xref: /linux/drivers/ata/sata_mv.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2005: EMC Corporation, all rights reserved.
5  * Copyright 2005 Red Hat, Inc.  All rights reserved.
6  *
7  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
37 #include <asm/io.h>
38 
39 #define DRV_NAME	"sata_mv"
40 #define DRV_VERSION	"0.7"
41 
42 enum {
43 	/* BAR's are enumerated in terms of pci_resource_start() terms */
44 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
45 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
46 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
47 
48 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
49 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
50 
51 	MV_PCI_REG_BASE		= 0,
52 	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
53 	MV_IRQ_COAL_CAUSE		= (MV_IRQ_COAL_REG_BASE + 0x08),
54 	MV_IRQ_COAL_CAUSE_LO		= (MV_IRQ_COAL_REG_BASE + 0x88),
55 	MV_IRQ_COAL_CAUSE_HI		= (MV_IRQ_COAL_REG_BASE + 0x8c),
56 	MV_IRQ_COAL_THRESHOLD		= (MV_IRQ_COAL_REG_BASE + 0xcc),
57 	MV_IRQ_COAL_TIME_THRESHOLD	= (MV_IRQ_COAL_REG_BASE + 0xd0),
58 
59 	MV_SATAHC0_REG_BASE	= 0x20000,
60 	MV_FLASH_CTL		= 0x1046c,
61 	MV_GPIO_PORT_CTL	= 0x104f0,
62 	MV_RESET_CFG		= 0x180d8,
63 
64 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
65 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
66 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
67 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
68 
69 	MV_USE_Q_DEPTH		= ATA_DEF_QUEUE,
70 
71 	MV_MAX_Q_DEPTH		= 32,
72 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
73 
74 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
75 	 * CRPB needs alignment on a 256B boundary. Size == 256B
76 	 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
77 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
78 	 */
79 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
80 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
81 	MV_MAX_SG_CT		= 176,
82 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
83 	MV_PORT_PRIV_DMA_SZ	= (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
84 
85 	MV_PORTS_PER_HC		= 4,
86 	/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
87 	MV_PORT_HC_SHIFT	= 2,
88 	/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
89 	MV_PORT_MASK		= 3,
90 
91 	/* Host Flags */
92 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
93 	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
94 	MV_COMMON_FLAGS		= (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
95 				   ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
96 				   ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
97 	MV_6XXX_FLAGS		= MV_FLAG_IRQ_COALESCE,
98 
99 	CRQB_FLAG_READ		= (1 << 0),
100 	CRQB_TAG_SHIFT		= 1,
101 	CRQB_CMD_ADDR_SHIFT	= 8,
102 	CRQB_CMD_CS		= (0x2 << 11),
103 	CRQB_CMD_LAST		= (1 << 15),
104 
105 	CRPB_FLAG_STATUS_SHIFT	= 8,
106 
107 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
108 
109 	/* PCI interface registers */
110 
111 	PCI_COMMAND_OFS		= 0xc00,
112 
113 	PCI_MAIN_CMD_STS_OFS	= 0xd30,
114 	STOP_PCI_MASTER		= (1 << 2),
115 	PCI_MASTER_EMPTY	= (1 << 3),
116 	GLOB_SFT_RST		= (1 << 4),
117 
118 	MV_PCI_MODE		= 0xd00,
119 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
120 	MV_PCI_DISC_TIMER	= 0xd04,
121 	MV_PCI_MSI_TRIGGER	= 0xc38,
122 	MV_PCI_SERR_MASK	= 0xc28,
123 	MV_PCI_XBAR_TMOUT	= 0x1d04,
124 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
125 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
126 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
127 	MV_PCI_ERR_COMMAND	= 0x1d50,
128 
129 	PCI_IRQ_CAUSE_OFS		= 0x1d58,
130 	PCI_IRQ_MASK_OFS		= 0x1d5c,
131 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
132 
133 	HC_MAIN_IRQ_CAUSE_OFS	= 0x1d60,
134 	HC_MAIN_IRQ_MASK_OFS	= 0x1d64,
135 	PORT0_ERR		= (1 << 0),	/* shift by port # */
136 	PORT0_DONE		= (1 << 1),	/* shift by port # */
137 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
138 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
139 	PCI_ERR			= (1 << 18),
140 	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
141 	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
142 	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
143 	GPIO_INT		= (1 << 22),
144 	SELF_INT		= (1 << 23),
145 	TWSI_INT		= (1 << 24),
146 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
147 	HC_MAIN_MASKED_IRQS	= (TRAN_LO_DONE | TRAN_HI_DONE |
148 				   PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
149 				   HC_MAIN_RSVD),
150 
151 	/* SATAHC registers */
152 	HC_CFG_OFS		= 0,
153 
154 	HC_IRQ_CAUSE_OFS	= 0x14,
155 	CRPB_DMA_DONE		= (1 << 0),	/* shift by port # */
156 	HC_IRQ_COAL		= (1 << 4),	/* IRQ coalescing */
157 	DEV_IRQ			= (1 << 8),	/* shift by port # */
158 
159 	/* Shadow block registers */
160 	SHD_BLK_OFS		= 0x100,
161 	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
162 
163 	/* SATA registers */
164 	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
165 	SATA_ACTIVE_OFS		= 0x350,
166 	PHY_MODE3		= 0x310,
167 	PHY_MODE4		= 0x314,
168 	PHY_MODE2		= 0x330,
169 	MV5_PHY_MODE		= 0x74,
170 	MV5_LT_MODE		= 0x30,
171 	MV5_PHY_CTL		= 0x0C,
172 	SATA_INTERFACE_CTL	= 0x050,
173 
174 	MV_M2_PREAMP_MASK	= 0x7e0,
175 
176 	/* Port registers */
177 	EDMA_CFG_OFS		= 0,
178 	EDMA_CFG_Q_DEPTH	= 0,			/* queueing disabled */
179 	EDMA_CFG_NCQ		= (1 << 5),
180 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),		/* continue on error */
181 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),		/* read burst 512B */
182 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),		/* write buffer 512B */
183 
184 	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
185 	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
186 	EDMA_ERR_D_PAR		= (1 << 0),
187 	EDMA_ERR_PRD_PAR	= (1 << 1),
188 	EDMA_ERR_DEV		= (1 << 2),
189 	EDMA_ERR_DEV_DCON	= (1 << 3),
190 	EDMA_ERR_DEV_CON	= (1 << 4),
191 	EDMA_ERR_SERR		= (1 << 5),
192 	EDMA_ERR_SELF_DIS	= (1 << 7),
193 	EDMA_ERR_BIST_ASYNC	= (1 << 8),
194 	EDMA_ERR_CRBQ_PAR	= (1 << 9),
195 	EDMA_ERR_CRPB_PAR	= (1 << 10),
196 	EDMA_ERR_INTRL_PAR	= (1 << 11),
197 	EDMA_ERR_IORDY		= (1 << 12),
198 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),
199 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),
200 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),
201 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),
202 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),
203 	EDMA_ERR_TRANS_PROTO	= (1 << 31),
204 	EDMA_ERR_FATAL		= (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
205 				   EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
206 				   EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
207 				   EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
208 				   EDMA_ERR_LNK_DATA_RX |
209 				   EDMA_ERR_LNK_DATA_TX |
210 				   EDMA_ERR_TRANS_PROTO),
211 
212 	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
213 	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */
214 
215 	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
216 	EDMA_REQ_Q_PTR_SHIFT	= 5,
217 
218 	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
219 	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
220 	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
221 	EDMA_RSP_Q_PTR_SHIFT	= 3,
222 
223 	EDMA_CMD_OFS		= 0x28,
224 	EDMA_EN			= (1 << 0),
225 	EDMA_DS			= (1 << 1),
226 	ATA_RST			= (1 << 2),
227 
228 	EDMA_IORDY_TMOUT	= 0x34,
229 	EDMA_ARB_CFG		= 0x38,
230 
231 	/* Host private flags (hp_flags) */
232 	MV_HP_FLAG_MSI		= (1 << 0),
233 	MV_HP_ERRATA_50XXB0	= (1 << 1),
234 	MV_HP_ERRATA_50XXB2	= (1 << 2),
235 	MV_HP_ERRATA_60X1B2	= (1 << 3),
236 	MV_HP_ERRATA_60X1C0	= (1 << 4),
237 	MV_HP_ERRATA_XX42A0	= (1 << 5),
238 	MV_HP_50XX		= (1 << 6),
239 	MV_HP_GEN_IIE		= (1 << 7),
240 
241 	/* Port private flags (pp_flags) */
242 	MV_PP_FLAG_EDMA_EN	= (1 << 0),
243 	MV_PP_FLAG_EDMA_DS_ACT	= (1 << 1),
244 };
245 
246 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
247 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
248 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
249 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
250 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
251 
252 enum {
253 	/* Our DMA boundary is determined by an ePRD being unable to handle
254 	 * anything larger than 64KB
255 	 */
256 	MV_DMA_BOUNDARY		= 0xffffU,
257 
258 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
259 
260 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
261 };
262 
263 enum chip_type {
264 	chip_504x,
265 	chip_508x,
266 	chip_5080,
267 	chip_604x,
268 	chip_608x,
269 	chip_6042,
270 	chip_7042,
271 };
272 
273 /* Command ReQuest Block: 32B */
274 struct mv_crqb {
275 	__le32			sg_addr;
276 	__le32			sg_addr_hi;
277 	__le16			ctrl_flags;
278 	__le16			ata_cmd[11];
279 };
280 
281 struct mv_crqb_iie {
282 	__le32			addr;
283 	__le32			addr_hi;
284 	__le32			flags;
285 	__le32			len;
286 	__le32			ata_cmd[4];
287 };
288 
289 /* Command ResPonse Block: 8B */
290 struct mv_crpb {
291 	__le16			id;
292 	__le16			flags;
293 	__le32			tmstmp;
294 };
295 
296 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
297 struct mv_sg {
298 	__le32			addr;
299 	__le32			flags_size;
300 	__le32			addr_hi;
301 	__le32			reserved;
302 };
303 
304 struct mv_port_priv {
305 	struct mv_crqb		*crqb;
306 	dma_addr_t		crqb_dma;
307 	struct mv_crpb		*crpb;
308 	dma_addr_t		crpb_dma;
309 	struct mv_sg		*sg_tbl;
310 	dma_addr_t		sg_tbl_dma;
311 	u32			pp_flags;
312 };
313 
314 struct mv_port_signal {
315 	u32			amps;
316 	u32			pre;
317 };
318 
319 struct mv_host_priv;
320 struct mv_hw_ops {
321 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
322 			   unsigned int port);
323 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
324 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
325 			   void __iomem *mmio);
