xref: /linux/drivers/ata/sata_mv.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 
25 /*
26  * sata_mv TODO list:
27  *
28  * --> Errata workaround for NCQ device errors.
29  *
30  * --> More errata workarounds for PCI-X.
31  *
32  * --> Complete a full errata audit for all chipsets to identify others.
33  *
34  * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
35  *
36  * --> Develop a low-power-consumption strategy, and implement it.
37  *
38  * --> [Experiment, low priority] Investigate interrupt coalescing.
39  *       Quite often, especially with PCI Message Signalled Interrupts (MSI),
40  *       the overhead reduced by interrupt mitigation is quite often not
41  *       worth the latency cost.
42  *
43  * --> [Experiment, Marvell value added] Is it possible to use target
44  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
45  *       creating LibATA target mode support would be very interesting.
46  *
47  *       Target mode, for those without docs, is the ability to directly
48  *       connect two SATA ports.
49  */
50 
51 #include <linux/kernel.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 #include <linux/init.h>
55 #include <linux/blkdev.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/dmapool.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/device.h>
61 #include <linux/platform_device.h>
62 #include <linux/ata_platform.h>
63 #include <linux/mbus.h>
64 #include <linux/bitops.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_cmnd.h>
67 #include <scsi/scsi_device.h>
68 #include <linux/libata.h>
69 
70 #define DRV_NAME	"sata_mv"
71 #define DRV_VERSION	"1.25"
72 
73 enum {
74 	/* BAR's are enumerated in terms of pci_resource_start() terms */
75 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
76 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
77 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
78 
79 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
80 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
81 
82 	MV_PCI_REG_BASE		= 0,
83 	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
84 	MV_IRQ_COAL_CAUSE		= (MV_IRQ_COAL_REG_BASE + 0x08),
85 	MV_IRQ_COAL_CAUSE_LO		= (MV_IRQ_COAL_REG_BASE + 0x88),
86 	MV_IRQ_COAL_CAUSE_HI		= (MV_IRQ_COAL_REG_BASE + 0x8c),
87 	MV_IRQ_COAL_THRESHOLD		= (MV_IRQ_COAL_REG_BASE + 0xcc),
88 	MV_IRQ_COAL_TIME_THRESHOLD	= (MV_IRQ_COAL_REG_BASE + 0xd0),
89 
90 	MV_SATAHC0_REG_BASE	= 0x20000,
91 	MV_FLASH_CTL_OFS	= 0x1046c,
92 	MV_GPIO_PORT_CTL_OFS	= 0x104f0,
93 	MV_RESET_CFG_OFS	= 0x180d8,
94 
95 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
96 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
97 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
98 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
99 
100 	MV_MAX_Q_DEPTH		= 32,
101 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
102 
103 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
104 	 * CRPB needs alignment on a 256B boundary. Size == 256B
105 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
106 	 */
107 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
108 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
109 	MV_MAX_SG_CT		= 256,
110 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
111 
112 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
113 	MV_PORT_HC_SHIFT	= 2,
114 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
115 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
116 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
117 
118 	/* Host Flags */
119 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
120 	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
121 
122 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
123 				  ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
124 				  ATA_FLAG_PIO_POLLING,
125 
126 	MV_6XXX_FLAGS		= MV_FLAG_IRQ_COALESCE,
127 
128 	MV_GENIIE_FLAGS		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
129 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
130 				  ATA_FLAG_NCQ | ATA_FLAG_AN,
131 
132 	CRQB_FLAG_READ		= (1 << 0),
133 	CRQB_TAG_SHIFT		= 1,
134 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
135 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
136 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
137 	CRQB_CMD_ADDR_SHIFT	= 8,
138 	CRQB_CMD_CS		= (0x2 << 11),
139 	CRQB_CMD_LAST		= (1 << 15),
140 
141 	CRPB_FLAG_STATUS_SHIFT	= 8,
142 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
143 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
144 
145 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
146 
147 	/* PCI interface registers */
148 
149 	PCI_COMMAND_OFS		= 0xc00,
150 	PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
151 
152 	PCI_MAIN_CMD_STS_OFS	= 0xd30,
153 	STOP_PCI_MASTER		= (1 << 2),
154 	PCI_MASTER_EMPTY	= (1 << 3),
155 	GLOB_SFT_RST		= (1 << 4),
156 
157 	MV_PCI_MODE_OFS		= 0xd00,
158 	MV_PCI_MODE_MASK	= 0x30,
159 
160 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
161 	MV_PCI_DISC_TIMER	= 0xd04,
162 	MV_PCI_MSI_TRIGGER	= 0xc38,
163 	MV_PCI_SERR_MASK	= 0xc28,
164 	MV_PCI_XBAR_TMOUT_OFS	= 0x1d04,
165 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
166 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
167 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
168 	MV_PCI_ERR_COMMAND	= 0x1d50,
169 
170 	PCI_IRQ_CAUSE_OFS	= 0x1d58,
171 	PCI_IRQ_MASK_OFS	= 0x1d5c,
172 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
173 
174 	PCIE_IRQ_CAUSE_OFS	= 0x1900,
175 	PCIE_IRQ_MASK_OFS	= 0x1910,
176 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
177 
178 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
179 	PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
180 	PCI_HC_MAIN_IRQ_MASK_OFS  = 0x1d64,
181 	SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
182 	SOC_HC_MAIN_IRQ_MASK_OFS  = 0x20024,
183 	ERR_IRQ			= (1 << 0),	/* shift by port # */
184 	DONE_IRQ		= (1 << 1),	/* shift by port # */
185 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
186 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
187 	PCI_ERR			= (1 << 18),
188 	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
189 	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
190 	PORTS_0_3_COAL_DONE	= (1 << 8),
191 	PORTS_4_7_COAL_DONE	= (1 << 17),
192 	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
193 	GPIO_INT		= (1 << 22),
194 	SELF_INT		= (1 << 23),
195 	TWSI_INT		= (1 << 24),
196 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
197 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
198 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
199 
200 	/* SATAHC registers */
201 	HC_CFG_OFS		= 0,
202 
203 	HC_IRQ_CAUSE_OFS	= 0x14,
204 	DMA_IRQ			= (1 << 0),	/* shift by port # */
205 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
206 	DEV_IRQ			= (1 << 8),	/* shift by port # */
207 
208 	/* Shadow block registers */
209 	SHD_BLK_OFS		= 0x100,
210 	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
211 
212 	/* SATA registers */
213 	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
214 	SATA_ACTIVE_OFS		= 0x350,
215 	SATA_FIS_IRQ_CAUSE_OFS	= 0x364,
216 	SATA_FIS_IRQ_AN		= (1 << 9),	/* async notification */
217 
218 	LTMODE_OFS		= 0x30c,
219 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
220 
221 	PHY_MODE3		= 0x310,
222 	PHY_MODE4		= 0x314,
223 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
224 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
225 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
226 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
227 
228 	PHY_MODE2		= 0x330,
229 	SATA_IFCTL_OFS		= 0x344,
230 	SATA_TESTCTL_OFS	= 0x348,
231 	SATA_IFSTAT_OFS		= 0x34c,
232 	VENDOR_UNIQUE_FIS_OFS	= 0x35c,
233 
234 	FISCFG_OFS		= 0x360,
235 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
236 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
237 
238 	MV5_PHY_MODE		= 0x74,
239 	MV5_LTMODE_OFS		= 0x30,
240 	MV5_PHY_CTL_OFS		= 0x0C,
241 	SATA_INTERFACE_CFG_OFS	= 0x050,
242 
243 	MV_M2_PREAMP_MASK	= 0x7e0,
244 
245 	/* Port registers */
246 	EDMA_CFG_OFS		= 0,
247 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
248 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
249 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
250 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
251 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
252 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
253 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
254 
255 	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
256 	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
257 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
258 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
259 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
260 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
261 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
262 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
263 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
264 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
265 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
266 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
267 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
268 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
269 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
270 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
271 
272 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
273 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
274 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
275 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
276 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
277 
278 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
279 
280 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
281 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
282 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
283 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
284 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
285 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
286 
287 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
288 
289 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
290 	EDMA_ERR_OVERRUN_5	= (1 << 5),
291 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
292 
293 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
294 				  EDMA_ERR_LNK_CTRL_RX_1 |
295 				  EDMA_ERR_LNK_CTRL_RX_3 |
296 				  EDMA_ERR_LNK_CTRL_TX,
297 
298 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
299 				  EDMA_ERR_PRD_PAR |
300 				  EDMA_ERR_DEV_DCON |
301 				  EDMA_ERR_DEV_CON |
302 				  EDMA_ERR_SERR |
303 				  EDMA_ERR_SELF_DIS |
304 				  EDMA_ERR_CRQB_PAR |
305 				  EDMA_ERR_CRPB_PAR |
306 				  EDMA_ERR_INTRL_PAR |
307 				  EDMA_ERR_IORDY |
308 				  EDMA_ERR_LNK_CTRL_RX_2 |
309 				  EDMA_ERR_LNK_DATA_RX |
310 				  EDMA_ERR_LNK_DATA_TX |
311 				  EDMA_ERR_TRANS_PROTO,
312 
313 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
314 				  EDMA_ERR_PRD_PAR |
315 				  EDMA_ERR_DEV_DCON |
316 				  EDMA_ERR_DEV_CON |
317 				  EDMA_ERR_OVERRUN_5 |
318 				  EDMA_ERR_UNDERRUN_5 |
319 				  EDMA_ERR_SELF_DIS_5 |
320 				  EDMA_ERR_CRQB_PAR |
321 				  EDMA_ERR_CRPB_PAR |
322 				  EDMA_ERR_INTRL_PAR |
323 				  EDMA_ERR_IORDY,
324 
325 	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
326 	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */
327 
328 	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
329 	EDMA_REQ_Q_PTR_SHIFT	= 5,
330 
331 	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
332 	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
333 	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
334 	EDMA_RSP_Q_PTR_SHIFT	= 3,
335 
336 	EDMA_CMD_OFS		= 0x28,		/* EDMA command register */
337 	EDMA_EN			= (1 << 0),	/* enable EDMA */
338 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
339 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
340 
341 	EDMA_STATUS_OFS		= 0x30,		/* EDMA engine status */
342 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
343 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
344 
345 	EDMA_IORDY_TMOUT_OFS	= 0x34,
346 	EDMA_ARB_CFG_OFS	= 0x38,
347 
348 	EDMA_HALTCOND_OFS	= 0x60,		/* GenIIe halt conditions */
349 
350 	/* Host private flags (hp_flags) */
351 	MV_HP_FLAG_MSI		= (1 << 0),
352 	MV_HP_ERRATA_50XXB0	= (1 << 1),
353 	MV_HP_ERRATA_50XXB2	= (1 << 2),
354 	MV_HP_ERRATA_60X1B2	= (1 << 3),
355 	MV_HP_ERRATA_60X1C0	= (1 << 4),
356 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
357 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
358 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
359 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
360 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
361 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
362 
363 	/* Port private flags (pp_flags) */
364 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
365 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
366 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
367 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
368 };
369 
370 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
371 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
372 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
373 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
374 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
375 
376 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
377 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
378 
379 enum {
380 	/* DMA boundary 0xffff is required by the s/g splitting
381 	 * we need on /length/ in mv_fill-sg().
382 	 */
383 	MV_DMA_BOUNDARY		= 0xffffU,
384 
385 	/* mask of register bits containing lower 32 bits
386 	 * of EDMA request queue DMA address
387 	 */
388 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
389 
390 	/* ditto, for response queue */
391 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
392 };
393 
394 enum chip_type {
395 	chip_504x,
396 	chip_508x,
397 	chip_5080,
398 	chip_604x,
399 	chip_608x,
400 	chip_6042,
401 	chip_7042,
402 	chip_soc,
403 };
404 
405 /* Command ReQuest Block: 32B */
406 struct mv_crqb {
407 	__le32			sg_addr;
408 	__le32			sg_addr_hi;
409 	__le16			ctrl_flags;
410 	__le16			ata_cmd[11];
411 };
412 
413 struct mv_crqb_iie {
414 	__le32			addr;
415 	__le32			addr_hi;
416 	__le32			flags;
417 	__le32			len;
418 	__le32			ata_cmd[4];
419 };
420 
421 /* Command ResPonse Block: 8B */
422 struct mv_crpb {
423 	__le16			id;
424 	__le16			flags;
425 	__le32			tmstmp;
426 };
427 
428 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
429 struct mv_sg {
430 	__le32			addr;
431 	__le32			flags_size;
432 	__le32			addr_hi;
433 	__le32			reserved;
434 };
435 
436 struct mv_port_priv {
437 	struct mv_crqb		*crqb;
438 	dma_addr_t		crqb_dma;
439 	struct mv_crpb		*crpb;
440 	dma_addr_t		crpb_dma;
441 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
442 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
443 
444 	unsigned int		req_idx;
445 	unsigned int		resp_idx;
446 
447 	u32			pp_flags;
448 	unsigned int		delayed_eh_pmp_map;
449 };
450 
451 struct mv_port_signal {
452 	u32			amps;
453 	u32			pre;
454 };
455 
456 struct mv_host_priv {
457 	u32			hp_flags;
458 	u32			main_irq_mask;
459 	struct mv_port_signal	signal[8];
460 	const struct mv_hw_ops	*ops;
461 	int			n_ports;
462 	void __iomem		*base;
463 	void __iomem		*main_irq_cause_addr;
464 	void __iomem		*main_irq_mask_addr;
465 	u32			irq_cause_ofs;
466 	u32			irq_mask_ofs;
467 	u32			unmask_all_irqs;
468 	/*
469 	 * These consistent DMA memory pools give us guaranteed
470 	 * alignment for hardware-accessed data structures,
471 	 * and less memory waste in accomplishing the alignment.
