
1163 	new_haltcond = old_haltcond | EDMA_ERR_DEV;
1164 
1165 	if (want_fbs) {
1166 		new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1167 		new_ltmode = old_ltmode | LTMODE_BIT8;
1168 		if (want_ncq)
1169 			new_haltcond &= ~EDMA_ERR_DEV;
1170 		else
1171 			new_fiscfg |=  FISCFG_WAIT_DEV_ERR;
1172 	}
1173 
1174 	if (new_fiscfg != old_fiscfg)
1175 		writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1176 	if (new_ltmode != old_ltmode)
1177 		writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1178 	if (new_haltcond != old_haltcond)
1179 		writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1180 }
1181 
1182 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1183 {
1184 	struct mv_host_priv *hpriv = ap->host->private_data;
1185 	u32 old, new;
1186 
1187 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1188 	old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1189 	if (want_ncq)
1190 		new = old | (1 << 22);
1191 	else
1192 		new = old & ~(1 << 22);
1193 	if (new != old)
1194 		writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1195 }
1196 
1197 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1198 {
1199 	u32 cfg;
1200 	struct mv_port_priv *pp    = ap->private_data;
1201 	struct mv_host_priv *hpriv = ap->host->private_data;
1202 	void __iomem *port_mmio    = mv_ap_base(ap);
1203 
1204 	/* set up non-NCQ EDMA configuration */
1205 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1206 	pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1207 
1208 	if (IS_GEN_I(hpriv))
1209 		cfg |= (1 << 8);	/* enab config burst size mask */
1210 
1211 	else if (IS_GEN_II(hpriv)) {
1212 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1213 		mv_60x1_errata_sata25(ap, want_ncq);
1214 
1215 	} else if (IS_GEN_IIE(hpriv)) {
1216 		int want_fbs = sata_pmp_attached(ap);
1217 		/*
1218 		 * Possible future enhancement:
1219 		 *
1220 		 * The chip can use FBS with non-NCQ, if we allow it,
1221 		 * But first we need to have the error handling in place
1222 		 * for this mode (datasheet section 7.3.15.4.2.3).
1223 		 * So disallow non-NCQ FBS for now.
1224 		 */
1225 		want_fbs &= want_ncq;
1226 
1227 		mv_config_fbs(port_mmio, want_ncq, want_fbs);
1228 
1229 		if (want_fbs) {
1230 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1231 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1232 		}
1233 
1234 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1235 		cfg |= (1 << 22);	/* enab 4-entry host queue cache */
1236 		if (!IS_SOC(hpriv))
1237 			cfg |= (1 << 18);	/* enab early completion */
1238 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1239 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1240 	}
1241 
1242 	if (want_ncq) {
1243 		cfg |= EDMA_CFG_NCQ;
1244 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1245 	} else
1246 		pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1247 
1248 	writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1249 }
1250 
1251 static void mv_port_free_dma_mem(struct ata_port *ap)
1252 {
1253 	struct mv_host_priv *hpriv = ap->host->private_data;
1254 	struct mv_port_priv *pp = ap->private_data;
1255 	int tag;
1256 
1257 	if (pp->crqb) {
1258 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1259 		pp->crqb = NULL;
1260 	}
1261 	if (pp->crpb) {
1262 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1263 		pp->crpb = NULL;
1264 	}
1265 	/*
1266 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1267 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1268 	 */
1269 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1270 		if (pp->sg_tbl[tag]) {
1271 			if (tag == 0 || !IS_GEN_I(hpriv))
1272 				dma_pool_free(hpriv->sg_tbl_pool,
1273 					      pp->sg_tbl[tag],
1274 					      pp->sg_tbl_dma[tag]);
1275 			pp->sg_tbl[tag] = NULL;
1276 		}
1277 	}
1278 }
1279 
1280 /**
1281  *      mv_port_start - Port specific init/start routine.
1282  *      @ap: ATA channel to manipulate
1283  *
1284  *      Allocate and point to DMA memory, init port private memory,
1285  *      zero indices.
1286  *
1287  *      LOCKING:
1288  *      Inherited from caller.
1289  */
1290 static int mv_port_start(struct ata_port *ap)
1291 {
1292 	struct device *dev = ap->host->dev;
1293 	struct mv_host_priv *hpriv = ap->host->private_data;
1294 	struct mv_port_priv *pp;
1295 	int tag;
1296 
1297 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1298 	if (!pp)
1299 		return -ENOMEM;
1300 	ap->private_data = pp;
1301 
1302 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1303 	if (!pp->crqb)
1304 		return -ENOMEM;
1305 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1306 
1307 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1308 	if (!pp->crpb)
1309 		goto out_port_free_dma_mem;
1310 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1311 
1312 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1313 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1314 		ap->flags |= ATA_FLAG_AN;
1315 	/*
1316 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1317 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1318 	 */
1319 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1320 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1321 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1322 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1323 			if (!pp->sg_tbl[tag])
1324 				goto out_port_free_dma_mem;
1325 		} else {
1326 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1327 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1328 		}
1329 	}
1330 	return 0;
1331 
1332 out_port_free_dma_mem:
1333 	mv_port_free_dma_mem(ap);
1334 	return -ENOMEM;
1335 }
1336 
1337 /**
1338  *      mv_port_stop - Port specific cleanup/stop routine.
1339  *      @ap: ATA channel to manipulate
1340  *
1341  *      Stop DMA, cleanup port memory.
1342  *
1343  *      LOCKING:
1344  *      This routine uses the host lock to protect the DMA stop.
1345  */
1346 static void mv_port_stop(struct ata_port *ap)
1347 {
1348 	mv_stop_edma(ap);
1349 	mv_enable_port_irqs(ap, 0);
1350 	mv_port_free_dma_mem(ap);
1351 }
1352 
1353 /**
1354  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1355  *      @qc: queued command whose SG list to source from
1356  *
1357  *      Populate the SG list and mark the last entry.
1358  *
1359  *      LOCKING:
1360  *      Inherited from caller.
1361  */
1362 static void mv_fill_sg(struct ata_queued_cmd *qc)
1363 {
1364 	struct mv_port_priv *pp = qc->ap->private_data;
1365 	struct scatterlist *sg;
1366 	struct mv_sg *mv_sg, *last_sg = NULL;
1367 	unsigned int si;
1368 
1369 	mv_sg = pp->sg_tbl[qc->tag];
1370 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1371 		dma_addr_t addr = sg_dma_address(sg);
1372 		u32 sg_len = sg_dma_len(sg);
1373 
1374 		while (sg_len) {
1375 			u32 offset = addr & 0xffff;
1376 			u32 len = sg_len;
1377 
1378 			if ((offset + sg_len > 0x10000))
1379 				len = 0x10000 - offset;
1380 
1381 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1382 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1383 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1384 
1385 			sg_len -= len;
1386 			addr += len;
1387 
1388 			last_sg = mv_sg;
1389 			mv_sg++;
1390 		}
1391 	}
1392 
1393 	if (likely(last_sg))
1394 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1395 }
1396 
1397 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1398 {
1399 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1400 		(last ? CRQB_CMD_LAST : 0);
1401 	*cmdw = cpu_to_le16(tmp);
1402 }
1403 
1404 /**
1405  *      mv_qc_prep - Host specific command preparation.
1406  *      @qc: queued command to prepare
1407  *
1408  *      This routine simply redirects to the general purpose routine
1409  *      if command is not DMA.  Else, it handles prep of the CRQB
1410  *      (command request block), does some sanity checking, and calls
1411  *      the SG load routine.
1412  *
1413  *      LOCKING:
1414  *      Inherited from caller.
1415  */
1416 static void mv_qc_prep(struct ata_queued_cmd *qc)
1417 {
1418 	struct ata_port *ap = qc->ap;
1419 	struct mv_port_priv *pp = ap->private_data;
1420 	__le16 *cw;
1421 	struct ata_taskfile *tf;
1422 	u16 flags = 0;
1423 	unsigned in_index;
1424 
1425 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1426 	    (qc->tf.protocol != ATA_PROT_NCQ))
1427 		return;
1428 
1429 	/* Fill in command request block
1430 	 */
1431 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1432 		flags |= CRQB_FLAG_READ;
1433 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1434 	flags |= qc->tag << CRQB_TAG_SHIFT;
1435 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1436 
1437 	/* get current queue index from software */
1438 	in_index = pp->req_idx;
1439 
1440 	pp->crqb[in_index].sg_addr =
1441 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1442 	pp->crqb[in_index].sg_addr_hi =
1443 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1444 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1445 
1446 	cw = &pp->crqb[in_index].ata_cmd[0];
1447 	tf = &qc->tf;
1448 
1449 	/* Sadly, the CRQB cannot accomodate all registers--there are
1450 	 * only 11 bytes...so we must pick and choose required
1451 	 * registers based on the command.  So, we drop feature and
1452 	 * hob_feature for [RW] DMA commands, but they are needed for
1453 	 * NCQ.  NCQ will drop hob_nsect.