326 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
327 			unsigned int n_hc);
328 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
329 	void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
330 };
331 
332 struct mv_host_priv {
333 	u32			hp_flags;
334 	struct mv_port_signal	signal[8];
335 	const struct mv_hw_ops	*ops;
336 };
337 
338 static void mv_irq_clear(struct ata_port *ap);
339 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
340 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
341 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
342 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
343 static void mv_phy_reset(struct ata_port *ap);
344 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
345 static void mv_host_stop(struct ata_host *host);
346 static int mv_port_start(struct ata_port *ap);
347 static void mv_port_stop(struct ata_port *ap);
348 static void mv_qc_prep(struct ata_queued_cmd *qc);
349 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
350 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
351 static irqreturn_t mv_interrupt(int irq, void *dev_instance);
352 static void mv_eng_timeout(struct ata_port *ap);
353 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
354 
355 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
356 			   unsigned int port);
357 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
358 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
359 			   void __iomem *mmio);
360 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
361 			unsigned int n_hc);
362 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
363 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
364 
365 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
366 			   unsigned int port);
367 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
368 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
369 			   void __iomem *mmio);
370 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
371 			unsigned int n_hc);
372 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
373 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
374 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
375 			     unsigned int port_no);
376 static void mv_stop_and_reset(struct ata_port *ap);
377 
378 static struct scsi_host_template mv_sht = {
379 	.module			= THIS_MODULE,
380 	.name			= DRV_NAME,
381 	.ioctl			= ata_scsi_ioctl,
382 	.queuecommand		= ata_scsi_queuecmd,
383 	.can_queue		= MV_USE_Q_DEPTH,
384 	.this_id		= ATA_SHT_THIS_ID,
385 	.sg_tablesize		= MV_MAX_SG_CT / 2,
386 	.cmd_per_lun		= ATA_SHT_CMD_PER_LUN,
387 	.emulated		= ATA_SHT_EMULATED,
388 	.use_clustering		= ATA_SHT_USE_CLUSTERING,
389 	.proc_name		= DRV_NAME,
390 	.dma_boundary		= MV_DMA_BOUNDARY,
391 	.slave_configure	= ata_scsi_slave_config,
392 	.slave_destroy		= ata_scsi_slave_destroy,
393 	.bios_param		= ata_std_bios_param,
394 };
395 
396 static const struct ata_port_operations mv5_ops = {
397 	.port_disable		= ata_port_disable,
398 
399 	.tf_load		= ata_tf_load,
400 	.tf_read		= ata_tf_read,
401 	.check_status		= ata_check_status,
402 	.exec_command		= ata_exec_command,
403 	.dev_select		= ata_std_dev_select,
404 
405 	.phy_reset		= mv_phy_reset,
406 
407 	.qc_prep		= mv_qc_prep,
408 	.qc_issue		= mv_qc_issue,
409 	.data_xfer		= ata_mmio_data_xfer,
410 
411 	.eng_timeout		= mv_eng_timeout,
412 
413 	.irq_handler		= mv_interrupt,
414 	.irq_clear		= mv_irq_clear,
415 
416 	.scr_read		= mv5_scr_read,
417 	.scr_write		= mv5_scr_write,
418 
419 	.port_start		= mv_port_start,
420 	.port_stop		= mv_port_stop,
421 	.host_stop		= mv_host_stop,
422 };
423 
424 static const struct ata_port_operations mv6_ops = {
425 	.port_disable		= ata_port_disable,
426 
427 	.tf_load		= ata_tf_load,
428 	.tf_read		= ata_tf_read,
429 	.check_status		= ata_check_status,
430 	.exec_command		= ata_exec_command,
431 	.dev_select		= ata_std_dev_select,
432 
433 	.phy_reset		= mv_phy_reset,
434 
435 	.qc_prep		= mv_qc_prep,
436 	.qc_issue		= mv_qc_issue,
437 	.data_xfer		= ata_mmio_data_xfer,
438 
439 	.eng_timeout		= mv_eng_timeout,
440 
441 	.irq_handler		= mv_interrupt,
442 	.irq_clear		= mv_irq_clear,
443 
444 	.scr_read		= mv_scr_read,
445 	.scr_write		= mv_scr_write,
446 
447 	.port_start		= mv_port_start,
448 	.port_stop		= mv_port_stop,
449 	.host_stop		= mv_host_stop,
450 };
451 
452 static const struct ata_port_operations mv_iie_ops = {
453 	.port_disable		= ata_port_disable,
454 
455 	.tf_load		= ata_tf_load,
456 	.tf_read		= ata_tf_read,
457 	.check_status		= ata_check_status,
458 	.exec_command		= ata_exec_command,
459 	.dev_select		= ata_std_dev_select,
460 
461 	.phy_reset		= mv_phy_reset,
462 
463 	.qc_prep		= mv_qc_prep_iie,
464 	.qc_issue		= mv_qc_issue,
465 	.data_xfer		= ata_mmio_data_xfer,
466 
467 	.eng_timeout		= mv_eng_timeout,
468 
469 	.irq_handler		= mv_interrupt,
470 	.irq_clear		= mv_irq_clear,
471 
472 	.scr_read		= mv_scr_read,
473 	.scr_write		= mv_scr_write,
474 
475 	.port_start		= mv_port_start,
476 	.port_stop		= mv_port_stop,
477 	.host_stop		= mv_host_stop,
478 };
479 
480 static const struct ata_port_info mv_port_info[] = {
481 	{  /* chip_504x */
482 		.sht		= &mv_sht,
483 		.flags		= MV_COMMON_FLAGS,
484 		.pio_mask	= 0x1f,	/* pio0-4 */
485 		.udma_mask	= 0x7f,	/* udma0-6 */
486 		.port_ops	= &mv5_ops,
487 	},
488 	{  /* chip_508x */
489 		.sht		= &mv_sht,
490 		.flags		= (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
491 		.pio_mask	= 0x1f,	/* pio0-4 */
492 		.udma_mask	= 0x7f,	/* udma0-6 */
493 		.port_ops	= &mv5_ops,
494 	},
495 	{  /* chip_5080 */
496 		.sht		= &mv_sht,
497 		.flags		= (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
498 		.pio_mask	= 0x1f,	/* pio0-4 */
499 		.udma_mask	= 0x7f,	/* udma0-6 */
500 		.port_ops	= &mv5_ops,
501 	},
502 	{  /* chip_604x */
503 		.sht		= &mv_sht,
504 		.flags		= (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
505 		.pio_mask	= 0x1f,	/* pio0-4 */
506 		.udma_mask	= 0x7f,	/* udma0-6 */
507 		.port_ops	= &mv6_ops,
508 	},
509 	{  /* chip_608x */
510 		.sht		= &mv_sht,
511 		.flags		= (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
512 				   MV_FLAG_DUAL_HC),
513 		.pio_mask	= 0x1f,	/* pio0-4 */
514 		.udma_mask	= 0x7f,	/* udma0-6 */
515 		.port_ops	= &mv6_ops,
516 	},
517 	{  /* chip_6042 */
518 		.sht		= &mv_sht,
519 		.flags		= (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
520 		.pio_mask	= 0x1f,	/* pio0-4 */
521 		.udma_mask	= 0x7f,	/* udma0-6 */
522 		.port_ops	= &mv_iie_ops,
523 	},
524 	{  /* chip_7042 */
525 		.sht		= &mv_sht,
526 		.flags		= (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
527 		.pio_mask	= 0x1f,	/* pio0-4 */
528 		.udma_mask	= 0x7f,	/* udma0-6 */
529 		.port_ops	= &mv_iie_ops,
530 	},
531 };
532 
533 static const struct pci_device_id mv_pci_tbl[] = {
534 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
535 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
536 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
537 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
538 
539 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
540 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
541 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
542 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
543 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
544 
545 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
546 
547 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
548 
549 	{ }			/* terminate list */
550 };
551 
552 static struct pci_driver mv_pci_driver = {
553 	.name			= DRV_NAME,
554 	.id_table		= mv_pci_tbl,
555 	.probe			= mv_init_one,
556 	.remove			= ata_pci_remove_one,
557 };
558 
559 static const struct mv_hw_ops mv5xxx_ops = {
560 	.phy_errata		= mv5_phy_errata,
561 	.enable_leds		= mv5_enable_leds,
562 	.read_preamp		= mv5_read_preamp,
563 	.reset_hc		= mv5_reset_hc,
564 	.reset_flash		= mv5_reset_flash,
565 	.reset_bus		= mv5_reset_bus,
566 };
567 
568 static const struct mv_hw_ops mv6xxx_ops = {
569 	.phy_errata		= mv6_phy_errata,
570 	.enable_leds		= mv6_enable_leds,
571 	.read_preamp		= mv6_read_preamp,
572 	.reset_hc		= mv6_reset_hc,
573 	.reset_flash		= mv6_reset_flash,
574 	.reset_bus		= mv_reset_pci_bus,
575 };
576 
577 /*
578  * module options
579  */
580 static int msi;	      /* Use PCI msi; either zero (off, default) or non-zero */
581 
582 
583 /*
584  * Functions
585  */
586 
587 static inline void writelfl(unsigned long data, void __iomem *addr)
588 {
589 	writel(data, addr);
590 	(void) readl(addr);	/* flush to avoid PCI posted write */
591 }
592 
593 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
594 {
595 	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
596 }
597 
598 static inline unsigned int mv_hc_from_port(unsigned int port)
599 {
600 	return port >> MV_PORT_HC_SHIFT;
601 }
602 
603 static inline unsigned int mv_hardport_from_port(unsigned int port)
604 {
605 	return port & MV_PORT_MASK;
606 }
607 
608 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
609 						 unsigned int port)
610 {
611 	return mv_hc_base(base, mv_hc_from_port(port));
612 }
613 
614 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
615 {
616 	return  mv_hc_base_from_port(base, port) +
617 		MV_SATAHC_ARBTR_REG_SZ +
618 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
619 }
620 
621 static inline void __iomem *mv_ap_base(struct ata_port *ap)
622 {
623 	return mv_port_base(ap->host->mmio_base, ap->port_no);
624 }
625 
626 static inline int mv_get_hc_count(unsigned long port_flags)
627 {
628 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
629 }
630 
631 static void mv_irq_clear(struct ata_port *ap)
632 {
633 }
634 
635 /**
636  *      mv_start_dma - Enable eDMA engine
637  *      @base: port base address
638  *      @pp: port private data
639  *
640  *      Verify the local cache of the eDMA state is accurate with a
641  *      WARN_ON.