472 	 */
473 	struct dma_pool		*crqb_pool;
474 	struct dma_pool		*crpb_pool;
475 	struct dma_pool		*sg_tbl_pool;
476 };
477 
478 struct mv_hw_ops {
479 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
480 			   unsigned int port);
481 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
482 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
483 			   void __iomem *mmio);
484 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
485 			unsigned int n_hc);
486 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
487 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
488 };
489 
490 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
491 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
492 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
493 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
494 static int mv_port_start(struct ata_port *ap);
495 static void mv_port_stop(struct ata_port *ap);
496 static int mv_qc_defer(struct ata_queued_cmd *qc);
497 static void mv_qc_prep(struct ata_queued_cmd *qc);
498 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
499 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
500 static int mv_hardreset(struct ata_link *link, unsigned int *class,
501 			unsigned long deadline);
502 static void mv_eh_freeze(struct ata_port *ap);
503 static void mv_eh_thaw(struct ata_port *ap);
504 static void mv6_dev_config(struct ata_device *dev);
505 
506 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
507 			   unsigned int port);
508 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
509 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
510 			   void __iomem *mmio);
511 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
512 			unsigned int n_hc);
513 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
514 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
515 
516 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
517 			   unsigned int port);
518 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
519 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
520 			   void __iomem *mmio);
521 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
522 			unsigned int n_hc);
523 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
524 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
525 				      void __iomem *mmio);
526 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
527 				      void __iomem *mmio);
528 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
529 				  void __iomem *mmio, unsigned int n_hc);
530 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
531 				      void __iomem *mmio);
532 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
533 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
534 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
535 			     unsigned int port_no);
536 static int mv_stop_edma(struct ata_port *ap);
537 static int mv_stop_edma_engine(void __iomem *port_mmio);
538 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
539 
540 static void mv_pmp_select(struct ata_port *ap, int pmp);
541 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
542 				unsigned long deadline);
543 static int  mv_softreset(struct ata_link *link, unsigned int *class,
544 				unsigned long deadline);
545 static void mv_pmp_error_handler(struct ata_port *ap);
546 static void mv_process_crpb_entries(struct ata_port *ap,
547 					struct mv_port_priv *pp);
548 
549 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
550  * because we have to allow room for worst case splitting of
551  * PRDs for 64K boundaries in mv_fill_sg().
552  */
553 static struct scsi_host_template mv5_sht = {
554 	ATA_BASE_SHT(DRV_NAME),
555 	.sg_tablesize		= MV_MAX_SG_CT / 2,
556 	.dma_boundary		= MV_DMA_BOUNDARY,
557 };
558 
559 static struct scsi_host_template mv6_sht = {
560 	ATA_NCQ_SHT(DRV_NAME),
561 	.can_queue		= MV_MAX_Q_DEPTH - 1,
562 	.sg_tablesize		= MV_MAX_SG_CT / 2,
563 	.dma_boundary		= MV_DMA_BOUNDARY,
564 };
565 
566 static struct ata_port_operations mv5_ops = {
567 	.inherits		= &ata_sff_port_ops,
568 
569 	.qc_defer		= mv_qc_defer,
570 	.qc_prep		= mv_qc_prep,
571 	.qc_issue		= mv_qc_issue,
572 
573 	.freeze			= mv_eh_freeze,
574 	.thaw			= mv_eh_thaw,
575 	.hardreset		= mv_hardreset,
576 	.error_handler		= ata_std_error_handler, /* avoid SFF EH */
577 	.post_internal_cmd	= ATA_OP_NULL,
578 
579 	.scr_read		= mv5_scr_read,
580 	.scr_write		= mv5_scr_write,
581 
582 	.port_start		= mv_port_start,
583 	.port_stop		= mv_port_stop,
584 };
585 
586 static struct ata_port_operations mv6_ops = {
587 	.inherits		= &mv5_ops,
588 	.dev_config             = mv6_dev_config,
589 	.scr_read		= mv_scr_read,
590 	.scr_write		= mv_scr_write,
591 
592 	.pmp_hardreset		= mv_pmp_hardreset,
593 	.pmp_softreset		= mv_softreset,
594 	.softreset		= mv_softreset,
595 	.error_handler		= mv_pmp_error_handler,
596 };
597 
598 static struct ata_port_operations mv_iie_ops = {
599 	.inherits		= &mv6_ops,
600 	.dev_config		= ATA_OP_NULL,
601 	.qc_prep		= mv_qc_prep_iie,
602 };
603 
604 static const struct ata_port_info mv_port_info[] = {
605 	{  /* chip_504x */
606 		.flags		= MV_COMMON_FLAGS,
607 		.pio_mask	= 0x1f,	/* pio0-4 */
608 		.udma_mask	= ATA_UDMA6,
609 		.port_ops	= &mv5_ops,
610 	},
611 	{  /* chip_508x */
612 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
613 		.pio_mask	= 0x1f,	/* pio0-4 */
614 		.udma_mask	= ATA_UDMA6,
615 		.port_ops	= &mv5_ops,
616 	},
617 	{  /* chip_5080 */
618 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
619 		.pio_mask	= 0x1f,	/* pio0-4 */
620 		.udma_mask	= ATA_UDMA6,
621 		.port_ops	= &mv5_ops,
622 	},
623 	{  /* chip_604x */
624 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
625 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
626 				  ATA_FLAG_NCQ,
627 		.pio_mask	= 0x1f,	/* pio0-4 */
628 		.udma_mask	= ATA_UDMA6,
629 		.port_ops	= &mv6_ops,
630 	},
631 	{  /* chip_608x */
632 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
633 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
634 				  ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
635 		.pio_mask	= 0x1f,	/* pio0-4 */
636 		.udma_mask	= ATA_UDMA6,
637 		.port_ops	= &mv6_ops,
638 	},
639 	{  /* chip_6042 */
640 		.flags		= MV_GENIIE_FLAGS,
641 		.pio_mask	= 0x1f,	/* pio0-4 */
642 		.udma_mask	= ATA_UDMA6,
643 		.port_ops	= &mv_iie_ops,
644 	},
645 	{  /* chip_7042 */
646 		.flags		= MV_GENIIE_FLAGS,
647 		.pio_mask	= 0x1f,	/* pio0-4 */
648 		.udma_mask	= ATA_UDMA6,
649 		.port_ops	= &mv_iie_ops,
650 	},
651 	{  /* chip_soc */
652 		.flags		= MV_GENIIE_FLAGS,
653 		.pio_mask	= 0x1f,	/* pio0-4 */
654 		.udma_mask	= ATA_UDMA6,
655 		.port_ops	= &mv_iie_ops,
656 	},
657 };
658 
659 static const struct pci_device_id mv_pci_tbl[] = {
660 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
661 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
662 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
663 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
664 	/* RocketRAID 1720/174x have different identifiers */
665 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
666 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
667 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
668 
669 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
670 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
671 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
672 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
673 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
674 
675 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
676 
677 	/* Adaptec 1430SA */
678 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
679 
680 	/* Marvell 7042 support */
681 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
682 
683 	/* Highpoint RocketRAID PCIe series */
684 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
685 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
686 
687 	{ }			/* terminate list */
688 };
689 
690 static const struct mv_hw_ops mv5xxx_ops = {
691 	.phy_errata		= mv5_phy_errata,
692 	.enable_leds		= mv5_enable_leds,
693 	.read_preamp		= mv5_read_preamp,
694 	.reset_hc		= mv5_reset_hc,
695 	.reset_flash		= mv5_reset_flash,
696 	.reset_bus		= mv5_reset_bus,
697 };
698 
699 static const struct mv_hw_ops mv6xxx_ops = {
700 	.phy_errata		= mv6_phy_errata,
701 	.enable_leds		= mv6_enable_leds,
702 	.read_preamp		= mv6_read_preamp,
703 	.reset_hc		= mv6_reset_hc,
704 	.reset_flash		= mv6_reset_flash,
705 	.reset_bus		= mv_reset_pci_bus,
706 };
707 
708 static const struct mv_hw_ops mv_soc_ops = {
709 	.phy_errata		= mv6_phy_errata,
710 	.enable_leds		= mv_soc_enable_leds,
711 	.read_preamp		= mv_soc_read_preamp,
712 	.reset_hc		= mv_soc_reset_hc,
713 	.reset_flash		= mv_soc_reset_flash,
714 	.reset_bus		= mv_soc_reset_bus,
715 };
716 
717 /*
718  * Functions
719  */
720 
721 static inline void writelfl(unsigned long data, void __iomem *addr)
722 {
723 	writel(data, addr);
724 	(void) readl(addr);	/* flush to avoid PCI posted write */
725 }
726 
727 static inline unsigned int mv_hc_from_port(unsigned int port)
728 {
729 	return port >> MV_PORT_HC_SHIFT;
730 }
731 
732 static inline unsigned int mv_hardport_from_port(unsigned int port)
733 {
734 	return port & MV_PORT_MASK;
735 }
736 
737 /*
738  * Consolidate some rather tricky bit shift calculations.
739  * This is hot-path stuff, so not a function.
740  * Simple code, with two return values, so macro rather than inline.
741  *
742  * port is the sole input, in range 0..7.
743  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
744  * hardport is the other output, in range 0..3.
745  *
746  * Note that port and hardport may be the same variable in some cases.
747  */
748 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
749 {								\
750 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
751 	hardport = mv_hardport_from_port(port);			\
752 	shift   += hardport * 2;				\
753 }
754 
755 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
756 {
757 	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
758 }
759 
760 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
761 						 unsigned int port)
762 {
763 	return mv_hc_base(base, mv_hc_from_port(port));
764 }
765 
766 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
767 {
768 	return  mv_hc_base_from_port(base, port) +
769 		MV_SATAHC_ARBTR_REG_SZ +
770 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
771 }
772 
773 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
774 {
775 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
776 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
777 
778 	return hc_mmio + ofs;
779 }
780 
781 static inline void __iomem *mv_host_base(struct ata_host *host)
782 {
783 	struct mv_host_priv *hpriv = host->private_data;
784 	return hpriv->base;
785 }
786 
787 static inline void __iomem *mv_ap_base(struct ata_port *ap)
788 {
789 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
790 }
791 
792 static inline int mv_get_hc_count(unsigned long port_flags)
793 {
794 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
795 }
796 
797 static void mv_set_edma_ptrs(void __iomem *port_mmio,
798 			     struct mv_host_priv *hpriv,
799 			     struct mv_port_priv *pp)
800 {
801 	u32 index;
802 
803 	/*
804 	 * initialize request queue
805 	 */
806 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
807 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
808 
809 	WARN_ON(pp->crqb_dma & 0x3ff);
810 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
811 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
812 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
813 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
814 
815 	/*
816 	 * initialize response queue
817 	 */
818 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
819 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
820 
821 	WARN_ON(pp->crpb_dma & 0xff);
822 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
823 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
824 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
825 		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
826 }
827 
828 static void mv_set_main_irq_mask(struct ata_host *host,
829 				 u32 disable_bits, u32 enable_bits)
830 {
831 	struct mv_host_priv *hpriv = host->private_data;
832 	u32 old_mask, new_mask;
833 
834 	old_mask = hpriv->main_irq_mask;
835 	new_mask = (old_mask & ~disable_bits) | enable_bits;
836 	if (new_mask != old_mask) {
837 		hpriv->main_irq_mask = new_mask;
838 		writelfl(new_mask, hpriv->main_irq_mask_addr);
839 	}
840 }
841 
842 static void mv_enable_port_irqs(struct ata_port *ap,
843 				     unsigned int port_bits)
844 {
845 	unsigned int shift, hardport, port = ap->port_no;
846 	u32 disable_bits, enable_bits;
847 
848 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
849 
850 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
851 	enable_bits  = port_bits << shift;
852 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
853 }
854 
855 /**
856  *      mv_start_dma - Enable eDMA engine
857  *      @base: port base address
858  *      @pp: port private data
859  *
860  *      Verify the local cache of the eDMA state is accurate with a
861  *      WARN_ON.
862  *
863  *      LOCKING:
864  *      Inherited from caller.
865  */
866 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
867 			 struct mv_port_priv *pp, u8 protocol)
868 {
869 	int want_ncq = (protocol == ATA_PROT_NCQ);
870 
871 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
872 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
873 		if (want_ncq != using_ncq)
874 			mv_stop_edma(ap);
875 	}
876 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
877 		struct mv_host_priv *hpriv = ap->host->private_data;
878 		int hardport = mv_hardport_from_port(ap->port_no);
879 		void __iomem *hc_mmio = mv_hc_base_from_port(
880 					mv_host_base(ap->host), ap->port_no);
881 		u32 hc_irq_cause;
882 
883 		/* clear EDMA event indicators, if any */
884 		writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
885 
886 		/* clear pending irq events */
887 		hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
888 		writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
889 
890 		mv_edma_cfg(ap, want_ncq);
891 
892 		/* clear FIS IRQ Cause */
893 		if (IS_GEN_IIE(hpriv))
894 			writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
895 
896 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
897 		mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
898 
899 		writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
900 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
901 	}
902 }
903 
904 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
905 {
906 	void __iomem *port_mmio = mv_ap_base(ap);
907 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
908 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
909 	int i;
910 
911 	/*
912 	 * Wait for the EDMA engine to finish transactions in progress.