1454 	 */
1455 	switch (tf->command) {
1456 	case ATA_CMD_READ:
1457 	case ATA_CMD_READ_EXT:
1458 	case ATA_CMD_WRITE:
1459 	case ATA_CMD_WRITE_EXT:
1460 	case ATA_CMD_WRITE_FUA_EXT:
1461 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1462 		break;
1463 	case ATA_CMD_FPDMA_READ:
1464 	case ATA_CMD_FPDMA_WRITE:
1465 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1466 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1467 		break;
1468 	default:
1469 		/* The only other commands EDMA supports in non-queued and
1470 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1471 		 * of which are defined/used by Linux.  If we get here, this
1472 		 * driver needs work.
1473 		 *
1474 		 * FIXME: modify libata to give qc_prep a return value and
1475 		 * return error here.
1476 		 */
1477 		BUG_ON(tf->command);
1478 		break;
1479 	}
1480 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1481 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1482 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1483 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1484 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1485 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1486 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1487 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1488 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
1489 
1490 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1491 		return;
1492 	mv_fill_sg(qc);
1493 }
1494 
1495 /**
1496  *      mv_qc_prep_iie - Host specific command preparation.
1497  *      @qc: queued command to prepare
1498  *
1499  *      This routine simply redirects to the general purpose routine
1500  *      if command is not DMA.  Else, it handles prep of the CRQB
1501  *      (command request block), does some sanity checking, and calls
1502  *      the SG load routine.
1503  *
1504  *      LOCKING:
1505  *      Inherited from caller.
1506  */
1507 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1508 {
1509 	struct ata_port *ap = qc->ap;
1510 	struct mv_port_priv *pp = ap->private_data;
1511 	struct mv_crqb_iie *crqb;
1512 	struct ata_taskfile *tf;
1513 	unsigned in_index;
1514 	u32 flags = 0;
1515 
1516 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1517 	    (qc->tf.protocol != ATA_PROT_NCQ))
1518 		return;
1519 
1520 	/* Fill in Gen IIE command request block */
1521 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1522 		flags |= CRQB_FLAG_READ;
1523 
1524 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1525 	flags |= qc->tag << CRQB_TAG_SHIFT;
1526 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1527 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1528 
1529 	/* get current queue index from software */
1530 	in_index = pp->req_idx;
1531 
1532 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1533 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1534 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1535 	crqb->flags = cpu_to_le32(flags);
1536 
1537 	tf = &qc->tf;
1538 	crqb->ata_cmd[0] = cpu_to_le32(
1539 			(tf->command << 16) |
1540 			(tf->feature << 24)
1541 		);
1542 	crqb->ata_cmd[1] = cpu_to_le32(
1543 			(tf->lbal << 0) |
1544 			(tf->lbam << 8) |
1545 			(tf->lbah << 16) |
1546 			(tf->device << 24)
1547 		);
1548 	crqb->ata_cmd[2] = cpu_to_le32(
1549 			(tf->hob_lbal << 0) |
1550 			(tf->hob_lbam << 8) |
1551 			(tf->hob_lbah << 16) |
1552 			(tf->hob_feature << 24)
1553 		);
1554 	crqb->ata_cmd[3] = cpu_to_le32(
1555 			(tf->nsect << 0) |
1556 			(tf->hob_nsect << 8)
1557 		);
1558 
1559 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1560 		return;
1561 	mv_fill_sg(qc);
1562 }
1563 
1564 /**
1565  *      mv_qc_issue - Initiate a command to the host
1566  *      @qc: queued command to start
1567  *
1568  *      This routine simply redirects to the general purpose routine
1569  *      if command is not DMA.  Else, it sanity checks our local
1570  *      caches of the request producer/consumer indices then enables
1571  *      DMA and bumps the request producer index.
1572  *
1573  *      LOCKING:
1574  *      Inherited from caller.
1575  */
1576 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1577 {
1578 	struct ata_port *ap = qc->ap;
1579 	void __iomem *port_mmio = mv_ap_base(ap);
1580 	struct mv_port_priv *pp = ap->private_data;
1581 	u32 in_index;
1582 
1583 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1584 	    (qc->tf.protocol != ATA_PROT_NCQ)) {
1585 		static int limit_warnings = 10;
1586 		/*
1587 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1588 		 *
1589 		 * Someday, we might implement special polling workarounds
1590 		 * for these, but it all seems rather unnecessary since we
1591 		 * normally use only DMA for commands which transfer more
1592 		 * than a single block of data.
1593 		 *
1594 		 * Much of the time, this could just work regardless.
1595 		 * So for now, just log the incident, and allow the attempt.
1596 		 */
1597 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
1598 			--limit_warnings;
1599 			ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
1600 					": attempting PIO w/multiple DRQ: "
1601 					"this may fail due to h/w errata\n");
1602 		}
1603 		/*
1604 		 * We're about to send a non-EDMA capable command to the
1605 		 * port.  Turn off EDMA so there won't be problems accessing
1606 		 * shadow block, etc registers.
1607 		 */
1608 		mv_stop_edma(ap);
1609 		mv_enable_port_irqs(ap, ERR_IRQ);
1610 		mv_pmp_select(ap, qc->dev->link->pmp);
1611 		return ata_sff_qc_issue(qc);
1612 	}
1613 
1614 	mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1615 
1616 	pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1617 	in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1618 
1619 	/* and write the request in pointer to kick the EDMA to life */
1620 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1621 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1622 
1623 	return 0;
1624 }
1625 
1626 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1627 {
1628 	struct mv_port_priv *pp = ap->private_data;
1629 	struct ata_queued_cmd *qc;
1630 
1631 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1632 		return NULL;
1633 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1634 	if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1635 		qc = NULL;
1636 	return qc;
1637 }
1638 
1639 static void mv_pmp_error_handler(struct ata_port *ap)
1640 {
1641 	unsigned int pmp, pmp_map;
1642 	struct mv_port_priv *pp = ap->private_data;
1643 
1644 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1645 		/*
1646 		 * Perform NCQ error analysis on failed PMPs
1647 		 * before we freeze the port entirely.
1648 		 *
1649 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1650 		 */
1651 		pmp_map = pp->delayed_eh_pmp_map;
1652 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1653 		for (pmp = 0; pmp_map != 0; pmp++) {
1654 			unsigned int this_pmp = (1 << pmp);
1655 			if (pmp_map & this_pmp) {
1656 				struct ata_link *link = &ap->pmp_link[pmp];
1657 				pmp_map &= ~this_pmp;
1658 				ata_eh_analyze_ncq_error(link);
1659 			}
1660 		}
1661 		ata_port_freeze(ap);
1662 	}
1663 	sata_pmp_error_handler(ap);
1664 }
1665 
1666 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1667 {
1668 	void __iomem *port_mmio = mv_ap_base(ap);
1669 
1670 	return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1671 }
1672 
1673 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1674 {
1675 	struct ata_eh_info *ehi;
1676 	unsigned int pmp;
1677 
1678 	/*
1679 	 * Initialize EH info for PMPs which saw device errors
1680 	 */
1681 	ehi = &ap->link.eh_info;
1682 	for (pmp = 0; pmp_map != 0; pmp++) {
1683 		unsigned int this_pmp = (1 << pmp);
1684 		if (pmp_map & this_pmp) {
1685 			struct ata_link *link = &ap->pmp_link[pmp];
1686 
1687 			pmp_map &= ~this_pmp;
1688 			ehi = &link->eh_info;
1689 			ata_ehi_clear_desc(ehi);
1690 			ata_ehi_push_desc(ehi, "dev err");
1691 			ehi->err_mask |= AC_ERR_DEV;
1692 			ehi->action |= ATA_EH_RESET;
1693 			ata_link_abort(link);
1694 		}
1695 	}
1696 }
1697 
1698 static int mv_req_q_empty(struct ata_port *ap)
1699 {
1700 	void __iomem *port_mmio = mv_ap_base(ap);
1701 	u32 in_ptr, out_ptr;
1702 
1703 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1704 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1705 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1706 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1707 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
1708 }
1709 
1710 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1711 {
1712 	struct mv_port_priv *pp = ap->private_data;
1713 	int failed_links;
1714 	unsigned int old_map, new_map;
1715 
1716 	/*
1717 	 * Device error during FBS+NCQ operation:
1718 	 *
1719 	 * Set a port flag to prevent further I/O being enqueued.
1720 	 * Leave the EDMA running to drain outstanding commands from this port.
1721 	 * Perform the post-mortem/EH only when all responses are complete.
1722 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1723 	 */
1724 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1725 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1726 		pp->delayed_eh_pmp_map = 0;
1727 	}
1728 	old_map = pp->delayed_eh_pmp_map;
1729 	new_map = old_map | mv_get_err_pmp_map(ap);
1730 
1731 	if (old_map != new_map) {
1732 		pp->delayed_eh_pmp_map = new_map;
1733 		mv_pmp_eh_prep(ap, new_map & ~old_map);
1734 	}
1735 	failed_links = hweight16(new_map);
1736 
1737 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1738 			"failed_links=%d nr_active_links=%d\n",
1739 			__func__, pp->delayed_eh_pmp_map,
1740 			ap->qc_active, failed_links,
1741 			ap->nr_active_links);
1742 
1743 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1744 		mv_process_crpb_entries(ap, pp);
1745 		mv_stop_edma(ap);
1746 		mv_eh_freeze(ap);
1747 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1748 		return 1;	/* handled */
1749 	}
1750 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1751 	return 1;	/* handled */
1752 }
1753 
1754 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1755 {
1756 	/*
1757 	 * Possible future enhancement:
1758 	 *
1759 	 * FBS+non-NCQ operation is not yet implemented.