642  *
643  *      LOCKING:
644  *      Inherited from caller.
645  */
646 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
647 {
648 	if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
649 		writelfl(EDMA_EN, base + EDMA_CMD_OFS);
650 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
651 	}
652 	WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
653 }
654 
655 /**
656  *      mv_stop_dma - Disable eDMA engine
657  *      @ap: ATA channel to manipulate
658  *
659  *      Verify the local cache of the eDMA state is accurate with a
660  *      WARN_ON.
661  *
662  *      LOCKING:
663  *      Inherited from caller.
664  */
665 static void mv_stop_dma(struct ata_port *ap)
666 {
667 	void __iomem *port_mmio = mv_ap_base(ap);
668 	struct mv_port_priv *pp	= ap->private_data;
669 	u32 reg;
670 	int i;
671 
672 	if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
673 		/* Disable EDMA if active.   The disable bit auto clears.
674 		 */
675 		writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
676 		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
677 	} else {
678 		WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
679   	}
680 
681 	/* now properly wait for the eDMA to stop */
682 	for (i = 1000; i > 0; i--) {
683 		reg = readl(port_mmio + EDMA_CMD_OFS);
684 		if (!(EDMA_EN & reg)) {
685 			break;
686 		}
687 		udelay(100);
688 	}
689 
690 	if (EDMA_EN & reg) {
691 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
692 		/* FIXME: Consider doing a reset here to recover */
693 	}
694 }
695 
696 #ifdef ATA_DEBUG
697 static void mv_dump_mem(void __iomem *start, unsigned bytes)
698 {
699 	int b, w;
700 	for (b = 0; b < bytes; ) {
701 		DPRINTK("%p: ", start + b);
702 		for (w = 0; b < bytes && w < 4; w++) {
703 			printk("%08x ",readl(start + b));
704 			b += sizeof(u32);
705 		}
706 		printk("\n");
707 	}
708 }
709 #endif
710 
711 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
712 {
713 #ifdef ATA_DEBUG
714 	int b, w;
715 	u32 dw;
716 	for (b = 0; b < bytes; ) {
717 		DPRINTK("%02x: ", b);
718 		for (w = 0; b < bytes && w < 4; w++) {
719 			(void) pci_read_config_dword(pdev,b,&dw);
720 			printk("%08x ",dw);
721 			b += sizeof(u32);
722 		}
723 		printk("\n");
724 	}
725 #endif
726 }
727 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
728 			     struct pci_dev *pdev)
729 {
730 #ifdef ATA_DEBUG
731 	void __iomem *hc_base = mv_hc_base(mmio_base,
732 					   port >> MV_PORT_HC_SHIFT);
733 	void __iomem *port_base;
734 	int start_port, num_ports, p, start_hc, num_hcs, hc;
735 
736 	if (0 > port) {
737 		start_hc = start_port = 0;
738 		num_ports = 8;		/* shld be benign for 4 port devs */
739 		num_hcs = 2;
740 	} else {
741 		start_hc = port >> MV_PORT_HC_SHIFT;
742 		start_port = port;
743 		num_ports = num_hcs = 1;
744 	}
745 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
746 		num_ports > 1 ? num_ports - 1 : start_port);
747 
748 	if (NULL != pdev) {
749 		DPRINTK("PCI config space regs:\n");
750 		mv_dump_pci_cfg(pdev, 0x68);
751 	}
752 	DPRINTK("PCI regs:\n");
753 	mv_dump_mem(mmio_base+0xc00, 0x3c);
754 	mv_dump_mem(mmio_base+0xd00, 0x34);
755 	mv_dump_mem(mmio_base+0xf00, 0x4);
756 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
757 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
758 		hc_base = mv_hc_base(mmio_base, hc);
759 		DPRINTK("HC regs (HC %i):\n", hc);
760 		mv_dump_mem(hc_base, 0x1c);
761 	}
762 	for (p = start_port; p < start_port + num_ports; p++) {
763 		port_base = mv_port_base(mmio_base, p);
764 		DPRINTK("EDMA regs (port %i):\n",p);
765 		mv_dump_mem(port_base, 0x54);
766 		DPRINTK("SATA regs (port %i):\n",p);
767 		mv_dump_mem(port_base+0x300, 0x60);
768 	}
769 #endif
770 }
771 
772 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
773 {
774 	unsigned int ofs;
775 
776 	switch (sc_reg_in) {
777 	case SCR_STATUS:
778 	case SCR_CONTROL:
779 	case SCR_ERROR:
780 		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
781 		break;
782 	case SCR_ACTIVE:
783 		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
784 		break;
785 	default:
786 		ofs = 0xffffffffU;
787 		break;
788 	}
789 	return ofs;
790 }
791 
792 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
793 {
794 	unsigned int ofs = mv_scr_offset(sc_reg_in);
795 
796 	if (0xffffffffU != ofs) {
797 		return readl(mv_ap_base(ap) + ofs);
798 	} else {
799 		return (u32) ofs;
800 	}
801 }
802 
803 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
804 {
805 	unsigned int ofs = mv_scr_offset(sc_reg_in);
806 
807 	if (0xffffffffU != ofs) {
808 		writelfl(val, mv_ap_base(ap) + ofs);
809 	}
810 }
811 
812 /**
813  *      mv_host_stop - Host specific cleanup/stop routine.
814  *      @host: host data structure
815  *
816  *      Disable ints, cleanup host memory, call general purpose
817  *      host_stop.
818  *
819  *      LOCKING:
820  *      Inherited from caller.
821  */
822 static void mv_host_stop(struct ata_host *host)
823 {
824 	struct mv_host_priv *hpriv = host->private_data;
825 	struct pci_dev *pdev = to_pci_dev(host->dev);
826 
827 	if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
828 		pci_disable_msi(pdev);
829 	} else {
830 		pci_intx(pdev, 0);
831 	}
832 	kfree(hpriv);
833 	ata_host_stop(host);
834 }
835 
836 static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
837 {
838 	dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
839 }
840 
841 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
842 {
843 	u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
844 
845 	/* set up non-NCQ EDMA configuration */
846 	cfg &= ~0x1f;		/* clear queue depth */
847 	cfg &= ~EDMA_CFG_NCQ;	/* clear NCQ mode */
848 	cfg &= ~(1 << 9);	/* disable equeue */
849 
850 	if (IS_GEN_I(hpriv))
851 		cfg |= (1 << 8);	/* enab config burst size mask */
852 
853 	else if (IS_GEN_II(hpriv))
854 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
855 
856 	else if (IS_GEN_IIE(hpriv)) {
857 		cfg |= (1 << 23);	/* dis RX PM port mask */
858 		cfg &= ~(1 << 16);	/* dis FIS-based switching (for now) */
859 		cfg &= ~(1 << 19);	/* dis 128-entry queue (for now?) */
860 		cfg |= (1 << 18);	/* enab early completion */
861 		cfg |= (1 << 17);	/* enab host q cache */
862 		cfg |= (1 << 22);	/* enab cutthrough */
863 	}
864 
865 	writelfl(cfg, port_mmio + EDMA_CFG_OFS);
866 }
867 
868 /**
869  *      mv_port_start - Port specific init/start routine.
870  *      @ap: ATA channel to manipulate
871  *
872  *      Allocate and point to DMA memory, init port private memory,
873  *      zero indices.
874  *
875  *      LOCKING:
876  *      Inherited from caller.
