xref: /linux/drivers/ata/sata_mv.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/platform_device.h>
63 #include <linux/ata_platform.h>
64 #include <linux/mbus.h>
65 #include <linux/bitops.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_cmnd.h>
68 #include <scsi/scsi_device.h>
69 #include <linux/libata.h>
70 
71 #define DRV_NAME	"sata_mv"
72 #define DRV_VERSION	"1.28"
73 
74 /*
75  * module options
76  */
77 
78 static int msi;
79 #ifdef CONFIG_PCI
80 module_param(msi, int, S_IRUGO);
81 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
82 #endif
83 
84 static int irq_coalescing_io_count;
85 module_param(irq_coalescing_io_count, int, S_IRUGO);
86 MODULE_PARM_DESC(irq_coalescing_io_count,
87 		 "IRQ coalescing I/O count threshold (0..255)");
88 
89 static int irq_coalescing_usecs;
90 module_param(irq_coalescing_usecs, int, S_IRUGO);
91 MODULE_PARM_DESC(irq_coalescing_usecs,
92 		 "IRQ coalescing time threshold in usecs");
93 
94 enum {
95 	/* BAR's are enumerated in terms of pci_resource_start() terms */
96 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
97 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
98 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
99 
100 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
101 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
102 
103 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
104 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
105 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
106 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
107 
108 	MV_PCI_REG_BASE		= 0,
109 
110 	/*
111 	 * Per-chip ("all ports") interrupt coalescing feature.
112 	 * This is only for GEN_II / GEN_IIE hardware.
113 	 *
114 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
115 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
116 	 */
117 	COAL_REG_BASE		= 0x18000,
118 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
119 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
120 
121 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
122 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
123 
124 	/*
125 	 * Registers for the (unused here) transaction coalescing feature:
126 	 */
127 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
128 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
129 
130 	SATAHC0_REG_BASE	= 0x20000,
131 	FLASH_CTL		= 0x1046c,
132 	GPIO_PORT_CTL		= 0x104f0,
133 	RESET_CFG		= 0x180d8,
134 
135 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
136 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
137 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
138 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
139 
140 	MV_MAX_Q_DEPTH		= 32,
141 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
142 
143 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
144 	 * CRPB needs alignment on a 256B boundary. Size == 256B
145 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
146 	 */
147 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
148 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
149 	MV_MAX_SG_CT		= 256,
150 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
151 
152 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
153 	MV_PORT_HC_SHIFT	= 2,
154 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
155 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
156 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
157 
158 	/* Host Flags */
159 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
160 
161 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
162 				  ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
163 
164 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
165 
166 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
167 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
168 
169 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
170 
171 	CRQB_FLAG_READ		= (1 << 0),
172 	CRQB_TAG_SHIFT		= 1,
173 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
174 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
175 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
176 	CRQB_CMD_ADDR_SHIFT	= 8,
177 	CRQB_CMD_CS		= (0x2 << 11),
178 	CRQB_CMD_LAST		= (1 << 15),
179 
180 	CRPB_FLAG_STATUS_SHIFT	= 8,
181 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
182 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
183 
184 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
185 
186 	/* PCI interface registers */
187 
188 	MV_PCI_COMMAND		= 0xc00,
189 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
190 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
191 
192 	PCI_MAIN_CMD_STS	= 0xd30,
193 	STOP_PCI_MASTER		= (1 << 2),
194 	PCI_MASTER_EMPTY	= (1 << 3),
195 	GLOB_SFT_RST		= (1 << 4),
196 
197 	MV_PCI_MODE		= 0xd00,
198 	MV_PCI_MODE_MASK	= 0x30,
199 
200 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
201 	MV_PCI_DISC_TIMER	= 0xd04,
202 	MV_PCI_MSI_TRIGGER	= 0xc38,
203 	MV_PCI_SERR_MASK	= 0xc28,
204 	MV_PCI_XBAR_TMOUT	= 0x1d04,
205 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
206 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
207 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
208 	MV_PCI_ERR_COMMAND	= 0x1d50,
209 
210 	PCI_IRQ_CAUSE		= 0x1d58,
211 	PCI_IRQ_MASK		= 0x1d5c,
212 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
213 
214 	PCIE_IRQ_CAUSE		= 0x1900,
215 	PCIE_IRQ_MASK		= 0x1910,
216 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
217 
218 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
219 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
220 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
221 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
222 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
223 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
224 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
225 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
226 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
227 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
228 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
229 	PCI_ERR			= (1 << 18),
230 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
231 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
232 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
233 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
234 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
235 	GPIO_INT		= (1 << 22),
236 	SELF_INT		= (1 << 23),
237 	TWSI_INT		= (1 << 24),
238 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
239 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
240 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
241 
242 	/* SATAHC registers */
243 	HC_CFG			= 0x00,
244 
245 	HC_IRQ_CAUSE		= 0x14,
246 	DMA_IRQ			= (1 << 0),	/* shift by port # */
247 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
248 	DEV_IRQ			= (1 << 8),	/* shift by port # */
249 
250 	/*
251 	 * Per-HC (Host-Controller) interrupt coalescing feature.
252 	 * This is present on all chip generations.
253 	 *
254 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
255 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
256 	 */
257 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
258 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
259 
260 	SOC_LED_CTRL		= 0x2c,
261 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
262 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
263 						/*  with dev activity LED */
264 
265 	/* Shadow block registers */
266 	SHD_BLK			= 0x100,
267 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
268 
269 	/* SATA registers */
270 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
271 	SATA_ACTIVE		= 0x350,
272 	FIS_IRQ_CAUSE		= 0x364,
273 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
274 
275 	LTMODE			= 0x30c,	/* requires read-after-write */
276 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
277 
278 	PHY_MODE2		= 0x330,
279 	PHY_MODE3		= 0x310,
280 
281 	PHY_MODE4		= 0x314,	/* requires read-after-write */
282 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
283 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
284 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
285 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
286 
287 	SATA_IFCTL		= 0x344,
288 	SATA_TESTCTL		= 0x348,
289 	SATA_IFSTAT		= 0x34c,
290 	VENDOR_UNIQUE_FIS	= 0x35c,
291 
292 	FISCFG			= 0x360,
293 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
294 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
295 
296 	PHY_MODE9_GEN2		= 0x398,
297 	PHY_MODE9_GEN1		= 0x39c,
298 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
299 
300 	MV5_PHY_MODE		= 0x74,
301 	MV5_LTMODE		= 0x30,
302 	MV5_PHY_CTL		= 0x0C,
303 	SATA_IFCFG		= 0x050,
304 
305 	MV_M2_PREAMP_MASK	= 0x7e0,
306 
307 	/* Port registers */
308 	EDMA_CFG		= 0,
309 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
310 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
311 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
312 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
313 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
314 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
315 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
316 
317 	EDMA_ERR_IRQ_CAUSE	= 0x8,
318 	EDMA_ERR_IRQ_MASK	= 0xc,
319 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
320 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
321 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
322 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
323 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
324 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
325 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
326 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
327 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
328 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
329 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
330 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
331 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
332 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
333 
334 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
335 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
336 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
337 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
338 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
339 
340 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
341 
342 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
343 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
344 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
345 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
346 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
347 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
348 
349 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
350 
351 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
352 	EDMA_ERR_OVERRUN_5	= (1 << 5),
353 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
354 
355 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
356 				  EDMA_ERR_LNK_CTRL_RX_1 |
357 				  EDMA_ERR_LNK_CTRL_RX_3 |
358 				  EDMA_ERR_LNK_CTRL_TX,
359 
360 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
361 				  EDMA_ERR_PRD_PAR |
362 				  EDMA_ERR_DEV_DCON |
363 				  EDMA_ERR_DEV_CON |
364 				  EDMA_ERR_SERR |
365 				  EDMA_ERR_SELF_DIS |
366 				  EDMA_ERR_CRQB_PAR |
367 				  EDMA_ERR_CRPB_PAR |
368 				  EDMA_ERR_INTRL_PAR |
369 				  EDMA_ERR_IORDY |
370 				  EDMA_ERR_LNK_CTRL_RX_2 |
371 				  EDMA_ERR_LNK_DATA_RX |
372 				  EDMA_ERR_LNK_DATA_TX |
373 				  EDMA_ERR_TRANS_PROTO,
374 
375 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
376 				  EDMA_ERR_PRD_PAR |
377 				  EDMA_ERR_DEV_DCON |
378 				  EDMA_ERR_DEV_CON |
379 				  EDMA_ERR_OVERRUN_5 |
380 				  EDMA_ERR_UNDERRUN_5 |
381 				  EDMA_ERR_SELF_DIS_5 |
382 				  EDMA_ERR_CRQB_PAR |
383 				  EDMA_ERR_CRPB_PAR |
384 				  EDMA_ERR_INTRL_PAR |
385 				  EDMA_ERR_IORDY,
386 
387 	EDMA_REQ_Q_BASE_HI	= 0x10,
388 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
389 
390 	EDMA_REQ_Q_OUT_PTR	= 0x18,
391 	EDMA_REQ_Q_PTR_SHIFT	= 5,
392 
393 	EDMA_RSP_Q_BASE_HI	= 0x1c,
394 	EDMA_RSP_Q_IN_PTR	= 0x20,
395 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
396 	EDMA_RSP_Q_PTR_SHIFT	= 3,
397 
398 	EDMA_CMD		= 0x28,		/* EDMA command register */
399 	EDMA_EN			= (1 << 0),	/* enable EDMA */
400 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
401 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
402 
403 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
404 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
405 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
406 
407 	EDMA_IORDY_TMOUT	= 0x34,
408 	EDMA_ARB_CFG		= 0x38,
409 
410 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
411 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
412 
413 	BMDMA_CMD		= 0x224,	/* bmdma command register */
414 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
415 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
416 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
417 
418 	/* Host private flags (hp_flags) */
419 	MV_HP_FLAG_MSI		= (1 << 0),
420 	MV_HP_ERRATA_50XXB0	= (1 << 1),
421 	MV_HP_ERRATA_50XXB2	= (1 << 2),
422 	MV_HP_ERRATA_60X1B2	= (1 << 3),
423 	MV_HP_ERRATA_60X1C0	= (1 << 4),
424 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
425 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
426 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
427 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
428 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
429 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
430 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
431 
432 	/* Port private flags (pp_flags) */
433 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
434 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
435 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
436 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
437 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
438 };
439 
440 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
441 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
442 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
443 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
444 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
445 
446 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
447 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
448 
449 enum {
450 	/* DMA boundary 0xffff is required by the s/g splitting
451 	 * we need on /length/ in mv_fill-sg().
452 	 */
453 	MV_DMA_BOUNDARY		= 0xffffU,
454 
455 	/* mask of register bits containing lower 32 bits
456 	 * of EDMA request queue DMA address
457 	 */
458 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
459 
460 	/* ditto, for response queue */
461 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
462 };
463 
464 enum chip_type {
465 	chip_504x,
466 	chip_508x,
467 	chip_5080,
468 	chip_604x,
469 	chip_608x,
470 	chip_6042,
471 	chip_7042,
472 	chip_soc,
473 };
474 
475 /* Command ReQuest Block: 32B */
476 struct mv_crqb {
477 	__le32			sg_addr;
478 	__le32			sg_addr_hi;
479 	__le16			ctrl_flags;
480 	__le16			ata_cmd[11];
481 };
482 
483 struct mv_crqb_iie {
484 	__le32			addr;
485 	__le32			addr_hi;
486 	__le32			flags;
487 	__le32			len;
488 	__le32			ata_cmd[4];
489 };
490 
491 /* Command ResPonse Block: 8B */
492 struct mv_crpb {
493 	__le16			id;
494 	__le16			flags;
495 	__le32			tmstmp;
496 };
497 
498 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
499 struct mv_sg {
500 	__le32			addr;
501 	__le32			flags_size;
502 	__le32			addr_hi;
503 	__le32			reserved;
504 };
505 
506 /*
507  * We keep a local cache of a few frequently accessed port
508  * registers here, to avoid having to read them (very slow)
509  * when switching between EDMA and non-EDMA modes.
510  */
511 struct mv_cached_regs {
512 	u32			fiscfg;
513 	u32			ltmode;
514 	u32			haltcond;
515 	u32			unknown_rsvd;
516 };
517 
518 struct mv_port_priv {
519 	struct mv_crqb		*crqb;
520 	dma_addr_t		crqb_dma;
521 	struct mv_crpb		*crpb;
522 	dma_addr_t		crpb_dma;
523 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
524 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
525 
526 	unsigned int		req_idx;
527 	unsigned int		resp_idx;
528 
529 	u32			pp_flags;
530 	struct mv_cached_regs	cached;
531 	unsigned int		delayed_eh_pmp_map;
532 };
533 
534 struct mv_port_signal {
535 	u32			amps;
536 	u32			pre;
537 };
538 
539 struct mv_host_priv {
540 	u32			hp_flags;
541 	u32			main_irq_mask;
542 	struct mv_port_signal	signal[8];
543 	const struct mv_hw_ops	*ops;
544 	int			n_ports;
545 	void __iomem		*base;
546 	void __iomem		*main_irq_cause_addr;
547 	void __iomem		*main_irq_mask_addr;
548 	u32			irq_cause_offset;
549 	u32			irq_mask_offset;
550 	u32			unmask_all_irqs;
551 	/*
552 	 * These consistent DMA memory pools give us guaranteed
553 	 * alignment for hardware-accessed data structures,
554 	 * and less memory waste in accomplishing the alignment.
