xref: /linux/drivers/ata/sata_mv.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <linux/of.h>
69 #include <linux/of_irq.h>
70 #include <scsi/scsi_host.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_device.h>
73 #include <linux/libata.h>
74 
75 #define DRV_NAME	"sata_mv"
76 #define DRV_VERSION	"1.28"
77 
78 /*
79  * module options
80  */
81 
82 #ifdef CONFIG_PCI
83 static int msi;
84 module_param(msi, int, S_IRUGO);
85 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
86 #endif
87 
88 static int irq_coalescing_io_count;
89 module_param(irq_coalescing_io_count, int, S_IRUGO);
90 MODULE_PARM_DESC(irq_coalescing_io_count,
91 		 "IRQ coalescing I/O count threshold (0..255)");
92 
93 static int irq_coalescing_usecs;
94 module_param(irq_coalescing_usecs, int, S_IRUGO);
95 MODULE_PARM_DESC(irq_coalescing_usecs,
96 		 "IRQ coalescing time threshold in usecs");
97 
98 enum {
99 	/* BAR's are enumerated in terms of pci_resource_start() terms */
100 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
101 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
102 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
103 
104 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
105 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
106 
107 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
108 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
109 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
110 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
111 
112 	MV_PCI_REG_BASE		= 0,
113 
114 	/*
115 	 * Per-chip ("all ports") interrupt coalescing feature.
116 	 * This is only for GEN_II / GEN_IIE hardware.
117 	 *
118 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
119 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
120 	 */
121 	COAL_REG_BASE		= 0x18000,
122 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
123 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
124 
125 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
126 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
127 
128 	/*
129 	 * Registers for the (unused here) transaction coalescing feature:
130 	 */
131 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
132 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
133 
134 	SATAHC0_REG_BASE	= 0x20000,
135 	FLASH_CTL		= 0x1046c,
136 	GPIO_PORT_CTL		= 0x104f0,
137 	RESET_CFG		= 0x180d8,
138 
139 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
140 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
141 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
142 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
143 
144 	MV_MAX_Q_DEPTH		= 32,
145 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
146 
147 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
148 	 * CRPB needs alignment on a 256B boundary. Size == 256B
149 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
150 	 */
151 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
152 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
153 	MV_MAX_SG_CT		= 256,
154 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
155 
156 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
157 	MV_PORT_HC_SHIFT	= 2,
158 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
159 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
160 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
161 
162 	/* Host Flags */
163 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
164 
165 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
166 
167 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
168 
169 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
170 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
171 
172 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
173 
174 	CRQB_FLAG_READ		= (1 << 0),
175 	CRQB_TAG_SHIFT		= 1,
176 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
177 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
178 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
179 	CRQB_CMD_ADDR_SHIFT	= 8,
180 	CRQB_CMD_CS		= (0x2 << 11),
181 	CRQB_CMD_LAST		= (1 << 15),
182 
183 	CRPB_FLAG_STATUS_SHIFT	= 8,
184 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
185 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
186 
187 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
188 
189 	/* PCI interface registers */
190 
191 	MV_PCI_COMMAND		= 0xc00,
192 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
193 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
194 
195 	PCI_MAIN_CMD_STS	= 0xd30,
196 	STOP_PCI_MASTER		= (1 << 2),
197 	PCI_MASTER_EMPTY	= (1 << 3),
198 	GLOB_SFT_RST		= (1 << 4),
199 
200 	MV_PCI_MODE		= 0xd00,
201 	MV_PCI_MODE_MASK	= 0x30,
202 
203 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
204 	MV_PCI_DISC_TIMER	= 0xd04,
205 	MV_PCI_MSI_TRIGGER	= 0xc38,
206 	MV_PCI_SERR_MASK	= 0xc28,
207 	MV_PCI_XBAR_TMOUT	= 0x1d04,
208 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
209 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
210 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
211 	MV_PCI_ERR_COMMAND	= 0x1d50,
212 
213 	PCI_IRQ_CAUSE		= 0x1d58,
214 	PCI_IRQ_MASK		= 0x1d5c,
215 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
216 
217 	PCIE_IRQ_CAUSE		= 0x1900,
218 	PCIE_IRQ_MASK		= 0x1910,
219 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
220 
221 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
222 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
223 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
224 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
225 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
226 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
227 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
228 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
229 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
230 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
231 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
232 	PCI_ERR			= (1 << 18),
233 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
234 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
235 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
236 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
237 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
238 	GPIO_INT		= (1 << 22),
239 	SELF_INT		= (1 << 23),
240 	TWSI_INT		= (1 << 24),
241 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
242 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
243 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
244 
245 	/* SATAHC registers */
246 	HC_CFG			= 0x00,
247 
248 	HC_IRQ_CAUSE		= 0x14,
249 	DMA_IRQ			= (1 << 0),	/* shift by port # */
250 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
251 	DEV_IRQ			= (1 << 8),	/* shift by port # */
252 
253 	/*
254 	 * Per-HC (Host-Controller) interrupt coalescing feature.
255 	 * This is present on all chip generations.
256 	 *
257 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
258 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
259 	 */
260 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
261 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
262 
263 	SOC_LED_CTRL		= 0x2c,
264 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
265 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
266 						/*  with dev activity LED */
267 
268 	/* Shadow block registers */
269 	SHD_BLK			= 0x100,
270 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
271 
272 	/* SATA registers */
273 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
274 	SATA_ACTIVE		= 0x350,
275 	FIS_IRQ_CAUSE		= 0x364,
276 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
277 
278 	LTMODE			= 0x30c,	/* requires read-after-write */
279 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
280 
281 	PHY_MODE2		= 0x330,
282 	PHY_MODE3		= 0x310,
283 
284 	PHY_MODE4		= 0x314,	/* requires read-after-write */
285 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
286 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
287 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
288 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
289 
290 	SATA_IFCTL		= 0x344,
291 	SATA_TESTCTL		= 0x348,
292 	SATA_IFSTAT		= 0x34c,
293 	VENDOR_UNIQUE_FIS	= 0x35c,
294 
295 	FISCFG			= 0x360,
296 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
297 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
298 
299 	PHY_MODE9_GEN2		= 0x398,
300 	PHY_MODE9_GEN1		= 0x39c,
301 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
302 
303 	MV5_PHY_MODE		= 0x74,
304 	MV5_LTMODE		= 0x30,
305 	MV5_PHY_CTL		= 0x0C,
306 	SATA_IFCFG		= 0x050,
307 
308 	MV_M2_PREAMP_MASK	= 0x7e0,
309 
310 	/* Port registers */
311 	EDMA_CFG		= 0,
312 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
313 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
314 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
315 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
316 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
317 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
318 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
319 
320 	EDMA_ERR_IRQ_CAUSE	= 0x8,
321 	EDMA_ERR_IRQ_MASK	= 0xc,
322 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
323 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
324 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
325 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
326 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
327 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
328 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
329 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
330 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
331 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
332 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
333 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
334 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
335 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
336 
337 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
338 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
339 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
340 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
341 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
342 
343 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
344 
345 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
346 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
347 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
348 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
349 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
350 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
351 
352 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
353 
354 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
355 	EDMA_ERR_OVERRUN_5	= (1 << 5),
356 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
357 
358 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
359 				  EDMA_ERR_LNK_CTRL_RX_1 |
360 				  EDMA_ERR_LNK_CTRL_RX_3 |
361 				  EDMA_ERR_LNK_CTRL_TX,
362 
363 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
364 				  EDMA_ERR_PRD_PAR |
365 				  EDMA_ERR_DEV_DCON |
366 				  EDMA_ERR_DEV_CON |
367 				  EDMA_ERR_SERR |
368 				  EDMA_ERR_SELF_DIS |
369 				  EDMA_ERR_CRQB_PAR |
370 				  EDMA_ERR_CRPB_PAR |
371 				  EDMA_ERR_INTRL_PAR |
372 				  EDMA_ERR_IORDY |
373 				  EDMA_ERR_LNK_CTRL_RX_2 |
374 				  EDMA_ERR_LNK_DATA_RX |
375 				  EDMA_ERR_LNK_DATA_TX |
376 				  EDMA_ERR_TRANS_PROTO,
377 
378 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
379 				  EDMA_ERR_PRD_PAR |
380 				  EDMA_ERR_DEV_DCON |
381 				  EDMA_ERR_DEV_CON |
382 				  EDMA_ERR_OVERRUN_5 |
383 				  EDMA_ERR_UNDERRUN_5 |
384 				  EDMA_ERR_SELF_DIS_5 |
385 				  EDMA_ERR_CRQB_PAR |
386 				  EDMA_ERR_CRPB_PAR |
387 				  EDMA_ERR_INTRL_PAR |
388 				  EDMA_ERR_IORDY,
389 
390 	EDMA_REQ_Q_BASE_HI	= 0x10,
391 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
392 
393 	EDMA_REQ_Q_OUT_PTR	= 0x18,
394 	EDMA_REQ_Q_PTR_SHIFT	= 5,
395 
396 	EDMA_RSP_Q_BASE_HI	= 0x1c,
397 	EDMA_RSP_Q_IN_PTR	= 0x20,
398 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
399 	EDMA_RSP_Q_PTR_SHIFT	= 3,
400 
401 	EDMA_CMD		= 0x28,		/* EDMA command register */
402 	EDMA_EN			= (1 << 0),	/* enable EDMA */
403 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
404 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
405 
406 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
407 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
408 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
409 
410 	EDMA_IORDY_TMOUT	= 0x34,
411 	EDMA_ARB_CFG		= 0x38,
412 
413 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
414 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
415 
416 	BMDMA_CMD		= 0x224,	/* bmdma command register */
417 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
418 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
419 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
420 
421 	/* Host private flags (hp_flags) */
422 	MV_HP_FLAG_MSI		= (1 << 0),
423 	MV_HP_ERRATA_50XXB0	= (1 << 1),
424 	MV_HP_ERRATA_50XXB2	= (1 << 2),
425 	MV_HP_ERRATA_60X1B2	= (1 << 3),
426 	MV_HP_ERRATA_60X1C0	= (1 << 4),
427 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
428 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
429 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
430 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
431 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
432 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
433 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
434 
435 	/* Port private flags (pp_flags) */
436 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
437 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
438 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
439 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
440 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
441 };
442 
443 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
444 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
445 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
446 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
447 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
448 
449 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
450 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
451 
452 enum {
453 	/* DMA boundary 0xffff is required by the s/g splitting
454 	 * we need on /length/ in mv_fill-sg().
455 	 */
456 	MV_DMA_BOUNDARY		= 0xffffU,
457 
458 	/* mask of register bits containing lower 32 bits
459 	 * of EDMA request queue DMA address
460 	 */
461 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
462 
463 	/* ditto, for response queue */
464 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
465 };
466 
467 enum chip_type {
468 	chip_504x,
469 	chip_508x,
470 	chip_5080,
471 	chip_604x,
472 	chip_608x,
473 	chip_6042,
474 	chip_7042,
475 	chip_soc,
476 };
477 
478 /* Command ReQuest Block: 32B */
479 struct mv_crqb {
480 	__le32			sg_addr;
481 	__le32			sg_addr_hi;
482 	__le16			ctrl_flags;
483 	__le16			ata_cmd[11];
484 };
485 
486 struct mv_crqb_iie {
487 	__le32			addr;
488 	__le32			addr_hi;
489 	__le32			flags;
490 	__le32			len;
491 	__le32			ata_cmd[4];
492 };
493 
494 /* Command ResPonse Block: 8B */
495 struct mv_crpb {
496 	__le16			id;
497 	__le16			flags;
498 	__le32			tmstmp;
499 };
500 
501 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
502 struct mv_sg {
503 	__le32			addr;
504 	__le32			flags_size;
505 	__le32			addr_hi;
506 	__le32			reserved;
507 };
508 
509 /*
510  * We keep a local cache of a few frequently accessed port
511  * registers here, to avoid having to read them (very slow)
512  * when switching between EDMA and non-EDMA modes.
513  */
514 struct mv_cached_regs {
515 	u32			fiscfg;
516 	u32			ltmode;
517 	u32			haltcond;
518 	u32			unknown_rsvd;
519 };
520 
521 struct mv_port_priv {
522 	struct mv_crqb		*crqb;
523 	dma_addr_t		crqb_dma;
524 	struct mv_crpb		*crpb;
525 	dma_addr_t		crpb_dma;
526 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
527 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
528 
529 	unsigned int		req_idx;
530 	unsigned int		resp_idx;
531 
532 	u32			pp_flags;
533 	struct mv_cached_regs	cached;
534 	unsigned int		delayed_eh_pmp_map;
535 };
536 
537 struct mv_port_signal {
538 	u32			amps;
539 	u32			pre;
540 };
541 
542 struct mv_host_priv {
543 	u32			hp_flags;
544 	unsigned int 		board_idx;
545 	u32			main_irq_mask;
546 	struct mv_port_signal	signal[8];
547 	const struct mv_hw_ops	*ops;
548 	int			n_ports;
549 	void __iomem		*base;
550 	void __iomem		*main_irq_cause_addr;
551 	void __iomem		*main_irq_mask_addr;
552 	u32			irq_cause_offset;
553 	u32			irq_mask_offset;
554 	u32			unmask_all_irqs;
555 
556 #if defined(CONFIG_HAVE_CLK)
557 	struct clk		*clk;
558 	struct clk              **port_clks;
559 #endif
560 	/*
561 	 * These consistent DMA memory pools give us guaranteed
562 	 * alignment for hardware-accessed data structures,
563 	 * and less memory waste in accomplishing the alignment.
564 	 */
565 	struct dma_pool		*crqb_pool;
566 	struct dma_pool		*crpb_pool;
567 	struct dma_pool		*sg_tbl_pool;
568 };
569 
570 struct mv_hw_ops {
571 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
572 			   unsigned int port);
573 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
574 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
575 			   void __iomem *mmio);
576 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
577 			unsigned int n_hc);
578 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
579 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
580 };
581 
582 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
583 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
584 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
585 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
586 static int mv_port_start(struct ata_port *ap);
587 static void mv_port_stop(struct ata_port *ap);
588 static int mv_qc_defer(struct ata_queued_cmd *qc);
589 static void mv_qc_prep(struct ata_queued_cmd *qc);
590 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
591 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
592 static int mv_hardreset(struct ata_link *link, unsigned int *class,
593 			unsigned long deadline);
594 static void mv_eh_freeze(struct ata_port *ap);
595 static void mv_eh_thaw(struct ata_port *ap);
596 static void mv6_dev_config(struct ata_device *dev);
597 
598 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
599 			   unsigned int port);
600 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
601 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
602 			   void __iomem *mmio);
603 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
604 			unsigned int n_hc);
605 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
606 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
607 
608 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
609 			   unsigned int port);
610 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
611 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
612 			   void __iomem *mmio);
613 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
614 			unsigned int n_hc);
615 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
616 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
617 				      void __iomem *mmio);
618 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
619 				      void __iomem *mmio);
620 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
621 				  void __iomem *mmio, unsigned int n_hc);
622 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
623 				      void __iomem *mmio);
624 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
625 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
626 				  void __iomem *mmio, unsigned int port);
627 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
628 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
629 			     unsigned int port_no);
630 static int mv_stop_edma(struct ata_port *ap);
631 static int mv_stop_edma_engine(void __iomem *port_mmio);
632 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
633 
634 static void mv_pmp_select(struct ata_port *ap, int pmp);
635 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
636 				unsigned long deadline);
637 static int  mv_softreset(struct ata_link *link, unsigned int *class,
638 				unsigned long deadline);
639 static void mv_pmp_error_handler(struct ata_port *ap);
640 static void mv_process_crpb_entries(struct ata_port *ap,
641 					struct mv_port_priv *pp);
642 
643 static void mv_sff_irq_clear(struct ata_port *ap);
644 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
645 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
646 static void mv_bmdma_start(struct ata_queued_cmd *qc);
647 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
648 static u8   mv_bmdma_status(struct ata_port *ap);
649 static u8 mv_sff_check_status(struct ata_port *ap);
650 
651 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
652  * because we have to allow room for worst case splitting of
653  * PRDs for 64K boundaries in mv_fill_sg().
