xref: /linux/drivers/ata/sata_mv.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/phy/phy.h>
64 #include <linux/platform_device.h>
65 #include <linux/ata_platform.h>
66 #include <linux/mbus.h>
67 #include <linux/bitops.h>
68 #include <linux/gfp.h>
69 #include <linux/of.h>
70 #include <linux/of_irq.h>
71 #include <scsi/scsi_host.h>
72 #include <scsi/scsi_cmnd.h>
73 #include <scsi/scsi_device.h>
74 #include <linux/libata.h>
75 
76 #define DRV_NAME	"sata_mv"
77 #define DRV_VERSION	"1.28"
78 
79 /*
80  * module options
81  */
82 
83 #ifdef CONFIG_PCI
84 static int msi;
85 module_param(msi, int, S_IRUGO);
86 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
87 #endif
88 
89 static int irq_coalescing_io_count;
90 module_param(irq_coalescing_io_count, int, S_IRUGO);
91 MODULE_PARM_DESC(irq_coalescing_io_count,
92 		 "IRQ coalescing I/O count threshold (0..255)");
93 
94 static int irq_coalescing_usecs;
95 module_param(irq_coalescing_usecs, int, S_IRUGO);
96 MODULE_PARM_DESC(irq_coalescing_usecs,
97 		 "IRQ coalescing time threshold in usecs");
98 
99 enum {
100 	/* BAR's are enumerated in terms of pci_resource_start() terms */
101 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
102 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
103 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
104 
105 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
106 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
107 
108 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
109 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
110 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
111 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
112 
113 	MV_PCI_REG_BASE		= 0,
114 
115 	/*
116 	 * Per-chip ("all ports") interrupt coalescing feature.
117 	 * This is only for GEN_II / GEN_IIE hardware.
118 	 *
119 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
120 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
121 	 */
122 	COAL_REG_BASE		= 0x18000,
123 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
124 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
125 
126 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
127 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
128 
129 	/*
130 	 * Registers for the (unused here) transaction coalescing feature:
131 	 */
132 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
133 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
134 
135 	SATAHC0_REG_BASE	= 0x20000,
136 	FLASH_CTL		= 0x1046c,
137 	GPIO_PORT_CTL		= 0x104f0,
138 	RESET_CFG		= 0x180d8,
139 
140 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
141 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
142 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
143 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
144 
145 	MV_MAX_Q_DEPTH		= 32,
146 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
147 
148 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
149 	 * CRPB needs alignment on a 256B boundary. Size == 256B
150 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
151 	 */
152 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
153 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
154 	MV_MAX_SG_CT		= 256,
155 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
156 
157 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
158 	MV_PORT_HC_SHIFT	= 2,
159 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
160 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
161 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
162 
163 	/* Host Flags */
164 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
165 
166 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
167 
168 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
169 
170 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
171 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
172 
173 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
174 
175 	CRQB_FLAG_READ		= (1 << 0),
176 	CRQB_TAG_SHIFT		= 1,
177 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
178 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
179 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
180 	CRQB_CMD_ADDR_SHIFT	= 8,
181 	CRQB_CMD_CS		= (0x2 << 11),
182 	CRQB_CMD_LAST		= (1 << 15),
183 
184 	CRPB_FLAG_STATUS_SHIFT	= 8,
185 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
186 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
187 
188 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
189 
190 	/* PCI interface registers */
191 
192 	MV_PCI_COMMAND		= 0xc00,
193 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
194 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
195 
196 	PCI_MAIN_CMD_STS	= 0xd30,
197 	STOP_PCI_MASTER		= (1 << 2),
198 	PCI_MASTER_EMPTY	= (1 << 3),
199 	GLOB_SFT_RST		= (1 << 4),
200 
201 	MV_PCI_MODE		= 0xd00,
202 	MV_PCI_MODE_MASK	= 0x30,
203 
204 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
205 	MV_PCI_DISC_TIMER	= 0xd04,
206 	MV_PCI_MSI_TRIGGER	= 0xc38,
207 	MV_PCI_SERR_MASK	= 0xc28,
208 	MV_PCI_XBAR_TMOUT	= 0x1d04,
209 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
210 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
211 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
212 	MV_PCI_ERR_COMMAND	= 0x1d50,
213 
214 	PCI_IRQ_CAUSE		= 0x1d58,
215 	PCI_IRQ_MASK		= 0x1d5c,
216 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
217 
218 	PCIE_IRQ_CAUSE		= 0x1900,
219 	PCIE_IRQ_MASK		= 0x1910,
220 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
221 
222 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
223 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
224 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
225 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
226 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
227 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
228 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
229 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
230 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
231 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
232 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
233 	PCI_ERR			= (1 << 18),
234 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
235 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
236 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
237 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
238 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
239 	GPIO_INT		= (1 << 22),
240 	SELF_INT		= (1 << 23),
241 	TWSI_INT		= (1 << 24),
242 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
243 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
244 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
245 
246 	/* SATAHC registers */
247 	HC_CFG			= 0x00,
248 
249 	HC_IRQ_CAUSE		= 0x14,
250 	DMA_IRQ			= (1 << 0),	/* shift by port # */
251 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
252 	DEV_IRQ			= (1 << 8),	/* shift by port # */
253 
254 	/*
255 	 * Per-HC (Host-Controller) interrupt coalescing feature.
256 	 * This is present on all chip generations.
257 	 *
258 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
259 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
260 	 */
261 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
262 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
263 
264 	SOC_LED_CTRL		= 0x2c,
265 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
266 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
267 						/*  with dev activity LED */
268 
269 	/* Shadow block registers */
270 	SHD_BLK			= 0x100,
271 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
272 
273 	/* SATA registers */
274 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
275 	SATA_ACTIVE		= 0x350,
276 	FIS_IRQ_CAUSE		= 0x364,
277 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
278 
279 	LTMODE			= 0x30c,	/* requires read-after-write */
280 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
281 
282 	PHY_MODE2		= 0x330,
283 	PHY_MODE3		= 0x310,
284 
285 	PHY_MODE4		= 0x314,	/* requires read-after-write */
286 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
287 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
288 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
289 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
290 
291 	SATA_IFCTL		= 0x344,
292 	SATA_TESTCTL		= 0x348,
293 	SATA_IFSTAT		= 0x34c,
294 	VENDOR_UNIQUE_FIS	= 0x35c,
295 
296 	FISCFG			= 0x360,
297 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
298 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
299 
300 	PHY_MODE9_GEN2		= 0x398,
301 	PHY_MODE9_GEN1		= 0x39c,
302 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
303 
304 	MV5_PHY_MODE		= 0x74,
305 	MV5_LTMODE		= 0x30,
306 	MV5_PHY_CTL		= 0x0C,
307 	SATA_IFCFG		= 0x050,
308 	LP_PHY_CTL		= 0x058,
309 	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
310 	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
311 	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
312 	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
313 	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
314 
315 	MV_M2_PREAMP_MASK	= 0x7e0,
316 
317 	/* Port registers */
318 	EDMA_CFG		= 0,
319 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
320 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
321 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
322 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
323 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
324 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
325 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
326 
327 	EDMA_ERR_IRQ_CAUSE	= 0x8,
328 	EDMA_ERR_IRQ_MASK	= 0xc,
329 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
330 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
331 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
332 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
333 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
334 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
335 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
336 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
337 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
338 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
339 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
340 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
341 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
342 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
343 
344 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
345 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
346 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
347 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
348 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
349 
350 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
351 
352 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
353 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
354 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
355 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
356 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
357 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
358 
359 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
360 
361 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
362 	EDMA_ERR_OVERRUN_5	= (1 << 5),
363 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
364 
365 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
366 				  EDMA_ERR_LNK_CTRL_RX_1 |
367 				  EDMA_ERR_LNK_CTRL_RX_3 |
368 				  EDMA_ERR_LNK_CTRL_TX,
369 
370 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
371 				  EDMA_ERR_PRD_PAR |
372 				  EDMA_ERR_DEV_DCON |
373 				  EDMA_ERR_DEV_CON |
374 				  EDMA_ERR_SERR |
375 				  EDMA_ERR_SELF_DIS |
376 				  EDMA_ERR_CRQB_PAR |
377 				  EDMA_ERR_CRPB_PAR |
378 				  EDMA_ERR_INTRL_PAR |
379 				  EDMA_ERR_IORDY |
380 				  EDMA_ERR_LNK_CTRL_RX_2 |
381 				  EDMA_ERR_LNK_DATA_RX |
382 				  EDMA_ERR_LNK_DATA_TX |
383 				  EDMA_ERR_TRANS_PROTO,
384 
385 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
386 				  EDMA_ERR_PRD_PAR |
387 				  EDMA_ERR_DEV_DCON |
388 				  EDMA_ERR_DEV_CON |
389 				  EDMA_ERR_OVERRUN_5 |
390 				  EDMA_ERR_UNDERRUN_5 |
391 				  EDMA_ERR_SELF_DIS_5 |
392 				  EDMA_ERR_CRQB_PAR |
393 				  EDMA_ERR_CRPB_PAR |
394 				  EDMA_ERR_INTRL_PAR |
395 				  EDMA_ERR_IORDY,
396 
397 	EDMA_REQ_Q_BASE_HI	= 0x10,
398 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
399 
400 	EDMA_REQ_Q_OUT_PTR	= 0x18,
401 	EDMA_REQ_Q_PTR_SHIFT	= 5,
402 
403 	EDMA_RSP_Q_BASE_HI	= 0x1c,
404 	EDMA_RSP_Q_IN_PTR	= 0x20,
405 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
406 	EDMA_RSP_Q_PTR_SHIFT	= 3,
407 
408 	EDMA_CMD		= 0x28,		/* EDMA command register */
409 	EDMA_EN			= (1 << 0),	/* enable EDMA */
410 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
411 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
412 
413 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
414 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
415 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
416 
417 	EDMA_IORDY_TMOUT	= 0x34,
418 	EDMA_ARB_CFG		= 0x38,
419 
420 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
421 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
422 
423 	BMDMA_CMD		= 0x224,	/* bmdma command register */
424 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
425 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
426 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
427 
428 	/* Host private flags (hp_flags) */
429 	MV_HP_FLAG_MSI		= (1 << 0),
430 	MV_HP_ERRATA_50XXB0	= (1 << 1),
431 	MV_HP_ERRATA_50XXB2	= (1 << 2),
432 	MV_HP_ERRATA_60X1B2	= (1 << 3),
433 	MV_HP_ERRATA_60X1C0	= (1 << 4),
434 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
435 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
436 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
437 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
438 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
439 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
440 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
441 	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
442 
443 	/* Port private flags (pp_flags) */
444 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
445 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
446 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
447 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
448 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
449 };
450 
451 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
452 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
453 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
454 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
455 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
456 
457 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
458 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
459 
460 enum {
461 	/* DMA boundary 0xffff is required by the s/g splitting
462 	 * we need on /length/ in mv_fill-sg().
463 	 */
464 	MV_DMA_BOUNDARY		= 0xffffU,
465 
466 	/* mask of register bits containing lower 32 bits
467 	 * of EDMA request queue DMA address
468 	 */
469 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
470 
471 	/* ditto, for response queue */
472 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
473 };
474 
475 enum chip_type {
476 	chip_504x,
477 	chip_508x,
478 	chip_5080,
479 	chip_604x,
480 	chip_608x,
481 	chip_6042,
482 	chip_7042,
483 	chip_soc,
484 };
485 
486 /* Command ReQuest Block: 32B */
487 struct mv_crqb {
488 	__le32			sg_addr;
489 	__le32			sg_addr_hi;
490 	__le16			ctrl_flags;
491 	__le16			ata_cmd[11];
492 };
493 
494 struct mv_crqb_iie {
495 	__le32			addr;
496 	__le32			addr_hi;
497 	__le32			flags;
498 	__le32			len;
499 	__le32			ata_cmd[4];
500 };
501 
502 /* Command ResPonse Block: 8B */
503 struct mv_crpb {
504 	__le16			id;
505 	__le16			flags;
506 	__le32			tmstmp;
507 };
508 
509 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
510 struct mv_sg {
511 	__le32			addr;
512 	__le32			flags_size;
513 	__le32			addr_hi;
514 	__le32			reserved;
515 };
516 
517 /*
518  * We keep a local cache of a few frequently accessed port
519  * registers here, to avoid having to read them (very slow)
520  * when switching between EDMA and non-EDMA modes.
521  */
522 struct mv_cached_regs {
523 	u32			fiscfg;
524 	u32			ltmode;
525 	u32			haltcond;
526 	u32			unknown_rsvd;
527 };
528 
529 struct mv_port_priv {
530 	struct mv_crqb		*crqb;
531 	dma_addr_t		crqb_dma;
532 	struct mv_crpb		*crpb;
533 	dma_addr_t		crpb_dma;
534 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
535 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
536 
537 	unsigned int		req_idx;
538 	unsigned int		resp_idx;
539 
540 	u32			pp_flags;
541 	struct mv_cached_regs	cached;
542 	unsigned int		delayed_eh_pmp_map;
543 };
544 
545 struct mv_port_signal {
546 	u32			amps;
547 	u32			pre;
548 };
549 
550 struct mv_host_priv {
551 	u32			hp_flags;
552 	unsigned int 		board_idx;
553 	u32			main_irq_mask;
554 	struct mv_port_signal	signal[8];
555 	const struct mv_hw_ops	*ops;
556 	int			n_ports;
557 	void __iomem		*base;
558 	void __iomem		*main_irq_cause_addr;
559 	void __iomem		*main_irq_mask_addr;
560 	u32			irq_cause_offset;
561 	u32			irq_mask_offset;
562 	u32			unmask_all_irqs;
563 
564 	/*
565 	 * Needed on some devices that require their clocks to be enabled.
566 	 * These are optional: if the platform device does not have any
567 	 * clocks, they won't be used.  Also, if the underlying hardware
568 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
569 	 * all the clock operations become no-ops (see clk.h).
570 	 */
571 	struct clk		*clk;
572 	struct clk              **port_clks;
573 	/*
574 	 * Some devices have a SATA PHY which can be enabled/disabled
575 	 * in order to save power. These are optional: if the platform
576 	 * devices does not have any phy, they won't be used.
577 	 */
578 	struct phy		**port_phys;
579 	/*
580 	 * These consistent DMA memory pools give us guaranteed
581 	 * alignment for hardware-accessed data structures,
582 	 * and less memory waste in accomplishing the alignment.
583 	 */
584 	struct dma_pool		*crqb_pool;
585 	struct dma_pool		*crpb_pool;
586 	struct dma_pool		*sg_tbl_pool;
587 };
588 
589 struct mv_hw_ops {
590 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
591 			   unsigned int port);
592 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
593 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
594 			   void __iomem *mmio);
595 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
596 			unsigned int n_hc);
597 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
598 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
599 };
600 
601 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
602 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
603 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
604 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
605 static int mv_port_start(struct ata_port *ap);
606 static void mv_port_stop(struct ata_port *ap);
607 static int mv_qc_defer(struct ata_queued_cmd *qc);
608 static void mv_qc_prep(struct ata_queued_cmd *qc);
609 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
610 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
611 static int mv_hardreset(struct ata_link *link, unsigned int *class,
612 			unsigned long deadline);
613 static void mv_eh_freeze(struct ata_port *ap);
614 static void mv_eh_thaw(struct ata_port *ap);
615 static void mv6_dev_config(struct ata_device *dev);
616 
617 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
618 			   unsigned int port);
619 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
620 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
621 			   void __iomem *mmio);
622 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
623 			unsigned int n_hc);
624 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
625 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
626 
627 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
628 			   unsigned int port);
629 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
630 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
631 			   void __iomem *mmio);
632 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
633 			unsigned int n_hc);
634 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
635 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
636 				      void __iomem *mmio);
637 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
638 				      void __iomem *mmio);
639 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
640 				  void __iomem *mmio, unsigned int n_hc);
641 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
642 				      void __iomem *mmio);
643 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
644 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
645 				  void __iomem *mmio, unsigned int port);
646 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
647 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
648 			     unsigned int port_no);
649 static int mv_stop_edma(struct ata_port *ap);
650 static int mv_stop_edma_engine(void __iomem *port_mmio);
651 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
652 
653 static void mv_pmp_select(struct ata_port *ap, int pmp);
654 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
655 				unsigned long deadline);
656 static int  mv_softreset(struct ata_link *link, unsigned int *class,
657 				unsigned long deadline);
658 static void mv_pmp_error_handler(struct ata_port *ap);
659 static void mv_process_crpb_entries(struct ata_port *ap,
660 					struct mv_port_priv *pp);
661 
662 static void mv_sff_irq_clear(struct ata_port *ap);
663 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
664 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
665 static void mv_bmdma_start(struct ata_queued_cmd *qc);
666 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
667 static u8   mv_bmdma_status(struct ata_port *ap);
668 static u8 mv_sff_check_status(struct ata_port *ap);
669 
670 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
671  * because we have to allow room for worst case splitting of
672  * PRDs for 64K boundaries in mv_fill_sg().