555 	 */
556 	struct dma_pool		*crqb_pool;
557 	struct dma_pool		*crpb_pool;
558 	struct dma_pool		*sg_tbl_pool;
559 };
560 
561 struct mv_hw_ops {
562 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
563 			   unsigned int port);
564 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
565 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
566 			   void __iomem *mmio);
567 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
568 			unsigned int n_hc);
569 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
570 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
571 };
572 
573 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
574 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
575 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
576 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
577 static int mv_port_start(struct ata_port *ap);
578 static void mv_port_stop(struct ata_port *ap);
579 static int mv_qc_defer(struct ata_queued_cmd *qc);
580 static void mv_qc_prep(struct ata_queued_cmd *qc);
581 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
582 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
583 static int mv_hardreset(struct ata_link *link, unsigned int *class,
584 			unsigned long deadline);
585 static void mv_eh_freeze(struct ata_port *ap);
586 static void mv_eh_thaw(struct ata_port *ap);
587 static void mv6_dev_config(struct ata_device *dev);
588 
589 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
590 			   unsigned int port);
591 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
592 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
593 			   void __iomem *mmio);
594 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
595 			unsigned int n_hc);
596 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
597 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
598 
599 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
600 			   unsigned int port);
601 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
602 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
603 			   void __iomem *mmio);
604 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
605 			unsigned int n_hc);
606 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
608 				      void __iomem *mmio);
609 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
610 				      void __iomem *mmio);
611 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
612 				  void __iomem *mmio, unsigned int n_hc);
613 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
614 				      void __iomem *mmio);
615 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
616 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
617 				  void __iomem *mmio, unsigned int port);
618 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
619 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
620 			     unsigned int port_no);
621 static int mv_stop_edma(struct ata_port *ap);
622 static int mv_stop_edma_engine(void __iomem *port_mmio);
623 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
624 
625 static void mv_pmp_select(struct ata_port *ap, int pmp);
626 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
627 				unsigned long deadline);
628 static int  mv_softreset(struct ata_link *link, unsigned int *class,
629 				unsigned long deadline);
630 static void mv_pmp_error_handler(struct ata_port *ap);
631 static void mv_process_crpb_entries(struct ata_port *ap,
632 					struct mv_port_priv *pp);
633 
634 static void mv_sff_irq_clear(struct ata_port *ap);
635 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
636 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
637 static void mv_bmdma_start(struct ata_queued_cmd *qc);
638 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
639 static u8   mv_bmdma_status(struct ata_port *ap);
640 static u8 mv_sff_check_status(struct ata_port *ap);
641 
642 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
643  * because we have to allow room for worst case splitting of
644  * PRDs for 64K boundaries in mv_fill_sg().
645  */
646 static struct scsi_host_template mv5_sht = {
647 	ATA_BASE_SHT(DRV_NAME),
648 	.sg_tablesize		= MV_MAX_SG_CT / 2,
649 	.dma_boundary		= MV_DMA_BOUNDARY,
650 };
651 
652 static struct scsi_host_template mv6_sht = {
653 	ATA_NCQ_SHT(DRV_NAME),
654 	.can_queue		= MV_MAX_Q_DEPTH - 1,
655 	.sg_tablesize		= MV_MAX_SG_CT / 2,
656 	.dma_boundary		= MV_DMA_BOUNDARY,
657 };
658 
659 static struct ata_port_operations mv5_ops = {
660 	.inherits		= &ata_sff_port_ops,
661 
662 	.lost_interrupt		= ATA_OP_NULL,
663 
664 	.qc_defer		= mv_qc_defer,
665 	.qc_prep		= mv_qc_prep,
666 	.qc_issue		= mv_qc_issue,
667 
668 	.freeze			= mv_eh_freeze,
669 	.thaw			= mv_eh_thaw,
670 	.hardreset		= mv_hardreset,
671 	.error_handler		= ata_std_error_handler, /* avoid SFF EH */
672 	.post_internal_cmd	= ATA_OP_NULL,
673 
674 	.scr_read		= mv5_scr_read,
675 	.scr_write		= mv5_scr_write,
676 
677 	.port_start		= mv_port_start,
678 	.port_stop		= mv_port_stop,
679 };
680 
681 static struct ata_port_operations mv6_ops = {
682 	.inherits		= &mv5_ops,
683 	.dev_config             = mv6_dev_config,
684 	.scr_read		= mv_scr_read,
685 	.scr_write		= mv_scr_write,
686 
687 	.pmp_hardreset		= mv_pmp_hardreset,
688 	.pmp_softreset		= mv_softreset,
689 	.softreset		= mv_softreset,
690 	.error_handler		= mv_pmp_error_handler,
691 
692 	.sff_check_status	= mv_sff_check_status,
693 	.sff_irq_clear		= mv_sff_irq_clear,
694 	.check_atapi_dma	= mv_check_atapi_dma,
695 	.bmdma_setup		= mv_bmdma_setup,
696 	.bmdma_start		= mv_bmdma_start,
697 	.bmdma_stop		= mv_bmdma_stop,
698 	.bmdma_status		= mv_bmdma_status,
699 };
700 
701 static struct ata_port_operations mv_iie_ops = {
702 	.inherits		= &mv6_ops,
703 	.dev_config		= ATA_OP_NULL,
704 	.qc_prep		= mv_qc_prep_iie,
705 };
706 
707 static const struct ata_port_info mv_port_info[] = {
708 	{  /* chip_504x */
709 		.flags		= MV_GEN_I_FLAGS,
710 		.pio_mask	= ATA_PIO4,
711 		.udma_mask	= ATA_UDMA6,
712 		.port_ops	= &mv5_ops,
713 	},
714 	{  /* chip_508x */
715 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
716 		.pio_mask	= ATA_PIO4,
717 		.udma_mask	= ATA_UDMA6,
718 		.port_ops	= &mv5_ops,
719 	},
720 	{  /* chip_5080 */
721 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
722 		.pio_mask	= ATA_PIO4,
723 		.udma_mask	= ATA_UDMA6,
724 		.port_ops	= &mv5_ops,
725 	},
726 	{  /* chip_604x */
727 		.flags		= MV_GEN_II_FLAGS,
728 		.pio_mask	= ATA_PIO4,
729 		.udma_mask	= ATA_UDMA6,
730 		.port_ops	= &mv6_ops,
731 	},
732 	{  /* chip_608x */
733 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
734 		.pio_mask	= ATA_PIO4,
735 		.udma_mask	= ATA_UDMA6,
736 		.port_ops	= &mv6_ops,
737 	},
738 	{  /* chip_6042 */
739 		.flags		= MV_GEN_IIE_FLAGS,
740 		.pio_mask	= ATA_PIO4,
741 		.udma_mask	= ATA_UDMA6,
742 		.port_ops	= &mv_iie_ops,
743 	},
744 	{  /* chip_7042 */
745 		.flags		= MV_GEN_IIE_FLAGS,
746 		.pio_mask	= ATA_PIO4,
747 		.udma_mask	= ATA_UDMA6,
748 		.port_ops	= &mv_iie_ops,
749 	},
750 	{  /* chip_soc */
751 		.flags		= MV_GEN_IIE_FLAGS,
752 		.pio_mask	= ATA_PIO4,
753 		.udma_mask	= ATA_UDMA6,
754 		.port_ops	= &mv_iie_ops,
755 	},
756 };
757 
758 static const struct pci_device_id mv_pci_tbl[] = {
759 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
760 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
761 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
762 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
763 	/* RocketRAID 1720/174x have different identifiers */
764 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
765 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
766 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
767 
768 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
769 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
770 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
771 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
772 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
773 
774 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
775 
776 	/* Adaptec 1430SA */
777 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
778 
779 	/* Marvell 7042 support */
780 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
781 
782 	/* Highpoint RocketRAID PCIe series */
783 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
784 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
785 
786 	{ }			/* terminate list */
787 };
788 
789 static const struct mv_hw_ops mv5xxx_ops = {
790 	.phy_errata		= mv5_phy_errata,
791 	.enable_leds		= mv5_enable_leds,
792 	.read_preamp		= mv5_read_preamp,
793 	.reset_hc		= mv5_reset_hc,
794 	.reset_flash		= mv5_reset_flash,
795 	.reset_bus		= mv5_reset_bus,
796 };
797 
798 static const struct mv_hw_ops mv6xxx_ops = {
799 	.phy_errata		= mv6_phy_errata,
800 	.enable_leds		= mv6_enable_leds,
801 	.read_preamp		= mv6_read_preamp,
802 	.reset_hc		= mv6_reset_hc,
803 	.reset_flash		= mv6_reset_flash,
804 	.reset_bus		= mv_reset_pci_bus,
805 };
806 
807 static const struct mv_hw_ops mv_soc_ops = {
808 	.phy_errata		= mv6_phy_errata,
809 	.enable_leds		= mv_soc_enable_leds,
810 	.read_preamp		= mv_soc_read_preamp,
811 	.reset_hc		= mv_soc_reset_hc,
812 	.reset_flash		= mv_soc_reset_flash,
813 	.reset_bus		= mv_soc_reset_bus,
814 };
815 
816 static const struct mv_hw_ops mv_soc_65n_ops = {
817 	.phy_errata		= mv_soc_65n_phy_errata,
818 	.enable_leds		= mv_soc_enable_leds,
819 	.reset_hc		= mv_soc_reset_hc,
820 	.reset_flash		= mv_soc_reset_flash,
821 	.reset_bus		= mv_soc_reset_bus,
822 };
823 
824 /*
825  * Functions
826  */
827 
828 static inline void writelfl(unsigned long data, void __iomem *addr)
829 {
830 	writel(data, addr);
831 	(void) readl(addr);	/* flush to avoid PCI posted write */
832 }
833 
834 static inline unsigned int mv_hc_from_port(unsigned int port)
835 {
836 	return port >> MV_PORT_HC_SHIFT;
837 }
838 
839 static inline unsigned int mv_hardport_from_port(unsigned int port)
840 {
841 	return port & MV_PORT_MASK;
842 }
843 
844 /*
845  * Consolidate some rather tricky bit shift calculations.
846  * This is hot-path stuff, so not a function.
847  * Simple code, with two return values, so macro rather than inline.
848  *
849  * port is the sole input, in range 0..7.
850  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
851  * hardport is the other output, in range 0..3.
852  *
853  * Note that port and hardport may be the same variable in some cases.
854  */
855 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
856 {								\
857 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
858 	hardport = mv_hardport_from_port(port);			\
859 	shift   += hardport * 2;				\
860 }
861 
862 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
863 {
864 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
865 }
866 
867 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
868 						 unsigned int port)
869 {
870 	return mv_hc_base(base, mv_hc_from_port(port));
871 }
872 
873 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
874 {
875 	return  mv_hc_base_from_port(base, port) +
876 		MV_SATAHC_ARBTR_REG_SZ +
877 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
878 }
879 
880 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
881 {
882 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
883 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
884 
885 	return hc_mmio + ofs;
886 }
887 
888 static inline void __iomem *mv_host_base(struct ata_host *host)
889 {
890 	struct mv_host_priv *hpriv = host->private_data;
891 	return hpriv->base;
892 }
893 
894 static inline void __iomem *mv_ap_base(struct ata_port *ap)
895 {
896 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
897 }
898 
899 static inline int mv_get_hc_count(unsigned long port_flags)
900 {
901 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
902 }
903 
904 /**
905  *      mv_save_cached_regs - (re-)initialize cached port registers
906  *      @ap: the port whose registers we are caching
907  *
908  *	Initialize the local cache of port registers,
909  *	so that reading them over and over again can
910  *	be avoided on the hotter paths of this driver.
911  *	This saves a few microseconds each time we switch
912  *	to/from EDMA mode to perform (eg.) a drive cache flush.
913  */
914 static void mv_save_cached_regs(struct ata_port *ap)
915 {
916 	void __iomem *port_mmio = mv_ap_base(ap);
917 	struct mv_port_priv *pp = ap->private_data;
918 
919 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
920 	pp->cached.ltmode = readl(port_mmio + LTMODE);
921 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
922 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
923 }
924 
925 /**
926  *      mv_write_cached_reg - write to a cached port register
927  *      @addr: hardware address of the register
928  *      @old: pointer to cached value of the register
929  *      @new: new value for the register
930  *
931  *	Write a new value to a cached register,
932  *	but only if the value is different from before.
933  */
934 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
935 {
936 	if (new != *old) {
937 		unsigned long laddr;
938 		*old = new;
939 		/*
940 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
941 		 * Read-after-write is needed to prevent generating 64-bit
942 		 * write cycles on the PCI bus for SATA interface registers
943 		 * at offsets ending in 0x4 or 0xc.
944 		 *
945 		 * Looks like a lot of fuss, but it avoids an unnecessary
946 		 * +1 usec read-after-write delay for unaffected registers.
947 		 */
948 		laddr = (long)addr & 0xffff;
949 		if (laddr >= 0x300 && laddr <= 0x33c) {
950 			laddr &= 0x000f;
951 			if (laddr == 0x4 || laddr == 0xc) {
952 				writelfl(new, addr); /* read after write */
953 				return;
954 			}
955 		}
956 		writel(new, addr); /* unaffected by the errata */
957 	}
958 }
959 
960 static void mv_set_edma_ptrs(void __iomem *port_mmio,
961 			     struct mv_host_priv *hpriv,
962 			     struct mv_port_priv *pp)
963 {
964 	u32 index;
965 
966 	/*
967 	 * initialize request queue
968 	 */
969 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
970 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
971 
972 	WARN_ON(pp->crqb_dma & 0x3ff);
973 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
974 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
975 		 port_mmio + EDMA_REQ_Q_IN_PTR);
976 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
977 
978 	/*
979 	 * initialize response queue
980 	 */
981 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
982 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
983 
984 	WARN_ON(pp->crpb_dma & 0xff);
985 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
986 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
987 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
988 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
989 }
990 
991 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
992 {
993 	/*
994 	 * When writing to the main_irq_mask in hardware,
995 	 * we must ensure exclusivity between the interrupt coalescing bits
996 	 * and the corresponding individual port DONE_IRQ bits.
997 	 *
998 	 * Note that this register is really an "IRQ enable" register,
999 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1000 	 */
1001 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1002 		mask &= ~DONE_IRQ_0_3;
1003 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1004 		mask &= ~DONE_IRQ_4_7;
1005 	writelfl(mask, hpriv->main_irq_mask_addr);
1006 }
1007 
1008 static void mv_set_main_irq_mask(struct ata_host *host,
1009 				 u32 disable_bits, u32 enable_bits)
1010 {
1011 	struct mv_host_priv *hpriv = host->private_data;
1012 	u32 old_mask, new_mask;
1013 
1014 	old_mask = hpriv->main_irq_mask;
1015 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1016 	if (new_mask != old_mask) {
1017 		hpriv->main_irq_mask = new_mask;
1018 		mv_write_main_irq_mask(new_mask, hpriv);
1019 	}
1020 }
1021 
1022 static void mv_enable_port_irqs(struct ata_port *ap,
1023 				     unsigned int port_bits)
1024 {
1025 	unsigned int shift, hardport, port = ap->port_no;
1026 	u32 disable_bits, enable_bits;
1027 
1028 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1029 
1030 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1031 	enable_bits  = port_bits << shift;
1032 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1033 }
1034 
1035 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1036 					  void __iomem *port_mmio,
1037 					  unsigned int port_irqs)
1038 {
1039 	struct mv_host_priv *hpriv = ap->host->private_data;
1040 	int hardport = mv_hardport_from_port(ap->port_no);
1041 	void __iomem *hc_mmio = mv_hc_base_from_port(
1042 				mv_host_base(ap->host), ap->port_no);
1043 	u32 hc_irq_cause;
1044 
1045 	/* clear EDMA event indicators, if any */
1046 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1047 
1048 	/* clear pending irq events */
1049 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1050 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1051 
1052 	/* clear FIS IRQ Cause */
1053 	if (IS_GEN_IIE(hpriv))
1054 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1055 
1056 	mv_enable_port_irqs(ap, port_irqs);
1057 }
1058 
1059 static void mv_set_irq_coalescing(struct ata_host *host,
1060 				  unsigned int count, unsigned int usecs)
1061 {
1062 	struct mv_host_priv *hpriv = host->private_data;
1063 	void __iomem *mmio = hpriv->base, *hc_mmio;
1064 	u32 coal_enable = 0;
1065 	unsigned long flags;
1066 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1067 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1068 							ALL_PORTS_COAL_DONE;
1069 
1070 	/* Disable IRQ coalescing if either threshold is zero */
1071 	if (!usecs || !count) {
1072 		clks = count = 0;
1073 	} else {
1074 		/* Respect maximum limits of the hardware */
1075 		clks = usecs * COAL_CLOCKS_PER_USEC;
1076 		if (clks > MAX_COAL_TIME_THRESHOLD)
1077 			clks = MAX_COAL_TIME_THRESHOLD;
1078 		if (count > MAX_COAL_IO_COUNT)
1079 			count = MAX_COAL_IO_COUNT;
1080 	}
1081 
1082 	spin_lock_irqsave(&host->lock, flags);
1083 	mv_set_main_irq_mask(host, coal_disable, 0);
1084 
1085 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1086 		/*
1087 		 * GEN_II/GEN_IIE with dual host controllers:
1088 		 * one set of global thresholds for the entire chip.