877  */
878 static int mv_port_start(struct ata_port *ap)
879 {
880 	struct device *dev = ap->host->dev;
881 	struct mv_host_priv *hpriv = ap->host->private_data;
882 	struct mv_port_priv *pp;
883 	void __iomem *port_mmio = mv_ap_base(ap);
884 	void *mem;
885 	dma_addr_t mem_dma;
886 	int rc = -ENOMEM;
887 
888 	pp = kmalloc(sizeof(*pp), GFP_KERNEL);
889 	if (!pp)
890 		goto err_out;
891 	memset(pp, 0, sizeof(*pp));
892 
893 	mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
894 				 GFP_KERNEL);
895 	if (!mem)
896 		goto err_out_pp;
897 	memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
898 
899 	rc = ata_pad_alloc(ap, dev);
900 	if (rc)
901 		goto err_out_priv;
902 
903 	/* First item in chunk of DMA memory:
904 	 * 32-slot command request table (CRQB), 32 bytes each in size
905 	 */
906 	pp->crqb = mem;
907 	pp->crqb_dma = mem_dma;
908 	mem += MV_CRQB_Q_SZ;
909 	mem_dma += MV_CRQB_Q_SZ;
910 
911 	/* Second item:
912 	 * 32-slot command response table (CRPB), 8 bytes each in size
913 	 */
914 	pp->crpb = mem;
915 	pp->crpb_dma = mem_dma;
916 	mem += MV_CRPB_Q_SZ;
917 	mem_dma += MV_CRPB_Q_SZ;
918 
919 	/* Third item:
920 	 * Table of scatter-gather descriptors (ePRD), 16 bytes each
921 	 */
922 	pp->sg_tbl = mem;
923 	pp->sg_tbl_dma = mem_dma;
924 
925 	mv_edma_cfg(hpriv, port_mmio);
926 
927 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
928 	writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
929 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
930 
931 	if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
932 		writelfl(pp->crqb_dma & 0xffffffff,
933 			 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
934 	else
935 		writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
936 
937 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
938 
939 	if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
940 		writelfl(pp->crpb_dma & 0xffffffff,
941 			 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
942 	else
943 		writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
944 
945 	writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
946 		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
947 
948 	/* Don't turn on EDMA here...do it before DMA commands only.  Else
949 	 * we'll be unable to send non-data, PIO, etc due to restricted access
950 	 * to shadow regs.
951 	 */
952 	ap->private_data = pp;
953 	return 0;
954 
955 err_out_priv:
956 	mv_priv_free(pp, dev);
957 err_out_pp:
958 	kfree(pp);
959 err_out:
960 	return rc;
961 }
962 
963 /**
964  *      mv_port_stop - Port specific cleanup/stop routine.
965  *      @ap: ATA channel to manipulate
966  *
967  *      Stop DMA, cleanup port memory.
968  *
969  *      LOCKING:
970  *      This routine uses the host lock to protect the DMA stop.
971  */
972 static void mv_port_stop(struct ata_port *ap)
973 {
974 	struct device *dev = ap->host->dev;
975 	struct mv_port_priv *pp = ap->private_data;
976 	unsigned long flags;
977 
978 	spin_lock_irqsave(&ap->host->lock, flags);
979 	mv_stop_dma(ap);
980 	spin_unlock_irqrestore(&ap->host->lock, flags);
981 
982 	ap->private_data = NULL;
983 	ata_pad_free(ap, dev);
984 	mv_priv_free(pp, dev);
985 	kfree(pp);
986 }
987 
988 /**
989  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
990  *      @qc: queued command whose SG list to source from
991  *
992  *      Populate the SG list and mark the last entry.
993  *
994  *      LOCKING:
995  *      Inherited from caller.
996  */
997 static void mv_fill_sg(struct ata_queued_cmd *qc)
998 {
999 	struct mv_port_priv *pp = qc->ap->private_data;
1000 	unsigned int i = 0;
1001 	struct scatterlist *sg;
1002 
1003 	ata_for_each_sg(sg, qc) {
1004 		dma_addr_t addr;
1005 		u32 sg_len, len, offset;
1006 
1007 		addr = sg_dma_address(sg);
1008 		sg_len = sg_dma_len(sg);
1009 
1010 		while (sg_len) {
1011 			offset = addr & MV_DMA_BOUNDARY;
1012 			len = sg_len;
1013 			if ((offset + sg_len) > 0x10000)
1014 				len = 0x10000 - offset;
1015 
1016 			pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
1017 			pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
1018 			pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
1019 
1020 			sg_len -= len;
1021 			addr += len;
1022 
1023 			if (!sg_len && ata_sg_is_last(sg, qc))
1024 				pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1025 
1026 			i++;
1027 		}
1028 	}
1029 }
1030 
1031 static inline unsigned mv_inc_q_index(unsigned index)
1032 {
1033 	return (index + 1) & MV_MAX_Q_DEPTH_MASK;
1034 }
1035 
1036 static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1037 {
1038 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1039 		(last ? CRQB_CMD_LAST : 0);
1040 	*cmdw = cpu_to_le16(tmp);
1041 }
1042 
1043 /**
1044  *      mv_qc_prep - Host specific command preparation.
1045  *      @qc: queued command to prepare
1046  *
1047  *      This routine simply redirects to the general purpose routine
1048  *      if command is not DMA.  Else, it handles prep of the CRQB
1049  *      (command request block), does some sanity checking, and calls
1050  *      the SG load routine.
1051  *
1052  *      LOCKING:
1053  *      Inherited from caller.
1054  */
1055 static void mv_qc_prep(struct ata_queued_cmd *qc)
1056 {
1057 	struct ata_port *ap = qc->ap;
1058 	struct mv_port_priv *pp = ap->private_data;
1059 	__le16 *cw;
1060 	struct ata_taskfile *tf;
1061 	u16 flags = 0;
1062 	unsigned in_index;
1063 
1064  	if (ATA_PROT_DMA != qc->tf.protocol)
1065 		return;
1066 
1067 	/* Fill in command request block
1068 	 */
1069 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1070 		flags |= CRQB_FLAG_READ;
1071 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1072 	flags |= qc->tag << CRQB_TAG_SHIFT;
1073 
1074 	/* get current queue index from hardware */
1075 	in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1076 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1077 
1078 	pp->crqb[in_index].sg_addr =
1079 		cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1080 	pp->crqb[in_index].sg_addr_hi =
1081 		cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1082 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1083 
1084 	cw = &pp->crqb[in_index].ata_cmd[0];
1085 	tf = &qc->tf;
1086 
1087 	/* Sadly, the CRQB cannot accomodate all registers--there are
1088 	 * only 11 bytes...so we must pick and choose required
1089 	 * registers based on the command.  So, we drop feature and
1090 	 * hob_feature for [RW] DMA commands, but they are needed for
1091 	 * NCQ.  NCQ will drop hob_nsect.
1092 	 */
1093 	switch (tf->command) {
1094 	case ATA_CMD_READ:
1095 	case ATA_CMD_READ_EXT:
1096 	case ATA_CMD_WRITE:
1097 	case ATA_CMD_WRITE_EXT:
1098 	case ATA_CMD_WRITE_FUA_EXT:
1099 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1100 		break;
1101 #ifdef LIBATA_NCQ		/* FIXME: remove this line when NCQ added */
1102 	case ATA_CMD_FPDMA_READ:
1103 	case ATA_CMD_FPDMA_WRITE:
1104 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1105 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1106 		break;
1107 #endif				/* FIXME: remove this line when NCQ added */
1108 	default:
1109 		/* The only other commands EDMA supports in non-queued and
1110 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1111 		 * of which are defined/used by Linux.  If we get here, this
1112 		 * driver needs work.
1113 		 *
1114 		 * FIXME: modify libata to give qc_prep a return value and
1115 		 * return error here.
1116 		 */
1117 		BUG_ON(tf->command);
1118 		break;
1119 	}
1120 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1121 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1122 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1123 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1124 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1125 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1126 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1127 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1128 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
1129 
1130 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1131 		return;
1132 	mv_fill_sg(qc);
1133 }
1134 
1135 /**
1136  *      mv_qc_prep_iie - Host specific command preparation.
1137  *      @qc: queued command to prepare
1138  *
1139  *      This routine simply redirects to the general purpose routine
1140  *      if command is not DMA.  Else, it handles prep of the CRQB
1141  *      (command request block), does some sanity checking, and calls
1142  *      the SG load routine.
1143  *
1144  *      LOCKING:
1145  *      Inherited from caller.
1146  */
1147 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1148 {
1149 	struct ata_port *ap = qc->ap;
1150 	struct mv_port_priv *pp = ap->private_data;
1151 	struct mv_crqb_iie *crqb;
1152 	struct ata_taskfile *tf;
1153 	unsigned in_index;
1154 	u32 flags = 0;
1155 
1156  	if (ATA_PROT_DMA != qc->tf.protocol)
1157 		return;
1158 
1159 	/* Fill in Gen IIE command request block
1160 	 */
1161 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1162 		flags |= CRQB_FLAG_READ;
1163 
1164 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1165 	flags |= qc->tag << CRQB_TAG_SHIFT;
1166 
1167 	/* get current queue index from hardware */
1168 	in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1169 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1170 
1171 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1172 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1173 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1174 	crqb->flags = cpu_to_le32(flags);
1175 
1176 	tf = &qc->tf;
1177 	crqb->ata_cmd[0] = cpu_to_le32(
1178 			(tf->command << 16) |
1179 			(tf->feature << 24)
1180 		);
1181 	crqb->ata_cmd[1] = cpu_to_le32(
1182 			(tf->lbal << 0) |
1183 			(tf->lbam << 8) |
1184 			(tf->lbah << 16) |
1185 			(tf->device << 24)
1186 		);
1187 	crqb->ata_cmd[2] = cpu_to_le32(
1188 			(tf->hob_lbal << 0) |
1189 			(tf->hob_lbam << 8) |
1190 			(tf->hob_lbah << 16) |
1191 			(tf->hob_feature << 24)
1192 		);
1193 	crqb->ata_cmd[3] = cpu_to_le32(
1194 			(tf->nsect << 0) |
1195 			(tf->hob_nsect << 8)
1196 		);
1197 
1198 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1199 		return;
1200 	mv_fill_sg(qc);
1201 }
1202 
1203 /**
1204  *      mv_qc_issue - Initiate a command to the host
1205  *      @qc: queued command to start
1206  *
1207  *      This routine simply redirects to the general purpose routine
1208  *      if command is not DMA.  Else, it sanity checks our local
1209  *      caches of the request producer/consumer indices then enables
1210  *      DMA and bumps the request producer index.
1211  *
1212  *      LOCKING:
1213  *      Inherited from caller.
1214  */
1215 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1216 {
1217 	void __iomem *port_mmio = mv_ap_base(qc->ap);
1218 	struct mv_port_priv *pp = qc->ap->private_data;
1219 	unsigned in_index;
1220 	u32 in_ptr;
1221 
1222 	if (ATA_PROT_DMA != qc->tf.protocol) {
1223 		/* We're about to send a non-EDMA capable command to the
1224 		 * port.  Turn off EDMA so there won't be problems accessing
1225 		 * shadow block, etc registers.