673  */
674 #ifdef CONFIG_PCI
675 static struct scsi_host_template mv5_sht = {
676 	ATA_BASE_SHT(DRV_NAME),
677 	.sg_tablesize		= MV_MAX_SG_CT / 2,
678 	.dma_boundary		= MV_DMA_BOUNDARY,
679 };
680 #endif
681 static struct scsi_host_template mv6_sht = {
682 	ATA_NCQ_SHT(DRV_NAME),
683 	.can_queue		= MV_MAX_Q_DEPTH - 1,
684 	.sg_tablesize		= MV_MAX_SG_CT / 2,
685 	.dma_boundary		= MV_DMA_BOUNDARY,
686 };
687 
688 static struct ata_port_operations mv5_ops = {
689 	.inherits		= &ata_sff_port_ops,
690 
691 	.lost_interrupt		= ATA_OP_NULL,
692 
693 	.qc_defer		= mv_qc_defer,
694 	.qc_prep		= mv_qc_prep,
695 	.qc_issue		= mv_qc_issue,
696 
697 	.freeze			= mv_eh_freeze,
698 	.thaw			= mv_eh_thaw,
699 	.hardreset		= mv_hardreset,
700 
701 	.scr_read		= mv5_scr_read,
702 	.scr_write		= mv5_scr_write,
703 
704 	.port_start		= mv_port_start,
705 	.port_stop		= mv_port_stop,
706 };
707 
708 static struct ata_port_operations mv6_ops = {
709 	.inherits		= &ata_bmdma_port_ops,
710 
711 	.lost_interrupt		= ATA_OP_NULL,
712 
713 	.qc_defer		= mv_qc_defer,
714 	.qc_prep		= mv_qc_prep,
715 	.qc_issue		= mv_qc_issue,
716 
717 	.dev_config             = mv6_dev_config,
718 
719 	.freeze			= mv_eh_freeze,
720 	.thaw			= mv_eh_thaw,
721 	.hardreset		= mv_hardreset,
722 	.softreset		= mv_softreset,
723 	.pmp_hardreset		= mv_pmp_hardreset,
724 	.pmp_softreset		= mv_softreset,
725 	.error_handler		= mv_pmp_error_handler,
726 
727 	.scr_read		= mv_scr_read,
728 	.scr_write		= mv_scr_write,
729 
730 	.sff_check_status	= mv_sff_check_status,
731 	.sff_irq_clear		= mv_sff_irq_clear,
732 	.check_atapi_dma	= mv_check_atapi_dma,
733 	.bmdma_setup		= mv_bmdma_setup,
734 	.bmdma_start		= mv_bmdma_start,
735 	.bmdma_stop		= mv_bmdma_stop,
736 	.bmdma_status		= mv_bmdma_status,
737 
738 	.port_start		= mv_port_start,
739 	.port_stop		= mv_port_stop,
740 };
741 
742 static struct ata_port_operations mv_iie_ops = {
743 	.inherits		= &mv6_ops,
744 	.dev_config		= ATA_OP_NULL,
745 	.qc_prep		= mv_qc_prep_iie,
746 };
747 
748 static const struct ata_port_info mv_port_info[] = {
749 	{  /* chip_504x */
750 		.flags		= MV_GEN_I_FLAGS,
751 		.pio_mask	= ATA_PIO4,
752 		.udma_mask	= ATA_UDMA6,
753 		.port_ops	= &mv5_ops,
754 	},
755 	{  /* chip_508x */
756 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
757 		.pio_mask	= ATA_PIO4,
758 		.udma_mask	= ATA_UDMA6,
759 		.port_ops	= &mv5_ops,
760 	},
761 	{  /* chip_5080 */
762 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
763 		.pio_mask	= ATA_PIO4,
764 		.udma_mask	= ATA_UDMA6,
765 		.port_ops	= &mv5_ops,
766 	},
767 	{  /* chip_604x */
768 		.flags		= MV_GEN_II_FLAGS,
769 		.pio_mask	= ATA_PIO4,
770 		.udma_mask	= ATA_UDMA6,
771 		.port_ops	= &mv6_ops,
772 	},
773 	{  /* chip_608x */
774 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
775 		.pio_mask	= ATA_PIO4,
776 		.udma_mask	= ATA_UDMA6,
777 		.port_ops	= &mv6_ops,
778 	},
779 	{  /* chip_6042 */
780 		.flags		= MV_GEN_IIE_FLAGS,
781 		.pio_mask	= ATA_PIO4,
782 		.udma_mask	= ATA_UDMA6,
783 		.port_ops	= &mv_iie_ops,
784 	},
785 	{  /* chip_7042 */
786 		.flags		= MV_GEN_IIE_FLAGS,
787 		.pio_mask	= ATA_PIO4,
788 		.udma_mask	= ATA_UDMA6,
789 		.port_ops	= &mv_iie_ops,
790 	},
791 	{  /* chip_soc */
792 		.flags		= MV_GEN_IIE_FLAGS,
793 		.pio_mask	= ATA_PIO4,
794 		.udma_mask	= ATA_UDMA6,
795 		.port_ops	= &mv_iie_ops,
796 	},
797 };
798 
799 static const struct pci_device_id mv_pci_tbl[] = {
800 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
801 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
802 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
803 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
804 	/* RocketRAID 1720/174x have different identifiers */
805 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
806 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
807 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
808 
809 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
810 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
811 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
812 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
813 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
814 
815 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
816 
817 	/* Adaptec 1430SA */
818 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
819 
820 	/* Marvell 7042 support */
821 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
822 
823 	/* Highpoint RocketRAID PCIe series */
824 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
825 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
826 
827 	{ }			/* terminate list */
828 };
829 
830 static const struct mv_hw_ops mv5xxx_ops = {
831 	.phy_errata		= mv5_phy_errata,
832 	.enable_leds		= mv5_enable_leds,
833 	.read_preamp		= mv5_read_preamp,
834 	.reset_hc		= mv5_reset_hc,
835 	.reset_flash		= mv5_reset_flash,
836 	.reset_bus		= mv5_reset_bus,
837 };
838 
839 static const struct mv_hw_ops mv6xxx_ops = {
840 	.phy_errata		= mv6_phy_errata,
841 	.enable_leds		= mv6_enable_leds,
842 	.read_preamp		= mv6_read_preamp,
843 	.reset_hc		= mv6_reset_hc,
844 	.reset_flash		= mv6_reset_flash,
845 	.reset_bus		= mv_reset_pci_bus,
846 };
847 
848 static const struct mv_hw_ops mv_soc_ops = {
849 	.phy_errata		= mv6_phy_errata,
850 	.enable_leds		= mv_soc_enable_leds,
851 	.read_preamp		= mv_soc_read_preamp,
852 	.reset_hc		= mv_soc_reset_hc,
853 	.reset_flash		= mv_soc_reset_flash,
854 	.reset_bus		= mv_soc_reset_bus,
855 };
856 
857 static const struct mv_hw_ops mv_soc_65n_ops = {
858 	.phy_errata		= mv_soc_65n_phy_errata,
859 	.enable_leds		= mv_soc_enable_leds,
860 	.reset_hc		= mv_soc_reset_hc,
861 	.reset_flash		= mv_soc_reset_flash,
862 	.reset_bus		= mv_soc_reset_bus,
863 };
864 
865 /*
866  * Functions
867  */
868 
869 static inline void writelfl(unsigned long data, void __iomem *addr)
870 {
871 	writel(data, addr);
872 	(void) readl(addr);	/* flush to avoid PCI posted write */
873 }
874 
875 static inline unsigned int mv_hc_from_port(unsigned int port)
876 {
877 	return port >> MV_PORT_HC_SHIFT;
878 }
879 
880 static inline unsigned int mv_hardport_from_port(unsigned int port)
881 {
882 	return port & MV_PORT_MASK;
883 }
884 
885 /*
886  * Consolidate some rather tricky bit shift calculations.
887  * This is hot-path stuff, so not a function.
888  * Simple code, with two return values, so macro rather than inline.
889  *
890  * port is the sole input, in range 0..7.
891  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
892  * hardport is the other output, in range 0..3.
893  *
894  * Note that port and hardport may be the same variable in some cases.
895  */
896 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
897 {								\
898 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
899 	hardport = mv_hardport_from_port(port);			\
900 	shift   += hardport * 2;				\
901 }
902 
903 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
904 {
905 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
906 }
907 
908 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
909 						 unsigned int port)
910 {
911 	return mv_hc_base(base, mv_hc_from_port(port));
912 }
913 
914 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
915 {
916 	return  mv_hc_base_from_port(base, port) +
917 		MV_SATAHC_ARBTR_REG_SZ +
918 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
919 }
920 
921 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
922 {
923 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
924 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
925 
926 	return hc_mmio + ofs;
927 }
928 
929 static inline void __iomem *mv_host_base(struct ata_host *host)
930 {
931 	struct mv_host_priv *hpriv = host->private_data;
932 	return hpriv->base;
933 }
934 
935 static inline void __iomem *mv_ap_base(struct ata_port *ap)
936 {
937 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
938 }
939 
940 static inline int mv_get_hc_count(unsigned long port_flags)
941 {
942 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
943 }
944 
945 /**
946  *      mv_save_cached_regs - (re-)initialize cached port registers
947  *      @ap: the port whose registers we are caching
948  *
949  *	Initialize the local cache of port registers,
950  *	so that reading them over and over again can
951  *	be avoided on the hotter paths of this driver.
952  *	This saves a few microseconds each time we switch
953  *	to/from EDMA mode to perform (eg.) a drive cache flush.
954  */
955 static void mv_save_cached_regs(struct ata_port *ap)
956 {
957 	void __iomem *port_mmio = mv_ap_base(ap);
958 	struct mv_port_priv *pp = ap->private_data;
959 
960 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
961 	pp->cached.ltmode = readl(port_mmio + LTMODE);
962 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
963 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
964 }
965 
966 /**
967  *      mv_write_cached_reg - write to a cached port register
968  *      @addr: hardware address of the register
969  *      @old: pointer to cached value of the register
970  *      @new: new value for the register
971  *
972  *	Write a new value to a cached register,
973  *	but only if the value is different from before.
974  */
975 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
976 {
977 	if (new != *old) {
978 		unsigned long laddr;
979 		*old = new;
980 		/*
981 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
982 		 * Read-after-write is needed to prevent generating 64-bit
983 		 * write cycles on the PCI bus for SATA interface registers
984 		 * at offsets ending in 0x4 or 0xc.
985 		 *
986 		 * Looks like a lot of fuss, but it avoids an unnecessary
987 		 * +1 usec read-after-write delay for unaffected registers.
988 		 */
989 		laddr = (unsigned long)addr & 0xffff;
990 		if (laddr >= 0x300 && laddr <= 0x33c) {
991 			laddr &= 0x000f;
992 			if (laddr == 0x4 || laddr == 0xc) {
993 				writelfl(new, addr); /* read after write */
994 				return;
995 			}
996 		}
997 		writel(new, addr); /* unaffected by the errata */
998 	}
999 }
1000 
1001 static void mv_set_edma_ptrs(void __iomem *port_mmio,
1002 			     struct mv_host_priv *hpriv,
1003 			     struct mv_port_priv *pp)
1004 {
1005 	u32 index;
1006 
1007 	/*
1008 	 * initialize request queue
1009 	 */
1010 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1011 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1012 
1013 	WARN_ON(pp->crqb_dma & 0x3ff);
1014 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1015 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1016 		 port_mmio + EDMA_REQ_Q_IN_PTR);
1017 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1018 
1019 	/*
1020 	 * initialize response queue
1021 	 */
1022 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1023 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1024 
1025 	WARN_ON(pp->crpb_dma & 0xff);
1026 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1027 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1028 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1029 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1030 }
1031 
1032 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1033 {
1034 	/*
1035 	 * When writing to the main_irq_mask in hardware,
1036 	 * we must ensure exclusivity between the interrupt coalescing bits
1037 	 * and the corresponding individual port DONE_IRQ bits.
1038 	 *
1039 	 * Note that this register is really an "IRQ enable" register,
1040 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1041 	 */
1042 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1043 		mask &= ~DONE_IRQ_0_3;
1044 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1045 		mask &= ~DONE_IRQ_4_7;
1046 	writelfl(mask, hpriv->main_irq_mask_addr);
1047 }
1048 
1049 static void mv_set_main_irq_mask(struct ata_host *host,
1050 				 u32 disable_bits, u32 enable_bits)
1051 {
1052 	struct mv_host_priv *hpriv = host->private_data;
1053 	u32 old_mask, new_mask;
1054 
1055 	old_mask = hpriv->main_irq_mask;
1056 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1057 	if (new_mask != old_mask) {
1058 		hpriv->main_irq_mask = new_mask;
1059 		mv_write_main_irq_mask(new_mask, hpriv);
1060 	}
1061 }
1062 
1063 static void mv_enable_port_irqs(struct ata_port *ap,
1064 				     unsigned int port_bits)
1065 {
1066 	unsigned int shift, hardport, port = ap->port_no;
1067 	u32 disable_bits, enable_bits;
1068 
1069 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1070 
1071 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1072 	enable_bits  = port_bits << shift;
1073 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1074 }
1075 
1076 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1077 					  void __iomem *port_mmio,
1078 					  unsigned int port_irqs)
1079 {
1080 	struct mv_host_priv *hpriv = ap->host->private_data;
1081 	int hardport = mv_hardport_from_port(ap->port_no);
1082 	void __iomem *hc_mmio = mv_hc_base_from_port(
1083 				mv_host_base(ap->host), ap->port_no);
1084 	u32 hc_irq_cause;
1085 
1086 	/* clear EDMA event indicators, if any */
1087 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1088 
1089 	/* clear pending irq events */
1090 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1091 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1092 
1093 	/* clear FIS IRQ Cause */
1094 	if (IS_GEN_IIE(hpriv))
1095 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1096 
1097 	mv_enable_port_irqs(ap, port_irqs);
1098 }
1099 
1100 static void mv_set_irq_coalescing(struct ata_host *host,
1101 				  unsigned int count, unsigned int usecs)
1102 {
1103 	struct mv_host_priv *hpriv = host->private_data;
1104 	void __iomem *mmio = hpriv->base, *hc_mmio;
1105 	u32 coal_enable = 0;
1106 	unsigned long flags;
1107 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1108 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1109 							ALL_PORTS_COAL_DONE;
1110 
1111 	/* Disable IRQ coalescing if either threshold is zero */
1112 	if (!usecs || !count) {
1113 		clks = count = 0;
1114 	} else {
1115 		/* Respect maximum limits of the hardware */
1116 		clks = usecs * COAL_CLOCKS_PER_USEC;
1117 		if (clks > MAX_COAL_TIME_THRESHOLD)
1118 			clks = MAX_COAL_TIME_THRESHOLD;
1119 		if (count > MAX_COAL_IO_COUNT)
1120 			count = MAX_COAL_IO_COUNT;
1121 	}
1122 
1123 	spin_lock_irqsave(&host->lock, flags);
1124 	mv_set_main_irq_mask(host, coal_disable, 0);
1125 
1126 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1127 		/*
1128 		 * GEN_II/GEN_IIE with dual host controllers:
1129 		 * one set of global thresholds for the entire chip.
1130 		 */
1131 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1132 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1133 		/* clear leftover coal IRQ bit */
1134 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1135 		if (count)
1136 			coal_enable = ALL_PORTS_COAL_DONE;
1137 		clks = count = 0; /* force clearing of regular regs below */
1138 	}
1139 
1140 	/*
1141 	 * All chips: independent thresholds for each HC on the chip.
1142 	 */
1143 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1144 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1145 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1146 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1147 	if (count)
1148 		coal_enable |= PORTS_0_3_COAL_DONE;
1149 	if (is_dual_hc) {
1150 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1151 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1152 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1153 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1154 		if (count)
1155 			coal_enable |= PORTS_4_7_COAL_DONE;
1156 	}
1157 
1158 	mv_set_main_irq_mask(host, 0, coal_enable);
1159 	spin_unlock_irqrestore(&host->lock, flags);
1160 }
1161 
1162 /**
1163  *      mv_start_edma - Enable eDMA engine
1164  *      @base: port base address
1165  *      @pp: port private data
1166  *
1167  *      Verify the local cache of the eDMA state is accurate with a
1168  *      WARN_ON.
1169  *
1170  *      LOCKING:
1171  *      Inherited from caller.
1172  */
1173 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1174 			 struct mv_port_priv *pp, u8 protocol)
1175 {
1176 	int want_ncq = (protocol == ATA_PROT_NCQ);
1177 
1178 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1179 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1180 		if (want_ncq != using_ncq)
1181 			mv_stop_edma(ap);
1182 	}
1183 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1184 		struct mv_host_priv *hpriv = ap->host->private_data;
1185 
1186 		mv_edma_cfg(ap, want_ncq, 1);
1187 
1188 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1189 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1190 
1191 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1192 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1193 	}
1194 }
1195 
1196 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1197 {
1198 	void __iomem *port_mmio = mv_ap_base(ap);
1199 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1200 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1201 	int i;
1202 
1203 	/*
1204 	 * Wait for the EDMA engine to finish transactions in progress.
1205 	 * No idea what a good "timeout" value might be, but measurements
1206 	 * indicate that it often requires hundreds of microseconds
1207 	 * with two drives in-use.  So we use the 15msec value above
1208 	 * as a rough guess at what even more drives might require.