1089 		 */
1090 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1091 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1092 		/* clear leftover coal IRQ bit */
1093 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1094 		if (count)
1095 			coal_enable = ALL_PORTS_COAL_DONE;
1096 		clks = count = 0; /* force clearing of regular regs below */
1097 	}
1098 
1099 	/*
1100 	 * All chips: independent thresholds for each HC on the chip.
1101 	 */
1102 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1103 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1104 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1105 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1106 	if (count)
1107 		coal_enable |= PORTS_0_3_COAL_DONE;
1108 	if (is_dual_hc) {
1109 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1110 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1111 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1112 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1113 		if (count)
1114 			coal_enable |= PORTS_4_7_COAL_DONE;
1115 	}
1116 
1117 	mv_set_main_irq_mask(host, 0, coal_enable);
1118 	spin_unlock_irqrestore(&host->lock, flags);
1119 }
1120 
1121 /**
1122  *      mv_start_edma - Enable eDMA engine
1123  *      @base: port base address
1124  *      @pp: port private data
1125  *
1126  *      Verify the local cache of the eDMA state is accurate with a
1127  *      WARN_ON.
1128  *
1129  *      LOCKING:
1130  *      Inherited from caller.
1131  */
1132 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1133 			 struct mv_port_priv *pp, u8 protocol)
1134 {
1135 	int want_ncq = (protocol == ATA_PROT_NCQ);
1136 
1137 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1138 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1139 		if (want_ncq != using_ncq)
1140 			mv_stop_edma(ap);
1141 	}
1142 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1143 		struct mv_host_priv *hpriv = ap->host->private_data;
1144 
1145 		mv_edma_cfg(ap, want_ncq, 1);
1146 
1147 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1148 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1149 
1150 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1151 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1152 	}
1153 }
1154 
1155 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1156 {
1157 	void __iomem *port_mmio = mv_ap_base(ap);
1158 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1159 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1160 	int i;
1161 
1162 	/*
1163 	 * Wait for the EDMA engine to finish transactions in progress.
1164 	 * No idea what a good "timeout" value might be, but measurements
1165 	 * indicate that it often requires hundreds of microseconds
1166 	 * with two drives in-use.  So we use the 15msec value above
1167 	 * as a rough guess at what even more drives might require.
1168 	 */
1169 	for (i = 0; i < timeout; ++i) {
1170 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1171 		if ((edma_stat & empty_idle) == empty_idle)
1172 			break;
1173 		udelay(per_loop);
1174 	}
1175 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1176 }
1177 
1178 /**
1179  *      mv_stop_edma_engine - Disable eDMA engine
1180  *      @port_mmio: io base address
1181  *
1182  *      LOCKING:
1183  *      Inherited from caller.
1184  */
1185 static int mv_stop_edma_engine(void __iomem *port_mmio)
1186 {
1187 	int i;
1188 
1189 	/* Disable eDMA.  The disable bit auto clears. */
1190 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1191 
1192 	/* Wait for the chip to confirm eDMA is off. */
1193 	for (i = 10000; i > 0; i--) {
1194 		u32 reg = readl(port_mmio + EDMA_CMD);
1195 		if (!(reg & EDMA_EN))
1196 			return 0;
1197 		udelay(10);
1198 	}
1199 	return -EIO;
1200 }
1201 
1202 static int mv_stop_edma(struct ata_port *ap)
1203 {
1204 	void __iomem *port_mmio = mv_ap_base(ap);
1205 	struct mv_port_priv *pp = ap->private_data;
1206 	int err = 0;
1207 
1208 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1209 		return 0;
1210 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1211 	mv_wait_for_edma_empty_idle(ap);
1212 	if (mv_stop_edma_engine(port_mmio)) {
1213 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1214 		err = -EIO;
1215 	}
1216 	mv_edma_cfg(ap, 0, 0);
1217 	return err;
1218 }
1219 
1220 #ifdef ATA_DEBUG
1221 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1222 {
1223 	int b, w;
1224 	for (b = 0; b < bytes; ) {
1225 		DPRINTK("%p: ", start + b);
1226 		for (w = 0; b < bytes && w < 4; w++) {
1227 			printk("%08x ", readl(start + b));
1228 			b += sizeof(u32);
1229 		}
1230 		printk("\n");
1231 	}
1232 }
1233 #endif
1234 
1235 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1236 {
1237 #ifdef ATA_DEBUG
1238 	int b, w;
1239 	u32 dw;
1240 	for (b = 0; b < bytes; ) {
1241 		DPRINTK("%02x: ", b);
1242 		for (w = 0; b < bytes && w < 4; w++) {
1243 			(void) pci_read_config_dword(pdev, b, &dw);
1244 			printk("%08x ", dw);
1245 			b += sizeof(u32);
1246 		}
1247 		printk("\n");
1248 	}
1249 #endif
1250 }
1251 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1252 			     struct pci_dev *pdev)
1253 {
1254 #ifdef ATA_DEBUG
1255 	void __iomem *hc_base = mv_hc_base(mmio_base,
1256 					   port >> MV_PORT_HC_SHIFT);
1257 	void __iomem *port_base;
1258 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1259 
1260 	if (0 > port) {
1261 		start_hc = start_port = 0;
1262 		num_ports = 8;		/* shld be benign for 4 port devs */
1263 		num_hcs = 2;
1264 	} else {
1265 		start_hc = port >> MV_PORT_HC_SHIFT;
1266 		start_port = port;
1267 		num_ports = num_hcs = 1;
1268 	}
1269 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1270 		num_ports > 1 ? num_ports - 1 : start_port);
1271 
1272 	if (NULL != pdev) {
1273 		DPRINTK("PCI config space regs:\n");
1274 		mv_dump_pci_cfg(pdev, 0x68);
1275 	}
1276 	DPRINTK("PCI regs:\n");
1277 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1278 	mv_dump_mem(mmio_base+0xd00, 0x34);
1279 	mv_dump_mem(mmio_base+0xf00, 0x4);
1280 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1281 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1282 		hc_base = mv_hc_base(mmio_base, hc);
1283 		DPRINTK("HC regs (HC %i):\n", hc);
1284 		mv_dump_mem(hc_base, 0x1c);
1285 	}
1286 	for (p = start_port; p < start_port + num_ports; p++) {
1287 		port_base = mv_port_base(mmio_base, p);
1288 		DPRINTK("EDMA regs (port %i):\n", p);
1289 		mv_dump_mem(port_base, 0x54);
1290 		DPRINTK("SATA regs (port %i):\n", p);
1291 		mv_dump_mem(port_base+0x300, 0x60);
1292 	}
1293 #endif
1294 }
1295 
1296 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1297 {
1298 	unsigned int ofs;
1299 
1300 	switch (sc_reg_in) {
1301 	case SCR_STATUS:
1302 	case SCR_CONTROL:
1303 	case SCR_ERROR:
1304 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1305 		break;
1306 	case SCR_ACTIVE:
1307 		ofs = SATA_ACTIVE;   /* active is not with the others */
1308 		break;
1309 	default:
1310 		ofs = 0xffffffffU;
1311 		break;
1312 	}
1313 	return ofs;
1314 }
1315 
1316 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1317 {
1318 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1319 
1320 	if (ofs != 0xffffffffU) {
1321 		*val = readl(mv_ap_base(link->ap) + ofs);
1322 		return 0;
1323 	} else
1324 		return -EINVAL;
1325 }
1326 
1327 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1328 {
1329 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1330 
1331 	if (ofs != 0xffffffffU) {
1332 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1333 		if (sc_reg_in == SCR_CONTROL) {
1334 			/*
1335 			 * Workaround for 88SX60x1 FEr SATA#26:
1336 			 *
1337 			 * COMRESETs have to take care not to accidently
1338 			 * put the drive to sleep when writing SCR_CONTROL.
1339 			 * Setting bits 12..15 prevents this problem.
1340 			 *
1341 			 * So if we see an outbound COMMRESET, set those bits.
1342 			 * Ditto for the followup write that clears the reset.
1343 			 *
1344 			 * The proprietary driver does this for
1345 			 * all chip versions, and so do we.
1346 			 */
1347 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1348 				val |= 0xf000;
1349 		}
1350 		writelfl(val, addr);
1351 		return 0;
1352 	} else
1353 		return -EINVAL;
1354 }
1355 
1356 static void mv6_dev_config(struct ata_device *adev)
1357 {
1358 	/*
1359 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1360 	 *
1361 	 * Gen-II does not support NCQ over a port multiplier
1362 	 *  (no FIS-based switching).
1363 	 */
1364 	if (adev->flags & ATA_DFLAG_NCQ) {
1365 		if (sata_pmp_attached(adev->link->ap)) {
1366 			adev->flags &= ~ATA_DFLAG_NCQ;
1367 			ata_dev_printk(adev, KERN_INFO,
1368 				"NCQ disabled for command-based switching\n");
1369 		}
1370 	}
1371 }
1372 
1373 static int mv_qc_defer(struct ata_queued_cmd *qc)
1374 {
1375 	struct ata_link *link = qc->dev->link;
1376 	struct ata_port *ap = link->ap;
1377 	struct mv_port_priv *pp = ap->private_data;
1378 
1379 	/*
1380 	 * Don't allow new commands if we're in a delayed EH state
1381 	 * for NCQ and/or FIS-based switching.
1382 	 */
1383 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1384 		return ATA_DEFER_PORT;
1385 
1386 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1387 	 * can run concurrently.
1388 	 * set excl_link when we want to send a PIO command in DMA mode
1389 	 * or a non-NCQ command in NCQ mode.
1390 	 * When we receive a command from that link, and there are no
1391 	 * outstanding commands, mark a flag to clear excl_link and let
1392 	 * the command go through.
1393 	 */
1394 	if (unlikely(ap->excl_link)) {
1395 		if (link == ap->excl_link) {
1396 			if (ap->nr_active_links)
1397 				return ATA_DEFER_PORT;
1398 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1399 			return 0;
1400 		} else
1401 			return ATA_DEFER_PORT;
1402 	}
1403 
1404 	/*
1405 	 * If the port is completely idle, then allow the new qc.
1406 	 */
1407 	if (ap->nr_active_links == 0)
1408 		return 0;
1409 
1410 	/*
1411 	 * The port is operating in host queuing mode (EDMA) with NCQ
1412 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1413 	 * queueing multiple DMA commands but libata core currently
1414 	 * doesn't allow it.
1415 	 */
1416 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1417 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1418 		if (ata_is_ncq(qc->tf.protocol))
1419 			return 0;
1420 		else {
1421 			ap->excl_link = link;
1422 			return ATA_DEFER_PORT;
1423 		}
1424 	}
1425 
1426 	return ATA_DEFER_PORT;
1427 }
1428 
1429 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1430 {
1431 	struct mv_port_priv *pp = ap->private_data;
1432 	void __iomem *port_mmio;
1433 
1434 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1435 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1436 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1437 
1438 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1439 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1440 
1441 	if (want_fbs) {
1442 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1443 		ltmode = *old_ltmode | LTMODE_BIT8;
1444 		if (want_ncq)
1445 			haltcond &= ~EDMA_ERR_DEV;
1446 		else
1447 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1448 	} else {
1449 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1450 	}
1451 
1452 	port_mmio = mv_ap_base(ap);
1453 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1454 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1455 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1456 }
1457 
1458 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1459 {
1460 	struct mv_host_priv *hpriv = ap->host->private_data;
1461 	u32 old, new;
1462 
1463 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1464 	old = readl(hpriv->base + GPIO_PORT_CTL);
1465 	if (want_ncq)
1466 		new = old | (1 << 22);
1467 	else
1468 		new = old & ~(1 << 22);
1469 	if (new != old)
1470 		writel(new, hpriv->base + GPIO_PORT_CTL);
1471 }
1472 
1473 /**
1474  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1475  *	@ap: Port being initialized
1476  *
1477  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1478  *
1479  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1480  *	of basic DMA on the GEN_IIE versions of the chips.
1481  *
1482  *	This bit survives EDMA resets, and must be set for basic DMA
1483  *	to function, and should be cleared when EDMA is active.
1484  */
1485 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1486 {
1487 	struct mv_port_priv *pp = ap->private_data;
1488 	u32 new, *old = &pp->cached.unknown_rsvd;
1489 
1490 	if (enable_bmdma)
1491 		new = *old | 1;
1492 	else
1493 		new = *old & ~1;
1494 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1495 }
1496 
1497 /*
1498  * SOC chips have an issue whereby the HDD LEDs don't always blink
1499  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1500  * of the SOC takes care of it, generating a steady blink rate when
1501  * any drive on the chip is active.
1502  *
1503  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1504  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1505  *
1506  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1507  * LED operation works then, and provides better (more accurate) feedback.
1508  *
1509  * Note that this code assumes that an SOC never has more than one HC onboard.
