1 /* 2 * sata_mv.c - Marvell SATA support 3 * 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 5 * Copyright 2005: EMC Corporation, all rights reserved. 6 * Copyright 2005 Red Hat, Inc. All rights reserved. 7 * 8 * Originally written by Brett Russ. 9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 10 * 11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; version 2 of the License. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 /* 29 * sata_mv TODO list: 30 * 31 * --> Develop a low-power-consumption strategy, and implement it. 32 * 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 34 * 35 * --> [Experiment, Marvell value added] Is it possible to use target 36 * mode to cross-connect two Linux boxes with Marvell cards? If so, 37 * creating LibATA target mode support would be very interesting. 38 * 39 * Target mode, for those without docs, is the ability to directly 40 * connect two SATA ports. 41 */ 42 43 /* 44 * 80x1-B2 errata PCI#11: 45 * 46 * Users of the 6041/6081 Rev.B2 chips (current is C0) 47 * should be careful to insert those cards only onto PCI-X bus #0, 48 * and only in device slots 0..7, not higher. The chips may not 49 * work correctly otherwise (note: this is a pretty rare condition). 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/init.h> 56 #include <linux/blkdev.h> 57 #include <linux/delay.h> 58 #include <linux/interrupt.h> 59 #include <linux/dmapool.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/device.h> 62 #include <linux/clk.h> 63 #include <linux/platform_device.h> 64 #include <linux/ata_platform.h> 65 #include <linux/mbus.h> 66 #include <linux/bitops.h> 67 #include <linux/gfp.h> 68 #include <linux/of.h> 69 #include <linux/of_irq.h> 70 #include <scsi/scsi_host.h> 71 #include <scsi/scsi_cmnd.h> 72 #include <scsi/scsi_device.h> 73 #include <linux/libata.h> 74 75 #define DRV_NAME "sata_mv" 76 #define DRV_VERSION "1.28" 77 78 /* 79 * module options 80 */ 81 82 #ifdef CONFIG_PCI 83 static int msi; 84 module_param(msi, int, S_IRUGO); 85 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 86 #endif 87 88 static int irq_coalescing_io_count; 89 module_param(irq_coalescing_io_count, int, S_IRUGO); 90 MODULE_PARM_DESC(irq_coalescing_io_count, 91 "IRQ coalescing I/O count threshold (0..255)"); 92 93 static int irq_coalescing_usecs; 94 module_param(irq_coalescing_usecs, int, S_IRUGO); 95 MODULE_PARM_DESC(irq_coalescing_usecs, 96 "IRQ coalescing time threshold in usecs"); 97 98 enum { 99 /* BAR's are enumerated in terms of pci_resource_start() terms */ 100 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 101 MV_IO_BAR = 2, /* offset 0x18: IO space */ 102 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 103 104 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 105 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 106 107 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 108 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 109 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 110 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 111 112 MV_PCI_REG_BASE = 0, 113 114 /* 115 * Per-chip ("all ports") interrupt coalescing feature. 116 * This is only for GEN_II / GEN_IIE hardware. 117 * 118 * Coalescing defers the interrupt until either the IO_THRESHOLD 119 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 120 */ 121 COAL_REG_BASE = 0x18000, 122 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 123 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 124 125 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 126 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 127 128 /* 129 * Registers for the (unused here) transaction coalescing feature: 130 */ 131 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 132 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 133 134 SATAHC0_REG_BASE = 0x20000, 135 FLASH_CTL = 0x1046c, 136 GPIO_PORT_CTL = 0x104f0, 137 RESET_CFG = 0x180d8, 138 139 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 140 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 141 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 142 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 143 144 MV_MAX_Q_DEPTH = 32, 145 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 146 147 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 148 * CRPB needs alignment on a 256B boundary. Size == 256B 149 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 150 */ 151 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 152 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 153 MV_MAX_SG_CT = 256, 154 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 155 156 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 157 MV_PORT_HC_SHIFT = 2, 158 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 159 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 160 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 161 162 /* Host Flags */ 163 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 164 165 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, 166 167 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 168 169 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 170 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 171 172 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 173 174 CRQB_FLAG_READ = (1 << 0), 175 CRQB_TAG_SHIFT = 1, 176 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 177 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 178 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 179 CRQB_CMD_ADDR_SHIFT = 8, 180 CRQB_CMD_CS = (0x2 << 11), 181 CRQB_CMD_LAST = (1 << 15), 182 183 CRPB_FLAG_STATUS_SHIFT = 8, 184 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 185 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 186 187 EPRD_FLAG_END_OF_TBL = (1 << 31), 188 189 /* PCI interface registers */ 190 191 MV_PCI_COMMAND = 0xc00, 192 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 193 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 194 195 PCI_MAIN_CMD_STS = 0xd30, 196 STOP_PCI_MASTER = (1 << 2), 197 PCI_MASTER_EMPTY = (1 << 3), 198 GLOB_SFT_RST = (1 << 4), 199 200 MV_PCI_MODE = 0xd00, 201 MV_PCI_MODE_MASK = 0x30, 202 203 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 204 MV_PCI_DISC_TIMER = 0xd04, 205 MV_PCI_MSI_TRIGGER = 0xc38, 206 MV_PCI_SERR_MASK = 0xc28, 207 MV_PCI_XBAR_TMOUT = 0x1d04, 208 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 209 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 210 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 211 MV_PCI_ERR_COMMAND = 0x1d50, 212 213 PCI_IRQ_CAUSE = 0x1d58, 214 PCI_IRQ_MASK = 0x1d5c, 215 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 216 217 PCIE_IRQ_CAUSE = 0x1900, 218 PCIE_IRQ_MASK = 0x1910, 219 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 220 221 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 222 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 223 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 224 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 225 SOC_HC_MAIN_IRQ_MASK = 0x20024, 226 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 227 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 228 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 229 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 230 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 231 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 232 PCI_ERR = (1 << 18), 233 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 234 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 235 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 236 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 237 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 238 GPIO_INT = (1 << 22), 239 SELF_INT = (1 << 23), 240 TWSI_INT = (1 << 24), 241 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 242 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 243 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 244 245 /* SATAHC registers */ 246 HC_CFG = 0x00, 247 248 HC_IRQ_CAUSE = 0x14, 249 DMA_IRQ = (1 << 0), /* shift by port # */ 250 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 251 DEV_IRQ = (1 << 8), /* shift by port # */ 252 253 /* 254 * Per-HC (Host-Controller) interrupt coalescing feature. 255 * This is present on all chip generations. 256 * 257 * Coalescing defers the interrupt until either the IO_THRESHOLD 258 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 259 */ 260 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 261 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 262 263 SOC_LED_CTRL = 0x2c, 264 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 265 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 266 /* with dev activity LED */ 267 268 /* Shadow block registers */ 269 SHD_BLK = 0x100, 270 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 271 272 /* SATA registers */ 273 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 274 SATA_ACTIVE = 0x350, 275 FIS_IRQ_CAUSE = 0x364, 276 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 277 278 LTMODE = 0x30c, /* requires read-after-write */ 279 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 280 281 PHY_MODE2 = 0x330, 282 PHY_MODE3 = 0x310, 283 284 PHY_MODE4 = 0x314, /* requires read-after-write */ 285 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 286 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 287 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 288 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 289 290 SATA_IFCTL = 0x344, 291 SATA_TESTCTL = 0x348, 292 SATA_IFSTAT = 0x34c, 293 VENDOR_UNIQUE_FIS = 0x35c, 294 295 FISCFG = 0x360, 296 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 297 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 298 299 PHY_MODE9_GEN2 = 0x398, 300 PHY_MODE9_GEN1 = 0x39c, 301 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 302 303 MV5_PHY_MODE = 0x74, 304 MV5_LTMODE = 0x30, 305 MV5_PHY_CTL = 0x0C, 306 SATA_IFCFG = 0x050, 307 308 MV_M2_PREAMP_MASK = 0x7e0, 309 310 /* Port registers */ 311 EDMA_CFG = 0, 312 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 313 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 314 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 315 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 316 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 317 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 318 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 319 320 EDMA_ERR_IRQ_CAUSE = 0x8, 321 EDMA_ERR_IRQ_MASK = 0xc, 322 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 323 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 324 EDMA_ERR_DEV = (1 << 2), /* device error */ 325 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 326 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 327 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 328 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 329 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 330 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 331 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 332 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 333 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 334 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 335 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 336 337 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 338 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 339 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 340 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 341 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 342 343 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 344 345 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 346 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 347 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 348 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 349 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 350 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 351 352 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 353 354 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 355 EDMA_ERR_OVERRUN_5 = (1 << 5), 356 EDMA_ERR_UNDERRUN_5 = (1 << 6), 357 358 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 359 EDMA_ERR_LNK_CTRL_RX_1 | 360 EDMA_ERR_LNK_CTRL_RX_3 | 361 EDMA_ERR_LNK_CTRL_TX, 362 363 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 364 EDMA_ERR_PRD_PAR | 365 EDMA_ERR_DEV_DCON | 366 EDMA_ERR_DEV_CON | 367 EDMA_ERR_SERR | 368 EDMA_ERR_SELF_DIS | 369 EDMA_ERR_CRQB_PAR | 370 EDMA_ERR_CRPB_PAR | 371 EDMA_ERR_INTRL_PAR | 372 EDMA_ERR_IORDY | 373 EDMA_ERR_LNK_CTRL_RX_2 | 374 EDMA_ERR_LNK_DATA_RX | 375 EDMA_ERR_LNK_DATA_TX | 376 EDMA_ERR_TRANS_PROTO, 377 378 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 379 EDMA_ERR_PRD_PAR | 380 EDMA_ERR_DEV_DCON | 381 EDMA_ERR_DEV_CON | 382 EDMA_ERR_OVERRUN_5 | 383 EDMA_ERR_UNDERRUN_5 | 384 EDMA_ERR_SELF_DIS_5 | 385 EDMA_ERR_CRQB_PAR | 386 EDMA_ERR_CRPB_PAR | 387 EDMA_ERR_INTRL_PAR | 388 EDMA_ERR_IORDY, 389 390 EDMA_REQ_Q_BASE_HI = 0x10, 391 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 392 393 EDMA_REQ_Q_OUT_PTR = 0x18, 394 EDMA_REQ_Q_PTR_SHIFT = 5, 395 396 EDMA_RSP_Q_BASE_HI = 0x1c, 397 EDMA_RSP_Q_IN_PTR = 0x20, 398 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 399 EDMA_RSP_Q_PTR_SHIFT = 3, 400 401 EDMA_CMD = 0x28, /* EDMA command register */ 402 EDMA_EN = (1 << 0), /* enable EDMA */ 403 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 404 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 405 406 EDMA_STATUS = 0x30, /* EDMA engine status */ 407 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 408 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 409 410 EDMA_IORDY_TMOUT = 0x34, 411 EDMA_ARB_CFG = 0x38, 412 413 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 414 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 415 416 BMDMA_CMD = 0x224, /* bmdma command register */ 417 BMDMA_STATUS = 0x228, /* bmdma status register */ 418 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 419 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 420 421 /* Host private flags (hp_flags) */ 422 MV_HP_FLAG_MSI = (1 << 0), 423 MV_HP_ERRATA_50XXB0 = (1 << 1), 424 MV_HP_ERRATA_50XXB2 = (1 << 2), 425 MV_HP_ERRATA_60X1B2 = (1 << 3), 426 MV_HP_ERRATA_60X1C0 = (1 << 4), 427 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 428 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 429 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 430 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 431 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 432 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 433 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 434 435 /* Port private flags (pp_flags) */ 436 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 437 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 438 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 439 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 440 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 441 }; 442 443 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 444 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 445 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 446 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 447 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 448 449 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 450 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 451 452 enum { 453 /* DMA boundary 0xffff is required by the s/g splitting 454 * we need on /length/ in mv_fill-sg(). 455 */ 456 MV_DMA_BOUNDARY = 0xffffU, 457 458 /* mask of register bits containing lower 32 bits 459 * of EDMA request queue DMA address 460 */ 461 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 462 463 /* ditto, for response queue */ 464 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 465 }; 466 467 enum chip_type { 468 chip_504x, 469 chip_508x, 470 chip_5080, 471 chip_604x, 472 chip_608x, 473 chip_6042, 474 chip_7042, 475 chip_soc, 476 }; 477 478 /* Command ReQuest Block: 32B */ 479 struct mv_crqb { 480 __le32 sg_addr; 481 __le32 sg_addr_hi; 482 __le16 ctrl_flags; 483 __le16 ata_cmd[11]; 484 }; 485 486 struct mv_crqb_iie { 487 __le32 addr; 488 __le32 addr_hi; 489 __le32 flags; 490 __le32 len; 491 __le32 ata_cmd[4]; 492 }; 493 494 /* Command ResPonse Block: 8B */ 495 struct mv_crpb { 496 __le16 id; 497 __le16 flags; 498 __le32 tmstmp; 499 }; 500 501 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 502 struct mv_sg { 503 __le32 addr; 504 __le32 flags_size; 505 __le32 addr_hi; 506 __le32 reserved; 507 }; 508 509 /* 510 * We keep a local cache of a few frequently accessed port 511 * registers here, to avoid having to read them (very slow) 512 * when switching between EDMA and non-EDMA modes. 