654  */
655 #ifdef CONFIG_PCI
656 static struct scsi_host_template mv5_sht = {
657 	ATA_BASE_SHT(DRV_NAME),
658 	.sg_tablesize		= MV_MAX_SG_CT / 2,
659 	.dma_boundary		= MV_DMA_BOUNDARY,
660 };
661 #endif
662 static struct scsi_host_template mv6_sht = {
663 	ATA_NCQ_SHT(DRV_NAME),
664 	.can_queue		= MV_MAX_Q_DEPTH - 1,
665 	.sg_tablesize		= MV_MAX_SG_CT / 2,
666 	.dma_boundary		= MV_DMA_BOUNDARY,
667 };
668 
669 static struct ata_port_operations mv5_ops = {
670 	.inherits		= &ata_sff_port_ops,
671 
672 	.lost_interrupt		= ATA_OP_NULL,
673 
674 	.qc_defer		= mv_qc_defer,
675 	.qc_prep		= mv_qc_prep,
676 	.qc_issue		= mv_qc_issue,
677 
678 	.freeze			= mv_eh_freeze,
679 	.thaw			= mv_eh_thaw,
680 	.hardreset		= mv_hardreset,
681 
682 	.scr_read		= mv5_scr_read,
683 	.scr_write		= mv5_scr_write,
684 
685 	.port_start		= mv_port_start,
686 	.port_stop		= mv_port_stop,
687 };
688 
689 static struct ata_port_operations mv6_ops = {
690 	.inherits		= &ata_bmdma_port_ops,
691 
692 	.lost_interrupt		= ATA_OP_NULL,
693 
694 	.qc_defer		= mv_qc_defer,
695 	.qc_prep		= mv_qc_prep,
696 	.qc_issue		= mv_qc_issue,
697 
698 	.dev_config             = mv6_dev_config,
699 
700 	.freeze			= mv_eh_freeze,
701 	.thaw			= mv_eh_thaw,
702 	.hardreset		= mv_hardreset,
703 	.softreset		= mv_softreset,
704 	.pmp_hardreset		= mv_pmp_hardreset,
705 	.pmp_softreset		= mv_softreset,
706 	.error_handler		= mv_pmp_error_handler,
707 
708 	.scr_read		= mv_scr_read,
709 	.scr_write		= mv_scr_write,
710 
711 	.sff_check_status	= mv_sff_check_status,
712 	.sff_irq_clear		= mv_sff_irq_clear,
713 	.check_atapi_dma	= mv_check_atapi_dma,
714 	.bmdma_setup		= mv_bmdma_setup,
715 	.bmdma_start		= mv_bmdma_start,
716 	.bmdma_stop		= mv_bmdma_stop,
717 	.bmdma_status		= mv_bmdma_status,
718 
719 	.port_start		= mv_port_start,
720 	.port_stop		= mv_port_stop,
721 };
722 
723 static struct ata_port_operations mv_iie_ops = {
724 	.inherits		= &mv6_ops,
725 	.dev_config		= ATA_OP_NULL,
726 	.qc_prep		= mv_qc_prep_iie,
727 };
728 
729 static const struct ata_port_info mv_port_info[] = {
730 	{  /* chip_504x */
731 		.flags		= MV_GEN_I_FLAGS,
732 		.pio_mask	= ATA_PIO4,
733 		.udma_mask	= ATA_UDMA6,
734 		.port_ops	= &mv5_ops,
735 	},
736 	{  /* chip_508x */
737 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
738 		.pio_mask	= ATA_PIO4,
739 		.udma_mask	= ATA_UDMA6,
740 		.port_ops	= &mv5_ops,
741 	},
742 	{  /* chip_5080 */
743 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
744 		.pio_mask	= ATA_PIO4,
745 		.udma_mask	= ATA_UDMA6,
746 		.port_ops	= &mv5_ops,
747 	},
748 	{  /* chip_604x */
749 		.flags		= MV_GEN_II_FLAGS,
750 		.pio_mask	= ATA_PIO4,
751 		.udma_mask	= ATA_UDMA6,
752 		.port_ops	= &mv6_ops,
753 	},
754 	{  /* chip_608x */
755 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
756 		.pio_mask	= ATA_PIO4,
757 		.udma_mask	= ATA_UDMA6,
758 		.port_ops	= &mv6_ops,
759 	},
760 	{  /* chip_6042 */
761 		.flags		= MV_GEN_IIE_FLAGS,
762 		.pio_mask	= ATA_PIO4,
763 		.udma_mask	= ATA_UDMA6,
764 		.port_ops	= &mv_iie_ops,
765 	},
766 	{  /* chip_7042 */
767 		.flags		= MV_GEN_IIE_FLAGS,
768 		.pio_mask	= ATA_PIO4,
769 		.udma_mask	= ATA_UDMA6,
770 		.port_ops	= &mv_iie_ops,
771 	},
772 	{  /* chip_soc */
773 		.flags		= MV_GEN_IIE_FLAGS,
774 		.pio_mask	= ATA_PIO4,
775 		.udma_mask	= ATA_UDMA6,
776 		.port_ops	= &mv_iie_ops,
777 	},
778 };
779 
780 static const struct pci_device_id mv_pci_tbl[] = {
781 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
782 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
783 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
784 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
785 	/* RocketRAID 1720/174x have different identifiers */
786 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
787 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
788 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
789 
790 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
791 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
792 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
793 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
794 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
795 
796 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
797 
798 	/* Adaptec 1430SA */
799 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
800 
801 	/* Marvell 7042 support */
802 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
803 
804 	/* Highpoint RocketRAID PCIe series */
805 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
806 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
807 
808 	{ }			/* terminate list */
809 };
810 
811 static const struct mv_hw_ops mv5xxx_ops = {
812 	.phy_errata		= mv5_phy_errata,
813 	.enable_leds		= mv5_enable_leds,
814 	.read_preamp		= mv5_read_preamp,
815 	.reset_hc		= mv5_reset_hc,
816 	.reset_flash		= mv5_reset_flash,
817 	.reset_bus		= mv5_reset_bus,
818 };
819 
820 static const struct mv_hw_ops mv6xxx_ops = {
821 	.phy_errata		= mv6_phy_errata,
822 	.enable_leds		= mv6_enable_leds,
823 	.read_preamp		= mv6_read_preamp,
824 	.reset_hc		= mv6_reset_hc,
825 	.reset_flash		= mv6_reset_flash,
826 	.reset_bus		= mv_reset_pci_bus,
827 };
828 
829 static const struct mv_hw_ops mv_soc_ops = {
830 	.phy_errata		= mv6_phy_errata,
831 	.enable_leds		= mv_soc_enable_leds,
832 	.read_preamp		= mv_soc_read_preamp,
833 	.reset_hc		= mv_soc_reset_hc,
834 	.reset_flash		= mv_soc_reset_flash,
835 	.reset_bus		= mv_soc_reset_bus,
836 };
837 
838 static const struct mv_hw_ops mv_soc_65n_ops = {
839 	.phy_errata		= mv_soc_65n_phy_errata,
840 	.enable_leds		= mv_soc_enable_leds,
841 	.reset_hc		= mv_soc_reset_hc,
842 	.reset_flash		= mv_soc_reset_flash,
843 	.reset_bus		= mv_soc_reset_bus,
844 };
845 
846 /*
847  * Functions
848  */
849 
850 static inline void writelfl(unsigned long data, void __iomem *addr)
851 {
852 	writel(data, addr);
853 	(void) readl(addr);	/* flush to avoid PCI posted write */
854 }
855 
856 static inline unsigned int mv_hc_from_port(unsigned int port)
857 {
858 	return port >> MV_PORT_HC_SHIFT;
859 }
860 
861 static inline unsigned int mv_hardport_from_port(unsigned int port)
862 {
863 	return port & MV_PORT_MASK;
864 }
865 
866 /*
867  * Consolidate some rather tricky bit shift calculations.
868  * This is hot-path stuff, so not a function.
869  * Simple code, with two return values, so macro rather than inline.
870  *
871  * port is the sole input, in range 0..7.
872  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
873  * hardport is the other output, in range 0..3.
874  *
875  * Note that port and hardport may be the same variable in some cases.
876  */
877 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
878 {								\
879 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
880 	hardport = mv_hardport_from_port(port);			\
881 	shift   += hardport * 2;				\
882 }
883 
884 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
885 {
886 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
887 }
888 
889 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
890 						 unsigned int port)
891 {
892 	return mv_hc_base(base, mv_hc_from_port(port));
893 }
894 
895 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
896 {
897 	return  mv_hc_base_from_port(base, port) +
898 		MV_SATAHC_ARBTR_REG_SZ +
899 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
900 }
901 
902 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
903 {
904 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
905 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
906 
907 	return hc_mmio + ofs;
908 }
909 
910 static inline void __iomem *mv_host_base(struct ata_host *host)
911 {
912 	struct mv_host_priv *hpriv = host->private_data;
913 	return hpriv->base;
914 }
915 
916 static inline void __iomem *mv_ap_base(struct ata_port *ap)
917 {
918 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
919 }
920 
921 static inline int mv_get_hc_count(unsigned long port_flags)
922 {
923 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
924 }
925 
926 /**
927  *      mv_save_cached_regs - (re-)initialize cached port registers
928  *      @ap: the port whose registers we are caching
929  *
930  *	Initialize the local cache of port registers,
931  *	so that reading them over and over again can
932  *	be avoided on the hotter paths of this driver.
933  *	This saves a few microseconds each time we switch
934  *	to/from EDMA mode to perform (eg.) a drive cache flush.
935  */
936 static void mv_save_cached_regs(struct ata_port *ap)
937 {
938 	void __iomem *port_mmio = mv_ap_base(ap);
939 	struct mv_port_priv *pp = ap->private_data;
940 
941 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
942 	pp->cached.ltmode = readl(port_mmio + LTMODE);
943 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
944 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
945 }
946 
947 /**
948  *      mv_write_cached_reg - write to a cached port register
949  *      @addr: hardware address of the register
950  *      @old: pointer to cached value of the register
951  *      @new: new value for the register
952  *
953  *	Write a new value to a cached register,
954  *	but only if the value is different from before.
955  */
956 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
957 {
958 	if (new != *old) {
959 		unsigned long laddr;
960 		*old = new;
961 		/*
962 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
963 		 * Read-after-write is needed to prevent generating 64-bit
964 		 * write cycles on the PCI bus for SATA interface registers
965 		 * at offsets ending in 0x4 or 0xc.
966 		 *
967 		 * Looks like a lot of fuss, but it avoids an unnecessary
968 		 * +1 usec read-after-write delay for unaffected registers.
969 		 */
970 		laddr = (long)addr & 0xffff;
971 		if (laddr >= 0x300 && laddr <= 0x33c) {
972 			laddr &= 0x000f;
973 			if (laddr == 0x4 || laddr == 0xc) {
974 				writelfl(new, addr); /* read after write */
975 				return;
976 			}
977 		}
978 		writel(new, addr); /* unaffected by the errata */
979 	}
980 }
981 
982 static void mv_set_edma_ptrs(void __iomem *port_mmio,
983 			     struct mv_host_priv *hpriv,
984 			     struct mv_port_priv *pp)
985 {
986 	u32 index;
987 
988 	/*
989 	 * initialize request queue
990 	 */
991 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
992 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
993 
994 	WARN_ON(pp->crqb_dma & 0x3ff);
995 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
996 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
997 		 port_mmio + EDMA_REQ_Q_IN_PTR);
998 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
999 
1000 	/*
1001 	 * initialize response queue
1002 	 */
1003 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1004 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1005 
1006 	WARN_ON(pp->crpb_dma & 0xff);
1007 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1008 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1009 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1010 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1011 }
1012 
1013 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1014 {
1015 	/*
1016 	 * When writing to the main_irq_mask in hardware,
1017 	 * we must ensure exclusivity between the interrupt coalescing bits
1018 	 * and the corresponding individual port DONE_IRQ bits.
1019 	 *
1020 	 * Note that this register is really an "IRQ enable" register,
1021 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1022 	 */
1023 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1024 		mask &= ~DONE_IRQ_0_3;
1025 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1026 		mask &= ~DONE_IRQ_4_7;
1027 	writelfl(mask, hpriv->main_irq_mask_addr);
1028 }
1029 
1030 static void mv_set_main_irq_mask(struct ata_host *host,
1031 				 u32 disable_bits, u32 enable_bits)
1032 {
1033 	struct mv_host_priv *hpriv = host->private_data;
1034 	u32 old_mask, new_mask;
1035 
1036 	old_mask = hpriv->main_irq_mask;
1037 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1038 	if (new_mask != old_mask) {
1039 		hpriv->main_irq_mask = new_mask;
1040 		mv_write_main_irq_mask(new_mask, hpriv);
1041 	}
1042 }
1043 
1044 static void mv_enable_port_irqs(struct ata_port *ap,
1045 				     unsigned int port_bits)
1046 {
1047 	unsigned int shift, hardport, port = ap->port_no;
1048 	u32 disable_bits, enable_bits;
1049 
1050 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1051 
1052 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1053 	enable_bits  = port_bits << shift;
1054 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1055 }
1056 
1057 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1058 					  void __iomem *port_mmio,
1059 					  unsigned int port_irqs)
1060 {
1061 	struct mv_host_priv *hpriv = ap->host->private_data;
1062 	int hardport = mv_hardport_from_port(ap->port_no);
1063 	void __iomem *hc_mmio = mv_hc_base_from_port(
1064 				mv_host_base(ap->host), ap->port_no);
1065 	u32 hc_irq_cause;
1066 
1067 	/* clear EDMA event indicators, if any */
1068 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1069 
1070 	/* clear pending irq events */
1071 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1072 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1073 
1074 	/* clear FIS IRQ Cause */
1075 	if (IS_GEN_IIE(hpriv))
1076 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1077 
1078 	mv_enable_port_irqs(ap, port_irqs);
1079 }
1080 
1081 static void mv_set_irq_coalescing(struct ata_host *host,
1082 				  unsigned int count, unsigned int usecs)
1083 {
1084 	struct mv_host_priv *hpriv = host->private_data;
1085 	void __iomem *mmio = hpriv->base, *hc_mmio;
1086 	u32 coal_enable = 0;
1087 	unsigned long flags;
1088 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1089 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1090 							ALL_PORTS_COAL_DONE;
1091 
1092 	/* Disable IRQ coalescing if either threshold is zero */
1093 	if (!usecs || !count) {
1094 		clks = count = 0;
1095 	} else {
1096 		/* Respect maximum limits of the hardware */
1097 		clks = usecs * COAL_CLOCKS_PER_USEC;
1098 		if (clks > MAX_COAL_TIME_THRESHOLD)
1099 			clks = MAX_COAL_TIME_THRESHOLD;
1100 		if (count > MAX_COAL_IO_COUNT)
1101 			count = MAX_COAL_IO_COUNT;
1102 	}
1103 
1104 	spin_lock_irqsave(&host->lock, flags);
1105 	mv_set_main_irq_mask(host, coal_disable, 0);
1106 
1107 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1108 		/*
1109 		 * GEN_II/GEN_IIE with dual host controllers:
1110 		 * one set of global thresholds for the entire chip.
1111 		 */
1112 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1113 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1114 		/* clear leftover coal IRQ bit */
1115 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1116 		if (count)
1117 			coal_enable = ALL_PORTS_COAL_DONE;
1118 		clks = count = 0; /* force clearing of regular regs below */
1119 	}
1120 
1121 	/*
1122 	 * All chips: independent thresholds for each HC on the chip.
1123 	 */
1124 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1125 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1126 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1127 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1128 	if (count)
1129 		coal_enable |= PORTS_0_3_COAL_DONE;
1130 	if (is_dual_hc) {
1131 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1132 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1133 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1134 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1135 		if (count)
1136 			coal_enable |= PORTS_4_7_COAL_DONE;
1137 	}
1138 
1139 	mv_set_main_irq_mask(host, 0, coal_enable);
1140 	spin_unlock_irqrestore(&host->lock, flags);
1141 }
1142 
1143 /**
1144  *      mv_start_edma - Enable eDMA engine
1145  *      @base: port base address
1146  *      @pp: port private data
1147  *
1148  *      Verify the local cache of the eDMA state is accurate with a
1149  *      WARN_ON.
1150  *
1151  *      LOCKING:
1152  *      Inherited from caller.
1153  */
1154 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1155 			 struct mv_port_priv *pp, u8 protocol)
1156 {
1157 	int want_ncq = (protocol == ATA_PROT_NCQ);
1158 
1159 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1160 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1161 		if (want_ncq != using_ncq)
1162 			mv_stop_edma(ap);
1163 	}
1164 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1165 		struct mv_host_priv *hpriv = ap->host->private_data;
1166 
1167 		mv_edma_cfg(ap, want_ncq, 1);
1168 
1169 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1170 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1171 
1172 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1173 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1174 	}
1175 }
1176 
1177 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1178 {
1179 	void __iomem *port_mmio = mv_ap_base(ap);
1180 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1181 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1182 	int i;
1183 
1184 	/*
1185 	 * Wait for the EDMA engine to finish transactions in progress.
1186 	 * No idea what a good "timeout" value might be, but measurements
1187 	 * indicate that it often requires hundreds of microseconds
1188 	 * with two drives in-use.  So we use the 15msec value above
1189 	 * as a rough guess at what even more drives might require.