1760 	 * See related notes in mv_edma_cfg().
1761 	 *
1762 	 * Device error during FBS+non-NCQ operation:
1763 	 *
1764 	 * We need to snapshot the shadow registers for each failed command.
1765 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1766 	 */
1767 	return 0;	/* not handled */
1768 }
1769 
1770 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1771 {
1772 	struct mv_port_priv *pp = ap->private_data;
1773 
1774 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1775 		return 0;	/* EDMA was not active: not handled */
1776 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1777 		return 0;	/* FBS was not active: not handled */
1778 
1779 	if (!(edma_err_cause & EDMA_ERR_DEV))
1780 		return 0;	/* non DEV error: not handled */
1781 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1782 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1783 		return 0;	/* other problems: not handled */
1784 
1785 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1786 		/*
1787 		 * EDMA should NOT have self-disabled for this case.
1788 		 * If it did, then something is wrong elsewhere,
1789 		 * and we cannot handle it here.
1790 		 */
1791 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1792 			ata_port_printk(ap, KERN_WARNING,
1793 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1794 				__func__, edma_err_cause, pp->pp_flags);
1795 			return 0; /* not handled */
1796 		}
1797 		return mv_handle_fbs_ncq_dev_err(ap);
1798 	} else {
1799 		/*
1800 		 * EDMA should have self-disabled for this case.
1801 		 * If it did not, then something is wrong elsewhere,
1802 		 * and we cannot handle it here.
1803 		 */
1804 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1805 			ata_port_printk(ap, KERN_WARNING,
1806 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1807 				__func__, edma_err_cause, pp->pp_flags);
1808 			return 0; /* not handled */
1809 		}
1810 		return mv_handle_fbs_non_ncq_dev_err(ap);
1811 	}
1812 	return 0;	/* not handled */
1813 }
1814 
1815 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1816 {
1817 	struct ata_eh_info *ehi = &ap->link.eh_info;
1818 	char *when = "idle";
1819 
1820 	ata_ehi_clear_desc(ehi);
1821 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1822 		when = "disabled";
1823 	} else if (edma_was_enabled) {
1824 		when = "EDMA enabled";
1825 	} else {
1826 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1827 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1828 			when = "polling";
1829 	}
1830 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1831 	ehi->err_mask |= AC_ERR_OTHER;
1832 	ehi->action   |= ATA_EH_RESET;
1833 	ata_port_freeze(ap);
1834 }
1835 
1836 /**
1837  *      mv_err_intr - Handle error interrupts on the port
1838  *      @ap: ATA channel to manipulate
1839  *
1840  *      Most cases require a full reset of the chip's state machine,
1841  *      which also performs a COMRESET.
1842  *      Also, if the port disabled DMA, update our cached copy to match.
1843  *
1844  *      LOCKING:
1845  *      Inherited from caller.
1846  */
1847 static void mv_err_intr(struct ata_port *ap)
1848 {
1849 	void __iomem *port_mmio = mv_ap_base(ap);
1850 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
1851 	u32 fis_cause = 0;
1852 	struct mv_port_priv *pp = ap->private_data;
1853 	struct mv_host_priv *hpriv = ap->host->private_data;
1854 	unsigned int action = 0, err_mask = 0;
1855 	struct ata_eh_info *ehi = &ap->link.eh_info;
1856 	struct ata_queued_cmd *qc;
1857 	int abort = 0;
1858 
1859 	/*
1860 	 * Read and clear the SError and err_cause bits.
1861 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1862 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1863 	 */
1864 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
1865 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1866 
1867 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1868 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1869 		fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1870 		writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1871 	}
1872 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1873 
1874 	if (edma_err_cause & EDMA_ERR_DEV) {
1875 		/*
1876 		 * Device errors during FIS-based switching operation
1877 		 * require special handling.
1878 		 */
1879 		if (mv_handle_dev_err(ap, edma_err_cause))
1880 			return;
1881 	}
1882 
1883 	qc = mv_get_active_qc(ap);
1884 	ata_ehi_clear_desc(ehi);
1885 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1886 			  edma_err_cause, pp->pp_flags);
1887 
1888 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1889 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1890 		if (fis_cause & SATA_FIS_IRQ_AN) {
1891 			u32 ec = edma_err_cause &
1892 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1893 			sata_async_notification(ap);
1894 			if (!ec)
1895 				return; /* Just an AN; no need for the nukes */
1896 			ata_ehi_push_desc(ehi, "SDB notify");
1897 		}
1898 	}
1899 	/*
1900 	 * All generations share these EDMA error cause bits:
1901 	 */
1902 	if (edma_err_cause & EDMA_ERR_DEV) {
1903 		err_mask |= AC_ERR_DEV;
1904 		action |= ATA_EH_RESET;
1905 		ata_ehi_push_desc(ehi, "dev error");
1906 	}
1907 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1908 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1909 			EDMA_ERR_INTRL_PAR)) {
1910 		err_mask |= AC_ERR_ATA_BUS;
1911 		action |= ATA_EH_RESET;
1912 		ata_ehi_push_desc(ehi, "parity error");
1913 	}
1914 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1915 		ata_ehi_hotplugged(ehi);
1916 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1917 			"dev disconnect" : "dev connect");
1918 		action |= ATA_EH_RESET;
1919 	}
1920 
1921 	/*
1922 	 * Gen-I has a different SELF_DIS bit,
1923 	 * different FREEZE bits, and no SERR bit:
1924 	 */
1925 	if (IS_GEN_I(hpriv)) {
1926 		eh_freeze_mask = EDMA_EH_FREEZE_5;
1927 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1928 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1929 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1930 		}
1931 	} else {
1932 		eh_freeze_mask = EDMA_EH_FREEZE;
1933 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1934 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1935 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1936 		}
1937 		if (edma_err_cause & EDMA_ERR_SERR) {
1938 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
1939 			err_mask |= AC_ERR_ATA_BUS;
1940 			action |= ATA_EH_RESET;
1941 		}
1942 	}
1943 
1944 	if (!err_mask) {
1945 		err_mask = AC_ERR_OTHER;
1946 		action |= ATA_EH_RESET;
1947 	}
1948 
1949 	ehi->serror |= serr;
1950 	ehi->action |= action;
1951 
1952 	if (qc)
1953 		qc->err_mask |= err_mask;
1954 	else
1955 		ehi->err_mask |= err_mask;
1956 
1957 	if (err_mask == AC_ERR_DEV) {
1958 		/*
1959 		 * Cannot do ata_port_freeze() here,
1960 		 * because it would kill PIO access,
1961 		 * which is needed for further diagnosis.
1962 		 */
1963 		mv_eh_freeze(ap);
1964 		abort = 1;
1965 	} else if (edma_err_cause & eh_freeze_mask) {
1966 		/*
1967 		 * Note to self: ata_port_freeze() calls ata_port_abort()
1968 		 */
1969 		ata_port_freeze(ap);
1970 	} else {
1971 		abort = 1;
1972 	}
1973 
1974 	if (abort) {
1975 		if (qc)
1976 			ata_link_abort(qc->dev->link);
1977 		else
1978 			ata_port_abort(ap);
1979 	}
1980 }
1981 
1982 static void mv_process_crpb_response(struct ata_port *ap,
1983 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1984 {
1985 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1986 
1987 	if (qc) {
1988 		u8 ata_status;
1989 		u16 edma_status = le16_to_cpu(response->flags);
1990 		/*
1991 		 * edma_status from a response queue entry:
1992 		 *   LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1993 		 *   MSB is saved ATA status from command completion.
1994 		 */
1995 		if (!ncq_enabled) {
1996 			u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1997 			if (err_cause) {
1998 				/*
1999 				 * Error will be seen/handled by mv_err_intr().
2000 				 * So do nothing at all here.
2001 				 */
2002 				return;
2003 			}
2004 		}
2005 		ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2006 		if (!ac_err_mask(ata_status))
2007 			ata_qc_complete(qc);
2008 		/* else: leave it for mv_err_intr() */
2009 	} else {
2010 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2011 				__func__, tag);
2012 	}
2013 }
2014 
2015 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2016 {
2017 	void __iomem *port_mmio = mv_ap_base(ap);
2018 	struct mv_host_priv *hpriv = ap->host->private_data;
2019 	u32 in_index;
2020 	bool work_done = false;
2021 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2022 
2023 	/* Get the hardware queue position index */
2024 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2025 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2026 
2027 	/* Process new responses from since the last time we looked */
2028 	while (in_index != pp->resp_idx) {
2029 		unsigned int tag;
2030 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2031 
2032 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2033 
2034 		if (IS_GEN_I(hpriv)) {
2035 			/* 50xx: no NCQ, only one command active at a time */
2036 			tag = ap->link.active_tag;
2037 		} else {
2038 			/* Gen II/IIE: get command tag from CRPB entry */
2039 			tag = le16_to_cpu(response->id) & 0x1f;
2040 		}
2041 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2042 		work_done = true;
2043 	}
2044 
2045 	/* Update the software queue position index in hardware */
2046 	if (work_done)
2047 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2048 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2049 			 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2050 }
2051 
2052 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2053 {
2054 	struct mv_port_priv *pp;
2055 	int edma_was_enabled;
2056 
2057 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2058 		mv_unexpected_intr(ap, 0);
2059 		return;
2060 	}
2061 	/*
2062 	 * Grab a snapshot of the EDMA_EN flag setting,
2063 	 * so that we have a consistent view for this port,
2064 	 * even if something we call of our routines changes it.
