1 /* 2 * sata_mv.c - Marvell SATA support 3 * 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 5 * Copyright 2005: EMC Corporation, all rights reserved. 6 * Copyright 2005 Red Hat, Inc. All rights reserved. 7 * 8 * Originally written by Brett Russ. 9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 10 * 11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; version 2 of the License. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 /* 29 * sata_mv TODO list: 30 * 31 * --> Develop a low-power-consumption strategy, and implement it. 32 * 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 34 * 35 * --> [Experiment, Marvell value added] Is it possible to use target 36 * mode to cross-connect two Linux boxes with Marvell cards? If so, 37 * creating LibATA target mode support would be very interesting. 38 * 39 * Target mode, for those without docs, is the ability to directly 40 * connect two SATA ports. 41 */ 42 43 /* 44 * 80x1-B2 errata PCI#11: 45 * 46 * Users of the 6041/6081 Rev.B2 chips (current is C0) 47 * should be careful to insert those cards only onto PCI-X bus #0, 48 * and only in device slots 0..7, not higher. The chips may not 49 * work correctly otherwise (note: this is a pretty rare condition). 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/init.h> 56 #include <linux/blkdev.h> 57 #include <linux/delay.h> 58 #include <linux/interrupt.h> 59 #include <linux/dmapool.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/device.h> 62 #include <linux/platform_device.h> 63 #include <linux/ata_platform.h> 64 #include <linux/mbus.h> 65 #include <linux/bitops.h> 66 #include <scsi/scsi_host.h> 67 #include <scsi/scsi_cmnd.h> 68 #include <scsi/scsi_device.h> 69 #include <linux/libata.h> 70 71 #define DRV_NAME "sata_mv" 72 #define DRV_VERSION "1.28" 73 74 /* 75 * module options 76 */ 77 78 static int msi; 79 #ifdef CONFIG_PCI 80 module_param(msi, int, S_IRUGO); 81 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 82 #endif 83 84 static int irq_coalescing_io_count; 85 module_param(irq_coalescing_io_count, int, S_IRUGO); 86 MODULE_PARM_DESC(irq_coalescing_io_count, 87 "IRQ coalescing I/O count threshold (0..255)"); 88 89 static int irq_coalescing_usecs; 90 module_param(irq_coalescing_usecs, int, S_IRUGO); 91 MODULE_PARM_DESC(irq_coalescing_usecs, 92 "IRQ coalescing time threshold in usecs"); 93 94 enum { 95 /* BAR's are enumerated in terms of pci_resource_start() terms */ 96 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 97 MV_IO_BAR = 2, /* offset 0x18: IO space */ 98 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 99 100 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 101 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 102 103 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 104 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 105 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 106 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 107 108 MV_PCI_REG_BASE = 0, 109 110 /* 111 * Per-chip ("all ports") interrupt coalescing feature. 112 * This is only for GEN_II / GEN_IIE hardware. 113 * 114 * Coalescing defers the interrupt until either the IO_THRESHOLD 115 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 116 */ 117 COAL_REG_BASE = 0x18000, 118 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 119 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 120 121 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 122 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 123 124 /* 125 * Registers for the (unused here) transaction coalescing feature: 126 */ 127 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 128 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 129 130 SATAHC0_REG_BASE = 0x20000, 131 FLASH_CTL = 0x1046c, 132 GPIO_PORT_CTL = 0x104f0, 133 RESET_CFG = 0x180d8, 134 135 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 136 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 137 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 138 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 139 140 MV_MAX_Q_DEPTH = 32, 141 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 142 143 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 144 * CRPB needs alignment on a 256B boundary. Size == 256B 145 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 146 */ 147 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 148 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 149 MV_MAX_SG_CT = 256, 150 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 151 152 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 153 MV_PORT_HC_SHIFT = 2, 154 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 155 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 156 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 157 158 /* Host Flags */ 159 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 160 161 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 162 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING, 163 164 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 165 166 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 167 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 168 169 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 170 171 CRQB_FLAG_READ = (1 << 0), 172 CRQB_TAG_SHIFT = 1, 173 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 174 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 175 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 176 CRQB_CMD_ADDR_SHIFT = 8, 177 CRQB_CMD_CS = (0x2 << 11), 178 CRQB_CMD_LAST = (1 << 15), 179 180 CRPB_FLAG_STATUS_SHIFT = 8, 181 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 182 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 183 184 EPRD_FLAG_END_OF_TBL = (1 << 31), 185 186 /* PCI interface registers */ 187 188 MV_PCI_COMMAND = 0xc00, 189 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 190 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 191 192 PCI_MAIN_CMD_STS = 0xd30, 193 STOP_PCI_MASTER = (1 << 2), 194 PCI_MASTER_EMPTY = (1 << 3), 195 GLOB_SFT_RST = (1 << 4), 196 197 MV_PCI_MODE = 0xd00, 198 MV_PCI_MODE_MASK = 0x30, 199 200 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 201 MV_PCI_DISC_TIMER = 0xd04, 202 MV_PCI_MSI_TRIGGER = 0xc38, 203 MV_PCI_SERR_MASK = 0xc28, 204 MV_PCI_XBAR_TMOUT = 0x1d04, 205 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 206 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 207 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 208 MV_PCI_ERR_COMMAND = 0x1d50, 209 210 PCI_IRQ_CAUSE = 0x1d58, 211 PCI_IRQ_MASK = 0x1d5c, 212 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 213 214 PCIE_IRQ_CAUSE = 0x1900, 215 PCIE_IRQ_MASK = 0x1910, 216 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 217 218 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 219 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 220 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 221 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 222 SOC_HC_MAIN_IRQ_MASK = 0x20024, 223 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 224 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 225 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 226 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 227 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 228 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 229 PCI_ERR = (1 << 18), 230 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 231 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 232 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 233 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 234 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 235 GPIO_INT = (1 << 22), 236 SELF_INT = (1 << 23), 237 TWSI_INT = (1 << 24), 238 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 239 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 240 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 241 242 /* SATAHC registers */ 243 HC_CFG = 0x00, 244 245 HC_IRQ_CAUSE = 0x14, 246 DMA_IRQ = (1 << 0), /* shift by port # */ 247 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 248 DEV_IRQ = (1 << 8), /* shift by port # */ 249 250 /* 251 * Per-HC (Host-Controller) interrupt coalescing feature. 252 * This is present on all chip generations. 253 * 254 * Coalescing defers the interrupt until either the IO_THRESHOLD 255 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 256 */ 257 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 258 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 259 260 SOC_LED_CTRL = 0x2c, 261 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 262 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 263 /* with dev activity LED */ 264 265 /* Shadow block registers */ 266 SHD_BLK = 0x100, 267 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 268 269 /* SATA registers */ 270 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 271 SATA_ACTIVE = 0x350, 272 FIS_IRQ_CAUSE = 0x364, 273 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 274 275 LTMODE = 0x30c, /* requires read-after-write */ 276 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 277 278 PHY_MODE2 = 0x330, 279 PHY_MODE3 = 0x310, 280 281 PHY_MODE4 = 0x314, /* requires read-after-write */ 282 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 283 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 284 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 285 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 286 287 SATA_IFCTL = 0x344, 288 SATA_TESTCTL = 0x348, 289 SATA_IFSTAT = 0x34c, 290 VENDOR_UNIQUE_FIS = 0x35c, 291 292 FISCFG = 0x360, 293 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 294 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 295 296 PHY_MODE9_GEN2 = 0x398, 297 PHY_MODE9_GEN1 = 0x39c, 298 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 299 300 MV5_PHY_MODE = 0x74, 301 MV5_LTMODE = 0x30, 302 MV5_PHY_CTL = 0x0C, 303 SATA_IFCFG = 0x050, 304 305 MV_M2_PREAMP_MASK = 0x7e0, 306 307 /* Port registers */ 308 EDMA_CFG = 0, 309 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 310 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 311 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 312 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 313 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 314 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 315 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 316 317 EDMA_ERR_IRQ_CAUSE = 0x8, 318 EDMA_ERR_IRQ_MASK = 0xc, 319 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 320 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 321 EDMA_ERR_DEV = (1 << 2), /* device error */ 322 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 323 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 324 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 325 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 326 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 327 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 328 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 329 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 330 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 331 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 332 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 333 334 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 335 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 336 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 337 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 338 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 339 340 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 341 342 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 343 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 344 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 345 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 346 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 347 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 348 349 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 350 351 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 352 EDMA_ERR_OVERRUN_5 = (1 << 5), 353 EDMA_ERR_UNDERRUN_5 = (1 << 6), 354 355 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 356 EDMA_ERR_LNK_CTRL_RX_1 | 357 EDMA_ERR_LNK_CTRL_RX_3 | 358 EDMA_ERR_LNK_CTRL_TX, 359 360 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 361 EDMA_ERR_PRD_PAR | 362 EDMA_ERR_DEV_DCON | 363 EDMA_ERR_DEV_CON | 364 EDMA_ERR_SERR | 365 EDMA_ERR_SELF_DIS | 366 EDMA_ERR_CRQB_PAR | 367 EDMA_ERR_CRPB_PAR | 368 EDMA_ERR_INTRL_PAR | 369 EDMA_ERR_IORDY | 370 EDMA_ERR_LNK_CTRL_RX_2 | 371 EDMA_ERR_LNK_DATA_RX | 372 EDMA_ERR_LNK_DATA_TX | 373 EDMA_ERR_TRANS_PROTO, 374 375 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 376 EDMA_ERR_PRD_PAR | 377 EDMA_ERR_DEV_DCON | 378 EDMA_ERR_DEV_CON | 379 EDMA_ERR_OVERRUN_5 | 380 EDMA_ERR_UNDERRUN_5 | 381 EDMA_ERR_SELF_DIS_5 | 382 EDMA_ERR_CRQB_PAR | 383 EDMA_ERR_CRPB_PAR | 384 EDMA_ERR_INTRL_PAR | 385 EDMA_ERR_IORDY, 386 387 EDMA_REQ_Q_BASE_HI = 0x10, 388 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 389 390 EDMA_REQ_Q_OUT_PTR = 0x18, 391 EDMA_REQ_Q_PTR_SHIFT = 5, 392 393 EDMA_RSP_Q_BASE_HI = 0x1c, 394 EDMA_RSP_Q_IN_PTR = 0x20, 395 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 396 EDMA_RSP_Q_PTR_SHIFT = 3, 397 398 EDMA_CMD = 0x28, /* EDMA command register */ 399 EDMA_EN = (1 << 0), /* enable EDMA */ 400 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 401 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 402 403 EDMA_STATUS = 0x30, /* EDMA engine status */ 404 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 405 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 406 407 EDMA_IORDY_TMOUT = 0x34, 408 EDMA_ARB_CFG = 0x38, 409 410 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 411 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 412 413 BMDMA_CMD = 0x224, /* bmdma command register */ 414 BMDMA_STATUS = 0x228, /* bmdma status register */ 415 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 416 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 417 418 /* Host private flags (hp_flags) */ 419 MV_HP_FLAG_MSI = (1 << 0), 420 MV_HP_ERRATA_50XXB0 = (1 << 1), 421 MV_HP_ERRATA_50XXB2 = (1 << 2), 422 MV_HP_ERRATA_60X1B2 = (1 << 3), 423 MV_HP_ERRATA_60X1C0 = (1 << 4), 424 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 425 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 426 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 427 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 428 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 429 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 430 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 431 432 /* Port private flags (pp_flags) */ 433 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 434 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 435 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 436 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 437 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 438 }; 439 440 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 441 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 442 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 443 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 444 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 445 446 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 447 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 448 449 enum { 450 /* DMA boundary 0xffff is required by the s/g splitting 451 * we need on /length/ in mv_fill-sg(). 452 */ 453 MV_DMA_BOUNDARY = 0xffffU, 454 455 /* mask of register bits containing lower 32 bits 456 * of EDMA request queue DMA address 457 */ 458 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 459 460 /* ditto, for response queue */ 461 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 462 }; 463 464 enum chip_type { 465 chip_504x, 466 chip_508x, 467 chip_5080, 468 chip_604x, 469 chip_608x, 470 chip_6042, 471 chip_7042, 472 chip_soc, 473 }; 474 475 /* Command ReQuest Block: 32B */ 476 struct mv_crqb { 477 __le32 sg_addr; 478 __le32 sg_addr_hi; 479 __le16 ctrl_flags; 480 __le16 ata_cmd[11]; 481 }; 482 483 struct mv_crqb_iie { 484 __le32 addr; 485 __le32 addr_hi; 486 __le32 flags; 487 __le32 len; 488 __le32 ata_cmd[4]; 489 }; 490 491 /* Command ResPonse Block: 8B */ 492 struct mv_crpb { 493 __le16 id; 494 __le16 flags; 495 __le32 tmstmp; 496 }; 497 498 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 499 struct mv_sg { 500 __le32 addr; 501 __le32 flags_size; 502 __le32 addr_hi; 503 __le32 reserved; 504 }; 505 506 /* 507 * We keep a local cache of a few frequently accessed port 508 * registers here, to avoid having to read them (very slow) 509 * when switching between EDMA and non-EDMA modes. 