513 */ 514 struct mv_cached_regs { 515 u32 fiscfg; 516 u32 ltmode; 517 u32 haltcond; 518 u32 unknown_rsvd; 519 }; 520 521 struct mv_port_priv { 522 struct mv_crqb *crqb; 523 dma_addr_t crqb_dma; 524 struct mv_crpb *crpb; 525 dma_addr_t crpb_dma; 526 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 527 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 528 529 unsigned int req_idx; 530 unsigned int resp_idx; 531 532 u32 pp_flags; 533 struct mv_cached_regs cached; 534 unsigned int delayed_eh_pmp_map; 535 }; 536 537 struct mv_port_signal { 538 u32 amps; 539 u32 pre; 540 }; 541 542 struct mv_host_priv { 543 u32 hp_flags; 544 unsigned int board_idx; 545 u32 main_irq_mask; 546 struct mv_port_signal signal[8]; 547 const struct mv_hw_ops *ops; 548 int n_ports; 549 void __iomem *base; 550 void __iomem *main_irq_cause_addr; 551 void __iomem *main_irq_mask_addr; 552 u32 irq_cause_offset; 553 u32 irq_mask_offset; 554 u32 unmask_all_irqs; 555 556 #if defined(CONFIG_HAVE_CLK) 557 struct clk *clk; 558 struct clk **port_clks; 559 #endif 560 /* 561 * These consistent DMA memory pools give us guaranteed 562 * alignment for hardware-accessed data structures, 563 * and less memory waste in accomplishing the alignment. 564 */ 565 struct dma_pool *crqb_pool; 566 struct dma_pool *crpb_pool; 567 struct dma_pool *sg_tbl_pool; 568 }; 569 570 struct mv_hw_ops { 571 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 572 unsigned int port); 573 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 574 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 575 void __iomem *mmio); 576 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 577 unsigned int n_hc); 578 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 579 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 580 }; 581 582 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 583 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 584 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 585 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 586 static int mv_port_start(struct ata_port *ap); 587 static void mv_port_stop(struct ata_port *ap); 588 static int mv_qc_defer(struct ata_queued_cmd *qc); 589 static void mv_qc_prep(struct ata_queued_cmd *qc); 590 static void mv_qc_prep_iie(struct ata_queued_cmd *qc); 591 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 592 static int mv_hardreset(struct ata_link *link, unsigned int *class, 593 unsigned long deadline); 594 static void mv_eh_freeze(struct ata_port *ap); 595 static void mv_eh_thaw(struct ata_port *ap); 596 static void mv6_dev_config(struct ata_device *dev); 597 598 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 599 unsigned int port); 600 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 601 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 602 void __iomem *mmio); 603 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 604 unsigned int n_hc); 605 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 606 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 607 608 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 609 unsigned int port); 610 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 611 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 612 void __iomem *mmio); 613 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 614 unsigned int n_hc); 615 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 616 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 617 void __iomem *mmio); 618 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 619 void __iomem *mmio); 620 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 621 void __iomem *mmio, unsigned int n_hc); 622 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 623 void __iomem *mmio); 624 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 625 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 626 void __iomem *mmio, unsigned int port); 627 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 628 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 629 unsigned int port_no); 630 static int mv_stop_edma(struct ata_port *ap); 631 static int mv_stop_edma_engine(void __iomem *port_mmio); 632 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 633 634 static void mv_pmp_select(struct ata_port *ap, int pmp); 635 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 636 unsigned long deadline); 637 static int mv_softreset(struct ata_link *link, unsigned int *class, 638 unsigned long deadline); 639 static void mv_pmp_error_handler(struct ata_port *ap); 640 static void mv_process_crpb_entries(struct ata_port *ap, 641 struct mv_port_priv *pp); 642 643 static void mv_sff_irq_clear(struct ata_port *ap); 644 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 645 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 646 static void mv_bmdma_start(struct ata_queued_cmd *qc); 647 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 648 static u8 mv_bmdma_status(struct ata_port *ap); 649 static u8 mv_sff_check_status(struct ata_port *ap); 650 651 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 652 * because we have to allow room for worst case splitting of 653 * PRDs for 64K boundaries in mv_fill_sg(). 654 */ 655 #ifdef CONFIG_PCI 656 static struct scsi_host_template mv5_sht = { 657 ATA_BASE_SHT(DRV_NAME), 658 .sg_tablesize = MV_MAX_SG_CT / 2, 659 .dma_boundary = MV_DMA_BOUNDARY, 660 }; 661 #endif 662 static struct scsi_host_template mv6_sht = { 663 ATA_NCQ_SHT(DRV_NAME), 664 .can_queue = MV_MAX_Q_DEPTH - 1, 665 .sg_tablesize = MV_MAX_SG_CT / 2, 666 .dma_boundary = MV_DMA_BOUNDARY, 667 }; 668 669 static struct ata_port_operations mv5_ops = { 670 .inherits = &ata_sff_port_ops, 671 672 .lost_interrupt = ATA_OP_NULL, 673 674 .qc_defer = mv_qc_defer, 675 .qc_prep = mv_qc_prep, 676 .qc_issue = mv_qc_issue, 677 678 .freeze = mv_eh_freeze, 679 .thaw = mv_eh_thaw, 680 .hardreset = mv_hardreset, 681 682 .scr_read = mv5_scr_read, 683 .scr_write = mv5_scr_write, 684 685 .port_start = mv_port_start, 686 .port_stop = mv_port_stop, 687 }; 688 689 static struct ata_port_operations mv6_ops = { 690 .inherits = &ata_bmdma_port_ops, 691 692 .lost_interrupt = ATA_OP_NULL, 693 694 .qc_defer = mv_qc_defer, 695 .qc_prep = mv_qc_prep, 696 .qc_issue = mv_qc_issue, 697 698 .dev_config = mv6_dev_config, 699 700 .freeze = mv_eh_freeze, 701 .thaw = mv_eh_thaw, 702 .hardreset = mv_hardreset, 703 .softreset = mv_softreset, 704 .pmp_hardreset = mv_pmp_hardreset, 705 .pmp_softreset = mv_softreset, 706 .error_handler = mv_pmp_error_handler, 707 708 .scr_read = mv_scr_read, 709 .scr_write = mv_scr_write, 710 711 .sff_check_status = mv_sff_check_status, 712 .sff_irq_clear = mv_sff_irq_clear, 713 .check_atapi_dma = mv_check_atapi_dma, 714 .bmdma_setup = mv_bmdma_setup, 715 .bmdma_start = mv_bmdma_start, 716 .bmdma_stop = mv_bmdma_stop, 717 .bmdma_status = mv_bmdma_status, 718 719 .port_start = mv_port_start, 720 .port_stop = mv_port_stop, 721 }; 722 723 static struct ata_port_operations mv_iie_ops = { 724 .inherits = &mv6_ops, 725 .dev_config = ATA_OP_NULL, 726 .qc_prep = mv_qc_prep_iie, 727 }; 728 729 static const struct ata_port_info mv_port_info[] = { 730 { /* chip_504x */ 731 .flags = MV_GEN_I_FLAGS, 732 .pio_mask = ATA_PIO4, 733 .udma_mask = ATA_UDMA6, 734 .port_ops = &mv5_ops, 735 }, 736 { /* chip_508x */ 737 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 738 .pio_mask = ATA_PIO4, 739 .udma_mask = ATA_UDMA6, 740 .port_ops = &mv5_ops, 741 }, 742 { /* chip_5080 */ 743 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 744 .pio_mask = ATA_PIO4, 745 .udma_mask = ATA_UDMA6, 746 .port_ops = &mv5_ops, 747 }, 748 { /* chip_604x */ 749 .flags = MV_GEN_II_FLAGS, 750 .pio_mask = ATA_PIO4, 751 .udma_mask = ATA_UDMA6, 752 .port_ops = &mv6_ops, 753 }, 754 { /* chip_608x */ 755 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 756 .pio_mask = ATA_PIO4, 757 .udma_mask = ATA_UDMA6, 758 .port_ops = &mv6_ops, 759 }, 760 { /* chip_6042 */ 761 .flags = MV_GEN_IIE_FLAGS, 762 .pio_mask = ATA_PIO4, 763 .udma_mask = ATA_UDMA6, 764 .port_ops = &mv_iie_ops, 765 }, 766 { /* chip_7042 */ 767 .flags = MV_GEN_IIE_FLAGS, 768 .pio_mask = ATA_PIO4, 769 .udma_mask = ATA_UDMA6, 770 .port_ops = &mv_iie_ops, 771 }, 772 { /* chip_soc */ 773 .flags = MV_GEN_IIE_FLAGS, 774 .pio_mask = ATA_PIO4, 775 .udma_mask = ATA_UDMA6, 776 .port_ops = &mv_iie_ops, 777 }, 778 }; 779 780 static const struct pci_device_id mv_pci_tbl[] = { 781 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 782 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 783 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 784 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 785 /* RocketRAID 1720/174x have different identifiers */ 786 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 787 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 788 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 789 790 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 791 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 792 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 793 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 794 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 795 796 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 797 798 /* Adaptec 1430SA */ 799 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 800 801 /* Marvell 7042 support */ 802 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 803 804 /* Highpoint RocketRAID PCIe series */ 805 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 806 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 807 808 { } /* terminate list */ 809 }; 810 811 static const struct mv_hw_ops mv5xxx_ops = { 812 .phy_errata = mv5_phy_errata, 813 .enable_leds = mv5_enable_leds, 814 .read_preamp = mv5_read_preamp, 815 .reset_hc = mv5_reset_hc, 816 .reset_flash = mv5_reset_flash, 817 .reset_bus = mv5_reset_bus, 818 }; 819 820 static const struct mv_hw_ops mv6xxx_ops = { 821 .phy_errata = mv6_phy_errata, 822 .enable_leds = mv6_enable_leds, 823 .read_preamp = mv6_read_preamp, 824 .reset_hc = mv6_reset_hc, 825 .reset_flash = mv6_reset_flash, 826 .reset_bus = mv_reset_pci_bus, 827 }; 828 829 static const struct mv_hw_ops mv_soc_ops = { 830 .phy_errata = mv6_phy_errata, 831 .enable_leds = mv_soc_enable_leds, 832 .read_preamp = mv_soc_read_preamp, 833 .reset_hc = mv_soc_reset_hc, 834 .reset_flash = mv_soc_reset_flash, 835 .reset_bus = mv_soc_reset_bus, 836 }; 837 838 static const struct mv_hw_ops mv_soc_65n_ops = { 839 .phy_errata = mv_soc_65n_phy_errata, 840 .enable_leds = mv_soc_enable_leds, 841 .reset_hc = mv_soc_reset_hc, 842 .reset_flash = mv_soc_reset_flash, 843 .reset_bus = mv_soc_reset_bus, 844 }; 845 846 /* 847 * Functions 848 */ 849 850 static inline void writelfl(unsigned long data, void __iomem *addr) 851 { 852 writel(data, addr); 853 (void) readl(addr); /* flush to avoid PCI posted write */ 854 } 855 856 static inline unsigned int mv_hc_from_port(unsigned int port) 857 { 858 return port >> MV_PORT_HC_SHIFT; 859 } 860 861 static inline unsigned int mv_hardport_from_port(unsigned int port) 862 { 863 return port & MV_PORT_MASK; 864 } 865 866 /* 867 * Consolidate some rather tricky bit shift calculations. 868 * This is hot-path stuff, so not a function. 869 * Simple code, with two return values, so macro rather than inline. 870 * 871 * port is the sole input, in range 0..7. 872 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 873 * hardport is the other output, in range 0..3. 874 * 875 * Note that port and hardport may be the same variable in some cases. 876 */ 877 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 878 { \ 879 shift = mv_hc_from_port(port) * HC_SHIFT; \ 880 hardport = mv_hardport_from_port(port); \ 881 shift += hardport * 2; \ 882 } 883 884 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 885 { 886 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 887 } 888 889 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 890 unsigned int port) 891 { 892 return mv_hc_base(base, mv_hc_from_port(port)); 893 } 894 895 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 896 { 897 return mv_hc_base_from_port(base, port) + 898 MV_SATAHC_ARBTR_REG_SZ + 899 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 900 } 901 902 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 903 { 904 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 905 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 906 907 return hc_mmio + ofs; 908 } 909 910 static inline void __iomem *mv_host_base(struct ata_host *host) 911 { 912 struct mv_host_priv *hpriv = host->private_data; 913 return hpriv->base; 914 } 915 916 static inline void __iomem *mv_ap_base(struct ata_port *ap) 917 { 918 return mv_port_base(mv_host_base(ap->host), ap->port_no); 919 } 920 921 static inline int mv_get_hc_count(unsigned long port_flags) 922 { 923 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 924 } 925 926 /** 927 * mv_save_cached_regs - (re-)initialize cached port registers 928 * @ap: the port whose registers we are caching 929 * 930 * Initialize the local cache of port registers, 931 * so that reading them over and over again can 932 * be avoided on the hotter paths of this driver. 933 * This saves a few microseconds each time we switch 934 * to/from EDMA mode to perform (eg.) a drive cache flush. 935 */ 936 static void mv_save_cached_regs(struct ata_port *ap) 937 { 938 void __iomem *port_mmio = mv_ap_base(ap); 939 struct mv_port_priv *pp = ap->private_data; 940 941 pp->cached.fiscfg = readl(port_mmio + FISCFG); 942 pp->cached.ltmode = readl(port_mmio + LTMODE); 943 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 944 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 945 } 946 947 /** 948 * mv_write_cached_reg - write to a cached port register 949 * @addr: hardware address of the register 950 * @old: pointer to cached value of the register 951 * @new: new value for the register 952 * 953 * Write a new value to a cached register, 954 * but only if the value is different from before. 955 */ 956 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 957 { 958 if (new != *old) { 959 unsigned long laddr; 960 *old = new; 961 /* 962 * Workaround for 88SX60x1-B2 FEr SATA#13: 963 * Read-after-write is needed to prevent generating 64-bit 964 * write cycles on the PCI bus for SATA interface registers 965 * at offsets ending in 0x4 or 0xc. 966 * 967 * Looks like a lot of fuss, but it avoids an unnecessary 968 * +1 usec read-after-write delay for unaffected registers. 969 */ 970 laddr = (long)addr & 0xffff; 971 if (laddr >= 0x300 && laddr <= 0x33c) { 972 laddr &= 0x000f; 973 if (laddr == 0x4 || laddr == 0xc) { 974 writelfl(new, addr); /* read after write */ 975 return; 976 } 977 } 978 writel(new, addr); /* unaffected by the errata */ 979 } 980 } 981 982 static void mv_set_edma_ptrs(void __iomem *port_mmio, 983 struct mv_host_priv *hpriv, 984 struct mv_port_priv *pp) 985 { 986 u32 index; 987 988 /* 989 * initialize request queue 990 */ 991 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 992 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 993 994 WARN_ON(pp->crqb_dma & 0x3ff); 995 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 996 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 997 port_mmio + EDMA_REQ_Q_IN_PTR); 998 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 999 1000 /* 1001 * initialize response queue 1002 */ 1003 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1004 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 1005 1006 WARN_ON(pp->crpb_dma & 0xff); 1007 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 1008 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 1009 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 1010 port_mmio + EDMA_RSP_Q_OUT_PTR); 1011 } 1012 1013 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 1014 { 1015 /* 1016 * When writing to the main_irq_mask in hardware, 1017 * we must ensure exclusivity between the interrupt coalescing bits 1018 * and the corresponding individual port DONE_IRQ bits. 1019 * 1020 * Note that this register is really an "IRQ enable" register, 1021 * not an "IRQ mask" register as Marvell's naming might suggest. 