1209 	 */
1210 	for (i = 0; i < timeout; ++i) {
1211 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1212 		if ((edma_stat & empty_idle) == empty_idle)
1213 			break;
1214 		udelay(per_loop);
1215 	}
1216 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1217 }
1218 
1219 /**
1220  *      mv_stop_edma_engine - Disable eDMA engine
1221  *      @port_mmio: io base address
1222  *
1223  *      LOCKING:
1224  *      Inherited from caller.
1225  */
1226 static int mv_stop_edma_engine(void __iomem *port_mmio)
1227 {
1228 	int i;
1229 
1230 	/* Disable eDMA.  The disable bit auto clears. */
1231 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1232 
1233 	/* Wait for the chip to confirm eDMA is off. */
1234 	for (i = 10000; i > 0; i--) {
1235 		u32 reg = readl(port_mmio + EDMA_CMD);
1236 		if (!(reg & EDMA_EN))
1237 			return 0;
1238 		udelay(10);
1239 	}
1240 	return -EIO;
1241 }
1242 
1243 static int mv_stop_edma(struct ata_port *ap)
1244 {
1245 	void __iomem *port_mmio = mv_ap_base(ap);
1246 	struct mv_port_priv *pp = ap->private_data;
1247 	int err = 0;
1248 
1249 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1250 		return 0;
1251 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1252 	mv_wait_for_edma_empty_idle(ap);
1253 	if (mv_stop_edma_engine(port_mmio)) {
1254 		ata_port_err(ap, "Unable to stop eDMA\n");
1255 		err = -EIO;
1256 	}
1257 	mv_edma_cfg(ap, 0, 0);
1258 	return err;
1259 }
1260 
1261 #ifdef ATA_DEBUG
1262 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1263 {
1264 	int b, w;
1265 	for (b = 0; b < bytes; ) {
1266 		DPRINTK("%p: ", start + b);
1267 		for (w = 0; b < bytes && w < 4; w++) {
1268 			printk("%08x ", readl(start + b));
1269 			b += sizeof(u32);
1270 		}
1271 		printk("\n");
1272 	}
1273 }
1274 #endif
1275 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1276 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1277 {
1278 #ifdef ATA_DEBUG
1279 	int b, w;
1280 	u32 dw;
1281 	for (b = 0; b < bytes; ) {
1282 		DPRINTK("%02x: ", b);
1283 		for (w = 0; b < bytes && w < 4; w++) {
1284 			(void) pci_read_config_dword(pdev, b, &dw);
1285 			printk("%08x ", dw);
1286 			b += sizeof(u32);
1287 		}
1288 		printk("\n");
1289 	}
1290 #endif
1291 }
1292 #endif
1293 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1294 			     struct pci_dev *pdev)
1295 {
1296 #ifdef ATA_DEBUG
1297 	void __iomem *hc_base = mv_hc_base(mmio_base,
1298 					   port >> MV_PORT_HC_SHIFT);
1299 	void __iomem *port_base;
1300 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1301 
1302 	if (0 > port) {
1303 		start_hc = start_port = 0;
1304 		num_ports = 8;		/* shld be benign for 4 port devs */
1305 		num_hcs = 2;
1306 	} else {
1307 		start_hc = port >> MV_PORT_HC_SHIFT;
1308 		start_port = port;
1309 		num_ports = num_hcs = 1;
1310 	}
1311 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1312 		num_ports > 1 ? num_ports - 1 : start_port);
1313 
1314 	if (NULL != pdev) {
1315 		DPRINTK("PCI config space regs:\n");
1316 		mv_dump_pci_cfg(pdev, 0x68);
1317 	}
1318 	DPRINTK("PCI regs:\n");
1319 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1320 	mv_dump_mem(mmio_base+0xd00, 0x34);
1321 	mv_dump_mem(mmio_base+0xf00, 0x4);
1322 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1323 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1324 		hc_base = mv_hc_base(mmio_base, hc);
1325 		DPRINTK("HC regs (HC %i):\n", hc);
1326 		mv_dump_mem(hc_base, 0x1c);
1327 	}
1328 	for (p = start_port; p < start_port + num_ports; p++) {
1329 		port_base = mv_port_base(mmio_base, p);
1330 		DPRINTK("EDMA regs (port %i):\n", p);
1331 		mv_dump_mem(port_base, 0x54);
1332 		DPRINTK("SATA regs (port %i):\n", p);
1333 		mv_dump_mem(port_base+0x300, 0x60);
1334 	}
1335 #endif
1336 }
1337 
1338 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1339 {
1340 	unsigned int ofs;
1341 
1342 	switch (sc_reg_in) {
1343 	case SCR_STATUS:
1344 	case SCR_CONTROL:
1345 	case SCR_ERROR:
1346 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1347 		break;
1348 	case SCR_ACTIVE:
1349 		ofs = SATA_ACTIVE;   /* active is not with the others */
1350 		break;
1351 	default:
1352 		ofs = 0xffffffffU;
1353 		break;
1354 	}
1355 	return ofs;
1356 }
1357 
1358 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1359 {
1360 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1361 
1362 	if (ofs != 0xffffffffU) {
1363 		*val = readl(mv_ap_base(link->ap) + ofs);
1364 		return 0;
1365 	} else
1366 		return -EINVAL;
1367 }
1368 
1369 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1370 {
1371 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1372 
1373 	if (ofs != 0xffffffffU) {
1374 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1375 		struct mv_host_priv *hpriv = link->ap->host->private_data;
1376 		if (sc_reg_in == SCR_CONTROL) {
1377 			/*
1378 			 * Workaround for 88SX60x1 FEr SATA#26:
1379 			 *
1380 			 * COMRESETs have to take care not to accidentally
1381 			 * put the drive to sleep when writing SCR_CONTROL.
1382 			 * Setting bits 12..15 prevents this problem.
1383 			 *
1384 			 * So if we see an outbound COMMRESET, set those bits.
1385 			 * Ditto for the followup write that clears the reset.
1386 			 *
1387 			 * The proprietary driver does this for
1388 			 * all chip versions, and so do we.
1389 			 */
1390 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1391 				val |= 0xf000;
1392 
1393 			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1394 				void __iomem *lp_phy_addr =
1395 					mv_ap_base(link->ap) + LP_PHY_CTL;
1396 				/*
1397 				 * Set PHY speed according to SControl speed.
1398 				 */
1399 				u32 lp_phy_val =
1400 					LP_PHY_CTL_PIN_PU_PLL |
1401 					LP_PHY_CTL_PIN_PU_RX  |
1402 					LP_PHY_CTL_PIN_PU_TX;
1403 
1404 				if ((val & 0xf0) != 0x10)
1405 					lp_phy_val |=
1406 						LP_PHY_CTL_GEN_TX_3G |
1407 						LP_PHY_CTL_GEN_RX_3G;
1408 
1409 				writelfl(lp_phy_val, lp_phy_addr);
1410 			}
1411 		}
1412 		writelfl(val, addr);
1413 		return 0;
1414 	} else
1415 		return -EINVAL;
1416 }
1417 
1418 static void mv6_dev_config(struct ata_device *adev)
1419 {
1420 	/*
1421 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1422 	 *
1423 	 * Gen-II does not support NCQ over a port multiplier
1424 	 *  (no FIS-based switching).
1425 	 */
1426 	if (adev->flags & ATA_DFLAG_NCQ) {
1427 		if (sata_pmp_attached(adev->link->ap)) {
1428 			adev->flags &= ~ATA_DFLAG_NCQ;
1429 			ata_dev_info(adev,
1430 				"NCQ disabled for command-based switching\n");
1431 		}
1432 	}
1433 }
1434 
1435 static int mv_qc_defer(struct ata_queued_cmd *qc)
1436 {
1437 	struct ata_link *link = qc->dev->link;
1438 	struct ata_port *ap = link->ap;
1439 	struct mv_port_priv *pp = ap->private_data;
1440 
1441 	/*
1442 	 * Don't allow new commands if we're in a delayed EH state
1443 	 * for NCQ and/or FIS-based switching.
1444 	 */
1445 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1446 		return ATA_DEFER_PORT;
1447 
1448 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1449 	 * can run concurrently.
1450 	 * set excl_link when we want to send a PIO command in DMA mode
1451 	 * or a non-NCQ command in NCQ mode.
1452 	 * When we receive a command from that link, and there are no
1453 	 * outstanding commands, mark a flag to clear excl_link and let
1454 	 * the command go through.
1455 	 */
1456 	if (unlikely(ap->excl_link)) {
1457 		if (link == ap->excl_link) {
1458 			if (ap->nr_active_links)
1459 				return ATA_DEFER_PORT;
1460 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1461 			return 0;
1462 		} else
1463 			return ATA_DEFER_PORT;
1464 	}
1465 
1466 	/*
1467 	 * If the port is completely idle, then allow the new qc.
1468 	 */
1469 	if (ap->nr_active_links == 0)
1470 		return 0;
1471 
1472 	/*
1473 	 * The port is operating in host queuing mode (EDMA) with NCQ
1474 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1475 	 * queueing multiple DMA commands but libata core currently
1476 	 * doesn't allow it.
1477 	 */
1478 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1479 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1480 		if (ata_is_ncq(qc->tf.protocol))
1481 			return 0;
1482 		else {
1483 			ap->excl_link = link;
1484 			return ATA_DEFER_PORT;
1485 		}
1486 	}
1487 
1488 	return ATA_DEFER_PORT;
1489 }
1490 
1491 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1492 {
1493 	struct mv_port_priv *pp = ap->private_data;
1494 	void __iomem *port_mmio;
1495 
1496 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1497 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1498 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1499 
1500 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1501 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1502 
1503 	if (want_fbs) {
1504 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1505 		ltmode = *old_ltmode | LTMODE_BIT8;
1506 		if (want_ncq)
1507 			haltcond &= ~EDMA_ERR_DEV;
1508 		else
1509 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1510 	} else {
1511 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1512 	}
1513 
1514 	port_mmio = mv_ap_base(ap);
1515 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1516 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1517 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1518 }
1519 
1520 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1521 {
1522 	struct mv_host_priv *hpriv = ap->host->private_data;
1523 	u32 old, new;
1524 
1525 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1526 	old = readl(hpriv->base + GPIO_PORT_CTL);
1527 	if (want_ncq)
1528 		new = old | (1 << 22);
1529 	else
1530 		new = old & ~(1 << 22);
1531 	if (new != old)
1532 		writel(new, hpriv->base + GPIO_PORT_CTL);
1533 }
1534 
1535 /**
1536  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1537  *	@ap: Port being initialized
1538  *
1539  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1540  *
1541  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1542  *	of basic DMA on the GEN_IIE versions of the chips.
1543  *
1544  *	This bit survives EDMA resets, and must be set for basic DMA
1545  *	to function, and should be cleared when EDMA is active.
1546  */
1547 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1548 {
1549 	struct mv_port_priv *pp = ap->private_data;
1550 	u32 new, *old = &pp->cached.unknown_rsvd;
1551 
1552 	if (enable_bmdma)
1553 		new = *old | 1;
1554 	else
1555 		new = *old & ~1;
1556 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1557 }
1558 
1559 /*
1560  * SOC chips have an issue whereby the HDD LEDs don't always blink
1561  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1562  * of the SOC takes care of it, generating a steady blink rate when
1563  * any drive on the chip is active.
1564  *
1565  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1566  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1567  *
1568  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1569  * LED operation works then, and provides better (more accurate) feedback.
1570  *
1571  * Note that this code assumes that an SOC never has more than one HC onboard.
1572  */
1573 static void mv_soc_led_blink_enable(struct ata_port *ap)
1574 {
1575 	struct ata_host *host = ap->host;
1576 	struct mv_host_priv *hpriv = host->private_data;
1577 	void __iomem *hc_mmio;
1578 	u32 led_ctrl;
1579 
1580 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1581 		return;
1582 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1583 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1584 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1585 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1586 }
1587 
1588 static void mv_soc_led_blink_disable(struct ata_port *ap)
1589 {
1590 	struct ata_host *host = ap->host;
1591 	struct mv_host_priv *hpriv = host->private_data;
1592 	void __iomem *hc_mmio;
1593 	u32 led_ctrl;
1594 	unsigned int port;
1595 
1596 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1597 		return;
1598 
1599 	/* disable led-blink only if no ports are using NCQ */
1600 	for (port = 0; port < hpriv->n_ports; port++) {
1601 		struct ata_port *this_ap = host->ports[port];
1602 		struct mv_port_priv *pp = this_ap->private_data;
1603 
1604 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1605 			return;
1606 	}
1607 
1608 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1609 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1610 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1611 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1612 }
1613 
1614 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1615 {
1616 	u32 cfg;
1617 	struct mv_port_priv *pp    = ap->private_data;
1618 	struct mv_host_priv *hpriv = ap->host->private_data;
1619 	void __iomem *port_mmio    = mv_ap_base(ap);
1620 
1621 	/* set up non-NCQ EDMA configuration */
1622 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1623 	pp->pp_flags &=
1624 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1625 
1626 	if (IS_GEN_I(hpriv))
1627 		cfg |= (1 << 8);	/* enab config burst size mask */
1628 
1629 	else if (IS_GEN_II(hpriv)) {
1630 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1631 		mv_60x1_errata_sata25(ap, want_ncq);
1632 
1633 	} else if (IS_GEN_IIE(hpriv)) {
1634 		int want_fbs = sata_pmp_attached(ap);
1635 		/*
1636 		 * Possible future enhancement:
1637 		 *
1638 		 * The chip can use FBS with non-NCQ, if we allow it,
1639 		 * But first we need to have the error handling in place
1640 		 * for this mode (datasheet section 7.3.15.4.2.3).
1641 		 * So disallow non-NCQ FBS for now.
1642 		 */
1643 		want_fbs &= want_ncq;
1644 
1645 		mv_config_fbs(ap, want_ncq, want_fbs);
1646 
1647 		if (want_fbs) {
1648 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1649 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1650 		}
1651 
1652 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1653 		if (want_edma) {
1654 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1655 			if (!IS_SOC(hpriv))
1656 				cfg |= (1 << 18); /* enab early completion */
1657 		}
1658 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1659 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1660 		mv_bmdma_enable_iie(ap, !want_edma);
1661 
1662 		if (IS_SOC(hpriv)) {
1663 			if (want_ncq)
1664 				mv_soc_led_blink_enable(ap);
1665 			else
1666 				mv_soc_led_blink_disable(ap);
1667 		}
1668 	}
1669 
1670 	if (want_ncq) {
1671 		cfg |= EDMA_CFG_NCQ;
1672 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1673 	}
1674 
1675 	writelfl(cfg, port_mmio + EDMA_CFG);
1676 }
1677 
1678 static void mv_port_free_dma_mem(struct ata_port *ap)
1679 {
1680 	struct mv_host_priv *hpriv = ap->host->private_data;
1681 	struct mv_port_priv *pp = ap->private_data;
1682 	int tag;
1683 
1684 	if (pp->crqb) {
1685 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1686 		pp->crqb = NULL;
1687 	}
1688 	if (pp->crpb) {
1689 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1690 		pp->crpb = NULL;
1691 	}
1692 	/*
1693 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1694 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1695 	 */
1696 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1697 		if (pp->sg_tbl[tag]) {
1698 			if (tag == 0 || !IS_GEN_I(hpriv))
1699 				dma_pool_free(hpriv->sg_tbl_pool,
1700 					      pp->sg_tbl[tag],
1701 					      pp->sg_tbl_dma[tag]);
1702 			pp->sg_tbl[tag] = NULL;
1703 		}
1704 	}
1705 }
1706 
1707 /**
1708  *      mv_port_start - Port specific init/start routine.
1709  *      @ap: ATA channel to manipulate
1710  *
1711  *      Allocate and point to DMA memory, init port private memory,
1712  *      zero indices.
1713  *
1714  *      LOCKING:
1715  *      Inherited from caller.
1716  */
1717 static int mv_port_start(struct ata_port *ap)
1718 {
1719 	struct device *dev = ap->host->dev;
1720 	struct mv_host_priv *hpriv = ap->host->private_data;
1721 	struct mv_port_priv *pp;
1722 	unsigned long flags;
1723 	int tag;
1724 
1725 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1726 	if (!pp)
1727 		return -ENOMEM;
1728 	ap->private_data = pp;
1729 
1730 	pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1731 	if (!pp->crqb)
1732 		return -ENOMEM;
1733 
1734 	pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1735 	if (!pp->crpb)
1736 		goto out_port_free_dma_mem;
1737 
1738 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1739 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1740 		ap->flags |= ATA_FLAG_AN;
1741 	/*
1742 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1743 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1744 	 */
1745 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1746 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1747 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1748 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1749 			if (!pp->sg_tbl[tag])
1750 				goto out_port_free_dma_mem;
1751 		} else {
1752 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1753 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1754 		}
1755 	}
1756 
1757 	spin_lock_irqsave(ap->lock, flags);
1758 	mv_save_cached_regs(ap);
1759 	mv_edma_cfg(ap, 0, 0);
1760 	spin_unlock_irqrestore(ap->lock, flags);
1761 
1762 	return 0;
1763 
1764 out_port_free_dma_mem:
1765 	mv_port_free_dma_mem(ap);
1766 	return -ENOMEM;
1767 }
1768 
1769 /**
1770  *      mv_port_stop - Port specific cleanup/stop routine.