2065 	 */
2066 	pp = ap->private_data;
2067 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2068 	/*
2069 	 * Process completed CRPB response(s) before other events.
2070 	 */
2071 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2072 		mv_process_crpb_entries(ap, pp);
2073 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2074 			mv_handle_fbs_ncq_dev_err(ap);
2075 	}
2076 	/*
2077 	 * Handle chip-reported errors, or continue on to handle PIO.
2078 	 */
2079 	if (unlikely(port_cause & ERR_IRQ)) {
2080 		mv_err_intr(ap);
2081 	} else if (!edma_was_enabled) {
2082 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2083 		if (qc)
2084 			ata_sff_host_intr(ap, qc);
2085 		else
2086 			mv_unexpected_intr(ap, edma_was_enabled);
2087 	}
2088 }
2089 
2090 /**
2091  *      mv_host_intr - Handle all interrupts on the given host controller
2092  *      @host: host specific structure
2093  *      @main_irq_cause: Main interrupt cause register for the chip.
2094  *
2095  *      LOCKING:
2096  *      Inherited from caller.
2097  */
2098 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2099 {
2100 	struct mv_host_priv *hpriv = host->private_data;
2101 	void __iomem *mmio = hpriv->base, *hc_mmio;
2102 	unsigned int handled = 0, port;
2103 
2104 	for (port = 0; port < hpriv->n_ports; port++) {
2105 		struct ata_port *ap = host->ports[port];
2106 		unsigned int p, shift, hardport, port_cause;
2107 
2108 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2109 		/*
2110 		 * Each hc within the host has its own hc_irq_cause register,
2111 		 * where the interrupting ports bits get ack'd.
2112 		 */
2113 		if (hardport == 0) {	/* first port on this hc ? */
2114 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2115 			u32 port_mask, ack_irqs;
2116 			/*
2117 			 * Skip this entire hc if nothing pending for any ports
2118 			 */
2119 			if (!hc_cause) {
2120 				port += MV_PORTS_PER_HC - 1;
2121 				continue;
2122 			}
2123 			/*
2124 			 * We don't need/want to read the hc_irq_cause register,
2125 			 * because doing so hurts performance, and
2126 			 * main_irq_cause already gives us everything we need.
2127 			 *
2128 			 * But we do have to *write* to the hc_irq_cause to ack
2129 			 * the ports that we are handling this time through.
2130 			 *
2131 			 * This requires that we create a bitmap for those
2132 			 * ports which interrupted us, and use that bitmap
2133 			 * to ack (only) those ports via hc_irq_cause.
2134 			 */
2135 			ack_irqs = 0;
2136 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2137 				if ((port + p) >= hpriv->n_ports)
2138 					break;
2139 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2140 				if (hc_cause & port_mask)
2141 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2142 			}
2143 			hc_mmio = mv_hc_base_from_port(mmio, port);
2144 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2145 			handled = 1;
2146 		}
2147 		/*
2148 		 * Handle interrupts signalled for this port:
2149 		 */
2150 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2151 		if (port_cause)
2152 			mv_port_intr(ap, port_cause);
2153 	}
2154 	return handled;
2155 }
2156 
2157 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2158 {
2159 	struct mv_host_priv *hpriv = host->private_data;
2160 	struct ata_port *ap;
2161 	struct ata_queued_cmd *qc;
2162 	struct ata_eh_info *ehi;
2163 	unsigned int i, err_mask, printed = 0;
2164 	u32 err_cause;
2165 
2166 	err_cause = readl(mmio + hpriv->irq_cause_ofs);
2167 
2168 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2169 		   err_cause);
2170 
2171 	DPRINTK("All regs @ PCI error\n");
2172 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2173 
2174 	writelfl(0, mmio + hpriv->irq_cause_ofs);
2175 
2176 	for (i = 0; i < host->n_ports; i++) {
2177 		ap = host->ports[i];
2178 		if (!ata_link_offline(&ap->link)) {
2179 			ehi = &ap->link.eh_info;
2180 			ata_ehi_clear_desc(ehi);
2181 			if (!printed++)
2182 				ata_ehi_push_desc(ehi,
2183 					"PCI err cause 0x%08x", err_cause);
2184 			err_mask = AC_ERR_HOST_BUS;
2185 			ehi->action = ATA_EH_RESET;
2186 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2187 			if (qc)
2188 				qc->err_mask |= err_mask;
2189 			else
2190 				ehi->err_mask |= err_mask;
2191 
2192 			ata_port_freeze(ap);
2193 		}
2194 	}
2195 	return 1;	/* handled */
2196 }
2197 
2198 /**
2199  *      mv_interrupt - Main interrupt event handler
2200  *      @irq: unused
2201  *      @dev_instance: private data; in this case the host structure
2202  *
2203  *      Read the read only register to determine if any host
2204  *      controllers have pending interrupts.  If so, call lower level
2205  *      routine to handle.  Also check for PCI errors which are only
2206  *      reported here.
2207  *
2208  *      LOCKING:
2209  *      This routine holds the host lock while processing pending
2210  *      interrupts.
2211  */
2212 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2213 {
2214 	struct ata_host *host = dev_instance;
2215 	struct mv_host_priv *hpriv = host->private_data;
2216 	unsigned int handled = 0;
2217 	u32 main_irq_cause, pending_irqs;
2218 
2219 	spin_lock(&host->lock);
2220 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2221 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2222 	/*
2223 	 * Deal with cases where we either have nothing pending, or have read
2224 	 * a bogus register value which can indicate HW removal or PCI fault.
2225 	 */
2226 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2227 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2228 			handled = mv_pci_error(host, hpriv->base);
2229 		else
2230 			handled = mv_host_intr(host, pending_irqs);
2231 	}
2232 	spin_unlock(&host->lock);
2233 	return IRQ_RETVAL(handled);
2234 }
2235 
2236 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2237 {
2238 	unsigned int ofs;
2239 
2240 	switch (sc_reg_in) {
2241 	case SCR_STATUS:
2242 	case SCR_ERROR:
2243 	case SCR_CONTROL:
2244 		ofs = sc_reg_in * sizeof(u32);
2245 		break;
2246 	default:
2247 		ofs = 0xffffffffU;
2248 		break;
2249 	}
2250 	return ofs;
2251 }
2252 
2253 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2254 {
2255 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2256 	void __iomem *mmio = hpriv->base;
2257 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2258 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2259 
2260 	if (ofs != 0xffffffffU) {
2261 		*val = readl(addr + ofs);
2262 		return 0;
2263 	} else
2264 		return -EINVAL;
2265 }
2266 
2267 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
2268 {
2269 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2270 	void __iomem *mmio = hpriv->base;
2271 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2272 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2273 
2274 	if (ofs != 0xffffffffU) {
2275 		writelfl(val, addr + ofs);
2276 		return 0;
2277 	} else
2278 		return -EINVAL;
2279 }
2280 
2281 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2282 {
2283 	struct pci_dev *pdev = to_pci_dev(host->dev);
2284 	int early_5080;
2285 
2286 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2287 
2288 	if (!early_5080) {
2289 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2290 		tmp |= (1 << 0);
2291 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2292 	}
2293 
2294 	mv_reset_pci_bus(host, mmio);
2295 }
2296 
2297 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2298 {
2299 	writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2300 }
2301 
2302 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2303 			   void __iomem *mmio)
2304 {
2305 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2306 	u32 tmp;
2307 
2308 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2309 