1022 */ 1023 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1024 mask &= ~DONE_IRQ_0_3; 1025 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1026 mask &= ~DONE_IRQ_4_7; 1027 writelfl(mask, hpriv->main_irq_mask_addr); 1028 } 1029 1030 static void mv_set_main_irq_mask(struct ata_host *host, 1031 u32 disable_bits, u32 enable_bits) 1032 { 1033 struct mv_host_priv *hpriv = host->private_data; 1034 u32 old_mask, new_mask; 1035 1036 old_mask = hpriv->main_irq_mask; 1037 new_mask = (old_mask & ~disable_bits) | enable_bits; 1038 if (new_mask != old_mask) { 1039 hpriv->main_irq_mask = new_mask; 1040 mv_write_main_irq_mask(new_mask, hpriv); 1041 } 1042 } 1043 1044 static void mv_enable_port_irqs(struct ata_port *ap, 1045 unsigned int port_bits) 1046 { 1047 unsigned int shift, hardport, port = ap->port_no; 1048 u32 disable_bits, enable_bits; 1049 1050 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1051 1052 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1053 enable_bits = port_bits << shift; 1054 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1055 } 1056 1057 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1058 void __iomem *port_mmio, 1059 unsigned int port_irqs) 1060 { 1061 struct mv_host_priv *hpriv = ap->host->private_data; 1062 int hardport = mv_hardport_from_port(ap->port_no); 1063 void __iomem *hc_mmio = mv_hc_base_from_port( 1064 mv_host_base(ap->host), ap->port_no); 1065 u32 hc_irq_cause; 1066 1067 /* clear EDMA event indicators, if any */ 1068 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1069 1070 /* clear pending irq events */ 1071 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1072 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1073 1074 /* clear FIS IRQ Cause */ 1075 if (IS_GEN_IIE(hpriv)) 1076 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1077 1078 mv_enable_port_irqs(ap, port_irqs); 1079 } 1080 1081 static void mv_set_irq_coalescing(struct ata_host *host, 1082 unsigned int count, unsigned int usecs) 1083 { 1084 struct mv_host_priv *hpriv = host->private_data; 1085 void __iomem *mmio = hpriv->base, *hc_mmio; 1086 u32 coal_enable = 0; 1087 unsigned long flags; 1088 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1089 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1090 ALL_PORTS_COAL_DONE; 1091 1092 /* Disable IRQ coalescing if either threshold is zero */ 1093 if (!usecs || !count) { 1094 clks = count = 0; 1095 } else { 1096 /* Respect maximum limits of the hardware */ 1097 clks = usecs * COAL_CLOCKS_PER_USEC; 1098 if (clks > MAX_COAL_TIME_THRESHOLD) 1099 clks = MAX_COAL_TIME_THRESHOLD; 1100 if (count > MAX_COAL_IO_COUNT) 1101 count = MAX_COAL_IO_COUNT; 1102 } 1103 1104 spin_lock_irqsave(&host->lock, flags); 1105 mv_set_main_irq_mask(host, coal_disable, 0); 1106 1107 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1108 /* 1109 * GEN_II/GEN_IIE with dual host controllers: 1110 * one set of global thresholds for the entire chip. 1111 */ 1112 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1113 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1114 /* clear leftover coal IRQ bit */ 1115 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1116 if (count) 1117 coal_enable = ALL_PORTS_COAL_DONE; 1118 clks = count = 0; /* force clearing of regular regs below */ 1119 } 1120 1121 /* 1122 * All chips: independent thresholds for each HC on the chip. 1123 */ 1124 hc_mmio = mv_hc_base_from_port(mmio, 0); 1125 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1126 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1127 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1128 if (count) 1129 coal_enable |= PORTS_0_3_COAL_DONE; 1130 if (is_dual_hc) { 1131 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1132 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1133 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1134 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1135 if (count) 1136 coal_enable |= PORTS_4_7_COAL_DONE; 1137 } 1138 1139 mv_set_main_irq_mask(host, 0, coal_enable); 1140 spin_unlock_irqrestore(&host->lock, flags); 1141 } 1142 1143 /** 1144 * mv_start_edma - Enable eDMA engine 1145 * @base: port base address 1146 * @pp: port private data 1147 * 1148 * Verify the local cache of the eDMA state is accurate with a 1149 * WARN_ON. 1150 * 1151 * LOCKING: 1152 * Inherited from caller. 1153 */ 1154 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1155 struct mv_port_priv *pp, u8 protocol) 1156 { 1157 int want_ncq = (protocol == ATA_PROT_NCQ); 1158 1159 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1160 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1161 if (want_ncq != using_ncq) 1162 mv_stop_edma(ap); 1163 } 1164 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1165 struct mv_host_priv *hpriv = ap->host->private_data; 1166 1167 mv_edma_cfg(ap, want_ncq, 1); 1168 1169 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1170 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1171 1172 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1173 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1174 } 1175 } 1176 1177 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1178 { 1179 void __iomem *port_mmio = mv_ap_base(ap); 1180 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1181 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1182 int i; 1183 1184 /* 1185 * Wait for the EDMA engine to finish transactions in progress. 1186 * No idea what a good "timeout" value might be, but measurements 1187 * indicate that it often requires hundreds of microseconds 1188 * with two drives in-use. So we use the 15msec value above 1189 * as a rough guess at what even more drives might require. 1190 */ 1191 for (i = 0; i < timeout; ++i) { 1192 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1193 if ((edma_stat & empty_idle) == empty_idle) 1194 break; 1195 udelay(per_loop); 1196 } 1197 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ 1198 } 1199 1200 /** 1201 * mv_stop_edma_engine - Disable eDMA engine 1202 * @port_mmio: io base address 1203 * 1204 * LOCKING: 1205 * Inherited from caller. 1206 */ 1207 static int mv_stop_edma_engine(void __iomem *port_mmio) 1208 { 1209 int i; 1210 1211 /* Disable eDMA. The disable bit auto clears. */ 1212 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1213 1214 /* Wait for the chip to confirm eDMA is off. */ 1215 for (i = 10000; i > 0; i--) { 1216 u32 reg = readl(port_mmio + EDMA_CMD); 1217 if (!(reg & EDMA_EN)) 1218 return 0; 1219 udelay(10); 1220 } 1221 return -EIO; 1222 } 1223 1224 static int mv_stop_edma(struct ata_port *ap) 1225 { 1226 void __iomem *port_mmio = mv_ap_base(ap); 1227 struct mv_port_priv *pp = ap->private_data; 1228 int err = 0; 1229 1230 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1231 return 0; 1232 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1233 mv_wait_for_edma_empty_idle(ap); 1234 if (mv_stop_edma_engine(port_mmio)) { 1235 ata_port_err(ap, "Unable to stop eDMA\n"); 1236 err = -EIO; 1237 } 1238 mv_edma_cfg(ap, 0, 0); 1239 return err; 1240 } 1241 1242 #ifdef ATA_DEBUG 1243 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1244 { 1245 int b, w; 1246 for (b = 0; b < bytes; ) { 1247 DPRINTK("%p: ", start + b); 1248 for (w = 0; b < bytes && w < 4; w++) { 1249 printk("%08x ", readl(start + b)); 1250 b += sizeof(u32); 1251 } 1252 printk("\n"); 1253 } 1254 } 1255 #endif 1256 #if defined(ATA_DEBUG) || defined(CONFIG_PCI) 1257 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1258 { 1259 #ifdef ATA_DEBUG 1260 int b, w; 1261 u32 dw; 1262 for (b = 0; b < bytes; ) { 1263 DPRINTK("%02x: ", b); 1264 for (w = 0; b < bytes && w < 4; w++) { 1265 (void) pci_read_config_dword(pdev, b, &dw); 1266 printk("%08x ", dw); 1267 b += sizeof(u32); 1268 } 1269 printk("\n"); 1270 } 1271 #endif 1272 } 1273 #endif 1274 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1275 struct pci_dev *pdev) 1276 { 1277 #ifdef ATA_DEBUG 1278 void __iomem *hc_base = mv_hc_base(mmio_base, 1279 port >> MV_PORT_HC_SHIFT); 1280 void __iomem *port_base; 1281 int start_port, num_ports, p, start_hc, num_hcs, hc; 1282 1283 if (0 > port) { 1284 start_hc = start_port = 0; 1285 num_ports = 8; /* shld be benign for 4 port devs */ 1286 num_hcs = 2; 1287 } else { 1288 start_hc = port >> MV_PORT_HC_SHIFT; 1289 start_port = port; 1290 num_ports = num_hcs = 1; 1291 } 1292 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1293 num_ports > 1 ? num_ports - 1 : start_port); 1294 1295 if (NULL != pdev) { 1296 DPRINTK("PCI config space regs:\n"); 1297 mv_dump_pci_cfg(pdev, 0x68); 1298 } 1299 DPRINTK("PCI regs:\n"); 1300 mv_dump_mem(mmio_base+0xc00, 0x3c); 1301 mv_dump_mem(mmio_base+0xd00, 0x34); 1302 mv_dump_mem(mmio_base+0xf00, 0x4); 1303 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1304 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1305 hc_base = mv_hc_base(mmio_base, hc); 1306 DPRINTK("HC regs (HC %i):\n", hc); 1307 mv_dump_mem(hc_base, 0x1c); 1308 } 1309 for (p = start_port; p < start_port + num_ports; p++) { 1310 port_base = mv_port_base(mmio_base, p); 1311 DPRINTK("EDMA regs (port %i):\n", p); 1312 mv_dump_mem(port_base, 0x54); 1313 DPRINTK("SATA regs (port %i):\n", p); 1314 mv_dump_mem(port_base+0x300, 0x60); 1315 } 1316 #endif 1317 } 1318 1319 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1320 { 1321 unsigned int ofs; 1322 1323 switch (sc_reg_in) { 1324 case SCR_STATUS: 1325 case SCR_CONTROL: 1326 case SCR_ERROR: 1327 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1328 break; 1329 case SCR_ACTIVE: 1330 ofs = SATA_ACTIVE; /* active is not with the others */ 1331 break; 1332 default: 1333 ofs = 0xffffffffU; 1334 break; 1335 } 1336 return ofs; 1337 } 1338 1339 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1340 { 1341 unsigned int ofs = mv_scr_offset(sc_reg_in); 1342 1343 if (ofs != 0xffffffffU) { 1344 *val = readl(mv_ap_base(link->ap) + ofs); 1345 return 0; 1346 } else 1347 return -EINVAL; 1348 } 1349 1350 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1351 { 1352 unsigned int ofs = mv_scr_offset(sc_reg_in); 1353 1354 if (ofs != 0xffffffffU) { 1355 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1356 if (sc_reg_in == SCR_CONTROL) { 1357 /* 1358 * Workaround for 88SX60x1 FEr SATA#26: 1359 * 1360 * COMRESETs have to take care not to accidentally 1361 * put the drive to sleep when writing SCR_CONTROL. 1362 * Setting bits 12..15 prevents this problem. 1363 * 1364 * So if we see an outbound COMMRESET, set those bits. 1365 * Ditto for the followup write that clears the reset. 1366 * 1367 * The proprietary driver does this for 1368 * all chip versions, and so do we. 1369 */ 1370 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1371 val |= 0xf000; 1372 } 1373 writelfl(val, addr); 1374 return 0; 1375 } else 1376 return -EINVAL; 1377 } 1378 1379 static void mv6_dev_config(struct ata_device *adev) 1380 { 1381 /* 1382 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1383 * 1384 * Gen-II does not support NCQ over a port multiplier 1385 * (no FIS-based switching). 1386 */ 1387 if (adev->flags & ATA_DFLAG_NCQ) { 1388 if (sata_pmp_attached(adev->link->ap)) { 1389 adev->flags &= ~ATA_DFLAG_NCQ; 1390 ata_dev_info(adev, 1391 "NCQ disabled for command-based switching\n"); 1392 } 1393 } 1394 } 1395 1396 static int mv_qc_defer(struct ata_queued_cmd *qc) 1397 { 1398 struct ata_link *link = qc->dev->link; 1399 struct ata_port *ap = link->ap; 1400 struct mv_port_priv *pp = ap->private_data; 1401 1402 /* 1403 * Don't allow new commands if we're in a delayed EH state 1404 * for NCQ and/or FIS-based switching. 1405 */ 1406 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1407 return ATA_DEFER_PORT; 1408 1409 /* PIO commands need exclusive link: no other commands [DMA or PIO] 1410 * can run concurrently. 1411 * set excl_link when we want to send a PIO command in DMA mode 1412 * or a non-NCQ command in NCQ mode. 1413 * When we receive a command from that link, and there are no 1414 * outstanding commands, mark a flag to clear excl_link and let 1415 * the command go through. 1416 */ 1417 if (unlikely(ap->excl_link)) { 1418 if (link == ap->excl_link) { 1419 if (ap->nr_active_links) 1420 return ATA_DEFER_PORT; 1421 qc->flags |= ATA_QCFLAG_CLEAR_EXCL; 1422 return 0; 1423 } else 1424 return ATA_DEFER_PORT; 1425 } 1426 1427 /* 1428 * If the port is completely idle, then allow the new qc. 1429 */ 1430 if (ap->nr_active_links == 0) 1431 return 0; 1432 1433 /* 1434 * The port is operating in host queuing mode (EDMA) with NCQ 1435 * enabled, allow multiple NCQ commands. EDMA also allows 1436 * queueing multiple DMA commands but libata core currently 1437 * doesn't allow it. 1438 */ 1439 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1440 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { 1441 if (ata_is_ncq(qc->tf.protocol)) 1442 return 0; 1443 else { 1444 ap->excl_link = link; 1445 return ATA_DEFER_PORT; 1446 } 1447 } 1448 1449 return ATA_DEFER_PORT; 1450 } 1451 1452 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1453 { 1454 struct mv_port_priv *pp = ap->private_data; 1455 void __iomem *port_mmio; 1456 1457 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1458 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1459 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1460 1461 ltmode = *old_ltmode & ~LTMODE_BIT8; 1462 haltcond = *old_haltcond | EDMA_ERR_DEV; 1463 1464 if (want_fbs) { 1465 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1466 ltmode = *old_ltmode | LTMODE_BIT8; 1467 if (want_ncq) 1468 haltcond &= ~EDMA_ERR_DEV; 1469 else 1470 fiscfg |= FISCFG_WAIT_DEV_ERR; 1471 } else { 1472 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1473 } 1474 1475 port_mmio = mv_ap_base(ap); 1476 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1477 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1478 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1479 } 1480 1481 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1482 { 1483 struct mv_host_priv *hpriv = ap->host->private_data; 1484 u32 old, new; 1485 1486 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1487 old = readl(hpriv->base + GPIO_PORT_CTL); 1488 if (want_ncq) 1489 new = old | (1 << 22); 1490 else 1491 new = old & ~(1 << 22); 1492 if (new != old) 1493 writel(new, hpriv->base + GPIO_PORT_CTL); 1494 } 1495 1496 /** 1497 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1498 * @ap: Port being initialized 1499 * 1500 * There are two DMA modes on these chips: basic DMA, and EDMA. 1501 * 1502 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1503 * of basic DMA on the GEN_IIE versions of the chips. 1504 * 1505 * This bit survives EDMA resets, and must be set for basic DMA 1506 * to function, and should be cleared when EDMA is active. 1507 */ 1508 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1509 { 1510 struct mv_port_priv *pp = ap->private_data; 1511 u32 new, *old = &pp->cached.unknown_rsvd; 1512 1513 if (enable_bmdma) 1514 new = *old | 1; 1515 else 1516 new = *old & ~1; 1517 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1518 } 1519 1520 /* 1521 * SOC chips have an issue whereby the HDD LEDs don't always blink 1522 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1523 * of the SOC takes care of it, generating a steady blink rate when 1524 * any drive on the chip is active. 1525 * 1526 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1527 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1528 * 1529 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1530 * LED operation works then, and provides better (more accurate) feedback. 1531 * 1532 * Note that this code assumes that an SOC never has more than one HC onboard. 1533 */ 1534 static void mv_soc_led_blink_enable(struct ata_port *ap) 1535 { 1536 struct ata_host *host = ap->host; 1537 struct mv_host_priv *hpriv = host->private_data; 1538 void __iomem *hc_mmio; 1539 u32 led_ctrl; 1540 1541 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1542 return; 1543 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1544 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1545 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1546 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1547 } 1548 1549 static void mv_soc_led_blink_disable(struct ata_port *ap) 1550 { 1551 struct ata_host *host = ap->host; 1552 struct mv_host_priv *hpriv = host->private_data; 1553 void __iomem *hc_mmio; 1554 u32 led_ctrl; 1555 unsigned int port; 1556 1557 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1558 return; 1559 1560 /* disable led-blink only if no ports are using NCQ */ 1561 for (port = 0; port < hpriv->n_ports; port++) { 1562 struct ata_port *this_ap = host->ports[port]; 1563 struct mv_port_priv *pp = this_ap->private_data; 1564 1565 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1566 return; 1567 } 1568 1569 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1570 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1571 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1572 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1573 } 1574 1575 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1576 { 1577 u32 cfg; 1578 struct mv_port_priv *pp = ap->private_data; 1579 struct mv_host_priv *hpriv = ap->host->private_data; 1580 void __iomem *port_mmio = mv_ap_base(ap); 1581 1582 /* set up non-NCQ EDMA configuration */ 1583 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1584 pp->pp_flags &= 1585 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1586 1587 if (IS_GEN_I(hpriv)) 1588 cfg |= (1 << 8); /* enab config burst size mask */ 1589 1590 else if (IS_GEN_II(hpriv)) { 1591 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1592 mv_60x1_errata_sata25(ap, want_ncq); 1593 1594 } else if (IS_GEN_IIE(hpriv)) { 1595 int want_fbs = sata_pmp_attached(ap); 1596 /* 1597 * Possible future enhancement: 1598 * 1599 * The chip can use FBS with non-NCQ, if we allow it, 1600 * But first we need to have the error handling in place 1601 * for this mode (datasheet section 7.3.15.4.2.3). 