510 */ 511 struct mv_cached_regs { 512 u32 fiscfg; 513 u32 ltmode; 514 u32 haltcond; 515 u32 unknown_rsvd; 516 }; 517 518 struct mv_port_priv { 519 struct mv_crqb *crqb; 520 dma_addr_t crqb_dma; 521 struct mv_crpb *crpb; 522 dma_addr_t crpb_dma; 523 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 524 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 525 526 unsigned int req_idx; 527 unsigned int resp_idx; 528 529 u32 pp_flags; 530 struct mv_cached_regs cached; 531 unsigned int delayed_eh_pmp_map; 532 }; 533 534 struct mv_port_signal { 535 u32 amps; 536 u32 pre; 537 }; 538 539 struct mv_host_priv { 540 u32 hp_flags; 541 u32 main_irq_mask; 542 struct mv_port_signal signal[8]; 543 const struct mv_hw_ops *ops; 544 int n_ports; 545 void __iomem *base; 546 void __iomem *main_irq_cause_addr; 547 void __iomem *main_irq_mask_addr; 548 u32 irq_cause_offset; 549 u32 irq_mask_offset; 550 u32 unmask_all_irqs; 551 /* 552 * These consistent DMA memory pools give us guaranteed 553 * alignment for hardware-accessed data structures, 554 * and less memory waste in accomplishing the alignment. 555 */ 556 struct dma_pool *crqb_pool; 557 struct dma_pool *crpb_pool; 558 struct dma_pool *sg_tbl_pool; 559 }; 560 561 struct mv_hw_ops { 562 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 563 unsigned int port); 564 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 565 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 566 void __iomem *mmio); 567 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 568 unsigned int n_hc); 569 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 570 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 571 }; 572 573 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 574 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 575 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 576 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 577 static int mv_port_start(struct ata_port *ap); 578 static void mv_port_stop(struct ata_port *ap); 579 static int mv_qc_defer(struct ata_queued_cmd *qc); 580 static void mv_qc_prep(struct ata_queued_cmd *qc); 581 static void mv_qc_prep_iie(struct ata_queued_cmd *qc); 582 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 583 static int mv_hardreset(struct ata_link *link, unsigned int *class, 584 unsigned long deadline); 585 static void mv_eh_freeze(struct ata_port *ap); 586 static void mv_eh_thaw(struct ata_port *ap); 587 static void mv6_dev_config(struct ata_device *dev); 588 589 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 590 unsigned int port); 591 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 592 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 593 void __iomem *mmio); 594 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 595 unsigned int n_hc); 596 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 597 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 598 599 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 600 unsigned int port); 601 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 602 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 603 void __iomem *mmio); 604 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 605 unsigned int n_hc); 606 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 607 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 608 void __iomem *mmio); 609 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 610 void __iomem *mmio); 611 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 612 void __iomem *mmio, unsigned int n_hc); 613 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 614 void __iomem *mmio); 615 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 616 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 617 void __iomem *mmio, unsigned int port); 618 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 619 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 620 unsigned int port_no); 621 static int mv_stop_edma(struct ata_port *ap); 622 static int mv_stop_edma_engine(void __iomem *port_mmio); 623 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 624 625 static void mv_pmp_select(struct ata_port *ap, int pmp); 626 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 627 unsigned long deadline); 628 static int mv_softreset(struct ata_link *link, unsigned int *class, 629 unsigned long deadline); 630 static void mv_pmp_error_handler(struct ata_port *ap); 631 static void mv_process_crpb_entries(struct ata_port *ap, 632 struct mv_port_priv *pp); 633 634 static void mv_sff_irq_clear(struct ata_port *ap); 635 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 636 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 637 static void mv_bmdma_start(struct ata_queued_cmd *qc); 638 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 639 static u8 mv_bmdma_status(struct ata_port *ap); 640 static u8 mv_sff_check_status(struct ata_port *ap); 641 642 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 643 * because we have to allow room for worst case splitting of 644 * PRDs for 64K boundaries in mv_fill_sg(). 645 */ 646 static struct scsi_host_template mv5_sht = { 647 ATA_BASE_SHT(DRV_NAME), 648 .sg_tablesize = MV_MAX_SG_CT / 2, 649 .dma_boundary = MV_DMA_BOUNDARY, 650 }; 651 652 static struct scsi_host_template mv6_sht = { 653 ATA_NCQ_SHT(DRV_NAME), 654 .can_queue = MV_MAX_Q_DEPTH - 1, 655 .sg_tablesize = MV_MAX_SG_CT / 2, 656 .dma_boundary = MV_DMA_BOUNDARY, 657 }; 658 659 static struct ata_port_operations mv5_ops = { 660 .inherits = &ata_sff_port_ops, 661 662 .lost_interrupt = ATA_OP_NULL, 663 664 .qc_defer = mv_qc_defer, 665 .qc_prep = mv_qc_prep, 666 .qc_issue = mv_qc_issue, 667 668 .freeze = mv_eh_freeze, 669 .thaw = mv_eh_thaw, 670 .hardreset = mv_hardreset, 671 .error_handler = ata_std_error_handler, /* avoid SFF EH */ 672 .post_internal_cmd = ATA_OP_NULL, 673 674 .scr_read = mv5_scr_read, 675 .scr_write = mv5_scr_write, 676 677 .port_start = mv_port_start, 678 .port_stop = mv_port_stop, 679 }; 680 681 static struct ata_port_operations mv6_ops = { 682 .inherits = &mv5_ops, 683 .dev_config = mv6_dev_config, 684 .scr_read = mv_scr_read, 685 .scr_write = mv_scr_write, 686 687 .pmp_hardreset = mv_pmp_hardreset, 688 .pmp_softreset = mv_softreset, 689 .softreset = mv_softreset, 690 .error_handler = mv_pmp_error_handler, 691 692 .sff_check_status = mv_sff_check_status, 693 .sff_irq_clear = mv_sff_irq_clear, 694 .check_atapi_dma = mv_check_atapi_dma, 695 .bmdma_setup = mv_bmdma_setup, 696 .bmdma_start = mv_bmdma_start, 697 .bmdma_stop = mv_bmdma_stop, 698 .bmdma_status = mv_bmdma_status, 699 }; 700 701 static struct ata_port_operations mv_iie_ops = { 702 .inherits = &mv6_ops, 703 .dev_config = ATA_OP_NULL, 704 .qc_prep = mv_qc_prep_iie, 705 }; 706 707 static const struct ata_port_info mv_port_info[] = { 708 { /* chip_504x */ 709 .flags = MV_GEN_I_FLAGS, 710 .pio_mask = ATA_PIO4, 711 .udma_mask = ATA_UDMA6, 712 .port_ops = &mv5_ops, 713 }, 714 { /* chip_508x */ 715 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 716 .pio_mask = ATA_PIO4, 717 .udma_mask = ATA_UDMA6, 718 .port_ops = &mv5_ops, 719 }, 720 { /* chip_5080 */ 721 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 722 .pio_mask = ATA_PIO4, 723 .udma_mask = ATA_UDMA6, 724 .port_ops = &mv5_ops, 725 }, 726 { /* chip_604x */ 727 .flags = MV_GEN_II_FLAGS, 728 .pio_mask = ATA_PIO4, 729 .udma_mask = ATA_UDMA6, 730 .port_ops = &mv6_ops, 731 }, 732 { /* chip_608x */ 733 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 734 .pio_mask = ATA_PIO4, 735 .udma_mask = ATA_UDMA6, 736 .port_ops = &mv6_ops, 737 }, 738 { /* chip_6042 */ 739 .flags = MV_GEN_IIE_FLAGS, 740 .pio_mask = ATA_PIO4, 741 .udma_mask = ATA_UDMA6, 742 .port_ops = &mv_iie_ops, 743 }, 744 { /* chip_7042 */ 745 .flags = MV_GEN_IIE_FLAGS, 746 .pio_mask = ATA_PIO4, 747 .udma_mask = ATA_UDMA6, 748 .port_ops = &mv_iie_ops, 749 }, 750 { /* chip_soc */ 751 .flags = MV_GEN_IIE_FLAGS, 752 .pio_mask = ATA_PIO4, 753 .udma_mask = ATA_UDMA6, 754 .port_ops = &mv_iie_ops, 755 }, 756 }; 757 758 static const struct pci_device_id mv_pci_tbl[] = { 759 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 760 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 761 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 762 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 763 /* RocketRAID 1720/174x have different identifiers */ 764 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 765 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 766 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 767 768 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 769 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 770 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 771 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 772 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 773 774 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 775 776 /* Adaptec 1430SA */ 777 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 778 779 /* Marvell 7042 support */ 780 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 781 782 /* Highpoint RocketRAID PCIe series */ 783 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 784 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 785 786 { } /* terminate list */ 787 }; 788 789 static const struct mv_hw_ops mv5xxx_ops = { 790 .phy_errata = mv5_phy_errata, 791 .enable_leds = mv5_enable_leds, 792 .read_preamp = mv5_read_preamp, 793 .reset_hc = mv5_reset_hc, 794 .reset_flash = mv5_reset_flash, 795 .reset_bus = mv5_reset_bus, 796 }; 797 798 static const struct mv_hw_ops mv6xxx_ops = { 799 .phy_errata = mv6_phy_errata, 800 .enable_leds = mv6_enable_leds, 801 .read_preamp = mv6_read_preamp, 802 .reset_hc = mv6_reset_hc, 803 .reset_flash = mv6_reset_flash, 804 .reset_bus = mv_reset_pci_bus, 805 }; 806 807 static const struct mv_hw_ops mv_soc_ops = { 808 .phy_errata = mv6_phy_errata, 809 .enable_leds = mv_soc_enable_leds, 810 .read_preamp = mv_soc_read_preamp, 811 .reset_hc = mv_soc_reset_hc, 812 .reset_flash = mv_soc_reset_flash, 813 .reset_bus = mv_soc_reset_bus, 814 }; 815 816 static const struct mv_hw_ops mv_soc_65n_ops = { 817 .phy_errata = mv_soc_65n_phy_errata, 818 .enable_leds = mv_soc_enable_leds, 819 .reset_hc = mv_soc_reset_hc, 820 .reset_flash = mv_soc_reset_flash, 821 .reset_bus = mv_soc_reset_bus, 822 }; 823 824 /* 825 * Functions 826 */ 827 828 static inline void writelfl(unsigned long data, void __iomem *addr) 829 { 830 writel(data, addr); 831 (void) readl(addr); /* flush to avoid PCI posted write */ 832 } 833 834 static inline unsigned int mv_hc_from_port(unsigned int port) 835 { 836 return port >> MV_PORT_HC_SHIFT; 837 } 838 839 static inline unsigned int mv_hardport_from_port(unsigned int port) 840 { 841 return port & MV_PORT_MASK; 842 } 843 844 /* 845 * Consolidate some rather tricky bit shift calculations. 846 * This is hot-path stuff, so not a function. 847 * Simple code, with two return values, so macro rather than inline. 848 * 849 * port is the sole input, in range 0..7. 850 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 851 * hardport is the other output, in range 0..3. 852 * 853 * Note that port and hardport may be the same variable in some cases. 854 */ 855 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 856 { \ 857 shift = mv_hc_from_port(port) * HC_SHIFT; \ 858 hardport = mv_hardport_from_port(port); \ 859 shift += hardport * 2; \ 860 } 861 862 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 863 { 864 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 865 } 866 867 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 868 unsigned int port) 869 { 870 return mv_hc_base(base, mv_hc_from_port(port)); 871 } 872 873 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 874 { 875 return mv_hc_base_from_port(base, port) + 876 MV_SATAHC_ARBTR_REG_SZ + 877 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 878 } 879 880 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 881 { 882 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 883 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 884 885 return hc_mmio + ofs; 886 } 887 888 static inline void __iomem *mv_host_base(struct ata_host *host) 889 { 890 struct mv_host_priv *hpriv = host->private_data; 891 return hpriv->base; 892 } 893 894 static inline void __iomem *mv_ap_base(struct ata_port *ap) 895 { 896 return mv_port_base(mv_host_base(ap->host), ap->port_no); 897 } 898 899 static inline int mv_get_hc_count(unsigned long port_flags) 900 { 901 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 902 } 903 904 /** 905 * mv_save_cached_regs - (re-)initialize cached port registers 906 * @ap: the port whose registers we are caching 907 * 908 * Initialize the local cache of port registers, 909 * so that reading them over and over again can 910 * be avoided on the hotter paths of this driver. 911 * This saves a few microseconds each time we switch 912 * to/from EDMA mode to perform (eg.) a drive cache flush. 913 */ 914 static void mv_save_cached_regs(struct ata_port *ap) 915 { 916 void __iomem *port_mmio = mv_ap_base(ap); 917 struct mv_port_priv *pp = ap->private_data; 918 919 pp->cached.fiscfg = readl(port_mmio + FISCFG); 920 pp->cached.ltmode = readl(port_mmio + LTMODE); 921 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 922 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 923 } 924 925 /** 926 * mv_write_cached_reg - write to a cached port register 927 * @addr: hardware address of the register 928 * @old: pointer to cached value of the register 929 * @new: new value for the register 930 * 931 * Write a new value to a cached register, 932 * but only if the value is different from before. 933 */ 934 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 935 { 936 if (new != *old) { 937 unsigned long laddr; 938 *old = new; 939 /* 940 * Workaround for 88SX60x1-B2 FEr SATA#13: 941 * Read-after-write is needed to prevent generating 64-bit 942 * write cycles on the PCI bus for SATA interface registers 943 * at offsets ending in 0x4 or 0xc. 944 * 945 * Looks like a lot of fuss, but it avoids an unnecessary 946 * +1 usec read-after-write delay for unaffected registers. 947 */ 948 laddr = (long)addr & 0xffff; 949 if (laddr >= 0x300 && laddr <= 0x33c) { 950 laddr &= 0x000f; 951 if (laddr == 0x4 || laddr == 0xc) { 952 writelfl(new, addr); /* read after write */ 953 return; 954 } 955 } 956 writel(new, addr); /* unaffected by the errata */ 957 } 958 } 959 960 static void mv_set_edma_ptrs(void __iomem *port_mmio, 961 struct mv_host_priv *hpriv, 962 struct mv_port_priv *pp) 963 { 964 u32 index; 965 966 /* 967 * initialize request queue 968 */ 969 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 970 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 971 972 WARN_ON(pp->crqb_dma & 0x3ff); 973 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 974 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 975 port_mmio + EDMA_REQ_Q_IN_PTR); 976 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 977 978 /* 979 * initialize response queue 980 */ 981 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 982 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 983 984 WARN_ON(pp->crpb_dma & 0xff); 985 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 986 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 987 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 988 port_mmio + EDMA_RSP_Q_OUT_PTR); 989 } 990 991 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 992 { 993 /* 994 * When writing to the main_irq_mask in hardware, 995 * we must ensure exclusivity between the interrupt coalescing bits 996 * and the corresponding individual port DONE_IRQ bits. 997 * 998 * Note that this register is really an "IRQ enable" register, 999 * not an "IRQ mask" register as Marvell's naming might suggest. 