1510  */
1511 static void mv_soc_led_blink_enable(struct ata_port *ap)
1512 {
1513 	struct ata_host *host = ap->host;
1514 	struct mv_host_priv *hpriv = host->private_data;
1515 	void __iomem *hc_mmio;
1516 	u32 led_ctrl;
1517 
1518 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1519 		return;
1520 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1521 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1522 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1523 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1524 }
1525 
1526 static void mv_soc_led_blink_disable(struct ata_port *ap)
1527 {
1528 	struct ata_host *host = ap->host;
1529 	struct mv_host_priv *hpriv = host->private_data;
1530 	void __iomem *hc_mmio;
1531 	u32 led_ctrl;
1532 	unsigned int port;
1533 
1534 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1535 		return;
1536 
1537 	/* disable led-blink only if no ports are using NCQ */
1538 	for (port = 0; port < hpriv->n_ports; port++) {
1539 		struct ata_port *this_ap = host->ports[port];
1540 		struct mv_port_priv *pp = this_ap->private_data;
1541 
1542 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1543 			return;
1544 	}
1545 
1546 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1547 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1548 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1549 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1550 }
1551 
1552 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1553 {
1554 	u32 cfg;
1555 	struct mv_port_priv *pp    = ap->private_data;
1556 	struct mv_host_priv *hpriv = ap->host->private_data;
1557 	void __iomem *port_mmio    = mv_ap_base(ap);
1558 
1559 	/* set up non-NCQ EDMA configuration */
1560 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1561 	pp->pp_flags &=
1562 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1563 
1564 	if (IS_GEN_I(hpriv))
1565 		cfg |= (1 << 8);	/* enab config burst size mask */
1566 
1567 	else if (IS_GEN_II(hpriv)) {
1568 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1569 		mv_60x1_errata_sata25(ap, want_ncq);
1570 
1571 	} else if (IS_GEN_IIE(hpriv)) {
1572 		int want_fbs = sata_pmp_attached(ap);
1573 		/*
1574 		 * Possible future enhancement:
1575 		 *
1576 		 * The chip can use FBS with non-NCQ, if we allow it,
1577 		 * But first we need to have the error handling in place
1578 		 * for this mode (datasheet section 7.3.15.4.2.3).
1579 		 * So disallow non-NCQ FBS for now.
1580 		 */
1581 		want_fbs &= want_ncq;
1582 
1583 		mv_config_fbs(ap, want_ncq, want_fbs);
1584 
1585 		if (want_fbs) {
1586 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1587 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1588 		}
1589 
1590 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1591 		if (want_edma) {
1592 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1593 			if (!IS_SOC(hpriv))
1594 				cfg |= (1 << 18); /* enab early completion */
1595 		}
1596 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1597 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1598 		mv_bmdma_enable_iie(ap, !want_edma);
1599 
1600 		if (IS_SOC(hpriv)) {
1601 			if (want_ncq)
1602 				mv_soc_led_blink_enable(ap);
1603 			else
1604 				mv_soc_led_blink_disable(ap);
1605 		}
1606 	}
1607 
1608 	if (want_ncq) {
1609 		cfg |= EDMA_CFG_NCQ;
1610 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1611 	}
1612 
1613 	writelfl(cfg, port_mmio + EDMA_CFG);
1614 }
1615 
1616 static void mv_port_free_dma_mem(struct ata_port *ap)
1617 {
1618 	struct mv_host_priv *hpriv = ap->host->private_data;
1619 	struct mv_port_priv *pp = ap->private_data;
1620 	int tag;
1621 
1622 	if (pp->crqb) {
1623 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1624 		pp->crqb = NULL;
1625 	}
1626 	if (pp->crpb) {
1627 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1628 		pp->crpb = NULL;
1629 	}
1630 	/*
1631 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1632 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1633 	 */
1634 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1635 		if (pp->sg_tbl[tag]) {
1636 			if (tag == 0 || !IS_GEN_I(hpriv))
1637 				dma_pool_free(hpriv->sg_tbl_pool,
1638 					      pp->sg_tbl[tag],
1639 					      pp->sg_tbl_dma[tag]);
1640 			pp->sg_tbl[tag] = NULL;
1641 		}
1642 	}
1643 }
1644 
1645 /**
1646  *      mv_port_start - Port specific init/start routine.
1647  *      @ap: ATA channel to manipulate
1648  *
1649  *      Allocate and point to DMA memory, init port private memory,
1650  *      zero indices.
1651  *
1652  *      LOCKING:
1653  *      Inherited from caller.
1654  */
1655 static int mv_port_start(struct ata_port *ap)
1656 {
1657 	struct device *dev = ap->host->dev;
1658 	struct mv_host_priv *hpriv = ap->host->private_data;
1659 	struct mv_port_priv *pp;
1660 	unsigned long flags;
1661 	int tag;
1662 
1663 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1664 	if (!pp)
1665 		return -ENOMEM;
1666 	ap->private_data = pp;
1667 
1668 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1669 	if (!pp->crqb)
1670 		return -ENOMEM;
1671 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1672 
1673 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1674 	if (!pp->crpb)
1675 		goto out_port_free_dma_mem;
1676 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1677 
1678 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1679 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1680 		ap->flags |= ATA_FLAG_AN;
1681 	/*
1682 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1683 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1684 	 */
1685 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1686 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1687 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1688 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1689 			if (!pp->sg_tbl[tag])
1690 				goto out_port_free_dma_mem;
1691 		} else {
1692 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1693 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1694 		}
1695 	}
1696 
1697 	spin_lock_irqsave(ap->lock, flags);
1698 	mv_save_cached_regs(ap);
1699 	mv_edma_cfg(ap, 0, 0);
1700 	spin_unlock_irqrestore(ap->lock, flags);
1701 
1702 	return 0;
1703 
1704 out_port_free_dma_mem:
1705 	mv_port_free_dma_mem(ap);
1706 	return -ENOMEM;
1707 }
1708 
1709 /**
1710  *      mv_port_stop - Port specific cleanup/stop routine.
1711  *      @ap: ATA channel to manipulate
1712  *
1713  *      Stop DMA, cleanup port memory.
1714  *
1715  *      LOCKING:
1716  *      This routine uses the host lock to protect the DMA stop.
1717  */
1718 static void mv_port_stop(struct ata_port *ap)
1719 {
1720 	unsigned long flags;
1721 
1722 	spin_lock_irqsave(ap->lock, flags);
1723 	mv_stop_edma(ap);
1724 	mv_enable_port_irqs(ap, 0);
1725 	spin_unlock_irqrestore(ap->lock, flags);
1726 	mv_port_free_dma_mem(ap);
1727 }
1728 
1729 /**
1730  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1731  *      @qc: queued command whose SG list to source from
1732  *
1733  *      Populate the SG list and mark the last entry.
1734  *
1735  *      LOCKING:
1736  *      Inherited from caller.
1737  */
1738 static void mv_fill_sg(struct ata_queued_cmd *qc)
1739 {
1740 	struct mv_port_priv *pp = qc->ap->private_data;
1741 	struct scatterlist *sg;
1742 	struct mv_sg *mv_sg, *last_sg = NULL;
1743 	unsigned int si;
1744 
1745 	mv_sg = pp->sg_tbl[qc->tag];
1746 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1747 		dma_addr_t addr = sg_dma_address(sg);
1748 		u32 sg_len = sg_dma_len(sg);
1749 
1750 		while (sg_len) {
1751 			u32 offset = addr & 0xffff;
1752 			u32 len = sg_len;
1753 
1754 			if (offset + len > 0x10000)
1755 				len = 0x10000 - offset;
1756 
1757 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1758 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1759 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1760 			mv_sg->reserved = 0;
1761 
1762 			sg_len -= len;
1763 			addr += len;
1764 
1765 			last_sg = mv_sg;
1766 			mv_sg++;
1767 		}
1768 	}
1769 
1770 	if (likely(last_sg))
1771 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1772 	mb(); /* ensure data structure is visible to the chipset */
1773 }
1774 
1775 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1776 {
1777 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1778 		(last ? CRQB_CMD_LAST : 0);
1779 	*cmdw = cpu_to_le16(tmp);
1780 }
1781 
1782 /**
1783  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1784  *	@ap: Port associated with this ATA transaction.
1785  *
1786  *	We need this only for ATAPI bmdma transactions,
1787  *	as otherwise we experience spurious interrupts
1788  *	after libata-sff handles the bmdma interrupts.
1789  */
1790 static void mv_sff_irq_clear(struct ata_port *ap)
1791 {
1792 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1793 }
1794 
1795 /**
1796  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1797  *	@qc: queued command to check for chipset/DMA compatibility.
1798  *
1799  *	The bmdma engines cannot handle speculative data sizes
1800  *	(bytecount under/over flow).  So only allow DMA for
1801  *	data transfer commands with known data sizes.
1802  *
1803  *	LOCKING:
1804  *	Inherited from caller.
1805  */
1806 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1807 {
1808 	struct scsi_cmnd *scmd = qc->scsicmd;
1809 
1810 	if (scmd) {
1811 		switch (scmd->cmnd[0]) {
1812 		case READ_6:
1813 		case READ_10:
1814 		case READ_12:
1815 		case WRITE_6:
1816 		case WRITE_10:
1817 		case WRITE_12:
1818 		case GPCMD_READ_CD:
1819 		case GPCMD_SEND_DVD_STRUCTURE:
1820 		case GPCMD_SEND_CUE_SHEET:
1821 			return 0; /* DMA is safe */
1822 		}
1823 	}
1824 	return -EOPNOTSUPP; /* use PIO instead */
1825 }
1826 
1827 /**
1828  *	mv_bmdma_setup - Set up BMDMA transaction
1829  *	@qc: queued command to prepare DMA for.
1830  *
1831  *	LOCKING:
1832  *	Inherited from caller.
1833  */
1834 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1835 {
1836 	struct ata_port *ap = qc->ap;
1837 	void __iomem *port_mmio = mv_ap_base(ap);
1838 	struct mv_port_priv *pp = ap->private_data;
1839 
1840 	mv_fill_sg(qc);
1841 
1842 	/* clear all DMA cmd bits */
1843 	writel(0, port_mmio + BMDMA_CMD);
1844 
1845 	/* load PRD table addr. */
1846 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1847 		port_mmio + BMDMA_PRD_HIGH);
1848 	writelfl(pp->sg_tbl_dma[qc->tag],
1849 		port_mmio + BMDMA_PRD_LOW);
1850 
1851 	/* issue r/w command */
1852 	ap->ops->sff_exec_command(ap, &qc->tf);
1853 }
1854 
1855 /**
1856  *	mv_bmdma_start - Start a BMDMA transaction
1857  *	@qc: queued command to start DMA on.
1858  *
1859  *	LOCKING:
1860  *	Inherited from caller.
1861  */
1862 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1863 {
1864 	struct ata_port *ap = qc->ap;
1865 	void __iomem *port_mmio = mv_ap_base(ap);
1866 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1867 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1868 
1869 	/* start host DMA transaction */
1870 	writelfl(cmd, port_mmio + BMDMA_CMD);
1871 }
1872 
1873 /**
1874  *	mv_bmdma_stop - Stop BMDMA transfer
1875  *	@qc: queued command to stop DMA on.
1876  *
1877  *	Clears the ATA_DMA_START flag in the bmdma control register
1878  *
1879  *	LOCKING:
1880  *	Inherited from caller.
1881  */
1882 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1883 {
1884 	struct ata_port *ap = qc->ap;
1885 	void __iomem *port_mmio = mv_ap_base(ap);
1886 	u32 cmd;
1887 
1888 	/* clear start/stop bit */
1889 	cmd = readl(port_mmio + BMDMA_CMD);
1890 	cmd &= ~ATA_DMA_START;
1891 	writelfl(cmd, port_mmio + BMDMA_CMD);
1892 
1893 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1894 	ata_sff_dma_pause(ap);
1895 }
1896 
1897 /**
1898  *	mv_bmdma_status - Read BMDMA status
1899  *	@ap: port for which to retrieve DMA status.
1900  *
1901  *	Read and return equivalent of the sff BMDMA status register.
1902  *
1903  *	LOCKING:
1904  *	Inherited from caller.
1905  */
1906 static u8 mv_bmdma_status(struct ata_port *ap)
1907 {
1908 	void __iomem *port_mmio = mv_ap_base(ap);
1909 	u32 reg, status;
1910 
1911 	/*
1912 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1913 	 * and the ATA_DMA_INTR bit doesn't exist.
1914 	 */
1915 	reg = readl(port_mmio + BMDMA_STATUS);
1916 	if (reg & ATA_DMA_ACTIVE)
1917 		status = ATA_DMA_ACTIVE;
1918 	else
1919 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1920 	return status;
1921 }
1922 
1923 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1924 {
1925 	struct ata_taskfile *tf = &qc->tf;
1926 	/*
1927 	 * Workaround for 88SX60x1 FEr SATA#24.
1928 	 *
1929 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1930 	 * Note that READs are unaffected.
1931 	 *
1932 	 * It's not clear if this errata really means "4K bytes",
1933 	 * or if it always happens for multi_count > 7
1934 	 * regardless of device sector_size.
1935 	 *
1936 	 * So, for safety, any write with multi_count > 7
1937 	 * gets converted here into a regular PIO write instead:
1938 	 */
1939 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1940 		if (qc->dev->multi_count > 7) {
1941 			switch (tf->command) {
1942 			case ATA_CMD_WRITE_MULTI:
1943 				tf->command = ATA_CMD_PIO_WRITE;
1944 				break;
1945 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1946 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1947 				/* fall through */
1948 			case ATA_CMD_WRITE_MULTI_EXT:
1949 				tf->command = ATA_CMD_PIO_WRITE_EXT;
1950 				break;
1951 			}
1952 		}
1953 	}
1954 }
1955 
1956 /**
1957  *      mv_qc_prep - Host specific command preparation.
1958  *      @qc: queued command to prepare
1959  *
1960  *      This routine simply redirects to the general purpose routine
1961  *      if command is not DMA.  Else, it handles prep of the CRQB
1962  *      (command request block), does some sanity checking, and calls
1963  *      the SG load routine.
1964  *
1965  *      LOCKING:
1966  *      Inherited from caller.