1602 * So disallow non-NCQ FBS for now. 1603 */ 1604 want_fbs &= want_ncq; 1605 1606 mv_config_fbs(ap, want_ncq, want_fbs); 1607 1608 if (want_fbs) { 1609 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1610 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1611 } 1612 1613 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1614 if (want_edma) { 1615 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1616 if (!IS_SOC(hpriv)) 1617 cfg |= (1 << 18); /* enab early completion */ 1618 } 1619 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1620 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1621 mv_bmdma_enable_iie(ap, !want_edma); 1622 1623 if (IS_SOC(hpriv)) { 1624 if (want_ncq) 1625 mv_soc_led_blink_enable(ap); 1626 else 1627 mv_soc_led_blink_disable(ap); 1628 } 1629 } 1630 1631 if (want_ncq) { 1632 cfg |= EDMA_CFG_NCQ; 1633 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1634 } 1635 1636 writelfl(cfg, port_mmio + EDMA_CFG); 1637 } 1638 1639 static void mv_port_free_dma_mem(struct ata_port *ap) 1640 { 1641 struct mv_host_priv *hpriv = ap->host->private_data; 1642 struct mv_port_priv *pp = ap->private_data; 1643 int tag; 1644 1645 if (pp->crqb) { 1646 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1647 pp->crqb = NULL; 1648 } 1649 if (pp->crpb) { 1650 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1651 pp->crpb = NULL; 1652 } 1653 /* 1654 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1655 * For later hardware, we have one unique sg_tbl per NCQ tag. 1656 */ 1657 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1658 if (pp->sg_tbl[tag]) { 1659 if (tag == 0 || !IS_GEN_I(hpriv)) 1660 dma_pool_free(hpriv->sg_tbl_pool, 1661 pp->sg_tbl[tag], 1662 pp->sg_tbl_dma[tag]); 1663 pp->sg_tbl[tag] = NULL; 1664 } 1665 } 1666 } 1667 1668 /** 1669 * mv_port_start - Port specific init/start routine. 1670 * @ap: ATA channel to manipulate 1671 * 1672 * Allocate and point to DMA memory, init port private memory, 1673 * zero indices. 1674 * 1675 * LOCKING: 1676 * Inherited from caller. 1677 */ 1678 static int mv_port_start(struct ata_port *ap) 1679 { 1680 struct device *dev = ap->host->dev; 1681 struct mv_host_priv *hpriv = ap->host->private_data; 1682 struct mv_port_priv *pp; 1683 unsigned long flags; 1684 int tag; 1685 1686 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1687 if (!pp) 1688 return -ENOMEM; 1689 ap->private_data = pp; 1690 1691 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1692 if (!pp->crqb) 1693 return -ENOMEM; 1694 memset(pp->crqb, 0, MV_CRQB_Q_SZ); 1695 1696 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1697 if (!pp->crpb) 1698 goto out_port_free_dma_mem; 1699 memset(pp->crpb, 0, MV_CRPB_Q_SZ); 1700 1701 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1702 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1703 ap->flags |= ATA_FLAG_AN; 1704 /* 1705 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1706 * For later hardware, we need one unique sg_tbl per NCQ tag. 1707 */ 1708 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1709 if (tag == 0 || !IS_GEN_I(hpriv)) { 1710 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1711 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1712 if (!pp->sg_tbl[tag]) 1713 goto out_port_free_dma_mem; 1714 } else { 1715 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1716 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1717 } 1718 } 1719 1720 spin_lock_irqsave(ap->lock, flags); 1721 mv_save_cached_regs(ap); 1722 mv_edma_cfg(ap, 0, 0); 1723 spin_unlock_irqrestore(ap->lock, flags); 1724 1725 return 0; 1726 1727 out_port_free_dma_mem: 1728 mv_port_free_dma_mem(ap); 1729 return -ENOMEM; 1730 } 1731 1732 /** 1733 * mv_port_stop - Port specific cleanup/stop routine. 1734 * @ap: ATA channel to manipulate 1735 * 1736 * Stop DMA, cleanup port memory. 1737 * 1738 * LOCKING: 1739 * This routine uses the host lock to protect the DMA stop. 1740 */ 1741 static void mv_port_stop(struct ata_port *ap) 1742 { 1743 unsigned long flags; 1744 1745 spin_lock_irqsave(ap->lock, flags); 1746 mv_stop_edma(ap); 1747 mv_enable_port_irqs(ap, 0); 1748 spin_unlock_irqrestore(ap->lock, flags); 1749 mv_port_free_dma_mem(ap); 1750 } 1751 1752 /** 1753 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1754 * @qc: queued command whose SG list to source from 1755 * 1756 * Populate the SG list and mark the last entry. 1757 * 1758 * LOCKING: 1759 * Inherited from caller. 1760 */ 1761 static void mv_fill_sg(struct ata_queued_cmd *qc) 1762 { 1763 struct mv_port_priv *pp = qc->ap->private_data; 1764 struct scatterlist *sg; 1765 struct mv_sg *mv_sg, *last_sg = NULL; 1766 unsigned int si; 1767 1768 mv_sg = pp->sg_tbl[qc->tag]; 1769 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1770 dma_addr_t addr = sg_dma_address(sg); 1771 u32 sg_len = sg_dma_len(sg); 1772 1773 while (sg_len) { 1774 u32 offset = addr & 0xffff; 1775 u32 len = sg_len; 1776 1777 if (offset + len > 0x10000) 1778 len = 0x10000 - offset; 1779 1780 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1781 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1782 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1783 mv_sg->reserved = 0; 1784 1785 sg_len -= len; 1786 addr += len; 1787 1788 last_sg = mv_sg; 1789 mv_sg++; 1790 } 1791 } 1792 1793 if (likely(last_sg)) 1794 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1795 mb(); /* ensure data structure is visible to the chipset */ 1796 } 1797 1798 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1799 { 1800 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1801 (last ? CRQB_CMD_LAST : 0); 1802 *cmdw = cpu_to_le16(tmp); 1803 } 1804 1805 /** 1806 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1807 * @ap: Port associated with this ATA transaction. 1808 * 1809 * We need this only for ATAPI bmdma transactions, 1810 * as otherwise we experience spurious interrupts 1811 * after libata-sff handles the bmdma interrupts. 1812 */ 1813 static void mv_sff_irq_clear(struct ata_port *ap) 1814 { 1815 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1816 } 1817 1818 /** 1819 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1820 * @qc: queued command to check for chipset/DMA compatibility. 1821 * 1822 * The bmdma engines cannot handle speculative data sizes 1823 * (bytecount under/over flow). So only allow DMA for 1824 * data transfer commands with known data sizes. 1825 * 1826 * LOCKING: 1827 * Inherited from caller. 1828 */ 1829 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1830 { 1831 struct scsi_cmnd *scmd = qc->scsicmd; 1832 1833 if (scmd) { 1834 switch (scmd->cmnd[0]) { 1835 case READ_6: 1836 case READ_10: 1837 case READ_12: 1838 case WRITE_6: 1839 case WRITE_10: 1840 case WRITE_12: 1841 case GPCMD_READ_CD: 1842 case GPCMD_SEND_DVD_STRUCTURE: 1843 case GPCMD_SEND_CUE_SHEET: 1844 return 0; /* DMA is safe */ 1845 } 1846 } 1847 return -EOPNOTSUPP; /* use PIO instead */ 1848 } 1849 1850 /** 1851 * mv_bmdma_setup - Set up BMDMA transaction 1852 * @qc: queued command to prepare DMA for. 1853 * 1854 * LOCKING: 1855 * Inherited from caller. 1856 */ 1857 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1858 { 1859 struct ata_port *ap = qc->ap; 1860 void __iomem *port_mmio = mv_ap_base(ap); 1861 struct mv_port_priv *pp = ap->private_data; 1862 1863 mv_fill_sg(qc); 1864 1865 /* clear all DMA cmd bits */ 1866 writel(0, port_mmio + BMDMA_CMD); 1867 1868 /* load PRD table addr. */ 1869 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, 1870 port_mmio + BMDMA_PRD_HIGH); 1871 writelfl(pp->sg_tbl_dma[qc->tag], 1872 port_mmio + BMDMA_PRD_LOW); 1873 1874 /* issue r/w command */ 1875 ap->ops->sff_exec_command(ap, &qc->tf); 1876 } 1877 1878 /** 1879 * mv_bmdma_start - Start a BMDMA transaction 1880 * @qc: queued command to start DMA on. 1881 * 1882 * LOCKING: 1883 * Inherited from caller. 1884 */ 1885 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1886 { 1887 struct ata_port *ap = qc->ap; 1888 void __iomem *port_mmio = mv_ap_base(ap); 1889 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1890 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1891 1892 /* start host DMA transaction */ 1893 writelfl(cmd, port_mmio + BMDMA_CMD); 1894 } 1895 1896 /** 1897 * mv_bmdma_stop - Stop BMDMA transfer 1898 * @qc: queued command to stop DMA on. 1899 * 1900 * Clears the ATA_DMA_START flag in the bmdma control register 1901 * 1902 * LOCKING: 1903 * Inherited from caller. 1904 */ 1905 static void mv_bmdma_stop_ap(struct ata_port *ap) 1906 { 1907 void __iomem *port_mmio = mv_ap_base(ap); 1908 u32 cmd; 1909 1910 /* clear start/stop bit */ 1911 cmd = readl(port_mmio + BMDMA_CMD); 1912 if (cmd & ATA_DMA_START) { 1913 cmd &= ~ATA_DMA_START; 1914 writelfl(cmd, port_mmio + BMDMA_CMD); 1915 1916 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1917 ata_sff_dma_pause(ap); 1918 } 1919 } 1920 1921 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1922 { 1923 mv_bmdma_stop_ap(qc->ap); 1924 } 1925 1926 /** 1927 * mv_bmdma_status - Read BMDMA status 1928 * @ap: port for which to retrieve DMA status. 1929 * 1930 * Read and return equivalent of the sff BMDMA status register. 1931 * 1932 * LOCKING: 1933 * Inherited from caller. 1934 */ 1935 static u8 mv_bmdma_status(struct ata_port *ap) 1936 { 1937 void __iomem *port_mmio = mv_ap_base(ap); 1938 u32 reg, status; 1939 1940 /* 1941 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1942 * and the ATA_DMA_INTR bit doesn't exist. 1943 */ 1944 reg = readl(port_mmio + BMDMA_STATUS); 1945 if (reg & ATA_DMA_ACTIVE) 1946 status = ATA_DMA_ACTIVE; 1947 else if (reg & ATA_DMA_ERR) 1948 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1949 else { 1950 /* 1951 * Just because DMA_ACTIVE is 0 (DMA completed), 1952 * this does _not_ mean the device is "done". 1953 * So we should not yet be signalling ATA_DMA_INTR 1954 * in some cases. Eg. DSM/TRIM, and perhaps others. 1955 */ 1956 mv_bmdma_stop_ap(ap); 1957 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) 1958 status = 0; 1959 else 1960 status = ATA_DMA_INTR; 1961 } 1962 return status; 1963 } 1964 1965 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 1966 { 1967 struct ata_taskfile *tf = &qc->tf; 1968 /* 1969 * Workaround for 88SX60x1 FEr SATA#24. 1970 * 1971 * Chip may corrupt WRITEs if multi_count >= 4kB. 1972 * Note that READs are unaffected. 1973 * 1974 * It's not clear if this errata really means "4K bytes", 1975 * or if it always happens for multi_count > 7 1976 * regardless of device sector_size. 1977 * 1978 * So, for safety, any write with multi_count > 7 1979 * gets converted here into a regular PIO write instead: 1980 */ 1981 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 1982 if (qc->dev->multi_count > 7) { 1983 switch (tf->command) { 1984 case ATA_CMD_WRITE_MULTI: 1985 tf->command = ATA_CMD_PIO_WRITE; 1986 break; 1987 case ATA_CMD_WRITE_MULTI_FUA_EXT: 1988 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 1989 /* fall through */ 1990 case ATA_CMD_WRITE_MULTI_EXT: 1991 tf->command = ATA_CMD_PIO_WRITE_EXT; 1992 break; 1993 } 1994 } 1995 } 1996 } 1997 1998 /** 1999 * mv_qc_prep - Host specific command preparation. 2000 * @qc: queued command to prepare 2001 * 2002 * This routine simply redirects to the general purpose routine 2003 * if command is not DMA. Else, it handles prep of the CRQB 2004 * (command request block), does some sanity checking, and calls 2005 * the SG load routine. 2006 * 2007 * LOCKING: 2008 * Inherited from caller. 2009 */ 2010 static void mv_qc_prep(struct ata_queued_cmd *qc) 2011 { 2012 struct ata_port *ap = qc->ap; 2013 struct mv_port_priv *pp = ap->private_data; 2014 __le16 *cw; 2015 struct ata_taskfile *tf = &qc->tf; 2016 u16 flags = 0; 2017 unsigned in_index; 2018 2019 switch (tf->protocol) { 2020 case ATA_PROT_DMA: 2021 if (tf->command == ATA_CMD_DSM) 2022 return; 2023 /* fall-thru */ 2024 case ATA_PROT_NCQ: 2025 break; /* continue below */ 2026 case ATA_PROT_PIO: 2027 mv_rw_multi_errata_sata24(qc); 2028 return; 2029 default: 2030 return; 2031 } 2032 2033 /* Fill in command request block 2034 */ 2035 if (!(tf->flags & ATA_TFLAG_WRITE)) 2036 flags |= CRQB_FLAG_READ; 2037 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2038 flags |= qc->tag << CRQB_TAG_SHIFT; 2039 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2040 2041 /* get current queue index from software */ 2042 in_index = pp->req_idx; 2043 2044 pp->crqb[in_index].sg_addr = 2045 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2046 pp->crqb[in_index].sg_addr_hi = 2047 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2048 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 2049 2050 cw = &pp->crqb[in_index].ata_cmd[0]; 2051 2052 /* Sadly, the CRQB cannot accommodate all registers--there are 2053 * only 11 bytes...so we must pick and choose required 2054 * registers based on the command. So, we drop feature and 2055 * hob_feature for [RW] DMA commands, but they are needed for 2056 * NCQ. NCQ will drop hob_nsect, which is not needed there 2057 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 2058 */ 2059 switch (tf->command) { 2060 case ATA_CMD_READ: 2061 case ATA_CMD_READ_EXT: 2062 case ATA_CMD_WRITE: 2063 case ATA_CMD_WRITE_EXT: 2064 case ATA_CMD_WRITE_FUA_EXT: 2065 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 2066 break; 2067 case ATA_CMD_FPDMA_READ: 2068 case ATA_CMD_FPDMA_WRITE: 2069 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2070 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2071 break; 2072 default: 2073 /* The only other commands EDMA supports in non-queued and 2074 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2075 * of which are defined/used by Linux. If we get here, this 2076 * driver needs work. 2077 * 2078 * FIXME: modify libata to give qc_prep a return value and 2079 * return error here. 2080 */ 2081 BUG_ON(tf->command); 2082 break; 2083 } 2084 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2085 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2086 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2087 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2088 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2089 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2090 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2091 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2092 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2093 2094 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2095 return; 2096 mv_fill_sg(qc); 2097 } 2098 2099 /** 2100 * mv_qc_prep_iie - Host specific command preparation. 2101 * @qc: queued command to prepare 2102 * 2103 * This routine simply redirects to the general purpose routine 2104 * if command is not DMA. Else, it handles prep of the CRQB 2105 * (command request block), does some sanity checking, and calls 2106 * the SG load routine. 2107 * 2108 * LOCKING: 2109 * Inherited from caller. 2110 */ 2111 static void mv_qc_prep_iie(struct ata_queued_cmd *qc) 2112 { 2113 struct ata_port *ap = qc->ap; 2114 struct mv_port_priv *pp = ap->private_data; 2115 struct mv_crqb_iie *crqb; 2116 struct ata_taskfile *tf = &qc->tf; 2117 unsigned in_index; 2118 u32 flags = 0; 2119 2120 if ((tf->protocol != ATA_PROT_DMA) && 2121 (tf->protocol != ATA_PROT_NCQ)) 2122 return; 2123 if (tf->command == ATA_CMD_DSM) 2124 return; /* use bmdma for this */ 2125 2126 /* Fill in Gen IIE command request block */ 2127 if (!(tf->flags & ATA_TFLAG_WRITE)) 2128 flags |= CRQB_FLAG_READ; 2129 2130 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2131 flags |= qc->tag << CRQB_TAG_SHIFT; 2132 flags |= qc->tag << CRQB_HOSTQ_SHIFT; 2133 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2134 2135 /* get current queue index from software */ 2136 in_index = pp->req_idx; 2137 2138 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2139 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2140 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2141 crqb->flags = cpu_to_le32(flags); 2142 2143 crqb->ata_cmd[0] = cpu_to_le32( 2144 (tf->command << 16) | 2145 (tf->feature << 24) 2146 ); 2147 crqb->ata_cmd[1] = cpu_to_le32( 2148 (tf->lbal << 0) | 2149 (tf->lbam << 8) | 2150 (tf->lbah << 16) | 2151 (tf->device << 24) 2152 ); 2153 crqb->ata_cmd[2] = cpu_to_le32( 2154 (tf->hob_lbal << 0) | 2155 (tf->hob_lbam << 8) | 2156 (tf->hob_lbah << 16) | 2157 (tf->hob_feature << 24) 2158 ); 2159 crqb->ata_cmd[3] = cpu_to_le32( 2160 (tf->nsect << 0) | 2161 (tf->hob_nsect << 8) 2162 ); 2163 2164 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2165 return; 2166 mv_fill_sg(qc); 2167 } 2168 2169 /** 2170 * mv_sff_check_status - fetch device status, if valid 2171 * @ap: ATA port to fetch status from 2172 * 2173 * When using command issue via mv_qc_issue_fis(), 2174 * the initial ATA_BUSY state does not show up in the 2175 * ATA status (shadow) register. This can confuse libata! 