1000 */ 1001 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1002 mask &= ~DONE_IRQ_0_3; 1003 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1004 mask &= ~DONE_IRQ_4_7; 1005 writelfl(mask, hpriv->main_irq_mask_addr); 1006 } 1007 1008 static void mv_set_main_irq_mask(struct ata_host *host, 1009 u32 disable_bits, u32 enable_bits) 1010 { 1011 struct mv_host_priv *hpriv = host->private_data; 1012 u32 old_mask, new_mask; 1013 1014 old_mask = hpriv->main_irq_mask; 1015 new_mask = (old_mask & ~disable_bits) | enable_bits; 1016 if (new_mask != old_mask) { 1017 hpriv->main_irq_mask = new_mask; 1018 mv_write_main_irq_mask(new_mask, hpriv); 1019 } 1020 } 1021 1022 static void mv_enable_port_irqs(struct ata_port *ap, 1023 unsigned int port_bits) 1024 { 1025 unsigned int shift, hardport, port = ap->port_no; 1026 u32 disable_bits, enable_bits; 1027 1028 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1029 1030 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1031 enable_bits = port_bits << shift; 1032 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1033 } 1034 1035 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1036 void __iomem *port_mmio, 1037 unsigned int port_irqs) 1038 { 1039 struct mv_host_priv *hpriv = ap->host->private_data; 1040 int hardport = mv_hardport_from_port(ap->port_no); 1041 void __iomem *hc_mmio = mv_hc_base_from_port( 1042 mv_host_base(ap->host), ap->port_no); 1043 u32 hc_irq_cause; 1044 1045 /* clear EDMA event indicators, if any */ 1046 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1047 1048 /* clear pending irq events */ 1049 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1050 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1051 1052 /* clear FIS IRQ Cause */ 1053 if (IS_GEN_IIE(hpriv)) 1054 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1055 1056 mv_enable_port_irqs(ap, port_irqs); 1057 } 1058 1059 static void mv_set_irq_coalescing(struct ata_host *host, 1060 unsigned int count, unsigned int usecs) 1061 { 1062 struct mv_host_priv *hpriv = host->private_data; 1063 void __iomem *mmio = hpriv->base, *hc_mmio; 1064 u32 coal_enable = 0; 1065 unsigned long flags; 1066 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1067 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1068 ALL_PORTS_COAL_DONE; 1069 1070 /* Disable IRQ coalescing if either threshold is zero */ 1071 if (!usecs || !count) { 1072 clks = count = 0; 1073 } else { 1074 /* Respect maximum limits of the hardware */ 1075 clks = usecs * COAL_CLOCKS_PER_USEC; 1076 if (clks > MAX_COAL_TIME_THRESHOLD) 1077 clks = MAX_COAL_TIME_THRESHOLD; 1078 if (count > MAX_COAL_IO_COUNT) 1079 count = MAX_COAL_IO_COUNT; 1080 } 1081 1082 spin_lock_irqsave(&host->lock, flags); 1083 mv_set_main_irq_mask(host, coal_disable, 0); 1084 1085 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1086 /* 1087 * GEN_II/GEN_IIE with dual host controllers: 1088 * one set of global thresholds for the entire chip. 1089 */ 1090 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1091 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1092 /* clear leftover coal IRQ bit */ 1093 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1094 if (count) 1095 coal_enable = ALL_PORTS_COAL_DONE; 1096 clks = count = 0; /* force clearing of regular regs below */ 1097 } 1098 1099 /* 1100 * All chips: independent thresholds for each HC on the chip. 1101 */ 1102 hc_mmio = mv_hc_base_from_port(mmio, 0); 1103 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1104 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1105 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1106 if (count) 1107 coal_enable |= PORTS_0_3_COAL_DONE; 1108 if (is_dual_hc) { 1109 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1110 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1111 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1112 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1113 if (count) 1114 coal_enable |= PORTS_4_7_COAL_DONE; 1115 } 1116 1117 mv_set_main_irq_mask(host, 0, coal_enable); 1118 spin_unlock_irqrestore(&host->lock, flags); 1119 } 1120 1121 /** 1122 * mv_start_edma - Enable eDMA engine 1123 * @base: port base address 1124 * @pp: port private data 1125 * 1126 * Verify the local cache of the eDMA state is accurate with a 1127 * WARN_ON. 1128 * 1129 * LOCKING: 1130 * Inherited from caller. 1131 */ 1132 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1133 struct mv_port_priv *pp, u8 protocol) 1134 { 1135 int want_ncq = (protocol == ATA_PROT_NCQ); 1136 1137 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1138 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1139 if (want_ncq != using_ncq) 1140 mv_stop_edma(ap); 1141 } 1142 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1143 struct mv_host_priv *hpriv = ap->host->private_data; 1144 1145 mv_edma_cfg(ap, want_ncq, 1); 1146 1147 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1148 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1149 1150 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1151 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1152 } 1153 } 1154 1155 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1156 { 1157 void __iomem *port_mmio = mv_ap_base(ap); 1158 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1159 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1160 int i; 1161 1162 /* 1163 * Wait for the EDMA engine to finish transactions in progress. 1164 * No idea what a good "timeout" value might be, but measurements 1165 * indicate that it often requires hundreds of microseconds 1166 * with two drives in-use. So we use the 15msec value above 1167 * as a rough guess at what even more drives might require. 1168 */ 1169 for (i = 0; i < timeout; ++i) { 1170 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1171 if ((edma_stat & empty_idle) == empty_idle) 1172 break; 1173 udelay(per_loop); 1174 } 1175 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */ 1176 } 1177 1178 /** 1179 * mv_stop_edma_engine - Disable eDMA engine 1180 * @port_mmio: io base address 1181 * 1182 * LOCKING: 1183 * Inherited from caller. 1184 */ 1185 static int mv_stop_edma_engine(void __iomem *port_mmio) 1186 { 1187 int i; 1188 1189 /* Disable eDMA. The disable bit auto clears. */ 1190 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1191 1192 /* Wait for the chip to confirm eDMA is off. */ 1193 for (i = 10000; i > 0; i--) { 1194 u32 reg = readl(port_mmio + EDMA_CMD); 1195 if (!(reg & EDMA_EN)) 1196 return 0; 1197 udelay(10); 1198 } 1199 return -EIO; 1200 } 1201 1202 static int mv_stop_edma(struct ata_port *ap) 1203 { 1204 void __iomem *port_mmio = mv_ap_base(ap); 1205 struct mv_port_priv *pp = ap->private_data; 1206 int err = 0; 1207 1208 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1209 return 0; 1210 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1211 mv_wait_for_edma_empty_idle(ap); 1212 if (mv_stop_edma_engine(port_mmio)) { 1213 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n"); 1214 err = -EIO; 1215 } 1216 mv_edma_cfg(ap, 0, 0); 1217 return err; 1218 } 1219 1220 #ifdef ATA_DEBUG 1221 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1222 { 1223 int b, w; 1224 for (b = 0; b < bytes; ) { 1225 DPRINTK("%p: ", start + b); 1226 for (w = 0; b < bytes && w < 4; w++) { 1227 printk("%08x ", readl(start + b)); 1228 b += sizeof(u32); 1229 } 1230 printk("\n"); 1231 } 1232 } 1233 #endif 1234 1235 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1236 { 1237 #ifdef ATA_DEBUG 1238 int b, w; 1239 u32 dw; 1240 for (b = 0; b < bytes; ) { 1241 DPRINTK("%02x: ", b); 1242 for (w = 0; b < bytes && w < 4; w++) { 1243 (void) pci_read_config_dword(pdev, b, &dw); 1244 printk("%08x ", dw); 1245 b += sizeof(u32); 1246 } 1247 printk("\n"); 1248 } 1249 #endif 1250 } 1251 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1252 struct pci_dev *pdev) 1253 { 1254 #ifdef ATA_DEBUG 1255 void __iomem *hc_base = mv_hc_base(mmio_base, 1256 port >> MV_PORT_HC_SHIFT); 1257 void __iomem *port_base; 1258 int start_port, num_ports, p, start_hc, num_hcs, hc; 1259 1260 if (0 > port) { 1261 start_hc = start_port = 0; 1262 num_ports = 8; /* shld be benign for 4 port devs */ 1263 num_hcs = 2; 1264 } else { 1265 start_hc = port >> MV_PORT_HC_SHIFT; 1266 start_port = port; 1267 num_ports = num_hcs = 1; 1268 } 1269 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1270 num_ports > 1 ? num_ports - 1 : start_port); 1271 1272 if (NULL != pdev) { 1273 DPRINTK("PCI config space regs:\n"); 1274 mv_dump_pci_cfg(pdev, 0x68); 1275 } 1276 DPRINTK("PCI regs:\n"); 1277 mv_dump_mem(mmio_base+0xc00, 0x3c); 1278 mv_dump_mem(mmio_base+0xd00, 0x34); 1279 mv_dump_mem(mmio_base+0xf00, 0x4); 1280 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1281 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1282 hc_base = mv_hc_base(mmio_base, hc); 1283 DPRINTK("HC regs (HC %i):\n", hc); 1284 mv_dump_mem(hc_base, 0x1c); 1285 } 1286 for (p = start_port; p < start_port + num_ports; p++) { 1287 port_base = mv_port_base(mmio_base, p); 1288 DPRINTK("EDMA regs (port %i):\n", p); 1289 mv_dump_mem(port_base, 0x54); 1290 DPRINTK("SATA regs (port %i):\n", p); 1291 mv_dump_mem(port_base+0x300, 0x60); 1292 } 1293 #endif 1294 } 1295 1296 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1297 { 1298 unsigned int ofs; 1299 1300 switch (sc_reg_in) { 1301 case SCR_STATUS: 1302 case SCR_CONTROL: 1303 case SCR_ERROR: 1304 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1305 break; 1306 case SCR_ACTIVE: 1307 ofs = SATA_ACTIVE; /* active is not with the others */ 1308 break; 1309 default: 1310 ofs = 0xffffffffU; 1311 break; 1312 } 1313 return ofs; 1314 } 1315 1316 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1317 { 1318 unsigned int ofs = mv_scr_offset(sc_reg_in); 1319 1320 if (ofs != 0xffffffffU) { 1321 *val = readl(mv_ap_base(link->ap) + ofs); 1322 return 0; 1323 } else 1324 return -EINVAL; 1325 } 1326 1327 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1328 { 1329 unsigned int ofs = mv_scr_offset(sc_reg_in); 1330 1331 if (ofs != 0xffffffffU) { 1332 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1333 if (sc_reg_in == SCR_CONTROL) { 1334 /* 1335 * Workaround for 88SX60x1 FEr SATA#26: 1336 * 1337 * COMRESETs have to take care not to accidently 1338 * put the drive to sleep when writing SCR_CONTROL. 1339 * Setting bits 12..15 prevents this problem. 1340 * 1341 * So if we see an outbound COMMRESET, set those bits. 1342 * Ditto for the followup write that clears the reset. 1343 * 1344 * The proprietary driver does this for 1345 * all chip versions, and so do we. 1346 */ 1347 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1348 val |= 0xf000; 1349 } 1350 writelfl(val, addr); 1351 return 0; 1352 } else 1353 return -EINVAL; 1354 } 1355 1356 static void mv6_dev_config(struct ata_device *adev) 1357 { 1358 /* 1359 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1360 * 1361 * Gen-II does not support NCQ over a port multiplier 1362 * (no FIS-based switching). 1363 */ 1364 if (adev->flags & ATA_DFLAG_NCQ) { 1365 if (sata_pmp_attached(adev->link->ap)) { 1366 adev->flags &= ~ATA_DFLAG_NCQ; 1367 ata_dev_printk(adev, KERN_INFO, 1368 "NCQ disabled for command-based switching\n"); 1369 } 1370 } 1371 } 1372 1373 static int mv_qc_defer(struct ata_queued_cmd *qc) 1374 { 1375 struct ata_link *link = qc->dev->link; 1376 struct ata_port *ap = link->ap; 1377 struct mv_port_priv *pp = ap->private_data; 1378 1379 /* 1380 * Don't allow new commands if we're in a delayed EH state 1381 * for NCQ and/or FIS-based switching. 1382 */ 1383 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1384 return ATA_DEFER_PORT; 1385 1386 /* PIO commands need exclusive link: no other commands [DMA or PIO] 1387 * can run concurrently. 1388 * set excl_link when we want to send a PIO command in DMA mode 1389 * or a non-NCQ command in NCQ mode. 1390 * When we receive a command from that link, and there are no 1391 * outstanding commands, mark a flag to clear excl_link and let 1392 * the command go through. 1393 */ 1394 if (unlikely(ap->excl_link)) { 1395 if (link == ap->excl_link) { 1396 if (ap->nr_active_links) 1397 return ATA_DEFER_PORT; 1398 qc->flags |= ATA_QCFLAG_CLEAR_EXCL; 1399 return 0; 1400 } else 1401 return ATA_DEFER_PORT; 1402 } 1403 1404 /* 1405 * If the port is completely idle, then allow the new qc. 1406 */ 1407 if (ap->nr_active_links == 0) 1408 return 0; 1409 1410 /* 1411 * The port is operating in host queuing mode (EDMA) with NCQ 1412 * enabled, allow multiple NCQ commands. EDMA also allows 1413 * queueing multiple DMA commands but libata core currently 1414 * doesn't allow it. 1415 */ 1416 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1417 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { 1418 if (ata_is_ncq(qc->tf.protocol)) 1419 return 0; 1420 else { 1421 ap->excl_link = link; 1422 return ATA_DEFER_PORT; 1423 } 1424 } 1425 1426 return ATA_DEFER_PORT; 1427 } 1428 1429 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1430 { 1431 struct mv_port_priv *pp = ap->private_data; 1432 void __iomem *port_mmio; 1433 1434 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1435 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1436 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1437 1438 ltmode = *old_ltmode & ~LTMODE_BIT8; 1439 haltcond = *old_haltcond | EDMA_ERR_DEV; 1440 1441 if (want_fbs) { 1442 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1443 ltmode = *old_ltmode | LTMODE_BIT8; 1444 if (want_ncq) 1445 haltcond &= ~EDMA_ERR_DEV; 1446 else 1447 fiscfg |= FISCFG_WAIT_DEV_ERR; 1448 } else { 1449 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1450 } 1451 1452 port_mmio = mv_ap_base(ap); 1453 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1454 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1455 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1456 } 1457 1458 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1459 { 1460 struct mv_host_priv *hpriv = ap->host->private_data; 1461 u32 old, new; 1462 1463 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1464 old = readl(hpriv->base + GPIO_PORT_CTL); 1465 if (want_ncq) 1466 new = old | (1 << 22); 1467 else 1468 new = old & ~(1 << 22); 1469 if (new != old) 1470 writel(new, hpriv->base + GPIO_PORT_CTL); 1471 } 1472 1473 /** 1474 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1475 * @ap: Port being initialized 1476 * 1477 * There are two DMA modes on these chips: basic DMA, and EDMA. 1478 * 1479 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1480 * of basic DMA on the GEN_IIE versions of the chips. 1481 * 1482 * This bit survives EDMA resets, and must be set for basic DMA 1483 * to function, and should be cleared when EDMA is active. 1484 */ 1485 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1486 { 1487 struct mv_port_priv *pp = ap->private_data; 1488 u32 new, *old = &pp->cached.unknown_rsvd; 1489 1490 if (enable_bmdma) 1491 new = *old | 1; 1492 else 1493 new = *old & ~1; 1494 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1495 } 1496 1497 /* 1498 * SOC chips have an issue whereby the HDD LEDs don't always blink 1499 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1500 * of the SOC takes care of it, generating a steady blink rate when 1501 * any drive on the chip is active. 1502 * 1503 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1504 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1505 * 1506 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1507 * LED operation works then, and provides better (more accurate) feedback. 1508 * 1509 * Note that this code assumes that an SOC never has more than one HC onboard. 