1771  *      @ap: ATA channel to manipulate
1772  *
1773  *      Stop DMA, cleanup port memory.
1774  *
1775  *      LOCKING:
1776  *      This routine uses the host lock to protect the DMA stop.
1777  */
1778 static void mv_port_stop(struct ata_port *ap)
1779 {
1780 	unsigned long flags;
1781 
1782 	spin_lock_irqsave(ap->lock, flags);
1783 	mv_stop_edma(ap);
1784 	mv_enable_port_irqs(ap, 0);
1785 	spin_unlock_irqrestore(ap->lock, flags);
1786 	mv_port_free_dma_mem(ap);
1787 }
1788 
1789 /**
1790  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1791  *      @qc: queued command whose SG list to source from
1792  *
1793  *      Populate the SG list and mark the last entry.
1794  *
1795  *      LOCKING:
1796  *      Inherited from caller.
1797  */
1798 static void mv_fill_sg(struct ata_queued_cmd *qc)
1799 {
1800 	struct mv_port_priv *pp = qc->ap->private_data;
1801 	struct scatterlist *sg;
1802 	struct mv_sg *mv_sg, *last_sg = NULL;
1803 	unsigned int si;
1804 
1805 	mv_sg = pp->sg_tbl[qc->tag];
1806 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1807 		dma_addr_t addr = sg_dma_address(sg);
1808 		u32 sg_len = sg_dma_len(sg);
1809 
1810 		while (sg_len) {
1811 			u32 offset = addr & 0xffff;
1812 			u32 len = sg_len;
1813 
1814 			if (offset + len > 0x10000)
1815 				len = 0x10000 - offset;
1816 
1817 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1818 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1819 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1820 			mv_sg->reserved = 0;
1821 
1822 			sg_len -= len;
1823 			addr += len;
1824 
1825 			last_sg = mv_sg;
1826 			mv_sg++;
1827 		}
1828 	}
1829 
1830 	if (likely(last_sg))
1831 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1832 	mb(); /* ensure data structure is visible to the chipset */
1833 }
1834 
1835 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1836 {
1837 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1838 		(last ? CRQB_CMD_LAST : 0);
1839 	*cmdw = cpu_to_le16(tmp);
1840 }
1841 
1842 /**
1843  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1844  *	@ap: Port associated with this ATA transaction.
1845  *
1846  *	We need this only for ATAPI bmdma transactions,
1847  *	as otherwise we experience spurious interrupts
1848  *	after libata-sff handles the bmdma interrupts.
1849  */
1850 static void mv_sff_irq_clear(struct ata_port *ap)
1851 {
1852 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1853 }
1854 
1855 /**
1856  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1857  *	@qc: queued command to check for chipset/DMA compatibility.
1858  *
1859  *	The bmdma engines cannot handle speculative data sizes
1860  *	(bytecount under/over flow).  So only allow DMA for
1861  *	data transfer commands with known data sizes.
1862  *
1863  *	LOCKING:
1864  *	Inherited from caller.
1865  */
1866 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1867 {
1868 	struct scsi_cmnd *scmd = qc->scsicmd;
1869 
1870 	if (scmd) {
1871 		switch (scmd->cmnd[0]) {
1872 		case READ_6:
1873 		case READ_10:
1874 		case READ_12:
1875 		case WRITE_6:
1876 		case WRITE_10:
1877 		case WRITE_12:
1878 		case GPCMD_READ_CD:
1879 		case GPCMD_SEND_DVD_STRUCTURE:
1880 		case GPCMD_SEND_CUE_SHEET:
1881 			return 0; /* DMA is safe */
1882 		}
1883 	}
1884 	return -EOPNOTSUPP; /* use PIO instead */
1885 }
1886 
1887 /**
1888  *	mv_bmdma_setup - Set up BMDMA transaction
1889  *	@qc: queued command to prepare DMA for.
1890  *
1891  *	LOCKING:
1892  *	Inherited from caller.
1893  */
1894 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1895 {
1896 	struct ata_port *ap = qc->ap;
1897 	void __iomem *port_mmio = mv_ap_base(ap);
1898 	struct mv_port_priv *pp = ap->private_data;
1899 
1900 	mv_fill_sg(qc);
1901 
1902 	/* clear all DMA cmd bits */
1903 	writel(0, port_mmio + BMDMA_CMD);
1904 
1905 	/* load PRD table addr. */
1906 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1907 		port_mmio + BMDMA_PRD_HIGH);
1908 	writelfl(pp->sg_tbl_dma[qc->tag],
1909 		port_mmio + BMDMA_PRD_LOW);
1910 
1911 	/* issue r/w command */
1912 	ap->ops->sff_exec_command(ap, &qc->tf);
1913 }
1914 
1915 /**
1916  *	mv_bmdma_start - Start a BMDMA transaction
1917  *	@qc: queued command to start DMA on.
1918  *
1919  *	LOCKING:
1920  *	Inherited from caller.
1921  */
1922 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1923 {
1924 	struct ata_port *ap = qc->ap;
1925 	void __iomem *port_mmio = mv_ap_base(ap);
1926 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1927 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1928 
1929 	/* start host DMA transaction */
1930 	writelfl(cmd, port_mmio + BMDMA_CMD);
1931 }
1932 
1933 /**
1934  *	mv_bmdma_stop - Stop BMDMA transfer
1935  *	@qc: queued command to stop DMA on.
1936  *
1937  *	Clears the ATA_DMA_START flag in the bmdma control register
1938  *
1939  *	LOCKING:
1940  *	Inherited from caller.
1941  */
1942 static void mv_bmdma_stop_ap(struct ata_port *ap)
1943 {
1944 	void __iomem *port_mmio = mv_ap_base(ap);
1945 	u32 cmd;
1946 
1947 	/* clear start/stop bit */
1948 	cmd = readl(port_mmio + BMDMA_CMD);
1949 	if (cmd & ATA_DMA_START) {
1950 		cmd &= ~ATA_DMA_START;
1951 		writelfl(cmd, port_mmio + BMDMA_CMD);
1952 
1953 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1954 		ata_sff_dma_pause(ap);
1955 	}
1956 }
1957 
1958 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1959 {
1960 	mv_bmdma_stop_ap(qc->ap);
1961 }
1962 
1963 /**
1964  *	mv_bmdma_status - Read BMDMA status
1965  *	@ap: port for which to retrieve DMA status.
1966  *
1967  *	Read and return equivalent of the sff BMDMA status register.
1968  *
1969  *	LOCKING:
1970  *	Inherited from caller.
1971  */
1972 static u8 mv_bmdma_status(struct ata_port *ap)
1973 {
1974 	void __iomem *port_mmio = mv_ap_base(ap);
1975 	u32 reg, status;
1976 
1977 	/*
1978 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1979 	 * and the ATA_DMA_INTR bit doesn't exist.
1980 	 */
1981 	reg = readl(port_mmio + BMDMA_STATUS);
1982 	if (reg & ATA_DMA_ACTIVE)
1983 		status = ATA_DMA_ACTIVE;
1984 	else if (reg & ATA_DMA_ERR)
1985 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1986 	else {
1987 		/*
1988 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1989 		 * this does _not_ mean the device is "done".
1990 		 * So we should not yet be signalling ATA_DMA_INTR
1991 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1992 		 */
1993 		mv_bmdma_stop_ap(ap);
1994 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1995 			status = 0;
1996 		else
1997 			status = ATA_DMA_INTR;
1998 	}
1999 	return status;
2000 }
2001 
2002 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
2003 {
2004 	struct ata_taskfile *tf = &qc->tf;
2005 	/*
2006 	 * Workaround for 88SX60x1 FEr SATA#24.
2007 	 *
2008 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
2009 	 * Note that READs are unaffected.
2010 	 *
2011 	 * It's not clear if this errata really means "4K bytes",
2012 	 * or if it always happens for multi_count > 7
2013 	 * regardless of device sector_size.
2014 	 *
2015 	 * So, for safety, any write with multi_count > 7
2016 	 * gets converted here into a regular PIO write instead:
2017 	 */
2018 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2019 		if (qc->dev->multi_count > 7) {
2020 			switch (tf->command) {
2021 			case ATA_CMD_WRITE_MULTI:
2022 				tf->command = ATA_CMD_PIO_WRITE;
2023 				break;
2024 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
2025 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2026 				/* fall through */
2027 			case ATA_CMD_WRITE_MULTI_EXT:
2028 				tf->command = ATA_CMD_PIO_WRITE_EXT;
2029 				break;
2030 			}
2031 		}
2032 	}
2033 }
2034 
2035 /**
2036  *      mv_qc_prep - Host specific command preparation.
2037  *      @qc: queued command to prepare
2038  *
2039  *      This routine simply redirects to the general purpose routine
2040  *      if command is not DMA.  Else, it handles prep of the CRQB
2041  *      (command request block), does some sanity checking, and calls
2042  *      the SG load routine.
2043  *
2044  *      LOCKING:
2045  *      Inherited from caller.
2046  */
2047 static void mv_qc_prep(struct ata_queued_cmd *qc)
2048 {
2049 	struct ata_port *ap = qc->ap;
2050 	struct mv_port_priv *pp = ap->private_data;
2051 	__le16 *cw;
2052 	struct ata_taskfile *tf = &qc->tf;
2053 	u16 flags = 0;
2054 	unsigned in_index;
2055 
2056 	switch (tf->protocol) {
2057 	case ATA_PROT_DMA:
2058 		if (tf->command == ATA_CMD_DSM)
2059 			return;
2060 		/* fall-thru */
2061 	case ATA_PROT_NCQ:
2062 		break;	/* continue below */
2063 	case ATA_PROT_PIO:
2064 		mv_rw_multi_errata_sata24(qc);
2065 		return;
2066 	default:
2067 		return;
2068 	}
2069 
2070 	/* Fill in command request block
2071 	 */
2072 	if (!(tf->flags & ATA_TFLAG_WRITE))
2073 		flags |= CRQB_FLAG_READ;
2074 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2075 	flags |= qc->tag << CRQB_TAG_SHIFT;
2076 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2077 
2078 	/* get current queue index from software */
2079 	in_index = pp->req_idx;
2080 
2081 	pp->crqb[in_index].sg_addr =
2082 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2083 	pp->crqb[in_index].sg_addr_hi =
2084 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2085 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2086 
2087 	cw = &pp->crqb[in_index].ata_cmd[0];
2088 
2089 	/* Sadly, the CRQB cannot accommodate all registers--there are
2090 	 * only 11 bytes...so we must pick and choose required
2091 	 * registers based on the command.  So, we drop feature and
2092 	 * hob_feature for [RW] DMA commands, but they are needed for
2093 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2094 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2095 	 */
2096 	switch (tf->command) {
2097 	case ATA_CMD_READ:
2098 	case ATA_CMD_READ_EXT:
2099 	case ATA_CMD_WRITE:
2100 	case ATA_CMD_WRITE_EXT:
2101 	case ATA_CMD_WRITE_FUA_EXT:
2102 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2103 		break;
2104 	case ATA_CMD_FPDMA_READ:
2105 	case ATA_CMD_FPDMA_WRITE:
2106 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2107 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2108 		break;
2109 	default:
2110 		/* The only other commands EDMA supports in non-queued and
2111 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2112 		 * of which are defined/used by Linux.  If we get here, this
2113 		 * driver needs work.
2114 		 *
2115 		 * FIXME: modify libata to give qc_prep a return value and
2116 		 * return error here.
2117 		 */
2118 		BUG_ON(tf->command);
2119 		break;
2120 	}
2121 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2122 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2123 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2124 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2125 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2126 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2127 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2128 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2129 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2130 
2131 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2132 		return;
2133 	mv_fill_sg(qc);
2134 }
2135 
2136 /**
2137  *      mv_qc_prep_iie - Host specific command preparation.
2138  *      @qc: queued command to prepare
2139  *
2140  *      This routine simply redirects to the general purpose routine
2141  *      if command is not DMA.  Else, it handles prep of the CRQB
2142  *      (command request block), does some sanity checking, and calls
2143  *      the SG load routine.
2144  *
2145  *      LOCKING:
2146  *      Inherited from caller.
2147  */
2148 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2149 {
2150 	struct ata_port *ap = qc->ap;
2151 	struct mv_port_priv *pp = ap->private_data;
2152 	struct mv_crqb_iie *crqb;
2153 	struct ata_taskfile *tf = &qc->tf;
2154 	unsigned in_index;
2155 	u32 flags = 0;
2156 
2157 	if ((tf->protocol != ATA_PROT_DMA) &&
2158 	    (tf->protocol != ATA_PROT_NCQ))
2159 		return;
2160 	if (tf->command == ATA_CMD_DSM)
2161 		return;  /* use bmdma for this */
2162 
2163 	/* Fill in Gen IIE command request block */
2164 	if (!(tf->flags & ATA_TFLAG_WRITE))
2165 		flags |= CRQB_FLAG_READ;
2166 
2167 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2168 	flags |= qc->tag << CRQB_TAG_SHIFT;
2169 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2170 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2171 
2172 	/* get current queue index from software */
2173 	in_index = pp->req_idx;
2174 
2175 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2176 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2177 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2178 	crqb->flags = cpu_to_le32(flags);
2179 
2180 	crqb->ata_cmd[0] = cpu_to_le32(
2181 			(tf->command << 16) |
2182 			(tf->feature << 24)
2183 		);
2184 	crqb->ata_cmd[1] = cpu_to_le32(
2185 			(tf->lbal << 0) |
2186 			(tf->lbam << 8) |
2187 			(tf->lbah << 16) |
2188 			(tf->device << 24)
2189 		);
2190 	crqb->ata_cmd[2] = cpu_to_le32(
2191 			(tf->hob_lbal << 0) |
2192 			(tf->hob_lbam << 8) |
2193 			(tf->hob_lbah << 16) |
2194 			(tf->hob_feature << 24)
2195 		);
2196 	crqb->ata_cmd[3] = cpu_to_le32(
2197 			(tf->nsect << 0) |
2198 			(tf->hob_nsect << 8)
2199 		);
2200 
2201 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2202 		return;
2203 	mv_fill_sg(qc);
2204 }
2205 
2206 /**
2207  *	mv_sff_check_status - fetch device status, if valid
2208  *	@ap: ATA port to fetch status from
2209  *
2210  *	When using command issue via mv_qc_issue_fis(),
2211  *	the initial ATA_BUSY state does not show up in the
2212  *	ATA status (shadow) register.  This can confuse libata!
2213  *
2214  *	So we have a hook here to fake ATA_BUSY for that situation,
2215  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2216  *
2217  *	The rest of the time, it simply returns the ATA status register.
2218  */
2219 static u8 mv_sff_check_status(struct ata_port *ap)
2220 {
2221 	u8 stat = ioread8(ap->ioaddr.status_addr);
2222 	struct mv_port_priv *pp = ap->private_data;
2223 
2224 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2225 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2226 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2227 		else
2228 			stat = ATA_BUSY;
2229 	}
2230 	return stat;
2231 }
2232 
2233 /**
2234  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2235  *	@fis: fis to be sent
2236  *	@nwords: number of 32-bit words in the fis
2237  */
2238 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2239 {
2240 	void __iomem *port_mmio = mv_ap_base(ap);
2241 	u32 ifctl, old_ifctl, ifstat;
2242 	int i, timeout = 200, final_word = nwords - 1;
2243 
2244 	/* Initiate FIS transmission mode */
2245 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2246 	ifctl = 0x100 | (old_ifctl & 0xf);
2247 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2248 
2249 	/* Send all words of the FIS except for the final word */
2250 	for (i = 0; i < final_word; ++i)
2251 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2252 
2253 	/* Flag end-of-transmission, and then send the final word */
2254 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2255 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2256 
2257 	/*
2258 	 * Wait for FIS transmission to complete.
2259 	 * This typically takes just a single iteration.
2260 	 */
2261 	do {
2262 		ifstat = readl(port_mmio + SATA_IFSTAT);
2263 	} while (!(ifstat & 0x1000) && --timeout);
2264 
2265 	/* Restore original port configuration */
2266 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2267 
2268 	/* See if it worked */
2269 	if ((ifstat & 0x3000) != 0x1000) {
2270 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2271 			      __func__, ifstat);
2272 		return AC_ERR_OTHER;
2273 	}
2274 	return 0;
2275 }
2276 
2277 /**
2278  *	mv_qc_issue_fis - Issue a command directly as a FIS
2279  *	@qc: queued command to start
2280  *
2281  *	Note that the ATA shadow registers are not updated
2282  *	after command issue, so the device will appear "READY"
2283  *	if polled, even while it is BUSY processing the command.
2284  *
2285  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2286  *
2287  *	Note: we don't get updated shadow regs on *completion*
2288  *	of non-data commands. So avoid sending them via this function,
2289  *	as they will appear to have completed immediately.
2290  *
2291  *	GEN_IIE has special registers that we could get the result tf from,
2292  *	but earlier chipsets do not.  For now, we ignore those registers.