2176 * 2177 * So we have a hook here to fake ATA_BUSY for that situation, 2178 * until the first time a BUSY, DRQ, or ERR bit is seen. 2179 * 2180 * The rest of the time, it simply returns the ATA status register. 2181 */ 2182 static u8 mv_sff_check_status(struct ata_port *ap) 2183 { 2184 u8 stat = ioread8(ap->ioaddr.status_addr); 2185 struct mv_port_priv *pp = ap->private_data; 2186 2187 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2188 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2189 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2190 else 2191 stat = ATA_BUSY; 2192 } 2193 return stat; 2194 } 2195 2196 /** 2197 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2198 * @fis: fis to be sent 2199 * @nwords: number of 32-bit words in the fis 2200 */ 2201 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2202 { 2203 void __iomem *port_mmio = mv_ap_base(ap); 2204 u32 ifctl, old_ifctl, ifstat; 2205 int i, timeout = 200, final_word = nwords - 1; 2206 2207 /* Initiate FIS transmission mode */ 2208 old_ifctl = readl(port_mmio + SATA_IFCTL); 2209 ifctl = 0x100 | (old_ifctl & 0xf); 2210 writelfl(ifctl, port_mmio + SATA_IFCTL); 2211 2212 /* Send all words of the FIS except for the final word */ 2213 for (i = 0; i < final_word; ++i) 2214 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2215 2216 /* Flag end-of-transmission, and then send the final word */ 2217 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2218 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2219 2220 /* 2221 * Wait for FIS transmission to complete. 2222 * This typically takes just a single iteration. 2223 */ 2224 do { 2225 ifstat = readl(port_mmio + SATA_IFSTAT); 2226 } while (!(ifstat & 0x1000) && --timeout); 2227 2228 /* Restore original port configuration */ 2229 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2230 2231 /* See if it worked */ 2232 if ((ifstat & 0x3000) != 0x1000) { 2233 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", 2234 __func__, ifstat); 2235 return AC_ERR_OTHER; 2236 } 2237 return 0; 2238 } 2239 2240 /** 2241 * mv_qc_issue_fis - Issue a command directly as a FIS 2242 * @qc: queued command to start 2243 * 2244 * Note that the ATA shadow registers are not updated 2245 * after command issue, so the device will appear "READY" 2246 * if polled, even while it is BUSY processing the command. 2247 * 2248 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2249 * 2250 * Note: we don't get updated shadow regs on *completion* 2251 * of non-data commands. So avoid sending them via this function, 2252 * as they will appear to have completed immediately. 2253 * 2254 * GEN_IIE has special registers that we could get the result tf from, 2255 * but earlier chipsets do not. For now, we ignore those registers. 2256 */ 2257 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2258 { 2259 struct ata_port *ap = qc->ap; 2260 struct mv_port_priv *pp = ap->private_data; 2261 struct ata_link *link = qc->dev->link; 2262 u32 fis[5]; 2263 int err = 0; 2264 2265 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2266 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); 2267 if (err) 2268 return err; 2269 2270 switch (qc->tf.protocol) { 2271 case ATAPI_PROT_PIO: 2272 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2273 /* fall through */ 2274 case ATAPI_PROT_NODATA: 2275 ap->hsm_task_state = HSM_ST_FIRST; 2276 break; 2277 case ATA_PROT_PIO: 2278 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2279 if (qc->tf.flags & ATA_TFLAG_WRITE) 2280 ap->hsm_task_state = HSM_ST_FIRST; 2281 else 2282 ap->hsm_task_state = HSM_ST; 2283 break; 2284 default: 2285 ap->hsm_task_state = HSM_ST_LAST; 2286 break; 2287 } 2288 2289 if (qc->tf.flags & ATA_TFLAG_POLLING) 2290 ata_sff_queue_pio_task(link, 0); 2291 return 0; 2292 } 2293 2294 /** 2295 * mv_qc_issue - Initiate a command to the host 2296 * @qc: queued command to start 2297 * 2298 * This routine simply redirects to the general purpose routine 2299 * if command is not DMA. Else, it sanity checks our local 2300 * caches of the request producer/consumer indices then enables 2301 * DMA and bumps the request producer index. 2302 * 2303 * LOCKING: 2304 * Inherited from caller. 2305 */ 2306 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2307 { 2308 static int limit_warnings = 10; 2309 struct ata_port *ap = qc->ap; 2310 void __iomem *port_mmio = mv_ap_base(ap); 2311 struct mv_port_priv *pp = ap->private_data; 2312 u32 in_index; 2313 unsigned int port_irqs; 2314 2315 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2316 2317 switch (qc->tf.protocol) { 2318 case ATA_PROT_DMA: 2319 if (qc->tf.command == ATA_CMD_DSM) { 2320 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */ 2321 return AC_ERR_OTHER; 2322 break; /* use bmdma for this */ 2323 } 2324 /* fall thru */ 2325 case ATA_PROT_NCQ: 2326 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2327 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2328 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2329 2330 /* Write the request in pointer to kick the EDMA to life */ 2331 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2332 port_mmio + EDMA_REQ_Q_IN_PTR); 2333 return 0; 2334 2335 case ATA_PROT_PIO: 2336 /* 2337 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2338 * 2339 * Someday, we might implement special polling workarounds 2340 * for these, but it all seems rather unnecessary since we 2341 * normally use only DMA for commands which transfer more 2342 * than a single block of data. 2343 * 2344 * Much of the time, this could just work regardless. 2345 * So for now, just log the incident, and allow the attempt. 2346 */ 2347 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2348 --limit_warnings; 2349 ata_link_warn(qc->dev->link, DRV_NAME 2350 ": attempting PIO w/multiple DRQ: " 2351 "this may fail due to h/w errata\n"); 2352 } 2353 /* drop through */ 2354 case ATA_PROT_NODATA: 2355 case ATAPI_PROT_PIO: 2356 case ATAPI_PROT_NODATA: 2357 if (ap->flags & ATA_FLAG_PIO_POLLING) 2358 qc->tf.flags |= ATA_TFLAG_POLLING; 2359 break; 2360 } 2361 2362 if (qc->tf.flags & ATA_TFLAG_POLLING) 2363 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2364 else 2365 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2366 2367 /* 2368 * We're about to send a non-EDMA capable command to the 2369 * port. Turn off EDMA so there won't be problems accessing 2370 * shadow block, etc registers. 2371 */ 2372 mv_stop_edma(ap); 2373 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2374 mv_pmp_select(ap, qc->dev->link->pmp); 2375 2376 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2377 struct mv_host_priv *hpriv = ap->host->private_data; 2378 /* 2379 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2380 * 2381 * After any NCQ error, the READ_LOG_EXT command 2382 * from libata-eh *must* use mv_qc_issue_fis(). 2383 * Otherwise it might fail, due to chip errata. 2384 * 2385 * Rather than special-case it, we'll just *always* 2386 * use this method here for READ_LOG_EXT, making for 2387 * easier testing. 2388 */ 2389 if (IS_GEN_II(hpriv)) 2390 return mv_qc_issue_fis(qc); 2391 } 2392 return ata_bmdma_qc_issue(qc); 2393 } 2394 2395 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2396 { 2397 struct mv_port_priv *pp = ap->private_data; 2398 struct ata_queued_cmd *qc; 2399 2400 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2401 return NULL; 2402 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2403 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) 2404 return qc; 2405 return NULL; 2406 } 2407 2408 static void mv_pmp_error_handler(struct ata_port *ap) 2409 { 2410 unsigned int pmp, pmp_map; 2411 struct mv_port_priv *pp = ap->private_data; 2412 2413 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2414 /* 2415 * Perform NCQ error analysis on failed PMPs 2416 * before we freeze the port entirely. 2417 * 2418 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2419 */ 2420 pmp_map = pp->delayed_eh_pmp_map; 2421 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2422 for (pmp = 0; pmp_map != 0; pmp++) { 2423 unsigned int this_pmp = (1 << pmp); 2424 if (pmp_map & this_pmp) { 2425 struct ata_link *link = &ap->pmp_link[pmp]; 2426 pmp_map &= ~this_pmp; 2427 ata_eh_analyze_ncq_error(link); 2428 } 2429 } 2430 ata_port_freeze(ap); 2431 } 2432 sata_pmp_error_handler(ap); 2433 } 2434 2435 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2436 { 2437 void __iomem *port_mmio = mv_ap_base(ap); 2438 2439 return readl(port_mmio + SATA_TESTCTL) >> 16; 2440 } 2441 2442 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2443 { 2444 struct ata_eh_info *ehi; 2445 unsigned int pmp; 2446 2447 /* 2448 * Initialize EH info for PMPs which saw device errors 2449 */ 2450 ehi = &ap->link.eh_info; 2451 for (pmp = 0; pmp_map != 0; pmp++) { 2452 unsigned int this_pmp = (1 << pmp); 2453 if (pmp_map & this_pmp) { 2454 struct ata_link *link = &ap->pmp_link[pmp]; 2455 2456 pmp_map &= ~this_pmp; 2457 ehi = &link->eh_info; 2458 ata_ehi_clear_desc(ehi); 2459 ata_ehi_push_desc(ehi, "dev err"); 2460 ehi->err_mask |= AC_ERR_DEV; 2461 ehi->action |= ATA_EH_RESET; 2462 ata_link_abort(link); 2463 } 2464 } 2465 } 2466 2467 static int mv_req_q_empty(struct ata_port *ap) 2468 { 2469 void __iomem *port_mmio = mv_ap_base(ap); 2470 u32 in_ptr, out_ptr; 2471 2472 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2473 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2474 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2475 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2476 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2477 } 2478 2479 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2480 { 2481 struct mv_port_priv *pp = ap->private_data; 2482 int failed_links; 2483 unsigned int old_map, new_map; 2484 2485 /* 2486 * Device error during FBS+NCQ operation: 2487 * 2488 * Set a port flag to prevent further I/O being enqueued. 2489 * Leave the EDMA running to drain outstanding commands from this port. 2490 * Perform the post-mortem/EH only when all responses are complete. 2491 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2492 */ 2493 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2494 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2495 pp->delayed_eh_pmp_map = 0; 2496 } 2497 old_map = pp->delayed_eh_pmp_map; 2498 new_map = old_map | mv_get_err_pmp_map(ap); 2499 2500 if (old_map != new_map) { 2501 pp->delayed_eh_pmp_map = new_map; 2502 mv_pmp_eh_prep(ap, new_map & ~old_map); 2503 } 2504 failed_links = hweight16(new_map); 2505 2506 ata_port_info(ap, 2507 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n", 2508 __func__, pp->delayed_eh_pmp_map, 2509 ap->qc_active, failed_links, 2510 ap->nr_active_links); 2511 2512 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2513 mv_process_crpb_entries(ap, pp); 2514 mv_stop_edma(ap); 2515 mv_eh_freeze(ap); 2516 ata_port_info(ap, "%s: done\n", __func__); 2517 return 1; /* handled */ 2518 } 2519 ata_port_info(ap, "%s: waiting\n", __func__); 2520 return 1; /* handled */ 2521 } 2522 2523 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2524 { 2525 /* 2526 * Possible future enhancement: 2527 * 2528 * FBS+non-NCQ operation is not yet implemented. 2529 * See related notes in mv_edma_cfg(). 2530 * 2531 * Device error during FBS+non-NCQ operation: 2532 * 2533 * We need to snapshot the shadow registers for each failed command. 2534 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2535 */ 2536 return 0; /* not handled */ 2537 } 2538 2539 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2540 { 2541 struct mv_port_priv *pp = ap->private_data; 2542 2543 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2544 return 0; /* EDMA was not active: not handled */ 2545 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2546 return 0; /* FBS was not active: not handled */ 2547 2548 if (!(edma_err_cause & EDMA_ERR_DEV)) 2549 return 0; /* non DEV error: not handled */ 2550 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2551 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2552 return 0; /* other problems: not handled */ 2553 2554 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2555 /* 2556 * EDMA should NOT have self-disabled for this case. 2557 * If it did, then something is wrong elsewhere, 2558 * and we cannot handle it here. 2559 */ 2560 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2561 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2562 __func__, edma_err_cause, pp->pp_flags); 2563 return 0; /* not handled */ 2564 } 2565 return mv_handle_fbs_ncq_dev_err(ap); 2566 } else { 2567 /* 2568 * EDMA should have self-disabled for this case. 2569 * If it did not, then something is wrong elsewhere, 2570 * and we cannot handle it here. 2571 */ 2572 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2573 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2574 __func__, edma_err_cause, pp->pp_flags); 2575 return 0; /* not handled */ 2576 } 2577 return mv_handle_fbs_non_ncq_dev_err(ap); 2578 } 2579 return 0; /* not handled */ 2580 } 2581 2582 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2583 { 2584 struct ata_eh_info *ehi = &ap->link.eh_info; 2585 char *when = "idle"; 2586 2587 ata_ehi_clear_desc(ehi); 2588 if (edma_was_enabled) { 2589 when = "EDMA enabled"; 2590 } else { 2591 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2592 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2593 when = "polling"; 2594 } 2595 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2596 ehi->err_mask |= AC_ERR_OTHER; 2597 ehi->action |= ATA_EH_RESET; 2598 ata_port_freeze(ap); 2599 } 2600 2601 /** 2602 * mv_err_intr - Handle error interrupts on the port 2603 * @ap: ATA channel to manipulate 2604 * 2605 * Most cases require a full reset of the chip's state machine, 2606 * which also performs a COMRESET. 2607 * Also, if the port disabled DMA, update our cached copy to match. 2608 * 2609 * LOCKING: 2610 * Inherited from caller. 2611 */ 2612 static void mv_err_intr(struct ata_port *ap) 2613 { 2614 void __iomem *port_mmio = mv_ap_base(ap); 2615 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2616 u32 fis_cause = 0; 2617 struct mv_port_priv *pp = ap->private_data; 2618 struct mv_host_priv *hpriv = ap->host->private_data; 2619 unsigned int action = 0, err_mask = 0; 2620 struct ata_eh_info *ehi = &ap->link.eh_info; 2621 struct ata_queued_cmd *qc; 2622 int abort = 0; 2623 2624 /* 2625 * Read and clear the SError and err_cause bits. 2626 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2627 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2628 */ 2629 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2630 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2631 2632 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2633 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2634 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2635 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2636 } 2637 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2638 2639 if (edma_err_cause & EDMA_ERR_DEV) { 2640 /* 2641 * Device errors during FIS-based switching operation 2642 * require special handling. 2643 */ 2644 if (mv_handle_dev_err(ap, edma_err_cause)) 2645 return; 2646 } 2647 2648 qc = mv_get_active_qc(ap); 2649 ata_ehi_clear_desc(ehi); 2650 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2651 edma_err_cause, pp->pp_flags); 2652 2653 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2654 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2655 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2656 u32 ec = edma_err_cause & 2657 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2658 sata_async_notification(ap); 2659 if (!ec) 2660 return; /* Just an AN; no need for the nukes */ 2661 ata_ehi_push_desc(ehi, "SDB notify"); 2662 } 2663 } 2664 /* 2665 * All generations share these EDMA error cause bits: 2666 */ 2667 if (edma_err_cause & EDMA_ERR_DEV) { 2668 err_mask |= AC_ERR_DEV; 2669 action |= ATA_EH_RESET; 2670 ata_ehi_push_desc(ehi, "dev error"); 2671 } 2672 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2673 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2674 EDMA_ERR_INTRL_PAR)) { 2675 err_mask |= AC_ERR_ATA_BUS; 2676 action |= ATA_EH_RESET; 2677 ata_ehi_push_desc(ehi, "parity error"); 2678 } 2679 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2680 ata_ehi_hotplugged(ehi); 2681 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2682 "dev disconnect" : "dev connect"); 2683 action |= ATA_EH_RESET; 2684 } 2685 2686 /* 2687 * Gen-I has a different SELF_DIS bit, 2688 * different FREEZE bits, and no SERR bit: 2689 */ 2690 if (IS_GEN_I(hpriv)) { 2691 eh_freeze_mask = EDMA_EH_FREEZE_5; 2692 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2693 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2694 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2695 } 2696 } else { 2697 eh_freeze_mask = EDMA_EH_FREEZE; 2698 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2699 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2700 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2701 } 2702 if (edma_err_cause & EDMA_ERR_SERR) { 2703 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2704 err_mask |= AC_ERR_ATA_BUS; 2705 action |= ATA_EH_RESET; 2706 } 2707 } 2708 2709 if (!err_mask) { 2710 err_mask = AC_ERR_OTHER; 2711 action |= ATA_EH_RESET; 2712 } 2713 2714 ehi->serror |= serr; 2715 ehi->action |= action; 2716 2717 if (qc) 2718 qc->err_mask |= err_mask; 2719 else 2720 ehi->err_mask |= err_mask; 2721 2722 if (err_mask == AC_ERR_DEV) { 2723 /* 2724 * Cannot do ata_port_freeze() here, 2725 * because it would kill PIO access, 2726 * which is needed for further diagnosis. 