1510 */ 1511 static void mv_soc_led_blink_enable(struct ata_port *ap) 1512 { 1513 struct ata_host *host = ap->host; 1514 struct mv_host_priv *hpriv = host->private_data; 1515 void __iomem *hc_mmio; 1516 u32 led_ctrl; 1517 1518 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1519 return; 1520 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1521 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1522 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1523 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1524 } 1525 1526 static void mv_soc_led_blink_disable(struct ata_port *ap) 1527 { 1528 struct ata_host *host = ap->host; 1529 struct mv_host_priv *hpriv = host->private_data; 1530 void __iomem *hc_mmio; 1531 u32 led_ctrl; 1532 unsigned int port; 1533 1534 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1535 return; 1536 1537 /* disable led-blink only if no ports are using NCQ */ 1538 for (port = 0; port < hpriv->n_ports; port++) { 1539 struct ata_port *this_ap = host->ports[port]; 1540 struct mv_port_priv *pp = this_ap->private_data; 1541 1542 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1543 return; 1544 } 1545 1546 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1547 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1548 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1549 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1550 } 1551 1552 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1553 { 1554 u32 cfg; 1555 struct mv_port_priv *pp = ap->private_data; 1556 struct mv_host_priv *hpriv = ap->host->private_data; 1557 void __iomem *port_mmio = mv_ap_base(ap); 1558 1559 /* set up non-NCQ EDMA configuration */ 1560 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1561 pp->pp_flags &= 1562 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1563 1564 if (IS_GEN_I(hpriv)) 1565 cfg |= (1 << 8); /* enab config burst size mask */ 1566 1567 else if (IS_GEN_II(hpriv)) { 1568 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1569 mv_60x1_errata_sata25(ap, want_ncq); 1570 1571 } else if (IS_GEN_IIE(hpriv)) { 1572 int want_fbs = sata_pmp_attached(ap); 1573 /* 1574 * Possible future enhancement: 1575 * 1576 * The chip can use FBS with non-NCQ, if we allow it, 1577 * But first we need to have the error handling in place 1578 * for this mode (datasheet section 7.3.15.4.2.3). 1579 * So disallow non-NCQ FBS for now. 1580 */ 1581 want_fbs &= want_ncq; 1582 1583 mv_config_fbs(ap, want_ncq, want_fbs); 1584 1585 if (want_fbs) { 1586 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1587 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1588 } 1589 1590 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1591 if (want_edma) { 1592 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1593 if (!IS_SOC(hpriv)) 1594 cfg |= (1 << 18); /* enab early completion */ 1595 } 1596 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1597 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1598 mv_bmdma_enable_iie(ap, !want_edma); 1599 1600 if (IS_SOC(hpriv)) { 1601 if (want_ncq) 1602 mv_soc_led_blink_enable(ap); 1603 else 1604 mv_soc_led_blink_disable(ap); 1605 } 1606 } 1607 1608 if (want_ncq) { 1609 cfg |= EDMA_CFG_NCQ; 1610 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1611 } 1612 1613 writelfl(cfg, port_mmio + EDMA_CFG); 1614 } 1615 1616 static void mv_port_free_dma_mem(struct ata_port *ap) 1617 { 1618 struct mv_host_priv *hpriv = ap->host->private_data; 1619 struct mv_port_priv *pp = ap->private_data; 1620 int tag; 1621 1622 if (pp->crqb) { 1623 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1624 pp->crqb = NULL; 1625 } 1626 if (pp->crpb) { 1627 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1628 pp->crpb = NULL; 1629 } 1630 /* 1631 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1632 * For later hardware, we have one unique sg_tbl per NCQ tag. 1633 */ 1634 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1635 if (pp->sg_tbl[tag]) { 1636 if (tag == 0 || !IS_GEN_I(hpriv)) 1637 dma_pool_free(hpriv->sg_tbl_pool, 1638 pp->sg_tbl[tag], 1639 pp->sg_tbl_dma[tag]); 1640 pp->sg_tbl[tag] = NULL; 1641 } 1642 } 1643 } 1644 1645 /** 1646 * mv_port_start - Port specific init/start routine. 1647 * @ap: ATA channel to manipulate 1648 * 1649 * Allocate and point to DMA memory, init port private memory, 1650 * zero indices. 1651 * 1652 * LOCKING: 1653 * Inherited from caller. 1654 */ 1655 static int mv_port_start(struct ata_port *ap) 1656 { 1657 struct device *dev = ap->host->dev; 1658 struct mv_host_priv *hpriv = ap->host->private_data; 1659 struct mv_port_priv *pp; 1660 unsigned long flags; 1661 int tag; 1662 1663 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1664 if (!pp) 1665 return -ENOMEM; 1666 ap->private_data = pp; 1667 1668 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1669 if (!pp->crqb) 1670 return -ENOMEM; 1671 memset(pp->crqb, 0, MV_CRQB_Q_SZ); 1672 1673 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1674 if (!pp->crpb) 1675 goto out_port_free_dma_mem; 1676 memset(pp->crpb, 0, MV_CRPB_Q_SZ); 1677 1678 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1679 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1680 ap->flags |= ATA_FLAG_AN; 1681 /* 1682 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1683 * For later hardware, we need one unique sg_tbl per NCQ tag. 1684 */ 1685 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1686 if (tag == 0 || !IS_GEN_I(hpriv)) { 1687 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1688 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1689 if (!pp->sg_tbl[tag]) 1690 goto out_port_free_dma_mem; 1691 } else { 1692 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1693 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1694 } 1695 } 1696 1697 spin_lock_irqsave(ap->lock, flags); 1698 mv_save_cached_regs(ap); 1699 mv_edma_cfg(ap, 0, 0); 1700 spin_unlock_irqrestore(ap->lock, flags); 1701 1702 return 0; 1703 1704 out_port_free_dma_mem: 1705 mv_port_free_dma_mem(ap); 1706 return -ENOMEM; 1707 } 1708 1709 /** 1710 * mv_port_stop - Port specific cleanup/stop routine. 1711 * @ap: ATA channel to manipulate 1712 * 1713 * Stop DMA, cleanup port memory. 1714 * 1715 * LOCKING: 1716 * This routine uses the host lock to protect the DMA stop. 1717 */ 1718 static void mv_port_stop(struct ata_port *ap) 1719 { 1720 unsigned long flags; 1721 1722 spin_lock_irqsave(ap->lock, flags); 1723 mv_stop_edma(ap); 1724 mv_enable_port_irqs(ap, 0); 1725 spin_unlock_irqrestore(ap->lock, flags); 1726 mv_port_free_dma_mem(ap); 1727 } 1728 1729 /** 1730 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1731 * @qc: queued command whose SG list to source from 1732 * 1733 * Populate the SG list and mark the last entry. 1734 * 1735 * LOCKING: 1736 * Inherited from caller. 1737 */ 1738 static void mv_fill_sg(struct ata_queued_cmd *qc) 1739 { 1740 struct mv_port_priv *pp = qc->ap->private_data; 1741 struct scatterlist *sg; 1742 struct mv_sg *mv_sg, *last_sg = NULL; 1743 unsigned int si; 1744 1745 mv_sg = pp->sg_tbl[qc->tag]; 1746 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1747 dma_addr_t addr = sg_dma_address(sg); 1748 u32 sg_len = sg_dma_len(sg); 1749 1750 while (sg_len) { 1751 u32 offset = addr & 0xffff; 1752 u32 len = sg_len; 1753 1754 if (offset + len > 0x10000) 1755 len = 0x10000 - offset; 1756 1757 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1758 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1759 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1760 mv_sg->reserved = 0; 1761 1762 sg_len -= len; 1763 addr += len; 1764 1765 last_sg = mv_sg; 1766 mv_sg++; 1767 } 1768 } 1769 1770 if (likely(last_sg)) 1771 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1772 mb(); /* ensure data structure is visible to the chipset */ 1773 } 1774 1775 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1776 { 1777 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1778 (last ? CRQB_CMD_LAST : 0); 1779 *cmdw = cpu_to_le16(tmp); 1780 } 1781 1782 /** 1783 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1784 * @ap: Port associated with this ATA transaction. 1785 * 1786 * We need this only for ATAPI bmdma transactions, 1787 * as otherwise we experience spurious interrupts 1788 * after libata-sff handles the bmdma interrupts. 1789 */ 1790 static void mv_sff_irq_clear(struct ata_port *ap) 1791 { 1792 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1793 } 1794 1795 /** 1796 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1797 * @qc: queued command to check for chipset/DMA compatibility. 1798 * 1799 * The bmdma engines cannot handle speculative data sizes 1800 * (bytecount under/over flow). So only allow DMA for 1801 * data transfer commands with known data sizes. 1802 * 1803 * LOCKING: 1804 * Inherited from caller. 1805 */ 1806 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1807 { 1808 struct scsi_cmnd *scmd = qc->scsicmd; 1809 1810 if (scmd) { 1811 switch (scmd->cmnd[0]) { 1812 case READ_6: 1813 case READ_10: 1814 case READ_12: 1815 case WRITE_6: 1816 case WRITE_10: 1817 case WRITE_12: 1818 case GPCMD_READ_CD: 1819 case GPCMD_SEND_DVD_STRUCTURE: 1820 case GPCMD_SEND_CUE_SHEET: 1821 return 0; /* DMA is safe */ 1822 } 1823 } 1824 return -EOPNOTSUPP; /* use PIO instead */ 1825 } 1826 1827 /** 1828 * mv_bmdma_setup - Set up BMDMA transaction 1829 * @qc: queued command to prepare DMA for. 1830 * 1831 * LOCKING: 1832 * Inherited from caller. 1833 */ 1834 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1835 { 1836 struct ata_port *ap = qc->ap; 1837 void __iomem *port_mmio = mv_ap_base(ap); 1838 struct mv_port_priv *pp = ap->private_data; 1839 1840 mv_fill_sg(qc); 1841 1842 /* clear all DMA cmd bits */ 1843 writel(0, port_mmio + BMDMA_CMD); 1844 1845 /* load PRD table addr. */ 1846 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, 1847 port_mmio + BMDMA_PRD_HIGH); 1848 writelfl(pp->sg_tbl_dma[qc->tag], 1849 port_mmio + BMDMA_PRD_LOW); 1850 1851 /* issue r/w command */ 1852 ap->ops->sff_exec_command(ap, &qc->tf); 1853 } 1854 1855 /** 1856 * mv_bmdma_start - Start a BMDMA transaction 1857 * @qc: queued command to start DMA on. 1858 * 1859 * LOCKING: 1860 * Inherited from caller. 1861 */ 1862 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1863 { 1864 struct ata_port *ap = qc->ap; 1865 void __iomem *port_mmio = mv_ap_base(ap); 1866 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1867 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1868 1869 /* start host DMA transaction */ 1870 writelfl(cmd, port_mmio + BMDMA_CMD); 1871 } 1872 1873 /** 1874 * mv_bmdma_stop - Stop BMDMA transfer 1875 * @qc: queued command to stop DMA on. 1876 * 1877 * Clears the ATA_DMA_START flag in the bmdma control register 1878 * 1879 * LOCKING: 1880 * Inherited from caller. 1881 */ 1882 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1883 { 1884 struct ata_port *ap = qc->ap; 1885 void __iomem *port_mmio = mv_ap_base(ap); 1886 u32 cmd; 1887 1888 /* clear start/stop bit */ 1889 cmd = readl(port_mmio + BMDMA_CMD); 1890 cmd &= ~ATA_DMA_START; 1891 writelfl(cmd, port_mmio + BMDMA_CMD); 1892 1893 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1894 ata_sff_dma_pause(ap); 1895 } 1896 1897 /** 1898 * mv_bmdma_status - Read BMDMA status 1899 * @ap: port for which to retrieve DMA status. 1900 * 1901 * Read and return equivalent of the sff BMDMA status register. 1902 * 1903 * LOCKING: 1904 * Inherited from caller. 1905 */ 1906 static u8 mv_bmdma_status(struct ata_port *ap) 1907 { 1908 void __iomem *port_mmio = mv_ap_base(ap); 1909 u32 reg, status; 1910 1911 /* 1912 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1913 * and the ATA_DMA_INTR bit doesn't exist. 1914 */ 1915 reg = readl(port_mmio + BMDMA_STATUS); 1916 if (reg & ATA_DMA_ACTIVE) 1917 status = ATA_DMA_ACTIVE; 1918 else 1919 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1920 return status; 1921 } 1922 1923 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 1924 { 1925 struct ata_taskfile *tf = &qc->tf; 1926 /* 1927 * Workaround for 88SX60x1 FEr SATA#24. 1928 * 1929 * Chip may corrupt WRITEs if multi_count >= 4kB. 1930 * Note that READs are unaffected. 1931 * 1932 * It's not clear if this errata really means "4K bytes", 1933 * or if it always happens for multi_count > 7 1934 * regardless of device sector_size. 1935 * 1936 * So, for safety, any write with multi_count > 7 1937 * gets converted here into a regular PIO write instead: 1938 */ 1939 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 1940 if (qc->dev->multi_count > 7) { 1941 switch (tf->command) { 1942 case ATA_CMD_WRITE_MULTI: 1943 tf->command = ATA_CMD_PIO_WRITE; 1944 break; 1945 case ATA_CMD_WRITE_MULTI_FUA_EXT: 1946 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 1947 /* fall through */ 1948 case ATA_CMD_WRITE_MULTI_EXT: 1949 tf->command = ATA_CMD_PIO_WRITE_EXT; 1950 break; 1951 } 1952 } 1953 } 1954 } 1955 1956 /** 1957 * mv_qc_prep - Host specific command preparation. 1958 * @qc: queued command to prepare 1959 * 1960 * This routine simply redirects to the general purpose routine 1961 * if command is not DMA. Else, it handles prep of the CRQB 1962 * (command request block), does some sanity checking, and calls 1963 * the SG load routine. 1964 * 1965 * LOCKING: 1966 * Inherited from caller. 1967 */ 1968 static void mv_qc_prep(struct ata_queued_cmd *qc) 1969 { 1970 struct ata_port *ap = qc->ap; 1971 struct mv_port_priv *pp = ap->private_data; 1972 __le16 *cw; 1973 struct ata_taskfile *tf = &qc->tf; 1974 u16 flags = 0; 1975 unsigned in_index; 1976 1977 switch (tf->protocol) { 1978 case ATA_PROT_DMA: 1979 case ATA_PROT_NCQ: 1980 break; /* continue below */ 1981 case ATA_PROT_PIO: 1982 mv_rw_multi_errata_sata24(qc); 1983 return; 1984 default: 1985 return; 1986 } 1987 1988 /* Fill in command request block 1989 */ 1990 if (!(tf->flags & ATA_TFLAG_WRITE)) 1991 flags |= CRQB_FLAG_READ; 1992 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 1993 flags |= qc->tag << CRQB_TAG_SHIFT; 1994 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 1995 1996 /* get current queue index from software */ 1997 in_index = pp->req_idx; 1998 1999 pp->crqb[in_index].sg_addr = 2000 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2001 pp->crqb[in_index].sg_addr_hi = 2002 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2003 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 2004 2005 cw = &pp->crqb[in_index].ata_cmd[0]; 2006 2007 /* Sadly, the CRQB cannot accomodate all registers--there are 2008 * only 11 bytes...so we must pick and choose required 2009 * registers based on the command. So, we drop feature and 2010 * hob_feature for [RW] DMA commands, but they are needed for 2011 * NCQ. NCQ will drop hob_nsect, which is not needed there 2012 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 2013 */ 2014 switch (tf->command) { 2015 case ATA_CMD_READ: 2016 case ATA_CMD_READ_EXT: 2017 case ATA_CMD_WRITE: 2018 case ATA_CMD_WRITE_EXT: 2019 case ATA_CMD_WRITE_FUA_EXT: 2020 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 2021 break; 2022 case ATA_CMD_FPDMA_READ: 2023 case ATA_CMD_FPDMA_WRITE: 2024 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2025 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2026 break; 2027 default: 2028 /* The only other commands EDMA supports in non-queued and 2029 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2030 * of which are defined/used by Linux. If we get here, this 2031 * driver needs work. 2032 * 2033 * FIXME: modify libata to give qc_prep a return value and 2034 * return error here. 2035 */ 2036 BUG_ON(tf->command); 2037 break; 2038 } 2039 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2040 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2041 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2042 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2043 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2044 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2045 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2046 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2047 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2048 2049 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2050 return; 2051 mv_fill_sg(qc); 2052 } 2053 2054 /** 2055 * mv_qc_prep_iie - Host specific command preparation. 2056 * @qc: queued command to prepare 2057 * 2058 * This routine simply redirects to the general purpose routine 2059 * if command is not DMA. Else, it handles prep of the CRQB 2060 * (command request block), does some sanity checking, and calls 2061 * the SG load routine. 2062 * 2063 * LOCKING: 2064 * Inherited from caller. 2065 */ 2066 static void mv_qc_prep_iie(struct ata_queued_cmd *qc) 2067 { 2068 struct ata_port *ap = qc->ap; 2069 struct mv_port_priv *pp = ap->private_data; 2070 struct mv_crqb_iie *crqb; 2071 struct ata_taskfile *tf = &qc->tf; 2072 unsigned in_index; 2073 u32 flags = 0; 2074 2075 if ((tf->protocol != ATA_PROT_DMA) && 2076 (tf->protocol != ATA_PROT_NCQ)) 2077 return; 2078 2079 /* Fill in Gen IIE command request block */ 2080 if (!