2293  */
2294 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2295 {
2296 	struct ata_port *ap = qc->ap;
2297 	struct mv_port_priv *pp = ap->private_data;
2298 	struct ata_link *link = qc->dev->link;
2299 	u32 fis[5];
2300 	int err = 0;
2301 
2302 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2303 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2304 	if (err)
2305 		return err;
2306 
2307 	switch (qc->tf.protocol) {
2308 	case ATAPI_PROT_PIO:
2309 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2310 		/* fall through */
2311 	case ATAPI_PROT_NODATA:
2312 		ap->hsm_task_state = HSM_ST_FIRST;
2313 		break;
2314 	case ATA_PROT_PIO:
2315 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2316 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2317 			ap->hsm_task_state = HSM_ST_FIRST;
2318 		else
2319 			ap->hsm_task_state = HSM_ST;
2320 		break;
2321 	default:
2322 		ap->hsm_task_state = HSM_ST_LAST;
2323 		break;
2324 	}
2325 
2326 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2327 		ata_sff_queue_pio_task(link, 0);
2328 	return 0;
2329 }
2330 
2331 /**
2332  *      mv_qc_issue - Initiate a command to the host
2333  *      @qc: queued command to start
2334  *
2335  *      This routine simply redirects to the general purpose routine
2336  *      if command is not DMA.  Else, it sanity checks our local
2337  *      caches of the request producer/consumer indices then enables
2338  *      DMA and bumps the request producer index.
2339  *
2340  *      LOCKING:
2341  *      Inherited from caller.
2342  */
2343 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2344 {
2345 	static int limit_warnings = 10;
2346 	struct ata_port *ap = qc->ap;
2347 	void __iomem *port_mmio = mv_ap_base(ap);
2348 	struct mv_port_priv *pp = ap->private_data;
2349 	u32 in_index;
2350 	unsigned int port_irqs;
2351 
2352 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2353 
2354 	switch (qc->tf.protocol) {
2355 	case ATA_PROT_DMA:
2356 		if (qc->tf.command == ATA_CMD_DSM) {
2357 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2358 				return AC_ERR_OTHER;
2359 			break;  /* use bmdma for this */
2360 		}
2361 		/* fall thru */
2362 	case ATA_PROT_NCQ:
2363 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2364 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2365 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2366 
2367 		/* Write the request in pointer to kick the EDMA to life */
2368 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2369 					port_mmio + EDMA_REQ_Q_IN_PTR);
2370 		return 0;
2371 
2372 	case ATA_PROT_PIO:
2373 		/*
2374 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2375 		 *
2376 		 * Someday, we might implement special polling workarounds
2377 		 * for these, but it all seems rather unnecessary since we
2378 		 * normally use only DMA for commands which transfer more
2379 		 * than a single block of data.
2380 		 *
2381 		 * Much of the time, this could just work regardless.
2382 		 * So for now, just log the incident, and allow the attempt.
2383 		 */
2384 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2385 			--limit_warnings;
2386 			ata_link_warn(qc->dev->link, DRV_NAME
2387 				      ": attempting PIO w/multiple DRQ: "
2388 				      "this may fail due to h/w errata\n");
2389 		}
2390 		/* fall through */
2391 	case ATA_PROT_NODATA:
2392 	case ATAPI_PROT_PIO:
2393 	case ATAPI_PROT_NODATA:
2394 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2395 			qc->tf.flags |= ATA_TFLAG_POLLING;
2396 		break;
2397 	}
2398 
2399 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2400 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2401 	else
2402 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2403 
2404 	/*
2405 	 * We're about to send a non-EDMA capable command to the
2406 	 * port.  Turn off EDMA so there won't be problems accessing
2407 	 * shadow block, etc registers.
2408 	 */
2409 	mv_stop_edma(ap);
2410 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2411 	mv_pmp_select(ap, qc->dev->link->pmp);
2412 
2413 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2414 		struct mv_host_priv *hpriv = ap->host->private_data;
2415 		/*
2416 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2417 		 *
2418 		 * After any NCQ error, the READ_LOG_EXT command
2419 		 * from libata-eh *must* use mv_qc_issue_fis().
2420 		 * Otherwise it might fail, due to chip errata.
2421 		 *
2422 		 * Rather than special-case it, we'll just *always*
2423 		 * use this method here for READ_LOG_EXT, making for
2424 		 * easier testing.
2425 		 */
2426 		if (IS_GEN_II(hpriv))
2427 			return mv_qc_issue_fis(qc);
2428 	}
2429 	return ata_bmdma_qc_issue(qc);
2430 }
2431 
2432 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2433 {
2434 	struct mv_port_priv *pp = ap->private_data;
2435 	struct ata_queued_cmd *qc;
2436 
2437 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2438 		return NULL;
2439 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2440 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2441 		return qc;
2442 	return NULL;
2443 }
2444 
2445 static void mv_pmp_error_handler(struct ata_port *ap)
2446 {
2447 	unsigned int pmp, pmp_map;
2448 	struct mv_port_priv *pp = ap->private_data;
2449 
2450 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2451 		/*
2452 		 * Perform NCQ error analysis on failed PMPs
2453 		 * before we freeze the port entirely.
2454 		 *
2455 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2456 		 */
2457 		pmp_map = pp->delayed_eh_pmp_map;
2458 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2459 		for (pmp = 0; pmp_map != 0; pmp++) {
2460 			unsigned int this_pmp = (1 << pmp);
2461 			if (pmp_map & this_pmp) {
2462 				struct ata_link *link = &ap->pmp_link[pmp];
2463 				pmp_map &= ~this_pmp;
2464 				ata_eh_analyze_ncq_error(link);
2465 			}
2466 		}
2467 		ata_port_freeze(ap);
2468 	}
2469 	sata_pmp_error_handler(ap);
2470 }
2471 
2472 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2473 {
2474 	void __iomem *port_mmio = mv_ap_base(ap);
2475 
2476 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2477 }
2478 
2479 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2480 {
2481 	unsigned int pmp;
2482 
2483 	/*
2484 	 * Initialize EH info for PMPs which saw device errors
2485 	 */
2486 	for (pmp = 0; pmp_map != 0; pmp++) {
2487 		unsigned int this_pmp = (1 << pmp);
2488 		if (pmp_map & this_pmp) {
2489 			struct ata_link *link = &ap->pmp_link[pmp];
2490 			struct ata_eh_info *ehi = &link->eh_info;
2491 
2492 			pmp_map &= ~this_pmp;
2493 			ata_ehi_clear_desc(ehi);
2494 			ata_ehi_push_desc(ehi, "dev err");
2495 			ehi->err_mask |= AC_ERR_DEV;
2496 			ehi->action |= ATA_EH_RESET;
2497 			ata_link_abort(link);
2498 		}
2499 	}
2500 }
2501 
2502 static int mv_req_q_empty(struct ata_port *ap)
2503 {
2504 	void __iomem *port_mmio = mv_ap_base(ap);
2505 	u32 in_ptr, out_ptr;
2506 
2507 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2508 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2509 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2510 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2511 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2512 }
2513 
2514 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2515 {
2516 	struct mv_port_priv *pp = ap->private_data;
2517 	int failed_links;
2518 	unsigned int old_map, new_map;
2519 
2520 	/*
2521 	 * Device error during FBS+NCQ operation:
2522 	 *
2523 	 * Set a port flag to prevent further I/O being enqueued.
2524 	 * Leave the EDMA running to drain outstanding commands from this port.
2525 	 * Perform the post-mortem/EH only when all responses are complete.
2526 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2527 	 */
2528 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2529 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2530 		pp->delayed_eh_pmp_map = 0;
2531 	}
2532 	old_map = pp->delayed_eh_pmp_map;
2533 	new_map = old_map | mv_get_err_pmp_map(ap);
2534 
2535 	if (old_map != new_map) {
2536 		pp->delayed_eh_pmp_map = new_map;
2537 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2538 	}
2539 	failed_links = hweight16(new_map);
2540 
2541 	ata_port_info(ap,
2542 		      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2543 		      __func__, pp->delayed_eh_pmp_map,
2544 		      ap->qc_active, failed_links,
2545 		      ap->nr_active_links);
2546 
2547 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2548 		mv_process_crpb_entries(ap, pp);
2549 		mv_stop_edma(ap);
2550 		mv_eh_freeze(ap);
2551 		ata_port_info(ap, "%s: done\n", __func__);
2552 		return 1;	/* handled */
2553 	}
2554 	ata_port_info(ap, "%s: waiting\n", __func__);
2555 	return 1;	/* handled */
2556 }
2557 
2558 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2559 {
2560 	/*
2561 	 * Possible future enhancement:
2562 	 *
2563 	 * FBS+non-NCQ operation is not yet implemented.
2564 	 * See related notes in mv_edma_cfg().
2565 	 *
2566 	 * Device error during FBS+non-NCQ operation:
2567 	 *
2568 	 * We need to snapshot the shadow registers for each failed command.
2569 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2570 	 */
2571 	return 0;	/* not handled */
2572 }
2573 
2574 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2575 {
2576 	struct mv_port_priv *pp = ap->private_data;
2577 
2578 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2579 		return 0;	/* EDMA was not active: not handled */
2580 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2581 		return 0;	/* FBS was not active: not handled */
2582 
2583 	if (!(edma_err_cause & EDMA_ERR_DEV))
2584 		return 0;	/* non DEV error: not handled */
2585 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2586 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2587 		return 0;	/* other problems: not handled */
2588 
2589 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2590 		/*
2591 		 * EDMA should NOT have self-disabled for this case.
2592 		 * If it did, then something is wrong elsewhere,
2593 		 * and we cannot handle it here.
2594 		 */
2595 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2596 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2597 				      __func__, edma_err_cause, pp->pp_flags);
2598 			return 0; /* not handled */
2599 		}
2600 		return mv_handle_fbs_ncq_dev_err(ap);
2601 	} else {
2602 		/*
2603 		 * EDMA should have self-disabled for this case.
2604 		 * If it did not, then something is wrong elsewhere,
2605 		 * and we cannot handle it here.
2606 		 */
2607 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2608 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2609 				      __func__, edma_err_cause, pp->pp_flags);
2610 			return 0; /* not handled */
2611 		}
2612 		return mv_handle_fbs_non_ncq_dev_err(ap);
2613 	}
2614 	return 0;	/* not handled */
2615 }
2616 
2617 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2618 {
2619 	struct ata_eh_info *ehi = &ap->link.eh_info;
2620 	char *when = "idle";
2621 
2622 	ata_ehi_clear_desc(ehi);
2623 	if (edma_was_enabled) {
2624 		when = "EDMA enabled";
2625 	} else {
2626 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2627 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2628 			when = "polling";
2629 	}
2630 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2631 	ehi->err_mask |= AC_ERR_OTHER;
2632 	ehi->action   |= ATA_EH_RESET;
2633 	ata_port_freeze(ap);
2634 }
2635 
2636 /**
2637  *      mv_err_intr - Handle error interrupts on the port
2638  *      @ap: ATA channel to manipulate
2639  *
2640  *      Most cases require a full reset of the chip's state machine,
2641  *      which also performs a COMRESET.
2642  *      Also, if the port disabled DMA, update our cached copy to match.
2643  *
2644  *      LOCKING:
2645  *      Inherited from caller.
2646  */
2647 static void mv_err_intr(struct ata_port *ap)
2648 {
2649 	void __iomem *port_mmio = mv_ap_base(ap);
2650 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2651 	u32 fis_cause = 0;
2652 	struct mv_port_priv *pp = ap->private_data;
2653 	struct mv_host_priv *hpriv = ap->host->private_data;
2654 	unsigned int action = 0, err_mask = 0;
2655 	struct ata_eh_info *ehi = &ap->link.eh_info;
2656 	struct ata_queued_cmd *qc;
2657 	int abort = 0;
2658 
2659 	/*
2660 	 * Read and clear the SError and err_cause bits.
2661 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2662 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2663 	 */
2664 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2665 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2666 
2667 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2668 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2669 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2670 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2671 	}
2672 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2673 
2674 	if (edma_err_cause & EDMA_ERR_DEV) {
2675 		/*
2676 		 * Device errors during FIS-based switching operation
2677 		 * require special handling.
2678 		 */
2679 		if (mv_handle_dev_err(ap, edma_err_cause))
2680 			return;
2681 	}
2682 
2683 	qc = mv_get_active_qc(ap);
2684 	ata_ehi_clear_desc(ehi);
2685 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2686 			  edma_err_cause, pp->pp_flags);
2687 
2688 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2689 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2690 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2691 			u32 ec = edma_err_cause &
2692 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2693 			sata_async_notification(ap);
2694 			if (!ec)
2695 				return; /* Just an AN; no need for the nukes */
2696 			ata_ehi_push_desc(ehi, "SDB notify");
2697 		}
2698 	}
2699 	/*
2700 	 * All generations share these EDMA error cause bits:
2701 	 */
2702 	if (edma_err_cause & EDMA_ERR_DEV) {
2703 		err_mask |= AC_ERR_DEV;
2704 		action |= ATA_EH_RESET;
2705 		ata_ehi_push_desc(ehi, "dev error");
2706 	}
2707 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2708 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2709 			EDMA_ERR_INTRL_PAR)) {
2710 		err_mask |= AC_ERR_ATA_BUS;
2711 		action |= ATA_EH_RESET;
2712 		ata_ehi_push_desc(ehi, "parity error");
2713 	}
2714 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2715 		ata_ehi_hotplugged(ehi);
2716 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2717 			"dev disconnect" : "dev connect");
2718 		action |= ATA_EH_RESET;
2719 	}
2720 
2721 	/*
2722 	 * Gen-I has a different SELF_DIS bit,
2723 	 * different FREEZE bits, and no SERR bit:
2724 	 */
2725 	if (IS_GEN_I(hpriv)) {
2726 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2727 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2728 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2729 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2730 		}
2731 	} else {
2732 		eh_freeze_mask = EDMA_EH_FREEZE;
2733 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2734 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2735 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2736 		}
2737 		if (edma_err_cause & EDMA_ERR_SERR) {
2738 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2739 			err_mask |= AC_ERR_ATA_BUS;
2740 			action |= ATA_EH_RESET;
2741 		}
2742 	}
2743 
2744 	if (!err_mask) {
2745 		err_mask = AC_ERR_OTHER;
2746 		action |= ATA_EH_RESET;
2747 	}
2748 
2749 	ehi->serror |= serr;
2750 	ehi->action |= action;
2751 
2752 	if (qc)
2753 		qc->err_mask |= err_mask;
2754 	else
2755 		ehi->err_mask |= err_mask;
2756 
2757 	if (err_mask == AC_ERR_DEV) {
2758 		/*
2759 		 * Cannot do ata_port_freeze() here,
2760 		 * because it would kill PIO access,
2761 		 * which is needed for further diagnosis.
2762 		 */
2763 		mv_eh_freeze(ap);
2764 		abort = 1;
2765 	} else if (edma_err_cause & eh_freeze_mask) {
2766 		/*
2767 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2768 		 */
2769 		ata_port_freeze(ap);
2770 	} else {
2771 		abort = 1;
2772 	}
2773 
2774 	if (abort) {
2775 		if (qc)
2776 			ata_link_abort(qc->dev->link);
2777 		else
2778 			ata_port_abort(ap);
2779 	}
2780 }
2781 
2782 static bool mv_process_crpb_response(struct ata_port *ap,
2783 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2784 {
2785 	u8 ata_status;
2786 	u16 edma_status = le16_to_cpu(response->flags);
2787 
2788 	/*
2789 	 * edma_status from a response queue entry:
2790 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2791 	 *   MSB is saved ATA status from command completion.
2792 	 */
2793 	if (!ncq_enabled) {
2794 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2795 		if (err_cause) {
2796 			/*
2797 			 * Error will be seen/handled by
2798 			 * mv_err_intr().  So do nothing at all here.
2799 			 */
2800 			return false;
2801 		}
2802 	}
2803 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2804 	if (!ac_err_mask(ata_status))
2805 		return true;
2806 	/* else: leave it for mv_err_intr() */
2807 	return false;
2808 }
2809 
2810 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2811 {
2812 	void __iomem *port_mmio = mv_ap_base(ap);
2813 	struct mv_host_priv *hpriv = ap->host->private_data;
2814 	u32 in_index;
2815 	bool work_done = false;
2816 	u32 done_mask = 0;
2817 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2818 
2819 	/* Get the hardware queue position index */
2820 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2821 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2822 
2823 	/* Process new responses from since the last time we looked */
2824 	while (in_index != pp->resp_idx) {
2825 		unsigned int tag;
2826 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2827 
2828 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2829 
2830 		if (IS_GEN_I(hpriv)) {
2831 			/* 50xx: no NCQ, only one command active at a time */
2832 			tag = ap->link.active_tag;
2833 		} else {
2834 			/* Gen II/IIE: get command tag from CRPB entry */
2835 			tag = le16_to_cpu(response->id) & 0x1f;
2836 		}
2837 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2838 			done_mask |= 1 << tag;
2839 		work_done = true;
2840 	}
2841 
2842 	if (work_done) {
2843 		ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2844 
2845 		/* Update the software queue position index in hardware */
2846 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2847 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2848 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2849 	}
2850 }
2851 
2852 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2853 {
2854 	struct mv_port_priv *pp;
2855 	int edma_was_enabled;
2856 
2857 	/*
2858 	 * Grab a snapshot of the EDMA_EN flag setting,
2859 	 * so that we have a consistent view for this port,
2860 	 * even if something we call of our routines changes it.