1967  */
1968 static void mv_qc_prep(struct ata_queued_cmd *qc)
1969 {
1970 	struct ata_port *ap = qc->ap;
1971 	struct mv_port_priv *pp = ap->private_data;
1972 	__le16 *cw;
1973 	struct ata_taskfile *tf = &qc->tf;
1974 	u16 flags = 0;
1975 	unsigned in_index;
1976 
1977 	switch (tf->protocol) {
1978 	case ATA_PROT_DMA:
1979 	case ATA_PROT_NCQ:
1980 		break;	/* continue below */
1981 	case ATA_PROT_PIO:
1982 		mv_rw_multi_errata_sata24(qc);
1983 		return;
1984 	default:
1985 		return;
1986 	}
1987 
1988 	/* Fill in command request block
1989 	 */
1990 	if (!(tf->flags & ATA_TFLAG_WRITE))
1991 		flags |= CRQB_FLAG_READ;
1992 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1993 	flags |= qc->tag << CRQB_TAG_SHIFT;
1994 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1995 
1996 	/* get current queue index from software */
1997 	in_index = pp->req_idx;
1998 
1999 	pp->crqb[in_index].sg_addr =
2000 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2001 	pp->crqb[in_index].sg_addr_hi =
2002 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2003 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2004 
2005 	cw = &pp->crqb[in_index].ata_cmd[0];
2006 
2007 	/* Sadly, the CRQB cannot accomodate all registers--there are
2008 	 * only 11 bytes...so we must pick and choose required
2009 	 * registers based on the command.  So, we drop feature and
2010 	 * hob_feature for [RW] DMA commands, but they are needed for
2011 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2012 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2013 	 */
2014 	switch (tf->command) {
2015 	case ATA_CMD_READ:
2016 	case ATA_CMD_READ_EXT:
2017 	case ATA_CMD_WRITE:
2018 	case ATA_CMD_WRITE_EXT:
2019 	case ATA_CMD_WRITE_FUA_EXT:
2020 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2021 		break;
2022 	case ATA_CMD_FPDMA_READ:
2023 	case ATA_CMD_FPDMA_WRITE:
2024 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2025 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2026 		break;
2027 	default:
2028 		/* The only other commands EDMA supports in non-queued and
2029 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2030 		 * of which are defined/used by Linux.  If we get here, this
2031 		 * driver needs work.
2032 		 *
2033 		 * FIXME: modify libata to give qc_prep a return value and
2034 		 * return error here.
2035 		 */
2036 		BUG_ON(tf->command);
2037 		break;
2038 	}
2039 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2040 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2041 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2042 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2043 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2044 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2045 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2046 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2047 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2048 
2049 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2050 		return;
2051 	mv_fill_sg(qc);
2052 }
2053 
2054 /**
2055  *      mv_qc_prep_iie - Host specific command preparation.
2056  *      @qc: queued command to prepare
2057  *
2058  *      This routine simply redirects to the general purpose routine
2059  *      if command is not DMA.  Else, it handles prep of the CRQB
2060  *      (command request block), does some sanity checking, and calls
2061  *      the SG load routine.
2062  *
2063  *      LOCKING:
2064  *      Inherited from caller.
2065  */
2066 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2067 {
2068 	struct ata_port *ap = qc->ap;
2069 	struct mv_port_priv *pp = ap->private_data;
2070 	struct mv_crqb_iie *crqb;
2071 	struct ata_taskfile *tf = &qc->tf;
2072 	unsigned in_index;
2073 	u32 flags = 0;
2074 
2075 	if ((tf->protocol != ATA_PROT_DMA) &&
2076 	    (tf->protocol != ATA_PROT_NCQ))
2077 		return;
2078 
2079 	/* Fill in Gen IIE command request block */
2080 	if (!(tf->flags & ATA_TFLAG_WRITE))
2081 		flags |= CRQB_FLAG_READ;
2082 
2083 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2084 	flags |= qc->tag << CRQB_TAG_SHIFT;
2085 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2086 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2087 
2088 	/* get current queue index from software */
2089 	in_index = pp->req_idx;
2090 
2091 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2092 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2093 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2094 	crqb->flags = cpu_to_le32(flags);
2095 
2096 	crqb->ata_cmd[0] = cpu_to_le32(
2097 			(tf->command << 16) |
2098 			(tf->feature << 24)
2099 		);
2100 	crqb->ata_cmd[1] = cpu_to_le32(
2101 			(tf->lbal << 0) |
2102 			(tf->lbam << 8) |
2103 			(tf->lbah << 16) |
2104 			(tf->device << 24)
2105 		);
2106 	crqb->ata_cmd[2] = cpu_to_le32(
2107 			(tf->hob_lbal << 0) |
2108 			(tf->hob_lbam << 8) |
2109 			(tf->hob_lbah << 16) |
2110 			(tf->hob_feature << 24)
2111 		);
2112 	crqb->ata_cmd[3] = cpu_to_le32(
2113 			(tf->nsect << 0) |
2114 			(tf->hob_nsect << 8)
2115 		);
2116 
2117 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2118 		return;
2119 	mv_fill_sg(qc);
2120 }
2121 
2122 /**
2123  *	mv_sff_check_status - fetch device status, if valid
2124  *	@ap: ATA port to fetch status from
2125  *
2126  *	When using command issue via mv_qc_issue_fis(),
2127  *	the initial ATA_BUSY state does not show up in the
2128  *	ATA status (shadow) register.  This can confuse libata!
2129  *
2130  *	So we have a hook here to fake ATA_BUSY for that situation,
2131  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2132  *
2133  *	The rest of the time, it simply returns the ATA status register.
2134  */
2135 static u8 mv_sff_check_status(struct ata_port *ap)
2136 {
2137 	u8 stat = ioread8(ap->ioaddr.status_addr);
2138 	struct mv_port_priv *pp = ap->private_data;
2139 
2140 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2141 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2142 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2143 		else
2144 			stat = ATA_BUSY;
2145 	}
2146 	return stat;
2147 }
2148 
2149 /**
2150  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2151  *	@fis: fis to be sent
2152  *	@nwords: number of 32-bit words in the fis
2153  */
2154 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2155 {
2156 	void __iomem *port_mmio = mv_ap_base(ap);
2157 	u32 ifctl, old_ifctl, ifstat;
2158 	int i, timeout = 200, final_word = nwords - 1;
2159 
2160 	/* Initiate FIS transmission mode */
2161 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2162 	ifctl = 0x100 | (old_ifctl & 0xf);
2163 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2164 
2165 	/* Send all words of the FIS except for the final word */
2166 	for (i = 0; i < final_word; ++i)
2167 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2168 
2169 	/* Flag end-of-transmission, and then send the final word */
2170 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2171 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2172 
2173 	/*
2174 	 * Wait for FIS transmission to complete.
2175 	 * This typically takes just a single iteration.
2176 	 */
2177 	do {
2178 		ifstat = readl(port_mmio + SATA_IFSTAT);
2179 	} while (!(ifstat & 0x1000) && --timeout);
2180 
2181 	/* Restore original port configuration */
2182 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2183 
2184 	/* See if it worked */
2185 	if ((ifstat & 0x3000) != 0x1000) {
2186 		ata_port_printk(ap, KERN_WARNING,
2187 				"%s transmission error, ifstat=%08x\n",
2188 				__func__, ifstat);
2189 		return AC_ERR_OTHER;
2190 	}
2191 	return 0;
2192 }
2193 
2194 /**
2195  *	mv_qc_issue_fis - Issue a command directly as a FIS
2196  *	@qc: queued command to start
2197  *
2198  *	Note that the ATA shadow registers are not updated
2199  *	after command issue, so the device will appear "READY"
2200  *	if polled, even while it is BUSY processing the command.
2201  *
2202  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2203  *
2204  *	Note: we don't get updated shadow regs on *completion*
2205  *	of non-data commands. So avoid sending them via this function,
2206  *	as they will appear to have completed immediately.
2207  *
2208  *	GEN_IIE has special registers that we could get the result tf from,
2209  *	but earlier chipsets do not.  For now, we ignore those registers.
2210  */
2211 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2212 {
2213 	struct ata_port *ap = qc->ap;
2214 	struct mv_port_priv *pp = ap->private_data;
2215 	struct ata_link *link = qc->dev->link;
2216 	u32 fis[5];
2217 	int err = 0;
2218 
2219 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2220 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2221 	if (err)
2222 		return err;
2223 
2224 	switch (qc->tf.protocol) {
2225 	case ATAPI_PROT_PIO:
2226 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2227 		/* fall through */
2228 	case ATAPI_PROT_NODATA:
2229 		ap->hsm_task_state = HSM_ST_FIRST;
2230 		break;
2231 	case ATA_PROT_PIO:
2232 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2233 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2234 			ap->hsm_task_state = HSM_ST_FIRST;
2235 		else
2236 			ap->hsm_task_state = HSM_ST;
2237 		break;
2238 	default:
2239 		ap->hsm_task_state = HSM_ST_LAST;
2240 		break;
2241 	}
2242 
2243 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2244 		ata_pio_queue_task(ap, qc, 0);
2245 	return 0;
2246 }
2247 
2248 /**
2249  *      mv_qc_issue - Initiate a command to the host
2250  *      @qc: queued command to start
2251  *
2252  *      This routine simply redirects to the general purpose routine
2253  *      if command is not DMA.  Else, it sanity checks our local
2254  *      caches of the request producer/consumer indices then enables
2255  *      DMA and bumps the request producer index.
2256  *
2257  *      LOCKING:
2258  *      Inherited from caller.
2259  */
2260 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2261 {
2262 	static int limit_warnings = 10;
2263 	struct ata_port *ap = qc->ap;
2264 	void __iomem *port_mmio = mv_ap_base(ap);
2265 	struct mv_port_priv *pp = ap->private_data;
2266 	u32 in_index;
2267 	unsigned int port_irqs;
2268 
2269 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2270 
2271 	switch (qc->tf.protocol) {
2272 	case ATA_PROT_DMA:
2273 	case ATA_PROT_NCQ:
2274 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2275 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2276 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2277 
2278 		/* Write the request in pointer to kick the EDMA to life */
2279 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2280 					port_mmio + EDMA_REQ_Q_IN_PTR);
2281 		return 0;
2282 
2283 	case ATA_PROT_PIO:
2284 		/*
2285 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2286 		 *
2287 		 * Someday, we might implement special polling workarounds
2288 		 * for these, but it all seems rather unnecessary since we
2289 		 * normally use only DMA for commands which transfer more
2290 		 * than a single block of data.
2291 		 *
2292 		 * Much of the time, this could just work regardless.
2293 		 * So for now, just log the incident, and allow the attempt.
2294 		 */
2295 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2296 			--limit_warnings;
2297 			ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2298 					": attempting PIO w/multiple DRQ: "
2299 					"this may fail due to h/w errata\n");
2300 		}
2301 		/* drop through */
2302 	case ATA_PROT_NODATA:
2303 	case ATAPI_PROT_PIO:
2304 	case ATAPI_PROT_NODATA:
2305 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2306 			qc->tf.flags |= ATA_TFLAG_POLLING;
2307 		break;
2308 	}
2309 
2310 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2311 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2312 	else
2313 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2314 
2315 	/*
2316 	 * We're about to send a non-EDMA capable command to the
2317 	 * port.  Turn off EDMA so there won't be problems accessing
2318 	 * shadow block, etc registers.
2319 	 */
2320 	mv_stop_edma(ap);
2321 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2322 	mv_pmp_select(ap, qc->dev->link->pmp);
2323 
2324 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2325 		struct mv_host_priv *hpriv = ap->host->private_data;
2326 		/*
2327 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2328 		 *
2329 		 * After any NCQ error, the READ_LOG_EXT command
2330 		 * from libata-eh *must* use mv_qc_issue_fis().
2331 		 * Otherwise it might fail, due to chip errata.
2332 		 *
2333 		 * Rather than special-case it, we'll just *always*
2334 		 * use this method here for READ_LOG_EXT, making for
2335 		 * easier testing.
2336 		 */
2337 		if (IS_GEN_II(hpriv))
2338 			return mv_qc_issue_fis(qc);
2339 	}
2340 	return ata_sff_qc_issue(qc);
2341 }
2342 
2343 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2344 {
2345 	struct mv_port_priv *pp = ap->private_data;
2346 	struct ata_queued_cmd *qc;
2347 
2348 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2349 		return NULL;
2350 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2351 	if (qc) {
2352 		if (qc->tf.flags & ATA_TFLAG_POLLING)
2353 			qc = NULL;
2354 		else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
2355 			qc = NULL;
2356 	}
2357 	return qc;
2358 }
2359 
2360 static void mv_pmp_error_handler(struct ata_port *ap)
2361 {
2362 	unsigned int pmp, pmp_map;
2363 	struct mv_port_priv *pp = ap->private_data;
2364 
2365 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2366 		/*
2367 		 * Perform NCQ error analysis on failed PMPs
2368 		 * before we freeze the port entirely.
2369 		 *
2370 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2371 		 */
2372 		pmp_map = pp->delayed_eh_pmp_map;
2373 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2374 		for (pmp = 0; pmp_map != 0; pmp++) {
2375 			unsigned int this_pmp = (1 << pmp);
2376 			if (pmp_map & this_pmp) {
2377 				struct ata_link *link = &ap->pmp_link[pmp];
2378 				pmp_map &= ~this_pmp;
2379 				ata_eh_analyze_ncq_error(link);
2380 			}
2381 		}
2382 		ata_port_freeze(ap);
2383 	}
2384 	sata_pmp_error_handler(ap);
2385 }
2386 
2387 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2388 {
2389 	void __iomem *port_mmio = mv_ap_base(ap);
2390 
2391 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2392 }
2393 
2394 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2395 {
2396 	struct ata_eh_info *ehi;
2397 	unsigned int pmp;
2398 
2399 	/*
2400 	 * Initialize EH info for PMPs which saw device errors
2401 	 */
2402 	ehi = &ap->link.eh_info;
2403 	for (pmp = 0; pmp_map != 0; pmp++) {
2404 		unsigned int this_pmp = (1 << pmp);
2405 		if (pmp_map & this_pmp) {
2406 			struct ata_link *link = &ap->pmp_link[pmp];
2407 
2408 			pmp_map &= ~this_pmp;
2409 			ehi = &link->eh_info;
2410 			ata_ehi_clear_desc(ehi);
2411 			ata_ehi_push_desc(ehi, "dev err");
2412 			ehi->err_mask |= AC_ERR_DEV;
2413 			ehi->action |= ATA_EH_RESET;
2414 			ata_link_abort(link);
2415 		}
2416 	}
2417 }
2418 
2419 static int mv_req_q_empty(struct ata_port *ap)
2420 {
2421 	void __iomem *port_mmio = mv_ap_base(ap);
2422 	u32 in_ptr, out_ptr;
2423 
2424 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2425 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2426 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2427 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2428 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2429 }
2430 
2431 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2432 {
2433 	struct mv_port_priv *pp = ap->private_data;
2434 	int failed_links;
2435 	unsigned int old_map, new_map;
2436 
2437 	/*
2438 	 * Device error during FBS+NCQ operation:
2439 	 *
2440 	 * Set a port flag to prevent further I/O being enqueued.
2441 	 * Leave the EDMA running to drain outstanding commands from this port.
2442 	 * Perform the post-mortem/EH only when all responses are complete.