(tf->flags & ATA_TFLAG_WRITE)) 2081 flags |= CRQB_FLAG_READ; 2082 2083 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2084 flags |= qc->tag << CRQB_TAG_SHIFT; 2085 flags |= qc->tag << CRQB_HOSTQ_SHIFT; 2086 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2087 2088 /* get current queue index from software */ 2089 in_index = pp->req_idx; 2090 2091 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2092 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2093 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2094 crqb->flags = cpu_to_le32(flags); 2095 2096 crqb->ata_cmd[0] = cpu_to_le32( 2097 (tf->command << 16) | 2098 (tf->feature << 24) 2099 ); 2100 crqb->ata_cmd[1] = cpu_to_le32( 2101 (tf->lbal << 0) | 2102 (tf->lbam << 8) | 2103 (tf->lbah << 16) | 2104 (tf->device << 24) 2105 ); 2106 crqb->ata_cmd[2] = cpu_to_le32( 2107 (tf->hob_lbal << 0) | 2108 (tf->hob_lbam << 8) | 2109 (tf->hob_lbah << 16) | 2110 (tf->hob_feature << 24) 2111 ); 2112 crqb->ata_cmd[3] = cpu_to_le32( 2113 (tf->nsect << 0) | 2114 (tf->hob_nsect << 8) 2115 ); 2116 2117 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2118 return; 2119 mv_fill_sg(qc); 2120 } 2121 2122 /** 2123 * mv_sff_check_status - fetch device status, if valid 2124 * @ap: ATA port to fetch status from 2125 * 2126 * When using command issue via mv_qc_issue_fis(), 2127 * the initial ATA_BUSY state does not show up in the 2128 * ATA status (shadow) register. This can confuse libata! 2129 * 2130 * So we have a hook here to fake ATA_BUSY for that situation, 2131 * until the first time a BUSY, DRQ, or ERR bit is seen. 2132 * 2133 * The rest of the time, it simply returns the ATA status register. 2134 */ 2135 static u8 mv_sff_check_status(struct ata_port *ap) 2136 { 2137 u8 stat = ioread8(ap->ioaddr.status_addr); 2138 struct mv_port_priv *pp = ap->private_data; 2139 2140 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2141 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2142 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2143 else 2144 stat = ATA_BUSY; 2145 } 2146 return stat; 2147 } 2148 2149 /** 2150 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2151 * @fis: fis to be sent 2152 * @nwords: number of 32-bit words in the fis 2153 */ 2154 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2155 { 2156 void __iomem *port_mmio = mv_ap_base(ap); 2157 u32 ifctl, old_ifctl, ifstat; 2158 int i, timeout = 200, final_word = nwords - 1; 2159 2160 /* Initiate FIS transmission mode */ 2161 old_ifctl = readl(port_mmio + SATA_IFCTL); 2162 ifctl = 0x100 | (old_ifctl & 0xf); 2163 writelfl(ifctl, port_mmio + SATA_IFCTL); 2164 2165 /* Send all words of the FIS except for the final word */ 2166 for (i = 0; i < final_word; ++i) 2167 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2168 2169 /* Flag end-of-transmission, and then send the final word */ 2170 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2171 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2172 2173 /* 2174 * Wait for FIS transmission to complete. 2175 * This typically takes just a single iteration. 2176 */ 2177 do { 2178 ifstat = readl(port_mmio + SATA_IFSTAT); 2179 } while (!(ifstat & 0x1000) && --timeout); 2180 2181 /* Restore original port configuration */ 2182 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2183 2184 /* See if it worked */ 2185 if ((ifstat & 0x3000) != 0x1000) { 2186 ata_port_printk(ap, KERN_WARNING, 2187 "%s transmission error, ifstat=%08x\n", 2188 __func__, ifstat); 2189 return AC_ERR_OTHER; 2190 } 2191 return 0; 2192 } 2193 2194 /** 2195 * mv_qc_issue_fis - Issue a command directly as a FIS 2196 * @qc: queued command to start 2197 * 2198 * Note that the ATA shadow registers are not updated 2199 * after command issue, so the device will appear "READY" 2200 * if polled, even while it is BUSY processing the command. 2201 * 2202 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2203 * 2204 * Note: we don't get updated shadow regs on *completion* 2205 * of non-data commands. So avoid sending them via this function, 2206 * as they will appear to have completed immediately. 2207 * 2208 * GEN_IIE has special registers that we could get the result tf from, 2209 * but earlier chipsets do not. For now, we ignore those registers. 2210 */ 2211 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2212 { 2213 struct ata_port *ap = qc->ap; 2214 struct mv_port_priv *pp = ap->private_data; 2215 struct ata_link *link = qc->dev->link; 2216 u32 fis[5]; 2217 int err = 0; 2218 2219 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2220 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); 2221 if (err) 2222 return err; 2223 2224 switch (qc->tf.protocol) { 2225 case ATAPI_PROT_PIO: 2226 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2227 /* fall through */ 2228 case ATAPI_PROT_NODATA: 2229 ap->hsm_task_state = HSM_ST_FIRST; 2230 break; 2231 case ATA_PROT_PIO: 2232 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2233 if (qc->tf.flags & ATA_TFLAG_WRITE) 2234 ap->hsm_task_state = HSM_ST_FIRST; 2235 else 2236 ap->hsm_task_state = HSM_ST; 2237 break; 2238 default: 2239 ap->hsm_task_state = HSM_ST_LAST; 2240 break; 2241 } 2242 2243 if (qc->tf.flags & ATA_TFLAG_POLLING) 2244 ata_pio_queue_task(ap, qc, 0); 2245 return 0; 2246 } 2247 2248 /** 2249 * mv_qc_issue - Initiate a command to the host 2250 * @qc: queued command to start 2251 * 2252 * This routine simply redirects to the general purpose routine 2253 * if command is not DMA. Else, it sanity checks our local 2254 * caches of the request producer/consumer indices then enables 2255 * DMA and bumps the request producer index. 2256 * 2257 * LOCKING: 2258 * Inherited from caller. 2259 */ 2260 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2261 { 2262 static int limit_warnings = 10; 2263 struct ata_port *ap = qc->ap; 2264 void __iomem *port_mmio = mv_ap_base(ap); 2265 struct mv_port_priv *pp = ap->private_data; 2266 u32 in_index; 2267 unsigned int port_irqs; 2268 2269 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2270 2271 switch (qc->tf.protocol) { 2272 case ATA_PROT_DMA: 2273 case ATA_PROT_NCQ: 2274 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2275 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2276 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2277 2278 /* Write the request in pointer to kick the EDMA to life */ 2279 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2280 port_mmio + EDMA_REQ_Q_IN_PTR); 2281 return 0; 2282 2283 case ATA_PROT_PIO: 2284 /* 2285 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2286 * 2287 * Someday, we might implement special polling workarounds 2288 * for these, but it all seems rather unnecessary since we 2289 * normally use only DMA for commands which transfer more 2290 * than a single block of data. 2291 * 2292 * Much of the time, this could just work regardless. 2293 * So for now, just log the incident, and allow the attempt. 2294 */ 2295 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2296 --limit_warnings; 2297 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME 2298 ": attempting PIO w/multiple DRQ: " 2299 "this may fail due to h/w errata\n"); 2300 } 2301 /* drop through */ 2302 case ATA_PROT_NODATA: 2303 case ATAPI_PROT_PIO: 2304 case ATAPI_PROT_NODATA: 2305 if (ap->flags & ATA_FLAG_PIO_POLLING) 2306 qc->tf.flags |= ATA_TFLAG_POLLING; 2307 break; 2308 } 2309 2310 if (qc->tf.flags & ATA_TFLAG_POLLING) 2311 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2312 else 2313 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2314 2315 /* 2316 * We're about to send a non-EDMA capable command to the 2317 * port. Turn off EDMA so there won't be problems accessing 2318 * shadow block, etc registers. 2319 */ 2320 mv_stop_edma(ap); 2321 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2322 mv_pmp_select(ap, qc->dev->link->pmp); 2323 2324 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2325 struct mv_host_priv *hpriv = ap->host->private_data; 2326 /* 2327 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2328 * 2329 * After any NCQ error, the READ_LOG_EXT command 2330 * from libata-eh *must* use mv_qc_issue_fis(). 2331 * Otherwise it might fail, due to chip errata. 2332 * 2333 * Rather than special-case it, we'll just *always* 2334 * use this method here for READ_LOG_EXT, making for 2335 * easier testing. 2336 */ 2337 if (IS_GEN_II(hpriv)) 2338 return mv_qc_issue_fis(qc); 2339 } 2340 return ata_sff_qc_issue(qc); 2341 } 2342 2343 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2344 { 2345 struct mv_port_priv *pp = ap->private_data; 2346 struct ata_queued_cmd *qc; 2347 2348 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2349 return NULL; 2350 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2351 if (qc) { 2352 if (qc->tf.flags & ATA_TFLAG_POLLING) 2353 qc = NULL; 2354 else if (!(qc->flags & ATA_QCFLAG_ACTIVE)) 2355 qc = NULL; 2356 } 2357 return qc; 2358 } 2359 2360 static void mv_pmp_error_handler(struct ata_port *ap) 2361 { 2362 unsigned int pmp, pmp_map; 2363 struct mv_port_priv *pp = ap->private_data; 2364 2365 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2366 /* 2367 * Perform NCQ error analysis on failed PMPs 2368 * before we freeze the port entirely. 2369 * 2370 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2371 */ 2372 pmp_map = pp->delayed_eh_pmp_map; 2373 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2374 for (pmp = 0; pmp_map != 0; pmp++) { 2375 unsigned int this_pmp = (1 << pmp); 2376 if (pmp_map & this_pmp) { 2377 struct ata_link *link = &ap->pmp_link[pmp]; 2378 pmp_map &= ~this_pmp; 2379 ata_eh_analyze_ncq_error(link); 2380 } 2381 } 2382 ata_port_freeze(ap); 2383 } 2384 sata_pmp_error_handler(ap); 2385 } 2386 2387 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2388 { 2389 void __iomem *port_mmio = mv_ap_base(ap); 2390 2391 return readl(port_mmio + SATA_TESTCTL) >> 16; 2392 } 2393 2394 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2395 { 2396 struct ata_eh_info *ehi; 2397 unsigned int pmp; 2398 2399 /* 2400 * Initialize EH info for PMPs which saw device errors 2401 */ 2402 ehi = &ap->link.eh_info; 2403 for (pmp = 0; pmp_map != 0; pmp++) { 2404 unsigned int this_pmp = (1 << pmp); 2405 if (pmp_map & this_pmp) { 2406 struct ata_link *link = &ap->pmp_link[pmp]; 2407 2408 pmp_map &= ~this_pmp; 2409 ehi = &link->eh_info; 2410 ata_ehi_clear_desc(ehi); 2411 ata_ehi_push_desc(ehi, "dev err"); 2412 ehi->err_mask |= AC_ERR_DEV; 2413 ehi->action |= ATA_EH_RESET; 2414 ata_link_abort(link); 2415 } 2416 } 2417 } 2418 2419 static int mv_req_q_empty(struct ata_port *ap) 2420 { 2421 void __iomem *port_mmio = mv_ap_base(ap); 2422 u32 in_ptr, out_ptr; 2423 2424 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2425 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2426 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2427 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2428 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2429 } 2430 2431 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2432 { 2433 struct mv_port_priv *pp = ap->private_data; 2434 int failed_links; 2435 unsigned int old_map, new_map; 2436 2437 /* 2438 * Device error during FBS+NCQ operation: 2439 * 2440 * Set a port flag to prevent further I/O being enqueued. 2441 * Leave the EDMA running to drain outstanding commands from this port. 2442 * Perform the post-mortem/EH only when all responses are complete. 2443 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2444 */ 2445 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2446 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2447 pp->delayed_eh_pmp_map = 0; 2448 } 2449 old_map = pp->delayed_eh_pmp_map; 2450 new_map = old_map | mv_get_err_pmp_map(ap); 2451 2452 if (old_map != new_map) { 2453 pp->delayed_eh_pmp_map = new_map; 2454 mv_pmp_eh_prep(ap, new_map & ~old_map); 2455 } 2456 failed_links = hweight16(new_map); 2457 2458 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x " 2459 "failed_links=%d nr_active_links=%d\n", 2460 __func__, pp->delayed_eh_pmp_map, 2461 ap->qc_active, failed_links, 2462 ap->nr_active_links); 2463 2464 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2465 mv_process_crpb_entries(ap, pp); 2466 mv_stop_edma(ap); 2467 mv_eh_freeze(ap); 2468 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__); 2469 return 1; /* handled */ 2470 } 2471 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__); 2472 return 1; /* handled */ 2473 } 2474 2475 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2476 { 2477 /* 2478 * Possible future enhancement: 2479 * 2480 * FBS+non-NCQ operation is not yet implemented. 2481 * See related notes in mv_edma_cfg(). 2482 * 2483 * Device error during FBS+non-NCQ operation: 2484 * 2485 * We need to snapshot the shadow registers for each failed command. 2486 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2487 */ 2488 return 0; /* not handled */ 2489 } 2490 2491 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2492 { 2493 struct mv_port_priv *pp = ap->private_data; 2494 2495 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2496 return 0; /* EDMA was not active: not handled */ 2497 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2498 return 0; /* FBS was not active: not handled */ 2499 2500 if (!(edma_err_cause & EDMA_ERR_DEV)) 2501 return 0; /* non DEV error: not handled */ 2502 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2503 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2504 return 0; /* other problems: not handled */ 2505 2506 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2507 /* 2508 * EDMA should NOT have self-disabled for this case. 2509 * If it did, then something is wrong elsewhere, 2510 * and we cannot handle it here. 2511 */ 2512 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2513 ata_port_printk(ap, KERN_WARNING, 2514 "%s: err_cause=0x%x pp_flags=0x%x\n", 2515 __func__, edma_err_cause, pp->pp_flags); 2516 return 0; /* not handled */ 2517 } 2518 return mv_handle_fbs_ncq_dev_err(ap); 2519 } else { 2520 /* 2521 * EDMA should have self-disabled for this case. 2522 * If it did not, then something is wrong elsewhere, 2523 * and we cannot handle it here. 2524 */ 2525 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2526 ata_port_printk(ap, KERN_WARNING, 2527 "%s: err_cause=0x%x pp_flags=0x%x\n", 2528 __func__, edma_err_cause, pp->pp_flags); 2529 return 0; /* not handled */ 2530 } 2531 return mv_handle_fbs_non_ncq_dev_err(ap); 2532 } 2533 return 0; /* not handled */ 2534 } 2535 2536 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2537 { 2538 struct ata_eh_info *ehi = &ap->link.eh_info; 2539 char *when = "idle"; 2540 2541 ata_ehi_clear_desc(ehi); 2542 if (ap->flags & ATA_FLAG_DISABLED) { 2543 when = "disabled"; 2544 } else if (edma_was_enabled) { 2545 when = "EDMA enabled"; 2546 } else { 2547 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2548 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2549 when = "polling"; 2550 } 2551 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2552 ehi->err_mask |= AC_ERR_OTHER; 2553 ehi->action |= ATA_EH_RESET; 2554 ata_port_freeze(ap); 2555 } 2556 2557 /** 2558 * mv_err_intr - Handle error interrupts on the port 2559 * @ap: ATA channel to manipulate 2560 * 2561 * Most cases require a full reset of the chip's state machine, 2562 * which also performs a COMRESET. 2563 * Also, if the port disabled DMA, update our cached copy to match. 2564 * 2565 * LOCKING: 2566 * Inherited from caller. 2567 */ 2568 static void mv_err_intr(struct ata_port *ap) 2569 { 2570 void __iomem *port_mmio = mv_ap_base(ap); 2571 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2572 u32 fis_cause = 0; 2573 struct mv_port_priv *pp = ap->private_data; 2574 struct mv_host_priv *hpriv = ap->host->private_data; 2575 unsigned int action = 0, err_mask = 0; 2576 struct ata_eh_info *ehi = &ap->link.eh_info; 2577 struct ata_queued_cmd *qc; 2578 int abort = 0; 2579 2580 /* 2581 * Read and clear the SError and err_cause bits. 2582 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2583 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2584 */ 2585 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2586 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2587 2588 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2589 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2590 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2591 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2592 } 2593 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2594 2595 if (edma_err_cause & EDMA_ERR_DEV) { 2596 /* 2597 * Device errors during FIS-based switching operation 2598 * require special handling. 