913 	 * No idea what a good "timeout" value might be, but measurements
914 	 * indicate that it often requires hundreds of microseconds
915 	 * with two drives in-use.  So we use the 15msec value above
916 	 * as a rough guess at what even more drives might require.
917 	 */
918 	for (i = 0; i < timeout; ++i) {
919 		u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
920 		if ((edma_stat & empty_idle) == empty_idle)
921 			break;
922 		udelay(per_loop);
923 	}
924 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
925 }
926 
927 /**
928  *      mv_stop_edma_engine - Disable eDMA engine
929  *      @port_mmio: io base address
930  *
931  *      LOCKING:
932  *      Inherited from caller.
933  */
934 static int mv_stop_edma_engine(void __iomem *port_mmio)
935 {
936 	int i;
937 
938 	/* Disable eDMA.  The disable bit auto clears. */
939 	writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
940 
941 	/* Wait for the chip to confirm eDMA is off. */
942 	for (i = 10000; i > 0; i--) {
943 		u32 reg = readl(port_mmio + EDMA_CMD_OFS);
944 		if (!(reg & EDMA_EN))
945 			return 0;
946 		udelay(10);
947 	}
948 	return -EIO;
949 }
950 
951 static int mv_stop_edma(struct ata_port *ap)
952 {
953 	void __iomem *port_mmio = mv_ap_base(ap);
954 	struct mv_port_priv *pp = ap->private_data;
955 
956 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
957 		return 0;
958 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
959 	mv_wait_for_edma_empty_idle(ap);
960 	if (mv_stop_edma_engine(port_mmio)) {
961 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
962 		return -EIO;
963 	}
964 	return 0;
965 }
966 
967 #ifdef ATA_DEBUG
968 static void mv_dump_mem(void __iomem *start, unsigned bytes)
969 {
970 	int b, w;
971 	for (b = 0; b < bytes; ) {
972 		DPRINTK("%p: ", start + b);
973 		for (w = 0; b < bytes && w < 4; w++) {
974 			printk("%08x ", readl(start + b));
975 			b += sizeof(u32);
976 		}
977 		printk("\n");
978 	}
979 }
980 #endif
981 
982 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
983 {
984 #ifdef ATA_DEBUG
985 	int b, w;
986 	u32 dw;
987 	for (b = 0; b < bytes; ) {
988 		DPRINTK("%02x: ", b);
989 		for (w = 0; b < bytes && w < 4; w++) {
990 			(void) pci_read_config_dword(pdev, b, &dw);
991 			printk("%08x ", dw);
992 			b += sizeof(u32);
993 		}
994 		printk("\n");
995 	}
996 #endif
997 }
998 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
999 			     struct pci_dev *pdev)
1000 {
1001 #ifdef ATA_DEBUG
1002 	void __iomem *hc_base = mv_hc_base(mmio_base,
1003 					   port >> MV_PORT_HC_SHIFT);
1004 	void __iomem *port_base;
1005 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1006 
1007 	if (0 > port) {
1008 		start_hc = start_port = 0;
1009 		num_ports = 8;		/* shld be benign for 4 port devs */
1010 		num_hcs = 2;
1011 	} else {
1012 		start_hc = port >> MV_PORT_HC_SHIFT;
1013 		start_port = port;
1014 		num_ports = num_hcs = 1;
1015 	}
1016 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1017 		num_ports > 1 ? num_ports - 1 : start_port);
1018 
1019 	if (NULL != pdev) {
1020 		DPRINTK("PCI config space regs:\n");
1021 		mv_dump_pci_cfg(pdev, 0x68);
1022 	}
1023 	DPRINTK("PCI regs:\n");
1024 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1025 	mv_dump_mem(mmio_base+0xd00, 0x34);
1026 	mv_dump_mem(mmio_base+0xf00, 0x4);
1027 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1028 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1029 		hc_base = mv_hc_base(mmio_base, hc);
1030 		DPRINTK("HC regs (HC %i):\n", hc);
1031 		mv_dump_mem(hc_base, 0x1c);
1032 	}
1033 	for (p = start_port; p < start_port + num_ports; p++) {
1034 		port_base = mv_port_base(mmio_base, p);
1035 		DPRINTK("EDMA regs (port %i):\n", p);
1036 		mv_dump_mem(port_base, 0x54);
1037 		DPRINTK("SATA regs (port %i):\n", p);
1038 		mv_dump_mem(port_base+0x300, 0x60);
1039 	}
1040 #endif
1041 }
1042 
1043 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1044 {
1045 	unsigned int ofs;
1046 
1047 	switch (sc_reg_in) {
1048 	case SCR_STATUS:
1049 	case SCR_CONTROL:
1050 	case SCR_ERROR:
1051 		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1052 		break;
1053 	case SCR_ACTIVE:
1054 		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
1055 		break;
1056 	default:
1057 		ofs = 0xffffffffU;
1058 		break;
1059 	}
1060 	return ofs;
1061 }
1062 
1063 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1064 {
1065 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1066 
1067 	if (ofs != 0xffffffffU) {
1068 		*val = readl(mv_ap_base(link->ap) + ofs);
1069 		return 0;
1070 	} else
1071 		return -EINVAL;
1072 }
1073 
1074 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1075 {
1076 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1077 
1078 	if (ofs != 0xffffffffU) {
1079 		writelfl(val, mv_ap_base(link->ap) + ofs);
1080 		return 0;
1081 	} else
1082 		return -EINVAL;
1083 }
1084 
1085 static void mv6_dev_config(struct ata_device *adev)
1086 {
1087 	/*
1088 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1089 	 *
1090 	 * Gen-II does not support NCQ over a port multiplier
1091 	 *  (no FIS-based switching).
1092 	 */
1093 	if (adev->flags & ATA_DFLAG_NCQ) {
1094 		if (sata_pmp_attached(adev->link->ap)) {
1095 			adev->flags &= ~ATA_DFLAG_NCQ;
1096 			ata_dev_printk(adev, KERN_INFO,
1097 				"NCQ disabled for command-based switching\n");
1098 		}
1099 	}
1100 }
1101 
1102 static int mv_qc_defer(struct ata_queued_cmd *qc)
1103 {
1104 	struct ata_link *link = qc->dev->link;
1105 	struct ata_port *ap = link->ap;
1106 	struct mv_port_priv *pp = ap->private_data;
1107 
1108 	/*
1109 	 * Don't allow new commands if we're in a delayed EH state
1110 	 * for NCQ and/or FIS-based switching.
1111 	 */
1112 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1113 		return ATA_DEFER_PORT;
1114 	/*
1115 	 * If the port is completely idle, then allow the new qc.
1116 	 */
1117 	if (ap->nr_active_links == 0)
1118 		return 0;
1119 
1120 	/*
1121 	 * The port is operating in host queuing mode (EDMA) with NCQ
1122 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1123 	 * queueing multiple DMA commands but libata core currently
1124 	 * doesn't allow it.
1125 	 */
1126 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1127 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
1128 		return 0;
1129 
1130 	return ATA_DEFER_PORT;
1131 }
1132 
1133 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1134 {
1135 	u32 new_fiscfg, old_fiscfg;
1136 	u32 new_ltmode, old_ltmode;
1137 	u32 new_haltcond, old_haltcond;
1138 
1139 	old_fiscfg   = readl(port_mmio + FISCFG_OFS);
1140 	old_ltmode   = readl(port_mmio + LTMODE_OFS);
1141 	old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1142 
1143 	new_fiscfg   = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1144 	new_ltmode   = old_ltmode & ~LTMODE_BIT8;
1145 	new_haltcond = old_haltcond | EDMA_ERR_DEV;
1146 
1147 	if (want_fbs) {
1148 		new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1149 		new_ltmode = old_ltmode | LTMODE_BIT8;
1150 		if (want_ncq)
1151 			new_haltcond &= ~EDMA_ERR_DEV;
1152 		else
1153 			new_fiscfg |=  FISCFG_WAIT_DEV_ERR;
1154 	}
1155 
1156 	if (new_fiscfg != old_fiscfg)
1157 		writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1158 	if (new_ltmode != old_ltmode)
1159 		writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1160 	if (new_haltcond != old_haltcond)
1161 		writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1162 }
1163 
1164 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1165 {
1166 	struct mv_host_priv *hpriv = ap->host->private_data;
1167 	u32 old, new;
1168 
1169 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1170 	old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1171 	if (want_ncq)
1172 		new = old | (1 << 22);
1173 	else
1174 		new = old & ~(1 << 22);
1175 	if (new != old)
1176 		writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1177 }
1178 
1179 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1180 {
1181 	u32 cfg;
1182 	struct mv_port_priv *pp    = ap->private_data;
1183 	struct mv_host_priv *hpriv = ap->host->private_data;
1184 	void __iomem *port_mmio    = mv_ap_base(ap);
1185 
1186 	/* set up non-NCQ EDMA configuration */
1187 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1188 	pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1189 
1190 	if (IS_GEN_I(hpriv))
1191 		cfg |= (1 << 8);	/* enab config burst size mask */
1192 
1193 	else if (IS_GEN_II(hpriv)) {
1194 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1195 		mv_60x1_errata_sata25(ap, want_ncq);
1196 
1197 	} else if (IS_GEN_IIE(hpriv)) {
1198 		int want_fbs = sata_pmp_attached(ap);
1199 		/*
1200 		 * Possible future enhancement:
1201 		 *
1202 		 * The chip can use FBS with non-NCQ, if we allow it,
1203 		 * But first we need to have the error handling in place
1204 		 * for this mode (datasheet section 7.3.15.4.2.3).
1205 		 * So disallow non-NCQ FBS for now.
1206 		 */
1207 		want_fbs &= want_ncq;
1208 
1209 		mv_config_fbs(port_mmio, want_ncq, want_fbs);
1210 
1211 		if (want_fbs) {
1212 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1213 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1214 		}
1215 
1216 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1217 		cfg |= (1 << 22);	/* enab 4-entry host queue cache */
1218 		if (!IS_SOC(hpriv))
1219 			cfg |= (1 << 18);	/* enab early completion */
1220 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1221 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1222 	}
1223 
1224 	if (want_ncq) {
1225 		cfg |= EDMA_CFG_NCQ;
1226 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1227 	} else
1228 		pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1229 
1230 	writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1231 }
1232 
1233 static void mv_port_free_dma_mem(struct ata_port *ap)
1234 {
1235 	struct mv_host_priv *hpriv = ap->host->private_data;
1236 	struct mv_port_priv *pp = ap->private_data;
1237 	int tag;
1238 
1239 	if (pp->crqb) {
1240 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1241 		pp->crqb = NULL;
1242 	}
1243 	if (pp->crpb) {
1244 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1245 		pp->crpb = NULL;
1246 	}
1247 	/*
1248 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1249 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1250 	 */
1251 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1252 		if (pp->sg_tbl[tag]) {
1253 			if (tag == 0 || !IS_GEN_I(hpriv))
1254 				dma_pool_free(hpriv->sg_tbl_pool,
1255 					      pp->sg_tbl[tag],
1256 					      pp->sg_tbl_dma[tag]);
1257 			pp->sg_tbl[tag] = NULL;
1258 		}
1259 	}
1260 }
1261 
1262 /**
1263  *      mv_port_start - Port specific init/start routine.
1264  *      @ap: ATA channel to manipulate
1265  *
1266  *      Allocate and point to DMA memory, init port private memory,
1267  *      zero indices.
1268  *
1269  *      LOCKING:
1270  *      Inherited from caller.
1271  */
1272 static int mv_port_start(struct ata_port *ap)
1273 {
1274 	struct device *dev = ap->host->dev;
1275 	struct mv_host_priv *hpriv = ap->host->private_data;
1276 	struct mv_port_priv *pp;
1277 	int tag;
1278 
1279 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1280 	if (!pp)
1281 		return -ENOMEM;
1282 	ap->private_data = pp;
1283 
1284 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1285 	if (!pp->crqb)
1286 		return -ENOMEM;
1287 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1288 
1289 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1290 	if (!pp->crpb)
1291 		goto out_port_free_dma_mem;
1292 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1293 
1294 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1295 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1296 		ap->flags |= ATA_FLAG_AN;
1297 	/*
1298 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1299 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1300 	 */
1301 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1302 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1303 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1304 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1305 			if (!pp->sg_tbl[tag])
1306 				goto out_port_free_dma_mem;
1307 		} else {
1308 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1309 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1310 		}
1311 	}
1312 	return 0;
1313 
1314 out_port_free_dma_mem:
1315 	mv_port_free_dma_mem(ap);
1316 	return -ENOMEM;
1317 }
1318 
1319 /**
1320  *      mv_port_stop - Port specific cleanup/stop routine.
1321  *      @ap: ATA channel to manipulate
1322  *
1323  *      Stop DMA, cleanup port memory.
1324  *
1325  *      LOCKING:
1326  *      This routine uses the host lock to protect the DMA stop.