2443 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2444 	 */
2445 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2446 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2447 		pp->delayed_eh_pmp_map = 0;
2448 	}
2449 	old_map = pp->delayed_eh_pmp_map;
2450 	new_map = old_map | mv_get_err_pmp_map(ap);
2451 
2452 	if (old_map != new_map) {
2453 		pp->delayed_eh_pmp_map = new_map;
2454 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2455 	}
2456 	failed_links = hweight16(new_map);
2457 
2458 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2459 			"failed_links=%d nr_active_links=%d\n",
2460 			__func__, pp->delayed_eh_pmp_map,
2461 			ap->qc_active, failed_links,
2462 			ap->nr_active_links);
2463 
2464 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2465 		mv_process_crpb_entries(ap, pp);
2466 		mv_stop_edma(ap);
2467 		mv_eh_freeze(ap);
2468 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2469 		return 1;	/* handled */
2470 	}
2471 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2472 	return 1;	/* handled */
2473 }
2474 
2475 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2476 {
2477 	/*
2478 	 * Possible future enhancement:
2479 	 *
2480 	 * FBS+non-NCQ operation is not yet implemented.
2481 	 * See related notes in mv_edma_cfg().
2482 	 *
2483 	 * Device error during FBS+non-NCQ operation:
2484 	 *
2485 	 * We need to snapshot the shadow registers for each failed command.
2486 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2487 	 */
2488 	return 0;	/* not handled */
2489 }
2490 
2491 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2492 {
2493 	struct mv_port_priv *pp = ap->private_data;
2494 
2495 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2496 		return 0;	/* EDMA was not active: not handled */
2497 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2498 		return 0;	/* FBS was not active: not handled */
2499 
2500 	if (!(edma_err_cause & EDMA_ERR_DEV))
2501 		return 0;	/* non DEV error: not handled */
2502 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2503 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2504 		return 0;	/* other problems: not handled */
2505 
2506 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2507 		/*
2508 		 * EDMA should NOT have self-disabled for this case.
2509 		 * If it did, then something is wrong elsewhere,
2510 		 * and we cannot handle it here.
2511 		 */
2512 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2513 			ata_port_printk(ap, KERN_WARNING,
2514 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2515 				__func__, edma_err_cause, pp->pp_flags);
2516 			return 0; /* not handled */
2517 		}
2518 		return mv_handle_fbs_ncq_dev_err(ap);
2519 	} else {
2520 		/*
2521 		 * EDMA should have self-disabled for this case.
2522 		 * If it did not, then something is wrong elsewhere,
2523 		 * and we cannot handle it here.
2524 		 */
2525 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2526 			ata_port_printk(ap, KERN_WARNING,
2527 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2528 				__func__, edma_err_cause, pp->pp_flags);
2529 			return 0; /* not handled */
2530 		}
2531 		return mv_handle_fbs_non_ncq_dev_err(ap);
2532 	}
2533 	return 0;	/* not handled */
2534 }
2535 
2536 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2537 {
2538 	struct ata_eh_info *ehi = &ap->link.eh_info;
2539 	char *when = "idle";
2540 
2541 	ata_ehi_clear_desc(ehi);
2542 	if (ap->flags & ATA_FLAG_DISABLED) {
2543 		when = "disabled";
2544 	} else if (edma_was_enabled) {
2545 		when = "EDMA enabled";
2546 	} else {
2547 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2548 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2549 			when = "polling";
2550 	}
2551 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2552 	ehi->err_mask |= AC_ERR_OTHER;
2553 	ehi->action   |= ATA_EH_RESET;
2554 	ata_port_freeze(ap);
2555 }
2556 
2557 /**
2558  *      mv_err_intr - Handle error interrupts on the port
2559  *      @ap: ATA channel to manipulate
2560  *
2561  *      Most cases require a full reset of the chip's state machine,
2562  *      which also performs a COMRESET.
2563  *      Also, if the port disabled DMA, update our cached copy to match.
2564  *
2565  *      LOCKING:
2566  *      Inherited from caller.
2567  */
2568 static void mv_err_intr(struct ata_port *ap)
2569 {
2570 	void __iomem *port_mmio = mv_ap_base(ap);
2571 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2572 	u32 fis_cause = 0;
2573 	struct mv_port_priv *pp = ap->private_data;
2574 	struct mv_host_priv *hpriv = ap->host->private_data;
2575 	unsigned int action = 0, err_mask = 0;
2576 	struct ata_eh_info *ehi = &ap->link.eh_info;
2577 	struct ata_queued_cmd *qc;
2578 	int abort = 0;
2579 
2580 	/*
2581 	 * Read and clear the SError and err_cause bits.
2582 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2583 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2584 	 */
2585 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2586 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2587 
2588 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2589 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2590 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2591 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2592 	}
2593 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2594 
2595 	if (edma_err_cause & EDMA_ERR_DEV) {
2596 		/*
2597 		 * Device errors during FIS-based switching operation
2598 		 * require special handling.
2599 		 */
2600 		if (mv_handle_dev_err(ap, edma_err_cause))
2601 			return;
2602 	}
2603 
2604 	qc = mv_get_active_qc(ap);
2605 	ata_ehi_clear_desc(ehi);
2606 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2607 			  edma_err_cause, pp->pp_flags);
2608 
2609 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2610 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2611 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2612 			u32 ec = edma_err_cause &
2613 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2614 			sata_async_notification(ap);
2615 			if (!ec)
2616 				return; /* Just an AN; no need for the nukes */
2617 			ata_ehi_push_desc(ehi, "SDB notify");
2618 		}
2619 	}
2620 	/*
2621 	 * All generations share these EDMA error cause bits:
2622 	 */
2623 	if (edma_err_cause & EDMA_ERR_DEV) {
2624 		err_mask |= AC_ERR_DEV;
2625 		action |= ATA_EH_RESET;
2626 		ata_ehi_push_desc(ehi, "dev error");
2627 	}
2628 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2629 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2630 			EDMA_ERR_INTRL_PAR)) {
2631 		err_mask |= AC_ERR_ATA_BUS;
2632 		action |= ATA_EH_RESET;
2633 		ata_ehi_push_desc(ehi, "parity error");
2634 	}
2635 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2636 		ata_ehi_hotplugged(ehi);
2637 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2638 			"dev disconnect" : "dev connect");
2639 		action |= ATA_EH_RESET;
2640 	}
2641 
2642 	/*
2643 	 * Gen-I has a different SELF_DIS bit,
2644 	 * different FREEZE bits, and no SERR bit:
2645 	 */
2646 	if (IS_GEN_I(hpriv)) {
2647 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2648 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2649 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2650 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2651 		}
2652 	} else {
2653 		eh_freeze_mask = EDMA_EH_FREEZE;
2654 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2655 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2656 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2657 		}
2658 		if (edma_err_cause & EDMA_ERR_SERR) {
2659 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2660 			err_mask |= AC_ERR_ATA_BUS;
2661 			action |= ATA_EH_RESET;
2662 		}
2663 	}
2664 
2665 	if (!err_mask) {
2666 		err_mask = AC_ERR_OTHER;
2667 		action |= ATA_EH_RESET;
2668 	}
2669 
2670 	ehi->serror |= serr;
2671 	ehi->action |= action;
2672 
2673 	if (qc)
2674 		qc->err_mask |= err_mask;
2675 	else
2676 		ehi->err_mask |= err_mask;
2677 
2678 	if (err_mask == AC_ERR_DEV) {
2679 		/*
2680 		 * Cannot do ata_port_freeze() here,
2681 		 * because it would kill PIO access,
2682 		 * which is needed for further diagnosis.
2683 		 */
2684 		mv_eh_freeze(ap);
2685 		abort = 1;
2686 	} else if (edma_err_cause & eh_freeze_mask) {
2687 		/*
2688 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2689 		 */
2690 		ata_port_freeze(ap);
2691 	} else {
2692 		abort = 1;
2693 	}
2694 
2695 	if (abort) {
2696 		if (qc)
2697 			ata_link_abort(qc->dev->link);
2698 		else
2699 			ata_port_abort(ap);
2700 	}
2701 }
2702 
2703 static void mv_process_crpb_response(struct ata_port *ap,
2704 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2705 {
2706 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2707 
2708 	if (qc) {
2709 		u8 ata_status;
2710 		u16 edma_status = le16_to_cpu(response->flags);
2711 		/*
2712 		 * edma_status from a response queue entry:
2713 		 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2714 		 *   MSB is saved ATA status from command completion.
2715 		 */
2716 		if (!ncq_enabled) {
2717 			u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2718 			if (err_cause) {
2719 				/*
2720 				 * Error will be seen/handled by mv_err_intr().
2721 				 * So do nothing at all here.
2722 				 */
2723 				return;
2724 			}
2725 		}
2726 		ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2727 		if (!ac_err_mask(ata_status))
2728 			ata_qc_complete(qc);
2729 		/* else: leave it for mv_err_intr() */
2730 	} else {
2731 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2732 				__func__, tag);
2733 	}
2734 }
2735 
2736 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2737 {
2738 	void __iomem *port_mmio = mv_ap_base(ap);
2739 	struct mv_host_priv *hpriv = ap->host->private_data;
2740 	u32 in_index;
2741 	bool work_done = false;
2742 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2743 
2744 	/* Get the hardware queue position index */
2745 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2746 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2747 
2748 	/* Process new responses from since the last time we looked */
2749 	while (in_index != pp->resp_idx) {
2750 		unsigned int tag;
2751 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2752 
2753 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2754 
2755 		if (IS_GEN_I(hpriv)) {
2756 			/* 50xx: no NCQ, only one command active at a time */
2757 			tag = ap->link.active_tag;
2758 		} else {
2759 			/* Gen II/IIE: get command tag from CRPB entry */
2760 			tag = le16_to_cpu(response->id) & 0x1f;
2761 		}
2762 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2763 		work_done = true;
2764 	}
2765 
2766 	/* Update the software queue position index in hardware */
2767 	if (work_done)
2768 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2769 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2770 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2771 }
2772 
2773 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2774 {
2775 	struct mv_port_priv *pp;
2776 	int edma_was_enabled;
2777 
2778 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2779 		mv_unexpected_intr(ap, 0);
2780 		return;
2781 	}
2782 	/*
2783 	 * Grab a snapshot of the EDMA_EN flag setting,
2784 	 * so that we have a consistent view for this port,
2785 	 * even if something we call of our routines changes it.
2786 	 */
2787 	pp = ap->private_data;
2788 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2789 	/*
2790 	 * Process completed CRPB response(s) before other events.
2791 	 */
2792 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2793 		mv_process_crpb_entries(ap, pp);
2794 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2795 			mv_handle_fbs_ncq_dev_err(ap);
2796 	}
2797 	/*
2798 	 * Handle chip-reported errors, or continue on to handle PIO.
2799 	 */
2800 	if (unlikely(port_cause & ERR_IRQ)) {
2801 		mv_err_intr(ap);
2802 	} else if (!edma_was_enabled) {
2803 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2804 		if (qc)
2805 			ata_sff_host_intr(ap, qc);
2806 		else
2807 			mv_unexpected_intr(ap, edma_was_enabled);
2808 	}
2809 }
2810 
2811 /**
2812  *      mv_host_intr - Handle all interrupts on the given host controller
2813  *      @host: host specific structure
2814  *      @main_irq_cause: Main interrupt cause register for the chip.
2815  *
2816  *      LOCKING:
2817  *      Inherited from caller.
2818  */
2819 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2820 {
2821 	struct mv_host_priv *hpriv = host->private_data;
2822 	void __iomem *mmio = hpriv->base, *hc_mmio;
2823 	unsigned int handled = 0, port;
2824 
2825 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2826 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2827 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2828 
2829 	for (port = 0; port < hpriv->n_ports; port++) {
2830 		struct ata_port *ap = host->ports[port];
2831 		unsigned int p, shift, hardport, port_cause;
2832 
2833 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2834 		/*
2835 		 * Each hc within the host has its own hc_irq_cause register,
2836 		 * where the interrupting ports bits get ack'd.
2837 		 */
2838 		if (hardport == 0) {	/* first port on this hc ? */
2839 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2840 			u32 port_mask, ack_irqs;
2841 			/*
2842 			 * Skip this entire hc if nothing pending for any ports
2843 			 */
2844 			if (!hc_cause) {
2845 				port += MV_PORTS_PER_HC - 1;
2846 				continue;
2847 			}
2848 			/*
2849 			 * We don't need/want to read the hc_irq_cause register,
2850 			 * because doing so hurts performance, and
2851 			 * main_irq_cause already gives us everything we need.
2852 			 *
2853 			 * But we do have to *write* to the hc_irq_cause to ack
2854 			 * the ports that we are handling this time through.
2855 			 *
2856 			 * This requires that we create a bitmap for those
2857 			 * ports which interrupted us, and use that bitmap
2858 			 * to ack (only) those ports via hc_irq_cause.
2859 			 */
2860 			ack_irqs = 0;
2861 			if (hc_cause & PORTS_0_3_COAL_DONE)
2862 				ack_irqs = HC_COAL_IRQ;
2863 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2864 				if ((port + p) >= hpriv->n_ports)
2865 					break;
2866 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2867 				if (hc_cause & port_mask)
2868 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2869 			}
2870 			hc_mmio = mv_hc_base_from_port(mmio, port);
2871 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2872 			handled = 1;
2873 		}
2874 		/*
2875 		 * Handle interrupts signalled for this port:
2876 		 */
2877 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2878 		if (port_cause)
2879 			mv_port_intr(ap, port_cause);
2880 	}
2881 	return handled;
2882 }
2883 
2884 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2885 {
2886 	struct mv_host_priv *hpriv = host->private_data;
2887 	struct ata_port *ap;
2888 	struct ata_queued_cmd *qc;
2889 	struct ata_eh_info *ehi;
2890 	unsigned int i, err_mask, printed = 0;
2891 	u32 err_cause;
2892 
2893 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2894 
2895 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2896 		   err_cause);
2897 
2898 	DPRINTK("All regs @ PCI error\n");
2899 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2900 
2901 	writelfl(0, mmio + hpriv->irq_cause_offset);
2902 
2903 	for (i = 0; i < host->n_ports; i++) {
2904 		ap = host->ports[i];
2905 		if (!ata_link_offline(&ap->link)) {
2906 			ehi = &ap->link.eh_info;
2907 			ata_ehi_clear_desc(ehi);
2908 			if (!printed++)
2909 				ata_ehi_push_desc(ehi,
2910 					"PCI err cause 0x%08x", err_cause);
2911 			err_mask = AC_ERR_HOST_BUS;
2912 			ehi->action = ATA_EH_RESET;
2913 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2914 			if (qc)
2915 				qc->err_mask |= err_mask;
2916 			else
2917 				ehi->err_mask |= err_mask;
2918 
2919 			ata_port_freeze(ap);
2920 		}
2921 	}
2922 	return 1;	/* handled */
2923 }
2924 
2925 /**
2926  *      mv_interrupt - Main interrupt event handler
2927  *      @irq: unused
2928  *      @dev_instance: private data; in this case the host structure
2929  *
2930  *      Read the read only register to determine if any host
2931  *      controllers have pending interrupts.  If so, call lower level
2932  *      routine to handle.  Also check for PCI errors which are only
2933  *      reported here.