1190 	 */
1191 	for (i = 0; i < timeout; ++i) {
1192 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1193 		if ((edma_stat & empty_idle) == empty_idle)
1194 			break;
1195 		udelay(per_loop);
1196 	}
1197 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1198 }
1199 
1200 /**
1201  *      mv_stop_edma_engine - Disable eDMA engine
1202  *      @port_mmio: io base address
1203  *
1204  *      LOCKING:
1205  *      Inherited from caller.
1206  */
1207 static int mv_stop_edma_engine(void __iomem *port_mmio)
1208 {
1209 	int i;
1210 
1211 	/* Disable eDMA.  The disable bit auto clears. */
1212 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1213 
1214 	/* Wait for the chip to confirm eDMA is off. */
1215 	for (i = 10000; i > 0; i--) {
1216 		u32 reg = readl(port_mmio + EDMA_CMD);
1217 		if (!(reg & EDMA_EN))
1218 			return 0;
1219 		udelay(10);
1220 	}
1221 	return -EIO;
1222 }
1223 
1224 static int mv_stop_edma(struct ata_port *ap)
1225 {
1226 	void __iomem *port_mmio = mv_ap_base(ap);
1227 	struct mv_port_priv *pp = ap->private_data;
1228 	int err = 0;
1229 
1230 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1231 		return 0;
1232 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1233 	mv_wait_for_edma_empty_idle(ap);
1234 	if (mv_stop_edma_engine(port_mmio)) {
1235 		ata_port_err(ap, "Unable to stop eDMA\n");
1236 		err = -EIO;
1237 	}
1238 	mv_edma_cfg(ap, 0, 0);
1239 	return err;
1240 }
1241 
1242 #ifdef ATA_DEBUG
1243 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1244 {
1245 	int b, w;
1246 	for (b = 0; b < bytes; ) {
1247 		DPRINTK("%p: ", start + b);
1248 		for (w = 0; b < bytes && w < 4; w++) {
1249 			printk("%08x ", readl(start + b));
1250 			b += sizeof(u32);
1251 		}
1252 		printk("\n");
1253 	}
1254 }
1255 #endif
1256 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1257 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1258 {
1259 #ifdef ATA_DEBUG
1260 	int b, w;
1261 	u32 dw;
1262 	for (b = 0; b < bytes; ) {
1263 		DPRINTK("%02x: ", b);
1264 		for (w = 0; b < bytes && w < 4; w++) {
1265 			(void) pci_read_config_dword(pdev, b, &dw);
1266 			printk("%08x ", dw);
1267 			b += sizeof(u32);
1268 		}
1269 		printk("\n");
1270 	}
1271 #endif
1272 }
1273 #endif
1274 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1275 			     struct pci_dev *pdev)
1276 {
1277 #ifdef ATA_DEBUG
1278 	void __iomem *hc_base = mv_hc_base(mmio_base,
1279 					   port >> MV_PORT_HC_SHIFT);
1280 	void __iomem *port_base;
1281 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1282 
1283 	if (0 > port) {
1284 		start_hc = start_port = 0;
1285 		num_ports = 8;		/* shld be benign for 4 port devs */
1286 		num_hcs = 2;
1287 	} else {
1288 		start_hc = port >> MV_PORT_HC_SHIFT;
1289 		start_port = port;
1290 		num_ports = num_hcs = 1;
1291 	}
1292 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1293 		num_ports > 1 ? num_ports - 1 : start_port);
1294 
1295 	if (NULL != pdev) {
1296 		DPRINTK("PCI config space regs:\n");
1297 		mv_dump_pci_cfg(pdev, 0x68);
1298 	}
1299 	DPRINTK("PCI regs:\n");
1300 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1301 	mv_dump_mem(mmio_base+0xd00, 0x34);
1302 	mv_dump_mem(mmio_base+0xf00, 0x4);
1303 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1304 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1305 		hc_base = mv_hc_base(mmio_base, hc);
1306 		DPRINTK("HC regs (HC %i):\n", hc);
1307 		mv_dump_mem(hc_base, 0x1c);
1308 	}
1309 	for (p = start_port; p < start_port + num_ports; p++) {
1310 		port_base = mv_port_base(mmio_base, p);
1311 		DPRINTK("EDMA regs (port %i):\n", p);
1312 		mv_dump_mem(port_base, 0x54);
1313 		DPRINTK("SATA regs (port %i):\n", p);
1314 		mv_dump_mem(port_base+0x300, 0x60);
1315 	}
1316 #endif
1317 }
1318 
1319 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1320 {
1321 	unsigned int ofs;
1322 
1323 	switch (sc_reg_in) {
1324 	case SCR_STATUS:
1325 	case SCR_CONTROL:
1326 	case SCR_ERROR:
1327 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1328 		break;
1329 	case SCR_ACTIVE:
1330 		ofs = SATA_ACTIVE;   /* active is not with the others */
1331 		break;
1332 	default:
1333 		ofs = 0xffffffffU;
1334 		break;
1335 	}
1336 	return ofs;
1337 }
1338 
1339 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1340 {
1341 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1342 
1343 	if (ofs != 0xffffffffU) {
1344 		*val = readl(mv_ap_base(link->ap) + ofs);
1345 		return 0;
1346 	} else
1347 		return -EINVAL;
1348 }
1349 
1350 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1351 {
1352 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1353 
1354 	if (ofs != 0xffffffffU) {
1355 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1356 		if (sc_reg_in == SCR_CONTROL) {
1357 			/*
1358 			 * Workaround for 88SX60x1 FEr SATA#26:
1359 			 *
1360 			 * COMRESETs have to take care not to accidentally
1361 			 * put the drive to sleep when writing SCR_CONTROL.
1362 			 * Setting bits 12..15 prevents this problem.
1363 			 *
1364 			 * So if we see an outbound COMMRESET, set those bits.
1365 			 * Ditto for the followup write that clears the reset.
1366 			 *
1367 			 * The proprietary driver does this for
1368 			 * all chip versions, and so do we.
1369 			 */
1370 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1371 				val |= 0xf000;
1372 		}
1373 		writelfl(val, addr);
1374 		return 0;
1375 	} else
1376 		return -EINVAL;
1377 }
1378 
1379 static void mv6_dev_config(struct ata_device *adev)
1380 {
1381 	/*
1382 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1383 	 *
1384 	 * Gen-II does not support NCQ over a port multiplier
1385 	 *  (no FIS-based switching).
1386 	 */
1387 	if (adev->flags & ATA_DFLAG_NCQ) {
1388 		if (sata_pmp_attached(adev->link->ap)) {
1389 			adev->flags &= ~ATA_DFLAG_NCQ;
1390 			ata_dev_info(adev,
1391 				"NCQ disabled for command-based switching\n");
1392 		}
1393 	}
1394 }
1395 
1396 static int mv_qc_defer(struct ata_queued_cmd *qc)
1397 {
1398 	struct ata_link *link = qc->dev->link;
1399 	struct ata_port *ap = link->ap;
1400 	struct mv_port_priv *pp = ap->private_data;
1401 
1402 	/*
1403 	 * Don't allow new commands if we're in a delayed EH state
1404 	 * for NCQ and/or FIS-based switching.
1405 	 */
1406 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1407 		return ATA_DEFER_PORT;
1408 
1409 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1410 	 * can run concurrently.
1411 	 * set excl_link when we want to send a PIO command in DMA mode
1412 	 * or a non-NCQ command in NCQ mode.
1413 	 * When we receive a command from that link, and there are no
1414 	 * outstanding commands, mark a flag to clear excl_link and let
1415 	 * the command go through.
1416 	 */
1417 	if (unlikely(ap->excl_link)) {
1418 		if (link == ap->excl_link) {
1419 			if (ap->nr_active_links)
1420 				return ATA_DEFER_PORT;
1421 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1422 			return 0;
1423 		} else
1424 			return ATA_DEFER_PORT;
1425 	}
1426 
1427 	/*
1428 	 * If the port is completely idle, then allow the new qc.
1429 	 */
1430 	if (ap->nr_active_links == 0)
1431 		return 0;
1432 
1433 	/*
1434 	 * The port is operating in host queuing mode (EDMA) with NCQ
1435 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1436 	 * queueing multiple DMA commands but libata core currently
1437 	 * doesn't allow it.
1438 	 */
1439 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1440 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1441 		if (ata_is_ncq(qc->tf.protocol))
1442 			return 0;
1443 		else {
1444 			ap->excl_link = link;
1445 			return ATA_DEFER_PORT;
1446 		}
1447 	}
1448 
1449 	return ATA_DEFER_PORT;
1450 }
1451 
1452 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1453 {
1454 	struct mv_port_priv *pp = ap->private_data;
1455 	void __iomem *port_mmio;
1456 
1457 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1458 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1459 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1460 
1461 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1462 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1463 
1464 	if (want_fbs) {
1465 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1466 		ltmode = *old_ltmode | LTMODE_BIT8;
1467 		if (want_ncq)
1468 			haltcond &= ~EDMA_ERR_DEV;
1469 		else
1470 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1471 	} else {
1472 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1473 	}
1474 
1475 	port_mmio = mv_ap_base(ap);
1476 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1477 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1478 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1479 }
1480 
1481 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1482 {
1483 	struct mv_host_priv *hpriv = ap->host->private_data;
1484 	u32 old, new;
1485 
1486 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1487 	old = readl(hpriv->base + GPIO_PORT_CTL);
1488 	if (want_ncq)
1489 		new = old | (1 << 22);
1490 	else
1491 		new = old & ~(1 << 22);
1492 	if (new != old)
1493 		writel(new, hpriv->base + GPIO_PORT_CTL);
1494 }
1495 
1496 /**
1497  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1498  *	@ap: Port being initialized
1499  *
1500  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1501  *
1502  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1503  *	of basic DMA on the GEN_IIE versions of the chips.
1504  *
1505  *	This bit survives EDMA resets, and must be set for basic DMA
1506  *	to function, and should be cleared when EDMA is active.
1507  */
1508 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1509 {
1510 	struct mv_port_priv *pp = ap->private_data;
1511 	u32 new, *old = &pp->cached.unknown_rsvd;
1512 
1513 	if (enable_bmdma)
1514 		new = *old | 1;
1515 	else
1516 		new = *old & ~1;
1517 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1518 }
1519 
1520 /*
1521  * SOC chips have an issue whereby the HDD LEDs don't always blink
1522  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1523  * of the SOC takes care of it, generating a steady blink rate when
1524  * any drive on the chip is active.
1525  *
1526  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1527  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1528  *
1529  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1530  * LED operation works then, and provides better (more accurate) feedback.
1531  *
1532  * Note that this code assumes that an SOC never has more than one HC onboard.
1533  */
1534 static void mv_soc_led_blink_enable(struct ata_port *ap)
1535 {
1536 	struct ata_host *host = ap->host;
1537 	struct mv_host_priv *hpriv = host->private_data;
1538 	void __iomem *hc_mmio;
1539 	u32 led_ctrl;
1540 
1541 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1542 		return;
1543 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1544 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1545 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1546 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1547 }
1548 
1549 static void mv_soc_led_blink_disable(struct ata_port *ap)
1550 {
1551 	struct ata_host *host = ap->host;
1552 	struct mv_host_priv *hpriv = host->private_data;
1553 	void __iomem *hc_mmio;
1554 	u32 led_ctrl;
1555 	unsigned int port;
1556 
1557 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1558 		return;
1559 
1560 	/* disable led-blink only if no ports are using NCQ */
1561 	for (port = 0; port < hpriv->n_ports; port++) {
1562 		struct ata_port *this_ap = host->ports[port];
1563 		struct mv_port_priv *pp = this_ap->private_data;
1564 
1565 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1566 			return;
1567 	}
1568 
1569 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1570 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1571 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1572 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1573 }
1574 
1575 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1576 {
1577 	u32 cfg;
1578 	struct mv_port_priv *pp    = ap->private_data;
1579 	struct mv_host_priv *hpriv = ap->host->private_data;
1580 	void __iomem *port_mmio    = mv_ap_base(ap);
1581 
1582 	/* set up non-NCQ EDMA configuration */
1583 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1584 	pp->pp_flags &=
1585 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1586 
1587 	if (IS_GEN_I(hpriv))
1588 		cfg |= (1 << 8);	/* enab config burst size mask */
1589 
1590 	else if (IS_GEN_II(hpriv)) {
1591 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1592 		mv_60x1_errata_sata25(ap, want_ncq);
1593 
1594 	} else if (IS_GEN_IIE(hpriv)) {
1595 		int want_fbs = sata_pmp_attached(ap);
1596 		/*
1597 		 * Possible future enhancement:
1598 		 *
1599 		 * The chip can use FBS with non-NCQ, if we allow it,
1600 		 * But first we need to have the error handling in place
1601 		 * for this mode (datasheet section 7.3.15.4.2.3).
1602 		 * So disallow non-NCQ FBS for now.
1603 		 */
1604 		want_fbs &= want_ncq;
1605 
1606 		mv_config_fbs(ap, want_ncq, want_fbs);
1607 
1608 		if (want_fbs) {
1609 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1610 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1611 		}
1612 
1613 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1614 		if (want_edma) {
1615 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1616 			if (!IS_SOC(hpriv))
1617 				cfg |= (1 << 18); /* enab early completion */
1618 		}
1619 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1620 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1621 		mv_bmdma_enable_iie(ap, !want_edma);
1622 
1623 		if (IS_SOC(hpriv)) {
1624 			if (want_ncq)
1625 				mv_soc_led_blink_enable(ap);
1626 			else
1627 				mv_soc_led_blink_disable(ap);
1628 		}
1629 	}
1630 
1631 	if (want_ncq) {
1632 		cfg |= EDMA_CFG_NCQ;
1633 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1634 	}
1635 
1636 	writelfl(cfg, port_mmio + EDMA_CFG);
1637 }
1638 
1639 static void mv_port_free_dma_mem(struct ata_port *ap)
1640 {
1641 	struct mv_host_priv *hpriv = ap->host->private_data;
1642 	struct mv_port_priv *pp = ap->private_data;
1643 	int tag;
1644 
1645 	if (pp->crqb) {
1646 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1647 		pp->crqb = NULL;
1648 	}
1649 	if (pp->crpb) {
1650 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1651 		pp->crpb = NULL;
1652 	}
1653 	/*
1654 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1655 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1656 	 */
1657 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1658 		if (pp->sg_tbl[tag]) {
1659 			if (tag == 0 || !IS_GEN_I(hpriv))
1660 				dma_pool_free(hpriv->sg_tbl_pool,
1661 					      pp->sg_tbl[tag],
1662 					      pp->sg_tbl_dma[tag]);
1663 			pp->sg_tbl[tag] = NULL;
1664 		}
1665 	}
1666 }
1667 
1668 /**
1669  *      mv_port_start - Port specific init/start routine.
1670  *      @ap: ATA channel to manipulate
1671  *
1672  *      Allocate and point to DMA memory, init port private memory,
1673  *      zero indices.
1674  *
1675  *      LOCKING:
1676  *      Inherited from caller.
1677  */
1678 static int mv_port_start(struct ata_port *ap)
1679 {
1680 	struct device *dev = ap->host->dev;
1681 	struct mv_host_priv *hpriv = ap->host->private_data;
1682 	struct mv_port_priv *pp;
1683 	unsigned long flags;
1684 	int tag;
1685 
1686 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1687 	if (!pp)
1688 		return -ENOMEM;
1689 	ap->private_data = pp;
1690 
1691 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1692 	if (!pp->crqb)
1693 		return -ENOMEM;
1694 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1695 
1696 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1697 	if (!pp->crpb)
1698 		goto out_port_free_dma_mem;
1699 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1700 
1701 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1702 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1703 		ap->flags |= ATA_FLAG_AN;
1704 	/*
1705 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1706 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1707 	 */
1708 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1709 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1710 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1711 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1712 			if (!pp->sg_tbl[tag])
1713 				goto out_port_free_dma_mem;
1714 		} else {
1715 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1716 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1717 		}
1718 	}
1719 
1720 	spin_lock_irqsave(ap->lock, flags);
1721 	mv_save_cached_regs(ap);
1722 	mv_edma_cfg(ap, 0, 0);
1723 	spin_unlock_irqrestore(ap->lock, flags);
1724 
1725 	return 0;
1726 
1727 out_port_free_dma_mem:
1728 	mv_port_free_dma_mem(ap);
1729 	return -ENOMEM;
1730 }
1731 
1732 /**
1733  *      mv_port_stop - Port specific cleanup/stop routine.
1734  *      @ap: ATA channel to manipulate
1735  *
1736  *      Stop DMA, cleanup port memory.
1737  *
1738  *      LOCKING:
1739  *      This routine uses the host lock to protect the DMA stop.