1327  */
1328 static void mv_port_stop(struct ata_port *ap)
1329 {
1330 	mv_stop_edma(ap);
1331 	mv_enable_port_irqs(ap, 0);
1332 	mv_port_free_dma_mem(ap);
1333 }
1334 
1335 /**
1336  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1337  *      @qc: queued command whose SG list to source from
1338  *
1339  *      Populate the SG list and mark the last entry.
1340  *
1341  *      LOCKING:
1342  *      Inherited from caller.
1343  */
1344 static void mv_fill_sg(struct ata_queued_cmd *qc)
1345 {
1346 	struct mv_port_priv *pp = qc->ap->private_data;
1347 	struct scatterlist *sg;
1348 	struct mv_sg *mv_sg, *last_sg = NULL;
1349 	unsigned int si;
1350 
1351 	mv_sg = pp->sg_tbl[qc->tag];
1352 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1353 		dma_addr_t addr = sg_dma_address(sg);
1354 		u32 sg_len = sg_dma_len(sg);
1355 
1356 		while (sg_len) {
1357 			u32 offset = addr & 0xffff;
1358 			u32 len = sg_len;
1359 
1360 			if ((offset + sg_len > 0x10000))
1361 				len = 0x10000 - offset;
1362 
1363 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1364 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1365 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1366 
1367 			sg_len -= len;
1368 			addr += len;
1369 
1370 			last_sg = mv_sg;
1371 			mv_sg++;
1372 		}
1373 	}
1374 
1375 	if (likely(last_sg))
1376 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1377 }
1378 
1379 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1380 {
1381 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1382 		(last ? CRQB_CMD_LAST : 0);
1383 	*cmdw = cpu_to_le16(tmp);
1384 }
1385 
1386 /**
1387  *      mv_qc_prep - Host specific command preparation.
1388  *      @qc: queued command to prepare
1389  *
1390  *      This routine simply redirects to the general purpose routine
1391  *      if command is not DMA.  Else, it handles prep of the CRQB
1392  *      (command request block), does some sanity checking, and calls
1393  *      the SG load routine.
1394  *
1395  *      LOCKING:
1396  *      Inherited from caller.
1397  */
1398 static void mv_qc_prep(struct ata_queued_cmd *qc)
1399 {
1400 	struct ata_port *ap = qc->ap;
1401 	struct mv_port_priv *pp = ap->private_data;
1402 	__le16 *cw;
1403 	struct ata_taskfile *tf;
1404 	u16 flags = 0;
1405 	unsigned in_index;
1406 
1407 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1408 	    (qc->tf.protocol != ATA_PROT_NCQ))
1409 		return;
1410 
1411 	/* Fill in command request block
1412 	 */
1413 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1414 		flags |= CRQB_FLAG_READ;
1415 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1416 	flags |= qc->tag << CRQB_TAG_SHIFT;
1417 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1418 
1419 	/* get current queue index from software */
1420 	in_index = pp->req_idx;
1421 
1422 	pp->crqb[in_index].sg_addr =
1423 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1424 	pp->crqb[in_index].sg_addr_hi =
1425 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1426 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1427 
1428 	cw = &pp->crqb[in_index].ata_cmd[0];
1429 	tf = &qc->tf;
1430 
1431 	/* Sadly, the CRQB cannot accomodate all registers--there are
1432 	 * only 11 bytes...so we must pick and choose required
1433 	 * registers based on the command.  So, we drop feature and
1434 	 * hob_feature for [RW] DMA commands, but they are needed for
1435 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
1436 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
1437 	 */
1438 	switch (tf->command) {
1439 	case ATA_CMD_READ:
1440 	case ATA_CMD_READ_EXT:
1441 	case ATA_CMD_WRITE:
1442 	case ATA_CMD_WRITE_EXT:
1443 	case ATA_CMD_WRITE_FUA_EXT:
1444 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1445 		break;
1446 	case ATA_CMD_FPDMA_READ:
1447 	case ATA_CMD_FPDMA_WRITE:
1448 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1449 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1450 		break;
1451 	default:
1452 		/* The only other commands EDMA supports in non-queued and
1453 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1454 		 * of which are defined/used by Linux.  If we get here, this
1455 		 * driver needs work.
1456 		 *
1457 		 * FIXME: modify libata to give qc_prep a return value and
1458 		 * return error here.
1459 		 */
1460 		BUG_ON(tf->command);
1461 		break;
1462 	}
1463 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1464 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1465 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1466 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1467 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1468 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1469 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1470 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1471 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
1472 
1473 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1474 		return;
1475 	mv_fill_sg(qc);
1476 }
1477 
1478 /**
1479  *      mv_qc_prep_iie - Host specific command preparation.
1480  *      @qc: queued command to prepare
1481  *
1482  *      This routine simply redirects to the general purpose routine
1483  *      if command is not DMA.  Else, it handles prep of the CRQB
1484  *      (command request block), does some sanity checking, and calls
1485  *      the SG load routine.
1486  *
1487  *      LOCKING:
1488  *      Inherited from caller.
1489  */
1490 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1491 {
1492 	struct ata_port *ap = qc->ap;
1493 	struct mv_port_priv *pp = ap->private_data;
1494 	struct mv_crqb_iie *crqb;
1495 	struct ata_taskfile *tf;
1496 	unsigned in_index;
1497 	u32 flags = 0;
1498 
1499 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1500 	    (qc->tf.protocol != ATA_PROT_NCQ))
1501 		return;
1502 
1503 	/* Fill in Gen IIE command request block */
1504 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1505 		flags |= CRQB_FLAG_READ;
1506 
1507 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1508 	flags |= qc->tag << CRQB_TAG_SHIFT;
1509 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1510 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1511 
1512 	/* get current queue index from software */
1513 	in_index = pp->req_idx;
1514 
1515 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1516 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1517 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1518 	crqb->flags = cpu_to_le32(flags);
1519 
1520 	tf = &qc->tf;
1521 	crqb->ata_cmd[0] = cpu_to_le32(
1522 			(tf->command << 16) |
1523 			(tf->feature << 24)
1524 		);
1525 	crqb->ata_cmd[1] = cpu_to_le32(
1526 			(tf->lbal << 0) |
1527 			(tf->lbam << 8) |
1528 			(tf->lbah << 16) |
1529 			(tf->device << 24)
1530 		);
1531 	crqb->ata_cmd[2] = cpu_to_le32(
1532 			(tf->hob_lbal << 0) |
1533 			(tf->hob_lbam << 8) |
1534 			(tf->hob_lbah << 16) |
1535 			(tf->hob_feature << 24)
1536 		);
1537 	crqb->ata_cmd[3] = cpu_to_le32(
1538 			(tf->nsect << 0) |
1539 			(tf->hob_nsect << 8)
1540 		);
1541 
1542 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1543 		return;
1544 	mv_fill_sg(qc);
1545 }
1546 
1547 /**
1548  *      mv_qc_issue - Initiate a command to the host
1549  *      @qc: queued command to start
1550  *
1551  *      This routine simply redirects to the general purpose routine
1552  *      if command is not DMA.  Else, it sanity checks our local
1553  *      caches of the request producer/consumer indices then enables
1554  *      DMA and bumps the request producer index.
1555  *
1556  *      LOCKING:
1557  *      Inherited from caller.
1558  */
1559 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1560 {
1561 	struct ata_port *ap = qc->ap;
1562 	void __iomem *port_mmio = mv_ap_base(ap);
1563 	struct mv_port_priv *pp = ap->private_data;
1564 	u32 in_index;
1565 
1566 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1567 	    (qc->tf.protocol != ATA_PROT_NCQ)) {
1568 		static int limit_warnings = 10;
1569 		/*
1570 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1571 		 *
1572 		 * Someday, we might implement special polling workarounds
1573 		 * for these, but it all seems rather unnecessary since we
1574 		 * normally use only DMA for commands which transfer more
1575 		 * than a single block of data.
1576 		 *
1577 		 * Much of the time, this could just work regardless.
1578 		 * So for now, just log the incident, and allow the attempt.
1579 		 */
1580 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
1581 			--limit_warnings;
1582 			ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
1583 					": attempting PIO w/multiple DRQ: "
1584 					"this may fail due to h/w errata\n");
1585 		}
1586 		/*
1587 		 * We're about to send a non-EDMA capable command to the
1588 		 * port.  Turn off EDMA so there won't be problems accessing
1589 		 * shadow block, etc registers.
1590 		 */
1591 		mv_stop_edma(ap);
1592 		mv_enable_port_irqs(ap, ERR_IRQ);
1593 		mv_pmp_select(ap, qc->dev->link->pmp);
1594 		return ata_sff_qc_issue(qc);
1595 	}
1596 
1597 	mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1598 
1599 	pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1600 	in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1601 
1602 	/* and write the request in pointer to kick the EDMA to life */
1603 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1604 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1605 
1606 	return 0;
1607 }
1608 
1609 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1610 {
1611 	struct mv_port_priv *pp = ap->private_data;
1612 	struct ata_queued_cmd *qc;
1613 
1614 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1615 		return NULL;
1616 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1617 	if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1618 		qc = NULL;
1619 	return qc;
1620 }
1621 
1622 static void mv_pmp_error_handler(struct ata_port *ap)
1623 {
1624 	unsigned int pmp, pmp_map;
1625 	struct mv_port_priv *pp = ap->private_data;
1626 
1627 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1628 		/*
1629 		 * Perform NCQ error analysis on failed PMPs
1630 		 * before we freeze the port entirely.
1631 		 *
1632 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1633 		 */
1634 		pmp_map = pp->delayed_eh_pmp_map;
1635 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1636 		for (pmp = 0; pmp_map != 0; pmp++) {
1637 			unsigned int this_pmp = (1 << pmp);
1638 			if (pmp_map & this_pmp) {
1639 				struct ata_link *link = &ap->pmp_link[pmp];
1640 				pmp_map &= ~this_pmp;
1641 				ata_eh_analyze_ncq_error(link);
1642 			}
1643 		}
1644 		ata_port_freeze(ap);
1645 	}
1646 	sata_pmp_error_handler(ap);
1647 }
1648 
1649 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1650 {
1651 	void __iomem *port_mmio = mv_ap_base(ap);
1652 
1653 	return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1654 }
1655 
1656 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1657 {
1658 	struct ata_eh_info *ehi;
1659 	unsigned int pmp;
1660 
1661 	/*
1662 	 * Initialize EH info for PMPs which saw device errors
1663 	 */
1664 	ehi = &ap->link.eh_info;
1665 	for (pmp = 0; pmp_map != 0; pmp++) {
1666 		unsigned int this_pmp = (1 << pmp);
1667 		if (pmp_map & this_pmp) {
1668 			struct ata_link *link = &ap->pmp_link[pmp];
1669 
1670 			pmp_map &= ~this_pmp;
1671 			ehi = &link->eh_info;
1672 			ata_ehi_clear_desc(ehi);
1673 			ata_ehi_push_desc(ehi, "dev err");
1674 			ehi->err_mask |= AC_ERR_DEV;
1675 			ehi->action |= ATA_EH_RESET;
1676 			ata_link_abort(link);
1677 		}
1678 	}
1679 }
1680 
1681 static int mv_req_q_empty(struct ata_port *ap)
1682 {
1683 	void __iomem *port_mmio = mv_ap_base(ap);
1684 	u32 in_ptr, out_ptr;
1685 
1686 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1687 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1688 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1689 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1690 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
1691 }
1692 
1693 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1694 {
1695 	struct mv_port_priv *pp = ap->private_data;
1696 	int failed_links;
1697 	unsigned int old_map, new_map;
1698 
1699 	/*
1700 	 * Device error during FBS+NCQ operation:
1701 	 *
1702 	 * Set a port flag to prevent further I/O being enqueued.
1703 	 * Leave the EDMA running to drain outstanding commands from this port.
1704 	 * Perform the post-mortem/EH only when all responses are complete.
1705 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1706 	 */
1707 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1708 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1709 		pp->delayed_eh_pmp_map = 0;
1710 	}
1711 	old_map = pp->delayed_eh_pmp_map;
1712 	new_map = old_map | mv_get_err_pmp_map(ap);
1713 
1714 	if (old_map != new_map) {
1715 		pp->delayed_eh_pmp_map = new_map;
1716 		mv_pmp_eh_prep(ap, new_map & ~old_map);
1717 	}
1718 	failed_links = hweight16(new_map);
1719 
1720 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1721 			"failed_links=%d nr_active_links=%d\n",
1722 			__func__, pp->delayed_eh_pmp_map,
1723 			ap->qc_active, failed_links,
1724 			ap->nr_active_links);
1725 
1726 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1727 		mv_process_crpb_entries(ap, pp);
1728 		mv_stop_edma(ap);
1729 		mv_eh_freeze(ap);
1730 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1731 		return 1;	/* handled */
1732 	}
1733 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1734 	return 1;	/* handled */
1735 }
1736 
1737 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1738 {
1739 	/*
1740 	 * Possible future enhancement:
1741 	 *
1742 	 * FBS+non-NCQ operation is not yet implemented.
1743 	 * See related notes in mv_edma_cfg().
1744 	 *
1745 	 * Device error during FBS+non-NCQ operation:
1746 	 *
1747 	 * We need to snapshot the shadow registers for each failed command.