2727 */ 2728 mv_eh_freeze(ap); 2729 abort = 1; 2730 } else if (edma_err_cause & eh_freeze_mask) { 2731 /* 2732 * Note to self: ata_port_freeze() calls ata_port_abort() 2733 */ 2734 ata_port_freeze(ap); 2735 } else { 2736 abort = 1; 2737 } 2738 2739 if (abort) { 2740 if (qc) 2741 ata_link_abort(qc->dev->link); 2742 else 2743 ata_port_abort(ap); 2744 } 2745 } 2746 2747 static bool mv_process_crpb_response(struct ata_port *ap, 2748 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2749 { 2750 u8 ata_status; 2751 u16 edma_status = le16_to_cpu(response->flags); 2752 2753 /* 2754 * edma_status from a response queue entry: 2755 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2756 * MSB is saved ATA status from command completion. 2757 */ 2758 if (!ncq_enabled) { 2759 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2760 if (err_cause) { 2761 /* 2762 * Error will be seen/handled by 2763 * mv_err_intr(). So do nothing at all here. 2764 */ 2765 return false; 2766 } 2767 } 2768 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2769 if (!ac_err_mask(ata_status)) 2770 return true; 2771 /* else: leave it for mv_err_intr() */ 2772 return false; 2773 } 2774 2775 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2776 { 2777 void __iomem *port_mmio = mv_ap_base(ap); 2778 struct mv_host_priv *hpriv = ap->host->private_data; 2779 u32 in_index; 2780 bool work_done = false; 2781 u32 done_mask = 0; 2782 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2783 2784 /* Get the hardware queue position index */ 2785 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2786 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2787 2788 /* Process new responses from since the last time we looked */ 2789 while (in_index != pp->resp_idx) { 2790 unsigned int tag; 2791 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2792 2793 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2794 2795 if (IS_GEN_I(hpriv)) { 2796 /* 50xx: no NCQ, only one command active at a time */ 2797 tag = ap->link.active_tag; 2798 } else { 2799 /* Gen II/IIE: get command tag from CRPB entry */ 2800 tag = le16_to_cpu(response->id) & 0x1f; 2801 } 2802 if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) 2803 done_mask |= 1 << tag; 2804 work_done = true; 2805 } 2806 2807 if (work_done) { 2808 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 2809 2810 /* Update the software queue position index in hardware */ 2811 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2812 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2813 port_mmio + EDMA_RSP_Q_OUT_PTR); 2814 } 2815 } 2816 2817 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2818 { 2819 struct mv_port_priv *pp; 2820 int edma_was_enabled; 2821 2822 /* 2823 * Grab a snapshot of the EDMA_EN flag setting, 2824 * so that we have a consistent view for this port, 2825 * even if something we call of our routines changes it. 2826 */ 2827 pp = ap->private_data; 2828 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2829 /* 2830 * Process completed CRPB response(s) before other events. 2831 */ 2832 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2833 mv_process_crpb_entries(ap, pp); 2834 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2835 mv_handle_fbs_ncq_dev_err(ap); 2836 } 2837 /* 2838 * Handle chip-reported errors, or continue on to handle PIO. 2839 */ 2840 if (unlikely(port_cause & ERR_IRQ)) { 2841 mv_err_intr(ap); 2842 } else if (!edma_was_enabled) { 2843 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2844 if (qc) 2845 ata_bmdma_port_intr(ap, qc); 2846 else 2847 mv_unexpected_intr(ap, edma_was_enabled); 2848 } 2849 } 2850 2851 /** 2852 * mv_host_intr - Handle all interrupts on the given host controller 2853 * @host: host specific structure 2854 * @main_irq_cause: Main interrupt cause register for the chip. 2855 * 2856 * LOCKING: 2857 * Inherited from caller. 2858 */ 2859 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2860 { 2861 struct mv_host_priv *hpriv = host->private_data; 2862 void __iomem *mmio = hpriv->base, *hc_mmio; 2863 unsigned int handled = 0, port; 2864 2865 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2866 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2867 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2868 2869 for (port = 0; port < hpriv->n_ports; port++) { 2870 struct ata_port *ap = host->ports[port]; 2871 unsigned int p, shift, hardport, port_cause; 2872 2873 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2874 /* 2875 * Each hc within the host has its own hc_irq_cause register, 2876 * where the interrupting ports bits get ack'd. 2877 */ 2878 if (hardport == 0) { /* first port on this hc ? */ 2879 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2880 u32 port_mask, ack_irqs; 2881 /* 2882 * Skip this entire hc if nothing pending for any ports 2883 */ 2884 if (!hc_cause) { 2885 port += MV_PORTS_PER_HC - 1; 2886 continue; 2887 } 2888 /* 2889 * We don't need/want to read the hc_irq_cause register, 2890 * because doing so hurts performance, and 2891 * main_irq_cause already gives us everything we need. 2892 * 2893 * But we do have to *write* to the hc_irq_cause to ack 2894 * the ports that we are handling this time through. 2895 * 2896 * This requires that we create a bitmap for those 2897 * ports which interrupted us, and use that bitmap 2898 * to ack (only) those ports via hc_irq_cause. 2899 */ 2900 ack_irqs = 0; 2901 if (hc_cause & PORTS_0_3_COAL_DONE) 2902 ack_irqs = HC_COAL_IRQ; 2903 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2904 if ((port + p) >= hpriv->n_ports) 2905 break; 2906 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2907 if (hc_cause & port_mask) 2908 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2909 } 2910 hc_mmio = mv_hc_base_from_port(mmio, port); 2911 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2912 handled = 1; 2913 } 2914 /* 2915 * Handle interrupts signalled for this port: 2916 */ 2917 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2918 if (port_cause) 2919 mv_port_intr(ap, port_cause); 2920 } 2921 return handled; 2922 } 2923 2924 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2925 { 2926 struct mv_host_priv *hpriv = host->private_data; 2927 struct ata_port *ap; 2928 struct ata_queued_cmd *qc; 2929 struct ata_eh_info *ehi; 2930 unsigned int i, err_mask, printed = 0; 2931 u32 err_cause; 2932 2933 err_cause = readl(mmio + hpriv->irq_cause_offset); 2934 2935 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); 2936 2937 DPRINTK("All regs @ PCI error\n"); 2938 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2939 2940 writelfl(0, mmio + hpriv->irq_cause_offset); 2941 2942 for (i = 0; i < host->n_ports; i++) { 2943 ap = host->ports[i]; 2944 if (!ata_link_offline(&ap->link)) { 2945 ehi = &ap->link.eh_info; 2946 ata_ehi_clear_desc(ehi); 2947 if (!printed++) 2948 ata_ehi_push_desc(ehi, 2949 "PCI err cause 0x%08x", err_cause); 2950 err_mask = AC_ERR_HOST_BUS; 2951 ehi->action = ATA_EH_RESET; 2952 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2953 if (qc) 2954 qc->err_mask |= err_mask; 2955 else 2956 ehi->err_mask |= err_mask; 2957 2958 ata_port_freeze(ap); 2959 } 2960 } 2961 return 1; /* handled */ 2962 } 2963 2964 /** 2965 * mv_interrupt - Main interrupt event handler 2966 * @irq: unused 2967 * @dev_instance: private data; in this case the host structure 2968 * 2969 * Read the read only register to determine if any host 2970 * controllers have pending interrupts. If so, call lower level 2971 * routine to handle. Also check for PCI errors which are only 2972 * reported here. 2973 * 2974 * LOCKING: 2975 * This routine holds the host lock while processing pending 2976 * interrupts. 2977 */ 2978 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 2979 { 2980 struct ata_host *host = dev_instance; 2981 struct mv_host_priv *hpriv = host->private_data; 2982 unsigned int handled = 0; 2983 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 2984 u32 main_irq_cause, pending_irqs; 2985 2986 spin_lock(&host->lock); 2987 2988 /* for MSI: block new interrupts while in here */ 2989 if (using_msi) 2990 mv_write_main_irq_mask(0, hpriv); 2991 2992 main_irq_cause = readl(hpriv->main_irq_cause_addr); 2993 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 2994 /* 2995 * Deal with cases where we either have nothing pending, or have read 2996 * a bogus register value which can indicate HW removal or PCI fault. 2997 */ 2998 if (pending_irqs && main_irq_cause != 0xffffffffU) { 2999 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 3000 handled = mv_pci_error(host, hpriv->base); 3001 else 3002 handled = mv_host_intr(host, pending_irqs); 3003 } 3004 3005 /* for MSI: unmask; interrupt cause bits will retrigger now */ 3006 if (using_msi) 3007 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 3008 3009 spin_unlock(&host->lock); 3010 3011 return IRQ_RETVAL(handled); 3012 } 3013 3014 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 3015 { 3016 unsigned int ofs; 3017 3018 switch (sc_reg_in) { 3019 case SCR_STATUS: 3020 case SCR_ERROR: 3021 case SCR_CONTROL: 3022 ofs = sc_reg_in * sizeof(u32); 3023 break; 3024 default: 3025 ofs = 0xffffffffU; 3026 break; 3027 } 3028 return ofs; 3029 } 3030 3031 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 3032 { 3033 struct mv_host_priv *hpriv = link->ap->host->private_data; 3034 void __iomem *mmio = hpriv->base; 3035 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3036 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3037 3038 if (ofs != 0xffffffffU) { 3039 *val = readl(addr + ofs); 3040 return 0; 3041 } else 3042 return -EINVAL; 3043 } 3044 3045 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 3046 { 3047 struct mv_host_priv *hpriv = link->ap->host->private_data; 3048 void __iomem *mmio = hpriv->base; 3049 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3050 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3051 3052 if (ofs != 0xffffffffU) { 3053 writelfl(val, addr + ofs); 3054 return 0; 3055 } else 3056 return -EINVAL; 3057 } 3058 3059 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 3060 { 3061 struct pci_dev *pdev = to_pci_dev(host->dev); 3062 int early_5080; 3063 3064 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3065 3066 if (!early_5080) { 3067 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3068 tmp |= (1 << 0); 3069 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3070 } 3071 3072 mv_reset_pci_bus(host, mmio); 3073 } 3074 3075 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3076 { 3077 writel(0x0fcfffff, mmio + FLASH_CTL); 3078 } 3079 3080 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3081 void __iomem *mmio) 3082 { 3083 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3084 u32 tmp; 3085 3086 tmp = readl(phy_mmio + MV5_PHY_MODE); 3087 3088 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3089 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3090 } 3091 3092 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3093 { 3094 u32 tmp; 3095 3096 writel(0, mmio + GPIO_PORT_CTL); 3097 3098 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3099 3100 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3101 tmp |= ~(1 << 0); 3102 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3103 } 3104 3105 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3106 unsigned int port) 3107 { 3108 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3109 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3110 u32 tmp; 3111 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3112 3113 if (fix_apm_sq) { 3114 tmp = readl(phy_mmio + MV5_LTMODE); 3115 tmp |= (1 << 19); 3116 writel(tmp, phy_mmio + MV5_LTMODE); 3117 3118 tmp = readl(phy_mmio + MV5_PHY_CTL); 3119 tmp &= ~0x3; 3120 tmp |= 0x1; 3121 writel(tmp, phy_mmio + MV5_PHY_CTL); 3122 } 3123 3124 tmp = readl(phy_mmio + MV5_PHY_MODE); 3125 tmp &= ~mask; 3126 tmp |= hpriv->signal[port].pre; 3127 tmp |= hpriv->signal[port].amps; 3128 writel(tmp, phy_mmio + MV5_PHY_MODE); 3129 } 3130 3131 3132 #undef ZERO 3133 #define ZERO(reg) writel(0, port_mmio + (reg)) 3134 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3135 unsigned int port) 3136 { 3137 void __iomem *port_mmio = mv_port_base(mmio, port); 3138 3139 mv_reset_channel(hpriv, mmio, port); 3140 3141 ZERO(0x028); /* command */ 3142 writel(0x11f, port_mmio + EDMA_CFG); 3143 ZERO(0x004); /* timer */ 3144 ZERO(0x008); /* irq err cause */ 3145 ZERO(0x00c); /* irq err mask */ 3146 ZERO(0x010); /* rq bah */ 3147 ZERO(0x014); /* rq inp */ 3148 ZERO(0x018); /* rq outp */ 3149 ZERO(0x01c); /* respq bah */ 3150 ZERO(0x024); /* respq outp */ 3151 ZERO(0x020); /* respq inp */ 3152 ZERO(0x02c); /* test control */ 3153 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3154 } 3155 #undef ZERO 3156 3157 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3158 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3159 unsigned int hc) 3160 { 3161 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3162 u32 tmp; 3163 3164 ZERO(0x00c); 3165 ZERO(0x010); 3166 ZERO(0x014); 3167 ZERO(0x018); 3168 3169 tmp = readl(hc_mmio + 0x20); 3170 tmp &= 0x1c1c1c1c; 3171 tmp |= 0x03030303; 3172 writel(tmp, hc_mmio + 0x20); 3173 } 3174 #undef ZERO 3175 3176 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3177 unsigned int n_hc) 3178 { 3179 unsigned int hc, port; 3180 3181 for (hc = 0; hc < n_hc; hc++) { 3182 for (port = 0; port < MV_PORTS_PER_HC; port++) 3183 mv5_reset_hc_port(hpriv, mmio, 3184 (hc * MV_PORTS_PER_HC) + port); 3185 3186 mv5_reset_one_hc(hpriv, mmio, hc); 3187 } 3188 3189 return 0; 3190 } 3191 3192 #undef ZERO 3193 #define ZERO(reg) writel(0, mmio + (reg)) 3194 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3195 { 3196 struct mv_host_priv *hpriv = host->private_data; 3197 u32 tmp; 3198 3199 tmp = readl(mmio + MV_PCI_MODE); 3200 tmp &= 0xff00ffff; 3201 writel(tmp, mmio + MV_PCI_MODE); 3202 3203 ZERO(MV_PCI_DISC_TIMER); 3204 ZERO(MV_PCI_MSI_TRIGGER); 3205 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3206 ZERO(MV_PCI_SERR_MASK); 3207 ZERO(hpriv->irq_cause_offset); 3208 ZERO(hpriv->irq_mask_offset); 3209 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3210 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3211 ZERO(MV_PCI_ERR_ATTRIBUTE); 3212 ZERO(MV_PCI_ERR_COMMAND); 3213 } 3214 #undef ZERO 3215 3216 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3217 { 3218 u32 tmp; 3219 3220 mv5_reset_flash(hpriv, mmio); 3221 3222 tmp = readl(mmio + GPIO_PORT_CTL); 3223 tmp &= 0x3; 3224 tmp |= (1 << 5) | (1 << 6); 3225 writel(tmp, mmio + GPIO_PORT_CTL); 3226 } 3227 3228 /** 3229 * mv6_reset_hc - Perform the 6xxx global soft reset 3230 * @mmio: base address of the HBA 3231 * 3232 * This routine only applies to 6xxx parts. 3233 * 3234 * LOCKING: 3235 * Inherited from caller. 3236 */ 3237 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3238 unsigned int n_hc) 3239 { 3240 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3241 int i, rc = 0; 3242 u32 t; 3243 3244 /* Following procedure defined in PCI "main command and status 3245 * register" table. 3246 */ 3247 t = readl(reg); 3248 writel(t | STOP_PCI_MASTER, reg); 3249 3250 for (i = 0; i < 1000; i++) { 3251 udelay(1); 3252 t = readl(reg); 3253 if (PCI_MASTER_EMPTY & t) 3254 break; 3255 } 3256 if (!(PCI_MASTER_EMPTY & t)) { 3257 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3258 rc = 1; 3259 goto done; 3260 } 3261 3262 /* set reset */ 3263 i = 5; 3264 do { 3265 writel(t | GLOB_SFT_RST, reg); 3266 t = readl(reg); 3267 udelay(1); 3268 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3269 3270 if (!