1226 		 */
1227 		mv_stop_dma(qc->ap);
1228 		return ata_qc_issue_prot(qc);
1229 	}
1230 
1231 	in_ptr   = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1232 	in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1233 
1234 	/* until we do queuing, the queue should be empty at this point */
1235 	WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1236 		>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1237 
1238 	in_index = mv_inc_q_index(in_index);	/* now incr producer index */
1239 
1240 	mv_start_dma(port_mmio, pp);
1241 
1242 	/* and write the request in pointer to kick the EDMA to life */
1243 	in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1244 	in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
1245 	writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  *      mv_get_crpb_status - get status from most recently completed cmd
1252  *      @ap: ATA channel to manipulate
1253  *
1254  *      This routine is for use when the port is in DMA mode, when it
1255  *      will be using the CRPB (command response block) method of
1256  *      returning command completion information.  We check indices
1257  *      are good, grab status, and bump the response consumer index to
1258  *      prove that we're up to date.
1259  *
1260  *      LOCKING:
1261  *      Inherited from caller.
1262  */
1263 static u8 mv_get_crpb_status(struct ata_port *ap)
1264 {
1265 	void __iomem *port_mmio = mv_ap_base(ap);
1266 	struct mv_port_priv *pp = ap->private_data;
1267 	unsigned out_index;
1268 	u32 out_ptr;
1269 	u8 ata_status;
1270 
1271 	out_ptr   = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1272 	out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1273 
1274 	ata_status = le16_to_cpu(pp->crpb[out_index].flags)
1275 					>> CRPB_FLAG_STATUS_SHIFT;
1276 
1277 	/* increment our consumer index... */
1278 	out_index = mv_inc_q_index(out_index);
1279 
1280 	/* and, until we do NCQ, there should only be 1 CRPB waiting */
1281 	WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1282 		>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1283 
1284 	/* write out our inc'd consumer index so EDMA knows we're caught up */
1285 	out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1286 	out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
1287 	writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1288 
1289 	/* Return ATA status register for completed CRPB */
1290 	return ata_status;
1291 }
1292 
1293 /**
1294  *      mv_err_intr - Handle error interrupts on the port
1295  *      @ap: ATA channel to manipulate
1296  *      @reset_allowed: bool: 0 == don't trigger from reset here
1297  *
1298  *      In most cases, just clear the interrupt and move on.  However,
1299  *      some cases require an eDMA reset, which is done right before
1300  *      the COMRESET in mv_phy_reset().  The SERR case requires a
1301  *      clear of pending errors in the SATA SERROR register.  Finally,
1302  *      if the port disabled DMA, update our cached copy to match.
1303  *
1304  *      LOCKING:
1305  *      Inherited from caller.
1306  */
1307 static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1308 {
1309 	void __iomem *port_mmio = mv_ap_base(ap);
1310 	u32 edma_err_cause, serr = 0;
1311 
1312 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1313 
1314 	if (EDMA_ERR_SERR & edma_err_cause) {
1315 		sata_scr_read(ap, SCR_ERROR, &serr);
1316 		sata_scr_write_flush(ap, SCR_ERROR, serr);
1317 	}
1318 	if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1319 		struct mv_port_priv *pp	= ap->private_data;
1320 		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1321 	}
1322 	DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1323 		"SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1324 
1325 	/* Clear EDMA now that SERR cleanup done */
1326 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1327 
1328 	/* check for fatal here and recover if needed */
1329 	if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1330 		mv_stop_and_reset(ap);
1331 }
1332 
1333 /**
1334  *      mv_host_intr - Handle all interrupts on the given host controller
1335  *      @host: host specific structure
1336  *      @relevant: port error bits relevant to this host controller
1337  *      @hc: which host controller we're to look at
1338  *
1339  *      Read then write clear the HC interrupt status then walk each
1340  *      port connected to the HC and see if it needs servicing.  Port
1341  *      success ints are reported in the HC interrupt status reg, the
1342  *      port error ints are reported in the higher level main
1343  *      interrupt status register and thus are passed in via the
1344  *      'relevant' argument.
1345  *
1346  *      LOCKING:
1347  *      Inherited from caller.
1348  */
1349 static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1350 {
1351 	void __iomem *mmio = host->mmio_base;
1352 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1353 	struct ata_queued_cmd *qc;
1354 	u32 hc_irq_cause;
1355 	int shift, port, port0, hard_port, handled;
1356 	unsigned int err_mask;
1357 
1358 	if (hc == 0) {
1359 		port0 = 0;
1360 	} else {
1361 		port0 = MV_PORTS_PER_HC;
1362 	}
1363 
1364 	/* we'll need the HC success int register in most cases */
1365 	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1366 	if (hc_irq_cause) {
1367 		writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1368 	}
1369 
1370 	VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1371 		hc,relevant,hc_irq_cause);
1372 
1373 	for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1374 		u8 ata_status = 0;
1375 		struct ata_port *ap = host->ports[port];
1376 		struct mv_port_priv *pp = ap->private_data;
1377 
1378 		hard_port = mv_hardport_from_port(port); /* range 0..3 */
1379 		handled = 0;	/* ensure ata_status is set if handled++ */
1380 
1381 		/* Note that DEV_IRQ might happen spuriously during EDMA,
1382 		 * and should be ignored in such cases.
1383 		 * The cause of this is still under investigation.
1384 		 */
1385 		if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1386 			/* EDMA: check for response queue interrupt */
1387 			if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1388 				ata_status = mv_get_crpb_status(ap);
1389 				handled = 1;
1390 			}
1391 		} else {
1392 			/* PIO: check for device (drive) interrupt */
1393 			if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1394 				ata_status = readb((void __iomem *)
1395 					   ap->ioaddr.status_addr);
1396 				handled = 1;
1397 				/* ignore spurious intr if drive still BUSY */
1398 				if (ata_status & ATA_BUSY) {
1399 					ata_status = 0;
1400 					handled = 0;
1401 				}
1402 			}
1403 		}
1404 
1405 		if (ap && (ap->flags & ATA_FLAG_DISABLED))
1406 			continue;
1407 
1408 		err_mask = ac_err_mask(ata_status);
1409 
1410 		shift = port << 1;		/* (port * 2) */
1411 		if (port >= MV_PORTS_PER_HC) {
1412 			shift++;	/* skip bit 8 in the HC Main IRQ reg */
1413 		}
1414 		if ((PORT0_ERR << shift) & relevant) {
1415 			mv_err_intr(ap, 1);
1416 			err_mask |= AC_ERR_OTHER;
1417 			handled = 1;
1418 		}
1419 
1420 		if (handled) {
1421 			qc = ata_qc_from_tag(ap, ap->active_tag);
1422 			if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1423 				VPRINTK("port %u IRQ found for qc, "
1424 					"ata_status 0x%x\n", port,ata_status);
1425 				/* mark qc status appropriately */
1426 				if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1427 					qc->err_mask |= err_mask;
1428 					ata_qc_complete(qc);
1429 				}
1430 			}
1431 		}
1432 	}
1433 	VPRINTK("EXIT\n");
1434 }
1435 
1436 /**
1437  *      mv_interrupt -
1438  *      @irq: unused
1439  *      @dev_instance: private data; in this case the host structure
1440  *      @regs: unused
1441  *
1442  *      Read the read only register to determine if any host
1443  *      controllers have pending interrupts.  If so, call lower level
1444  *      routine to handle.  Also check for PCI errors which are only
1445  *      reported here.
1446  *
1447  *      LOCKING:
1448  *      This routine holds the host lock while processing pending
1449  *      interrupts.