2599 */ 2600 if (mv_handle_dev_err(ap, edma_err_cause)) 2601 return; 2602 } 2603 2604 qc = mv_get_active_qc(ap); 2605 ata_ehi_clear_desc(ehi); 2606 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2607 edma_err_cause, pp->pp_flags); 2608 2609 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2610 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2611 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2612 u32 ec = edma_err_cause & 2613 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2614 sata_async_notification(ap); 2615 if (!ec) 2616 return; /* Just an AN; no need for the nukes */ 2617 ata_ehi_push_desc(ehi, "SDB notify"); 2618 } 2619 } 2620 /* 2621 * All generations share these EDMA error cause bits: 2622 */ 2623 if (edma_err_cause & EDMA_ERR_DEV) { 2624 err_mask |= AC_ERR_DEV; 2625 action |= ATA_EH_RESET; 2626 ata_ehi_push_desc(ehi, "dev error"); 2627 } 2628 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2629 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2630 EDMA_ERR_INTRL_PAR)) { 2631 err_mask |= AC_ERR_ATA_BUS; 2632 action |= ATA_EH_RESET; 2633 ata_ehi_push_desc(ehi, "parity error"); 2634 } 2635 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2636 ata_ehi_hotplugged(ehi); 2637 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2638 "dev disconnect" : "dev connect"); 2639 action |= ATA_EH_RESET; 2640 } 2641 2642 /* 2643 * Gen-I has a different SELF_DIS bit, 2644 * different FREEZE bits, and no SERR bit: 2645 */ 2646 if (IS_GEN_I(hpriv)) { 2647 eh_freeze_mask = EDMA_EH_FREEZE_5; 2648 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2649 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2650 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2651 } 2652 } else { 2653 eh_freeze_mask = EDMA_EH_FREEZE; 2654 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2655 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2656 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2657 } 2658 if (edma_err_cause & EDMA_ERR_SERR) { 2659 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2660 err_mask |= AC_ERR_ATA_BUS; 2661 action |= ATA_EH_RESET; 2662 } 2663 } 2664 2665 if (!err_mask) { 2666 err_mask = AC_ERR_OTHER; 2667 action |= ATA_EH_RESET; 2668 } 2669 2670 ehi->serror |= serr; 2671 ehi->action |= action; 2672 2673 if (qc) 2674 qc->err_mask |= err_mask; 2675 else 2676 ehi->err_mask |= err_mask; 2677 2678 if (err_mask == AC_ERR_DEV) { 2679 /* 2680 * Cannot do ata_port_freeze() here, 2681 * because it would kill PIO access, 2682 * which is needed for further diagnosis. 2683 */ 2684 mv_eh_freeze(ap); 2685 abort = 1; 2686 } else if (edma_err_cause & eh_freeze_mask) { 2687 /* 2688 * Note to self: ata_port_freeze() calls ata_port_abort() 2689 */ 2690 ata_port_freeze(ap); 2691 } else { 2692 abort = 1; 2693 } 2694 2695 if (abort) { 2696 if (qc) 2697 ata_link_abort(qc->dev->link); 2698 else 2699 ata_port_abort(ap); 2700 } 2701 } 2702 2703 static void mv_process_crpb_response(struct ata_port *ap, 2704 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2705 { 2706 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag); 2707 2708 if (qc) { 2709 u8 ata_status; 2710 u16 edma_status = le16_to_cpu(response->flags); 2711 /* 2712 * edma_status from a response queue entry: 2713 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2714 * MSB is saved ATA status from command completion. 2715 */ 2716 if (!ncq_enabled) { 2717 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2718 if (err_cause) { 2719 /* 2720 * Error will be seen/handled by mv_err_intr(). 2721 * So do nothing at all here. 2722 */ 2723 return; 2724 } 2725 } 2726 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2727 if (!ac_err_mask(ata_status)) 2728 ata_qc_complete(qc); 2729 /* else: leave it for mv_err_intr() */ 2730 } else { 2731 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n", 2732 __func__, tag); 2733 } 2734 } 2735 2736 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2737 { 2738 void __iomem *port_mmio = mv_ap_base(ap); 2739 struct mv_host_priv *hpriv = ap->host->private_data; 2740 u32 in_index; 2741 bool work_done = false; 2742 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2743 2744 /* Get the hardware queue position index */ 2745 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2746 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2747 2748 /* Process new responses from since the last time we looked */ 2749 while (in_index != pp->resp_idx) { 2750 unsigned int tag; 2751 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2752 2753 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2754 2755 if (IS_GEN_I(hpriv)) { 2756 /* 50xx: no NCQ, only one command active at a time */ 2757 tag = ap->link.active_tag; 2758 } else { 2759 /* Gen II/IIE: get command tag from CRPB entry */ 2760 tag = le16_to_cpu(response->id) & 0x1f; 2761 } 2762 mv_process_crpb_response(ap, response, tag, ncq_enabled); 2763 work_done = true; 2764 } 2765 2766 /* Update the software queue position index in hardware */ 2767 if (work_done) 2768 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2769 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2770 port_mmio + EDMA_RSP_Q_OUT_PTR); 2771 } 2772 2773 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2774 { 2775 struct mv_port_priv *pp; 2776 int edma_was_enabled; 2777 2778 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) { 2779 mv_unexpected_intr(ap, 0); 2780 return; 2781 } 2782 /* 2783 * Grab a snapshot of the EDMA_EN flag setting, 2784 * so that we have a consistent view for this port, 2785 * even if something we call of our routines changes it. 2786 */ 2787 pp = ap->private_data; 2788 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2789 /* 2790 * Process completed CRPB response(s) before other events. 2791 */ 2792 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2793 mv_process_crpb_entries(ap, pp); 2794 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2795 mv_handle_fbs_ncq_dev_err(ap); 2796 } 2797 /* 2798 * Handle chip-reported errors, or continue on to handle PIO. 2799 */ 2800 if (unlikely(port_cause & ERR_IRQ)) { 2801 mv_err_intr(ap); 2802 } else if (!edma_was_enabled) { 2803 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2804 if (qc) 2805 ata_sff_host_intr(ap, qc); 2806 else 2807 mv_unexpected_intr(ap, edma_was_enabled); 2808 } 2809 } 2810 2811 /** 2812 * mv_host_intr - Handle all interrupts on the given host controller 2813 * @host: host specific structure 2814 * @main_irq_cause: Main interrupt cause register for the chip. 2815 * 2816 * LOCKING: 2817 * Inherited from caller. 2818 */ 2819 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2820 { 2821 struct mv_host_priv *hpriv = host->private_data; 2822 void __iomem *mmio = hpriv->base, *hc_mmio; 2823 unsigned int handled = 0, port; 2824 2825 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2826 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2827 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2828 2829 for (port = 0; port < hpriv->n_ports; port++) { 2830 struct ata_port *ap = host->ports[port]; 2831 unsigned int p, shift, hardport, port_cause; 2832 2833 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2834 /* 2835 * Each hc within the host has its own hc_irq_cause register, 2836 * where the interrupting ports bits get ack'd. 2837 */ 2838 if (hardport == 0) { /* first port on this hc ? */ 2839 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2840 u32 port_mask, ack_irqs; 2841 /* 2842 * Skip this entire hc if nothing pending for any ports 2843 */ 2844 if (!hc_cause) { 2845 port += MV_PORTS_PER_HC - 1; 2846 continue; 2847 } 2848 /* 2849 * We don't need/want to read the hc_irq_cause register, 2850 * because doing so hurts performance, and 2851 * main_irq_cause already gives us everything we need. 2852 * 2853 * But we do have to *write* to the hc_irq_cause to ack 2854 * the ports that we are handling this time through. 2855 * 2856 * This requires that we create a bitmap for those 2857 * ports which interrupted us, and use that bitmap 2858 * to ack (only) those ports via hc_irq_cause. 2859 */ 2860 ack_irqs = 0; 2861 if (hc_cause & PORTS_0_3_COAL_DONE) 2862 ack_irqs = HC_COAL_IRQ; 2863 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2864 if ((port + p) >= hpriv->n_ports) 2865 break; 2866 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2867 if (hc_cause & port_mask) 2868 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2869 } 2870 hc_mmio = mv_hc_base_from_port(mmio, port); 2871 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2872 handled = 1; 2873 } 2874 /* 2875 * Handle interrupts signalled for this port: 2876 */ 2877 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2878 if (port_cause) 2879 mv_port_intr(ap, port_cause); 2880 } 2881 return handled; 2882 } 2883 2884 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2885 { 2886 struct mv_host_priv *hpriv = host->private_data; 2887 struct ata_port *ap; 2888 struct ata_queued_cmd *qc; 2889 struct ata_eh_info *ehi; 2890 unsigned int i, err_mask, printed = 0; 2891 u32 err_cause; 2892 2893 err_cause = readl(mmio + hpriv->irq_cause_offset); 2894 2895 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", 2896 err_cause); 2897 2898 DPRINTK("All regs @ PCI error\n"); 2899 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2900 2901 writelfl(0, mmio + hpriv->irq_cause_offset); 2902 2903 for (i = 0; i < host->n_ports; i++) { 2904 ap = host->ports[i]; 2905 if (!ata_link_offline(&ap->link)) { 2906 ehi = &ap->link.eh_info; 2907 ata_ehi_clear_desc(ehi); 2908 if (!printed++) 2909 ata_ehi_push_desc(ehi, 2910 "PCI err cause 0x%08x", err_cause); 2911 err_mask = AC_ERR_HOST_BUS; 2912 ehi->action = ATA_EH_RESET; 2913 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2914 if (qc) 2915 qc->err_mask |= err_mask; 2916 else 2917 ehi->err_mask |= err_mask; 2918 2919 ata_port_freeze(ap); 2920 } 2921 } 2922 return 1; /* handled */ 2923 } 2924 2925 /** 2926 * mv_interrupt - Main interrupt event handler 2927 * @irq: unused 2928 * @dev_instance: private data; in this case the host structure 2929 * 2930 * Read the read only register to determine if any host 2931 * controllers have pending interrupts. If so, call lower level 2932 * routine to handle. Also check for PCI errors which are only 2933 * reported here. 2934 * 2935 * LOCKING: 2936 * This routine holds the host lock while processing pending 2937 * interrupts. 2938 */ 2939 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 2940 { 2941 struct ata_host *host = dev_instance; 2942 struct mv_host_priv *hpriv = host->private_data; 2943 unsigned int handled = 0; 2944 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 2945 u32 main_irq_cause, pending_irqs; 2946 2947 spin_lock(&host->lock); 2948 2949 /* for MSI: block new interrupts while in here */ 2950 if (using_msi) 2951 mv_write_main_irq_mask(0, hpriv); 2952 2953 main_irq_cause = readl(hpriv->main_irq_cause_addr); 2954 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 2955 /* 2956 * Deal with cases where we either have nothing pending, or have read 2957 * a bogus register value which can indicate HW removal or PCI fault. 2958 */ 2959 if (pending_irqs && main_irq_cause != 0xffffffffU) { 2960 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 2961 handled = mv_pci_error(host, hpriv->base); 2962 else 2963 handled = mv_host_intr(host, pending_irqs); 2964 } 2965 2966 /* for MSI: unmask; interrupt cause bits will retrigger now */ 2967 if (using_msi) 2968 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 2969 2970 spin_unlock(&host->lock); 2971 2972 return IRQ_RETVAL(handled); 2973 } 2974 2975 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 2976 { 2977 unsigned int ofs; 2978 2979 switch (sc_reg_in) { 2980 case SCR_STATUS: 2981 case SCR_ERROR: 2982 case SCR_CONTROL: 2983 ofs = sc_reg_in * sizeof(u32); 2984 break; 2985 default: 2986 ofs = 0xffffffffU; 2987 break; 2988 } 2989 return ofs; 2990 } 2991 2992 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 2993 { 2994 struct mv_host_priv *hpriv = link->ap->host->private_data; 2995 void __iomem *mmio = hpriv->base; 2996 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 2997 unsigned int ofs = mv5_scr_offset(sc_reg_in); 2998 2999 if (ofs != 0xffffffffU) { 3000 *val = readl(addr + ofs); 3001 return 0; 3002 } else 3003 return -EINVAL; 3004 } 3005 3006 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 3007 { 3008 struct mv_host_priv *hpriv = link->ap->host->private_data; 3009 void __iomem *mmio = hpriv->base; 3010 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3011 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3012 3013 if (ofs != 0xffffffffU) { 3014 writelfl(val, addr + ofs); 3015 return 0; 3016 } else 3017 return -EINVAL; 3018 } 3019 3020 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 3021 { 3022 struct pci_dev *pdev = to_pci_dev(host->dev); 3023 int early_5080; 3024 3025 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3026 3027 if (!early_5080) { 3028 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3029 tmp |= (1 << 0); 3030 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3031 } 3032 3033 mv_reset_pci_bus(host, mmio); 3034 } 3035 3036 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3037 { 3038 writel(0x0fcfffff, mmio + FLASH_CTL); 3039 } 3040 3041 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3042 void __iomem *mmio) 3043 { 3044 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3045 u32 tmp; 3046 3047 tmp = readl(phy_mmio + MV5_PHY_MODE); 3048 3049 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3050 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3051 } 3052 3053 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3054 { 3055 u32 tmp; 3056 3057 writel(0, mmio + GPIO_PORT_CTL); 3058 3059 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3060 3061 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3062 tmp |= ~(1 << 0); 3063 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3064 } 3065 3066 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3067 unsigned int port) 3068 { 3069 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3070 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3071 u32 tmp; 3072 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3073 3074 if (fix_apm_sq) { 3075 tmp = readl(phy_mmio + MV5_LTMODE); 3076 tmp |= (1 << 19); 3077 writel(tmp, phy_mmio + MV5_LTMODE); 3078 3079 tmp = readl(phy_mmio + MV5_PHY_CTL); 3080 tmp &= ~0x3; 3081 tmp |= 0x1; 3082 writel(tmp, phy_mmio + MV5_PHY_CTL); 3083 } 3084 3085 tmp = readl(phy_mmio + MV5_PHY_MODE); 3086 tmp &= ~mask; 3087 tmp |= hpriv->signal[port].pre; 3088 tmp |= hpriv->signal[port].amps; 3089 writel(tmp, phy_mmio + MV5_PHY_MODE); 3090 } 3091 3092 3093 #undef ZERO 3094 #define ZERO(reg) writel(0, port_mmio + (reg)) 3095 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3096 unsigned int port) 3097 { 3098 void __iomem *port_mmio = mv_port_base(mmio, port); 3099 3100 mv_reset_channel(hpriv, mmio, port); 3101 3102 ZERO(0x028); /* command */ 3103 writel(0x11f, port_mmio + EDMA_CFG); 3104 ZERO(0x004); /* timer */ 3105 ZERO(0x008); /* irq err cause */ 3106 ZERO(0x00c); /* irq err mask */ 3107 ZERO(0x010); /* rq bah */ 3108 ZERO(0x014); /* rq inp */ 3109 ZERO(0x018); /* rq outp */ 3110 ZERO(0x01c); /* respq bah */ 3111 ZERO(0x024); /* respq outp */ 3112 ZERO(0x020); /* respq inp */ 3113 ZERO(0x02c); /* test control */ 3114 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3115 } 3116 #undef ZERO 3117 3118 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3119 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3120 unsigned int hc) 3121 { 3122 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3123 u32 tmp; 3124 3125 ZERO(0x00c); 3126 ZERO(0x010); 3127 ZERO(0x014); 3128 ZERO(0x018); 3129 3130 tmp = readl(hc_mmio + 0x20); 3131 tmp &= 0x1c1c1c1c; 3132 tmp |= 0x03030303; 3133 writel(tmp, hc_mmio + 0x20); 3134 } 3135 #undef ZERO 3136 3137 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3138 unsigned int n_hc) 3139 { 3140 unsigned int hc, port; 3141 3142 for (hc = 0; hc < n_hc; hc++) { 3143 for (port = 0; port < MV_PORTS_PER_HC; port++) 3144 mv5_reset_hc_port(hpriv, mmio, 3145 (hc * MV_PORTS_PER_HC) + port); 3146 3147 mv5_reset_one_hc(hpriv, mmio, hc); 3148 } 3149 3150 return 0; 3151 } 3152 3153 #undef ZERO 3154 #define ZERO(reg) writel(0, mmio + (reg)) 3155 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3156 { 3157 struct mv_host_priv *hpriv = host->private_data; 3158 u32 tmp; 3159 3160 tmp = readl(mmio + MV_PCI_MODE); 3161 tmp &= 0xff00ffff; 3162 writel(tmp, mmio + MV_PCI_MODE); 3163 3164 ZERO(MV_PCI_DISC_TIMER); 3165 ZERO(MV_PCI_MSI_TRIGGER); 3166 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3167 ZERO(MV_PCI_SERR_MASK); 3168 ZERO(hpriv->irq_cause_offset); 3169 ZERO(hpriv->irq_mask_offset); 3170 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3171 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3172 ZERO(MV_PCI_ERR_ATTRIBUTE); 3173 ZERO(MV_PCI_ERR_COMMAND); 3174 } 3175 #undef ZERO 3176 3177 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3178 { 3179 u32 tmp; 3180 3181 mv5_reset_flash(hpriv, mmio); 3182 3183 tmp = readl(mmio + GPIO_PORT_CTL); 3184 tmp &= 0x3; 3185 tmp |= (1 << 5) | (1 << 6); 3186 writel(tmp, mmio + GPIO_PORT_CTL); 3187 } 3188 3189 /** 3190 * mv6_reset_hc - Perform the 6xxx global soft reset 3191 * @mmio: base address of the HBA 3192 * 3193 * This routine only applies to 6xxx parts. 