2934  *
2935  *      LOCKING:
2936  *      This routine holds the host lock while processing pending
2937  *      interrupts.
2938  */
2939 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2940 {
2941 	struct ata_host *host = dev_instance;
2942 	struct mv_host_priv *hpriv = host->private_data;
2943 	unsigned int handled = 0;
2944 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2945 	u32 main_irq_cause, pending_irqs;
2946 
2947 	spin_lock(&host->lock);
2948 
2949 	/* for MSI:  block new interrupts while in here */
2950 	if (using_msi)
2951 		mv_write_main_irq_mask(0, hpriv);
2952 
2953 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2954 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2955 	/*
2956 	 * Deal with cases where we either have nothing pending, or have read
2957 	 * a bogus register value which can indicate HW removal or PCI fault.
2958 	 */
2959 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2960 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2961 			handled = mv_pci_error(host, hpriv->base);
2962 		else
2963 			handled = mv_host_intr(host, pending_irqs);
2964 	}
2965 
2966 	/* for MSI: unmask; interrupt cause bits will retrigger now */
2967 	if (using_msi)
2968 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2969 
2970 	spin_unlock(&host->lock);
2971 
2972 	return IRQ_RETVAL(handled);
2973 }
2974 
2975 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2976 {
2977 	unsigned int ofs;
2978 
2979 	switch (sc_reg_in) {
2980 	case SCR_STATUS:
2981 	case SCR_ERROR:
2982 	case SCR_CONTROL:
2983 		ofs = sc_reg_in * sizeof(u32);
2984 		break;
2985 	default:
2986 		ofs = 0xffffffffU;
2987 		break;
2988 	}
2989 	return ofs;
2990 }
2991 
2992 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2993 {
2994 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2995 	void __iomem *mmio = hpriv->base;
2996 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2997 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2998 
2999 	if (ofs != 0xffffffffU) {
3000 		*val = readl(addr + ofs);
3001 		return 0;
3002 	} else
3003 		return -EINVAL;
3004 }
3005 
3006 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3007 {
3008 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3009 	void __iomem *mmio = hpriv->base;
3010 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3011 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3012 
3013 	if (ofs != 0xffffffffU) {
3014 		writelfl(val, addr + ofs);
3015 		return 0;
3016 	} else
3017 		return -EINVAL;
3018 }
3019 
3020 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3021 {
3022 	struct pci_dev *pdev = to_pci_dev(host->dev);
3023 	int early_5080;
3024 
3025 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3026 
3027 	if (!early_5080) {
3028 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3029 		tmp |= (1 << 0);
3030 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3031 	}
3032 
3033 	mv_reset_pci_bus(host, mmio);
3034 }
3035 
3036 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3037 {
3038 	writel(0x0fcfffff, mmio + FLASH_CTL);
3039 }
3040 
3041 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3042 			   void __iomem *mmio)
3043 {
3044 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3045 	u32 tmp;
3046 
3047 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3048 
3049 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3050 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3051 }
3052 
3053 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3054 {
3055 	u32 tmp;
3056 
3057 	writel(0, mmio + GPIO_PORT_CTL);
3058 
3059 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3060 
3061 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3062 	tmp |= ~(1 << 0);
3063 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3064 }
3065 
3066 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3067 			   unsigned int port)
3068 {
3069 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3070 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3071 	u32 tmp;
3072 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3073 
3074 	if (fix_apm_sq) {
3075 		tmp = readl(phy_mmio + MV5_LTMODE);
3076 		tmp |= (1 << 19);
3077 		writel(tmp, phy_mmio + MV5_LTMODE);
3078 
3079 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3080 		tmp &= ~0x3;
3081 		tmp |= 0x1;
3082 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3083 	}
3084 
3085 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3086 	tmp &= ~mask;
3087 	tmp |= hpriv->signal[port].pre;
3088 	tmp |= hpriv->signal[port].amps;
3089 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3090 }
3091 
3092 
3093 #undef ZERO
3094 #define ZERO(reg) writel(0, port_mmio + (reg))
3095 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3096 			     unsigned int port)
3097 {
3098 	void __iomem *port_mmio = mv_port_base(mmio, port);
3099 
3100 	mv_reset_channel(hpriv, mmio, port);
3101 
3102 	ZERO(0x028);	/* command */
3103 	writel(0x11f, port_mmio + EDMA_CFG);
3104 	ZERO(0x004);	/* timer */
3105 	ZERO(0x008);	/* irq err cause */
3106 	ZERO(0x00c);	/* irq err mask */
3107 	ZERO(0x010);	/* rq bah */
3108 	ZERO(0x014);	/* rq inp */
3109 	ZERO(0x018);	/* rq outp */
3110 	ZERO(0x01c);	/* respq bah */
3111 	ZERO(0x024);	/* respq outp */
3112 	ZERO(0x020);	/* respq inp */
3113 	ZERO(0x02c);	/* test control */
3114 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3115 }
3116 #undef ZERO
3117 
3118 #define ZERO(reg) writel(0, hc_mmio + (reg))
3119 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3120 			unsigned int hc)
3121 {
3122 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3123 	u32 tmp;
3124 
3125 	ZERO(0x00c);
3126 	ZERO(0x010);
3127 	ZERO(0x014);
3128 	ZERO(0x018);
3129 
3130 	tmp = readl(hc_mmio + 0x20);
3131 	tmp &= 0x1c1c1c1c;
3132 	tmp |= 0x03030303;
3133 	writel(tmp, hc_mmio + 0x20);
3134 }
3135 #undef ZERO
3136 
3137 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3138 			unsigned int n_hc)
3139 {
3140 	unsigned int hc, port;
3141 
3142 	for (hc = 0; hc < n_hc; hc++) {
3143 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3144 			mv5_reset_hc_port(hpriv, mmio,
3145 					  (hc * MV_PORTS_PER_HC) + port);
3146 
3147 		mv5_reset_one_hc(hpriv, mmio, hc);
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 #undef ZERO
3154 #define ZERO(reg) writel(0, mmio + (reg))
3155 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3156 {
3157 	struct mv_host_priv *hpriv = host->private_data;
3158 	u32 tmp;
3159 
3160 	tmp = readl(mmio + MV_PCI_MODE);
3161 	tmp &= 0xff00ffff;
3162 	writel(tmp, mmio + MV_PCI_MODE);
3163 
3164 	ZERO(MV_PCI_DISC_TIMER);
3165 	ZERO(MV_PCI_MSI_TRIGGER);
3166 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3167 	ZERO(MV_PCI_SERR_MASK);
3168 	ZERO(hpriv->irq_cause_offset);
3169 	ZERO(hpriv->irq_mask_offset);
3170 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3171 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3172 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3173 	ZERO(MV_PCI_ERR_COMMAND);
3174 }
3175 #undef ZERO
3176 
3177 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3178 {
3179 	u32 tmp;
3180 
3181 	mv5_reset_flash(hpriv, mmio);
3182 
3183 	tmp = readl(mmio + GPIO_PORT_CTL);
3184 	tmp &= 0x3;
3185 	tmp |= (1 << 5) | (1 << 6);
3186 	writel(tmp, mmio + GPIO_PORT_CTL);
3187 }
3188 
3189 /**
3190  *      mv6_reset_hc - Perform the 6xxx global soft reset
3191  *      @mmio: base address of the HBA
3192  *
3193  *      This routine only applies to 6xxx parts.
3194  *
3195  *      LOCKING:
3196  *      Inherited from caller.
3197  */
3198 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3199 			unsigned int n_hc)
3200 {
3201 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3202 	int i, rc = 0;
3203 	u32 t;
3204 
3205 	/* Following procedure defined in PCI "main command and status
3206 	 * register" table.
3207 	 */
3208 	t = readl(reg);
3209 	writel(t | STOP_PCI_MASTER, reg);
3210 
3211 	for (i = 0; i < 1000; i++) {
3212 		udelay(1);
3213 		t = readl(reg);
3214 		if (PCI_MASTER_EMPTY & t)
3215 			break;
3216 	}
3217 	if (!(PCI_MASTER_EMPTY & t)) {
3218 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3219 		rc = 1;
3220 		goto done;
3221 	}
3222 
3223 	/* set reset */
3224 	i = 5;
3225 	do {
3226 		writel(t | GLOB_SFT_RST, reg);
3227 		t = readl(reg);
3228 		udelay(1);
3229 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3230 
3231 	if (!(GLOB_SFT_RST & t)) {
3232 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3233 		rc = 1;
3234 		goto done;
3235 	}
3236 
3237 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3238 	i = 5;
3239 	do {
3240 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3241 		t = readl(reg);
3242 		udelay(1);
3243 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3244 
3245 	if (GLOB_SFT_RST & t) {
3246 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3247 		rc = 1;
3248 	}
3249 done:
3250 	return rc;
3251 }
3252 
3253 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3254 			   void __iomem *mmio)
3255 {
3256 	void __iomem *port_mmio;
3257 	u32 tmp;
3258 
3259 	tmp = readl(mmio + RESET_CFG);
3260 	if ((tmp & (1 << 0)) == 0) {
3261 		hpriv->signal[idx].amps = 0x7 << 8;
3262 		hpriv->signal[idx].pre = 0x1 << 5;
3263 		return;
3264 	}
3265 
3266 	port_mmio = mv_port_base(mmio, idx);
3267 	tmp = readl(port_mmio + PHY_MODE2);
3268 
3269 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3270 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3271 }
3272 
3273 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3274 {
3275 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3276 }
3277 
3278 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3279 			   unsigned int port)
3280 {
3281 	void __iomem *port_mmio = mv_port_base(mmio, port);
3282 
3283 	u32 hp_flags = hpriv->hp_flags;
3284 	int fix_phy_mode2 =
3285 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3286 	int fix_phy_mode4 =
3287 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3288 	u32 m2, m3;
3289 
3290 	if (fix_phy_mode2) {
3291 		m2 = readl(port_mmio + PHY_MODE2);
3292 		m2 &= ~(1 << 16);
3293 		m2 |= (1 << 31);
3294 		writel(m2, port_mmio + PHY_MODE2);
3295 
3296 		udelay(200);
3297 
3298 		m2 = readl(port_mmio + PHY_MODE2);
3299 		m2 &= ~((1 << 16) | (1 << 31));
3300 		writel(m2, port_mmio + PHY_MODE2);
3301 
3302 		udelay(200);
3303 	}
3304 
3305 	/*
3306 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3307 	 * Achieves better receiver noise performance than the h/w default:
3308 	 */
3309 	m3 = readl(port_mmio + PHY_MODE3);
3310 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3311 
3312 	/* Guideline 88F5182 (GL# SATA-S11) */
3313 	if (IS_SOC(hpriv))
3314 		m3 &= ~0x1c;
3315 
3316 	if (fix_phy_mode4) {
3317 		u32 m4 = readl(port_mmio + PHY_MODE4);
3318 		/*
3319 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3320 		 * For earlier chipsets, force only the internal config field
3321 		 *  (workaround for errata FEr SATA#10 part 1).
3322 		 */
3323 		if (IS_GEN_IIE(hpriv))
3324 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3325 		else
3326 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3327 		writel(m4, port_mmio + PHY_MODE4);
3328 	}
3329 	/*
3330 	 * Workaround for 60x1-B2 errata SATA#13:
3331 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3332 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3333 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3334 	 */
3335 	writel(m3, port_mmio + PHY_MODE3);
3336 
3337 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3338 	m2 = readl(port_mmio + PHY_MODE2);
3339 
3340 	m2 &= ~MV_M2_PREAMP_MASK;
3341 	m2 |= hpriv->signal[port].amps;
3342 	m2 |= hpriv->signal[port].pre;
3343 	m2 &= ~(1 << 16);
3344 
3345 	/* according to mvSata 3.6.1, some IIE values are fixed */
3346 	if (IS_GEN_IIE(hpriv)) {
3347 		m2 &= ~0xC30FF01F;
3348 		m2 |= 0x0000900F;
3349 	}
3350 
3351 	writel(m2, port_mmio + PHY_MODE2);
3352 }
3353 
3354 /* TODO: use the generic LED interface to configure the SATA Presence */
3355 /* & Acitivy LEDs on the board */
3356 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3357 				      void __iomem *mmio)
3358 {
3359 	return;
3360 }
3361 
3362 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3363 			   void __iomem *mmio)
3364 {
3365 	void __iomem *port_mmio;
3366 	u32 tmp;
3367 
3368 	port_mmio = mv_port_base(mmio, idx);
3369 	tmp = readl(port_mmio + PHY_MODE2);
3370 
3371 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3372 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3373 }
3374 
3375 #undef ZERO
3376 #define ZERO(reg) writel(0, port_mmio + (reg))
3377 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3378 					void __iomem *mmio, unsigned int port)
3379 {
3380 	void __iomem *port_mmio = mv_port_base(mmio, port);
3381 
3382 	mv_reset_channel(hpriv, mmio, port);
3383 
3384 	ZERO(0x028);		/* command */
3385 	writel(0x101f, port_mmio + EDMA_CFG);
3386 	ZERO(0x004);		/* timer */
3387 	ZERO(0x008);		/* irq err cause */
3388 	ZERO(0x00c);		/* irq err mask */
3389 	ZERO(0x010);		/* rq bah */
3390 	ZERO(0x014);		/* rq inp */
3391 	ZERO(0x018);		/* rq outp */
3392 	ZERO(0x01c);		/* respq bah */
3393 	ZERO(0x024);		/* respq outp */
3394 	ZERO(0x020);		/* respq inp */
3395 	ZERO(0x02c);		/* test control */
3396 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3397 }
3398 
3399 #undef ZERO
3400 
3401 #define ZERO(reg) writel(0, hc_mmio + (reg))
3402 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3403 				       void __iomem *mmio)
3404 {
3405 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3406 
3407 	ZERO(0x00c);
3408 	ZERO(0x010);
3409 	ZERO(0x014);
3410 
3411 }
3412 
3413 #undef ZERO
3414 
3415 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3416 				  void __iomem *mmio, unsigned int n_hc)
3417 {
3418 	unsigned int port;
3419 
3420 	for (port = 0; port < hpriv->n_ports; port++)
3421 		mv_soc_reset_hc_port(hpriv, mmio, port);
3422 
3423 	mv_soc_reset_one_hc(hpriv, mmio);
3424 
3425 	return 0;
3426 }
3427 
3428 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3429 				      void __iomem *mmio)
3430 {
3431 	return;
3432 }
3433 
3434 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3435 {
3436 	return;
3437 }
3438 
3439 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3440 				  void __iomem *mmio, unsigned int port)
3441 {
3442 	void __iomem *port_mmio = mv_port_base(mmio, port);
3443 	u32	reg;
3444 
3445 	reg = readl(port_mmio + PHY_MODE3);
3446 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3447 	reg |= (0x1 << 27);
3448 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3449 	reg |= (0x1 << 29);
3450 	writel(reg, port_mmio + PHY_MODE3);
3451 
3452 	reg = readl(port_mmio + PHY_MODE4);
3453 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3454 	reg |= (0x1 << 16);
3455 	writel(reg, port_mmio + PHY_MODE4);
3456 
3457 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3458 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3459 	reg |= 0x8;
3460 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3461 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3462 
3463 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3464 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3465 	reg |= 0x8;
3466 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3467 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3468 }
3469 
3470 /**
3471  *	soc_is_65 - check if the soc is 65 nano device
3472  *
3473  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3474  *	register, this register should contain non-zero value and it exists only
3475  *	in the 65 nano devices, when reading it from older devices we get 0.