1450  */
1451 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1452 {
1453 	struct ata_host *host = dev_instance;
1454 	unsigned int hc, handled = 0, n_hcs;
1455 	void __iomem *mmio = host->mmio_base;
1456 	struct mv_host_priv *hpriv;
1457 	u32 irq_stat;
1458 
1459 	irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1460 
1461 	/* check the cases where we either have nothing pending or have read
1462 	 * a bogus register value which can indicate HW removal or PCI fault
1463 	 */
1464 	if (!irq_stat || (0xffffffffU == irq_stat)) {
1465 		return IRQ_NONE;
1466 	}
1467 
1468 	n_hcs = mv_get_hc_count(host->ports[0]->flags);
1469 	spin_lock(&host->lock);
1470 
1471 	for (hc = 0; hc < n_hcs; hc++) {
1472 		u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1473 		if (relevant) {
1474 			mv_host_intr(host, relevant, hc);
1475 			handled++;
1476 		}
1477 	}
1478 
1479 	hpriv = host->private_data;
1480 	if (IS_60XX(hpriv)) {
1481 		/* deal with the interrupt coalescing bits */
1482 		if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1483 			writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1484 			writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1485 			writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1486 		}
1487 	}
1488 
1489 	if (PCI_ERR & irq_stat) {
1490 		printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1491 		       readl(mmio + PCI_IRQ_CAUSE_OFS));
1492 
1493 		DPRINTK("All regs @ PCI error\n");
1494 		mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1495 
1496 		writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1497 		handled++;
1498 	}
1499 	spin_unlock(&host->lock);
1500 
1501 	return IRQ_RETVAL(handled);
1502 }
1503 
1504 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1505 {
1506 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1507 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1508 
1509 	return hc_mmio + ofs;
1510 }
1511 
1512 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1513 {
1514 	unsigned int ofs;
1515 
1516 	switch (sc_reg_in) {
1517 	case SCR_STATUS:
1518 	case SCR_ERROR:
1519 	case SCR_CONTROL:
1520 		ofs = sc_reg_in * sizeof(u32);
1521 		break;
1522 	default:
1523 		ofs = 0xffffffffU;
1524 		break;
1525 	}
1526 	return ofs;
1527 }
1528 
1529 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1530 {
1531 	void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1532 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
1533 
1534 	if (ofs != 0xffffffffU)
1535 		return readl(mmio + ofs);
1536 	else
1537 		return (u32) ofs;
1538 }
1539 
1540 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1541 {
1542 	void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1543 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
1544 
1545 	if (ofs != 0xffffffffU)
1546 		writelfl(val, mmio + ofs);
1547 }
1548 
1549 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1550 {
1551 	u8 rev_id;
1552 	int early_5080;
1553 
1554 	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1555 
1556 	early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1557 
1558 	if (!early_5080) {
1559 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1560 		tmp |= (1 << 0);
1561 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1562 	}
1563 
1564 	mv_reset_pci_bus(pdev, mmio);
1565 }
1566 
1567 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1568 {
1569 	writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1570 }
1571 
1572 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1573 			   void __iomem *mmio)
1574 {
1575 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1576 	u32 tmp;
1577 
1578 	tmp = readl(phy_mmio + MV5_PHY_MODE);
1579 
1580 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
1581 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
1582 }
1583 
1584 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1585 {
1586 	u32 tmp;
1587 
1588 	writel(0, mmio + MV_GPIO_PORT_CTL);
1589 
1590 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1591 
1592 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1593 	tmp |= ~(1 << 0);
1594 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1595 }
1596 
1597 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1598 			   unsigned int port)
1599 {
1600 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1601 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1602 	u32 tmp;
1603 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1604 
1605 	if (fix_apm_sq) {
1606 		tmp = readl(phy_mmio + MV5_LT_MODE);
1607 		tmp |= (1 << 19);
1608 		writel(tmp, phy_mmio + MV5_LT_MODE);
1609 
1610 		tmp = readl(phy_mmio + MV5_PHY_CTL);
1611 		tmp &= ~0x3;
1612 		tmp |= 0x1;
1613 		writel(tmp, phy_mmio + MV5_PHY_CTL);
1614 	}
1615 
1616 	tmp = readl(phy_mmio + MV5_PHY_MODE);
1617 	tmp &= ~mask;
1618 	tmp |= hpriv->signal[port].pre;
1619 	tmp |= hpriv->signal[port].amps;
1620 	writel(tmp, phy_mmio + MV5_PHY_MODE);
1621 }
1622 
1623 
1624 #undef ZERO
1625 #define ZERO(reg) writel(0, port_mmio + (reg))
1626 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1627 			     unsigned int port)
1628 {
1629 	void __iomem *port_mmio = mv_port_base(mmio, port);
1630 
1631 	writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1632 
1633 	mv_channel_reset(hpriv, mmio, port);
1634 
1635 	ZERO(0x028);	/* command */
1636 	writel(0x11f, port_mmio + EDMA_CFG_OFS);
1637 	ZERO(0x004);	/* timer */
1638 	ZERO(0x008);	/* irq err cause */
1639 	ZERO(0x00c);	/* irq err mask */
1640 	ZERO(0x010);	/* rq bah */
1641 	ZERO(0x014);	/* rq inp */
1642 	ZERO(0x018);	/* rq outp */
1643 	ZERO(0x01c);	/* respq bah */
1644 	ZERO(0x024);	/* respq outp */
1645 	ZERO(0x020);	/* respq inp */
1646 	ZERO(0x02c);	/* test control */
1647 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1648 }
1649 #undef ZERO
1650 
1651 #define ZERO(reg) writel(0, hc_mmio + (reg))
1652 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1653 			unsigned int hc)
1654 {
1655 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1656 	u32 tmp;
1657 
1658 	ZERO(0x00c);
1659 	ZERO(0x010);
1660 	ZERO(0x014);
1661 	ZERO(0x018);
1662 
1663 	tmp = readl(hc_mmio + 0x20);
1664 	tmp &= 0x1c1c1c1c;
1665 	tmp |= 0x03030303;
1666 	writel(tmp, hc_mmio + 0x20);
1667 }
1668 #undef ZERO
1669 
1670 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1671 			unsigned int n_hc)
1672 {
1673 	unsigned int hc, port;
1674 
1675 	for (hc = 0; hc < n_hc; hc++) {
1676 		for (port = 0; port < MV_PORTS_PER_HC; port++)
1677 			mv5_reset_hc_port(hpriv, mmio,
1678 					  (hc * MV_PORTS_PER_HC) + port);
1679 
1680 		mv5_reset_one_hc(hpriv, mmio, hc);
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 #undef ZERO
1687 #define ZERO(reg) writel(0, mmio + (reg))
1688 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1689 {
1690 	u32 tmp;
1691 
1692 	tmp = readl(mmio + MV_PCI_MODE);
1693 	tmp &= 0xff00ffff;
1694 	writel(tmp, mmio + MV_PCI_MODE);
1695 
1696 	ZERO(MV_PCI_DISC_TIMER);
1697 	ZERO(MV_PCI_MSI_TRIGGER);
1698 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1699 	ZERO(HC_MAIN_IRQ_MASK_OFS);
1700 	ZERO(MV_PCI_SERR_MASK);
1701 	ZERO(PCI_IRQ_CAUSE_OFS);
1702 	ZERO(PCI_IRQ_MASK_OFS);
1703 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
1704 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1705 	ZERO(MV_PCI_ERR_ATTRIBUTE);
1706 	ZERO(MV_PCI_ERR_COMMAND);
1707 }
1708 #undef ZERO
1709 
1710 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1711 {
1712 	u32 tmp;
1713 
1714 	mv5_reset_flash(hpriv, mmio);
1715 
1716 	tmp = readl(mmio + MV_GPIO_PORT_CTL);
1717 	tmp &= 0x3;
1718 	tmp |= (1 << 5) | (1 << 6);
1719 	writel(tmp, mmio + MV_GPIO_PORT_CTL);
1720 }
1721 
1722 /**
1723  *      mv6_reset_hc - Perform the 6xxx global soft reset
1724  *      @mmio: base address of the HBA
1725  *
1726  *      This routine only applies to 6xxx parts.
1727  *
1728  *      LOCKING:
1729  *      Inherited from caller.
1730  */
1731 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1732 			unsigned int n_hc)
1733 {
1734 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1735 	int i, rc = 0;
1736 	u32 t;
1737 
1738 	/* Following procedure defined in PCI "main command and status
1739 	 * register" table.
1740 	 */
1741 	t = readl(reg);
1742 	writel(t | STOP_PCI_MASTER, reg);
1743 
1744 	for (i = 0; i < 1000; i++) {
1745 		udelay(1);
1746 		t = readl(reg);
1747 		if (PCI_MASTER_EMPTY & t) {
1748 			break;
1749 		}
1750 	}
1751 	if (!(PCI_MASTER_EMPTY & t)) {
1752 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1753 		rc = 1;
1754 		goto done;
1755 	}
1756 
1757 	/* set reset */
1758 	i = 5;
1759 	do {
1760 		writel(t | GLOB_SFT_RST, reg);
1761 		t = readl(reg);
1762 		udelay(1);
1763 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
1764 
1765 	if (!(GLOB_SFT_RST & t)) {
1766 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1767 		rc = 1;
1768 		goto done;
1769 	}
1770 
1771 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
1772 	i = 5;
1773 	do {
1774 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1775 		t = readl(reg);
1776 		udelay(1);
1777 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
1778 
1779 	if (GLOB_SFT_RST & t) {
1780 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1781 		rc = 1;
1782 	}
1783 done:
1784 	return rc;
1785 }
1786 
1787 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1788 			   void __iomem *mmio)
1789 {
1790 	void __iomem *port_mmio;
1791 	u32 tmp;
1792 
1793 	tmp = readl(mmio + MV_RESET_CFG);
1794 	if ((tmp & (1 << 0)) == 0) {
1795 		hpriv->signal[idx].amps = 0x7 << 8;
1796 		hpriv->signal[idx].pre = 0x1 << 5;
1797 		return;
1798 	}
1799 
1800 	port_mmio = mv_port_base(mmio, idx);
1801 	tmp = readl(port_mmio + PHY_MODE2);
1802 
1803 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
1804 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
1805 }
1806 
1807 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1808 {
1809 	writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1810 }
1811 
1812 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1813 			   unsigned int port)
1814 {
1815 	void __iomem *port_mmio = mv_port_base(mmio, port);
1816 
1817 	u32 hp_flags = hpriv->hp_flags;
1818 	int fix_phy_mode2 =
1819 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1820 	int fix_phy_mode4 =
1821 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1822 	u32 m2, tmp;
1823 
1824 	if (fix_phy_mode2) {
1825 		m2 = readl(port_mmio + PHY_MODE2);
1826 		m2 &= ~(1 << 16);
1827 		m2 |= (1 << 31);
1828 		writel(m2, port_mmio + PHY_MODE2);
1829 
1830 		udelay(200);
1831 
1832 		m2 = readl(port_mmio + PHY_MODE2);
1833 		m2 &= ~((1 << 16) | (1 << 31));
1834 		writel(m2, port_mmio + PHY_MODE2);
1835 
1836 		udelay(200);
1837 	}
1838 
1839 	/* who knows what this magic does */
1840 	tmp = readl(port_mmio + PHY_MODE3);
1841 	tmp &= ~0x7F800000;
1842 	tmp |= 0x2A800000;
1843 	writel(tmp, port_mmio + PHY_MODE3);
1844 
1845 	if (fix_phy_mode4) {
1846 		u32 m4;
1847 
1848 		m4 = readl(port_mmio + PHY_MODE4);
1849 
1850 		if (hp_flags & MV_HP_ERRATA_60X1B2)
1851 			tmp = readl(port_mmio + 0x310);
1852 
1853 		m4 = (m4 & ~(1 << 1)) | (1 << 0);
1854 
1855 		writel(m4, port_mmio + PHY_MODE4);
1856 
1857 		if (hp_flags & MV_HP_ERRATA_60X1B2)
1858 			writel(tmp, port_mmio + 0x310);
1859 	}
1860 
1861 	/* Revert values of pre-emphasis and signal amps to the saved ones */
1862 	m2 = readl(port_mmio + PHY_MODE2);
1863 
1864 	m2 &= ~MV_M2_PREAMP_MASK;
1865 	m2 |= hpriv->signal[port].amps;
1866 	m2 |= hpriv->signal[port].pre;
1867 	m2 &= ~(1 << 16);
1868 
1869 	/* according to mvSata 3.6.1, some IIE values are fixed */
1870 	if (IS_GEN_IIE(hpriv)) {
1871 		m2 &= ~0xC30FF01F;
1872 		m2 |= 0x0000900F;
1873 	}
1874 
1875 	writel(m2, port_mmio + PHY_MODE2);
1876 }
1877 
1878 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1879 			     unsigned int port_no)
1880 {
1881 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
1882 
1883 	writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1884 
1885 	if (IS_60XX(hpriv)) {
1886 		u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1887 		ifctl |= (1 << 7);		/* enable gen2i speed */
1888 		ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
1889 		writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1890 	}
1891 
1892 	udelay(25);		/* allow reset propagation */
1893 
1894 	/* Spec never mentions clearing the bit.  Marvell's driver does
1895 	 * clear the bit, however.