3194 * 3195 * LOCKING: 3196 * Inherited from caller. 3197 */ 3198 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3199 unsigned int n_hc) 3200 { 3201 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3202 int i, rc = 0; 3203 u32 t; 3204 3205 /* Following procedure defined in PCI "main command and status 3206 * register" table. 3207 */ 3208 t = readl(reg); 3209 writel(t | STOP_PCI_MASTER, reg); 3210 3211 for (i = 0; i < 1000; i++) { 3212 udelay(1); 3213 t = readl(reg); 3214 if (PCI_MASTER_EMPTY & t) 3215 break; 3216 } 3217 if (!(PCI_MASTER_EMPTY & t)) { 3218 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3219 rc = 1; 3220 goto done; 3221 } 3222 3223 /* set reset */ 3224 i = 5; 3225 do { 3226 writel(t | GLOB_SFT_RST, reg); 3227 t = readl(reg); 3228 udelay(1); 3229 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3230 3231 if (!(GLOB_SFT_RST & t)) { 3232 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3233 rc = 1; 3234 goto done; 3235 } 3236 3237 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3238 i = 5; 3239 do { 3240 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3241 t = readl(reg); 3242 udelay(1); 3243 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3244 3245 if (GLOB_SFT_RST & t) { 3246 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3247 rc = 1; 3248 } 3249 done: 3250 return rc; 3251 } 3252 3253 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3254 void __iomem *mmio) 3255 { 3256 void __iomem *port_mmio; 3257 u32 tmp; 3258 3259 tmp = readl(mmio + RESET_CFG); 3260 if ((tmp & (1 << 0)) == 0) { 3261 hpriv->signal[idx].amps = 0x7 << 8; 3262 hpriv->signal[idx].pre = 0x1 << 5; 3263 return; 3264 } 3265 3266 port_mmio = mv_port_base(mmio, idx); 3267 tmp = readl(port_mmio + PHY_MODE2); 3268 3269 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3270 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3271 } 3272 3273 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3274 { 3275 writel(0x00000060, mmio + GPIO_PORT_CTL); 3276 } 3277 3278 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3279 unsigned int port) 3280 { 3281 void __iomem *port_mmio = mv_port_base(mmio, port); 3282 3283 u32 hp_flags = hpriv->hp_flags; 3284 int fix_phy_mode2 = 3285 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3286 int fix_phy_mode4 = 3287 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3288 u32 m2, m3; 3289 3290 if (fix_phy_mode2) { 3291 m2 = readl(port_mmio + PHY_MODE2); 3292 m2 &= ~(1 << 16); 3293 m2 |= (1 << 31); 3294 writel(m2, port_mmio + PHY_MODE2); 3295 3296 udelay(200); 3297 3298 m2 = readl(port_mmio + PHY_MODE2); 3299 m2 &= ~((1 << 16) | (1 << 31)); 3300 writel(m2, port_mmio + PHY_MODE2); 3301 3302 udelay(200); 3303 } 3304 3305 /* 3306 * Gen-II/IIe PHY_MODE3 errata RM#2: 3307 * Achieves better receiver noise performance than the h/w default: 3308 */ 3309 m3 = readl(port_mmio + PHY_MODE3); 3310 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3311 3312 /* Guideline 88F5182 (GL# SATA-S11) */ 3313 if (IS_SOC(hpriv)) 3314 m3 &= ~0x1c; 3315 3316 if (fix_phy_mode4) { 3317 u32 m4 = readl(port_mmio + PHY_MODE4); 3318 /* 3319 * Enforce reserved-bit restrictions on GenIIe devices only. 3320 * For earlier chipsets, force only the internal config field 3321 * (workaround for errata FEr SATA#10 part 1). 3322 */ 3323 if (IS_GEN_IIE(hpriv)) 3324 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3325 else 3326 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3327 writel(m4, port_mmio + PHY_MODE4); 3328 } 3329 /* 3330 * Workaround for 60x1-B2 errata SATA#13: 3331 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3332 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3333 * Or ensure we use writelfl() when writing PHY_MODE4. 3334 */ 3335 writel(m3, port_mmio + PHY_MODE3); 3336 3337 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3338 m2 = readl(port_mmio + PHY_MODE2); 3339 3340 m2 &= ~MV_M2_PREAMP_MASK; 3341 m2 |= hpriv->signal[port].amps; 3342 m2 |= hpriv->signal[port].pre; 3343 m2 &= ~(1 << 16); 3344 3345 /* according to mvSata 3.6.1, some IIE values are fixed */ 3346 if (IS_GEN_IIE(hpriv)) { 3347 m2 &= ~0xC30FF01F; 3348 m2 |= 0x0000900F; 3349 } 3350 3351 writel(m2, port_mmio + PHY_MODE2); 3352 } 3353 3354 /* TODO: use the generic LED interface to configure the SATA Presence */ 3355 /* & Acitivy LEDs on the board */ 3356 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3357 void __iomem *mmio) 3358 { 3359 return; 3360 } 3361 3362 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3363 void __iomem *mmio) 3364 { 3365 void __iomem *port_mmio; 3366 u32 tmp; 3367 3368 port_mmio = mv_port_base(mmio, idx); 3369 tmp = readl(port_mmio + PHY_MODE2); 3370 3371 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3372 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3373 } 3374 3375 #undef ZERO 3376 #define ZERO(reg) writel(0, port_mmio + (reg)) 3377 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3378 void __iomem *mmio, unsigned int port) 3379 { 3380 void __iomem *port_mmio = mv_port_base(mmio, port); 3381 3382 mv_reset_channel(hpriv, mmio, port); 3383 3384 ZERO(0x028); /* command */ 3385 writel(0x101f, port_mmio + EDMA_CFG); 3386 ZERO(0x004); /* timer */ 3387 ZERO(0x008); /* irq err cause */ 3388 ZERO(0x00c); /* irq err mask */ 3389 ZERO(0x010); /* rq bah */ 3390 ZERO(0x014); /* rq inp */ 3391 ZERO(0x018); /* rq outp */ 3392 ZERO(0x01c); /* respq bah */ 3393 ZERO(0x024); /* respq outp */ 3394 ZERO(0x020); /* respq inp */ 3395 ZERO(0x02c); /* test control */ 3396 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3397 } 3398 3399 #undef ZERO 3400 3401 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3402 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3403 void __iomem *mmio) 3404 { 3405 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3406 3407 ZERO(0x00c); 3408 ZERO(0x010); 3409 ZERO(0x014); 3410 3411 } 3412 3413 #undef ZERO 3414 3415 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3416 void __iomem *mmio, unsigned int n_hc) 3417 { 3418 unsigned int port; 3419 3420 for (port = 0; port < hpriv->n_ports; port++) 3421 mv_soc_reset_hc_port(hpriv, mmio, port); 3422 3423 mv_soc_reset_one_hc(hpriv, mmio); 3424 3425 return 0; 3426 } 3427 3428 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3429 void __iomem *mmio) 3430 { 3431 return; 3432 } 3433 3434 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3435 { 3436 return; 3437 } 3438 3439 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3440 void __iomem *mmio, unsigned int port) 3441 { 3442 void __iomem *port_mmio = mv_port_base(mmio, port); 3443 u32 reg; 3444 3445 reg = readl(port_mmio + PHY_MODE3); 3446 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3447 reg |= (0x1 << 27); 3448 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3449 reg |= (0x1 << 29); 3450 writel(reg, port_mmio + PHY_MODE3); 3451 3452 reg = readl(port_mmio + PHY_MODE4); 3453 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3454 reg |= (0x1 << 16); 3455 writel(reg, port_mmio + PHY_MODE4); 3456 3457 reg = readl(port_mmio + PHY_MODE9_GEN2); 3458 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3459 reg |= 0x8; 3460 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3461 writel(reg, port_mmio + PHY_MODE9_GEN2); 3462 3463 reg = readl(port_mmio + PHY_MODE9_GEN1); 3464 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3465 reg |= 0x8; 3466 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3467 writel(reg, port_mmio + PHY_MODE9_GEN1); 3468 } 3469 3470 /** 3471 * soc_is_65 - check if the soc is 65 nano device 3472 * 3473 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3474 * register, this register should contain non-zero value and it exists only 3475 * in the 65 nano devices, when reading it from older devices we get 0. 3476 */ 3477 static bool soc_is_65n(struct mv_host_priv *hpriv) 3478 { 3479 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3480 3481 if (readl(port0_mmio + PHYCFG_OFS)) 3482 return true; 3483 return false; 3484 } 3485 3486 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3487 { 3488 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3489 3490 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3491 if (want_gen2i) 3492 ifcfg |= (1 << 7); /* enable gen2i speed */ 3493 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3494 } 3495 3496 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3497 unsigned int port_no) 3498 { 3499 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3500 3501 /* 3502 * The datasheet warns against setting EDMA_RESET when EDMA is active 3503 * (but doesn't say what the problem might be). So we first try 3504 * to disable the EDMA engine before doing the EDMA_RESET operation. 3505 */ 3506 mv_stop_edma_engine(port_mmio); 3507 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3508 3509 if (!IS_GEN_I(hpriv)) { 3510 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3511 mv_setup_ifcfg(port_mmio, 1); 3512 } 3513 /* 3514 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3515 * link, and physical layers. It resets all SATA interface registers 3516 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3517 */ 3518 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3519 udelay(25); /* allow reset propagation */ 3520 writelfl(0, port_mmio + EDMA_CMD); 3521 3522 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3523 3524 if (IS_GEN_I(hpriv)) 3525 mdelay(1); 3526 } 3527 3528 static void mv_pmp_select(struct ata_port *ap, int pmp) 3529 { 3530 if (sata_pmp_supported(ap)) { 3531 void __iomem *port_mmio = mv_ap_base(ap); 3532 u32 reg = readl(port_mmio + SATA_IFCTL); 3533 int old = reg & 0xf; 3534 3535 if (old != pmp) { 3536 reg = (reg & ~0xf) | pmp; 3537 writelfl(reg, port_mmio + SATA_IFCTL); 3538 } 3539 } 3540 } 3541 3542 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3543 unsigned long deadline) 3544 { 3545 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3546 return sata_std_hardreset(link, class, deadline); 3547 } 3548 3549 static int mv_softreset(struct ata_link *link, unsigned int *class, 3550 unsigned long deadline) 3551 { 3552 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3553 return ata_sff_softreset(link, class, deadline); 3554 } 3555 3556 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3557 unsigned long deadline) 3558 { 3559 struct ata_port *ap = link->ap; 3560 struct mv_host_priv *hpriv = ap->host->private_data; 3561 struct mv_port_priv *pp = ap->private_data; 3562 void __iomem *mmio = hpriv->base; 3563 int rc, attempts = 0, extra = 0; 3564 u32 sstatus; 3565 bool online; 3566 3567 mv_reset_channel(hpriv, mmio, ap->port_no); 3568 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3569 pp->pp_flags &= 3570 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3571 3572 /* Workaround for errata FEr SATA#10 (part 2) */ 3573 do { 3574 const unsigned long *timing = 3575 sata_ehc_deb_timing(&link->eh_context); 3576 3577 rc = sata_link_hardreset(link, timing, deadline + extra, 3578 &online, NULL); 3579 rc = online ? -EAGAIN : rc; 3580 if (rc) 3581 return rc; 3582 sata_scr_read(link, SCR_STATUS, &sstatus); 3583 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3584 /* Force 1.5gb/s link speed and try again */ 3585 mv_setup_ifcfg(mv_ap_base(ap), 0); 3586 if (time_after(jiffies + HZ, deadline)) 3587 extra = HZ; /* only extend it once, max */ 3588 } 3589 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3590 mv_save_cached_regs(ap); 3591 mv_edma_cfg(ap, 0, 0); 3592 3593 return rc; 3594 } 3595 3596 static void mv_eh_freeze(struct ata_port *ap) 3597 { 3598 mv_stop_edma(ap); 3599 mv_enable_port_irqs(ap, 0); 3600 } 3601 3602 static void mv_eh_thaw(struct ata_port *ap) 3603 { 3604 struct mv_host_priv *hpriv = ap->host->private_data; 3605 unsigned int port = ap->port_no; 3606 unsigned int hardport = mv_hardport_from_port(port); 3607 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3608 void __iomem *port_mmio = mv_ap_base(ap); 3609 u32 hc_irq_cause; 3610 3611 /* clear EDMA errors on this port */ 3612 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3613 3614 /* clear pending irq events */ 3615 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3616 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3617 3618 mv_enable_port_irqs(ap, ERR_IRQ); 3619 } 3620 3621 /** 3622 * mv_port_init - Perform some early initialization on a single port. 3623 * @port: libata data structure storing shadow register addresses 3624 * @port_mmio: base address of the port 3625 * 3626 * Initialize shadow register mmio addresses, clear outstanding 3627 * interrupts on the port, and unmask interrupts for the future 3628 * start of the port. 3629 * 3630 * LOCKING: 3631 * Inherited from caller. 3632 */ 3633 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3634 { 3635 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3636 3637 /* PIO related setup 3638 */ 3639 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3640 port->error_addr = 3641 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3642 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3643 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3644 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3645 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3646 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3647 port->status_addr = 3648 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3649 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3650 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3651 3652 /* unused: */ 3653 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL; 3654 3655 /* Clear any currently outstanding port interrupt conditions */ 3656 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3657 writelfl(readl(serr), serr); 3658 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3659 3660 /* unmask all non-transient EDMA error interrupts */ 3661 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3662 3663 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3664 readl(port_mmio + EDMA_CFG), 3665 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3666 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3667 } 3668 3669 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3670 { 3671 struct mv_host_priv *hpriv = host->private_data; 3672 void __iomem *mmio = hpriv->base; 3673 u32 reg; 3674 3675 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3676 return 0; /* not PCI-X capable */ 3677 reg = readl(mmio + MV_PCI_MODE); 3678 if ((reg & MV_PCI_MODE_MASK) == 0) 3679 return 0; /* conventional PCI mode */ 3680 return 1; /* chip is in PCI-X mode */ 3681 } 3682 3683 static int mv_pci_cut_through_okay(struct ata_host *host) 3684 { 3685 struct mv_host_priv *hpriv = host->private_data; 3686 void __iomem *mmio = hpriv->base; 3687 u32 reg; 3688 3689 if (!mv_in_pcix_mode(host)) { 3690 reg = readl(mmio + MV_PCI_COMMAND); 3691 if (reg & MV_PCI_COMMAND_MRDTRIG) 3692 return 0; /* not okay */ 3693 } 3694 return 1; /* okay */ 3695 } 3696 3697 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3698 { 3699 struct mv_host_priv *hpriv = host->private_data; 3700 void __iomem *mmio = hpriv->base; 3701 3702 /* workaround for 60x1-B2 errata PCI#7 */ 3703 if (mv_in_pcix_mode(host)) { 3704 u32 reg = readl(mmio + MV_PCI_COMMAND); 3705 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3706 } 3707 } 3708 3709 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3710 { 3711 struct pci_dev *pdev = to_pci_dev(host->dev); 3712 struct mv_host_priv *hpriv = host->private_data; 3713 u32 hp_flags = hpriv->hp_flags; 3714 3715 switch (board_idx) { 3716 case chip_5080: 3717 hpriv->ops = &mv5xxx_ops; 3718 hp_flags |= MV_HP_GEN_I; 3719 3720 switch (pdev->revision) { 3721 case 0x1: 3722 hp_flags |= MV_HP_ERRATA_50XXB0; 3723 break; 3724 case 0x3: 3725 hp_flags |= MV_HP_ERRATA_50XXB2; 3726 break; 3727 default: 3728 dev_printk(KERN_WARNING, &pdev->dev, 3729 "Applying 50XXB2 workarounds to unknown rev\n"); 3730 hp_flags |= MV_HP_ERRATA_50XXB2; 3731 break; 3732 } 3733 break; 3734 3735 case chip_504x: 3736 case chip_508x: 3737 hpriv->ops = &mv5xxx_ops; 3738 hp_flags |= MV_HP_GEN_I; 3739 3740 switch (pdev->revision) { 3741 case 0x0: 3742 hp_flags |= MV_HP_ERRATA_50XXB0; 3743 break; 3744 case 0x3: 3745 hp_flags |= MV_HP_ERRATA_50XXB2; 3746 break; 3747 default: 3748 dev_printk(KERN_WARNING, &pdev->dev, 3749 "Applying B2 workarounds to unknown rev\n"); 3750 hp_flags |= MV_HP_ERRATA_50XXB2; 3751 break; 3752 } 3753 break; 3754 3755 case chip_604x: 3756 case chip_608x: 3757 hpriv->ops = &mv6xxx_ops; 3758 hp_flags |= MV_HP_GEN_II; 3759 3760 switch (pdev->revision) { 3761 case 0x7: 3762 mv_60x1b2_errata_pci7(host); 3763 hp_flags |= MV_HP_ERRATA_60X1B2; 3764 break; 3765 case 0x9: 3766 hp_flags |= MV_HP_ERRATA_60X1C0; 3767 break; 3768 default: 3769 dev_printk(KERN_WARNING, &pdev->dev, 3770 "Applying B2 workarounds to unknown rev\n"); 3771 hp_flags |= MV_HP_ERRATA_60X1B2; 3772 break; 3773 } 3774 break; 3775 3776 case chip_7042: 3777 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3778 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3779 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3780 { 3781 /* 3782 * Highpoint RocketRAID PCIe 23xx series cards: 3783 * 3784 * Unconfigured drives are treated as "Legacy" 3785 * by the BIOS, and it overwrites sector 8 with 3786 * a "Lgcy" metadata block prior to Linux boot. 3787 * 3788 * Configured drives (RAID or JBOD) leave sector 8 3789 * alone, but instead overwrite a high numbered 3790 * sector for the RAID metadata. This sector can 3791 * be determined exactly, by truncating the physical 3792 * drive capacity to a nice even GB value. 