1740  */
1741 static void mv_port_stop(struct ata_port *ap)
1742 {
1743 	unsigned long flags;
1744 
1745 	spin_lock_irqsave(ap->lock, flags);
1746 	mv_stop_edma(ap);
1747 	mv_enable_port_irqs(ap, 0);
1748 	spin_unlock_irqrestore(ap->lock, flags);
1749 	mv_port_free_dma_mem(ap);
1750 }
1751 
1752 /**
1753  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1754  *      @qc: queued command whose SG list to source from
1755  *
1756  *      Populate the SG list and mark the last entry.
1757  *
1758  *      LOCKING:
1759  *      Inherited from caller.
1760  */
1761 static void mv_fill_sg(struct ata_queued_cmd *qc)
1762 {
1763 	struct mv_port_priv *pp = qc->ap->private_data;
1764 	struct scatterlist *sg;
1765 	struct mv_sg *mv_sg, *last_sg = NULL;
1766 	unsigned int si;
1767 
1768 	mv_sg = pp->sg_tbl[qc->tag];
1769 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1770 		dma_addr_t addr = sg_dma_address(sg);
1771 		u32 sg_len = sg_dma_len(sg);
1772 
1773 		while (sg_len) {
1774 			u32 offset = addr & 0xffff;
1775 			u32 len = sg_len;
1776 
1777 			if (offset + len > 0x10000)
1778 				len = 0x10000 - offset;
1779 
1780 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1781 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1782 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1783 			mv_sg->reserved = 0;
1784 
1785 			sg_len -= len;
1786 			addr += len;
1787 
1788 			last_sg = mv_sg;
1789 			mv_sg++;
1790 		}
1791 	}
1792 
1793 	if (likely(last_sg))
1794 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1795 	mb(); /* ensure data structure is visible to the chipset */
1796 }
1797 
1798 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1799 {
1800 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1801 		(last ? CRQB_CMD_LAST : 0);
1802 	*cmdw = cpu_to_le16(tmp);
1803 }
1804 
1805 /**
1806  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1807  *	@ap: Port associated with this ATA transaction.
1808  *
1809  *	We need this only for ATAPI bmdma transactions,
1810  *	as otherwise we experience spurious interrupts
1811  *	after libata-sff handles the bmdma interrupts.
1812  */
1813 static void mv_sff_irq_clear(struct ata_port *ap)
1814 {
1815 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1816 }
1817 
1818 /**
1819  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1820  *	@qc: queued command to check for chipset/DMA compatibility.
1821  *
1822  *	The bmdma engines cannot handle speculative data sizes
1823  *	(bytecount under/over flow).  So only allow DMA for
1824  *	data transfer commands with known data sizes.
1825  *
1826  *	LOCKING:
1827  *	Inherited from caller.
1828  */
1829 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1830 {
1831 	struct scsi_cmnd *scmd = qc->scsicmd;
1832 
1833 	if (scmd) {
1834 		switch (scmd->cmnd[0]) {
1835 		case READ_6:
1836 		case READ_10:
1837 		case READ_12:
1838 		case WRITE_6:
1839 		case WRITE_10:
1840 		case WRITE_12:
1841 		case GPCMD_READ_CD:
1842 		case GPCMD_SEND_DVD_STRUCTURE:
1843 		case GPCMD_SEND_CUE_SHEET:
1844 			return 0; /* DMA is safe */
1845 		}
1846 	}
1847 	return -EOPNOTSUPP; /* use PIO instead */
1848 }
1849 
1850 /**
1851  *	mv_bmdma_setup - Set up BMDMA transaction
1852  *	@qc: queued command to prepare DMA for.
1853  *
1854  *	LOCKING:
1855  *	Inherited from caller.
1856  */
1857 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1858 {
1859 	struct ata_port *ap = qc->ap;
1860 	void __iomem *port_mmio = mv_ap_base(ap);
1861 	struct mv_port_priv *pp = ap->private_data;
1862 
1863 	mv_fill_sg(qc);
1864 
1865 	/* clear all DMA cmd bits */
1866 	writel(0, port_mmio + BMDMA_CMD);
1867 
1868 	/* load PRD table addr. */
1869 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1870 		port_mmio + BMDMA_PRD_HIGH);
1871 	writelfl(pp->sg_tbl_dma[qc->tag],
1872 		port_mmio + BMDMA_PRD_LOW);
1873 
1874 	/* issue r/w command */
1875 	ap->ops->sff_exec_command(ap, &qc->tf);
1876 }
1877 
1878 /**
1879  *	mv_bmdma_start - Start a BMDMA transaction
1880  *	@qc: queued command to start DMA on.
1881  *
1882  *	LOCKING:
1883  *	Inherited from caller.
1884  */
1885 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1886 {
1887 	struct ata_port *ap = qc->ap;
1888 	void __iomem *port_mmio = mv_ap_base(ap);
1889 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1890 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1891 
1892 	/* start host DMA transaction */
1893 	writelfl(cmd, port_mmio + BMDMA_CMD);
1894 }
1895 
1896 /**
1897  *	mv_bmdma_stop - Stop BMDMA transfer
1898  *	@qc: queued command to stop DMA on.
1899  *
1900  *	Clears the ATA_DMA_START flag in the bmdma control register
1901  *
1902  *	LOCKING:
1903  *	Inherited from caller.
1904  */
1905 static void mv_bmdma_stop_ap(struct ata_port *ap)
1906 {
1907 	void __iomem *port_mmio = mv_ap_base(ap);
1908 	u32 cmd;
1909 
1910 	/* clear start/stop bit */
1911 	cmd = readl(port_mmio + BMDMA_CMD);
1912 	if (cmd & ATA_DMA_START) {
1913 		cmd &= ~ATA_DMA_START;
1914 		writelfl(cmd, port_mmio + BMDMA_CMD);
1915 
1916 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1917 		ata_sff_dma_pause(ap);
1918 	}
1919 }
1920 
1921 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1922 {
1923 	mv_bmdma_stop_ap(qc->ap);
1924 }
1925 
1926 /**
1927  *	mv_bmdma_status - Read BMDMA status
1928  *	@ap: port for which to retrieve DMA status.
1929  *
1930  *	Read and return equivalent of the sff BMDMA status register.
1931  *
1932  *	LOCKING:
1933  *	Inherited from caller.
1934  */
1935 static u8 mv_bmdma_status(struct ata_port *ap)
1936 {
1937 	void __iomem *port_mmio = mv_ap_base(ap);
1938 	u32 reg, status;
1939 
1940 	/*
1941 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1942 	 * and the ATA_DMA_INTR bit doesn't exist.
1943 	 */
1944 	reg = readl(port_mmio + BMDMA_STATUS);
1945 	if (reg & ATA_DMA_ACTIVE)
1946 		status = ATA_DMA_ACTIVE;
1947 	else if (reg & ATA_DMA_ERR)
1948 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1949 	else {
1950 		/*
1951 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1952 		 * this does _not_ mean the device is "done".
1953 		 * So we should not yet be signalling ATA_DMA_INTR
1954 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1955 		 */
1956 		mv_bmdma_stop_ap(ap);
1957 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1958 			status = 0;
1959 		else
1960 			status = ATA_DMA_INTR;
1961 	}
1962 	return status;
1963 }
1964 
1965 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1966 {
1967 	struct ata_taskfile *tf = &qc->tf;
1968 	/*
1969 	 * Workaround for 88SX60x1 FEr SATA#24.
1970 	 *
1971 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1972 	 * Note that READs are unaffected.
1973 	 *
1974 	 * It's not clear if this errata really means "4K bytes",
1975 	 * or if it always happens for multi_count > 7
1976 	 * regardless of device sector_size.
1977 	 *
1978 	 * So, for safety, any write with multi_count > 7
1979 	 * gets converted here into a regular PIO write instead:
1980 	 */
1981 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1982 		if (qc->dev->multi_count > 7) {
1983 			switch (tf->command) {
1984 			case ATA_CMD_WRITE_MULTI:
1985 				tf->command = ATA_CMD_PIO_WRITE;
1986 				break;
1987 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1988 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1989 				/* fall through */
1990 			case ATA_CMD_WRITE_MULTI_EXT:
1991 				tf->command = ATA_CMD_PIO_WRITE_EXT;
1992 				break;
1993 			}
1994 		}
1995 	}
1996 }
1997 
1998 /**
1999  *      mv_qc_prep - Host specific command preparation.
2000  *      @qc: queued command to prepare
2001  *
2002  *      This routine simply redirects to the general purpose routine
2003  *      if command is not DMA.  Else, it handles prep of the CRQB
2004  *      (command request block), does some sanity checking, and calls
2005  *      the SG load routine.
2006  *
2007  *      LOCKING:
2008  *      Inherited from caller.
2009  */
2010 static void mv_qc_prep(struct ata_queued_cmd *qc)
2011 {
2012 	struct ata_port *ap = qc->ap;
2013 	struct mv_port_priv *pp = ap->private_data;
2014 	__le16 *cw;
2015 	struct ata_taskfile *tf = &qc->tf;
2016 	u16 flags = 0;
2017 	unsigned in_index;
2018 
2019 	switch (tf->protocol) {
2020 	case ATA_PROT_DMA:
2021 		if (tf->command == ATA_CMD_DSM)
2022 			return;
2023 		/* fall-thru */
2024 	case ATA_PROT_NCQ:
2025 		break;	/* continue below */
2026 	case ATA_PROT_PIO:
2027 		mv_rw_multi_errata_sata24(qc);
2028 		return;
2029 	default:
2030 		return;
2031 	}
2032 
2033 	/* Fill in command request block
2034 	 */
2035 	if (!(tf->flags & ATA_TFLAG_WRITE))
2036 		flags |= CRQB_FLAG_READ;
2037 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2038 	flags |= qc->tag << CRQB_TAG_SHIFT;
2039 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2040 
2041 	/* get current queue index from software */
2042 	in_index = pp->req_idx;
2043 
2044 	pp->crqb[in_index].sg_addr =
2045 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2046 	pp->crqb[in_index].sg_addr_hi =
2047 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2048 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2049 
2050 	cw = &pp->crqb[in_index].ata_cmd[0];
2051 
2052 	/* Sadly, the CRQB cannot accommodate all registers--there are
2053 	 * only 11 bytes...so we must pick and choose required
2054 	 * registers based on the command.  So, we drop feature and
2055 	 * hob_feature for [RW] DMA commands, but they are needed for
2056 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2057 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2058 	 */
2059 	switch (tf->command) {
2060 	case ATA_CMD_READ:
2061 	case ATA_CMD_READ_EXT:
2062 	case ATA_CMD_WRITE:
2063 	case ATA_CMD_WRITE_EXT:
2064 	case ATA_CMD_WRITE_FUA_EXT:
2065 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2066 		break;
2067 	case ATA_CMD_FPDMA_READ:
2068 	case ATA_CMD_FPDMA_WRITE:
2069 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2070 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2071 		break;
2072 	default:
2073 		/* The only other commands EDMA supports in non-queued and
2074 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2075 		 * of which are defined/used by Linux.  If we get here, this
2076 		 * driver needs work.
2077 		 *
2078 		 * FIXME: modify libata to give qc_prep a return value and
2079 		 * return error here.
2080 		 */
2081 		BUG_ON(tf->command);
2082 		break;
2083 	}
2084 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2085 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2086 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2087 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2088 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2089 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2090 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2091 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2092 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2093 
2094 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2095 		return;
2096 	mv_fill_sg(qc);
2097 }
2098 
2099 /**
2100  *      mv_qc_prep_iie - Host specific command preparation.
2101  *      @qc: queued command to prepare
2102  *
2103  *      This routine simply redirects to the general purpose routine
2104  *      if command is not DMA.  Else, it handles prep of the CRQB
2105  *      (command request block), does some sanity checking, and calls
2106  *      the SG load routine.
2107  *
2108  *      LOCKING:
2109  *      Inherited from caller.
2110  */
2111 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2112 {
2113 	struct ata_port *ap = qc->ap;
2114 	struct mv_port_priv *pp = ap->private_data;
2115 	struct mv_crqb_iie *crqb;
2116 	struct ata_taskfile *tf = &qc->tf;
2117 	unsigned in_index;
2118 	u32 flags = 0;
2119 
2120 	if ((tf->protocol != ATA_PROT_DMA) &&
2121 	    (tf->protocol != ATA_PROT_NCQ))
2122 		return;
2123 	if (tf->command == ATA_CMD_DSM)
2124 		return;  /* use bmdma for this */
2125 
2126 	/* Fill in Gen IIE command request block */
2127 	if (!(tf->flags & ATA_TFLAG_WRITE))
2128 		flags |= CRQB_FLAG_READ;
2129 
2130 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2131 	flags |= qc->tag << CRQB_TAG_SHIFT;
2132 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2133 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2134 
2135 	/* get current queue index from software */
2136 	in_index = pp->req_idx;
2137 
2138 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2139 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2140 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2141 	crqb->flags = cpu_to_le32(flags);
2142 
2143 	crqb->ata_cmd[0] = cpu_to_le32(
2144 			(tf->command << 16) |
2145 			(tf->feature << 24)
2146 		);
2147 	crqb->ata_cmd[1] = cpu_to_le32(
2148 			(tf->lbal << 0) |
2149 			(tf->lbam << 8) |
2150 			(tf->lbah << 16) |
2151 			(tf->device << 24)
2152 		);
2153 	crqb->ata_cmd[2] = cpu_to_le32(
2154 			(tf->hob_lbal << 0) |
2155 			(tf->hob_lbam << 8) |
2156 			(tf->hob_lbah << 16) |
2157 			(tf->hob_feature << 24)
2158 		);
2159 	crqb->ata_cmd[3] = cpu_to_le32(
2160 			(tf->nsect << 0) |
2161 			(tf->hob_nsect << 8)
2162 		);
2163 
2164 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2165 		return;
2166 	mv_fill_sg(qc);
2167 }
2168 
2169 /**
2170  *	mv_sff_check_status - fetch device status, if valid
2171  *	@ap: ATA port to fetch status from
2172  *
2173  *	When using command issue via mv_qc_issue_fis(),
2174  *	the initial ATA_BUSY state does not show up in the
2175  *	ATA status (shadow) register.  This can confuse libata!
2176  *
2177  *	So we have a hook here to fake ATA_BUSY for that situation,
2178  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2179  *
2180  *	The rest of the time, it simply returns the ATA status register.
2181  */
2182 static u8 mv_sff_check_status(struct ata_port *ap)
2183 {
2184 	u8 stat = ioread8(ap->ioaddr.status_addr);
2185 	struct mv_port_priv *pp = ap->private_data;
2186 
2187 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2188 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2189 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2190 		else
2191 			stat = ATA_BUSY;
2192 	}
2193 	return stat;
2194 }
2195 
2196 /**
2197  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2198  *	@fis: fis to be sent
2199  *	@nwords: number of 32-bit words in the fis
2200  */
2201 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2202 {
2203 	void __iomem *port_mmio = mv_ap_base(ap);
2204 	u32 ifctl, old_ifctl, ifstat;
2205 	int i, timeout = 200, final_word = nwords - 1;
2206 
2207 	/* Initiate FIS transmission mode */
2208 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2209 	ifctl = 0x100 | (old_ifctl & 0xf);
2210 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2211 
2212 	/* Send all words of the FIS except for the final word */
2213 	for (i = 0; i < final_word; ++i)
2214 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2215 
2216 	/* Flag end-of-transmission, and then send the final word */
2217 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2218 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2219 
2220 	/*
2221 	 * Wait for FIS transmission to complete.
2222 	 * This typically takes just a single iteration.
2223 	 */
2224 	do {
2225 		ifstat = readl(port_mmio + SATA_IFSTAT);
2226 	} while (!(ifstat & 0x1000) && --timeout);
2227 
2228 	/* Restore original port configuration */
2229 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2230 
2231 	/* See if it worked */
2232 	if ((ifstat & 0x3000) != 0x1000) {
2233 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2234 			      __func__, ifstat);
2235 		return AC_ERR_OTHER;
2236 	}
2237 	return 0;
2238 }
2239 
2240 /**
2241  *	mv_qc_issue_fis - Issue a command directly as a FIS
2242  *	@qc: queued command to start
2243  *
2244  *	Note that the ATA shadow registers are not updated
2245  *	after command issue, so the device will appear "READY"
2246  *	if polled, even while it is BUSY processing the command.
2247  *
2248  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2249  *
2250  *	Note: we don't get updated shadow regs on *completion*
2251  *	of non-data commands. So avoid sending them via this function,
2252  *	as they will appear to have completed immediately.
2253  *
2254  *	GEN_IIE has special registers that we could get the result tf from,
2255  *	but earlier chipsets do not.  For now, we ignore those registers.