1896 	 */
1897 	writelfl(0, port_mmio + EDMA_CMD_OFS);
1898 
1899 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
1900 
1901 	if (IS_50XX(hpriv))
1902 		mdelay(1);
1903 }
1904 
1905 static void mv_stop_and_reset(struct ata_port *ap)
1906 {
1907 	struct mv_host_priv *hpriv = ap->host->private_data;
1908 	void __iomem *mmio = ap->host->mmio_base;
1909 
1910 	mv_stop_dma(ap);
1911 
1912 	mv_channel_reset(hpriv, mmio, ap->port_no);
1913 
1914 	__mv_phy_reset(ap, 0);
1915 }
1916 
1917 static inline void __msleep(unsigned int msec, int can_sleep)
1918 {
1919 	if (can_sleep)
1920 		msleep(msec);
1921 	else
1922 		mdelay(msec);
1923 }
1924 
1925 /**
1926  *      __mv_phy_reset - Perform eDMA reset followed by COMRESET
1927  *      @ap: ATA channel to manipulate
1928  *
1929  *      Part of this is taken from __sata_phy_reset and modified to
1930  *      not sleep since this routine gets called from interrupt level.
1931  *
1932  *      LOCKING:
1933  *      Inherited from caller.  This is coded to safe to call at
1934  *      interrupt level, i.e. it does not sleep.
1935  */
1936 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1937 {
1938 	struct mv_port_priv *pp	= ap->private_data;
1939 	struct mv_host_priv *hpriv = ap->host->private_data;
1940 	void __iomem *port_mmio = mv_ap_base(ap);
1941 	struct ata_taskfile tf;
1942 	struct ata_device *dev = &ap->device[0];
1943 	unsigned long timeout;
1944 	int retry = 5;
1945 	u32 sstatus;
1946 
1947 	VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1948 
1949 	DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1950 		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1951 		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1952 
1953 	/* Issue COMRESET via SControl */
1954 comreset_retry:
1955 	sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1956 	__msleep(1, can_sleep);
1957 
1958 	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1959 	__msleep(20, can_sleep);
1960 
1961 	timeout = jiffies + msecs_to_jiffies(200);
1962 	do {
1963 		sata_scr_read(ap, SCR_STATUS, &sstatus);
1964 		if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
1965 			break;
1966 
1967 		__msleep(1, can_sleep);
1968 	} while (time_before(jiffies, timeout));
1969 
1970 	/* work around errata */
1971 	if (IS_60XX(hpriv) &&
1972 	    (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1973 	    (retry-- > 0))
1974 		goto comreset_retry;
1975 
1976 	DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1977 		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1978 		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1979 
1980 	if (ata_port_online(ap)) {
1981 		ata_port_probe(ap);
1982 	} else {
1983 		sata_scr_read(ap, SCR_STATUS, &sstatus);
1984 		ata_port_printk(ap, KERN_INFO,
1985 				"no device found (phy stat %08x)\n", sstatus);
1986 		ata_port_disable(ap);
1987 		return;
1988 	}
1989 	ap->cbl = ATA_CBL_SATA;
1990 
1991 	/* even after SStatus reflects that device is ready,
1992 	 * it seems to take a while for link to be fully
1993 	 * established (and thus Status no longer 0x80/0x7F),
1994 	 * so we poll a bit for that, here.
1995 	 */
1996 	retry = 20;
1997 	while (1) {
1998 		u8 drv_stat = ata_check_status(ap);
1999 		if ((drv_stat != 0x80) && (drv_stat != 0x7f))
2000 			break;
2001 		__msleep(500, can_sleep);
2002 		if (retry-- <= 0)
2003 			break;
2004 	}
2005 
2006 	tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
2007 	tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
2008 	tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
2009 	tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
2010 
2011 	dev->class = ata_dev_classify(&tf);
2012 	if (!ata_dev_enabled(dev)) {
2013 		VPRINTK("Port disabled post-sig: No device present.\n");
2014 		ata_port_disable(ap);
2015 	}
2016 
2017 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2018 
2019 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2020 
2021 	VPRINTK("EXIT\n");
2022 }
2023 
2024 static void mv_phy_reset(struct ata_port *ap)
2025 {
2026 	__mv_phy_reset(ap, 1);
2027 }
2028 
2029 /**
2030  *      mv_eng_timeout - Routine called by libata when SCSI times out I/O
2031  *      @ap: ATA channel to manipulate
2032  *
2033  *      Intent is to clear all pending error conditions, reset the
2034  *      chip/bus, fail the command, and move on.
2035  *
2036  *      LOCKING:
2037  *      This routine holds the host lock while failing the command.
2038  */
2039 static void mv_eng_timeout(struct ata_port *ap)
2040 {
2041 	struct ata_queued_cmd *qc;
2042 	unsigned long flags;
2043 
2044 	ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
2045 	DPRINTK("All regs @ start of eng_timeout\n");
2046 	mv_dump_all_regs(ap->host->mmio_base, ap->port_no,
2047 			 to_pci_dev(ap->host->dev));
2048 
2049 	qc = ata_qc_from_tag(ap, ap->active_tag);
2050         printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2051 	       ap->host->mmio_base, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
2052 
2053 	spin_lock_irqsave(&ap->host->lock, flags);
2054 	mv_err_intr(ap, 0);
2055 	mv_stop_and_reset(ap);
2056 	spin_unlock_irqrestore(&ap->host->lock, flags);
2057 
2058 	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2059 	if (qc->flags & ATA_QCFLAG_ACTIVE) {
2060 		qc->err_mask |= AC_ERR_TIMEOUT;
2061 		ata_eh_qc_complete(qc);
2062 	}
2063 }
2064 
2065 /**
2066  *      mv_port_init - Perform some early initialization on a single port.
2067  *      @port: libata data structure storing shadow register addresses
2068  *      @port_mmio: base address of the port
2069  *
2070  *      Initialize shadow register mmio addresses, clear outstanding
2071  *      interrupts on the port, and unmask interrupts for the future
2072  *      start of the port.
2073  *
2074  *      LOCKING:
2075  *      Inherited from caller.
2076  */
2077 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
2078 {
2079 	unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2080 	unsigned serr_ofs;
2081 
2082 	/* PIO related setup
2083 	 */
2084 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2085 	port->error_addr =
2086 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2087 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2088 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2089 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2090 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2091 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2092 	port->status_addr =
2093 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2094 	/* special case: control/altstatus doesn't have ATA_REG_ address */
2095 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2096 
2097 	/* unused: */
2098 	port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2099 
2100 	/* Clear any currently outstanding port interrupt conditions */
2101 	serr_ofs = mv_scr_offset(SCR_ERROR);
2102 	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2103 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2104 
2105 	/* unmask all EDMA error interrupts */
2106 	writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2107 
2108 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2109 		readl(port_mmio + EDMA_CFG_OFS),
2110 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2111 		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2112 }
2113 
2114 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2115 		      unsigned int board_idx)
2116 {
2117 	u8 rev_id;
2118 	u32 hp_flags = hpriv->hp_flags;
2119 
2120 	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2121 
2122 	switch(board_idx) {
2123 	case chip_5080:
2124 		hpriv->ops = &mv5xxx_ops;
2125 		hp_flags |= MV_HP_50XX;
2126 
2127 		switch (rev_id) {
2128 		case 0x1:
2129 			hp_flags |= MV_HP_ERRATA_50XXB0;
2130 			break;
2131 		case 0x3:
2132 			hp_flags |= MV_HP_ERRATA_50XXB2;
2133 			break;
2134 		default:
2135 			dev_printk(KERN_WARNING, &pdev->dev,
2136 			   "Applying 50XXB2 workarounds to unknown rev\n");
2137 			hp_flags |= MV_HP_ERRATA_50XXB2;
2138 			break;
2139 		}
2140 		break;
2141 
2142 	case chip_504x:
2143 	case chip_508x:
2144 		hpriv->ops = &mv5xxx_ops;
2145 		hp_flags |= MV_HP_50XX;
2146 
2147 		switch (rev_id) {
2148 		case 0x0:
2149 			hp_flags |= MV_HP_ERRATA_50XXB0;
2150 			break;
2151 		case 0x3:
2152 			hp_flags |= MV_HP_ERRATA_50XXB2;
2153 			break;
2154 		default:
2155 			dev_printk(KERN_WARNING, &pdev->dev,
2156 			   "Applying B2 workarounds to unknown rev\n");
2157 			hp_flags |= MV_HP_ERRATA_50XXB2;
2158 			break;
2159 		}
2160 		break;
2161 
2162 	case chip_604x:
2163 	case chip_608x:
2164 		hpriv->ops = &mv6xxx_ops;
2165 
2166 		switch (rev_id) {
2167 		case 0x7:
2168 			hp_flags |= MV_HP_ERRATA_60X1B2;
2169 			break;
2170 		case 0x9:
2171 			hp_flags |= MV_HP_ERRATA_60X1C0;
2172 			break;
2173 		default:
2174 			dev_printk(KERN_WARNING, &pdev->dev,
2175 				   "Applying B2 workarounds to unknown rev\n");
2176 			hp_flags |= MV_HP_ERRATA_60X1B2;
2177 			break;
2178 		}
2179 		break;
2180 
2181 	case chip_7042:
2182 	case chip_6042:
2183 		hpriv->ops = &mv6xxx_ops;
2184 
2185 		hp_flags |= MV_HP_GEN_IIE;
2186 
2187 		switch (rev_id) {
2188 		case 0x0:
2189 			hp_flags |= MV_HP_ERRATA_XX42A0;
2190 			break;
2191 		case 0x1:
2192 			hp_flags |= MV_HP_ERRATA_60X1C0;
2193 			break;
2194 		default:
2195 			dev_printk(KERN_WARNING, &pdev->dev,
2196 			   "Applying 60X1C0 workarounds to unknown rev\n");
2197 			hp_flags |= MV_HP_ERRATA_60X1C0;
2198 			break;
2199 		}
2200 		break;
2201 
2202 	default:
2203 		printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2204 		return 1;
2205 	}
2206 
2207 	hpriv->hp_flags = hp_flags;
2208 
2209 	return 0;
2210 }
2211 
2212 /**
2213  *      mv_init_host - Perform some early initialization of the host.