2310 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
2311 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
2312 }
2313 
2314 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2315 {
2316 	u32 tmp;
2317 
2318 	writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2319 
2320 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2321 
2322 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2323 	tmp |= ~(1 << 0);
2324 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2325 }
2326 
2327 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2328 			   unsigned int port)
2329 {
2330 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2331 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2332 	u32 tmp;
2333 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2334 
2335 	if (fix_apm_sq) {
2336 		tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2337 		tmp |= (1 << 19);
2338 		writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2339 
2340 		tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2341 		tmp &= ~0x3;
2342 		tmp |= 0x1;
2343 		writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2344 	}
2345 
2346 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2347 	tmp &= ~mask;
2348 	tmp |= hpriv->signal[port].pre;
2349 	tmp |= hpriv->signal[port].amps;
2350 	writel(tmp, phy_mmio + MV5_PHY_MODE);
2351 }
2352 
2353 
2354 #undef ZERO
2355 #define ZERO(reg) writel(0, port_mmio + (reg))
2356 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2357 			     unsigned int port)
2358 {
2359 	void __iomem *port_mmio = mv_port_base(mmio, port);
2360 
2361 	mv_reset_channel(hpriv, mmio, port);
2362 
2363 	ZERO(0x028);	/* command */
2364 	writel(0x11f, port_mmio + EDMA_CFG_OFS);
2365 	ZERO(0x004);	/* timer */
2366 	ZERO(0x008);	/* irq err cause */
2367 	ZERO(0x00c);	/* irq err mask */
2368 	ZERO(0x010);	/* rq bah */
2369 	ZERO(0x014);	/* rq inp */
2370 	ZERO(0x018);	/* rq outp */
2371 	ZERO(0x01c);	/* respq bah */
2372 	ZERO(0x024);	/* respq outp */
2373 	ZERO(0x020);	/* respq inp */
2374 	ZERO(0x02c);	/* test control */
2375 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2376 }
2377 #undef ZERO
2378 
2379 #define ZERO(reg) writel(0, hc_mmio + (reg))
2380 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2381 			unsigned int hc)
2382 {
2383 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2384 	u32 tmp;
2385 
2386 	ZERO(0x00c);
2387 	ZERO(0x010);
2388 	ZERO(0x014);
2389 	ZERO(0x018);
2390 
2391 	tmp = readl(hc_mmio + 0x20);
2392 	tmp &= 0x1c1c1c1c;
2393 	tmp |= 0x03030303;
2394 	writel(tmp, hc_mmio + 0x20);
2395 }
2396 #undef ZERO
2397 
2398 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2399 			unsigned int n_hc)
2400 {
2401 	unsigned int hc, port;
2402 
2403 	for (hc = 0; hc < n_hc; hc++) {
2404 		for (port = 0; port < MV_PORTS_PER_HC; port++)
2405 			mv5_reset_hc_port(hpriv, mmio,
2406 					  (hc * MV_PORTS_PER_HC) + port);
2407 
2408 		mv5_reset_one_hc(hpriv, mmio, hc);
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 #undef ZERO
2415 #define ZERO(reg) writel(0, mmio + (reg))
2416 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2417 {
2418 	struct mv_host_priv *hpriv = host->private_data;
2419 	u32 tmp;
2420 
2421 	tmp = readl(mmio + MV_PCI_MODE_OFS);
2422 	tmp &= 0xff00ffff;
2423 	writel(tmp, mmio + MV_PCI_MODE_OFS);
2424 
2425 	ZERO(MV_PCI_DISC_TIMER);
2426 	ZERO(MV_PCI_MSI_TRIGGER);
2427 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2428 	ZERO(MV_PCI_SERR_MASK);
2429 	ZERO(hpriv->irq_cause_ofs);
2430 	ZERO(hpriv->irq_mask_ofs);
2431 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
2432 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2433 	ZERO(MV_PCI_ERR_ATTRIBUTE);
2434 	ZERO(MV_PCI_ERR_COMMAND);
2435 }
2436 #undef ZERO
2437 
2438 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2439 {
2440 	u32 tmp;
2441 
2442 	mv5_reset_flash(hpriv, mmio);
2443 
2444 	tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2445 	tmp &= 0x3;
2446 	tmp |= (1 << 5) | (1 << 6);
2447 	writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2448 }
2449 
2450 /**
2451  *      mv6_reset_hc - Perform the 6xxx global soft reset
2452  *      @mmio: base address of the HBA
2453  *
2454  *      This routine only applies to 6xxx parts.
2455  *
2456  *      LOCKING:
2457  *      Inherited from caller.
2458  */
2459 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2460 			unsigned int n_hc)
2461 {
2462 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2463 	int i, rc = 0;
2464 	u32 t;
2465 
2466 	/* Following procedure defined in PCI "main command and status
2467 	 * register" table.
2468 	 */
2469 	t = readl(reg);
2470 	writel(t | STOP_PCI_MASTER, reg);
2471 
2472 	for (i = 0; i < 1000; i++) {
2473 		udelay(1);
2474 		t = readl(reg);
2475 		if (PCI_MASTER_EMPTY & t)
2476 			break;
2477 	}
2478 	if (!(PCI_MASTER_EMPTY & t)) {
2479 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2480 		rc = 1;
2481 		goto done;
2482 	}
2483 
2484 	/* set reset */
2485 	i = 5;
2486 	do {
2487 		writel(t | GLOB_SFT_RST, reg);
2488 		t = readl(reg);
2489 		udelay(1);
2490 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
2491 
2492 	if (!(GLOB_SFT_RST & t)) {
2493 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2494 		rc = 1;
2495 		goto done;
2496 	}
2497 
2498 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
2499 	i = 5;
2500 	do {
2501 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2502 		t = readl(reg);
2503 		udelay(1);
2504 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
2505 
2506 	if (GLOB_SFT_RST & t) {
2507 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2508 		rc = 1;
2509 	}
2510 done:
2511 	return rc;
2512 }
2513 
2514 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2515 			   void __iomem *mmio)
2516 {
2517 	void __iomem *port_mmio;
2518 	u32 tmp;
2519 
2520 	tmp = readl(mmio + MV_RESET_CFG_OFS);
2521 	if ((tmp & (1 << 0)) == 0) {
2522 		hpriv->signal[idx].amps = 0x7 << 8;
2523 		hpriv->signal[idx].pre = 0x1 << 5;
2524 		return;
2525 	}
2526 
2527 	port_mmio = mv_port_base(mmio, idx);
2528 	tmp = readl(port_mmio + PHY_MODE2);
2529 
2530 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2531 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2532 }
2533 
2534 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2535 {
2536 	writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2537 }
2538 
2539 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2540 			   unsigned int port)
2541 {
2542 	void __iomem *port_mmio = mv_port_base(mmio, port);
2543 
2544 	u32 hp_flags = hpriv->hp_flags;
2545 	int fix_phy_mode2 =
2546 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2547 	int fix_phy_mode4 =
2548 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2549 	u32 m2, m3;
2550 
2551 	if (fix_phy_mode2) {
2552 		m2 = readl(port_mmio + PHY_MODE2);
2553 		m2 &= ~(1 << 16);
2554 		m2 |= (1 << 31);
2555 		writel(m2, port_mmio + PHY_MODE2);
2556 
2557 		udelay(200);
2558 
2559 		m2 = readl(port_mmio + PHY_MODE2);
2560 		m2 &= ~((1 << 16) | (1 << 31));
2561 		writel(m2, port_mmio + PHY_MODE2);
2562 
2563 		udelay(200);
2564 	}
2565 
2566 	/*
2567 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
2568 	 * Achieves better receiver noise performance than the h/w default:
2569 	 */
2570 	m3 = readl(port_mmio + PHY_MODE3);
2571 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
2572 
2573 	/* Guideline 88F5182 (GL# SATA-S11) */
2574 	if (IS_SOC(hpriv))
2575 		m3 &= ~0x1c;
2576 
2577 	if (fix_phy_mode4) {
2578 		u32 m4 = readl(port_mmio + PHY_MODE4);
2579 		/*
2580 		 * Enforce reserved-bit restrictions on GenIIe devices only.
2581 		 * For earlier chipsets, force only the internal config field
2582 		 *  (workaround for errata FEr SATA#10 part 1).