2256  */
2257 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2258 {
2259 	struct ata_port *ap = qc->ap;
2260 	struct mv_port_priv *pp = ap->private_data;
2261 	struct ata_link *link = qc->dev->link;
2262 	u32 fis[5];
2263 	int err = 0;
2264 
2265 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2266 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2267 	if (err)
2268 		return err;
2269 
2270 	switch (qc->tf.protocol) {
2271 	case ATAPI_PROT_PIO:
2272 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2273 		/* fall through */
2274 	case ATAPI_PROT_NODATA:
2275 		ap->hsm_task_state = HSM_ST_FIRST;
2276 		break;
2277 	case ATA_PROT_PIO:
2278 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2279 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2280 			ap->hsm_task_state = HSM_ST_FIRST;
2281 		else
2282 			ap->hsm_task_state = HSM_ST;
2283 		break;
2284 	default:
2285 		ap->hsm_task_state = HSM_ST_LAST;
2286 		break;
2287 	}
2288 
2289 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2290 		ata_sff_queue_pio_task(link, 0);
2291 	return 0;
2292 }
2293 
2294 /**
2295  *      mv_qc_issue - Initiate a command to the host
2296  *      @qc: queued command to start
2297  *
2298  *      This routine simply redirects to the general purpose routine
2299  *      if command is not DMA.  Else, it sanity checks our local
2300  *      caches of the request producer/consumer indices then enables
2301  *      DMA and bumps the request producer index.
2302  *
2303  *      LOCKING:
2304  *      Inherited from caller.
2305  */
2306 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2307 {
2308 	static int limit_warnings = 10;
2309 	struct ata_port *ap = qc->ap;
2310 	void __iomem *port_mmio = mv_ap_base(ap);
2311 	struct mv_port_priv *pp = ap->private_data;
2312 	u32 in_index;
2313 	unsigned int port_irqs;
2314 
2315 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2316 
2317 	switch (qc->tf.protocol) {
2318 	case ATA_PROT_DMA:
2319 		if (qc->tf.command == ATA_CMD_DSM) {
2320 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2321 				return AC_ERR_OTHER;
2322 			break;  /* use bmdma for this */
2323 		}
2324 		/* fall thru */
2325 	case ATA_PROT_NCQ:
2326 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2327 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2328 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2329 
2330 		/* Write the request in pointer to kick the EDMA to life */
2331 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2332 					port_mmio + EDMA_REQ_Q_IN_PTR);
2333 		return 0;
2334 
2335 	case ATA_PROT_PIO:
2336 		/*
2337 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2338 		 *
2339 		 * Someday, we might implement special polling workarounds
2340 		 * for these, but it all seems rather unnecessary since we
2341 		 * normally use only DMA for commands which transfer more
2342 		 * than a single block of data.
2343 		 *
2344 		 * Much of the time, this could just work regardless.
2345 		 * So for now, just log the incident, and allow the attempt.
2346 		 */
2347 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2348 			--limit_warnings;
2349 			ata_link_warn(qc->dev->link, DRV_NAME
2350 				      ": attempting PIO w/multiple DRQ: "
2351 				      "this may fail due to h/w errata\n");
2352 		}
2353 		/* drop through */
2354 	case ATA_PROT_NODATA:
2355 	case ATAPI_PROT_PIO:
2356 	case ATAPI_PROT_NODATA:
2357 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2358 			qc->tf.flags |= ATA_TFLAG_POLLING;
2359 		break;
2360 	}
2361 
2362 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2363 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2364 	else
2365 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2366 
2367 	/*
2368 	 * We're about to send a non-EDMA capable command to the
2369 	 * port.  Turn off EDMA so there won't be problems accessing
2370 	 * shadow block, etc registers.
2371 	 */
2372 	mv_stop_edma(ap);
2373 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2374 	mv_pmp_select(ap, qc->dev->link->pmp);
2375 
2376 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2377 		struct mv_host_priv *hpriv = ap->host->private_data;
2378 		/*
2379 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2380 		 *
2381 		 * After any NCQ error, the READ_LOG_EXT command
2382 		 * from libata-eh *must* use mv_qc_issue_fis().
2383 		 * Otherwise it might fail, due to chip errata.
2384 		 *
2385 		 * Rather than special-case it, we'll just *always*
2386 		 * use this method here for READ_LOG_EXT, making for
2387 		 * easier testing.
2388 		 */
2389 		if (IS_GEN_II(hpriv))
2390 			return mv_qc_issue_fis(qc);
2391 	}
2392 	return ata_bmdma_qc_issue(qc);
2393 }
2394 
2395 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2396 {
2397 	struct mv_port_priv *pp = ap->private_data;
2398 	struct ata_queued_cmd *qc;
2399 
2400 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2401 		return NULL;
2402 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2403 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2404 		return qc;
2405 	return NULL;
2406 }
2407 
2408 static void mv_pmp_error_handler(struct ata_port *ap)
2409 {
2410 	unsigned int pmp, pmp_map;
2411 	struct mv_port_priv *pp = ap->private_data;
2412 
2413 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2414 		/*
2415 		 * Perform NCQ error analysis on failed PMPs
2416 		 * before we freeze the port entirely.
2417 		 *
2418 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2419 		 */
2420 		pmp_map = pp->delayed_eh_pmp_map;
2421 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2422 		for (pmp = 0; pmp_map != 0; pmp++) {
2423 			unsigned int this_pmp = (1 << pmp);
2424 			if (pmp_map & this_pmp) {
2425 				struct ata_link *link = &ap->pmp_link[pmp];
2426 				pmp_map &= ~this_pmp;
2427 				ata_eh_analyze_ncq_error(link);
2428 			}
2429 		}
2430 		ata_port_freeze(ap);
2431 	}
2432 	sata_pmp_error_handler(ap);
2433 }
2434 
2435 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2436 {
2437 	void __iomem *port_mmio = mv_ap_base(ap);
2438 
2439 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2440 }
2441 
2442 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2443 {
2444 	struct ata_eh_info *ehi;
2445 	unsigned int pmp;
2446 
2447 	/*
2448 	 * Initialize EH info for PMPs which saw device errors
2449 	 */
2450 	ehi = &ap->link.eh_info;
2451 	for (pmp = 0; pmp_map != 0; pmp++) {
2452 		unsigned int this_pmp = (1 << pmp);
2453 		if (pmp_map & this_pmp) {
2454 			struct ata_link *link = &ap->pmp_link[pmp];
2455 
2456 			pmp_map &= ~this_pmp;
2457 			ehi = &link->eh_info;
2458 			ata_ehi_clear_desc(ehi);
2459 			ata_ehi_push_desc(ehi, "dev err");
2460 			ehi->err_mask |= AC_ERR_DEV;
2461 			ehi->action |= ATA_EH_RESET;
2462 			ata_link_abort(link);
2463 		}
2464 	}
2465 }
2466 
2467 static int mv_req_q_empty(struct ata_port *ap)
2468 {
2469 	void __iomem *port_mmio = mv_ap_base(ap);
2470 	u32 in_ptr, out_ptr;
2471 
2472 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2473 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2474 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2475 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2476 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2477 }
2478 
2479 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2480 {
2481 	struct mv_port_priv *pp = ap->private_data;
2482 	int failed_links;
2483 	unsigned int old_map, new_map;
2484 
2485 	/*
2486 	 * Device error during FBS+NCQ operation:
2487 	 *
2488 	 * Set a port flag to prevent further I/O being enqueued.
2489 	 * Leave the EDMA running to drain outstanding commands from this port.
2490 	 * Perform the post-mortem/EH only when all responses are complete.
2491 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2492 	 */
2493 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2494 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2495 		pp->delayed_eh_pmp_map = 0;
2496 	}
2497 	old_map = pp->delayed_eh_pmp_map;
2498 	new_map = old_map | mv_get_err_pmp_map(ap);
2499 
2500 	if (old_map != new_map) {
2501 		pp->delayed_eh_pmp_map = new_map;
2502 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2503 	}
2504 	failed_links = hweight16(new_map);
2505 
2506 	ata_port_info(ap,
2507 		      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2508 		      __func__, pp->delayed_eh_pmp_map,
2509 		      ap->qc_active, failed_links,
2510 		      ap->nr_active_links);
2511 
2512 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2513 		mv_process_crpb_entries(ap, pp);
2514 		mv_stop_edma(ap);
2515 		mv_eh_freeze(ap);
2516 		ata_port_info(ap, "%s: done\n", __func__);
2517 		return 1;	/* handled */
2518 	}
2519 	ata_port_info(ap, "%s: waiting\n", __func__);
2520 	return 1;	/* handled */
2521 }
2522 
2523 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2524 {
2525 	/*
2526 	 * Possible future enhancement:
2527 	 *
2528 	 * FBS+non-NCQ operation is not yet implemented.
2529 	 * See related notes in mv_edma_cfg().
2530 	 *
2531 	 * Device error during FBS+non-NCQ operation:
2532 	 *
2533 	 * We need to snapshot the shadow registers for each failed command.
2534 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2535 	 */
2536 	return 0;	/* not handled */
2537 }
2538 
2539 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2540 {
2541 	struct mv_port_priv *pp = ap->private_data;
2542 
2543 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2544 		return 0;	/* EDMA was not active: not handled */
2545 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2546 		return 0;	/* FBS was not active: not handled */
2547 
2548 	if (!(edma_err_cause & EDMA_ERR_DEV))
2549 		return 0;	/* non DEV error: not handled */
2550 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2551 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2552 		return 0;	/* other problems: not handled */
2553 
2554 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2555 		/*
2556 		 * EDMA should NOT have self-disabled for this case.
2557 		 * If it did, then something is wrong elsewhere,
2558 		 * and we cannot handle it here.
2559 		 */
2560 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2561 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2562 				      __func__, edma_err_cause, pp->pp_flags);
2563 			return 0; /* not handled */
2564 		}
2565 		return mv_handle_fbs_ncq_dev_err(ap);
2566 	} else {
2567 		/*
2568 		 * EDMA should have self-disabled for this case.
2569 		 * If it did not, then something is wrong elsewhere,
2570 		 * and we cannot handle it here.
2571 		 */
2572 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2573 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2574 				      __func__, edma_err_cause, pp->pp_flags);
2575 			return 0; /* not handled */
2576 		}
2577 		return mv_handle_fbs_non_ncq_dev_err(ap);
2578 	}
2579 	return 0;	/* not handled */
2580 }
2581 
2582 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2583 {
2584 	struct ata_eh_info *ehi = &ap->link.eh_info;
2585 	char *when = "idle";
2586 
2587 	ata_ehi_clear_desc(ehi);
2588 	if (edma_was_enabled) {
2589 		when = "EDMA enabled";
2590 	} else {
2591 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2592 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2593 			when = "polling";
2594 	}
2595 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2596 	ehi->err_mask |= AC_ERR_OTHER;
2597 	ehi->action   |= ATA_EH_RESET;
2598 	ata_port_freeze(ap);
2599 }
2600 
2601 /**
2602  *      mv_err_intr - Handle error interrupts on the port
2603  *      @ap: ATA channel to manipulate
2604  *
2605  *      Most cases require a full reset of the chip's state machine,
2606  *      which also performs a COMRESET.
2607  *      Also, if the port disabled DMA, update our cached copy to match.
2608  *
2609  *      LOCKING:
2610  *      Inherited from caller.
2611  */
2612 static void mv_err_intr(struct ata_port *ap)
2613 {
2614 	void __iomem *port_mmio = mv_ap_base(ap);
2615 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2616 	u32 fis_cause = 0;
2617 	struct mv_port_priv *pp = ap->private_data;
2618 	struct mv_host_priv *hpriv = ap->host->private_data;
2619 	unsigned int action = 0, err_mask = 0;
2620 	struct ata_eh_info *ehi = &ap->link.eh_info;
2621 	struct ata_queued_cmd *qc;
2622 	int abort = 0;
2623 
2624 	/*
2625 	 * Read and clear the SError and err_cause bits.
2626 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2627 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2628 	 */
2629 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2630 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2631 
2632 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2633 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2634 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2635 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2636 	}
2637 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2638 
2639 	if (edma_err_cause & EDMA_ERR_DEV) {
2640 		/*
2641 		 * Device errors during FIS-based switching operation
2642 		 * require special handling.
2643 		 */
2644 		if (mv_handle_dev_err(ap, edma_err_cause))
2645 			return;
2646 	}
2647 
2648 	qc = mv_get_active_qc(ap);
2649 	ata_ehi_clear_desc(ehi);
2650 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2651 			  edma_err_cause, pp->pp_flags);
2652 
2653 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2654 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2655 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2656 			u32 ec = edma_err_cause &
2657 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2658 			sata_async_notification(ap);
2659 			if (!ec)
2660 				return; /* Just an AN; no need for the nukes */
2661 			ata_ehi_push_desc(ehi, "SDB notify");
2662 		}
2663 	}
2664 	/*
2665 	 * All generations share these EDMA error cause bits:
2666 	 */
2667 	if (edma_err_cause & EDMA_ERR_DEV) {
2668 		err_mask |= AC_ERR_DEV;
2669 		action |= ATA_EH_RESET;
2670 		ata_ehi_push_desc(ehi, "dev error");
2671 	}
2672 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2673 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2674 			EDMA_ERR_INTRL_PAR)) {
2675 		err_mask |= AC_ERR_ATA_BUS;
2676 		action |= ATA_EH_RESET;
2677 		ata_ehi_push_desc(ehi, "parity error");
2678 	}
2679 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2680 		ata_ehi_hotplugged(ehi);
2681 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2682 			"dev disconnect" : "dev connect");
2683 		action |= ATA_EH_RESET;
2684 	}
2685 
2686 	/*
2687 	 * Gen-I has a different SELF_DIS bit,
2688 	 * different FREEZE bits, and no SERR bit:
2689 	 */
2690 	if (IS_GEN_I(hpriv)) {
2691 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2692 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2693 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2694 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2695 		}
2696 	} else {
2697 		eh_freeze_mask = EDMA_EH_FREEZE;
2698 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2699 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2700 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2701 		}
2702 		if (edma_err_cause & EDMA_ERR_SERR) {
2703 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2704 			err_mask |= AC_ERR_ATA_BUS;
2705 			action |= ATA_EH_RESET;
2706 		}
2707 	}
2708 
2709 	if (!err_mask) {
2710 		err_mask = AC_ERR_OTHER;
2711 		action |= ATA_EH_RESET;
2712 	}
2713 
2714 	ehi->serror |= serr;
2715 	ehi->action |= action;
2716 
2717 	if (qc)
2718 		qc->err_mask |= err_mask;
2719 	else
2720 		ehi->err_mask |= err_mask;
2721 
2722 	if (err_mask == AC_ERR_DEV) {
2723 		/*
2724 		 * Cannot do ata_port_freeze() here,
2725 		 * because it would kill PIO access,
2726 		 * which is needed for further diagnosis.
2727 		 */
2728 		mv_eh_freeze(ap);
2729 		abort = 1;
2730 	} else if (edma_err_cause & eh_freeze_mask) {
2731 		/*
2732 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2733 		 */
2734 		ata_port_freeze(ap);
2735 	} else {
2736 		abort = 1;
2737 	}
2738 
2739 	if (abort) {
2740 		if (qc)
2741 			ata_link_abort(qc->dev->link);
2742 		else
2743 			ata_port_abort(ap);
2744 	}
2745 }
2746 
2747 static bool mv_process_crpb_response(struct ata_port *ap,
2748 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2749 {
2750 	u8 ata_status;
2751 	u16 edma_status = le16_to_cpu(response->flags);
2752 
2753 	/*
2754 	 * edma_status from a response queue entry:
2755 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2756 	 *   MSB is saved ATA status from command completion.
2757 	 */
2758 	if (!ncq_enabled) {
2759 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2760 		if (err_cause) {
2761 			/*
2762 			 * Error will be seen/handled by
2763 			 * mv_err_intr().  So do nothing at all here.
2764 			 */
2765 			return false;
2766 		}
2767 	}
2768 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2769 	if (!ac_err_mask(ata_status))
2770 		return true;
2771 	/* else: leave it for mv_err_intr() */
2772 	return false;
2773 }
2774 
2775 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2776 {
2777 	void __iomem *port_mmio = mv_ap_base(ap);
2778 	struct mv_host_priv *hpriv = ap->host->private_data;
2779 	u32 in_index;
2780 	bool work_done = false;
2781 	u32 done_mask = 0;
2782 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2783 
2784 	/* Get the hardware queue position index */
2785 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2786 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2787 
2788 	/* Process new responses from since the last time we looked */
2789 	while (in_index != pp->resp_idx) {
2790 		unsigned int tag;
2791 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2792 
2793 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2794 
2795 		if (IS_GEN_I(hpriv)) {
2796 			/* 50xx: no NCQ, only one command active at a time */
2797 			tag = ap->link.active_tag;
2798 		} else {
2799 			/* Gen II/IIE: get command tag from CRPB entry */
2800 			tag = le16_to_cpu(response->id) & 0x1f;
2801 		}
2802 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2803 			done_mask |= 1 << tag;
2804 		work_done = true;
2805 	}
2806 
2807 	if (work_done) {
2808 		ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2809 
2810 		/* Update the software queue position index in hardware */
2811 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2812 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2813 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2814 	}
2815 }
2816 
2817 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2818 {
2819 	struct mv_port_priv *pp;
2820 	int edma_was_enabled;
2821 
2822 	/*
2823 	 * Grab a snapshot of the EDMA_EN flag setting,
2824 	 * so that we have a consistent view for this port,
2825 	 * even if something we call of our routines changes it.