3793 * 3794 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3795 * 3796 * Warn the user, lest they think we're just buggy. 3797 */ 3798 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3799 " BIOS CORRUPTS DATA on all attached drives," 3800 " regardless of if/how they are configured." 3801 " BEWARE!\n"); 3802 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3803 " use sectors 8-9 on \"Legacy\" drives," 3804 " and avoid the final two gigabytes on" 3805 " all RocketRAID BIOS initialized drives.\n"); 3806 } 3807 /* drop through */ 3808 case chip_6042: 3809 hpriv->ops = &mv6xxx_ops; 3810 hp_flags |= MV_HP_GEN_IIE; 3811 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3812 hp_flags |= MV_HP_CUT_THROUGH; 3813 3814 switch (pdev->revision) { 3815 case 0x2: /* Rev.B0: the first/only public release */ 3816 hp_flags |= MV_HP_ERRATA_60X1C0; 3817 break; 3818 default: 3819 dev_printk(KERN_WARNING, &pdev->dev, 3820 "Applying 60X1C0 workarounds to unknown rev\n"); 3821 hp_flags |= MV_HP_ERRATA_60X1C0; 3822 break; 3823 } 3824 break; 3825 case chip_soc: 3826 if (soc_is_65n(hpriv)) 3827 hpriv->ops = &mv_soc_65n_ops; 3828 else 3829 hpriv->ops = &mv_soc_ops; 3830 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3831 MV_HP_ERRATA_60X1C0; 3832 break; 3833 3834 default: 3835 dev_printk(KERN_ERR, host->dev, 3836 "BUG: invalid board index %u\n", board_idx); 3837 return 1; 3838 } 3839 3840 hpriv->hp_flags = hp_flags; 3841 if (hp_flags & MV_HP_PCIE) { 3842 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3843 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3844 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3845 } else { 3846 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3847 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3848 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3849 } 3850 3851 return 0; 3852 } 3853 3854 /** 3855 * mv_init_host - Perform some early initialization of the host. 3856 * @host: ATA host to initialize 3857 * @board_idx: controller index 3858 * 3859 * If possible, do an early global reset of the host. Then do 3860 * our port init and clear/unmask all/relevant host interrupts. 3861 * 3862 * LOCKING: 3863 * Inherited from caller. 3864 */ 3865 static int mv_init_host(struct ata_host *host, unsigned int board_idx) 3866 { 3867 int rc = 0, n_hc, port, hc; 3868 struct mv_host_priv *hpriv = host->private_data; 3869 void __iomem *mmio = hpriv->base; 3870 3871 rc = mv_chip_id(host, board_idx); 3872 if (rc) 3873 goto done; 3874 3875 if (IS_SOC(hpriv)) { 3876 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3877 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3878 } else { 3879 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3880 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3881 } 3882 3883 /* initialize shadow irq mask with register's value */ 3884 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3885 3886 /* global interrupt mask: 0 == mask everything */ 3887 mv_set_main_irq_mask(host, ~0, 0); 3888 3889 n_hc = mv_get_hc_count(host->ports[0]->flags); 3890 3891 for (port = 0; port < host->n_ports; port++) 3892 if (hpriv->ops->read_preamp) 3893 hpriv->ops->read_preamp(hpriv, port, mmio); 3894 3895 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3896 if (rc) 3897 goto done; 3898 3899 hpriv->ops->reset_flash(hpriv, mmio); 3900 hpriv->ops->reset_bus(host, mmio); 3901 hpriv->ops->enable_leds(hpriv, mmio); 3902 3903 for (port = 0; port < host->n_ports; port++) { 3904 struct ata_port *ap = host->ports[port]; 3905 void __iomem *port_mmio = mv_port_base(mmio, port); 3906 3907 mv_port_init(&ap->ioaddr, port_mmio); 3908 3909 #ifdef CONFIG_PCI 3910 if (!IS_SOC(hpriv)) { 3911 unsigned int offset = port_mmio - mmio; 3912 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 3913 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 3914 } 3915 #endif 3916 } 3917 3918 for (hc = 0; hc < n_hc; hc++) { 3919 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3920 3921 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3922 "(before clear)=0x%08x\n", hc, 3923 readl(hc_mmio + HC_CFG), 3924 readl(hc_mmio + HC_IRQ_CAUSE)); 3925 3926 /* Clear any currently outstanding hc interrupt conditions */ 3927 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3928 } 3929 3930 if (!IS_SOC(hpriv)) { 3931 /* Clear any currently outstanding host interrupt conditions */ 3932 writelfl(0, mmio + hpriv->irq_cause_offset); 3933 3934 /* and unmask interrupt generation for host regs */ 3935 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 3936 } 3937 3938 /* 3939 * enable only global host interrupts for now. 3940 * The per-port interrupts get done later as ports are set up. 3941 */ 3942 mv_set_main_irq_mask(host, 0, PCI_ERR); 3943 mv_set_irq_coalescing(host, irq_coalescing_io_count, 3944 irq_coalescing_usecs); 3945 done: 3946 return rc; 3947 } 3948 3949 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 3950 { 3951 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 3952 MV_CRQB_Q_SZ, 0); 3953 if (!hpriv->crqb_pool) 3954 return -ENOMEM; 3955 3956 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 3957 MV_CRPB_Q_SZ, 0); 3958 if (!hpriv->crpb_pool) 3959 return -ENOMEM; 3960 3961 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 3962 MV_SG_TBL_SZ, 0); 3963 if (!hpriv->sg_tbl_pool) 3964 return -ENOMEM; 3965 3966 return 0; 3967 } 3968 3969 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 3970 struct mbus_dram_target_info *dram) 3971 { 3972 int i; 3973 3974 for (i = 0; i < 4; i++) { 3975 writel(0, hpriv->base + WINDOW_CTRL(i)); 3976 writel(0, hpriv->base + WINDOW_BASE(i)); 3977 } 3978 3979 for (i = 0; i < dram->num_cs; i++) { 3980 struct mbus_dram_window *cs = dram->cs + i; 3981 3982 writel(((cs->size - 1) & 0xffff0000) | 3983 (cs->mbus_attr << 8) | 3984 (dram->mbus_dram_target_id << 4) | 1, 3985 hpriv->base + WINDOW_CTRL(i)); 3986 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 3987 } 3988 } 3989 3990 /** 3991 * mv_platform_probe - handle a positive probe of an soc Marvell 3992 * host 3993 * @pdev: platform device found 3994 * 3995 * LOCKING: 3996 * Inherited from caller. 3997 */ 3998 static int mv_platform_probe(struct platform_device *pdev) 3999 { 4000 static int printed_version; 4001 const struct mv_sata_platform_data *mv_platform_data; 4002 const struct ata_port_info *ppi[] = 4003 { &mv_port_info[chip_soc], NULL }; 4004 struct ata_host *host; 4005 struct mv_host_priv *hpriv; 4006 struct resource *res; 4007 int n_ports, rc; 4008 4009 if (!printed_version++) 4010 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); 4011 4012 /* 4013 * Simple resource validation .. 4014 */ 4015 if (unlikely(pdev->num_resources != 2)) { 4016 dev_err(&pdev->dev, "invalid number of resources\n"); 4017 return -EINVAL; 4018 } 4019 4020 /* 4021 * Get the register base first 4022 */ 4023 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4024 if (res == NULL) 4025 return -EINVAL; 4026 4027 /* allocate host */ 4028 mv_platform_data = pdev->dev.platform_data; 4029 n_ports = mv_platform_data->n_ports; 4030 4031 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4032 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4033 4034 if (!host || !hpriv) 4035 return -ENOMEM; 4036 host->private_data = hpriv; 4037 hpriv->n_ports = n_ports; 4038 4039 host->iomap = NULL; 4040 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4041 resource_size(res)); 4042 hpriv->base -= SATAHC0_REG_BASE; 4043 4044 /* 4045 * (Re-)program MBUS remapping windows if we are asked to. 4046 */ 4047 if (mv_platform_data->dram != NULL) 4048 mv_conf_mbus_windows(hpriv, mv_platform_data->dram); 4049 4050 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4051 if (rc) 4052 return rc; 4053 4054 /* initialize adapter */ 4055 rc = mv_init_host(host, chip_soc); 4056 if (rc) 4057 return rc; 4058 4059 dev_printk(KERN_INFO, &pdev->dev, 4060 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH, 4061 host->n_ports); 4062 4063 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt, 4064 IRQF_SHARED, &mv6_sht); 4065 } 4066 4067 /* 4068 * 4069 * mv_platform_remove - unplug a platform interface 4070 * @pdev: platform device 4071 * 4072 * A platform bus SATA device has been unplugged. Perform the needed 4073 * cleanup. Also called on module unload for any active devices. 4074 */ 4075 static int __devexit mv_platform_remove(struct platform_device *pdev) 4076 { 4077 struct device *dev = &pdev->dev; 4078 struct ata_host *host = dev_get_drvdata(dev); 4079 4080 ata_host_detach(host); 4081 return 0; 4082 } 4083 4084 static struct platform_driver mv_platform_driver = { 4085 .probe = mv_platform_probe, 4086 .remove = __devexit_p(mv_platform_remove), 4087 .driver = { 4088 .name = DRV_NAME, 4089 .owner = THIS_MODULE, 4090 }, 4091 }; 4092 4093 4094 #ifdef CONFIG_PCI 4095 static int mv_pci_init_one(struct pci_dev *pdev, 4096 const struct pci_device_id *ent); 4097 4098 4099 static struct pci_driver mv_pci_driver = { 4100 .name = DRV_NAME, 4101 .id_table = mv_pci_tbl, 4102 .probe = mv_pci_init_one, 4103 .remove = ata_pci_remove_one, 4104 }; 4105 4106 /* move to PCI layer or libata core? */ 4107 static int pci_go_64(struct pci_dev *pdev) 4108 { 4109 int rc; 4110 4111 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4112 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4113 if (rc) { 4114 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4115 if (rc) { 4116 dev_printk(KERN_ERR, &pdev->dev, 4117 "64-bit DMA enable failed\n"); 4118 return rc; 4119 } 4120 } 4121 } else { 4122 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4123 if (rc) { 4124 dev_printk(KERN_ERR, &pdev->dev, 4125 "32-bit DMA enable failed\n"); 4126 return rc; 4127 } 4128 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4129 if (rc) { 4130 dev_printk(KERN_ERR, &pdev->dev, 4131 "32-bit consistent DMA enable failed\n"); 4132 return rc; 4133 } 4134 } 4135 4136 return rc; 4137 } 4138 4139 /** 4140 * mv_print_info - Dump key info to kernel log for perusal. 4141 * @host: ATA host to print info about 4142 * 4143 * FIXME: complete this. 4144 * 4145 * LOCKING: 4146 * Inherited from caller. 4147 */ 4148 static void mv_print_info(struct ata_host *host) 4149 { 4150 struct pci_dev *pdev = to_pci_dev(host->dev); 4151 struct mv_host_priv *hpriv = host->private_data; 4152 u8 scc; 4153 const char *scc_s, *gen; 4154 4155 /* Use this to determine the HW stepping of the chip so we know 4156 * what errata to workaround 4157 */ 4158 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4159 if (scc == 0) 4160 scc_s = "SCSI"; 4161 else if (scc == 0x01) 4162 scc_s = "RAID"; 4163 else 4164 scc_s = "?"; 4165 4166 if (IS_GEN_I(hpriv)) 4167 gen = "I"; 4168 else if (IS_GEN_II(hpriv)) 4169 gen = "II"; 4170 else if (IS_GEN_IIE(hpriv)) 4171 gen = "IIE"; 4172 else 4173 gen = "?"; 4174 4175 dev_printk(KERN_INFO, &pdev->dev, 4176 "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4177 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4178 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4179 } 4180 4181 /** 4182 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4183 * @pdev: PCI device found 4184 * @ent: PCI device ID entry for the matched host 4185 * 4186 * LOCKING: 4187 * Inherited from caller. 4188 */ 4189 static int mv_pci_init_one(struct pci_dev *pdev, 4190 const struct pci_device_id *ent) 4191 { 4192 static int printed_version; 4193 unsigned int board_idx = (unsigned int)ent->driver_data; 4194 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4195 struct ata_host *host; 4196 struct mv_host_priv *hpriv; 4197 int n_ports, rc; 4198 4199 if (!printed_version++) 4200 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); 4201 4202 /* allocate host */ 4203 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4204 4205 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4206 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4207 if (!host || !hpriv) 4208 return -ENOMEM; 4209 host->private_data = hpriv; 4210 hpriv->n_ports = n_ports; 4211 4212 /* acquire resources */ 4213 rc = pcim_enable_device(pdev); 4214 if (rc) 4215 return rc; 4216 4217 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4218 if (rc == -EBUSY) 4219 pcim_pin_device(pdev); 4220 if (rc) 4221 return rc; 4222 host->iomap = pcim_iomap_table(pdev); 4223 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4224 4225 rc = pci_go_64(pdev); 4226 if (rc) 4227 return rc; 4228 4229 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4230 if (rc) 4231 return rc; 4232 4233 /* initialize adapter */ 4234 rc = mv_init_host(host, board_idx); 4235 if (rc) 4236 return rc; 4237 4238 /* Enable message-switched interrupts, if requested */ 4239 if (msi && pci_enable_msi(pdev) == 0) 4240 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4241 4242 mv_dump_pci_cfg(pdev, 0x68); 4243 mv_print_info(host); 4244 4245 pci_set_master(pdev); 4246 pci_try_set_mwi(pdev); 4247 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4248 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4249 } 4250 #endif 4251 4252 static int mv_platform_probe(struct platform_device *pdev); 4253 static int __devexit mv_platform_remove(struct platform_device *pdev); 4254 4255 static int __init mv_init(void) 4256 { 4257 int rc = -ENODEV; 4258 #ifdef CONFIG_PCI 4259 rc = pci_register_driver(&mv_pci_driver); 4260 if (rc < 0) 4261 return rc; 4262 #endif 4263 rc = platform_driver_register(&mv_platform_driver); 4264 4265 #ifdef CONFIG_PCI 4266 if (rc < 0) 4267 pci_unregister_driver(&mv_pci_driver); 4268 #endif 4269 return rc; 4270 } 4271 4272 static void __exit mv_exit(void) 4273 { 4274 #ifdef CONFIG_PCI 4275 pci_unregister_driver(&mv_pci_driver); 4276 #endif 4277 platform_driver_unregister(&mv_platform_driver); 4278 } 4279 4280 MODULE_AUTHOR("Brett Russ"); 4281 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4282 MODULE_LICENSE("GPL"); 4283 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4284 MODULE_VERSION(DRV_VERSION); 4285 MODULE_ALIAS("platform:" DRV_NAME); 4286 4287 module_init(mv_init); 4288 module_exit(mv_exit); 4289