1748 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1749 	 */
1750 	return 0;	/* not handled */
1751 }
1752 
1753 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1754 {
1755 	struct mv_port_priv *pp = ap->private_data;
1756 
1757 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1758 		return 0;	/* EDMA was not active: not handled */
1759 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1760 		return 0;	/* FBS was not active: not handled */
1761 
1762 	if (!(edma_err_cause & EDMA_ERR_DEV))
1763 		return 0;	/* non DEV error: not handled */
1764 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1765 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1766 		return 0;	/* other problems: not handled */
1767 
1768 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1769 		/*
1770 		 * EDMA should NOT have self-disabled for this case.
1771 		 * If it did, then something is wrong elsewhere,
1772 		 * and we cannot handle it here.
1773 		 */
1774 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1775 			ata_port_printk(ap, KERN_WARNING,
1776 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1777 				__func__, edma_err_cause, pp->pp_flags);
1778 			return 0; /* not handled */
1779 		}
1780 		return mv_handle_fbs_ncq_dev_err(ap);
1781 	} else {
1782 		/*
1783 		 * EDMA should have self-disabled for this case.
1784 		 * If it did not, then something is wrong elsewhere,
1785 		 * and we cannot handle it here.
1786 		 */
1787 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1788 			ata_port_printk(ap, KERN_WARNING,
1789 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1790 				__func__, edma_err_cause, pp->pp_flags);
1791 			return 0; /* not handled */
1792 		}
1793 		return mv_handle_fbs_non_ncq_dev_err(ap);
1794 	}
1795 	return 0;	/* not handled */
1796 }
1797 
1798 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1799 {
1800 	struct ata_eh_info *ehi = &ap->link.eh_info;
1801 	char *when = "idle";
1802 
1803 	ata_ehi_clear_desc(ehi);
1804 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1805 		when = "disabled";
1806 	} else if (edma_was_enabled) {
1807 		when = "EDMA enabled";
1808 	} else {
1809 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1810 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1811 			when = "polling";
1812 	}
1813 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1814 	ehi->err_mask |= AC_ERR_OTHER;
1815 	ehi->action   |= ATA_EH_RESET;
1816 	ata_port_freeze(ap);
1817 }
1818 
1819 /**
1820  *      mv_err_intr - Handle error interrupts on the port
1821  *      @ap: ATA channel to manipulate
1822  *
1823  *      Most cases require a full reset of the chip's state machine,
1824  *      which also performs a COMRESET.
1825  *      Also, if the port disabled DMA, update our cached copy to match.
1826  *
1827  *      LOCKING:
1828  *      Inherited from caller.
1829  */
1830 static void mv_err_intr(struct ata_port *ap)
1831 {
1832 	void __iomem *port_mmio = mv_ap_base(ap);
1833 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
1834 	u32 fis_cause = 0;
1835 	struct mv_port_priv *pp = ap->private_data;
1836 	struct mv_host_priv *hpriv = ap->host->private_data;
1837 	unsigned int action = 0, err_mask = 0;
1838 	struct ata_eh_info *ehi = &ap->link.eh_info;
1839 	struct ata_queued_cmd *qc;
1840 	int abort = 0;
1841 
1842 	/*
1843 	 * Read and clear the SError and err_cause bits.
1844 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1845 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1846 	 */
1847 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
1848 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1849 
1850 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1851 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1852 		fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1853 		writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1854 	}
1855 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1856 
1857 	if (edma_err_cause & EDMA_ERR_DEV) {
1858 		/*
1859 		 * Device errors during FIS-based switching operation
1860 		 * require special handling.
1861 		 */
1862 		if (mv_handle_dev_err(ap, edma_err_cause))
1863 			return;
1864 	}
1865 
1866 	qc = mv_get_active_qc(ap);
1867 	ata_ehi_clear_desc(ehi);
1868 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1869 			  edma_err_cause, pp->pp_flags);
1870 
1871 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1872 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1873 		if (fis_cause & SATA_FIS_IRQ_AN) {
1874 			u32 ec = edma_err_cause &
1875 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1876 			sata_async_notification(ap);
1877 			if (!ec)
1878 				return; /* Just an AN; no need for the nukes */
1879 			ata_ehi_push_desc(ehi, "SDB notify");
1880 		}
1881 	}
1882 	/*
1883 	 * All generations share these EDMA error cause bits:
1884 	 */
1885 	if (edma_err_cause & EDMA_ERR_DEV) {
1886 		err_mask |= AC_ERR_DEV;
1887 		action |= ATA_EH_RESET;
1888 		ata_ehi_push_desc(ehi, "dev error");
1889 	}
1890 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1891 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1892 			EDMA_ERR_INTRL_PAR)) {
1893 		err_mask |= AC_ERR_ATA_BUS;
1894 		action |= ATA_EH_RESET;
1895 		ata_ehi_push_desc(ehi, "parity error");
1896 	}
1897 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1898 		ata_ehi_hotplugged(ehi);
1899 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1900 			"dev disconnect" : "dev connect");
1901 		action |= ATA_EH_RESET;
1902 	}
1903 
1904 	/*
1905 	 * Gen-I has a different SELF_DIS bit,
1906 	 * different FREEZE bits, and no SERR bit:
1907 	 */
1908 	if (IS_GEN_I(hpriv)) {
1909 		eh_freeze_mask = EDMA_EH_FREEZE_5;
1910 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1911 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1912 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1913 		}
1914 	} else {
1915 		eh_freeze_mask = EDMA_EH_FREEZE;
1916 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1917 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1918 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1919 		}
1920 		if (edma_err_cause & EDMA_ERR_SERR) {
1921 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
1922 			err_mask |= AC_ERR_ATA_BUS;
1923 			action |= ATA_EH_RESET;
1924 		}
1925 	}
1926 
1927 	if (!err_mask) {
1928 		err_mask = AC_ERR_OTHER;
1929 		action |= ATA_EH_RESET;
1930 	}
1931 
1932 	ehi->serror |= serr;
1933 	ehi->action |= action;
1934 
1935 	if (qc)
1936 		qc->err_mask |= err_mask;
1937 	else
1938 		ehi->err_mask |= err_mask;
1939 
1940 	if (err_mask == AC_ERR_DEV) {
1941 		/*
1942 		 * Cannot do ata_port_freeze() here,
1943 		 * because it would kill PIO access,
1944 		 * which is needed for further diagnosis.
1945 		 */
1946 		mv_eh_freeze(ap);
1947 		abort = 1;
1948 	} else if (edma_err_cause & eh_freeze_mask) {
1949 		/*
1950 		 * Note to self: ata_port_freeze() calls ata_port_abort()
1951 		 */
1952 		ata_port_freeze(ap);
1953 	} else {
1954 		abort = 1;
1955 	}
1956 
1957 	if (abort) {
1958 		if (qc)
1959 			ata_link_abort(qc->dev->link);
1960 		else
1961 			ata_port_abort(ap);
1962 	}
1963 }
1964 
1965 static void mv_process_crpb_response(struct ata_port *ap,
1966 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1967 {
1968 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1969 
1970 	if (qc) {
1971 		u8 ata_status;
1972 		u16 edma_status = le16_to_cpu(response->flags);
1973 		/*
1974 		 * edma_status from a response queue entry:
1975 		 *   LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1976 		 *   MSB is saved ATA status from command completion.
1977 		 */
1978 		if (!ncq_enabled) {
1979 			u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1980 			if (err_cause) {
1981 				/*
1982 				 * Error will be seen/handled by mv_err_intr().
1983 				 * So do nothing at all here.
1984 				 */
1985 				return;
1986 			}
1987 		}
1988 		ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
1989 		if (!ac_err_mask(ata_status))
1990 			ata_qc_complete(qc);
1991 		/* else: leave it for mv_err_intr() */
1992 	} else {
1993 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
1994 				__func__, tag);
1995 	}
1996 }
1997 
1998 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
1999 {
2000 	void __iomem *port_mmio = mv_ap_base(ap);
2001 	struct mv_host_priv *hpriv = ap->host->private_data;
2002 	u32 in_index;
2003 	bool work_done = false;
2004 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2005 
2006 	/* Get the hardware queue position index */
2007 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2008 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2009 
2010 	/* Process new responses from since the last time we looked */
2011 	while (in_index != pp->resp_idx) {
2012 		unsigned int tag;
2013 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2014 
2015 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2016 
2017 		if (IS_GEN_I(hpriv)) {
2018 			/* 50xx: no NCQ, only one command active at a time */
2019 			tag = ap->link.active_tag;
2020 		} else {
2021 			/* Gen II/IIE: get command tag from CRPB entry */
2022 			tag = le16_to_cpu(response->id) & 0x1f;
2023 		}
2024 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2025 		work_done = true;
2026 	}
2027 
2028 	/* Update the software queue position index in hardware */
2029 	if (work_done)
2030 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2031 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2032 			 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2033 }
2034 
2035 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2036 {
2037 	struct mv_port_priv *pp;
2038 	int edma_was_enabled;
2039 
2040 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2041 		mv_unexpected_intr(ap, 0);
2042 		return;
2043 	}
2044 	/*
2045 	 * Grab a snapshot of the EDMA_EN flag setting,
2046 	 * so that we have a consistent view for this port,
2047 	 * even if something we call of our routines changes it.
2048 	 */
2049 	pp = ap->private_data;
2050 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2051 	/*
2052 	 * Process completed CRPB response(s) before other events.
2053 	 */
2054 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2055 		mv_process_crpb_entries(ap, pp);
2056 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2057 			mv_handle_fbs_ncq_dev_err(ap);
2058 	}
2059 	/*
2060 	 * Handle chip-reported errors, or continue on to handle PIO.
2061 	 */
2062 	if (unlikely(port_cause & ERR_IRQ)) {
2063 		mv_err_intr(ap);
2064 	} else if (!edma_was_enabled) {
2065 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2066 		if (qc)
2067 			ata_sff_host_intr(ap, qc);
2068 		else
2069 			mv_unexpected_intr(ap, edma_was_enabled);
2070 	}
2071 }
2072 
2073 /**
2074  *      mv_host_intr - Handle all interrupts on the given host controller
2075  *      @host: host specific structure
2076  *      @main_irq_cause: Main interrupt cause register for the chip.
2077  *
2078  *      LOCKING:
2079  *      Inherited from caller.
2080  */
2081 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2082 {
2083 	struct mv_host_priv *hpriv = host->private_data;
2084 	void __iomem *mmio = hpriv->base, *hc_mmio;
2085 	unsigned int handled = 0, port;
2086 
2087 	for (port = 0; port < hpriv->n_ports; port++) {
2088 		struct ata_port *ap = host->ports[port];
2089 		unsigned int p, shift, hardport, port_cause;
2090 
2091 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2092 		/*
2093 		 * Each hc within the host has its own hc_irq_cause register,
2094 		 * where the interrupting ports bits get ack'd.
2095 		 */
2096 		if (hardport == 0) {	/* first port on this hc ? */
2097 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2098 			u32 port_mask, ack_irqs;
2099 			/*
2100 			 * Skip this entire hc if nothing pending for any ports
2101 			 */
2102 			if (!hc_cause) {
2103 				port += MV_PORTS_PER_HC - 1;
2104 				continue;
2105 			}
2106 			/*
2107 			 * We don't need/want to read the hc_irq_cause register,
2108 			 * because doing so hurts performance, and
2109 			 * main_irq_cause already gives us everything we need.
2110 			 *
2111 			 * But we do have to *write* to the hc_irq_cause to ack
2112 			 * the ports that we are handling this time through.
2113 			 *
2114 			 * This requires that we create a bitmap for those
2115 			 * ports which interrupted us, and use that bitmap
2116 			 * to ack (only) those ports via hc_irq_cause.
2117 			 */
2118 			ack_irqs = 0;
2119 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2120 				if ((port + p) >= hpriv->n_ports)
2121 					break;
2122 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2123 				if (hc_cause & port_mask)
2124 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2125 			}
2126 			hc_mmio = mv_hc_base_from_port(mmio, port);
2127 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2128 			handled = 1;
2129 		}
2130 		/*
2131 		 * Handle interrupts signalled for this port:
2132 		 */
2133 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2134 		if (port_cause)
2135 			mv_port_intr(ap, port_cause);
2136 	}
2137 	return handled;
2138 }
2139 
2140 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2141 {
2142 	struct mv_host_priv *hpriv = host->private_data;
2143 	struct ata_port *ap;
2144 	struct ata_queued_cmd *qc;
2145 	struct ata_eh_info *ehi;
2146 	unsigned int i, err_mask, printed = 0;
2147 	u32 err_cause;
2148 
2149 	err_cause = readl(mmio + hpriv->irq_cause_ofs);
2150 
2151 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2152 		   err_cause);
2153 
2154 	DPRINTK("All regs @ PCI error\n");
2155 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2156 
2157 	writelfl(0, mmio + hpriv->irq_cause_ofs);
2158 
2159 	for (i = 0; i < host->n_ports; i++) {
2160 		ap = host->ports[i];
2161 		if (!ata_link_offline(&ap->link)) {
2162 			ehi = &ap->link.eh_info;
2163 			ata_ehi_clear_desc(ehi);
2164 			if (!printed++)
2165 				ata_ehi_push_desc(ehi,
2166 					"PCI err cause 0x%08x", err_cause);
2167 			err_mask = AC_ERR_HOST_BUS;
2168 			ehi->action = ATA_EH_RESET;
2169 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2170 			if (qc)
2171 				qc->err_mask |= err_mask;
2172 			else
2173 				ehi->err_mask |= err_mask;
2174 
2175 			ata_port_freeze(ap);
2176 		}
2177 	}
2178 	return 1;	/* handled */
2179 }
2180 
2181 /**
2182  *      mv_interrupt - Main interrupt event handler
2183  *      @irq: unused
2184  *      @dev_instance: private data; in this case the host structure
2185  *
2186  *      Read the read only register to determine if any host
2187  *      controllers have pending interrupts.  If so, call lower level
2188  *      routine to handle.  Also check for PCI errors which are only
2189  *      reported here.