2861 	 */
2862 	pp = ap->private_data;
2863 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2864 	/*
2865 	 * Process completed CRPB response(s) before other events.
2866 	 */
2867 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2868 		mv_process_crpb_entries(ap, pp);
2869 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2870 			mv_handle_fbs_ncq_dev_err(ap);
2871 	}
2872 	/*
2873 	 * Handle chip-reported errors, or continue on to handle PIO.
2874 	 */
2875 	if (unlikely(port_cause & ERR_IRQ)) {
2876 		mv_err_intr(ap);
2877 	} else if (!edma_was_enabled) {
2878 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2879 		if (qc)
2880 			ata_bmdma_port_intr(ap, qc);
2881 		else
2882 			mv_unexpected_intr(ap, edma_was_enabled);
2883 	}
2884 }
2885 
2886 /**
2887  *      mv_host_intr - Handle all interrupts on the given host controller
2888  *      @host: host specific structure
2889  *      @main_irq_cause: Main interrupt cause register for the chip.
2890  *
2891  *      LOCKING:
2892  *      Inherited from caller.
2893  */
2894 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2895 {
2896 	struct mv_host_priv *hpriv = host->private_data;
2897 	void __iomem *mmio = hpriv->base, *hc_mmio;
2898 	unsigned int handled = 0, port;
2899 
2900 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2901 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2902 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2903 
2904 	for (port = 0; port < hpriv->n_ports; port++) {
2905 		struct ata_port *ap = host->ports[port];
2906 		unsigned int p, shift, hardport, port_cause;
2907 
2908 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2909 		/*
2910 		 * Each hc within the host has its own hc_irq_cause register,
2911 		 * where the interrupting ports bits get ack'd.
2912 		 */
2913 		if (hardport == 0) {	/* first port on this hc ? */
2914 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2915 			u32 port_mask, ack_irqs;
2916 			/*
2917 			 * Skip this entire hc if nothing pending for any ports
2918 			 */
2919 			if (!hc_cause) {
2920 				port += MV_PORTS_PER_HC - 1;
2921 				continue;
2922 			}
2923 			/*
2924 			 * We don't need/want to read the hc_irq_cause register,
2925 			 * because doing so hurts performance, and
2926 			 * main_irq_cause already gives us everything we need.
2927 			 *
2928 			 * But we do have to *write* to the hc_irq_cause to ack
2929 			 * the ports that we are handling this time through.
2930 			 *
2931 			 * This requires that we create a bitmap for those
2932 			 * ports which interrupted us, and use that bitmap
2933 			 * to ack (only) those ports via hc_irq_cause.
2934 			 */
2935 			ack_irqs = 0;
2936 			if (hc_cause & PORTS_0_3_COAL_DONE)
2937 				ack_irqs = HC_COAL_IRQ;
2938 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2939 				if ((port + p) >= hpriv->n_ports)
2940 					break;
2941 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2942 				if (hc_cause & port_mask)
2943 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2944 			}
2945 			hc_mmio = mv_hc_base_from_port(mmio, port);
2946 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2947 			handled = 1;
2948 		}
2949 		/*
2950 		 * Handle interrupts signalled for this port:
2951 		 */
2952 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2953 		if (port_cause)
2954 			mv_port_intr(ap, port_cause);
2955 	}
2956 	return handled;
2957 }
2958 
2959 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2960 {
2961 	struct mv_host_priv *hpriv = host->private_data;
2962 	struct ata_port *ap;
2963 	struct ata_queued_cmd *qc;
2964 	struct ata_eh_info *ehi;
2965 	unsigned int i, err_mask, printed = 0;
2966 	u32 err_cause;
2967 
2968 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2969 
2970 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2971 
2972 	DPRINTK("All regs @ PCI error\n");
2973 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2974 
2975 	writelfl(0, mmio + hpriv->irq_cause_offset);
2976 
2977 	for (i = 0; i < host->n_ports; i++) {
2978 		ap = host->ports[i];
2979 		if (!ata_link_offline(&ap->link)) {
2980 			ehi = &ap->link.eh_info;
2981 			ata_ehi_clear_desc(ehi);
2982 			if (!printed++)
2983 				ata_ehi_push_desc(ehi,
2984 					"PCI err cause 0x%08x", err_cause);
2985 			err_mask = AC_ERR_HOST_BUS;
2986 			ehi->action = ATA_EH_RESET;
2987 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2988 			if (qc)
2989 				qc->err_mask |= err_mask;
2990 			else
2991 				ehi->err_mask |= err_mask;
2992 
2993 			ata_port_freeze(ap);
2994 		}
2995 	}
2996 	return 1;	/* handled */
2997 }
2998 
2999 /**
3000  *      mv_interrupt - Main interrupt event handler
3001  *      @irq: unused
3002  *      @dev_instance: private data; in this case the host structure
3003  *
3004  *      Read the read only register to determine if any host
3005  *      controllers have pending interrupts.  If so, call lower level
3006  *      routine to handle.  Also check for PCI errors which are only
3007  *      reported here.
3008  *
3009  *      LOCKING:
3010  *      This routine holds the host lock while processing pending
3011  *      interrupts.
3012  */
3013 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3014 {
3015 	struct ata_host *host = dev_instance;
3016 	struct mv_host_priv *hpriv = host->private_data;
3017 	unsigned int handled = 0;
3018 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3019 	u32 main_irq_cause, pending_irqs;
3020 
3021 	spin_lock(&host->lock);
3022 
3023 	/* for MSI:  block new interrupts while in here */
3024 	if (using_msi)
3025 		mv_write_main_irq_mask(0, hpriv);
3026 
3027 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
3028 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3029 	/*
3030 	 * Deal with cases where we either have nothing pending, or have read
3031 	 * a bogus register value which can indicate HW removal or PCI fault.
3032 	 */
3033 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3034 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3035 			handled = mv_pci_error(host, hpriv->base);
3036 		else
3037 			handled = mv_host_intr(host, pending_irqs);
3038 	}
3039 
3040 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3041 	if (using_msi)
3042 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3043 
3044 	spin_unlock(&host->lock);
3045 
3046 	return IRQ_RETVAL(handled);
3047 }
3048 
3049 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3050 {
3051 	unsigned int ofs;
3052 
3053 	switch (sc_reg_in) {
3054 	case SCR_STATUS:
3055 	case SCR_ERROR:
3056 	case SCR_CONTROL:
3057 		ofs = sc_reg_in * sizeof(u32);
3058 		break;
3059 	default:
3060 		ofs = 0xffffffffU;
3061 		break;
3062 	}
3063 	return ofs;
3064 }
3065 
3066 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3067 {
3068 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3069 	void __iomem *mmio = hpriv->base;
3070 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3071 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3072 
3073 	if (ofs != 0xffffffffU) {
3074 		*val = readl(addr + ofs);
3075 		return 0;
3076 	} else
3077 		return -EINVAL;
3078 }
3079 
3080 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3081 {
3082 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3083 	void __iomem *mmio = hpriv->base;
3084 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3085 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3086 
3087 	if (ofs != 0xffffffffU) {
3088 		writelfl(val, addr + ofs);
3089 		return 0;
3090 	} else
3091 		return -EINVAL;
3092 }
3093 
3094 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3095 {
3096 	struct pci_dev *pdev = to_pci_dev(host->dev);
3097 	int early_5080;
3098 
3099 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3100 
3101 	if (!early_5080) {
3102 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3103 		tmp |= (1 << 0);
3104 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3105 	}
3106 
3107 	mv_reset_pci_bus(host, mmio);
3108 }
3109 
3110 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3111 {
3112 	writel(0x0fcfffff, mmio + FLASH_CTL);
3113 }
3114 
3115 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3116 			   void __iomem *mmio)
3117 {
3118 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3119 	u32 tmp;
3120 
3121 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3122 
3123 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3124 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3125 }
3126 
3127 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3128 {
3129 	u32 tmp;
3130 
3131 	writel(0, mmio + GPIO_PORT_CTL);
3132 
3133 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3134 
3135 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3136 	tmp |= ~(1 << 0);
3137 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3138 }
3139 
3140 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3141 			   unsigned int port)
3142 {
3143 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3144 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3145 	u32 tmp;
3146 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3147 
3148 	if (fix_apm_sq) {
3149 		tmp = readl(phy_mmio + MV5_LTMODE);
3150 		tmp |= (1 << 19);
3151 		writel(tmp, phy_mmio + MV5_LTMODE);
3152 
3153 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3154 		tmp &= ~0x3;
3155 		tmp |= 0x1;
3156 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3157 	}
3158 
3159 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3160 	tmp &= ~mask;
3161 	tmp |= hpriv->signal[port].pre;
3162 	tmp |= hpriv->signal[port].amps;
3163 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3164 }
3165 
3166 
3167 #undef ZERO
3168 #define ZERO(reg) writel(0, port_mmio + (reg))
3169 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3170 			     unsigned int port)
3171 {
3172 	void __iomem *port_mmio = mv_port_base(mmio, port);
3173 
3174 	mv_reset_channel(hpriv, mmio, port);
3175 
3176 	ZERO(0x028);	/* command */
3177 	writel(0x11f, port_mmio + EDMA_CFG);
3178 	ZERO(0x004);	/* timer */
3179 	ZERO(0x008);	/* irq err cause */
3180 	ZERO(0x00c);	/* irq err mask */
3181 	ZERO(0x010);	/* rq bah */
3182 	ZERO(0x014);	/* rq inp */
3183 	ZERO(0x018);	/* rq outp */
3184 	ZERO(0x01c);	/* respq bah */
3185 	ZERO(0x024);	/* respq outp */
3186 	ZERO(0x020);	/* respq inp */
3187 	ZERO(0x02c);	/* test control */
3188 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3189 }
3190 #undef ZERO
3191 
3192 #define ZERO(reg) writel(0, hc_mmio + (reg))
3193 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3194 			unsigned int hc)
3195 {
3196 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3197 	u32 tmp;
3198 
3199 	ZERO(0x00c);
3200 	ZERO(0x010);
3201 	ZERO(0x014);
3202 	ZERO(0x018);
3203 
3204 	tmp = readl(hc_mmio + 0x20);
3205 	tmp &= 0x1c1c1c1c;
3206 	tmp |= 0x03030303;
3207 	writel(tmp, hc_mmio + 0x20);
3208 }
3209 #undef ZERO
3210 
3211 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3212 			unsigned int n_hc)
3213 {
3214 	unsigned int hc, port;
3215 
3216 	for (hc = 0; hc < n_hc; hc++) {
3217 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3218 			mv5_reset_hc_port(hpriv, mmio,
3219 					  (hc * MV_PORTS_PER_HC) + port);
3220 
3221 		mv5_reset_one_hc(hpriv, mmio, hc);
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 #undef ZERO
3228 #define ZERO(reg) writel(0, mmio + (reg))
3229 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3230 {
3231 	struct mv_host_priv *hpriv = host->private_data;
3232 	u32 tmp;
3233 
3234 	tmp = readl(mmio + MV_PCI_MODE);
3235 	tmp &= 0xff00ffff;
3236 	writel(tmp, mmio + MV_PCI_MODE);
3237 
3238 	ZERO(MV_PCI_DISC_TIMER);
3239 	ZERO(MV_PCI_MSI_TRIGGER);
3240 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3241 	ZERO(MV_PCI_SERR_MASK);
3242 	ZERO(hpriv->irq_cause_offset);
3243 	ZERO(hpriv->irq_mask_offset);
3244 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3245 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3246 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3247 	ZERO(MV_PCI_ERR_COMMAND);
3248 }
3249 #undef ZERO
3250 
3251 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3252 {
3253 	u32 tmp;
3254 
3255 	mv5_reset_flash(hpriv, mmio);
3256 
3257 	tmp = readl(mmio + GPIO_PORT_CTL);
3258 	tmp &= 0x3;
3259 	tmp |= (1 << 5) | (1 << 6);
3260 	writel(tmp, mmio + GPIO_PORT_CTL);
3261 }
3262 
3263 /**
3264  *      mv6_reset_hc - Perform the 6xxx global soft reset
3265  *      @mmio: base address of the HBA
3266  *
3267  *      This routine only applies to 6xxx parts.
3268  *
3269  *      LOCKING:
3270  *      Inherited from caller.
3271  */
3272 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3273 			unsigned int n_hc)
3274 {
3275 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3276 	int i, rc = 0;
3277 	u32 t;
3278 
3279 	/* Following procedure defined in PCI "main command and status
3280 	 * register" table.
3281 	 */
3282 	t = readl(reg);
3283 	writel(t | STOP_PCI_MASTER, reg);
3284 
3285 	for (i = 0; i < 1000; i++) {
3286 		udelay(1);
3287 		t = readl(reg);
3288 		if (PCI_MASTER_EMPTY & t)
3289 			break;
3290 	}
3291 	if (!(PCI_MASTER_EMPTY & t)) {
3292 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3293 		rc = 1;
3294 		goto done;
3295 	}
3296 
3297 	/* set reset */
3298 	i = 5;
3299 	do {
3300 		writel(t | GLOB_SFT_RST, reg);
3301 		t = readl(reg);
3302 		udelay(1);
3303 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3304 
3305 	if (!(GLOB_SFT_RST & t)) {
3306 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3307 		rc = 1;
3308 		goto done;
3309 	}
3310 
3311 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3312 	i = 5;
3313 	do {
3314 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3315 		t = readl(reg);
3316 		udelay(1);
3317 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3318 
3319 	if (GLOB_SFT_RST & t) {
3320 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3321 		rc = 1;
3322 	}
3323 done:
3324 	return rc;
3325 }
3326 
3327 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3328 			   void __iomem *mmio)
3329 {
3330 	void __iomem *port_mmio;
3331 	u32 tmp;
3332 
3333 	tmp = readl(mmio + RESET_CFG);
3334 	if ((tmp & (1 << 0)) == 0) {
3335 		hpriv->signal[idx].amps = 0x7 << 8;
3336 		hpriv->signal[idx].pre = 0x1 << 5;
3337 		return;
3338 	}
3339 
3340 	port_mmio = mv_port_base(mmio, idx);
3341 	tmp = readl(port_mmio + PHY_MODE2);
3342 
3343 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3344 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3345 }
3346 
3347 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3348 {
3349 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3350 }
3351 
3352 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3353 			   unsigned int port)
3354 {
3355 	void __iomem *port_mmio = mv_port_base(mmio, port);
3356 
3357 	u32 hp_flags = hpriv->hp_flags;
3358 	int fix_phy_mode2 =
3359 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3360 	int fix_phy_mode4 =
3361 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3362 	u32 m2, m3;
3363 
3364 	if (fix_phy_mode2) {
3365 		m2 = readl(port_mmio + PHY_MODE2);
3366 		m2 &= ~(1 << 16);
3367 		m2 |= (1 << 31);
3368 		writel(m2, port_mmio + PHY_MODE2);
3369 
3370 		udelay(200);
3371 
3372 		m2 = readl(port_mmio + PHY_MODE2);
3373 		m2 &= ~((1 << 16) | (1 << 31));
3374 		writel(m2, port_mmio + PHY_MODE2);
3375 
3376 		udelay(200);
3377 	}
3378 
3379 	/*
3380 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3381 	 * Achieves better receiver noise performance than the h/w default:
3382 	 */
3383 	m3 = readl(port_mmio + PHY_MODE3);
3384 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3385 
3386 	/* Guideline 88F5182 (GL# SATA-S11) */
3387 	if (IS_SOC(hpriv))
3388 		m3 &= ~0x1c;
3389 
3390 	if (fix_phy_mode4) {
3391 		u32 m4 = readl(port_mmio + PHY_MODE4);
3392 		/*
3393 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3394 		 * For earlier chipsets, force only the internal config field
3395 		 *  (workaround for errata FEr SATA#10 part 1).