2583 		 */
2584 		if (IS_GEN_IIE(hpriv))
2585 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
2586 		else
2587 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
2588 		writel(m4, port_mmio + PHY_MODE4);
2589 	}
2590 	/*
2591 	 * Workaround for 60x1-B2 errata SATA#13:
2592 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2593 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2594 	 */
2595 	writel(m3, port_mmio + PHY_MODE3);
2596 
2597 	/* Revert values of pre-emphasis and signal amps to the saved ones */
2598 	m2 = readl(port_mmio + PHY_MODE2);
2599 
2600 	m2 &= ~MV_M2_PREAMP_MASK;
2601 	m2 |= hpriv->signal[port].amps;
2602 	m2 |= hpriv->signal[port].pre;
2603 	m2 &= ~(1 << 16);
2604 
2605 	/* according to mvSata 3.6.1, some IIE values are fixed */
2606 	if (IS_GEN_IIE(hpriv)) {
2607 		m2 &= ~0xC30FF01F;
2608 		m2 |= 0x0000900F;
2609 	}
2610 
2611 	writel(m2, port_mmio + PHY_MODE2);
2612 }
2613 
2614 /* TODO: use the generic LED interface to configure the SATA Presence */
2615 /* & Acitivy LEDs on the board */
2616 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2617 				      void __iomem *mmio)
2618 {
2619 	return;
2620 }
2621 
2622 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2623 			   void __iomem *mmio)
2624 {
2625 	void __iomem *port_mmio;
2626 	u32 tmp;
2627 
2628 	port_mmio = mv_port_base(mmio, idx);
2629 	tmp = readl(port_mmio + PHY_MODE2);
2630 
2631 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2632 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2633 }
2634 
2635 #undef ZERO
2636 #define ZERO(reg) writel(0, port_mmio + (reg))
2637 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2638 					void __iomem *mmio, unsigned int port)
2639 {
2640 	void __iomem *port_mmio = mv_port_base(mmio, port);
2641 
2642 	mv_reset_channel(hpriv, mmio, port);
2643 
2644 	ZERO(0x028);		/* command */
2645 	writel(0x101f, port_mmio + EDMA_CFG_OFS);
2646 	ZERO(0x004);		/* timer */
2647 	ZERO(0x008);		/* irq err cause */
2648 	ZERO(0x00c);		/* irq err mask */
2649 	ZERO(0x010);		/* rq bah */
2650 	ZERO(0x014);		/* rq inp */
2651 	ZERO(0x018);		/* rq outp */
2652 	ZERO(0x01c);		/* respq bah */
2653 	ZERO(0x024);		/* respq outp */
2654 	ZERO(0x020);		/* respq inp */
2655 	ZERO(0x02c);		/* test control */
2656 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2657 }
2658 
2659 #undef ZERO
2660 
2661 #define ZERO(reg) writel(0, hc_mmio + (reg))
2662 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2663 				       void __iomem *mmio)
2664 {
2665 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2666 
2667 	ZERO(0x00c);
2668 	ZERO(0x010);
2669 	ZERO(0x014);
2670 
2671 }
2672 
2673 #undef ZERO
2674 
2675 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2676 				  void __iomem *mmio, unsigned int n_hc)
2677 {
2678 	unsigned int port;
2679 
2680 	for (port = 0; port < hpriv->n_ports; port++)
2681 		mv_soc_reset_hc_port(hpriv, mmio, port);
2682 
2683 	mv_soc_reset_one_hc(hpriv, mmio);
2684 
2685 	return 0;
2686 }
2687 
2688 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2689 				      void __iomem *mmio)
2690 {
2691 	return;
2692 }
2693 
2694 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2695 {
2696 	return;
2697 }
2698 
2699 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2700 {
2701 	u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2702 
2703 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
2704 	if (want_gen2i)
2705 		ifcfg |= (1 << 7);		/* enable gen2i speed */
2706 	writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2707 }
2708 
2709 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2710 			     unsigned int port_no)
2711 {
2712 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
2713 
2714 	/*
2715 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
2716 	 * (but doesn't say what the problem might be).  So we first try
2717 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
2718 	 */
2719 	mv_stop_edma_engine(port_mmio);
2720 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2721 
2722 	if (!IS_GEN_I(hpriv)) {
2723 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2724 		mv_setup_ifcfg(port_mmio, 1);
2725 	}
2726 	/*
2727 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2728 	 * link, and physical layers.  It resets all SATA interface registers
2729 	 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2730 	 */
2731 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2732 	udelay(25);	/* allow reset propagation */
2733 	writelfl(0, port_mmio + EDMA_CMD_OFS);
2734 
2735 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
2736 
2737 	if (IS_GEN_I(hpriv))
2738 		mdelay(1);
2739 }
2740 
2741 static void mv_pmp_select(struct ata_port *ap, int pmp)
2742 {
2743 	if (sata_pmp_supported(ap)) {
2744 		void __iomem *port_mmio = mv_ap_base(ap);
2745 		u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2746 		int old = reg & 0xf;
2747 
2748 		if (old != pmp) {
2749 			reg = (reg & ~0xf) | pmp;
2750 			writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2751 		}
2752 	}
2753 }
2754 
2755 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2756 				unsigned long deadline)
2757 {
2758 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2759 	return sata_std_hardreset(link, class, deadline);
2760 }
2761 
2762 static int mv_softreset(struct ata_link *link, unsigned int *class,
2763 				unsigned long deadline)
2764 {
2765 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2766 	return ata_sff_softreset(link, class, deadline);
2767 }
2768 
2769 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2770 			unsigned long deadline)
2771 {
2772 	struct ata_port *ap = link->ap;
2773 	struct mv_host_priv *hpriv = ap->host->private_data;
2774 	struct mv_port_priv *pp = ap->private_data;
2775 	void __iomem *mmio = hpriv->base;
2776 	int rc, attempts = 0, extra = 0;
2777 	u32 sstatus;
2778 	bool online;
2779 
2780 	mv_reset_channel(hpriv, mmio, ap->port_no);
2781 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2782 
2783 	/* Workaround for errata FEr SATA#10 (part 2) */
2784 	do {
2785 		const unsigned long *timing =
2786 				sata_ehc_deb_timing(&link->eh_context);
2787 
2788 		rc = sata_link_hardreset(link, timing, deadline + extra,
2789 					 &online, NULL);
2790 		rc = online ? -EAGAIN : rc;
2791 		if (rc)
2792 			return rc;
2793 		sata_scr_read(link, SCR_STATUS, &sstatus);
2794 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2795 			/* Force 1.5gb/s link speed and try again */
2796 			mv_setup_ifcfg(mv_ap_base(ap), 0);
2797 			if (time_after(jiffies + HZ, deadline))
2798 				extra = HZ; /* only extend it once, max */
2799 		}
2800 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2801 
2802 	return rc;
2803 }
2804 
2805 static void mv_eh_freeze(struct ata_port *ap)
2806 {
2807 	mv_stop_edma(ap);
2808 	mv_enable_port_irqs(ap, 0);
2809 }
2810 
2811 static void mv_eh_thaw(struct ata_port *ap)
2812 {
2813 	struct mv_host_priv *hpriv = ap->host->private_data;
2814 	unsigned int port = ap->port_no;
2815 	unsigned int hardport = mv_hardport_from_port(port);
2816 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2817 	void __iomem *port_mmio = mv_ap_base(ap);
2818 	u32 hc_irq_cause;
2819 
2820 	/* clear EDMA errors on this port */
2821 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2822 
2823 	/* clear pending irq events */
2824 	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2825 	hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2826 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2827 
2828 	mv_enable_port_irqs(ap, ERR_IRQ);
2829 }
2830 
2831 /**
2832  *      mv_port_init - Perform some early initialization on a single port.
2833  *      @port: libata data structure storing shadow register addresses
2834  *      @port_mmio: base address of the port
2835  *
2836  *      Initialize shadow register mmio addresses, clear outstanding
2837  *      interrupts on the port, and unmask interrupts for the future
2838  *      start of the port.
2839  *
2840  *      LOCKING:
2841  *      Inherited from caller.
2842  */
2843 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
2844 {
2845 	void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2846 	unsigned serr_ofs;
2847 
2848 	/* PIO related setup
2849 	 */
2850 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2851 	port->error_addr =
2852 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2853 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2854 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2855 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2856 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2857 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2858 	port->status_addr =
2859 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2860 	/* special case: control/altstatus doesn't have ATA_REG_ address */
2861 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2862 
2863 	/* unused: */
2864 	port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2865 
2866 	/* Clear any currently outstanding port interrupt conditions */
2867 	serr_ofs = mv_scr_offset(SCR_ERROR);
2868 	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2869 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2870 
2871 	/* unmask all non-transient EDMA error interrupts */
2872 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2873 
2874 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2875 		readl(port_mmio + EDMA_CFG_OFS),
2876 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2877 		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2878 }
2879 
2880 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2881 {
2882 	struct mv_host_priv *hpriv = host->private_data;
2883 	void __iomem *mmio = hpriv->base;
2884 	u32 reg;
2885 
2886 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2887 		return 0;	/* not PCI-X capable */
2888 	reg = readl(mmio + MV_PCI_MODE_OFS);
2889 	if ((reg & MV_PCI_MODE_MASK) == 0)
2890 		return 0;	/* conventional PCI mode */
2891 	return 1;	/* chip is in PCI-X mode */
2892 }
2893 
2894 static int mv_pci_cut_through_okay(struct ata_host *host)
2895 {
2896 	struct mv_host_priv *hpriv = host->private_data;
2897 	void __iomem *mmio = hpriv->base;
2898 	u32 reg;
2899 
2900 	if (!mv_in_pcix_mode(host)) {
2901 		reg = readl(mmio + PCI_COMMAND_OFS);
2902 		if (reg & PCI_COMMAND_MRDTRIG)
2903 			return 0; /* not okay */
2904 	}
2905 	return 1; /* okay */
2906 }
2907 
2908 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2909 {
2910 	struct pci_dev *pdev = to_pci_dev(host->dev);
2911 	struct mv_host_priv *hpriv = host->private_data;
2912 	u32 hp_flags = hpriv->hp_flags;
2913 
2914 	switch (board_idx) {
2915 	case chip_5080:
2916 		hpriv->ops = &mv5xxx_ops;
2917 		hp_flags |= MV_HP_GEN_I;
2918 
2919 		switch (pdev->revision) {
2920 		case 0x1:
2921 			hp_flags |= MV_HP_ERRATA_50XXB0;
2922 			break;
2923 		case 0x3:
2924 			hp_flags |= MV_HP_ERRATA_50XXB2;
2925 			break;
2926 		default:
2927 			dev_printk(KERN_WARNING, &pdev->dev,
2928 			   "Applying 50XXB2 workarounds to unknown rev\n");
2929 			hp_flags |= MV_HP_ERRATA_50XXB2;
2930 			break;
2931 		}
2932 		break;
2933 
2934 	case chip_504x:
2935 	case chip_508x:
2936 		hpriv->ops = &mv5xxx_ops;
2937 		hp_flags |= MV_HP_GEN_I;
2938 
2939 		switch (pdev->revision) {
2940 		case 0x0:
2941 			hp_flags |= MV_HP_ERRATA_50XXB0;
2942 			break;
2943 		case 0x3:
2944 			hp_flags |= MV_HP_ERRATA_50XXB2;
2945 			break;
2946 		default:
2947 			dev_printk(KERN_WARNING, &pdev->dev,
2948 			   "Applying B2 workarounds to unknown rev\n");
2949 			hp_flags |= MV_HP_ERRATA_50XXB2;
2950 			break;
2951 		}
2952 		break;
2953 
2954 	case chip_604x:
2955 	case chip_608x:
2956 		hpriv->ops = &mv6xxx_ops;
2957 		hp_flags |= MV_HP_GEN_II;
2958 
2959 		switch (pdev->revision) {
2960 		case 0x7:
2961 			hp_flags |= MV_HP_ERRATA_60X1B2;
2962 			break;
2963 		case 0x9:
2964 			hp_flags |= MV_HP_ERRATA_60X1C0;
2965 			break;
2966 		default:
2967 			dev_printk(KERN_WARNING, &pdev->dev,
2968 				   "Applying B2 workarounds to unknown rev\n");
2969 			hp_flags |= MV_HP_ERRATA_60X1B2;
2970 			break;
2971 		}
2972 		break;
2973 
2974 	case chip_7042:
2975 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2976 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2977 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
2978 		{
2979 			/*
2980 			 * Highpoint RocketRAID PCIe 23xx series cards:
2981 			 *
2982 			 * Unconfigured drives are treated as "Legacy"
2983 			 * by the BIOS, and it overwrites sector 8 with
2984 			 * a "Lgcy" metadata block prior to Linux boot.