2190  *
2191  *      LOCKING:
2192  *      This routine holds the host lock while processing pending
2193  *      interrupts.
2194  */
2195 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2196 {
2197 	struct ata_host *host = dev_instance;
2198 	struct mv_host_priv *hpriv = host->private_data;
2199 	unsigned int handled = 0;
2200 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2201 	u32 main_irq_cause, pending_irqs;
2202 
2203 	spin_lock(&host->lock);
2204 
2205 	/* for MSI:  block new interrupts while in here */
2206 	if (using_msi)
2207 		writel(0, hpriv->main_irq_mask_addr);
2208 
2209 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2210 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2211 	/*
2212 	 * Deal with cases where we either have nothing pending, or have read
2213 	 * a bogus register value which can indicate HW removal or PCI fault.
2214 	 */
2215 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2216 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2217 			handled = mv_pci_error(host, hpriv->base);
2218 		else
2219 			handled = mv_host_intr(host, pending_irqs);
2220 	}
2221 	spin_unlock(&host->lock);
2222 
2223 	/* for MSI: unmask; interrupt cause bits will retrigger now */
2224 	if (using_msi)
2225 		writel(hpriv->main_irq_mask, hpriv->main_irq_mask_addr);
2226 
2227 	return IRQ_RETVAL(handled);
2228 }
2229 
2230 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2231 {
2232 	unsigned int ofs;
2233 
2234 	switch (sc_reg_in) {
2235 	case SCR_STATUS:
2236 	case SCR_ERROR:
2237 	case SCR_CONTROL:
2238 		ofs = sc_reg_in * sizeof(u32);
2239 		break;
2240 	default:
2241 		ofs = 0xffffffffU;
2242 		break;
2243 	}
2244 	return ofs;
2245 }
2246 
2247 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2248 {
2249 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2250 	void __iomem *mmio = hpriv->base;
2251 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2252 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2253 
2254 	if (ofs != 0xffffffffU) {
2255 		*val = readl(addr + ofs);
2256 		return 0;
2257 	} else
2258 		return -EINVAL;
2259 }
2260 
2261 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
2262 {
2263 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2264 	void __iomem *mmio = hpriv->base;
2265 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2266 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2267 
2268 	if (ofs != 0xffffffffU) {
2269 		writelfl(val, addr + ofs);
2270 		return 0;
2271 	} else
2272 		return -EINVAL;
2273 }
2274 
2275 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2276 {
2277 	struct pci_dev *pdev = to_pci_dev(host->dev);
2278 	int early_5080;
2279 
2280 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2281 
2282 	if (!early_5080) {
2283 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2284 		tmp |= (1 << 0);
2285 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2286 	}
2287 
2288 	mv_reset_pci_bus(host, mmio);
2289 }
2290 
2291 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2292 {
2293 	writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2294 }
2295 
2296 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2297 			   void __iomem *mmio)
2298 {
2299 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2300 	u32 tmp;
2301 
2302 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2303 
2304 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
2305 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
2306 }
2307 
2308 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2309 {
2310 	u32 tmp;
2311 
2312 	writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2313 
2314 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2315 
2316 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2317 	tmp |= ~(1 << 0);
2318 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2319 }
2320 
2321 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2322 			   unsigned int port)
2323 {
2324 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2325 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2326 	u32 tmp;
2327 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2328 
2329 	if (fix_apm_sq) {
2330 		tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2331 		tmp |= (1 << 19);
2332 		writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2333 
2334 		tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2335 		tmp &= ~0x3;
2336 		tmp |= 0x1;
2337 		writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2338 	}
2339 
2340 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2341 	tmp &= ~mask;
2342 	tmp |= hpriv->signal[port].pre;
2343 	tmp |= hpriv->signal[port].amps;
2344 	writel(tmp, phy_mmio + MV5_PHY_MODE);
2345 }
2346 
2347 
2348 #undef ZERO
2349 #define ZERO(reg) writel(0, port_mmio + (reg))
2350 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2351 			     unsigned int port)
2352 {
2353 	void __iomem *port_mmio = mv_port_base(mmio, port);
2354 
2355 	mv_reset_channel(hpriv, mmio, port);
2356 
2357 	ZERO(0x028);	/* command */
2358 	writel(0x11f, port_mmio + EDMA_CFG_OFS);
2359 	ZERO(0x004);	/* timer */
2360 	ZERO(0x008);	/* irq err cause */
2361 	ZERO(0x00c);	/* irq err mask */
2362 	ZERO(0x010);	/* rq bah */
2363 	ZERO(0x014);	/* rq inp */
2364 	ZERO(0x018);	/* rq outp */
2365 	ZERO(0x01c);	/* respq bah */
2366 	ZERO(0x024);	/* respq outp */
2367 	ZERO(0x020);	/* respq inp */
2368 	ZERO(0x02c);	/* test control */
2369 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2370 }
2371 #undef ZERO
2372 
2373 #define ZERO(reg) writel(0, hc_mmio + (reg))
2374 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2375 			unsigned int hc)
2376 {
2377 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2378 	u32 tmp;
2379 
2380 	ZERO(0x00c);
2381 	ZERO(0x010);
2382 	ZERO(0x014);
2383 	ZERO(0x018);
2384 
2385 	tmp = readl(hc_mmio + 0x20);
2386 	tmp &= 0x1c1c1c1c;
2387 	tmp |= 0x03030303;
2388 	writel(tmp, hc_mmio + 0x20);
2389 }
2390 #undef ZERO
2391 
2392 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2393 			unsigned int n_hc)
2394 {
2395 	unsigned int hc, port;
2396 
2397 	for (hc = 0; hc < n_hc; hc++) {
2398 		for (port = 0; port < MV_PORTS_PER_HC; port++)
2399 			mv5_reset_hc_port(hpriv, mmio,
2400 					  (hc * MV_PORTS_PER_HC) + port);
2401 
2402 		mv5_reset_one_hc(hpriv, mmio, hc);
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 #undef ZERO
2409 #define ZERO(reg) writel(0, mmio + (reg))
2410 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2411 {
2412 	struct mv_host_priv *hpriv = host->private_data;
2413 	u32 tmp;
2414 
2415 	tmp = readl(mmio + MV_PCI_MODE_OFS);
2416 	tmp &= 0xff00ffff;
2417 	writel(tmp, mmio + MV_PCI_MODE_OFS);
2418 
2419 	ZERO(MV_PCI_DISC_TIMER);
2420 	ZERO(MV_PCI_MSI_TRIGGER);
2421 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2422 	ZERO(MV_PCI_SERR_MASK);
2423 	ZERO(hpriv->irq_cause_ofs);
2424 	ZERO(hpriv->irq_mask_ofs);
2425 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
2426 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2427 	ZERO(MV_PCI_ERR_ATTRIBUTE);
2428 	ZERO(MV_PCI_ERR_COMMAND);
2429 }
2430 #undef ZERO
2431 
2432 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2433 {
2434 	u32 tmp;
2435 
2436 	mv5_reset_flash(hpriv, mmio);
2437 
2438 	tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2439 	tmp &= 0x3;
2440 	tmp |= (1 << 5) | (1 << 6);
2441 	writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2442 }
2443 
2444 /**
2445  *      mv6_reset_hc - Perform the 6xxx global soft reset
2446  *      @mmio: base address of the HBA
2447  *
2448  *      This routine only applies to 6xxx parts.
2449  *
2450  *      LOCKING:
2451  *      Inherited from caller.
2452  */
2453 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2454 			unsigned int n_hc)
2455 {
2456 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2457 	int i, rc = 0;
2458 	u32 t;
2459 
2460 	/* Following procedure defined in PCI "main command and status
2461 	 * register" table.
2462 	 */
2463 	t = readl(reg);
2464 	writel(t | STOP_PCI_MASTER, reg);
2465 
2466 	for (i = 0; i < 1000; i++) {
2467 		udelay(1);
2468 		t = readl(reg);
2469 		if (PCI_MASTER_EMPTY & t)
2470 			break;
2471 	}
2472 	if (!(PCI_MASTER_EMPTY & t)) {
2473 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2474 		rc = 1;
2475 		goto done;
2476 	}
2477 
2478 	/* set reset */
2479 	i = 5;
2480 	do {
2481 		writel(t | GLOB_SFT_RST, reg);
2482 		t = readl(reg);
2483 		udelay(1);
2484 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
2485 
2486 	if (!(GLOB_SFT_RST & t)) {
2487 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2488 		rc = 1;
2489 		goto done;
2490 	}
2491 
2492 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
2493 	i = 5;
2494 	do {
2495 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2496 		t = readl(reg);
2497 		udelay(1);
2498 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
2499 
2500 	if (GLOB_SFT_RST & t) {
2501 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2502 		rc = 1;
2503 	}
2504 done:
2505 	return rc;
2506 }
2507 
2508 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2509 			   void __iomem *mmio)
2510 {
2511 	void __iomem *port_mmio;
2512 	u32 tmp;
2513 
2514 	tmp = readl(mmio + MV_RESET_CFG_OFS);
2515 	if ((tmp & (1 << 0)) == 0) {
2516 		hpriv->signal[idx].amps = 0x7 << 8;
2517 		hpriv->signal[idx].pre = 0x1 << 5;
2518 		return;
2519 	}
2520 
2521 	port_mmio = mv_port_base(mmio, idx);
2522 	tmp = readl(port_mmio + PHY_MODE2);
2523 
2524 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2525 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2526 }
2527 
2528 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2529 {
2530 	writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2531 }
2532 
2533 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2534 			   unsigned int port)
2535 {
2536 	void __iomem *port_mmio = mv_port_base(mmio, port);
2537 
2538 	u32 hp_flags = hpriv->hp_flags;
2539 	int fix_phy_mode2 =
2540 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2541 	int fix_phy_mode4 =
2542 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2543 	u32 m2, m3;
2544 
2545 	if (fix_phy_mode2) {
2546 		m2 = readl(port_mmio + PHY_MODE2);
2547 		m2 &= ~(1 << 16);
2548 		m2 |= (1 << 31);
2549 		writel(m2, port_mmio + PHY_MODE2);
2550 
2551 		udelay(200);
2552 
2553 		m2 = readl(port_mmio + PHY_MODE2);
2554 		m2 &= ~((1 << 16) | (1 << 31));
2555 		writel(m2, port_mmio + PHY_MODE2);
2556 
2557 		udelay(200);
2558 	}
2559 
2560 	/*
2561 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
2562 	 * Achieves better receiver noise performance than the h/w default:
2563 	 */
2564 	m3 = readl(port_mmio + PHY_MODE3);
2565 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
2566 
2567 	/* Guideline 88F5182 (GL# SATA-S11) */
2568 	if (IS_SOC(hpriv))
2569 		m3 &= ~0x1c;
2570 
2571 	if (fix_phy_mode4) {
2572 		u32 m4 = readl(port_mmio + PHY_MODE4);
2573 		/*
2574 		 * Enforce reserved-bit restrictions on GenIIe devices only.
2575 		 * For earlier chipsets, force only the internal config field
2576 		 *  (workaround for errata FEr SATA#10 part 1).