3396 		 */
3397 		if (IS_GEN_IIE(hpriv))
3398 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3399 		else
3400 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3401 		writel(m4, port_mmio + PHY_MODE4);
3402 	}
3403 	/*
3404 	 * Workaround for 60x1-B2 errata SATA#13:
3405 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3406 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3407 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3408 	 */
3409 	writel(m3, port_mmio + PHY_MODE3);
3410 
3411 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3412 	m2 = readl(port_mmio + PHY_MODE2);
3413 
3414 	m2 &= ~MV_M2_PREAMP_MASK;
3415 	m2 |= hpriv->signal[port].amps;
3416 	m2 |= hpriv->signal[port].pre;
3417 	m2 &= ~(1 << 16);
3418 
3419 	/* according to mvSata 3.6.1, some IIE values are fixed */
3420 	if (IS_GEN_IIE(hpriv)) {
3421 		m2 &= ~0xC30FF01F;
3422 		m2 |= 0x0000900F;
3423 	}
3424 
3425 	writel(m2, port_mmio + PHY_MODE2);
3426 }
3427 
3428 /* TODO: use the generic LED interface to configure the SATA Presence */
3429 /* & Acitivy LEDs on the board */
3430 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3431 				      void __iomem *mmio)
3432 {
3433 	return;
3434 }
3435 
3436 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3437 			   void __iomem *mmio)
3438 {
3439 	void __iomem *port_mmio;
3440 	u32 tmp;
3441 
3442 	port_mmio = mv_port_base(mmio, idx);
3443 	tmp = readl(port_mmio + PHY_MODE2);
3444 
3445 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3446 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3447 }
3448 
3449 #undef ZERO
3450 #define ZERO(reg) writel(0, port_mmio + (reg))
3451 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3452 					void __iomem *mmio, unsigned int port)
3453 {
3454 	void __iomem *port_mmio = mv_port_base(mmio, port);
3455 
3456 	mv_reset_channel(hpriv, mmio, port);
3457 
3458 	ZERO(0x028);		/* command */
3459 	writel(0x101f, port_mmio + EDMA_CFG);
3460 	ZERO(0x004);		/* timer */
3461 	ZERO(0x008);		/* irq err cause */
3462 	ZERO(0x00c);		/* irq err mask */
3463 	ZERO(0x010);		/* rq bah */
3464 	ZERO(0x014);		/* rq inp */
3465 	ZERO(0x018);		/* rq outp */
3466 	ZERO(0x01c);		/* respq bah */
3467 	ZERO(0x024);		/* respq outp */
3468 	ZERO(0x020);		/* respq inp */
3469 	ZERO(0x02c);		/* test control */
3470 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3471 }
3472 
3473 #undef ZERO
3474 
3475 #define ZERO(reg) writel(0, hc_mmio + (reg))
3476 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3477 				       void __iomem *mmio)
3478 {
3479 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3480 
3481 	ZERO(0x00c);
3482 	ZERO(0x010);
3483 	ZERO(0x014);
3484 
3485 }
3486 
3487 #undef ZERO
3488 
3489 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3490 				  void __iomem *mmio, unsigned int n_hc)
3491 {
3492 	unsigned int port;
3493 
3494 	for (port = 0; port < hpriv->n_ports; port++)
3495 		mv_soc_reset_hc_port(hpriv, mmio, port);
3496 
3497 	mv_soc_reset_one_hc(hpriv, mmio);
3498 
3499 	return 0;
3500 }
3501 
3502 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3503 				      void __iomem *mmio)
3504 {
3505 	return;
3506 }
3507 
3508 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3509 {
3510 	return;
3511 }
3512 
3513 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3514 				  void __iomem *mmio, unsigned int port)
3515 {
3516 	void __iomem *port_mmio = mv_port_base(mmio, port);
3517 	u32	reg;
3518 
3519 	reg = readl(port_mmio + PHY_MODE3);
3520 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3521 	reg |= (0x1 << 27);
3522 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3523 	reg |= (0x1 << 29);
3524 	writel(reg, port_mmio + PHY_MODE3);
3525 
3526 	reg = readl(port_mmio + PHY_MODE4);
3527 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3528 	reg |= (0x1 << 16);
3529 	writel(reg, port_mmio + PHY_MODE4);
3530 
3531 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3532 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3533 	reg |= 0x8;
3534 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3535 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3536 
3537 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3538 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3539 	reg |= 0x8;
3540 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3541 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3542 }
3543 
3544 /**
3545  *	soc_is_65 - check if the soc is 65 nano device
3546  *
3547  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3548  *	register, this register should contain non-zero value and it exists only
3549  *	in the 65 nano devices, when reading it from older devices we get 0.
3550  */
3551 static bool soc_is_65n(struct mv_host_priv *hpriv)
3552 {
3553 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3554 
3555 	if (readl(port0_mmio + PHYCFG_OFS))
3556 		return true;
3557 	return false;
3558 }
3559 
3560 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3561 {
3562 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3563 
3564 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3565 	if (want_gen2i)
3566 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3567 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3568 }
3569 
3570 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3571 			     unsigned int port_no)
3572 {
3573 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3574 
3575 	/*
3576 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3577 	 * (but doesn't say what the problem might be).  So we first try
3578 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3579 	 */
3580 	mv_stop_edma_engine(port_mmio);
3581 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3582 
3583 	if (!IS_GEN_I(hpriv)) {
3584 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3585 		mv_setup_ifcfg(port_mmio, 1);
3586 	}
3587 	/*
3588 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3589 	 * link, and physical layers.  It resets all SATA interface registers
3590 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3591 	 */
3592 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3593 	udelay(25);	/* allow reset propagation */
3594 	writelfl(0, port_mmio + EDMA_CMD);
3595 
3596 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3597 
3598 	if (IS_GEN_I(hpriv))
3599 		usleep_range(500, 1000);
3600 }
3601 
3602 static void mv_pmp_select(struct ata_port *ap, int pmp)
3603 {
3604 	if (sata_pmp_supported(ap)) {
3605 		void __iomem *port_mmio = mv_ap_base(ap);
3606 		u32 reg = readl(port_mmio + SATA_IFCTL);
3607 		int old = reg & 0xf;
3608 
3609 		if (old != pmp) {
3610 			reg = (reg & ~0xf) | pmp;
3611 			writelfl(reg, port_mmio + SATA_IFCTL);
3612 		}
3613 	}
3614 }
3615 
3616 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3617 				unsigned long deadline)
3618 {
3619 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3620 	return sata_std_hardreset(link, class, deadline);
3621 }
3622 
3623 static int mv_softreset(struct ata_link *link, unsigned int *class,
3624 				unsigned long deadline)
3625 {
3626 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3627 	return ata_sff_softreset(link, class, deadline);
3628 }
3629 
3630 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3631 			unsigned long deadline)
3632 {
3633 	struct ata_port *ap = link->ap;
3634 	struct mv_host_priv *hpriv = ap->host->private_data;
3635 	struct mv_port_priv *pp = ap->private_data;
3636 	void __iomem *mmio = hpriv->base;
3637 	int rc, attempts = 0, extra = 0;
3638 	u32 sstatus;
3639 	bool online;
3640 
3641 	mv_reset_channel(hpriv, mmio, ap->port_no);
3642 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3643 	pp->pp_flags &=
3644 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3645 
3646 	/* Workaround for errata FEr SATA#10 (part 2) */
3647 	do {
3648 		const unsigned long *timing =
3649 				sata_ehc_deb_timing(&link->eh_context);
3650 
3651 		rc = sata_link_hardreset(link, timing, deadline + extra,
3652 					 &online, NULL);
3653 		rc = online ? -EAGAIN : rc;
3654 		if (rc)
3655 			return rc;
3656 		sata_scr_read(link, SCR_STATUS, &sstatus);
3657 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3658 			/* Force 1.5gb/s link speed and try again */
3659 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3660 			if (time_after(jiffies + HZ, deadline))
3661 				extra = HZ; /* only extend it once, max */
3662 		}
3663 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3664 	mv_save_cached_regs(ap);
3665 	mv_edma_cfg(ap, 0, 0);
3666 
3667 	return rc;
3668 }
3669 
3670 static void mv_eh_freeze(struct ata_port *ap)
3671 {
3672 	mv_stop_edma(ap);
3673 	mv_enable_port_irqs(ap, 0);
3674 }
3675 
3676 static void mv_eh_thaw(struct ata_port *ap)
3677 {
3678 	struct mv_host_priv *hpriv = ap->host->private_data;
3679 	unsigned int port = ap->port_no;
3680 	unsigned int hardport = mv_hardport_from_port(port);
3681 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3682 	void __iomem *port_mmio = mv_ap_base(ap);
3683 	u32 hc_irq_cause;
3684 
3685 	/* clear EDMA errors on this port */
3686 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3687 
3688 	/* clear pending irq events */
3689 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3690 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3691 
3692 	mv_enable_port_irqs(ap, ERR_IRQ);
3693 }
3694 
3695 /**
3696  *      mv_port_init - Perform some early initialization on a single port.
3697  *      @port: libata data structure storing shadow register addresses
3698  *      @port_mmio: base address of the port
3699  *
3700  *      Initialize shadow register mmio addresses, clear outstanding
3701  *      interrupts on the port, and unmask interrupts for the future
3702  *      start of the port.
3703  *
3704  *      LOCKING:
3705  *      Inherited from caller.
3706  */
3707 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3708 {
3709 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3710 
3711 	/* PIO related setup
3712 	 */
3713 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3714 	port->error_addr =
3715 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3716 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3717 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3718 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3719 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3720 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3721 	port->status_addr =
3722 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3723 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3724 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3725 
3726 	/* Clear any currently outstanding port interrupt conditions */
3727 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3728 	writelfl(readl(serr), serr);
3729 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3730 
3731 	/* unmask all non-transient EDMA error interrupts */
3732 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3733 
3734 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3735 		readl(port_mmio + EDMA_CFG),
3736 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3737 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3738 }
3739 
3740 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3741 {
3742 	struct mv_host_priv *hpriv = host->private_data;
3743 	void __iomem *mmio = hpriv->base;
3744 	u32 reg;
3745 
3746 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3747 		return 0;	/* not PCI-X capable */
3748 	reg = readl(mmio + MV_PCI_MODE);
3749 	if ((reg & MV_PCI_MODE_MASK) == 0)
3750 		return 0;	/* conventional PCI mode */
3751 	return 1;	/* chip is in PCI-X mode */
3752 }
3753 
3754 static int mv_pci_cut_through_okay(struct ata_host *host)
3755 {
3756 	struct mv_host_priv *hpriv = host->private_data;
3757 	void __iomem *mmio = hpriv->base;
3758 	u32 reg;
3759 
3760 	if (!mv_in_pcix_mode(host)) {
3761 		reg = readl(mmio + MV_PCI_COMMAND);
3762 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3763 			return 0; /* not okay */
3764 	}
3765 	return 1; /* okay */
3766 }
3767 
3768 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3769 {
3770 	struct mv_host_priv *hpriv = host->private_data;
3771 	void __iomem *mmio = hpriv->base;
3772 
3773 	/* workaround for 60x1-B2 errata PCI#7 */
3774 	if (mv_in_pcix_mode(host)) {
3775 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3776 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3777 	}
3778 }
3779 
3780 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3781 {
3782 	struct pci_dev *pdev = to_pci_dev(host->dev);
3783 	struct mv_host_priv *hpriv = host->private_data;
3784 	u32 hp_flags = hpriv->hp_flags;
3785 
3786 	switch (board_idx) {
3787 	case chip_5080:
3788 		hpriv->ops = &mv5xxx_ops;
3789 		hp_flags |= MV_HP_GEN_I;
3790 
3791 		switch (pdev->revision) {
3792 		case 0x1:
3793 			hp_flags |= MV_HP_ERRATA_50XXB0;
3794 			break;
3795 		case 0x3:
3796 			hp_flags |= MV_HP_ERRATA_50XXB2;
3797 			break;
3798 		default:
3799 			dev_warn(&pdev->dev,
3800 				 "Applying 50XXB2 workarounds to unknown rev\n");
3801 			hp_flags |= MV_HP_ERRATA_50XXB2;
3802 			break;
3803 		}
3804 		break;
3805 
3806 	case chip_504x:
3807 	case chip_508x:
3808 		hpriv->ops = &mv5xxx_ops;
3809 		hp_flags |= MV_HP_GEN_I;
3810 
3811 		switch (pdev->revision) {
3812 		case 0x0:
3813 			hp_flags |= MV_HP_ERRATA_50XXB0;
3814 			break;
3815 		case 0x3:
3816 			hp_flags |= MV_HP_ERRATA_50XXB2;
3817 			break;
3818 		default:
3819 			dev_warn(&pdev->dev,
3820 				 "Applying B2 workarounds to unknown rev\n");
3821 			hp_flags |= MV_HP_ERRATA_50XXB2;
3822 			break;
3823 		}
3824 		break;
3825 
3826 	case chip_604x:
3827 	case chip_608x:
3828 		hpriv->ops = &mv6xxx_ops;
3829 		hp_flags |= MV_HP_GEN_II;
3830 
3831 		switch (pdev->revision) {
3832 		case 0x7:
3833 			mv_60x1b2_errata_pci7(host);
3834 			hp_flags |= MV_HP_ERRATA_60X1B2;
3835 			break;
3836 		case 0x9:
3837 			hp_flags |= MV_HP_ERRATA_60X1C0;
3838 			break;
3839 		default:
3840 			dev_warn(&pdev->dev,
3841 				 "Applying B2 workarounds to unknown rev\n");
3842 			hp_flags |= MV_HP_ERRATA_60X1B2;
3843 			break;
3844 		}
3845 		break;
3846 
3847 	case chip_7042:
3848 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3849 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3850 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3851 		{
3852 			/*
3853 			 * Highpoint RocketRAID PCIe 23xx series cards:
3854 			 *
3855 			 * Unconfigured drives are treated as "Legacy"
3856 			 * by the BIOS, and it overwrites sector 8 with
3857 			 * a "Lgcy" metadata block prior to Linux boot.
3858 			 *
3859 			 * Configured drives (RAID or JBOD) leave sector 8
3860 			 * alone, but instead overwrite a high numbered
3861 			 * sector for the RAID metadata.  This sector can
3862 			 * be determined exactly, by truncating the physical
3863 			 * drive capacity to a nice even GB value.
3864 			 *
3865 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3866 			 *
3867 			 * Warn the user, lest they think we're just buggy.
3868 			 */
3869 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3870 				" BIOS CORRUPTS DATA on all attached drives,"
3871 				" regardless of if/how they are configured."
3872 				" BEWARE!\n");
3873 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3874 				" use sectors 8-9 on \"Legacy\" drives,"
3875 				" and avoid the final two gigabytes on"
3876 				" all RocketRAID BIOS initialized drives.\n");
3877 		}
3878 		/* fall through */
3879 	case chip_6042:
3880 		hpriv->ops = &mv6xxx_ops;
3881 		hp_flags |= MV_HP_GEN_IIE;
3882 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3883 			hp_flags |= MV_HP_CUT_THROUGH;
3884 
3885 		switch (pdev->revision) {
3886 		case 0x2: /* Rev.B0: the first/only public release */
3887 			hp_flags |= MV_HP_ERRATA_60X1C0;
3888 			break;
3889 		default:
3890 			dev_warn(&pdev->dev,
3891 				 "Applying 60X1C0 workarounds to unknown rev\n");
3892 			hp_flags |= MV_HP_ERRATA_60X1C0;
3893 			break;
3894 		}
3895 		break;
3896 	case chip_soc:
3897 		if (soc_is_65n(hpriv))
3898 			hpriv->ops = &mv_soc_65n_ops;
3899 		else
3900 			hpriv->ops = &mv_soc_ops;
3901 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3902 			MV_HP_ERRATA_60X1C0;
3903 		break;
3904 
3905 	default:
3906 		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3907 		return 1;
3908 	}
3909 
3910 	hpriv->hp_flags = hp_flags;
3911 	if (hp_flags & MV_HP_PCIE) {
3912 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3913 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3914 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3915 	} else {
3916 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3917 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3918 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3919 	}
3920 
3921 	return 0;
3922 }
3923 
3924 /**
3925  *      mv_init_host - Perform some early initialization of the host.
3926  *	@host: ATA host to initialize
3927  *
3928  *      If possible, do an early global reset of the host.  Then do
3929  *      our port init and clear/unmask all/relevant host interrupts.
3930  *
3931  *      LOCKING:
3932  *      Inherited from caller.
3933  */
3934 static int mv_init_host(struct ata_host *host)
3935 {
3936 	int rc = 0, n_hc, port, hc;
3937 	struct mv_host_priv *hpriv = host->private_data;
3938 	void __iomem *mmio = hpriv->base;
3939 
3940 	rc = mv_chip_id(host, hpriv->board_idx);
3941 	if (rc)
3942 		goto done;
3943 
3944 	if (IS_SOC(hpriv)) {
3945 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3946 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3947 	} else {
3948 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3949 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3950 	}
3951 
3952 	/* initialize shadow irq mask with register's value */
3953 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3954 
3955 	/* global interrupt mask: 0 == mask everything */
3956 	mv_set_main_irq_mask(host, ~0, 0);
3957 
3958 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3959 
3960 	for (port = 0; port < host->n_ports; port++)
3961 		if (hpriv->ops->read_preamp)
3962 			hpriv->ops->read_preamp(hpriv, port, mmio);
3963 
3964 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3965 	if (rc)
3966 		goto done;
3967 
3968 	hpriv->ops->reset_flash(hpriv, mmio);
3969 	hpriv->ops->reset_bus(host, mmio);
3970 	hpriv->ops->enable_leds(hpriv, mmio);
3971 
3972 	for (port = 0; port < host->n_ports; port++) {
3973 		struct ata_port *ap = host->ports[port];
3974 		void __iomem *port_mmio = mv_port_base(mmio, port);
3975 
3976 		mv_port_init(&ap->ioaddr, port_mmio);
3977 	}
3978 
3979 	for (hc = 0; hc < n_hc; hc++) {
3980 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3981 
3982 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3983 			"(before clear)=0x%08x\n", hc,
3984 			readl(hc_mmio + HC_CFG),
3985 			readl(hc_mmio + HC_IRQ_CAUSE));
3986 
3987 		/* Clear any currently outstanding hc interrupt conditions */
3988 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3989 	}
3990 
3991 	if (!IS_SOC(hpriv)) {
3992 		/* Clear any currently outstanding host interrupt conditions */
3993 		writelfl(0, mmio + hpriv->irq_cause_offset);
3994 
3995 		/* and unmask interrupt generation for host regs */
3996 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3997 	}
3998 
3999 	/*
4000 	 * enable only global host interrupts for now.