2826 	 */
2827 	pp = ap->private_data;
2828 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2829 	/*
2830 	 * Process completed CRPB response(s) before other events.
2831 	 */
2832 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2833 		mv_process_crpb_entries(ap, pp);
2834 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2835 			mv_handle_fbs_ncq_dev_err(ap);
2836 	}
2837 	/*
2838 	 * Handle chip-reported errors, or continue on to handle PIO.
2839 	 */
2840 	if (unlikely(port_cause & ERR_IRQ)) {
2841 		mv_err_intr(ap);
2842 	} else if (!edma_was_enabled) {
2843 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2844 		if (qc)
2845 			ata_bmdma_port_intr(ap, qc);
2846 		else
2847 			mv_unexpected_intr(ap, edma_was_enabled);
2848 	}
2849 }
2850 
2851 /**
2852  *      mv_host_intr - Handle all interrupts on the given host controller
2853  *      @host: host specific structure
2854  *      @main_irq_cause: Main interrupt cause register for the chip.
2855  *
2856  *      LOCKING:
2857  *      Inherited from caller.
2858  */
2859 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2860 {
2861 	struct mv_host_priv *hpriv = host->private_data;
2862 	void __iomem *mmio = hpriv->base, *hc_mmio;
2863 	unsigned int handled = 0, port;
2864 
2865 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2866 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2867 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2868 
2869 	for (port = 0; port < hpriv->n_ports; port++) {
2870 		struct ata_port *ap = host->ports[port];
2871 		unsigned int p, shift, hardport, port_cause;
2872 
2873 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2874 		/*
2875 		 * Each hc within the host has its own hc_irq_cause register,
2876 		 * where the interrupting ports bits get ack'd.
2877 		 */
2878 		if (hardport == 0) {	/* first port on this hc ? */
2879 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2880 			u32 port_mask, ack_irqs;
2881 			/*
2882 			 * Skip this entire hc if nothing pending for any ports
2883 			 */
2884 			if (!hc_cause) {
2885 				port += MV_PORTS_PER_HC - 1;
2886 				continue;
2887 			}
2888 			/*
2889 			 * We don't need/want to read the hc_irq_cause register,
2890 			 * because doing so hurts performance, and
2891 			 * main_irq_cause already gives us everything we need.
2892 			 *
2893 			 * But we do have to *write* to the hc_irq_cause to ack
2894 			 * the ports that we are handling this time through.
2895 			 *
2896 			 * This requires that we create a bitmap for those
2897 			 * ports which interrupted us, and use that bitmap
2898 			 * to ack (only) those ports via hc_irq_cause.
2899 			 */
2900 			ack_irqs = 0;
2901 			if (hc_cause & PORTS_0_3_COAL_DONE)
2902 				ack_irqs = HC_COAL_IRQ;
2903 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2904 				if ((port + p) >= hpriv->n_ports)
2905 					break;
2906 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2907 				if (hc_cause & port_mask)
2908 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2909 			}
2910 			hc_mmio = mv_hc_base_from_port(mmio, port);
2911 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2912 			handled = 1;
2913 		}
2914 		/*
2915 		 * Handle interrupts signalled for this port:
2916 		 */
2917 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2918 		if (port_cause)
2919 			mv_port_intr(ap, port_cause);
2920 	}
2921 	return handled;
2922 }
2923 
2924 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2925 {
2926 	struct mv_host_priv *hpriv = host->private_data;
2927 	struct ata_port *ap;
2928 	struct ata_queued_cmd *qc;
2929 	struct ata_eh_info *ehi;
2930 	unsigned int i, err_mask, printed = 0;
2931 	u32 err_cause;
2932 
2933 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2934 
2935 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2936 
2937 	DPRINTK("All regs @ PCI error\n");
2938 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2939 
2940 	writelfl(0, mmio + hpriv->irq_cause_offset);
2941 
2942 	for (i = 0; i < host->n_ports; i++) {
2943 		ap = host->ports[i];
2944 		if (!ata_link_offline(&ap->link)) {
2945 			ehi = &ap->link.eh_info;
2946 			ata_ehi_clear_desc(ehi);
2947 			if (!printed++)
2948 				ata_ehi_push_desc(ehi,
2949 					"PCI err cause 0x%08x", err_cause);
2950 			err_mask = AC_ERR_HOST_BUS;
2951 			ehi->action = ATA_EH_RESET;
2952 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2953 			if (qc)
2954 				qc->err_mask |= err_mask;
2955 			else
2956 				ehi->err_mask |= err_mask;
2957 
2958 			ata_port_freeze(ap);
2959 		}
2960 	}
2961 	return 1;	/* handled */
2962 }
2963 
2964 /**
2965  *      mv_interrupt - Main interrupt event handler
2966  *      @irq: unused
2967  *      @dev_instance: private data; in this case the host structure
2968  *
2969  *      Read the read only register to determine if any host
2970  *      controllers have pending interrupts.  If so, call lower level
2971  *      routine to handle.  Also check for PCI errors which are only
2972  *      reported here.
2973  *
2974  *      LOCKING:
2975  *      This routine holds the host lock while processing pending
2976  *      interrupts.
2977  */
2978 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2979 {
2980 	struct ata_host *host = dev_instance;
2981 	struct mv_host_priv *hpriv = host->private_data;
2982 	unsigned int handled = 0;
2983 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2984 	u32 main_irq_cause, pending_irqs;
2985 
2986 	spin_lock(&host->lock);
2987 
2988 	/* for MSI:  block new interrupts while in here */
2989 	if (using_msi)
2990 		mv_write_main_irq_mask(0, hpriv);
2991 
2992 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2993 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2994 	/*
2995 	 * Deal with cases where we either have nothing pending, or have read
2996 	 * a bogus register value which can indicate HW removal or PCI fault.
2997 	 */
2998 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2999 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3000 			handled = mv_pci_error(host, hpriv->base);
3001 		else
3002 			handled = mv_host_intr(host, pending_irqs);
3003 	}
3004 
3005 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3006 	if (using_msi)
3007 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3008 
3009 	spin_unlock(&host->lock);
3010 
3011 	return IRQ_RETVAL(handled);
3012 }
3013 
3014 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3015 {
3016 	unsigned int ofs;
3017 
3018 	switch (sc_reg_in) {
3019 	case SCR_STATUS:
3020 	case SCR_ERROR:
3021 	case SCR_CONTROL:
3022 		ofs = sc_reg_in * sizeof(u32);
3023 		break;
3024 	default:
3025 		ofs = 0xffffffffU;
3026 		break;
3027 	}
3028 	return ofs;
3029 }
3030 
3031 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3032 {
3033 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3034 	void __iomem *mmio = hpriv->base;
3035 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3036 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3037 
3038 	if (ofs != 0xffffffffU) {
3039 		*val = readl(addr + ofs);
3040 		return 0;
3041 	} else
3042 		return -EINVAL;
3043 }
3044 
3045 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3046 {
3047 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3048 	void __iomem *mmio = hpriv->base;
3049 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3050 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3051 
3052 	if (ofs != 0xffffffffU) {
3053 		writelfl(val, addr + ofs);
3054 		return 0;
3055 	} else
3056 		return -EINVAL;
3057 }
3058 
3059 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3060 {
3061 	struct pci_dev *pdev = to_pci_dev(host->dev);
3062 	int early_5080;
3063 
3064 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3065 
3066 	if (!early_5080) {
3067 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3068 		tmp |= (1 << 0);
3069 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3070 	}
3071 
3072 	mv_reset_pci_bus(host, mmio);
3073 }
3074 
3075 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3076 {
3077 	writel(0x0fcfffff, mmio + FLASH_CTL);
3078 }
3079 
3080 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3081 			   void __iomem *mmio)
3082 {
3083 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3084 	u32 tmp;
3085 
3086 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3087 
3088 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3089 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3090 }
3091 
3092 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3093 {
3094 	u32 tmp;
3095 
3096 	writel(0, mmio + GPIO_PORT_CTL);
3097 
3098 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3099 
3100 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3101 	tmp |= ~(1 << 0);
3102 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3103 }
3104 
3105 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3106 			   unsigned int port)
3107 {
3108 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3109 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3110 	u32 tmp;
3111 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3112 
3113 	if (fix_apm_sq) {
3114 		tmp = readl(phy_mmio + MV5_LTMODE);
3115 		tmp |= (1 << 19);
3116 		writel(tmp, phy_mmio + MV5_LTMODE);
3117 
3118 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3119 		tmp &= ~0x3;
3120 		tmp |= 0x1;
3121 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3122 	}
3123 
3124 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3125 	tmp &= ~mask;
3126 	tmp |= hpriv->signal[port].pre;
3127 	tmp |= hpriv->signal[port].amps;
3128 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3129 }
3130 
3131 
3132 #undef ZERO
3133 #define ZERO(reg) writel(0, port_mmio + (reg))
3134 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3135 			     unsigned int port)
3136 {
3137 	void __iomem *port_mmio = mv_port_base(mmio, port);
3138 
3139 	mv_reset_channel(hpriv, mmio, port);
3140 
3141 	ZERO(0x028);	/* command */
3142 	writel(0x11f, port_mmio + EDMA_CFG);
3143 	ZERO(0x004);	/* timer */
3144 	ZERO(0x008);	/* irq err cause */
3145 	ZERO(0x00c);	/* irq err mask */
3146 	ZERO(0x010);	/* rq bah */
3147 	ZERO(0x014);	/* rq inp */
3148 	ZERO(0x018);	/* rq outp */
3149 	ZERO(0x01c);	/* respq bah */
3150 	ZERO(0x024);	/* respq outp */
3151 	ZERO(0x020);	/* respq inp */
3152 	ZERO(0x02c);	/* test control */
3153 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3154 }
3155 #undef ZERO
3156 
3157 #define ZERO(reg) writel(0, hc_mmio + (reg))
3158 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3159 			unsigned int hc)
3160 {
3161 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3162 	u32 tmp;
3163 
3164 	ZERO(0x00c);
3165 	ZERO(0x010);
3166 	ZERO(0x014);
3167 	ZERO(0x018);
3168 
3169 	tmp = readl(hc_mmio + 0x20);
3170 	tmp &= 0x1c1c1c1c;
3171 	tmp |= 0x03030303;
3172 	writel(tmp, hc_mmio + 0x20);
3173 }
3174 #undef ZERO
3175 
3176 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3177 			unsigned int n_hc)
3178 {
3179 	unsigned int hc, port;
3180 
3181 	for (hc = 0; hc < n_hc; hc++) {
3182 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3183 			mv5_reset_hc_port(hpriv, mmio,
3184 					  (hc * MV_PORTS_PER_HC) + port);
3185 
3186 		mv5_reset_one_hc(hpriv, mmio, hc);
3187 	}
3188 
3189 	return 0;
3190 }
3191 
3192 #undef ZERO
3193 #define ZERO(reg) writel(0, mmio + (reg))
3194 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3195 {
3196 	struct mv_host_priv *hpriv = host->private_data;
3197 	u32 tmp;
3198 
3199 	tmp = readl(mmio + MV_PCI_MODE);
3200 	tmp &= 0xff00ffff;
3201 	writel(tmp, mmio + MV_PCI_MODE);
3202 
3203 	ZERO(MV_PCI_DISC_TIMER);
3204 	ZERO(MV_PCI_MSI_TRIGGER);
3205 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3206 	ZERO(MV_PCI_SERR_MASK);
3207 	ZERO(hpriv->irq_cause_offset);
3208 	ZERO(hpriv->irq_mask_offset);
3209 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3210 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3211 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3212 	ZERO(MV_PCI_ERR_COMMAND);
3213 }
3214 #undef ZERO
3215 
3216 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3217 {
3218 	u32 tmp;
3219 
3220 	mv5_reset_flash(hpriv, mmio);
3221 
3222 	tmp = readl(mmio + GPIO_PORT_CTL);
3223 	tmp &= 0x3;
3224 	tmp |= (1 << 5) | (1 << 6);
3225 	writel(tmp, mmio + GPIO_PORT_CTL);
3226 }
3227 
3228 /**
3229  *      mv6_reset_hc - Perform the 6xxx global soft reset
3230  *      @mmio: base address of the HBA
3231  *
3232  *      This routine only applies to 6xxx parts.
3233  *
3234  *      LOCKING:
3235  *      Inherited from caller.
3236  */
3237 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3238 			unsigned int n_hc)
3239 {
3240 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3241 	int i, rc = 0;
3242 	u32 t;
3243 
3244 	/* Following procedure defined in PCI "main command and status
3245 	 * register" table.
3246 	 */
3247 	t = readl(reg);
3248 	writel(t | STOP_PCI_MASTER, reg);
3249 
3250 	for (i = 0; i < 1000; i++) {
3251 		udelay(1);
3252 		t = readl(reg);
3253 		if (PCI_MASTER_EMPTY & t)
3254 			break;
3255 	}
3256 	if (!(PCI_MASTER_EMPTY & t)) {
3257 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3258 		rc = 1;
3259 		goto done;
3260 	}
3261 
3262 	/* set reset */
3263 	i = 5;
3264 	do {
3265 		writel(t | GLOB_SFT_RST, reg);
3266 		t = readl(reg);
3267 		udelay(1);
3268 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3269 
3270 	if (!(GLOB_SFT_RST & t)) {
3271 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3272 		rc = 1;
3273 		goto done;
3274 	}
3275 
3276 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3277 	i = 5;
3278 	do {
3279 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3280 		t = readl(reg);
3281 		udelay(1);
3282 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3283 
3284 	if (GLOB_SFT_RST & t) {
3285 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3286 		rc = 1;
3287 	}
3288 done:
3289 	return rc;
3290 }
3291 
3292 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3293 			   void __iomem *mmio)
3294 {
3295 	void __iomem *port_mmio;
3296 	u32 tmp;
3297 
3298 	tmp = readl(mmio + RESET_CFG);
3299 	if ((tmp & (1 << 0)) == 0) {
3300 		hpriv->signal[idx].amps = 0x7 << 8;
3301 		hpriv->signal[idx].pre = 0x1 << 5;
3302 		return;
3303 	}
3304 
3305 	port_mmio = mv_port_base(mmio, idx);
3306 	tmp = readl(port_mmio + PHY_MODE2);
3307 
3308 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3309 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3310 }
3311 
3312 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3313 {
3314 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3315 }
3316 
3317 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3318 			   unsigned int port)
3319 {
3320 	void __iomem *port_mmio = mv_port_base(mmio, port);
3321 
3322 	u32 hp_flags = hpriv->hp_flags;
3323 	int fix_phy_mode2 =
3324 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3325 	int fix_phy_mode4 =
3326 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3327 	u32 m2, m3;
3328 
3329 	if (fix_phy_mode2) {
3330 		m2 = readl(port_mmio + PHY_MODE2);
3331 		m2 &= ~(1 << 16);
3332 		m2 |= (1 << 31);
3333 		writel(m2, port_mmio + PHY_MODE2);
3334 
3335 		udelay(200);
3336 
3337 		m2 = readl(port_mmio + PHY_MODE2);
3338 		m2 &= ~((1 << 16) | (1 << 31));
3339 		writel(m2, port_mmio + PHY_MODE2);
3340 
3341 		udelay(200);
3342 	}
3343 
3344 	/*
3345 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3346 	 * Achieves better receiver noise performance than the h/w default:
3347 	 */
3348 	m3 = readl(port_mmio + PHY_MODE3);
3349 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3350 
3351 	/* Guideline 88F5182 (GL# SATA-S11) */
3352 	if (IS_SOC(hpriv))
3353 		m3 &= ~0x1c;
3354 
3355 	if (fix_phy_mode4) {
3356 		u32 m4 = readl(port_mmio + PHY_MODE4);
3357 		/*
3358 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3359 		 * For earlier chipsets, force only the internal config field
3360 		 *  (workaround for errata FEr SATA#10 part 1).