2577 		 */
2578 		if (IS_GEN_IIE(hpriv))
2579 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
2580 		else
2581 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
2582 		writel(m4, port_mmio + PHY_MODE4);
2583 	}
2584 	/*
2585 	 * Workaround for 60x1-B2 errata SATA#13:
2586 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2587 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2588 	 */
2589 	writel(m3, port_mmio + PHY_MODE3);
2590 
2591 	/* Revert values of pre-emphasis and signal amps to the saved ones */
2592 	m2 = readl(port_mmio + PHY_MODE2);
2593 
2594 	m2 &= ~MV_M2_PREAMP_MASK;
2595 	m2 |= hpriv->signal[port].amps;
2596 	m2 |= hpriv->signal[port].pre;
2597 	m2 &= ~(1 << 16);
2598 
2599 	/* according to mvSata 3.6.1, some IIE values are fixed */
2600 	if (IS_GEN_IIE(hpriv)) {
2601 		m2 &= ~0xC30FF01F;
2602 		m2 |= 0x0000900F;
2603 	}
2604 
2605 	writel(m2, port_mmio + PHY_MODE2);
2606 }
2607 
2608 /* TODO: use the generic LED interface to configure the SATA Presence */
2609 /* & Acitivy LEDs on the board */
2610 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2611 				      void __iomem *mmio)
2612 {
2613 	return;
2614 }
2615 
2616 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2617 			   void __iomem *mmio)
2618 {
2619 	void __iomem *port_mmio;
2620 	u32 tmp;
2621 
2622 	port_mmio = mv_port_base(mmio, idx);
2623 	tmp = readl(port_mmio + PHY_MODE2);
2624 
2625 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2626 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2627 }
2628 
2629 #undef ZERO
2630 #define ZERO(reg) writel(0, port_mmio + (reg))
2631 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2632 					void __iomem *mmio, unsigned int port)
2633 {
2634 	void __iomem *port_mmio = mv_port_base(mmio, port);
2635 
2636 	mv_reset_channel(hpriv, mmio, port);
2637 
2638 	ZERO(0x028);		/* command */
2639 	writel(0x101f, port_mmio + EDMA_CFG_OFS);
2640 	ZERO(0x004);		/* timer */
2641 	ZERO(0x008);		/* irq err cause */
2642 	ZERO(0x00c);		/* irq err mask */
2643 	ZERO(0x010);		/* rq bah */
2644 	ZERO(0x014);		/* rq inp */
2645 	ZERO(0x018);		/* rq outp */
2646 	ZERO(0x01c);		/* respq bah */
2647 	ZERO(0x024);		/* respq outp */
2648 	ZERO(0x020);		/* respq inp */
2649 	ZERO(0x02c);		/* test control */
2650 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2651 }
2652 
2653 #undef ZERO
2654 
2655 #define ZERO(reg) writel(0, hc_mmio + (reg))
2656 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2657 				       void __iomem *mmio)
2658 {
2659 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2660 
2661 	ZERO(0x00c);
2662 	ZERO(0x010);
2663 	ZERO(0x014);
2664 
2665 }
2666 
2667 #undef ZERO
2668 
2669 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2670 				  void __iomem *mmio, unsigned int n_hc)
2671 {
2672 	unsigned int port;
2673 
2674 	for (port = 0; port < hpriv->n_ports; port++)
2675 		mv_soc_reset_hc_port(hpriv, mmio, port);
2676 
2677 	mv_soc_reset_one_hc(hpriv, mmio);
2678 
2679 	return 0;
2680 }
2681 
2682 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2683 				      void __iomem *mmio)
2684 {
2685 	return;
2686 }
2687 
2688 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2689 {
2690 	return;
2691 }
2692 
2693 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2694 {
2695 	u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2696 
2697 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
2698 	if (want_gen2i)
2699 		ifcfg |= (1 << 7);		/* enable gen2i speed */
2700 	writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2701 }
2702 
2703 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2704 			     unsigned int port_no)
2705 {
2706 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
2707 
2708 	/*
2709 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
2710 	 * (but doesn't say what the problem might be).  So we first try
2711 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
2712 	 */
2713 	mv_stop_edma_engine(port_mmio);
2714 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2715 
2716 	if (!IS_GEN_I(hpriv)) {
2717 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2718 		mv_setup_ifcfg(port_mmio, 1);
2719 	}
2720 	/*
2721 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2722 	 * link, and physical layers.  It resets all SATA interface registers
2723 	 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2724 	 */
2725 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2726 	udelay(25);	/* allow reset propagation */
2727 	writelfl(0, port_mmio + EDMA_CMD_OFS);
2728 
2729 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
2730 
2731 	if (IS_GEN_I(hpriv))
2732 		mdelay(1);
2733 }
2734 
2735 static void mv_pmp_select(struct ata_port *ap, int pmp)
2736 {
2737 	if (sata_pmp_supported(ap)) {
2738 		void __iomem *port_mmio = mv_ap_base(ap);
2739 		u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2740 		int old = reg & 0xf;
2741 
2742 		if (old != pmp) {
2743 			reg = (reg & ~0xf) | pmp;
2744 			writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2745 		}
2746 	}
2747 }
2748 
2749 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2750 				unsigned long deadline)
2751 {
2752 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2753 	return sata_std_hardreset(link, class, deadline);
2754 }
2755 
2756 static int mv_softreset(struct ata_link *link, unsigned int *class,
2757 				unsigned long deadline)
2758 {
2759 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2760 	return ata_sff_softreset(link, class, deadline);
2761 }
2762 
2763 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2764 			unsigned long deadline)
2765 {
2766 	struct ata_port *ap = link->ap;
2767 	struct mv_host_priv *hpriv = ap->host->private_data;
2768 	struct mv_port_priv *pp = ap->private_data;
2769 	void __iomem *mmio = hpriv->base;
2770 	int rc, attempts = 0, extra = 0;
2771 	u32 sstatus;
2772 	bool online;
2773 
2774 	mv_reset_channel(hpriv, mmio, ap->port_no);
2775 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2776 
2777 	/* Workaround for errata FEr SATA#10 (part 2) */
2778 	do {
2779 		const unsigned long *timing =
2780 				sata_ehc_deb_timing(&link->eh_context);
2781 
2782 		rc = sata_link_hardreset(link, timing, deadline + extra,
2783 					 &online, NULL);
2784 		rc = online ? -EAGAIN : rc;
2785 		if (rc)
2786 			return rc;
2787 		sata_scr_read(link, SCR_STATUS, &sstatus);
2788 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2789 			/* Force 1.5gb/s link speed and try again */
2790 			mv_setup_ifcfg(mv_ap_base(ap), 0);
2791 			if (time_after(jiffies + HZ, deadline))
2792 				extra = HZ; /* only extend it once, max */
2793 		}
2794 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2795 
2796 	return rc;
2797 }
2798 
2799 static void mv_eh_freeze(struct ata_port *ap)
2800 {
2801 	mv_stop_edma(ap);
2802 	mv_enable_port_irqs(ap, 0);
2803 }
2804 
2805 static void mv_eh_thaw(struct ata_port *ap)
2806 {
2807 	struct mv_host_priv *hpriv = ap->host->private_data;
2808 	unsigned int port = ap->port_no;
2809 	unsigned int hardport = mv_hardport_from_port(port);
2810 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2811 	void __iomem *port_mmio = mv_ap_base(ap);
2812 	u32 hc_irq_cause;
2813 
2814 	/* clear EDMA errors on this port */
2815 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2816 
2817 	/* clear pending irq events */
2818 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
2819 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2820 
2821 	mv_enable_port_irqs(ap, ERR_IRQ);
2822 }
2823 
2824 /**
2825  *      mv_port_init - Perform some early initialization on a single port.
2826  *      @port: libata data structure storing shadow register addresses
2827  *      @port_mmio: base address of the port
2828  *
2829  *      Initialize shadow register mmio addresses, clear outstanding
2830  *      interrupts on the port, and unmask interrupts for the future
2831  *      start of the port.
2832  *
2833  *      LOCKING:
2834  *      Inherited from caller.
2835  */
2836 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
2837 {
2838 	void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2839 	unsigned serr_ofs;
2840 
2841 	/* PIO related setup
2842 	 */
2843 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2844 	port->error_addr =
2845 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2846 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2847 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2848 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2849 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2850 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2851 	port->status_addr =
2852 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2853 	/* special case: control/altstatus doesn't have ATA_REG_ address */
2854 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2855 
2856 	/* unused: */
2857 	port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2858 
2859 	/* Clear any currently outstanding port interrupt conditions */
2860 	serr_ofs = mv_scr_offset(SCR_ERROR);
2861 	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2862 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2863 
2864 	/* unmask all non-transient EDMA error interrupts */
2865 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2866 
2867 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2868 		readl(port_mmio + EDMA_CFG_OFS),
2869 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2870 		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2871 }
2872 
2873 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2874 {
2875 	struct mv_host_priv *hpriv = host->private_data;
2876 	void __iomem *mmio = hpriv->base;
2877 	u32 reg;
2878 
2879 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2880 		return 0;	/* not PCI-X capable */
2881 	reg = readl(mmio + MV_PCI_MODE_OFS);
2882 	if ((reg & MV_PCI_MODE_MASK) == 0)
2883 		return 0;	/* conventional PCI mode */
2884 	return 1;	/* chip is in PCI-X mode */
2885 }
2886 
2887 static int mv_pci_cut_through_okay(struct ata_host *host)
2888 {
2889 	struct mv_host_priv *hpriv = host->private_data;
2890 	void __iomem *mmio = hpriv->base;
2891 	u32 reg;
2892 
2893 	if (!mv_in_pcix_mode(host)) {
2894 		reg = readl(mmio + PCI_COMMAND_OFS);
2895 		if (reg & PCI_COMMAND_MRDTRIG)
2896 			return 0; /* not okay */
2897 	}
2898 	return 1; /* okay */
2899 }
2900 
2901 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2902 {
2903 	struct pci_dev *pdev = to_pci_dev(host->dev);
2904 	struct mv_host_priv *hpriv = host->private_data;
2905 	u32 hp_flags = hpriv->hp_flags;
2906 
2907 	switch (board_idx) {
2908 	case chip_5080:
2909 		hpriv->ops = &mv5xxx_ops;
2910 		hp_flags |= MV_HP_GEN_I;
2911 
2912 		switch (pdev->revision) {
2913 		case 0x1:
2914 			hp_flags |= MV_HP_ERRATA_50XXB0;
2915 			break;
2916 		case 0x3:
2917 			hp_flags |= MV_HP_ERRATA_50XXB2;
2918 			break;
2919 		default:
2920 			dev_printk(KERN_WARNING, &pdev->dev,
2921 			   "Applying 50XXB2 workarounds to unknown rev\n");
2922 			hp_flags |= MV_HP_ERRATA_50XXB2;
2923 			break;
2924 		}
2925 		break;
2926 
2927 	case chip_504x:
2928 	case chip_508x:
2929 		hpriv->ops = &mv5xxx_ops;
2930 		hp_flags |= MV_HP_GEN_I;
2931 
2932 		switch (pdev->revision) {
2933 		case 0x0:
2934 			hp_flags |= MV_HP_ERRATA_50XXB0;
2935 			break;
2936 		case 0x3:
2937 			hp_flags |= MV_HP_ERRATA_50XXB2;
2938 			break;
2939 		default:
2940 			dev_printk(KERN_WARNING, &pdev->dev,
2941 			   "Applying B2 workarounds to unknown rev\n");
2942 			hp_flags |= MV_HP_ERRATA_50XXB2;
2943 			break;
2944 		}
2945 		break;
2946 
2947 	case chip_604x:
2948 	case chip_608x:
2949 		hpriv->ops = &mv6xxx_ops;
2950 		hp_flags |= MV_HP_GEN_II;
2951 
2952 		switch (pdev->revision) {
2953 		case 0x7:
2954 			hp_flags |= MV_HP_ERRATA_60X1B2;
2955 			break;
2956 		case 0x9:
2957 			hp_flags |= MV_HP_ERRATA_60X1C0;
2958 			break;
2959 		default:
2960 			dev_printk(KERN_WARNING, &pdev->dev,
2961 				   "Applying B2 workarounds to unknown rev\n");
2962 			hp_flags |= MV_HP_ERRATA_60X1B2;
2963 			break;
2964 		}
2965 		break;
2966 
2967 	case chip_7042:
2968 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2969 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2970 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
2971 		{
2972 			/*
2973 			 * Highpoint RocketRAID PCIe 23xx series cards:
2974 			 *
2975 			 * Unconfigured drives are treated as "Legacy"
2976 			 * by the BIOS, and it overwrites sector 8 with
2977 			 * a "Lgcy" metadata block prior to Linux boot.
2978 			 *
2979 			 * Configured drives (RAID or JBOD) leave sector 8
2980 			 * alone, but instead overwrite a high numbered
2981 			 * sector for the RAID metadata.  This sector can
2982 			 * be determined exactly, by truncating the physical
2983 			 * drive capacity to a nice even GB value.
2984 			 *
2985 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2986 			 *
2987 			 * Warn the user, lest they think we're just buggy.
2988 			 */
2989 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2990 				" BIOS CORRUPTS DATA on all attached drives,"
2991 				" regardless of if/how they are configured."
2992 				" BEWARE!\n");
2993 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2994 				" use sectors 8-9 on \"Legacy\" drives,"
2995 				" and avoid the final two gigabytes on"
2996 				" all RocketRAID BIOS initialized drives.\n");
2997 		}
2998 		/* drop through */
2999 	case chip_6042:
3000 		hpriv->ops = &mv6xxx_ops;
3001 		hp_flags |= MV_HP_GEN_IIE;
3002 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3003 			hp_flags |= MV_HP_CUT_THROUGH;
3004 
3005 		switch (pdev->revision) {
3006 		case 0x2: /* Rev.B0: the first/only public release */
3007 			hp_flags |= MV_HP_ERRATA_60X1C0;
3008 			break;
3009 		default:
3010 			dev_printk(KERN_WARNING, &pdev->dev,
3011 			   "Applying 60X1C0 workarounds to unknown rev\n");
3012 			hp_flags |= MV_HP_ERRATA_60X1C0;
3013 			break;
3014 		}
3015 		break;
3016 	case chip_soc:
3017 		hpriv->ops = &mv_soc_ops;
3018 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3019 			MV_HP_ERRATA_60X1C0;
3020 		break;
3021 
3022 	default:
3023 		dev_printk(KERN_ERR, host->dev,
3024 			   "BUG: invalid board index %u\n", board_idx);
3025 		return 1;
3026 	}
3027 
3028 	hpriv->hp_flags = hp_flags;
3029 	if (hp_flags & MV_HP_PCIE) {
3030 		hpriv->irq_cause_ofs	= PCIE_IRQ_CAUSE_OFS;
3031 		hpriv->irq_mask_ofs	= PCIE_IRQ_MASK_OFS;
3032 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3033 	} else {
3034 		hpriv->irq_cause_ofs	= PCI_IRQ_CAUSE_OFS;
3035 		hpriv->irq_mask_ofs	= PCI_IRQ_MASK_OFS;
3036 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 /**
3043  *      mv_init_host - Perform some early initialization of the host.