(GLOB_SFT_RST & t)) { 3271 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3272 rc = 1; 3273 goto done; 3274 } 3275 3276 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3277 i = 5; 3278 do { 3279 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3280 t = readl(reg); 3281 udelay(1); 3282 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3283 3284 if (GLOB_SFT_RST & t) { 3285 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3286 rc = 1; 3287 } 3288 done: 3289 return rc; 3290 } 3291 3292 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3293 void __iomem *mmio) 3294 { 3295 void __iomem *port_mmio; 3296 u32 tmp; 3297 3298 tmp = readl(mmio + RESET_CFG); 3299 if ((tmp & (1 << 0)) == 0) { 3300 hpriv->signal[idx].amps = 0x7 << 8; 3301 hpriv->signal[idx].pre = 0x1 << 5; 3302 return; 3303 } 3304 3305 port_mmio = mv_port_base(mmio, idx); 3306 tmp = readl(port_mmio + PHY_MODE2); 3307 3308 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3309 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3310 } 3311 3312 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3313 { 3314 writel(0x00000060, mmio + GPIO_PORT_CTL); 3315 } 3316 3317 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3318 unsigned int port) 3319 { 3320 void __iomem *port_mmio = mv_port_base(mmio, port); 3321 3322 u32 hp_flags = hpriv->hp_flags; 3323 int fix_phy_mode2 = 3324 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3325 int fix_phy_mode4 = 3326 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3327 u32 m2, m3; 3328 3329 if (fix_phy_mode2) { 3330 m2 = readl(port_mmio + PHY_MODE2); 3331 m2 &= ~(1 << 16); 3332 m2 |= (1 << 31); 3333 writel(m2, port_mmio + PHY_MODE2); 3334 3335 udelay(200); 3336 3337 m2 = readl(port_mmio + PHY_MODE2); 3338 m2 &= ~((1 << 16) | (1 << 31)); 3339 writel(m2, port_mmio + PHY_MODE2); 3340 3341 udelay(200); 3342 } 3343 3344 /* 3345 * Gen-II/IIe PHY_MODE3 errata RM#2: 3346 * Achieves better receiver noise performance than the h/w default: 3347 */ 3348 m3 = readl(port_mmio + PHY_MODE3); 3349 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3350 3351 /* Guideline 88F5182 (GL# SATA-S11) */ 3352 if (IS_SOC(hpriv)) 3353 m3 &= ~0x1c; 3354 3355 if (fix_phy_mode4) { 3356 u32 m4 = readl(port_mmio + PHY_MODE4); 3357 /* 3358 * Enforce reserved-bit restrictions on GenIIe devices only. 3359 * For earlier chipsets, force only the internal config field 3360 * (workaround for errata FEr SATA#10 part 1). 3361 */ 3362 if (IS_GEN_IIE(hpriv)) 3363 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3364 else 3365 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3366 writel(m4, port_mmio + PHY_MODE4); 3367 } 3368 /* 3369 * Workaround for 60x1-B2 errata SATA#13: 3370 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3371 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3372 * Or ensure we use writelfl() when writing PHY_MODE4. 3373 */ 3374 writel(m3, port_mmio + PHY_MODE3); 3375 3376 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3377 m2 = readl(port_mmio + PHY_MODE2); 3378 3379 m2 &= ~MV_M2_PREAMP_MASK; 3380 m2 |= hpriv->signal[port].amps; 3381 m2 |= hpriv->signal[port].pre; 3382 m2 &= ~(1 << 16); 3383 3384 /* according to mvSata 3.6.1, some IIE values are fixed */ 3385 if (IS_GEN_IIE(hpriv)) { 3386 m2 &= ~0xC30FF01F; 3387 m2 |= 0x0000900F; 3388 } 3389 3390 writel(m2, port_mmio + PHY_MODE2); 3391 } 3392 3393 /* TODO: use the generic LED interface to configure the SATA Presence */ 3394 /* & Acitivy LEDs on the board */ 3395 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3396 void __iomem *mmio) 3397 { 3398 return; 3399 } 3400 3401 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3402 void __iomem *mmio) 3403 { 3404 void __iomem *port_mmio; 3405 u32 tmp; 3406 3407 port_mmio = mv_port_base(mmio, idx); 3408 tmp = readl(port_mmio + PHY_MODE2); 3409 3410 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3411 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3412 } 3413 3414 #undef ZERO 3415 #define ZERO(reg) writel(0, port_mmio + (reg)) 3416 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3417 void __iomem *mmio, unsigned int port) 3418 { 3419 void __iomem *port_mmio = mv_port_base(mmio, port); 3420 3421 mv_reset_channel(hpriv, mmio, port); 3422 3423 ZERO(0x028); /* command */ 3424 writel(0x101f, port_mmio + EDMA_CFG); 3425 ZERO(0x004); /* timer */ 3426 ZERO(0x008); /* irq err cause */ 3427 ZERO(0x00c); /* irq err mask */ 3428 ZERO(0x010); /* rq bah */ 3429 ZERO(0x014); /* rq inp */ 3430 ZERO(0x018); /* rq outp */ 3431 ZERO(0x01c); /* respq bah */ 3432 ZERO(0x024); /* respq outp */ 3433 ZERO(0x020); /* respq inp */ 3434 ZERO(0x02c); /* test control */ 3435 writel(0x800, port_mmio + EDMA_IORDY_TMOUT); 3436 } 3437 3438 #undef ZERO 3439 3440 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3441 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3442 void __iomem *mmio) 3443 { 3444 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3445 3446 ZERO(0x00c); 3447 ZERO(0x010); 3448 ZERO(0x014); 3449 3450 } 3451 3452 #undef ZERO 3453 3454 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3455 void __iomem *mmio, unsigned int n_hc) 3456 { 3457 unsigned int port; 3458 3459 for (port = 0; port < hpriv->n_ports; port++) 3460 mv_soc_reset_hc_port(hpriv, mmio, port); 3461 3462 mv_soc_reset_one_hc(hpriv, mmio); 3463 3464 return 0; 3465 } 3466 3467 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3468 void __iomem *mmio) 3469 { 3470 return; 3471 } 3472 3473 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3474 { 3475 return; 3476 } 3477 3478 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3479 void __iomem *mmio, unsigned int port) 3480 { 3481 void __iomem *port_mmio = mv_port_base(mmio, port); 3482 u32 reg; 3483 3484 reg = readl(port_mmio + PHY_MODE3); 3485 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3486 reg |= (0x1 << 27); 3487 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3488 reg |= (0x1 << 29); 3489 writel(reg, port_mmio + PHY_MODE3); 3490 3491 reg = readl(port_mmio + PHY_MODE4); 3492 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3493 reg |= (0x1 << 16); 3494 writel(reg, port_mmio + PHY_MODE4); 3495 3496 reg = readl(port_mmio + PHY_MODE9_GEN2); 3497 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3498 reg |= 0x8; 3499 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3500 writel(reg, port_mmio + PHY_MODE9_GEN2); 3501 3502 reg = readl(port_mmio + PHY_MODE9_GEN1); 3503 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3504 reg |= 0x8; 3505 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3506 writel(reg, port_mmio + PHY_MODE9_GEN1); 3507 } 3508 3509 /** 3510 * soc_is_65 - check if the soc is 65 nano device 3511 * 3512 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3513 * register, this register should contain non-zero value and it exists only 3514 * in the 65 nano devices, when reading it from older devices we get 0. 3515 */ 3516 static bool soc_is_65n(struct mv_host_priv *hpriv) 3517 { 3518 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3519 3520 if (readl(port0_mmio + PHYCFG_OFS)) 3521 return true; 3522 return false; 3523 } 3524 3525 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3526 { 3527 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3528 3529 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3530 if (want_gen2i) 3531 ifcfg |= (1 << 7); /* enable gen2i speed */ 3532 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3533 } 3534 3535 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3536 unsigned int port_no) 3537 { 3538 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3539 3540 /* 3541 * The datasheet warns against setting EDMA_RESET when EDMA is active 3542 * (but doesn't say what the problem might be). So we first try 3543 * to disable the EDMA engine before doing the EDMA_RESET operation. 3544 */ 3545 mv_stop_edma_engine(port_mmio); 3546 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3547 3548 if (!IS_GEN_I(hpriv)) { 3549 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3550 mv_setup_ifcfg(port_mmio, 1); 3551 } 3552 /* 3553 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3554 * link, and physical layers. It resets all SATA interface registers 3555 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3556 */ 3557 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3558 udelay(25); /* allow reset propagation */ 3559 writelfl(0, port_mmio + EDMA_CMD); 3560 3561 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3562 3563 if (IS_GEN_I(hpriv)) 3564 mdelay(1); 3565 } 3566 3567 static void mv_pmp_select(struct ata_port *ap, int pmp) 3568 { 3569 if (sata_pmp_supported(ap)) { 3570 void __iomem *port_mmio = mv_ap_base(ap); 3571 u32 reg = readl(port_mmio + SATA_IFCTL); 3572 int old = reg & 0xf; 3573 3574 if (old != pmp) { 3575 reg = (reg & ~0xf) | pmp; 3576 writelfl(reg, port_mmio + SATA_IFCTL); 3577 } 3578 } 3579 } 3580 3581 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3582 unsigned long deadline) 3583 { 3584 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3585 return sata_std_hardreset(link, class, deadline); 3586 } 3587 3588 static int mv_softreset(struct ata_link *link, unsigned int *class, 3589 unsigned long deadline) 3590 { 3591 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3592 return ata_sff_softreset(link, class, deadline); 3593 } 3594 3595 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3596 unsigned long deadline) 3597 { 3598 struct ata_port *ap = link->ap; 3599 struct mv_host_priv *hpriv = ap->host->private_data; 3600 struct mv_port_priv *pp = ap->private_data; 3601 void __iomem *mmio = hpriv->base; 3602 int rc, attempts = 0, extra = 0; 3603 u32 sstatus; 3604 bool online; 3605 3606 mv_reset_channel(hpriv, mmio, ap->port_no); 3607 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3608 pp->pp_flags &= 3609 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3610 3611 /* Workaround for errata FEr SATA#10 (part 2) */ 3612 do { 3613 const unsigned long *timing = 3614 sata_ehc_deb_timing(&link->eh_context); 3615 3616 rc = sata_link_hardreset(link, timing, deadline + extra, 3617 &online, NULL); 3618 rc = online ? -EAGAIN : rc; 3619 if (rc) 3620 return rc; 3621 sata_scr_read(link, SCR_STATUS, &sstatus); 3622 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3623 /* Force 1.5gb/s link speed and try again */ 3624 mv_setup_ifcfg(mv_ap_base(ap), 0); 3625 if (time_after(jiffies + HZ, deadline)) 3626 extra = HZ; /* only extend it once, max */ 3627 } 3628 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3629 mv_save_cached_regs(ap); 3630 mv_edma_cfg(ap, 0, 0); 3631 3632 return rc; 3633 } 3634 3635 static void mv_eh_freeze(struct ata_port *ap) 3636 { 3637 mv_stop_edma(ap); 3638 mv_enable_port_irqs(ap, 0); 3639 } 3640 3641 static void mv_eh_thaw(struct ata_port *ap) 3642 { 3643 struct mv_host_priv *hpriv = ap->host->private_data; 3644 unsigned int port = ap->port_no; 3645 unsigned int hardport = mv_hardport_from_port(port); 3646 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3647 void __iomem *port_mmio = mv_ap_base(ap); 3648 u32 hc_irq_cause; 3649 3650 /* clear EDMA errors on this port */ 3651 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3652 3653 /* clear pending irq events */ 3654 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3655 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3656 3657 mv_enable_port_irqs(ap, ERR_IRQ); 3658 } 3659 3660 /** 3661 * mv_port_init - Perform some early initialization on a single port. 3662 * @port: libata data structure storing shadow register addresses 3663 * @port_mmio: base address of the port 3664 * 3665 * Initialize shadow register mmio addresses, clear outstanding 3666 * interrupts on the port, and unmask interrupts for the future 3667 * start of the port. 3668 * 3669 * LOCKING: 3670 * Inherited from caller. 3671 */ 3672 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3673 { 3674 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3675 3676 /* PIO related setup 3677 */ 3678 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3679 port->error_addr = 3680 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3681 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3682 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3683 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3684 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3685 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3686 port->status_addr = 3687 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3688 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3689 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3690 3691 /* Clear any currently outstanding port interrupt conditions */ 3692 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3693 writelfl(readl(serr), serr); 3694 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3695 3696 /* unmask all non-transient EDMA error interrupts */ 3697 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3698 3699 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3700 readl(port_mmio + EDMA_CFG), 3701 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3702 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3703 } 3704 3705 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3706 { 3707 struct mv_host_priv *hpriv = host->private_data; 3708 void __iomem *mmio = hpriv->base; 3709 u32 reg; 3710 3711 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3712 return 0; /* not PCI-X capable */ 3713 reg = readl(mmio + MV_PCI_MODE); 3714 if ((reg & MV_PCI_MODE_MASK) == 0) 3715 return 0; /* conventional PCI mode */ 3716 return 1; /* chip is in PCI-X mode */ 3717 } 3718 3719 static int mv_pci_cut_through_okay(struct ata_host *host) 3720 { 3721 struct mv_host_priv *hpriv = host->private_data; 3722 void __iomem *mmio = hpriv->base; 3723 u32 reg; 3724 3725 if (!mv_in_pcix_mode(host)) { 3726 reg = readl(mmio + MV_PCI_COMMAND); 3727 if (reg & MV_PCI_COMMAND_MRDTRIG) 3728 return 0; /* not okay */ 3729 } 3730 return 1; /* okay */ 3731 } 3732 3733 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3734 { 3735 struct mv_host_priv *hpriv = host->private_data; 3736 void __iomem *mmio = hpriv->base; 3737 3738 /* workaround for 60x1-B2 errata PCI#7 */ 3739 if (mv_in_pcix_mode(host)) { 3740 u32 reg = readl(mmio + MV_PCI_COMMAND); 3741 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3742 } 3743 } 3744 3745 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3746 { 3747 struct pci_dev *pdev = to_pci_dev(host->dev); 3748 struct mv_host_priv *hpriv = host->private_data; 3749 u32 hp_flags = hpriv->hp_flags; 3750 3751 switch (board_idx) { 3752 case chip_5080: 3753 hpriv->ops = &mv5xxx_ops; 3754 hp_flags |= MV_HP_GEN_I; 3755 3756 switch (pdev->revision) { 3757 case 0x1: 3758 hp_flags |= MV_HP_ERRATA_50XXB0; 3759 break; 3760 case 0x3: 3761 hp_flags |= MV_HP_ERRATA_50XXB2; 3762 break; 3763 default: 3764 dev_warn(&pdev->dev, 3765 "Applying 50XXB2 workarounds to unknown rev\n"); 3766 hp_flags |= MV_HP_ERRATA_50XXB2; 3767 break; 3768 } 3769 break; 3770 3771 case chip_504x: 3772 case chip_508x: 3773 hpriv->ops = &mv5xxx_ops; 3774 hp_flags |= MV_HP_GEN_I; 3775 3776 switch (pdev->revision) { 3777 case 0x0: 3778 hp_flags |= MV_HP_ERRATA_50XXB0; 3779 break; 3780 case 0x3: 3781 hp_flags |= MV_HP_ERRATA_50XXB2; 3782 break; 3783 default: 3784 dev_warn(&pdev->dev, 3785 "Applying B2 workarounds to unknown rev\n"); 3786 hp_flags |= MV_HP_ERRATA_50XXB2; 3787 break; 3788 } 3789 break; 3790 3791 case chip_604x: 3792 case chip_608x: 3793 hpriv->ops = &mv6xxx_ops; 3794 hp_flags |= MV_HP_GEN_II; 3795 3796 switch (pdev->revision) { 3797 case 0x7: 3798 mv_60x1b2_errata_pci7(host); 3799 hp_flags |= MV_HP_ERRATA_60X1B2; 3800 break; 3801 case 0x9: 3802 hp_flags |= MV_HP_ERRATA_60X1C0; 3803 break; 3804 default: 3805 dev_warn(&pdev->dev, 3806 "Applying B2 workarounds to unknown rev\n"); 3807 hp_flags |= MV_HP_ERRATA_60X1B2; 3808 break; 3809 } 3810 break; 3811 3812 case chip_7042: 3813 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3814 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3815 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3816 { 3817 /* 3818 * Highpoint RocketRAID PCIe 23xx series cards: 3819 * 3820 * Unconfigured drives are treated as "Legacy" 3821 * by the BIOS, and it overwrites sector 8 with 3822 * a "Lgcy" metadata block prior to Linux boot. 3823 * 3824 * Configured drives (RAID or JBOD) leave sector 8 3825 * alone, but instead overwrite a high numbered 3826 * sector for the RAID metadata. This sector can 3827 * be determined exactly, by truncating the physical 3828 * drive capacity to a nice even GB value. 3829 * 3830 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3831 * 3832 * Warn the user, lest they think we're just buggy. 3833 */ 3834 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3835 " BIOS CORRUPTS DATA on all attached drives," 3836 " regardless of if/how they are configured." 3837 " BEWARE!\n"); 3838 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3839 " use sectors 8-9 on \"Legacy\" drives," 3840 " and avoid the final two gigabytes on" 3841 " all RocketRAID BIOS initialized drives.