2985 			 *
2986 			 * Configured drives (RAID or JBOD) leave sector 8
2987 			 * alone, but instead overwrite a high numbered
2988 			 * sector for the RAID metadata.  This sector can
2989 			 * be determined exactly, by truncating the physical
2990 			 * drive capacity to a nice even GB value.
2991 			 *
2992 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2993 			 *
2994 			 * Warn the user, lest they think we're just buggy.
2995 			 */
2996 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2997 				" BIOS CORRUPTS DATA on all attached drives,"
2998 				" regardless of if/how they are configured."
2999 				" BEWARE!\n");
3000 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3001 				" use sectors 8-9 on \"Legacy\" drives,"
3002 				" and avoid the final two gigabytes on"
3003 				" all RocketRAID BIOS initialized drives.\n");
3004 		}
3005 		/* drop through */
3006 	case chip_6042:
3007 		hpriv->ops = &mv6xxx_ops;
3008 		hp_flags |= MV_HP_GEN_IIE;
3009 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3010 			hp_flags |= MV_HP_CUT_THROUGH;
3011 
3012 		switch (pdev->revision) {
3013 		case 0x2: /* Rev.B0: the first/only public release */
3014 			hp_flags |= MV_HP_ERRATA_60X1C0;
3015 			break;
3016 		default:
3017 			dev_printk(KERN_WARNING, &pdev->dev,
3018 			   "Applying 60X1C0 workarounds to unknown rev\n");
3019 			hp_flags |= MV_HP_ERRATA_60X1C0;
3020 			break;
3021 		}
3022 		break;
3023 	case chip_soc:
3024 		hpriv->ops = &mv_soc_ops;
3025 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3026 			MV_HP_ERRATA_60X1C0;
3027 		break;
3028 
3029 	default:
3030 		dev_printk(KERN_ERR, host->dev,
3031 			   "BUG: invalid board index %u\n", board_idx);
3032 		return 1;
3033 	}
3034 
3035 	hpriv->hp_flags = hp_flags;
3036 	if (hp_flags & MV_HP_PCIE) {
3037 		hpriv->irq_cause_ofs	= PCIE_IRQ_CAUSE_OFS;
3038 		hpriv->irq_mask_ofs	= PCIE_IRQ_MASK_OFS;
3039 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3040 	} else {
3041 		hpriv->irq_cause_ofs	= PCI_IRQ_CAUSE_OFS;
3042 		hpriv->irq_mask_ofs	= PCI_IRQ_MASK_OFS;
3043 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3044 	}
3045 
3046 	return 0;
3047 }
3048 
3049 /**
3050  *      mv_init_host - Perform some early initialization of the host.
3051  *	@host: ATA host to initialize
3052  *      @board_idx: controller index
3053  *
3054  *      If possible, do an early global reset of the host.  Then do
3055  *      our port init and clear/unmask all/relevant host interrupts.
3056  *
3057  *      LOCKING:
3058  *      Inherited from caller.
3059  */
3060 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3061 {
3062 	int rc = 0, n_hc, port, hc;
3063 	struct mv_host_priv *hpriv = host->private_data;
3064 	void __iomem *mmio = hpriv->base;
3065 
3066 	rc = mv_chip_id(host, board_idx);
3067 	if (rc)
3068 		goto done;
3069 
3070 	if (IS_SOC(hpriv)) {
3071 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3072 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3073 	} else {
3074 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3075 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3076 	}
3077 
3078 	/* global interrupt mask: 0 == mask everything */
3079 	mv_set_main_irq_mask(host, ~0, 0);
3080 
3081 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3082 
3083 	for (port = 0; port < host->n_ports; port++)
3084 		hpriv->ops->read_preamp(hpriv, port, mmio);
3085 
3086 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3087 	if (rc)
3088 		goto done;
3089 
3090 	hpriv->ops->reset_flash(hpriv, mmio);
3091 	hpriv->ops->reset_bus(host, mmio);
3092 	hpriv->ops->enable_leds(hpriv, mmio);
3093 
3094 	for (port = 0; port < host->n_ports; port++) {
3095 		struct ata_port *ap = host->ports[port];
3096 		void __iomem *port_mmio = mv_port_base(mmio, port);
3097 
3098 		mv_port_init(&ap->ioaddr, port_mmio);
3099 
3100 #ifdef CONFIG_PCI
3101 		if (!IS_SOC(hpriv)) {
3102 			unsigned int offset = port_mmio - mmio;
3103 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3104 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3105 		}
3106 #endif
3107 	}
3108 
3109 	for (hc = 0; hc < n_hc; hc++) {
3110 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3111 
3112 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3113 			"(before clear)=0x%08x\n", hc,
3114 			readl(hc_mmio + HC_CFG_OFS),
3115 			readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3116 
3117 		/* Clear any currently outstanding hc interrupt conditions */
3118 		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3119 	}
3120 
3121 	if (!IS_SOC(hpriv)) {
3122 		/* Clear any currently outstanding host interrupt conditions */
3123 		writelfl(0, mmio + hpriv->irq_cause_ofs);
3124 
3125 		/* and unmask interrupt generation for host regs */
3126 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3127 
3128 		/*
3129 		 * enable only global host interrupts for now.
3130 		 * The per-port interrupts get done later as ports are set up.
3131 		 */
3132 		mv_set_main_irq_mask(host, 0, PCI_ERR);
3133 	}
3134 done:
3135 	return rc;
3136 }
3137 
3138 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3139 {
3140 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3141 							     MV_CRQB_Q_SZ, 0);
3142 	if (!hpriv->crqb_pool)
3143 		return -ENOMEM;
3144 
3145 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3146 							     MV_CRPB_Q_SZ, 0);
3147 	if (!hpriv->crpb_pool)
3148 		return -ENOMEM;
3149 
3150 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3151 							     MV_SG_TBL_SZ, 0);
3152 	if (!hpriv->sg_tbl_pool)
3153 		return -ENOMEM;
3154 
3155 	return 0;
3156 }
3157 
3158 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3159 				 struct mbus_dram_target_info *dram)
3160 {
3161 	int i;
3162 
3163 	for (i = 0; i < 4; i++) {
3164 		writel(0, hpriv->base + WINDOW_CTRL(i));
3165 		writel(0, hpriv->base + WINDOW_BASE(i));
3166 	}
3167 
3168 	for (i = 0; i < dram->num_cs; i++) {
3169 		struct mbus_dram_window *cs = dram->cs + i;
3170 
3171 		writel(((cs->size - 1) & 0xffff0000) |
3172 			(cs->mbus_attr << 8) |
3173 			(dram->mbus_dram_target_id << 4) | 1,
3174 			hpriv->base + WINDOW_CTRL(i));
3175 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3176 	}
3177 }
3178 
3179 /**
3180  *      mv_platform_probe - handle a positive probe of an soc Marvell
3181  *      host
3182  *      @pdev: platform device found
3183  *
3184  *      LOCKING:
3185  *      Inherited from caller.