3044  *	@host: ATA host to initialize
3045  *      @board_idx: controller index
3046  *
3047  *      If possible, do an early global reset of the host.  Then do
3048  *      our port init and clear/unmask all/relevant host interrupts.
3049  *
3050  *      LOCKING:
3051  *      Inherited from caller.
3052  */
3053 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3054 {
3055 	int rc = 0, n_hc, port, hc;
3056 	struct mv_host_priv *hpriv = host->private_data;
3057 	void __iomem *mmio = hpriv->base;
3058 
3059 	rc = mv_chip_id(host, board_idx);
3060 	if (rc)
3061 		goto done;
3062 
3063 	if (IS_SOC(hpriv)) {
3064 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3065 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3066 	} else {
3067 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3068 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3069 	}
3070 
3071 	/* initialize shadow irq mask with register's value */
3072 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3073 
3074 	/* global interrupt mask: 0 == mask everything */
3075 	mv_set_main_irq_mask(host, ~0, 0);
3076 
3077 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3078 
3079 	for (port = 0; port < host->n_ports; port++)
3080 		hpriv->ops->read_preamp(hpriv, port, mmio);
3081 
3082 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3083 	if (rc)
3084 		goto done;
3085 
3086 	hpriv->ops->reset_flash(hpriv, mmio);
3087 	hpriv->ops->reset_bus(host, mmio);
3088 	hpriv->ops->enable_leds(hpriv, mmio);
3089 
3090 	for (port = 0; port < host->n_ports; port++) {
3091 		struct ata_port *ap = host->ports[port];
3092 		void __iomem *port_mmio = mv_port_base(mmio, port);
3093 
3094 		mv_port_init(&ap->ioaddr, port_mmio);
3095 
3096 #ifdef CONFIG_PCI
3097 		if (!IS_SOC(hpriv)) {
3098 			unsigned int offset = port_mmio - mmio;
3099 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3100 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3101 		}
3102 #endif
3103 	}
3104 
3105 	for (hc = 0; hc < n_hc; hc++) {
3106 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3107 
3108 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3109 			"(before clear)=0x%08x\n", hc,
3110 			readl(hc_mmio + HC_CFG_OFS),
3111 			readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3112 
3113 		/* Clear any currently outstanding hc interrupt conditions */
3114 		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3115 	}
3116 
3117 	if (!IS_SOC(hpriv)) {
3118 		/* Clear any currently outstanding host interrupt conditions */
3119 		writelfl(0, mmio + hpriv->irq_cause_ofs);
3120 
3121 		/* and unmask interrupt generation for host regs */
3122 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3123 
3124 		/*
3125 		 * enable only global host interrupts for now.
3126 		 * The per-port interrupts get done later as ports are set up.
3127 		 */
3128 		mv_set_main_irq_mask(host, 0, PCI_ERR);
3129 	}
3130 done:
3131 	return rc;
3132 }
3133 
3134 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3135 {
3136 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3137 							     MV_CRQB_Q_SZ, 0);
3138 	if (!hpriv->crqb_pool)
3139 		return -ENOMEM;
3140 
3141 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3142 							     MV_CRPB_Q_SZ, 0);
3143 	if (!hpriv->crpb_pool)
3144 		return -ENOMEM;
3145 
3146 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3147 							     MV_SG_TBL_SZ, 0);
3148 	if (!hpriv->sg_tbl_pool)
3149 		return -ENOMEM;
3150 
3151 	return 0;
3152 }
3153 
3154 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3155 				 struct mbus_dram_target_info *dram)
3156 {
3157 	int i;
3158 
3159 	for (i = 0; i < 4; i++) {
3160 		writel(0, hpriv->base + WINDOW_CTRL(i));
3161 		writel(0, hpriv->base + WINDOW_BASE(i));
3162 	}
3163 
3164 	for (i = 0; i < dram->num_cs; i++) {
3165 		struct mbus_dram_window *cs = dram->cs + i;
3166 
3167 		writel(((cs->size - 1) & 0xffff0000) |
3168 			(cs->mbus_attr << 8) |
3169 			(dram->mbus_dram_target_id << 4) | 1,
3170 			hpriv->base + WINDOW_CTRL(i));
3171 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3172 	}
3173 }
3174 
3175 /**
3176  *      mv_platform_probe - handle a positive probe of an soc Marvell
3177  *      host
3178  *      @pdev: platform device found
3179  *
3180  *      LOCKING:
3181  *      Inherited from caller.
3182  */
3183 static int mv_platform_probe(struct platform_device *pdev)
3184 {
3185 	static int printed_version;
3186 	const struct mv_sata_platform_data *mv_platform_data;
3187 	const struct ata_port_info *ppi[] =
3188 	    { &mv_port_info[chip_soc], NULL };
3189 	struct ata_host *host;
3190 	struct mv_host_priv *hpriv;
3191 	struct resource *res;
3192 	int n_ports, rc;
3193 
3194 	if (!printed_version++)
3195 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3196 
3197 	/*
3198 	 * Simple resource validation ..
3199 	 */
3200 	if (unlikely(pdev->num_resources != 2)) {
3201 		dev_err(&pdev->dev, "invalid number of resources\n");
3202 		return -EINVAL;
3203 	}
3204 
3205 	/*
3206 	 * Get the register base first
3207 	 */
3208 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3209 	if (res == NULL)
3210 		return -EINVAL;
3211 
3212 	/* allocate host */
3213 	mv_platform_data = pdev->dev.platform_data;
3214 	n_ports = mv_platform_data->n_ports;
3215 
3216 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3217 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3218 
3219 	if (!host || !hpriv)
3220 		return -ENOMEM;
3221 	host->private_data = hpriv;
3222 	hpriv->n_ports = n_ports;
3223 
3224 	host->iomap = NULL;
3225 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
3226 				   res->end - res->start + 1);
3227 	hpriv->base -= MV_SATAHC0_REG_BASE;
3228 
3229 	/*
3230 	 * (Re-)program MBUS remapping windows if we are asked to.
3231 	 */
3232 	if (mv_platform_data->dram != NULL)
3233 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3234 
3235 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3236 	if (rc)
3237 		return rc;
3238 
3239 	/* initialize adapter */
3240 	rc = mv_init_host(host, chip_soc);
3241 	if (rc)
3242 		return rc;
3243 
3244 	dev_printk(KERN_INFO, &pdev->dev,
3245 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3246 		   host->n_ports);
3247 
3248 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3249 				 IRQF_SHARED, &mv6_sht);
3250 }
3251 
3252 /*
3253  *
3254  *      mv_platform_remove    -       unplug a platform interface
3255  *      @pdev: platform device
3256  *
3257  *      A platform bus SATA device has been unplugged. Perform the needed
3258  *      cleanup. Also called on module unload for any active devices.
3259  */
3260 static int __devexit mv_platform_remove(struct platform_device *pdev)
3261 {
3262 	struct device *dev = &pdev->dev;
3263 	struct ata_host *host = dev_get_drvdata(dev);
3264 
3265 	ata_host_detach(host);
3266 	return 0;
3267 }
3268 
3269 static struct platform_driver mv_platform_driver = {
3270 	.probe			= mv_platform_probe,
3271 	.remove			= __devexit_p(mv_platform_remove),
3272 	.driver			= {
3273 				   .name = DRV_NAME,
3274 				   .owner = THIS_MODULE,
3275 				  },
3276 };
3277 
3278 
3279 #ifdef CONFIG_PCI
3280 static int mv_pci_init_one(struct pci_dev *pdev,
3281 			   const struct pci_device_id *ent);
3282 
3283 
3284 static struct pci_driver mv_pci_driver = {
3285 	.name			= DRV_NAME,
3286 	.id_table		= mv_pci_tbl,
3287 	.probe			= mv_pci_init_one,
3288 	.remove			= ata_pci_remove_one,
3289 };
3290 
3291 /*
3292  * module options
3293  */
3294 static int msi;	      /* Use PCI msi; either zero (off, default) or non-zero */
3295 
3296 
3297 /* move to PCI layer or libata core? */
3298 static int pci_go_64(struct pci_dev *pdev)
3299 {
3300 	int rc;
3301 
3302 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3303 		rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3304 		if (rc) {
3305 			rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3306 			if (rc) {
3307 				dev_printk(KERN_ERR, &pdev->dev,
3308 					   "64-bit DMA enable failed\n");
3309 				return rc;
3310 			}
3311 		}
3312 	} else {
3313 		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3314 		if (rc) {
3315 			dev_printk(KERN_ERR, &pdev->dev,
3316 				   "32-bit DMA enable failed\n");
3317 			return rc;
3318 		}
3319 		rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3320 		if (rc) {
3321 			dev_printk(KERN_ERR, &pdev->dev,
3322 				   "32-bit consistent DMA enable failed\n");
3323 			return rc;
3324 		}
3325 	}
3326 
3327 	return rc;
3328 }
3329 
3330 /**
3331  *      mv_print_info - Dump key info to kernel log for perusal.
3332  *      @host: ATA host to print info about
3333  *
3334  *      FIXME: complete this.
3335  *
3336  *      LOCKING:
3337  *      Inherited from caller.
3338  */
3339 static void mv_print_info(struct ata_host *host)
3340 {
3341 	struct pci_dev *pdev = to_pci_dev(host->dev);
3342 	struct mv_host_priv *hpriv = host->private_data;
3343 	u8 scc;
3344 	const char *scc_s, *gen;
3345 
3346 	/* Use this to determine the HW stepping of the chip so we know
3347 	 * what errata to workaround
3348 	 */
3349 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3350 	if (scc == 0)
3351 		scc_s = "SCSI";
3352 	else if (scc == 0x01)
3353 		scc_s = "RAID";
3354 	else
3355 		scc_s = "?";
3356 
3357 	if (IS_GEN_I(hpriv))
3358 		gen = "I";
3359 	else if (IS_GEN_II(hpriv))
3360 		gen = "II";
3361 	else if (IS_GEN_IIE(hpriv))
3362 		gen = "IIE";
3363 	else
3364 		gen = "?";
3365 
3366 	dev_printk(KERN_INFO, &pdev->dev,
3367 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3368 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3369 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3370 }
3371 
3372 /**
3373  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
3374  *      @pdev: PCI device found
3375  *      @ent: PCI device ID entry for the matched host
3376  *
3377  *      LOCKING:
3378  *      Inherited from caller.
3379  */
3380 static int mv_pci_init_one(struct pci_dev *pdev,
3381 			   const struct pci_device_id *ent)
3382 {
3383 	static int printed_version;
3384 	unsigned int board_idx = (unsigned int)ent->driver_data;
3385 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3386 	struct ata_host *host;
3387 	struct mv_host_priv *hpriv;
3388 	int n_ports, rc;
3389 
3390 	if (!printed_version++)
3391 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3392 
3393 	/* allocate host */
3394 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3395 
3396 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3397 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3398 	if (!host || !hpriv)
3399 		return -ENOMEM;
3400 	host->private_data = hpriv;
3401 	hpriv->n_ports = n_ports;
3402 
3403 	/* acquire resources */
3404 	rc = pcim_enable_device(pdev);
3405 	if (rc)
3406 		return rc;
3407 
3408 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3409 	if (rc == -EBUSY)
3410 		pcim_pin_device(pdev);
3411 	if (rc)
3412 		return rc;
3413 	host->iomap = pcim_iomap_table(pdev);
3414 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
3415 
3416 	rc = pci_go_64(pdev);
3417 	if (rc)
3418 		return rc;
3419 
3420 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3421 	if (rc)
3422 		return rc;
3423 
3424 	/* initialize adapter */
3425 	rc = mv_init_host(host, board_idx);
3426 	if (rc)
3427 		return rc;
3428 
3429 	/* Enable message-switched interrupts, if requested */
3430 	if (msi && pci_enable_msi(pdev) == 0)
3431 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
3432 
3433 	mv_dump_pci_cfg(pdev, 0x68);
3434 	mv_print_info(host);
3435 
3436 	pci_set_master(pdev);
3437 	pci_try_set_mwi(pdev);
3438 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3439 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3440 }
3441 #endif
3442 
3443 static int mv_platform_probe(struct platform_device *pdev);
3444 static int __devexit mv_platform_remove(struct platform_device *pdev);
3445 
3446 static int __init mv_init(void)
3447 {
3448 	int rc = -ENODEV;
3449 #ifdef CONFIG_PCI
3450 	rc = pci_register_driver(&mv_pci_driver);
3451 	if (rc < 0)
3452 		return rc;
3453 #endif
3454 	rc = platform_driver_register(&mv_platform_driver);
3455 
3456 #ifdef CONFIG_PCI
3457 	if (rc < 0)
3458 		pci_unregister_driver(&mv_pci_driver);
3459 #endif
3460 	return rc;
3461 }
3462 
3463 static void __exit mv_exit(void)
3464 {
3465 #ifdef CONFIG_PCI
3466 	pci_unregister_driver(&mv_pci_driver);
3467 #endif
3468 	platform_driver_unregister(&mv_platform_driver);
3469 }
3470 
3471 MODULE_AUTHOR("Brett Russ");
3472 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3473 MODULE_LICENSE("GPL");
3474 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3475 MODULE_VERSION(DRV_VERSION);
3476 MODULE_ALIAS("platform:" DRV_NAME);
3477 
3478 #ifdef CONFIG_PCI
3479 module_param(msi, int, 0444);
3480 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3481 #endif
3482 
3483 module_init(mv_init);
3484 module_exit(mv_exit);
3485