3361 		 */
3362 		if (IS_GEN_IIE(hpriv))
3363 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3364 		else
3365 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3366 		writel(m4, port_mmio + PHY_MODE4);
3367 	}
3368 	/*
3369 	 * Workaround for 60x1-B2 errata SATA#13:
3370 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3371 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3372 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3373 	 */
3374 	writel(m3, port_mmio + PHY_MODE3);
3375 
3376 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3377 	m2 = readl(port_mmio + PHY_MODE2);
3378 
3379 	m2 &= ~MV_M2_PREAMP_MASK;
3380 	m2 |= hpriv->signal[port].amps;
3381 	m2 |= hpriv->signal[port].pre;
3382 	m2 &= ~(1 << 16);
3383 
3384 	/* according to mvSata 3.6.1, some IIE values are fixed */
3385 	if (IS_GEN_IIE(hpriv)) {
3386 		m2 &= ~0xC30FF01F;
3387 		m2 |= 0x0000900F;
3388 	}
3389 
3390 	writel(m2, port_mmio + PHY_MODE2);
3391 }
3392 
3393 /* TODO: use the generic LED interface to configure the SATA Presence */
3394 /* & Acitivy LEDs on the board */
3395 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3396 				      void __iomem *mmio)
3397 {
3398 	return;
3399 }
3400 
3401 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3402 			   void __iomem *mmio)
3403 {
3404 	void __iomem *port_mmio;
3405 	u32 tmp;
3406 
3407 	port_mmio = mv_port_base(mmio, idx);
3408 	tmp = readl(port_mmio + PHY_MODE2);
3409 
3410 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3411 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3412 }
3413 
3414 #undef ZERO
3415 #define ZERO(reg) writel(0, port_mmio + (reg))
3416 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3417 					void __iomem *mmio, unsigned int port)
3418 {
3419 	void __iomem *port_mmio = mv_port_base(mmio, port);
3420 
3421 	mv_reset_channel(hpriv, mmio, port);
3422 
3423 	ZERO(0x028);		/* command */
3424 	writel(0x101f, port_mmio + EDMA_CFG);
3425 	ZERO(0x004);		/* timer */
3426 	ZERO(0x008);		/* irq err cause */
3427 	ZERO(0x00c);		/* irq err mask */
3428 	ZERO(0x010);		/* rq bah */
3429 	ZERO(0x014);		/* rq inp */
3430 	ZERO(0x018);		/* rq outp */
3431 	ZERO(0x01c);		/* respq bah */
3432 	ZERO(0x024);		/* respq outp */
3433 	ZERO(0x020);		/* respq inp */
3434 	ZERO(0x02c);		/* test control */
3435 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3436 }
3437 
3438 #undef ZERO
3439 
3440 #define ZERO(reg) writel(0, hc_mmio + (reg))
3441 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3442 				       void __iomem *mmio)
3443 {
3444 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3445 
3446 	ZERO(0x00c);
3447 	ZERO(0x010);
3448 	ZERO(0x014);
3449 
3450 }
3451 
3452 #undef ZERO
3453 
3454 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3455 				  void __iomem *mmio, unsigned int n_hc)
3456 {
3457 	unsigned int port;
3458 
3459 	for (port = 0; port < hpriv->n_ports; port++)
3460 		mv_soc_reset_hc_port(hpriv, mmio, port);
3461 
3462 	mv_soc_reset_one_hc(hpriv, mmio);
3463 
3464 	return 0;
3465 }
3466 
3467 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3468 				      void __iomem *mmio)
3469 {
3470 	return;
3471 }
3472 
3473 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3474 {
3475 	return;
3476 }
3477 
3478 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3479 				  void __iomem *mmio, unsigned int port)
3480 {
3481 	void __iomem *port_mmio = mv_port_base(mmio, port);
3482 	u32	reg;
3483 
3484 	reg = readl(port_mmio + PHY_MODE3);
3485 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3486 	reg |= (0x1 << 27);
3487 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3488 	reg |= (0x1 << 29);
3489 	writel(reg, port_mmio + PHY_MODE3);
3490 
3491 	reg = readl(port_mmio + PHY_MODE4);
3492 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3493 	reg |= (0x1 << 16);
3494 	writel(reg, port_mmio + PHY_MODE4);
3495 
3496 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3497 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3498 	reg |= 0x8;
3499 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3500 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3501 
3502 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3503 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3504 	reg |= 0x8;
3505 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3506 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3507 }
3508 
3509 /**
3510  *	soc_is_65 - check if the soc is 65 nano device
3511  *
3512  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3513  *	register, this register should contain non-zero value and it exists only
3514  *	in the 65 nano devices, when reading it from older devices we get 0.
3515  */
3516 static bool soc_is_65n(struct mv_host_priv *hpriv)
3517 {
3518 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3519 
3520 	if (readl(port0_mmio + PHYCFG_OFS))
3521 		return true;
3522 	return false;
3523 }
3524 
3525 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3526 {
3527 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3528 
3529 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3530 	if (want_gen2i)
3531 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3532 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3533 }
3534 
3535 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3536 			     unsigned int port_no)
3537 {
3538 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3539 
3540 	/*
3541 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3542 	 * (but doesn't say what the problem might be).  So we first try
3543 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3544 	 */
3545 	mv_stop_edma_engine(port_mmio);
3546 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3547 
3548 	if (!IS_GEN_I(hpriv)) {
3549 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3550 		mv_setup_ifcfg(port_mmio, 1);
3551 	}
3552 	/*
3553 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3554 	 * link, and physical layers.  It resets all SATA interface registers
3555 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3556 	 */
3557 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3558 	udelay(25);	/* allow reset propagation */
3559 	writelfl(0, port_mmio + EDMA_CMD);
3560 
3561 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3562 
3563 	if (IS_GEN_I(hpriv))
3564 		mdelay(1);
3565 }
3566 
3567 static void mv_pmp_select(struct ata_port *ap, int pmp)
3568 {
3569 	if (sata_pmp_supported(ap)) {
3570 		void __iomem *port_mmio = mv_ap_base(ap);
3571 		u32 reg = readl(port_mmio + SATA_IFCTL);
3572 		int old = reg & 0xf;
3573 
3574 		if (old != pmp) {
3575 			reg = (reg & ~0xf) | pmp;
3576 			writelfl(reg, port_mmio + SATA_IFCTL);
3577 		}
3578 	}
3579 }
3580 
3581 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3582 				unsigned long deadline)
3583 {
3584 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3585 	return sata_std_hardreset(link, class, deadline);
3586 }
3587 
3588 static int mv_softreset(struct ata_link *link, unsigned int *class,
3589 				unsigned long deadline)
3590 {
3591 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3592 	return ata_sff_softreset(link, class, deadline);
3593 }
3594 
3595 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3596 			unsigned long deadline)
3597 {
3598 	struct ata_port *ap = link->ap;
3599 	struct mv_host_priv *hpriv = ap->host->private_data;
3600 	struct mv_port_priv *pp = ap->private_data;
3601 	void __iomem *mmio = hpriv->base;
3602 	int rc, attempts = 0, extra = 0;
3603 	u32 sstatus;
3604 	bool online;
3605 
3606 	mv_reset_channel(hpriv, mmio, ap->port_no);
3607 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3608 	pp->pp_flags &=
3609 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3610 
3611 	/* Workaround for errata FEr SATA#10 (part 2) */
3612 	do {
3613 		const unsigned long *timing =
3614 				sata_ehc_deb_timing(&link->eh_context);
3615 
3616 		rc = sata_link_hardreset(link, timing, deadline + extra,
3617 					 &online, NULL);
3618 		rc = online ? -EAGAIN : rc;
3619 		if (rc)
3620 			return rc;
3621 		sata_scr_read(link, SCR_STATUS, &sstatus);
3622 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3623 			/* Force 1.5gb/s link speed and try again */
3624 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3625 			if (time_after(jiffies + HZ, deadline))
3626 				extra = HZ; /* only extend it once, max */
3627 		}
3628 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3629 	mv_save_cached_regs(ap);
3630 	mv_edma_cfg(ap, 0, 0);
3631 
3632 	return rc;
3633 }
3634 
3635 static void mv_eh_freeze(struct ata_port *ap)
3636 {
3637 	mv_stop_edma(ap);
3638 	mv_enable_port_irqs(ap, 0);
3639 }
3640 
3641 static void mv_eh_thaw(struct ata_port *ap)
3642 {
3643 	struct mv_host_priv *hpriv = ap->host->private_data;
3644 	unsigned int port = ap->port_no;
3645 	unsigned int hardport = mv_hardport_from_port(port);
3646 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3647 	void __iomem *port_mmio = mv_ap_base(ap);
3648 	u32 hc_irq_cause;
3649 
3650 	/* clear EDMA errors on this port */
3651 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3652 
3653 	/* clear pending irq events */
3654 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3655 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3656 
3657 	mv_enable_port_irqs(ap, ERR_IRQ);
3658 }
3659 
3660 /**
3661  *      mv_port_init - Perform some early initialization on a single port.
3662  *      @port: libata data structure storing shadow register addresses
3663  *      @port_mmio: base address of the port
3664  *
3665  *      Initialize shadow register mmio addresses, clear outstanding
3666  *      interrupts on the port, and unmask interrupts for the future
3667  *      start of the port.
3668  *
3669  *      LOCKING:
3670  *      Inherited from caller.
3671  */
3672 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3673 {
3674 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3675 
3676 	/* PIO related setup
3677 	 */
3678 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3679 	port->error_addr =
3680 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3681 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3682 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3683 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3684 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3685 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3686 	port->status_addr =
3687 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3688 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3689 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3690 
3691 	/* Clear any currently outstanding port interrupt conditions */
3692 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3693 	writelfl(readl(serr), serr);
3694 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3695 
3696 	/* unmask all non-transient EDMA error interrupts */
3697 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3698 
3699 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3700 		readl(port_mmio + EDMA_CFG),
3701 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3702 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3703 }
3704 
3705 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3706 {
3707 	struct mv_host_priv *hpriv = host->private_data;
3708 	void __iomem *mmio = hpriv->base;
3709 	u32 reg;
3710 
3711 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3712 		return 0;	/* not PCI-X capable */
3713 	reg = readl(mmio + MV_PCI_MODE);
3714 	if ((reg & MV_PCI_MODE_MASK) == 0)
3715 		return 0;	/* conventional PCI mode */
3716 	return 1;	/* chip is in PCI-X mode */
3717 }
3718 
3719 static int mv_pci_cut_through_okay(struct ata_host *host)
3720 {
3721 	struct mv_host_priv *hpriv = host->private_data;
3722 	void __iomem *mmio = hpriv->base;
3723 	u32 reg;
3724 
3725 	if (!mv_in_pcix_mode(host)) {
3726 		reg = readl(mmio + MV_PCI_COMMAND);
3727 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3728 			return 0; /* not okay */
3729 	}
3730 	return 1; /* okay */
3731 }
3732 
3733 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3734 {
3735 	struct mv_host_priv *hpriv = host->private_data;
3736 	void __iomem *mmio = hpriv->base;
3737 
3738 	/* workaround for 60x1-B2 errata PCI#7 */
3739 	if (mv_in_pcix_mode(host)) {
3740 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3741 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3742 	}
3743 }
3744 
3745 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3746 {
3747 	struct pci_dev *pdev = to_pci_dev(host->dev);
3748 	struct mv_host_priv *hpriv = host->private_data;
3749 	u32 hp_flags = hpriv->hp_flags;
3750 
3751 	switch (board_idx) {
3752 	case chip_5080:
3753 		hpriv->ops = &mv5xxx_ops;
3754 		hp_flags |= MV_HP_GEN_I;
3755 
3756 		switch (pdev->revision) {
3757 		case 0x1:
3758 			hp_flags |= MV_HP_ERRATA_50XXB0;
3759 			break;
3760 		case 0x3:
3761 			hp_flags |= MV_HP_ERRATA_50XXB2;
3762 			break;
3763 		default:
3764 			dev_warn(&pdev->dev,
3765 				 "Applying 50XXB2 workarounds to unknown rev\n");
3766 			hp_flags |= MV_HP_ERRATA_50XXB2;
3767 			break;
3768 		}
3769 		break;
3770 
3771 	case chip_504x:
3772 	case chip_508x:
3773 		hpriv->ops = &mv5xxx_ops;
3774 		hp_flags |= MV_HP_GEN_I;
3775 
3776 		switch (pdev->revision) {
3777 		case 0x0:
3778 			hp_flags |= MV_HP_ERRATA_50XXB0;
3779 			break;
3780 		case 0x3:
3781 			hp_flags |= MV_HP_ERRATA_50XXB2;
3782 			break;
3783 		default:
3784 			dev_warn(&pdev->dev,
3785 				 "Applying B2 workarounds to unknown rev\n");
3786 			hp_flags |= MV_HP_ERRATA_50XXB2;
3787 			break;
3788 		}
3789 		break;
3790 
3791 	case chip_604x:
3792 	case chip_608x:
3793 		hpriv->ops = &mv6xxx_ops;
3794 		hp_flags |= MV_HP_GEN_II;
3795 
3796 		switch (pdev->revision) {
3797 		case 0x7:
3798 			mv_60x1b2_errata_pci7(host);
3799 			hp_flags |= MV_HP_ERRATA_60X1B2;
3800 			break;
3801 		case 0x9:
3802 			hp_flags |= MV_HP_ERRATA_60X1C0;
3803 			break;
3804 		default:
3805 			dev_warn(&pdev->dev,
3806 				 "Applying B2 workarounds to unknown rev\n");
3807 			hp_flags |= MV_HP_ERRATA_60X1B2;
3808 			break;
3809 		}
3810 		break;
3811 
3812 	case chip_7042:
3813 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3814 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3815 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3816 		{
3817 			/*
3818 			 * Highpoint RocketRAID PCIe 23xx series cards:
3819 			 *
3820 			 * Unconfigured drives are treated as "Legacy"
3821 			 * by the BIOS, and it overwrites sector 8 with
3822 			 * a "Lgcy" metadata block prior to Linux boot.
3823 			 *
3824 			 * Configured drives (RAID or JBOD) leave sector 8
3825 			 * alone, but instead overwrite a high numbered
3826 			 * sector for the RAID metadata.  This sector can
3827 			 * be determined exactly, by truncating the physical
3828 			 * drive capacity to a nice even GB value.
3829 			 *
3830 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3831 			 *
3832 			 * Warn the user, lest they think we're just buggy.
3833 			 */
3834 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3835 				" BIOS CORRUPTS DATA on all attached drives,"
3836 				" regardless of if/how they are configured."
3837 				" BEWARE!\n");
3838 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3839 				" use sectors 8-9 on \"Legacy\" drives,"
3840 				" and avoid the final two gigabytes on"
3841 				" all RocketRAID BIOS initialized drives.\n");
3842 		}
3843 		/* drop through */
3844 	case chip_6042:
3845 		hpriv->ops = &mv6xxx_ops;
3846 		hp_flags |= MV_HP_GEN_IIE;
3847 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3848 			hp_flags |= MV_HP_CUT_THROUGH;
3849 
3850 		switch (pdev->revision) {
3851 		case 0x2: /* Rev.B0: the first/only public release */
3852 			hp_flags |= MV_HP_ERRATA_60X1C0;
3853 			break;
3854 		default:
3855 			dev_warn(&pdev->dev,
3856 				 "Applying 60X1C0 workarounds to unknown rev\n");
3857 			hp_flags |= MV_HP_ERRATA_60X1C0;
3858 			break;
3859 		}
3860 		break;
3861 	case chip_soc:
3862 		if (soc_is_65n(hpriv))
3863 			hpriv->ops = &mv_soc_65n_ops;
3864 		else
3865 			hpriv->ops = &mv_soc_ops;
3866 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3867 			MV_HP_ERRATA_60X1C0;
3868 		break;
3869 
3870 	default:
3871 		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3872 		return 1;
3873 	}
3874 
3875 	hpriv->hp_flags = hp_flags;
3876 	if (hp_flags & MV_HP_PCIE) {
3877 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3878 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3879 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3880 	} else {
3881 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3882 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3883 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3884 	}
3885 
3886 	return 0;
3887 }
3888 
3889 /**
3890  *      mv_init_host - Perform some early initialization of the host.
3891  *	@host: ATA host to initialize
3892  *
3893  *      If possible, do an early global reset of the host.  Then do
3894  *      our port init and clear/unmask all/relevant host interrupts.
3895  *
3896  *      LOCKING:
3897  *      Inherited from caller.