3186  */
3187 static int mv_platform_probe(struct platform_device *pdev)
3188 {
3189 	static int printed_version;
3190 	const struct mv_sata_platform_data *mv_platform_data;
3191 	const struct ata_port_info *ppi[] =
3192 	    { &mv_port_info[chip_soc], NULL };
3193 	struct ata_host *host;
3194 	struct mv_host_priv *hpriv;
3195 	struct resource *res;
3196 	int n_ports, rc;
3197 
3198 	if (!printed_version++)
3199 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3200 
3201 	/*
3202 	 * Simple resource validation ..
3203 	 */
3204 	if (unlikely(pdev->num_resources != 2)) {
3205 		dev_err(&pdev->dev, "invalid number of resources\n");
3206 		return -EINVAL;
3207 	}
3208 
3209 	/*
3210 	 * Get the register base first
3211 	 */
3212 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3213 	if (res == NULL)
3214 		return -EINVAL;
3215 
3216 	/* allocate host */
3217 	mv_platform_data = pdev->dev.platform_data;
3218 	n_ports = mv_platform_data->n_ports;
3219 
3220 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3221 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3222 
3223 	if (!host || !hpriv)
3224 		return -ENOMEM;
3225 	host->private_data = hpriv;
3226 	hpriv->n_ports = n_ports;
3227 
3228 	host->iomap = NULL;
3229 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
3230 				   res->end - res->start + 1);
3231 	hpriv->base -= MV_SATAHC0_REG_BASE;
3232 
3233 	/*
3234 	 * (Re-)program MBUS remapping windows if we are asked to.
3235 	 */
3236 	if (mv_platform_data->dram != NULL)
3237 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3238 
3239 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3240 	if (rc)
3241 		return rc;
3242 
3243 	/* initialize adapter */
3244 	rc = mv_init_host(host, chip_soc);
3245 	if (rc)
3246 		return rc;
3247 
3248 	dev_printk(KERN_INFO, &pdev->dev,
3249 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3250 		   host->n_ports);
3251 
3252 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3253 				 IRQF_SHARED, &mv6_sht);
3254 }
3255 
3256 /*
3257  *
3258  *      mv_platform_remove    -       unplug a platform interface
3259  *      @pdev: platform device
3260  *
3261  *      A platform bus SATA device has been unplugged. Perform the needed
3262  *      cleanup. Also called on module unload for any active devices.
3263  */
3264 static int __devexit mv_platform_remove(struct platform_device *pdev)
3265 {
3266 	struct device *dev = &pdev->dev;
3267 	struct ata_host *host = dev_get_drvdata(dev);
3268 
3269 	ata_host_detach(host);
3270 	return 0;
3271 }
3272 
3273 static struct platform_driver mv_platform_driver = {
3274 	.probe			= mv_platform_probe,
3275 	.remove			= __devexit_p(mv_platform_remove),
3276 	.driver			= {
3277 				   .name = DRV_NAME,
3278 				   .owner = THIS_MODULE,
3279 				  },
3280 };
3281 
3282 
3283 #ifdef CONFIG_PCI
3284 static int mv_pci_init_one(struct pci_dev *pdev,
3285 			   const struct pci_device_id *ent);
3286 
3287 
3288 static struct pci_driver mv_pci_driver = {
3289 	.name			= DRV_NAME,
3290 	.id_table		= mv_pci_tbl,
3291 	.probe			= mv_pci_init_one,
3292 	.remove			= ata_pci_remove_one,
3293 };
3294 
3295 /*
3296  * module options
3297  */
3298 static int msi;	      /* Use PCI msi; either zero (off, default) or non-zero */
3299 
3300 
3301 /* move to PCI layer or libata core? */
3302 static int pci_go_64(struct pci_dev *pdev)
3303 {
3304 	int rc;
3305 
3306 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3307 		rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3308 		if (rc) {
3309 			rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3310 			if (rc) {
3311 				dev_printk(KERN_ERR, &pdev->dev,
3312 					   "64-bit DMA enable failed\n");
3313 				return rc;
3314 			}
3315 		}
3316 	} else {
3317 		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3318 		if (rc) {
3319 			dev_printk(KERN_ERR, &pdev->dev,
3320 				   "32-bit DMA enable failed\n");
3321 			return rc;
3322 		}
3323 		rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3324 		if (rc) {
3325 			dev_printk(KERN_ERR, &pdev->dev,
3326 				   "32-bit consistent DMA enable failed\n");
3327 			return rc;
3328 		}
3329 	}
3330 
3331 	return rc;
3332 }
3333 
3334 /**
3335  *      mv_print_info - Dump key info to kernel log for perusal.
3336  *      @host: ATA host to print info about
3337  *
3338  *      FIXME: complete this.
3339  *
3340  *      LOCKING:
3341  *      Inherited from caller.
3342  */
3343 static void mv_print_info(struct ata_host *host)
3344 {
3345 	struct pci_dev *pdev = to_pci_dev(host->dev);
3346 	struct mv_host_priv *hpriv = host->private_data;
3347 	u8 scc;
3348 	const char *scc_s, *gen;
3349 
3350 	/* Use this to determine the HW stepping of the chip so we know
3351 	 * what errata to workaround
3352 	 */
3353 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3354 	if (scc == 0)
3355 		scc_s = "SCSI";
3356 	else if (scc == 0x01)
3357 		scc_s = "RAID";
3358 	else
3359 		scc_s = "?";
3360 
3361 	if (IS_GEN_I(hpriv))
3362 		gen = "I";
3363 	else if (IS_GEN_II(hpriv))
3364 		gen = "II";
3365 	else if (IS_GEN_IIE(hpriv))
3366 		gen = "IIE";
3367 	else
3368 		gen = "?";
3369 
3370 	dev_printk(KERN_INFO, &pdev->dev,
3371 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3372 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3373 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3374 }
3375 
3376 /**
3377  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
3378  *      @pdev: PCI device found
3379  *      @ent: PCI device ID entry for the matched host
3380  *
3381  *      LOCKING:
3382  *      Inherited from caller.
3383  */
3384 static int mv_pci_init_one(struct pci_dev *pdev,
3385 			   const struct pci_device_id *ent)
3386 {
3387 	static int printed_version;
3388 	unsigned int board_idx = (unsigned int)ent->driver_data;
3389 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3390 	struct ata_host *host;
3391 	struct mv_host_priv *hpriv;
3392 	int n_ports, rc;
3393 
3394 	if (!printed_version++)
3395 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3396 
3397 	/* allocate host */
3398 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3399 
3400 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3401 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3402 	if (!host || !hpriv)
3403 		return -ENOMEM;
3404 	host->private_data = hpriv;
3405 	hpriv->n_ports = n_ports;
3406 
3407 	/* acquire resources */
3408 	rc = pcim_enable_device(pdev);
3409 	if (rc)
3410 		return rc;
3411 
3412 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3413 	if (rc == -EBUSY)
3414 		pcim_pin_device(pdev);
3415 	if (rc)
3416 		return rc;
3417 	host->iomap = pcim_iomap_table(pdev);
3418 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
3419 
3420 	rc = pci_go_64(pdev);
3421 	if (rc)
3422 		return rc;
3423 
3424 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3425 	if (rc)
3426 		return rc;
3427 
3428 	/* initialize adapter */
3429 	rc = mv_init_host(host, board_idx);
3430 	if (rc)
3431 		return rc;
3432 
3433 	/* Enable interrupts */
3434 	if (msi && pci_enable_msi(pdev))
3435 		pci_intx(pdev, 1);
3436 
3437 	mv_dump_pci_cfg(pdev, 0x68);
3438 	mv_print_info(host);
3439 
3440 	pci_set_master(pdev);
3441 	pci_try_set_mwi(pdev);
3442 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3443 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3444 }
3445 #endif
3446 
3447 static int mv_platform_probe(struct platform_device *pdev);
3448 static int __devexit mv_platform_remove(struct platform_device *pdev);
3449 
3450 static int __init mv_init(void)
3451 {
3452 	int rc = -ENODEV;
3453 #ifdef CONFIG_PCI
3454 	rc = pci_register_driver(&mv_pci_driver);
3455 	if (rc < 0)
3456 		return rc;
3457 #endif
3458 	rc = platform_driver_register(&mv_platform_driver);
3459 
3460 #ifdef CONFIG_PCI
3461 	if (rc < 0)
3462 		pci_unregister_driver(&mv_pci_driver);
3463 #endif
3464 	return rc;
3465 }
3466 
3467 static void __exit mv_exit(void)
3468 {
3469 #ifdef CONFIG_PCI
3470 	pci_unregister_driver(&mv_pci_driver);
3471 #endif
3472 	platform_driver_unregister(&mv_platform_driver);
3473 }
3474 
3475 MODULE_AUTHOR("Brett Russ");
3476 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3477 MODULE_LICENSE("GPL");
3478 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3479 MODULE_VERSION(DRV_VERSION);
3480 MODULE_ALIAS("platform:" DRV_NAME);
3481 
3482 #ifdef CONFIG_PCI
3483 module_param(msi, int, 0444);
3484 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3485 #endif
3486 
3487 module_init(mv_init);
3488 module_exit(mv_exit);
3489