4001 	 * The per-port interrupts get done later as ports are set up.
4002 	 */
4003 	mv_set_main_irq_mask(host, 0, PCI_ERR);
4004 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
4005 				    irq_coalescing_usecs);
4006 done:
4007 	return rc;
4008 }
4009 
4010 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4011 {
4012 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4013 							     MV_CRQB_Q_SZ, 0);
4014 	if (!hpriv->crqb_pool)
4015 		return -ENOMEM;
4016 
4017 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4018 							     MV_CRPB_Q_SZ, 0);
4019 	if (!hpriv->crpb_pool)
4020 		return -ENOMEM;
4021 
4022 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4023 							     MV_SG_TBL_SZ, 0);
4024 	if (!hpriv->sg_tbl_pool)
4025 		return -ENOMEM;
4026 
4027 	return 0;
4028 }
4029 
4030 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4031 				 const struct mbus_dram_target_info *dram)
4032 {
4033 	int i;
4034 
4035 	for (i = 0; i < 4; i++) {
4036 		writel(0, hpriv->base + WINDOW_CTRL(i));
4037 		writel(0, hpriv->base + WINDOW_BASE(i));
4038 	}
4039 
4040 	for (i = 0; i < dram->num_cs; i++) {
4041 		const struct mbus_dram_window *cs = dram->cs + i;
4042 
4043 		writel(((cs->size - 1) & 0xffff0000) |
4044 			(cs->mbus_attr << 8) |
4045 			(dram->mbus_dram_target_id << 4) | 1,
4046 			hpriv->base + WINDOW_CTRL(i));
4047 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4048 	}
4049 }
4050 
4051 /**
4052  *      mv_platform_probe - handle a positive probe of an soc Marvell
4053  *      host
4054  *      @pdev: platform device found
4055  *
4056  *      LOCKING:
4057  *      Inherited from caller.
4058  */
4059 static int mv_platform_probe(struct platform_device *pdev)
4060 {
4061 	const struct mv_sata_platform_data *mv_platform_data;
4062 	const struct mbus_dram_target_info *dram;
4063 	const struct ata_port_info *ppi[] =
4064 	    { &mv_port_info[chip_soc], NULL };
4065 	struct ata_host *host;
4066 	struct mv_host_priv *hpriv;
4067 	struct resource *res;
4068 	int n_ports = 0, irq = 0;
4069 	int rc;
4070 	int port;
4071 
4072 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4073 
4074 	/*
4075 	 * Simple resource validation ..
4076 	 */
4077 	if (unlikely(pdev->num_resources != 2)) {
4078 		dev_err(&pdev->dev, "invalid number of resources\n");
4079 		return -EINVAL;
4080 	}
4081 
4082 	/*
4083 	 * Get the register base first
4084 	 */
4085 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4086 	if (res == NULL)
4087 		return -EINVAL;
4088 
4089 	/* allocate host */
4090 	if (pdev->dev.of_node) {
4091 		rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4092 					   &n_ports);
4093 		if (rc) {
4094 			dev_err(&pdev->dev,
4095 				"error parsing nr-ports property: %d\n", rc);
4096 			return rc;
4097 		}
4098 
4099 		if (n_ports <= 0) {
4100 			dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4101 				n_ports);
4102 			return -EINVAL;
4103 		}
4104 
4105 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4106 	} else {
4107 		mv_platform_data = dev_get_platdata(&pdev->dev);
4108 		n_ports = mv_platform_data->n_ports;
4109 		irq = platform_get_irq(pdev, 0);
4110 	}
4111 
4112 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4113 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4114 
4115 	if (!host || !hpriv)
4116 		return -ENOMEM;
4117 	hpriv->port_clks = devm_kzalloc(&pdev->dev,
4118 					sizeof(struct clk *) * n_ports,
4119 					GFP_KERNEL);
4120 	if (!hpriv->port_clks)
4121 		return -ENOMEM;
4122 	hpriv->port_phys = devm_kzalloc(&pdev->dev,
4123 					sizeof(struct phy *) * n_ports,
4124 					GFP_KERNEL);
4125 	if (!hpriv->port_phys)
4126 		return -ENOMEM;
4127 	host->private_data = hpriv;
4128 	hpriv->board_idx = chip_soc;
4129 
4130 	host->iomap = NULL;
4131 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4132 				   resource_size(res));
4133 	if (!hpriv->base)
4134 		return -ENOMEM;
4135 
4136 	hpriv->base -= SATAHC0_REG_BASE;
4137 
4138 	hpriv->clk = clk_get(&pdev->dev, NULL);
4139 	if (IS_ERR(hpriv->clk))
4140 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4141 	else
4142 		clk_prepare_enable(hpriv->clk);
4143 
4144 	for (port = 0; port < n_ports; port++) {
4145 		char port_number[16];
4146 		sprintf(port_number, "%d", port);
4147 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4148 		if (!IS_ERR(hpriv->port_clks[port]))
4149 			clk_prepare_enable(hpriv->port_clks[port]);
4150 
4151 		sprintf(port_number, "port%d", port);
4152 		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4153 							       port_number);
4154 		if (IS_ERR(hpriv->port_phys[port])) {
4155 			rc = PTR_ERR(hpriv->port_phys[port]);
4156 			hpriv->port_phys[port] = NULL;
4157 			if (rc != -EPROBE_DEFER)
4158 				dev_warn(&pdev->dev, "error getting phy %d", rc);
4159 
4160 			/* Cleanup only the initialized ports */
4161 			hpriv->n_ports = port;
4162 			goto err;
4163 		} else
4164 			phy_power_on(hpriv->port_phys[port]);
4165 	}
4166 
4167 	/* All the ports have been initialized */
4168 	hpriv->n_ports = n_ports;
4169 
4170 	/*
4171 	 * (Re-)program MBUS remapping windows if we are asked to.
4172 	 */
4173 	dram = mv_mbus_dram_info();
4174 	if (dram)
4175 		mv_conf_mbus_windows(hpriv, dram);
4176 
4177 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4178 	if (rc)
4179 		goto err;
4180 
4181 	/*
4182 	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4183 	 * updated in the LP_PHY_CTL register.
4184 	 */
4185 	if (pdev->dev.of_node &&
4186 		of_device_is_compatible(pdev->dev.of_node,
4187 					"marvell,armada-370-sata"))
4188 		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4189 
4190 	/* initialize adapter */
4191 	rc = mv_init_host(host);
4192 	if (rc)
4193 		goto err;
4194 
4195 	dev_info(&pdev->dev, "slots %u ports %d\n",
4196 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4197 
4198 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4199 	if (!rc)
4200 		return 0;
4201 
4202 err:
4203 	if (!IS_ERR(hpriv->clk)) {
4204 		clk_disable_unprepare(hpriv->clk);
4205 		clk_put(hpriv->clk);
4206 	}
4207 	for (port = 0; port < hpriv->n_ports; port++) {
4208 		if (!IS_ERR(hpriv->port_clks[port])) {
4209 			clk_disable_unprepare(hpriv->port_clks[port]);
4210 			clk_put(hpriv->port_clks[port]);
4211 		}
4212 		phy_power_off(hpriv->port_phys[port]);
4213 	}
4214 
4215 	return rc;
4216 }
4217 
4218 /*
4219  *
4220  *      mv_platform_remove    -       unplug a platform interface
4221  *      @pdev: platform device
4222  *
4223  *      A platform bus SATA device has been unplugged. Perform the needed
4224  *      cleanup. Also called on module unload for any active devices.
4225  */
4226 static int mv_platform_remove(struct platform_device *pdev)
4227 {
4228 	struct ata_host *host = platform_get_drvdata(pdev);
4229 	struct mv_host_priv *hpriv = host->private_data;
4230 	int port;
4231 	ata_host_detach(host);
4232 
4233 	if (!IS_ERR(hpriv->clk)) {
4234 		clk_disable_unprepare(hpriv->clk);
4235 		clk_put(hpriv->clk);
4236 	}
4237 	for (port = 0; port < host->n_ports; port++) {
4238 		if (!IS_ERR(hpriv->port_clks[port])) {
4239 			clk_disable_unprepare(hpriv->port_clks[port]);
4240 			clk_put(hpriv->port_clks[port]);
4241 		}
4242 		phy_power_off(hpriv->port_phys[port]);
4243 	}
4244 	return 0;
4245 }
4246 
4247 #ifdef CONFIG_PM_SLEEP
4248 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4249 {
4250 	struct ata_host *host = platform_get_drvdata(pdev);
4251 	if (host)
4252 		return ata_host_suspend(host, state);
4253 	else
4254 		return 0;
4255 }
4256 
4257 static int mv_platform_resume(struct platform_device *pdev)
4258 {
4259 	struct ata_host *host = platform_get_drvdata(pdev);
4260 	const struct mbus_dram_target_info *dram;
4261 	int ret;
4262 
4263 	if (host) {
4264 		struct mv_host_priv *hpriv = host->private_data;
4265 
4266 		/*
4267 		 * (Re-)program MBUS remapping windows if we are asked to.
4268 		 */
4269 		dram = mv_mbus_dram_info();
4270 		if (dram)
4271 			mv_conf_mbus_windows(hpriv, dram);
4272 
4273 		/* initialize adapter */
4274 		ret = mv_init_host(host);
4275 		if (ret) {
4276 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4277 			return ret;
4278 		}
4279 		ata_host_resume(host);
4280 	}
4281 
4282 	return 0;
4283 }
4284 #else
4285 #define mv_platform_suspend NULL
4286 #define mv_platform_resume NULL
4287 #endif
4288 
4289 #ifdef CONFIG_OF
4290 static const struct of_device_id mv_sata_dt_ids[] = {
4291 	{ .compatible = "marvell,armada-370-sata", },
4292 	{ .compatible = "marvell,orion-sata", },
4293 	{},
4294 };
4295 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4296 #endif
4297 
4298 static struct platform_driver mv_platform_driver = {
4299 	.probe		= mv_platform_probe,
4300 	.remove		= mv_platform_remove,
4301 	.suspend	= mv_platform_suspend,
4302 	.resume		= mv_platform_resume,
4303 	.driver		= {
4304 		.name = DRV_NAME,
4305 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4306 	},
4307 };
4308 
4309 
4310 #ifdef CONFIG_PCI
4311 static int mv_pci_init_one(struct pci_dev *pdev,
4312 			   const struct pci_device_id *ent);
4313 #ifdef CONFIG_PM_SLEEP
4314 static int mv_pci_device_resume(struct pci_dev *pdev);
4315 #endif
4316 
4317 
4318 static struct pci_driver mv_pci_driver = {
4319 	.name			= DRV_NAME,
4320 	.id_table		= mv_pci_tbl,
4321 	.probe			= mv_pci_init_one,
4322 	.remove			= ata_pci_remove_one,
4323 #ifdef CONFIG_PM_SLEEP
4324 	.suspend		= ata_pci_device_suspend,
4325 	.resume			= mv_pci_device_resume,
4326 #endif
4327 
4328 };
4329 
4330 /* move to PCI layer or libata core? */
4331 static int pci_go_64(struct pci_dev *pdev)
4332 {
4333 	int rc;
4334 
4335 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
4336 		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
4337 		if (rc) {
4338 			rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4339 			if (rc) {
4340 				dev_err(&pdev->dev,
4341 					"64-bit DMA enable failed\n");
4342 				return rc;
4343 			}
4344 		}
4345 	} else {
4346 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4347 		if (rc) {
4348 			dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4349 			return rc;
4350 		}
4351 		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4352 		if (rc) {
4353 			dev_err(&pdev->dev,
4354 				"32-bit consistent DMA enable failed\n");
4355 			return rc;
4356 		}
4357 	}
4358 
4359 	return rc;
4360 }
4361 
4362 /**
4363  *      mv_print_info - Dump key info to kernel log for perusal.
4364  *      @host: ATA host to print info about
4365  *
4366  *      FIXME: complete this.
4367  *
4368  *      LOCKING:
4369  *      Inherited from caller.
4370  */
4371 static void mv_print_info(struct ata_host *host)
4372 {
4373 	struct pci_dev *pdev = to_pci_dev(host->dev);
4374 	struct mv_host_priv *hpriv = host->private_data;
4375 	u8 scc;
4376 	const char *scc_s, *gen;
4377 
4378 	/* Use this to determine the HW stepping of the chip so we know
4379 	 * what errata to workaround
4380 	 */
4381 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4382 	if (scc == 0)
4383 		scc_s = "SCSI";
4384 	else if (scc == 0x01)
4385 		scc_s = "RAID";
4386 	else
4387 		scc_s = "?";
4388 
4389 	if (IS_GEN_I(hpriv))
4390 		gen = "I";
4391 	else if (IS_GEN_II(hpriv))
4392 		gen = "II";
4393 	else if (IS_GEN_IIE(hpriv))
4394 		gen = "IIE";
4395 	else
4396 		gen = "?";
4397 
4398 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4399 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4400 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4401 }
4402 
4403 /**
4404  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4405  *      @pdev: PCI device found
4406  *      @ent: PCI device ID entry for the matched host
4407  *
4408  *      LOCKING:
4409  *      Inherited from caller.
4410  */
4411 static int mv_pci_init_one(struct pci_dev *pdev,
4412 			   const struct pci_device_id *ent)
4413 {
4414 	unsigned int board_idx = (unsigned int)ent->driver_data;
4415 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4416 	struct ata_host *host;
4417 	struct mv_host_priv *hpriv;
4418 	int n_ports, port, rc;
4419 
4420 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4421 
4422 	/* allocate host */
4423 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4424 
4425 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4426 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4427 	if (!host || !hpriv)
4428 		return -ENOMEM;
4429 	host->private_data = hpriv;
4430 	hpriv->n_ports = n_ports;
4431 	hpriv->board_idx = board_idx;
4432 
4433 	/* acquire resources */
4434 	rc = pcim_enable_device(pdev);
4435 	if (rc)
4436 		return rc;
4437 
4438 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4439 	if (rc == -EBUSY)
4440 		pcim_pin_device(pdev);
4441 	if (rc)
4442 		return rc;
4443 	host->iomap = pcim_iomap_table(pdev);
4444 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4445 
4446 	rc = pci_go_64(pdev);
4447 	if (rc)
4448 		return rc;
4449 
4450 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4451 	if (rc)
4452 		return rc;
4453 
4454 	for (port = 0; port < host->n_ports; port++) {
4455 		struct ata_port *ap = host->ports[port];
4456 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4457 		unsigned int offset = port_mmio - hpriv->base;
4458 
4459 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4460 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4461 	}
4462 
4463 	/* initialize adapter */
4464 	rc = mv_init_host(host);
4465 	if (rc)
4466 		return rc;
4467 
4468 	/* Enable message-switched interrupts, if requested */
4469 	if (msi && pci_enable_msi(pdev) == 0)
4470 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4471 
4472 	mv_dump_pci_cfg(pdev, 0x68);
4473 	mv_print_info(host);
4474 
4475 	pci_set_master(pdev);
4476 	pci_try_set_mwi(pdev);
4477 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4478 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4479 }
4480 
4481 #ifdef CONFIG_PM_SLEEP
4482 static int mv_pci_device_resume(struct pci_dev *pdev)
4483 {
4484 	struct ata_host *host = pci_get_drvdata(pdev);
4485 	int rc;
4486 
4487 	rc = ata_pci_device_do_resume(pdev);
4488 	if (rc)
4489 		return rc;
4490 
4491 	/* initialize adapter */
4492 	rc = mv_init_host(host);
4493 	if (rc)
4494 		return rc;
4495 
4496 	ata_host_resume(host);
4497 
4498 	return 0;
4499 }
4500 #endif
4501 #endif
4502 
4503 static int __init mv_init(void)
4504 {
4505 	int rc = -ENODEV;
4506 #ifdef CONFIG_PCI
4507 	rc = pci_register_driver(&mv_pci_driver);
4508 	if (rc < 0)
4509 		return rc;
4510 #endif
4511 	rc = platform_driver_register(&mv_platform_driver);
4512 
4513 #ifdef CONFIG_PCI
4514 	if (rc < 0)
4515 		pci_unregister_driver(&mv_pci_driver);
4516 #endif
4517 	return rc;
4518 }
4519 
4520 static void __exit mv_exit(void)
4521 {
4522 #ifdef CONFIG_PCI
4523 	pci_unregister_driver(&mv_pci_driver);
4524 #endif
4525 	platform_driver_unregister(&mv_platform_driver);
4526 }
4527 
4528 MODULE_AUTHOR("Brett Russ");
4529 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4530 MODULE_LICENSE("GPL v2");
4531 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4532 MODULE_VERSION(DRV_VERSION);
4533 MODULE_ALIAS("platform:" DRV_NAME);
4534 
4535 module_init(mv_init);
4536 module_exit(mv_exit);
4537