3898  */
3899 static int mv_init_host(struct ata_host *host)
3900 {
3901 	int rc = 0, n_hc, port, hc;
3902 	struct mv_host_priv *hpriv = host->private_data;
3903 	void __iomem *mmio = hpriv->base;
3904 
3905 	rc = mv_chip_id(host, hpriv->board_idx);
3906 	if (rc)
3907 		goto done;
3908 
3909 	if (IS_SOC(hpriv)) {
3910 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3911 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3912 	} else {
3913 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3914 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3915 	}
3916 
3917 	/* initialize shadow irq mask with register's value */
3918 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3919 
3920 	/* global interrupt mask: 0 == mask everything */
3921 	mv_set_main_irq_mask(host, ~0, 0);
3922 
3923 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3924 
3925 	for (port = 0; port < host->n_ports; port++)
3926 		if (hpriv->ops->read_preamp)
3927 			hpriv->ops->read_preamp(hpriv, port, mmio);
3928 
3929 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3930 	if (rc)
3931 		goto done;
3932 
3933 	hpriv->ops->reset_flash(hpriv, mmio);
3934 	hpriv->ops->reset_bus(host, mmio);
3935 	hpriv->ops->enable_leds(hpriv, mmio);
3936 
3937 	for (port = 0; port < host->n_ports; port++) {
3938 		struct ata_port *ap = host->ports[port];
3939 		void __iomem *port_mmio = mv_port_base(mmio, port);
3940 
3941 		mv_port_init(&ap->ioaddr, port_mmio);
3942 	}
3943 
3944 	for (hc = 0; hc < n_hc; hc++) {
3945 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3946 
3947 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3948 			"(before clear)=0x%08x\n", hc,
3949 			readl(hc_mmio + HC_CFG),
3950 			readl(hc_mmio + HC_IRQ_CAUSE));
3951 
3952 		/* Clear any currently outstanding hc interrupt conditions */
3953 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3954 	}
3955 
3956 	if (!IS_SOC(hpriv)) {
3957 		/* Clear any currently outstanding host interrupt conditions */
3958 		writelfl(0, mmio + hpriv->irq_cause_offset);
3959 
3960 		/* and unmask interrupt generation for host regs */
3961 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3962 	}
3963 
3964 	/*
3965 	 * enable only global host interrupts for now.
3966 	 * The per-port interrupts get done later as ports are set up.
3967 	 */
3968 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3969 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3970 				    irq_coalescing_usecs);
3971 done:
3972 	return rc;
3973 }
3974 
3975 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3976 {
3977 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3978 							     MV_CRQB_Q_SZ, 0);
3979 	if (!hpriv->crqb_pool)
3980 		return -ENOMEM;
3981 
3982 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3983 							     MV_CRPB_Q_SZ, 0);
3984 	if (!hpriv->crpb_pool)
3985 		return -ENOMEM;
3986 
3987 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3988 							     MV_SG_TBL_SZ, 0);
3989 	if (!hpriv->sg_tbl_pool)
3990 		return -ENOMEM;
3991 
3992 	return 0;
3993 }
3994 
3995 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3996 				 const struct mbus_dram_target_info *dram)
3997 {
3998 	int i;
3999 
4000 	for (i = 0; i < 4; i++) {
4001 		writel(0, hpriv->base + WINDOW_CTRL(i));
4002 		writel(0, hpriv->base + WINDOW_BASE(i));
4003 	}
4004 
4005 	for (i = 0; i < dram->num_cs; i++) {
4006 		const struct mbus_dram_window *cs = dram->cs + i;
4007 
4008 		writel(((cs->size - 1) & 0xffff0000) |
4009 			(cs->mbus_attr << 8) |
4010 			(dram->mbus_dram_target_id << 4) | 1,
4011 			hpriv->base + WINDOW_CTRL(i));
4012 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4013 	}
4014 }
4015 
4016 /**
4017  *      mv_platform_probe - handle a positive probe of an soc Marvell
4018  *      host
4019  *      @pdev: platform device found
4020  *
4021  *      LOCKING:
4022  *      Inherited from caller.
4023  */
4024 static int mv_platform_probe(struct platform_device *pdev)
4025 {
4026 	const struct mv_sata_platform_data *mv_platform_data;
4027 	const struct mbus_dram_target_info *dram;
4028 	const struct ata_port_info *ppi[] =
4029 	    { &mv_port_info[chip_soc], NULL };
4030 	struct ata_host *host;
4031 	struct mv_host_priv *hpriv;
4032 	struct resource *res;
4033 	int n_ports = 0, irq = 0;
4034 	int rc;
4035 #if defined(CONFIG_HAVE_CLK)
4036 	int port;
4037 #endif
4038 
4039 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4040 
4041 	/*
4042 	 * Simple resource validation ..
4043 	 */
4044 	if (unlikely(pdev->num_resources != 2)) {
4045 		dev_err(&pdev->dev, "invalid number of resources\n");
4046 		return -EINVAL;
4047 	}
4048 
4049 	/*
4050 	 * Get the register base first
4051 	 */
4052 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4053 	if (res == NULL)
4054 		return -EINVAL;
4055 
4056 	/* allocate host */
4057 	if (pdev->dev.of_node) {
4058 		of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4059 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4060 	} else {
4061 		mv_platform_data = pdev->dev.platform_data;
4062 		n_ports = mv_platform_data->n_ports;
4063 		irq = platform_get_irq(pdev, 0);
4064 	}
4065 
4066 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4067 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4068 
4069 	if (!host || !hpriv)
4070 		return -ENOMEM;
4071 #if defined(CONFIG_HAVE_CLK)
4072 	hpriv->port_clks = devm_kzalloc(&pdev->dev,
4073 					sizeof(struct clk *) * n_ports,
4074 					GFP_KERNEL);
4075 	if (!hpriv->port_clks)
4076 		return -ENOMEM;
4077 #endif
4078 	host->private_data = hpriv;
4079 	hpriv->n_ports = n_ports;
4080 	hpriv->board_idx = chip_soc;
4081 
4082 	host->iomap = NULL;
4083 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4084 				   resource_size(res));
4085 	hpriv->base -= SATAHC0_REG_BASE;
4086 
4087 #if defined(CONFIG_HAVE_CLK)
4088 	hpriv->clk = clk_get(&pdev->dev, NULL);
4089 	if (IS_ERR(hpriv->clk))
4090 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4091 	else
4092 		clk_prepare_enable(hpriv->clk);
4093 
4094 	for (port = 0; port < n_ports; port++) {
4095 		char port_number[16];
4096 		sprintf(port_number, "%d", port);
4097 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4098 		if (!IS_ERR(hpriv->port_clks[port]))
4099 			clk_prepare_enable(hpriv->port_clks[port]);
4100 	}
4101 #endif
4102 
4103 	/*
4104 	 * (Re-)program MBUS remapping windows if we are asked to.
4105 	 */
4106 	dram = mv_mbus_dram_info();
4107 	if (dram)
4108 		mv_conf_mbus_windows(hpriv, dram);
4109 
4110 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4111 	if (rc)
4112 		goto err;
4113 
4114 	/* initialize adapter */
4115 	rc = mv_init_host(host);
4116 	if (rc)
4117 		goto err;
4118 
4119 	dev_info(&pdev->dev, "slots %u ports %d\n",
4120 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4121 
4122 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4123 	if (!rc)
4124 		return 0;
4125 
4126 err:
4127 #if defined(CONFIG_HAVE_CLK)
4128 	if (!IS_ERR(hpriv->clk)) {
4129 		clk_disable_unprepare(hpriv->clk);
4130 		clk_put(hpriv->clk);
4131 	}
4132 	for (port = 0; port < n_ports; port++) {
4133 		if (!IS_ERR(hpriv->port_clks[port])) {
4134 			clk_disable_unprepare(hpriv->port_clks[port]);
4135 			clk_put(hpriv->port_clks[port]);
4136 		}
4137 	}
4138 #endif
4139 
4140 	return rc;
4141 }
4142 
4143 /*
4144  *
4145  *      mv_platform_remove    -       unplug a platform interface
4146  *      @pdev: platform device
4147  *
4148  *      A platform bus SATA device has been unplugged. Perform the needed
4149  *      cleanup. Also called on module unload for any active devices.
4150  */
4151 static int __devexit mv_platform_remove(struct platform_device *pdev)
4152 {
4153 	struct ata_host *host = platform_get_drvdata(pdev);
4154 #if defined(CONFIG_HAVE_CLK)
4155 	struct mv_host_priv *hpriv = host->private_data;
4156 	int port;
4157 #endif
4158 	ata_host_detach(host);
4159 
4160 #if defined(CONFIG_HAVE_CLK)
4161 	if (!IS_ERR(hpriv->clk)) {
4162 		clk_disable_unprepare(hpriv->clk);
4163 		clk_put(hpriv->clk);
4164 	}
4165 	for (port = 0; port < host->n_ports; port++) {
4166 		if (!IS_ERR(hpriv->port_clks[port])) {
4167 			clk_disable_unprepare(hpriv->port_clks[port]);
4168 			clk_put(hpriv->port_clks[port]);
4169 		}
4170 	}
4171 #endif
4172 	return 0;
4173 }
4174 
4175 #ifdef CONFIG_PM
4176 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4177 {
4178 	struct ata_host *host = platform_get_drvdata(pdev);
4179 	if (host)
4180 		return ata_host_suspend(host, state);
4181 	else
4182 		return 0;
4183 }
4184 
4185 static int mv_platform_resume(struct platform_device *pdev)
4186 {
4187 	struct ata_host *host = platform_get_drvdata(pdev);
4188 	const struct mbus_dram_target_info *dram;
4189 	int ret;
4190 
4191 	if (host) {
4192 		struct mv_host_priv *hpriv = host->private_data;
4193 
4194 		/*
4195 		 * (Re-)program MBUS remapping windows if we are asked to.
4196 		 */
4197 		dram = mv_mbus_dram_info();
4198 		if (dram)
4199 			mv_conf_mbus_windows(hpriv, dram);
4200 
4201 		/* initialize adapter */
4202 		ret = mv_init_host(host);
4203 		if (ret) {
4204 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4205 			return ret;
4206 		}
4207 		ata_host_resume(host);
4208 	}
4209 
4210 	return 0;
4211 }
4212 #else
4213 #define mv_platform_suspend NULL
4214 #define mv_platform_resume NULL
4215 #endif
4216 
4217 #ifdef CONFIG_OF
4218 static struct of_device_id mv_sata_dt_ids[] __devinitdata = {
4219 	{ .compatible = "marvell,orion-sata", },
4220 	{},
4221 };
4222 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4223 #endif
4224 
4225 static struct platform_driver mv_platform_driver = {
4226 	.probe		= mv_platform_probe,
4227 	.remove		= __devexit_p(mv_platform_remove),
4228 	.suspend	= mv_platform_suspend,
4229 	.resume		= mv_platform_resume,
4230 	.driver		= {
4231 		.name = DRV_NAME,
4232 		.owner = THIS_MODULE,
4233 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4234 	},
4235 };
4236 
4237 
4238 #ifdef CONFIG_PCI
4239 static int mv_pci_init_one(struct pci_dev *pdev,
4240 			   const struct pci_device_id *ent);
4241 #ifdef CONFIG_PM
4242 static int mv_pci_device_resume(struct pci_dev *pdev);
4243 #endif
4244 
4245 
4246 static struct pci_driver mv_pci_driver = {
4247 	.name			= DRV_NAME,
4248 	.id_table		= mv_pci_tbl,
4249 	.probe			= mv_pci_init_one,
4250 	.remove			= ata_pci_remove_one,
4251 #ifdef CONFIG_PM
4252 	.suspend		= ata_pci_device_suspend,
4253 	.resume			= mv_pci_device_resume,
4254 #endif
4255 
4256 };
4257 
4258 /* move to PCI layer or libata core? */
4259 static int pci_go_64(struct pci_dev *pdev)
4260 {
4261 	int rc;
4262 
4263 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4264 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4265 		if (rc) {
4266 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4267 			if (rc) {
4268 				dev_err(&pdev->dev,
4269 					"64-bit DMA enable failed\n");
4270 				return rc;
4271 			}
4272 		}
4273 	} else {
4274 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4275 		if (rc) {
4276 			dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4277 			return rc;
4278 		}
4279 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4280 		if (rc) {
4281 			dev_err(&pdev->dev,
4282 				"32-bit consistent DMA enable failed\n");
4283 			return rc;
4284 		}
4285 	}
4286 
4287 	return rc;
4288 }
4289 
4290 /**
4291  *      mv_print_info - Dump key info to kernel log for perusal.
4292  *      @host: ATA host to print info about
4293  *
4294  *      FIXME: complete this.
4295  *
4296  *      LOCKING:
4297  *      Inherited from caller.
4298  */
4299 static void mv_print_info(struct ata_host *host)
4300 {
4301 	struct pci_dev *pdev = to_pci_dev(host->dev);
4302 	struct mv_host_priv *hpriv = host->private_data;
4303 	u8 scc;
4304 	const char *scc_s, *gen;
4305 
4306 	/* Use this to determine the HW stepping of the chip so we know
4307 	 * what errata to workaround
4308 	 */
4309 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4310 	if (scc == 0)
4311 		scc_s = "SCSI";
4312 	else if (scc == 0x01)
4313 		scc_s = "RAID";
4314 	else
4315 		scc_s = "?";
4316 
4317 	if (IS_GEN_I(hpriv))
4318 		gen = "I";
4319 	else if (IS_GEN_II(hpriv))
4320 		gen = "II";
4321 	else if (IS_GEN_IIE(hpriv))
4322 		gen = "IIE";
4323 	else
4324 		gen = "?";
4325 
4326 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4327 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4328 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4329 }
4330 
4331 /**
4332  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4333  *      @pdev: PCI device found
4334  *      @ent: PCI device ID entry for the matched host
4335  *
4336  *      LOCKING:
4337  *      Inherited from caller.
4338  */
4339 static int mv_pci_init_one(struct pci_dev *pdev,
4340 			   const struct pci_device_id *ent)
4341 {
4342 	unsigned int board_idx = (unsigned int)ent->driver_data;
4343 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4344 	struct ata_host *host;
4345 	struct mv_host_priv *hpriv;
4346 	int n_ports, port, rc;
4347 
4348 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4349 
4350 	/* allocate host */
4351 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4352 
4353 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4354 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4355 	if (!host || !hpriv)
4356 		return -ENOMEM;
4357 	host->private_data = hpriv;
4358 	hpriv->n_ports = n_ports;
4359 	hpriv->board_idx = board_idx;
4360 
4361 	/* acquire resources */
4362 	rc = pcim_enable_device(pdev);
4363 	if (rc)
4364 		return rc;
4365 
4366 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4367 	if (rc == -EBUSY)
4368 		pcim_pin_device(pdev);
4369 	if (rc)
4370 		return rc;
4371 	host->iomap = pcim_iomap_table(pdev);
4372 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4373 
4374 	rc = pci_go_64(pdev);
4375 	if (rc)
4376 		return rc;
4377 
4378 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4379 	if (rc)
4380 		return rc;
4381 
4382 	for (port = 0; port < host->n_ports; port++) {
4383 		struct ata_port *ap = host->ports[port];
4384 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4385 		unsigned int offset = port_mmio - hpriv->base;
4386 
4387 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4388 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4389 	}
4390 
4391 	/* initialize adapter */
4392 	rc = mv_init_host(host);
4393 	if (rc)
4394 		return rc;
4395 
4396 	/* Enable message-switched interrupts, if requested */
4397 	if (msi && pci_enable_msi(pdev) == 0)
4398 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4399 
4400 	mv_dump_pci_cfg(pdev, 0x68);
4401 	mv_print_info(host);
4402 
4403 	pci_set_master(pdev);
4404 	pci_try_set_mwi(pdev);
4405 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4406 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4407 }
4408 
4409 #ifdef CONFIG_PM
4410 static int mv_pci_device_resume(struct pci_dev *pdev)
4411 {
4412 	struct ata_host *host = pci_get_drvdata(pdev);
4413 	int rc;
4414 
4415 	rc = ata_pci_device_do_resume(pdev);
4416 	if (rc)
4417 		return rc;
4418 
4419 	/* initialize adapter */
4420 	rc = mv_init_host(host);
4421 	if (rc)
4422 		return rc;
4423 
4424 	ata_host_resume(host);
4425 
4426 	return 0;
4427 }
4428 #endif
4429 #endif
4430 
4431 static int mv_platform_probe(struct platform_device *pdev);
4432 static int __devexit mv_platform_remove(struct platform_device *pdev);
4433 
4434 static int __init mv_init(void)
4435 {
4436 	int rc = -ENODEV;
4437 #ifdef CONFIG_PCI
4438 	rc = pci_register_driver(&mv_pci_driver);
4439 	if (rc < 0)
4440 		return rc;
4441 #endif
4442 	rc = platform_driver_register(&mv_platform_driver);
4443 
4444 #ifdef CONFIG_PCI
4445 	if (rc < 0)
4446 		pci_unregister_driver(&mv_pci_driver);
4447 #endif
4448 	return rc;
4449 }
4450 
4451 static void __exit mv_exit(void)
4452 {
4453 #ifdef CONFIG_PCI
4454 	pci_unregister_driver(&mv_pci_driver);
4455 #endif
4456 	platform_driver_unregister(&mv_platform_driver);
4457 }
4458 
4459 MODULE_AUTHOR("Brett Russ");
4460 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4461 MODULE_LICENSE("GPL");
4462 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4463 MODULE_VERSION(DRV_VERSION);
4464 MODULE_ALIAS("platform:" DRV_NAME);
4465 
4466 module_init(mv_init);
4467 module_exit(mv_exit);
4468