2214  *	@pdev: host PCI device
2215  *      @probe_ent: early data struct representing the host
2216  *
2217  *      If possible, do an early global reset of the host.  Then do
2218  *      our port init and clear/unmask all/relevant host interrupts.
2219  *
2220  *      LOCKING:
2221  *      Inherited from caller.
2222  */
2223 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2224 			unsigned int board_idx)
2225 {
2226 	int rc = 0, n_hc, port, hc;
2227 	void __iomem *mmio = probe_ent->mmio_base;
2228 	struct mv_host_priv *hpriv = probe_ent->private_data;
2229 
2230 	/* global interrupt mask */
2231 	writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2232 
2233 	rc = mv_chip_id(pdev, hpriv, board_idx);
2234 	if (rc)
2235 		goto done;
2236 
2237 	n_hc = mv_get_hc_count(probe_ent->port_flags);
2238 	probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2239 
2240 	for (port = 0; port < probe_ent->n_ports; port++)
2241 		hpriv->ops->read_preamp(hpriv, port, mmio);
2242 
2243 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2244 	if (rc)
2245 		goto done;
2246 
2247 	hpriv->ops->reset_flash(hpriv, mmio);
2248 	hpriv->ops->reset_bus(pdev, mmio);
2249 	hpriv->ops->enable_leds(hpriv, mmio);
2250 
2251 	for (port = 0; port < probe_ent->n_ports; port++) {
2252 		if (IS_60XX(hpriv)) {
2253 			void __iomem *port_mmio = mv_port_base(mmio, port);
2254 
2255 			u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2256 			ifctl |= (1 << 7);		/* enable gen2i speed */
2257 			ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2258 			writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2259 		}
2260 
2261 		hpriv->ops->phy_errata(hpriv, mmio, port);
2262 	}
2263 
2264 	for (port = 0; port < probe_ent->n_ports; port++) {
2265 		void __iomem *port_mmio = mv_port_base(mmio, port);
2266 		mv_port_init(&probe_ent->port[port], port_mmio);
2267 	}
2268 
2269 	for (hc = 0; hc < n_hc; hc++) {
2270 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2271 
2272 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2273 			"(before clear)=0x%08x\n", hc,
2274 			readl(hc_mmio + HC_CFG_OFS),
2275 			readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2276 
2277 		/* Clear any currently outstanding hc interrupt conditions */
2278 		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2279 	}
2280 
2281 	/* Clear any currently outstanding host interrupt conditions */
2282 	writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2283 
2284 	/* and unmask interrupt generation for host regs */
2285 	writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2286 	writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2287 
2288 	VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2289 		"PCI int cause/mask=0x%08x/0x%08x\n",
2290 		readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2291 		readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2292 		readl(mmio + PCI_IRQ_CAUSE_OFS),
2293 		readl(mmio + PCI_IRQ_MASK_OFS));
2294 
2295 done:
2296 	return rc;
2297 }
2298 
2299 /**
2300  *      mv_print_info - Dump key info to kernel log for perusal.
2301  *      @probe_ent: early data struct representing the host
2302  *
2303  *      FIXME: complete this.
2304  *
2305  *      LOCKING:
2306  *      Inherited from caller.
2307  */
2308 static void mv_print_info(struct ata_probe_ent *probe_ent)
2309 {
2310 	struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2311 	struct mv_host_priv *hpriv = probe_ent->private_data;
2312 	u8 rev_id, scc;
2313 	const char *scc_s;
2314 
2315 	/* Use this to determine the HW stepping of the chip so we know
2316 	 * what errata to workaround
2317 	 */
2318 	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2319 
2320 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2321 	if (scc == 0)
2322 		scc_s = "SCSI";
2323 	else if (scc == 0x01)
2324 		scc_s = "RAID";
2325 	else
2326 		scc_s = "unknown";
2327 
2328 	dev_printk(KERN_INFO, &pdev->dev,
2329 	       "%u slots %u ports %s mode IRQ via %s\n",
2330 	       (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2331 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2332 }
2333 
2334 /**
2335  *      mv_init_one - handle a positive probe of a Marvell host
2336  *      @pdev: PCI device found
2337  *      @ent: PCI device ID entry for the matched host
2338  *
2339  *      LOCKING:
2340  *      Inherited from caller.
2341  */
2342 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2343 {
2344 	static int printed_version = 0;
2345 	struct ata_probe_ent *probe_ent = NULL;
2346 	struct mv_host_priv *hpriv;
2347 	unsigned int board_idx = (unsigned int)ent->driver_data;
2348 	void __iomem *mmio_base;
2349 	int pci_dev_busy = 0, rc;
2350 
2351 	if (!printed_version++)
2352 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2353 
2354 	rc = pci_enable_device(pdev);
2355 	if (rc) {
2356 		return rc;
2357 	}
2358 	pci_set_master(pdev);
2359 
2360 	rc = pci_request_regions(pdev, DRV_NAME);
2361 	if (rc) {
2362 		pci_dev_busy = 1;
2363 		goto err_out;
2364 	}
2365 
2366 	probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
2367 	if (probe_ent == NULL) {
2368 		rc = -ENOMEM;
2369 		goto err_out_regions;
2370 	}
2371 
2372 	memset(probe_ent, 0, sizeof(*probe_ent));
2373 	probe_ent->dev = pci_dev_to_dev(pdev);
2374 	INIT_LIST_HEAD(&probe_ent->node);
2375 
2376 	mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2377 	if (mmio_base == NULL) {
2378 		rc = -ENOMEM;
2379 		goto err_out_free_ent;
2380 	}
2381 
2382 	hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
2383 	if (!hpriv) {
2384 		rc = -ENOMEM;
2385 		goto err_out_iounmap;
2386 	}
2387 	memset(hpriv, 0, sizeof(*hpriv));
2388 
2389 	probe_ent->sht = mv_port_info[board_idx].sht;
2390 	probe_ent->port_flags = mv_port_info[board_idx].flags;
2391 	probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2392 	probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2393 	probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2394 
2395 	probe_ent->irq = pdev->irq;
2396 	probe_ent->irq_flags = IRQF_SHARED;
2397 	probe_ent->mmio_base = mmio_base;
2398 	probe_ent->private_data = hpriv;
2399 
2400 	/* initialize adapter */
2401 	rc = mv_init_host(pdev, probe_ent, board_idx);
2402 	if (rc) {
2403 		goto err_out_hpriv;
2404 	}
2405 
2406 	/* Enable interrupts */
2407 	if (msi && pci_enable_msi(pdev) == 0) {
2408 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
2409 	} else {
2410 		pci_intx(pdev, 1);
2411 	}
2412 
2413 	mv_dump_pci_cfg(pdev, 0x68);
2414 	mv_print_info(probe_ent);
2415 
2416 	if (ata_device_add(probe_ent) == 0) {
2417 		rc = -ENODEV;		/* No devices discovered */
2418 		goto err_out_dev_add;
2419 	}
2420 
2421 	kfree(probe_ent);
2422 	return 0;
2423 
2424 err_out_dev_add:
2425 	if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
2426 		pci_disable_msi(pdev);
2427 	} else {
2428 		pci_intx(pdev, 0);
2429 	}
2430 err_out_hpriv:
2431 	kfree(hpriv);
2432 err_out_iounmap:
2433 	pci_iounmap(pdev, mmio_base);
2434 err_out_free_ent:
2435 	kfree(probe_ent);
2436 err_out_regions:
2437 	pci_release_regions(pdev);
2438 err_out:
2439 	if (!pci_dev_busy) {
2440 		pci_disable_device(pdev);
2441 	}
2442 
2443 	return rc;
2444 }
2445 
2446 static int __init mv_init(void)
2447 {
2448 	return pci_register_driver(&mv_pci_driver);
2449 }
2450 
2451 static void __exit mv_exit(void)
2452 {
2453 	pci_unregister_driver(&mv_pci_driver);
2454 }
2455 
2456 MODULE_AUTHOR("Brett Russ");
2457 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2458 MODULE_LICENSE("GPL");
2459 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2460 MODULE_VERSION(DRV_VERSION);
2461 
2462 module_param(msi, int, 0444);
2463 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2464 
2465 module_init(mv_init);
2466 module_exit(mv_exit);
2467