\n"); 3842 } 3843 /* drop through */ 3844 case chip_6042: 3845 hpriv->ops = &mv6xxx_ops; 3846 hp_flags |= MV_HP_GEN_IIE; 3847 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3848 hp_flags |= MV_HP_CUT_THROUGH; 3849 3850 switch (pdev->revision) { 3851 case 0x2: /* Rev.B0: the first/only public release */ 3852 hp_flags |= MV_HP_ERRATA_60X1C0; 3853 break; 3854 default: 3855 dev_warn(&pdev->dev, 3856 "Applying 60X1C0 workarounds to unknown rev\n"); 3857 hp_flags |= MV_HP_ERRATA_60X1C0; 3858 break; 3859 } 3860 break; 3861 case chip_soc: 3862 if (soc_is_65n(hpriv)) 3863 hpriv->ops = &mv_soc_65n_ops; 3864 else 3865 hpriv->ops = &mv_soc_ops; 3866 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3867 MV_HP_ERRATA_60X1C0; 3868 break; 3869 3870 default: 3871 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); 3872 return 1; 3873 } 3874 3875 hpriv->hp_flags = hp_flags; 3876 if (hp_flags & MV_HP_PCIE) { 3877 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3878 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3879 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3880 } else { 3881 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3882 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3883 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3884 } 3885 3886 return 0; 3887 } 3888 3889 /** 3890 * mv_init_host - Perform some early initialization of the host. 3891 * @host: ATA host to initialize 3892 * 3893 * If possible, do an early global reset of the host. Then do 3894 * our port init and clear/unmask all/relevant host interrupts. 3895 * 3896 * LOCKING: 3897 * Inherited from caller. 3898 */ 3899 static int mv_init_host(struct ata_host *host) 3900 { 3901 int rc = 0, n_hc, port, hc; 3902 struct mv_host_priv *hpriv = host->private_data; 3903 void __iomem *mmio = hpriv->base; 3904 3905 rc = mv_chip_id(host, hpriv->board_idx); 3906 if (rc) 3907 goto done; 3908 3909 if (IS_SOC(hpriv)) { 3910 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3911 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3912 } else { 3913 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3914 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3915 } 3916 3917 /* initialize shadow irq mask with register's value */ 3918 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3919 3920 /* global interrupt mask: 0 == mask everything */ 3921 mv_set_main_irq_mask(host, ~0, 0); 3922 3923 n_hc = mv_get_hc_count(host->ports[0]->flags); 3924 3925 for (port = 0; port < host->n_ports; port++) 3926 if (hpriv->ops->read_preamp) 3927 hpriv->ops->read_preamp(hpriv, port, mmio); 3928 3929 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3930 if (rc) 3931 goto done; 3932 3933 hpriv->ops->reset_flash(hpriv, mmio); 3934 hpriv->ops->reset_bus(host, mmio); 3935 hpriv->ops->enable_leds(hpriv, mmio); 3936 3937 for (port = 0; port < host->n_ports; port++) { 3938 struct ata_port *ap = host->ports[port]; 3939 void __iomem *port_mmio = mv_port_base(mmio, port); 3940 3941 mv_port_init(&ap->ioaddr, port_mmio); 3942 } 3943 3944 for (hc = 0; hc < n_hc; hc++) { 3945 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3946 3947 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3948 "(before clear)=0x%08x\n", hc, 3949 readl(hc_mmio + HC_CFG), 3950 readl(hc_mmio + HC_IRQ_CAUSE)); 3951 3952 /* Clear any currently outstanding hc interrupt conditions */ 3953 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3954 } 3955 3956 if (!IS_SOC(hpriv)) { 3957 /* Clear any currently outstanding host interrupt conditions */ 3958 writelfl(0, mmio + hpriv->irq_cause_offset); 3959 3960 /* and unmask interrupt generation for host regs */ 3961 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 3962 } 3963 3964 /* 3965 * enable only global host interrupts for now. 3966 * The per-port interrupts get done later as ports are set up. 3967 */ 3968 mv_set_main_irq_mask(host, 0, PCI_ERR); 3969 mv_set_irq_coalescing(host, irq_coalescing_io_count, 3970 irq_coalescing_usecs); 3971 done: 3972 return rc; 3973 } 3974 3975 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 3976 { 3977 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 3978 MV_CRQB_Q_SZ, 0); 3979 if (!hpriv->crqb_pool) 3980 return -ENOMEM; 3981 3982 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 3983 MV_CRPB_Q_SZ, 0); 3984 if (!hpriv->crpb_pool) 3985 return -ENOMEM; 3986 3987 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 3988 MV_SG_TBL_SZ, 0); 3989 if (!hpriv->sg_tbl_pool) 3990 return -ENOMEM; 3991 3992 return 0; 3993 } 3994 3995 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 3996 const struct mbus_dram_target_info *dram) 3997 { 3998 int i; 3999 4000 for (i = 0; i < 4; i++) { 4001 writel(0, hpriv->base + WINDOW_CTRL(i)); 4002 writel(0, hpriv->base + WINDOW_BASE(i)); 4003 } 4004 4005 for (i = 0; i < dram->num_cs; i++) { 4006 const struct mbus_dram_window *cs = dram->cs + i; 4007 4008 writel(((cs->size - 1) & 0xffff0000) | 4009 (cs->mbus_attr << 8) | 4010 (dram->mbus_dram_target_id << 4) | 1, 4011 hpriv->base + WINDOW_CTRL(i)); 4012 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 4013 } 4014 } 4015 4016 /** 4017 * mv_platform_probe - handle a positive probe of an soc Marvell 4018 * host 4019 * @pdev: platform device found 4020 * 4021 * LOCKING: 4022 * Inherited from caller. 4023 */ 4024 static int mv_platform_probe(struct platform_device *pdev) 4025 { 4026 const struct mv_sata_platform_data *mv_platform_data; 4027 const struct mbus_dram_target_info *dram; 4028 const struct ata_port_info *ppi[] = 4029 { &mv_port_info[chip_soc], NULL }; 4030 struct ata_host *host; 4031 struct mv_host_priv *hpriv; 4032 struct resource *res; 4033 int n_ports = 0, irq = 0; 4034 int rc; 4035 #if defined(CONFIG_HAVE_CLK) 4036 int port; 4037 #endif 4038 4039 ata_print_version_once(&pdev->dev, DRV_VERSION); 4040 4041 /* 4042 * Simple resource validation .. 4043 */ 4044 if (unlikely(pdev->num_resources != 2)) { 4045 dev_err(&pdev->dev, "invalid number of resources\n"); 4046 return -EINVAL; 4047 } 4048 4049 /* 4050 * Get the register base first 4051 */ 4052 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4053 if (res == NULL) 4054 return -EINVAL; 4055 4056 /* allocate host */ 4057 if (pdev->dev.of_node) { 4058 of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports); 4059 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 4060 } else { 4061 mv_platform_data = pdev->dev.platform_data; 4062 n_ports = mv_platform_data->n_ports; 4063 irq = platform_get_irq(pdev, 0); 4064 } 4065 4066 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4067 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4068 4069 if (!host || !hpriv) 4070 return -ENOMEM; 4071 #if defined(CONFIG_HAVE_CLK) 4072 hpriv->port_clks = devm_kzalloc(&pdev->dev, 4073 sizeof(struct clk *) * n_ports, 4074 GFP_KERNEL); 4075 if (!hpriv->port_clks) 4076 return -ENOMEM; 4077 #endif 4078 host->private_data = hpriv; 4079 hpriv->n_ports = n_ports; 4080 hpriv->board_idx = chip_soc; 4081 4082 host->iomap = NULL; 4083 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4084 resource_size(res)); 4085 hpriv->base -= SATAHC0_REG_BASE; 4086 4087 #if defined(CONFIG_HAVE_CLK) 4088 hpriv->clk = clk_get(&pdev->dev, NULL); 4089 if (IS_ERR(hpriv->clk)) 4090 dev_notice(&pdev->dev, "cannot get optional clkdev\n"); 4091 else 4092 clk_prepare_enable(hpriv->clk); 4093 4094 for (port = 0; port < n_ports; port++) { 4095 char port_number[16]; 4096 sprintf(port_number, "%d", port); 4097 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number); 4098 if (!IS_ERR(hpriv->port_clks[port])) 4099 clk_prepare_enable(hpriv->port_clks[port]); 4100 } 4101 #endif 4102 4103 /* 4104 * (Re-)program MBUS remapping windows if we are asked to. 4105 */ 4106 dram = mv_mbus_dram_info(); 4107 if (dram) 4108 mv_conf_mbus_windows(hpriv, dram); 4109 4110 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4111 if (rc) 4112 goto err; 4113 4114 /* initialize adapter */ 4115 rc = mv_init_host(host); 4116 if (rc) 4117 goto err; 4118 4119 dev_info(&pdev->dev, "slots %u ports %d\n", 4120 (unsigned)MV_MAX_Q_DEPTH, host->n_ports); 4121 4122 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht); 4123 if (!rc) 4124 return 0; 4125 4126 err: 4127 #if defined(CONFIG_HAVE_CLK) 4128 if (!IS_ERR(hpriv->clk)) { 4129 clk_disable_unprepare(hpriv->clk); 4130 clk_put(hpriv->clk); 4131 } 4132 for (port = 0; port < n_ports; port++) { 4133 if (!IS_ERR(hpriv->port_clks[port])) { 4134 clk_disable_unprepare(hpriv->port_clks[port]); 4135 clk_put(hpriv->port_clks[port]); 4136 } 4137 } 4138 #endif 4139 4140 return rc; 4141 } 4142 4143 /* 4144 * 4145 * mv_platform_remove - unplug a platform interface 4146 * @pdev: platform device 4147 * 4148 * A platform bus SATA device has been unplugged. Perform the needed 4149 * cleanup. Also called on module unload for any active devices. 4150 */ 4151 static int __devexit mv_platform_remove(struct platform_device *pdev) 4152 { 4153 struct ata_host *host = platform_get_drvdata(pdev); 4154 #if defined(CONFIG_HAVE_CLK) 4155 struct mv_host_priv *hpriv = host->private_data; 4156 int port; 4157 #endif 4158 ata_host_detach(host); 4159 4160 #if defined(CONFIG_HAVE_CLK) 4161 if (!IS_ERR(hpriv->clk)) { 4162 clk_disable_unprepare(hpriv->clk); 4163 clk_put(hpriv->clk); 4164 } 4165 for (port = 0; port < host->n_ports; port++) { 4166 if (!IS_ERR(hpriv->port_clks[port])) { 4167 clk_disable_unprepare(hpriv->port_clks[port]); 4168 clk_put(hpriv->port_clks[port]); 4169 } 4170 } 4171 #endif 4172 return 0; 4173 } 4174 4175 #ifdef CONFIG_PM 4176 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) 4177 { 4178 struct ata_host *host = platform_get_drvdata(pdev); 4179 if (host) 4180 return ata_host_suspend(host, state); 4181 else 4182 return 0; 4183 } 4184 4185 static int mv_platform_resume(struct platform_device *pdev) 4186 { 4187 struct ata_host *host = platform_get_drvdata(pdev); 4188 const struct mbus_dram_target_info *dram; 4189 int ret; 4190 4191 if (host) { 4192 struct mv_host_priv *hpriv = host->private_data; 4193 4194 /* 4195 * (Re-)program MBUS remapping windows if we are asked to. 4196 */ 4197 dram = mv_mbus_dram_info(); 4198 if (dram) 4199 mv_conf_mbus_windows(hpriv, dram); 4200 4201 /* initialize adapter */ 4202 ret = mv_init_host(host); 4203 if (ret) { 4204 printk(KERN_ERR DRV_NAME ": Error during HW init\n"); 4205 return ret; 4206 } 4207 ata_host_resume(host); 4208 } 4209 4210 return 0; 4211 } 4212 #else 4213 #define mv_platform_suspend NULL 4214 #define mv_platform_resume NULL 4215 #endif 4216 4217 #ifdef CONFIG_OF 4218 static struct of_device_id mv_sata_dt_ids[] __devinitdata = { 4219 { .compatible = "marvell,orion-sata", }, 4220 {}, 4221 }; 4222 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids); 4223 #endif 4224 4225 static struct platform_driver mv_platform_driver = { 4226 .probe = mv_platform_probe, 4227 .remove = __devexit_p(mv_platform_remove), 4228 .suspend = mv_platform_suspend, 4229 .resume = mv_platform_resume, 4230 .driver = { 4231 .name = DRV_NAME, 4232 .owner = THIS_MODULE, 4233 .of_match_table = of_match_ptr(mv_sata_dt_ids), 4234 }, 4235 }; 4236 4237 4238 #ifdef CONFIG_PCI 4239 static int mv_pci_init_one(struct pci_dev *pdev, 4240 const struct pci_device_id *ent); 4241 #ifdef CONFIG_PM 4242 static int mv_pci_device_resume(struct pci_dev *pdev); 4243 #endif 4244 4245 4246 static struct pci_driver mv_pci_driver = { 4247 .name = DRV_NAME, 4248 .id_table = mv_pci_tbl, 4249 .probe = mv_pci_init_one, 4250 .remove = ata_pci_remove_one, 4251 #ifdef CONFIG_PM 4252 .suspend = ata_pci_device_suspend, 4253 .resume = mv_pci_device_resume, 4254 #endif 4255 4256 }; 4257 4258 /* move to PCI layer or libata core? */ 4259 static int pci_go_64(struct pci_dev *pdev) 4260 { 4261 int rc; 4262 4263 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4264 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4265 if (rc) { 4266 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4267 if (rc) { 4268 dev_err(&pdev->dev, 4269 "64-bit DMA enable failed\n"); 4270 return rc; 4271 } 4272 } 4273 } else { 4274 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4275 if (rc) { 4276 dev_err(&pdev->dev, "32-bit DMA enable failed\n"); 4277 return rc; 4278 } 4279 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4280 if (rc) { 4281 dev_err(&pdev->dev, 4282 "32-bit consistent DMA enable failed\n"); 4283 return rc; 4284 } 4285 } 4286 4287 return rc; 4288 } 4289 4290 /** 4291 * mv_print_info - Dump key info to kernel log for perusal. 4292 * @host: ATA host to print info about 4293 * 4294 * FIXME: complete this. 4295 * 4296 * LOCKING: 4297 * Inherited from caller. 4298 */ 4299 static void mv_print_info(struct ata_host *host) 4300 { 4301 struct pci_dev *pdev = to_pci_dev(host->dev); 4302 struct mv_host_priv *hpriv = host->private_data; 4303 u8 scc; 4304 const char *scc_s, *gen; 4305 4306 /* Use this to determine the HW stepping of the chip so we know 4307 * what errata to workaround 4308 */ 4309 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4310 if (scc == 0) 4311 scc_s = "SCSI"; 4312 else if (scc == 0x01) 4313 scc_s = "RAID"; 4314 else 4315 scc_s = "?"; 4316 4317 if (IS_GEN_I(hpriv)) 4318 gen = "I"; 4319 else if (IS_GEN_II(hpriv)) 4320 gen = "II"; 4321 else if (IS_GEN_IIE(hpriv)) 4322 gen = "IIE"; 4323 else 4324 gen = "?"; 4325 4326 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4327 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4328 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4329 } 4330 4331 /** 4332 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4333 * @pdev: PCI device found 4334 * @ent: PCI device ID entry for the matched host 4335 * 4336 * LOCKING: 4337 * Inherited from caller. 4338 */ 4339 static int mv_pci_init_one(struct pci_dev *pdev, 4340 const struct pci_device_id *ent) 4341 { 4342 unsigned int board_idx = (unsigned int)ent->driver_data; 4343 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4344 struct ata_host *host; 4345 struct mv_host_priv *hpriv; 4346 int n_ports, port, rc; 4347 4348 ata_print_version_once(&pdev->dev, DRV_VERSION); 4349 4350 /* allocate host */ 4351 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4352 4353 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4354 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4355 if (!host || !hpriv) 4356 return -ENOMEM; 4357 host->private_data = hpriv; 4358 hpriv->n_ports = n_ports; 4359 hpriv->board_idx = board_idx; 4360 4361 /* acquire resources */ 4362 rc = pcim_enable_device(pdev); 4363 if (rc) 4364 return rc; 4365 4366 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4367 if (rc == -EBUSY) 4368 pcim_pin_device(pdev); 4369 if (rc) 4370 return rc; 4371 host->iomap = pcim_iomap_table(pdev); 4372 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4373 4374 rc = pci_go_64(pdev); 4375 if (rc) 4376 return rc; 4377 4378 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4379 if (rc) 4380 return rc; 4381 4382 for (port = 0; port < host->n_ports; port++) { 4383 struct ata_port *ap = host->ports[port]; 4384 void __iomem *port_mmio = mv_port_base(hpriv->base, port); 4385 unsigned int offset = port_mmio - hpriv->base; 4386 4387 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 4388 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 4389 } 4390 4391 /* initialize adapter */ 4392 rc = mv_init_host(host); 4393 if (rc) 4394 return rc; 4395 4396 /* Enable message-switched interrupts, if requested */ 4397 if (msi && pci_enable_msi(pdev) == 0) 4398 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4399 4400 mv_dump_pci_cfg(pdev, 0x68); 4401 mv_print_info(host); 4402 4403 pci_set_master(pdev); 4404 pci_try_set_mwi(pdev); 4405 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4406 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4407 } 4408 4409 #ifdef CONFIG_PM 4410 static int mv_pci_device_resume(struct pci_dev *pdev) 4411 { 4412 struct ata_host *host = pci_get_drvdata(pdev); 4413 int rc; 4414 4415 rc = ata_pci_device_do_resume(pdev); 4416 if (rc) 4417 return rc; 4418 4419 /* initialize adapter */ 4420 rc = mv_init_host(host); 4421 if (rc) 4422 return rc; 4423 4424 ata_host_resume(host); 4425 4426 return 0; 4427 } 4428 #endif 4429 #endif 4430 4431 static int mv_platform_probe(struct platform_device *pdev); 4432 static int __devexit mv_platform_remove(struct platform_device *pdev); 4433 4434 static int __init mv_init(void) 4435 { 4436 int rc = -ENODEV; 4437 #ifdef CONFIG_PCI 4438 rc = pci_register_driver(&mv_pci_driver); 4439 if (rc < 0) 4440 return rc; 4441 #endif 4442 rc = platform_driver_register(&mv_platform_driver); 4443 4444 #ifdef CONFIG_PCI 4445 if (rc < 0) 4446 pci_unregister_driver(&mv_pci_driver); 4447 #endif 4448 return rc; 4449 } 4450 4451 static void __exit mv_exit(void) 4452 { 4453 #ifdef CONFIG_PCI 4454 pci_unregister_driver(&mv_pci_driver); 4455 #endif 4456 platform_driver_unregister(&mv_platform_driver); 4457 } 4458 4459 MODULE_AUTHOR("Brett Russ"); 4460 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4461 MODULE_LICENSE("GPL"); 4462 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4463 MODULE_VERSION(DRV_VERSION); 4464 MODULE_ALIAS("platform:" DRV_NAME); 4465 4466 module_init(mv_init); 4467 module_exit(mv_exit); 4468