3476  */
3477 static bool soc_is_65n(struct mv_host_priv *hpriv)
3478 {
3479 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3480 
3481 	if (readl(port0_mmio + PHYCFG_OFS))
3482 		return true;
3483 	return false;
3484 }
3485 
3486 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3487 {
3488 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3489 
3490 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3491 	if (want_gen2i)
3492 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3493 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3494 }
3495 
3496 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3497 			     unsigned int port_no)
3498 {
3499 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3500 
3501 	/*
3502 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3503 	 * (but doesn't say what the problem might be).  So we first try
3504 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3505 	 */
3506 	mv_stop_edma_engine(port_mmio);
3507 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3508 
3509 	if (!IS_GEN_I(hpriv)) {
3510 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3511 		mv_setup_ifcfg(port_mmio, 1);
3512 	}
3513 	/*
3514 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3515 	 * link, and physical layers.  It resets all SATA interface registers
3516 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3517 	 */
3518 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3519 	udelay(25);	/* allow reset propagation */
3520 	writelfl(0, port_mmio + EDMA_CMD);
3521 
3522 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3523 
3524 	if (IS_GEN_I(hpriv))
3525 		mdelay(1);
3526 }
3527 
3528 static void mv_pmp_select(struct ata_port *ap, int pmp)
3529 {
3530 	if (sata_pmp_supported(ap)) {
3531 		void __iomem *port_mmio = mv_ap_base(ap);
3532 		u32 reg = readl(port_mmio + SATA_IFCTL);
3533 		int old = reg & 0xf;
3534 
3535 		if (old != pmp) {
3536 			reg = (reg & ~0xf) | pmp;
3537 			writelfl(reg, port_mmio + SATA_IFCTL);
3538 		}
3539 	}
3540 }
3541 
3542 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3543 				unsigned long deadline)
3544 {
3545 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3546 	return sata_std_hardreset(link, class, deadline);
3547 }
3548 
3549 static int mv_softreset(struct ata_link *link, unsigned int *class,
3550 				unsigned long deadline)
3551 {
3552 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3553 	return ata_sff_softreset(link, class, deadline);
3554 }
3555 
3556 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3557 			unsigned long deadline)
3558 {
3559 	struct ata_port *ap = link->ap;
3560 	struct mv_host_priv *hpriv = ap->host->private_data;
3561 	struct mv_port_priv *pp = ap->private_data;
3562 	void __iomem *mmio = hpriv->base;
3563 	int rc, attempts = 0, extra = 0;
3564 	u32 sstatus;
3565 	bool online;
3566 
3567 	mv_reset_channel(hpriv, mmio, ap->port_no);
3568 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3569 	pp->pp_flags &=
3570 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3571 
3572 	/* Workaround for errata FEr SATA#10 (part 2) */
3573 	do {
3574 		const unsigned long *timing =
3575 				sata_ehc_deb_timing(&link->eh_context);
3576 
3577 		rc = sata_link_hardreset(link, timing, deadline + extra,
3578 					 &online, NULL);
3579 		rc = online ? -EAGAIN : rc;
3580 		if (rc)
3581 			return rc;
3582 		sata_scr_read(link, SCR_STATUS, &sstatus);
3583 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3584 			/* Force 1.5gb/s link speed and try again */
3585 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3586 			if (time_after(jiffies + HZ, deadline))
3587 				extra = HZ; /* only extend it once, max */
3588 		}
3589 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3590 	mv_save_cached_regs(ap);
3591 	mv_edma_cfg(ap, 0, 0);
3592 
3593 	return rc;
3594 }
3595 
3596 static void mv_eh_freeze(struct ata_port *ap)
3597 {
3598 	mv_stop_edma(ap);
3599 	mv_enable_port_irqs(ap, 0);
3600 }
3601 
3602 static void mv_eh_thaw(struct ata_port *ap)
3603 {
3604 	struct mv_host_priv *hpriv = ap->host->private_data;
3605 	unsigned int port = ap->port_no;
3606 	unsigned int hardport = mv_hardport_from_port(port);
3607 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3608 	void __iomem *port_mmio = mv_ap_base(ap);
3609 	u32 hc_irq_cause;
3610 
3611 	/* clear EDMA errors on this port */
3612 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3613 
3614 	/* clear pending irq events */
3615 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3616 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3617 
3618 	mv_enable_port_irqs(ap, ERR_IRQ);
3619 }
3620 
3621 /**
3622  *      mv_port_init - Perform some early initialization on a single port.
3623  *      @port: libata data structure storing shadow register addresses
3624  *      @port_mmio: base address of the port
3625  *
3626  *      Initialize shadow register mmio addresses, clear outstanding
3627  *      interrupts on the port, and unmask interrupts for the future
3628  *      start of the port.
3629  *
3630  *      LOCKING:
3631  *      Inherited from caller.
3632  */
3633 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3634 {
3635 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3636 
3637 	/* PIO related setup
3638 	 */
3639 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3640 	port->error_addr =
3641 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3642 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3643 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3644 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3645 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3646 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3647 	port->status_addr =
3648 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3649 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3650 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3651 
3652 	/* unused: */
3653 	port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
3654 
3655 	/* Clear any currently outstanding port interrupt conditions */
3656 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3657 	writelfl(readl(serr), serr);
3658 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3659 
3660 	/* unmask all non-transient EDMA error interrupts */
3661 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3662 
3663 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3664 		readl(port_mmio + EDMA_CFG),
3665 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3666 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3667 }
3668 
3669 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3670 {
3671 	struct mv_host_priv *hpriv = host->private_data;
3672 	void __iomem *mmio = hpriv->base;
3673 	u32 reg;
3674 
3675 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3676 		return 0;	/* not PCI-X capable */
3677 	reg = readl(mmio + MV_PCI_MODE);
3678 	if ((reg & MV_PCI_MODE_MASK) == 0)
3679 		return 0;	/* conventional PCI mode */
3680 	return 1;	/* chip is in PCI-X mode */
3681 }
3682 
3683 static int mv_pci_cut_through_okay(struct ata_host *host)
3684 {
3685 	struct mv_host_priv *hpriv = host->private_data;
3686 	void __iomem *mmio = hpriv->base;
3687 	u32 reg;
3688 
3689 	if (!mv_in_pcix_mode(host)) {
3690 		reg = readl(mmio + MV_PCI_COMMAND);
3691 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3692 			return 0; /* not okay */
3693 	}
3694 	return 1; /* okay */
3695 }
3696 
3697 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3698 {
3699 	struct mv_host_priv *hpriv = host->private_data;
3700 	void __iomem *mmio = hpriv->base;
3701 
3702 	/* workaround for 60x1-B2 errata PCI#7 */
3703 	if (mv_in_pcix_mode(host)) {
3704 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3705 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3706 	}
3707 }
3708 
3709 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3710 {
3711 	struct pci_dev *pdev = to_pci_dev(host->dev);
3712 	struct mv_host_priv *hpriv = host->private_data;
3713 	u32 hp_flags = hpriv->hp_flags;
3714 
3715 	switch (board_idx) {
3716 	case chip_5080:
3717 		hpriv->ops = &mv5xxx_ops;
3718 		hp_flags |= MV_HP_GEN_I;
3719 
3720 		switch (pdev->revision) {
3721 		case 0x1:
3722 			hp_flags |= MV_HP_ERRATA_50XXB0;
3723 			break;
3724 		case 0x3:
3725 			hp_flags |= MV_HP_ERRATA_50XXB2;
3726 			break;
3727 		default:
3728 			dev_printk(KERN_WARNING, &pdev->dev,
3729 			   "Applying 50XXB2 workarounds to unknown rev\n");
3730 			hp_flags |= MV_HP_ERRATA_50XXB2;
3731 			break;
3732 		}
3733 		break;
3734 
3735 	case chip_504x:
3736 	case chip_508x:
3737 		hpriv->ops = &mv5xxx_ops;
3738 		hp_flags |= MV_HP_GEN_I;
3739 
3740 		switch (pdev->revision) {
3741 		case 0x0:
3742 			hp_flags |= MV_HP_ERRATA_50XXB0;
3743 			break;
3744 		case 0x3:
3745 			hp_flags |= MV_HP_ERRATA_50XXB2;
3746 			break;
3747 		default:
3748 			dev_printk(KERN_WARNING, &pdev->dev,
3749 			   "Applying B2 workarounds to unknown rev\n");
3750 			hp_flags |= MV_HP_ERRATA_50XXB2;
3751 			break;
3752 		}
3753 		break;
3754 
3755 	case chip_604x:
3756 	case chip_608x:
3757 		hpriv->ops = &mv6xxx_ops;
3758 		hp_flags |= MV_HP_GEN_II;
3759 
3760 		switch (pdev->revision) {
3761 		case 0x7:
3762 			mv_60x1b2_errata_pci7(host);
3763 			hp_flags |= MV_HP_ERRATA_60X1B2;
3764 			break;
3765 		case 0x9:
3766 			hp_flags |= MV_HP_ERRATA_60X1C0;
3767 			break;
3768 		default:
3769 			dev_printk(KERN_WARNING, &pdev->dev,
3770 				   "Applying B2 workarounds to unknown rev\n");
3771 			hp_flags |= MV_HP_ERRATA_60X1B2;
3772 			break;
3773 		}
3774 		break;
3775 
3776 	case chip_7042:
3777 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3778 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3779 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3780 		{
3781 			/*
3782 			 * Highpoint RocketRAID PCIe 23xx series cards:
3783 			 *
3784 			 * Unconfigured drives are treated as "Legacy"
3785 			 * by the BIOS, and it overwrites sector 8 with
3786 			 * a "Lgcy" metadata block prior to Linux boot.
3787 			 *
3788 			 * Configured drives (RAID or JBOD) leave sector 8
3789 			 * alone, but instead overwrite a high numbered
3790 			 * sector for the RAID metadata.  This sector can
3791 			 * be determined exactly, by truncating the physical
3792 			 * drive capacity to a nice even GB value.
3793 			 *
3794 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3795 			 *
3796 			 * Warn the user, lest they think we're just buggy.
3797 			 */
3798 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3799 				" BIOS CORRUPTS DATA on all attached drives,"
3800 				" regardless of if/how they are configured."
3801 				" BEWARE!\n");
3802 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3803 				" use sectors 8-9 on \"Legacy\" drives,"
3804 				" and avoid the final two gigabytes on"
3805 				" all RocketRAID BIOS initialized drives.\n");
3806 		}
3807 		/* drop through */
3808 	case chip_6042:
3809 		hpriv->ops = &mv6xxx_ops;
3810 		hp_flags |= MV_HP_GEN_IIE;
3811 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3812 			hp_flags |= MV_HP_CUT_THROUGH;
3813 
3814 		switch (pdev->revision) {
3815 		case 0x2: /* Rev.B0: the first/only public release */
3816 			hp_flags |= MV_HP_ERRATA_60X1C0;
3817 			break;
3818 		default:
3819 			dev_printk(KERN_WARNING, &pdev->dev,
3820 			   "Applying 60X1C0 workarounds to unknown rev\n");
3821 			hp_flags |= MV_HP_ERRATA_60X1C0;
3822 			break;
3823 		}
3824 		break;
3825 	case chip_soc:
3826 		if (soc_is_65n(hpriv))
3827 			hpriv->ops = &mv_soc_65n_ops;
3828 		else
3829 			hpriv->ops = &mv_soc_ops;
3830 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3831 			MV_HP_ERRATA_60X1C0;
3832 		break;
3833 
3834 	default:
3835 		dev_printk(KERN_ERR, host->dev,
3836 			   "BUG: invalid board index %u\n", board_idx);
3837 		return 1;
3838 	}
3839 
3840 	hpriv->hp_flags = hp_flags;
3841 	if (hp_flags & MV_HP_PCIE) {
3842 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3843 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3844 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3845 	} else {
3846 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3847 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3848 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3849 	}
3850 
3851 	return 0;
3852 }
3853 
3854 /**
3855  *      mv_init_host - Perform some early initialization of the host.
3856  *	@host: ATA host to initialize
3857  *      @board_idx: controller index
3858  *
3859  *      If possible, do an early global reset of the host.  Then do
3860  *      our port init and clear/unmask all/relevant host interrupts.
3861  *
3862  *      LOCKING:
3863  *      Inherited from caller.
3864  */
3865 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3866 {
3867 	int rc = 0, n_hc, port, hc;
3868 	struct mv_host_priv *hpriv = host->private_data;
3869 	void __iomem *mmio = hpriv->base;
3870 
3871 	rc = mv_chip_id(host, board_idx);
3872 	if (rc)
3873 		goto done;
3874 
3875 	if (IS_SOC(hpriv)) {
3876 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3877 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3878 	} else {
3879 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3880 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3881 	}
3882 
3883 	/* initialize shadow irq mask with register's value */
3884 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3885 
3886 	/* global interrupt mask: 0 == mask everything */
3887 	mv_set_main_irq_mask(host, ~0, 0);
3888 
3889 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3890 
3891 	for (port = 0; port < host->n_ports; port++)
3892 		if (hpriv->ops->read_preamp)
3893 			hpriv->ops->read_preamp(hpriv, port, mmio);
3894 
3895 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3896 	if (rc)
3897 		goto done;
3898 
3899 	hpriv->ops->reset_flash(hpriv, mmio);
3900 	hpriv->ops->reset_bus(host, mmio);
3901 	hpriv->ops->enable_leds(hpriv, mmio);
3902 
3903 	for (port = 0; port < host->n_ports; port++) {
3904 		struct ata_port *ap = host->ports[port];
3905 		void __iomem *port_mmio = mv_port_base(mmio, port);
3906 
3907 		mv_port_init(&ap->ioaddr, port_mmio);
3908 
3909 #ifdef CONFIG_PCI
3910 		if (!IS_SOC(hpriv)) {
3911 			unsigned int offset = port_mmio - mmio;
3912 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3913 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3914 		}
3915 #endif
3916 	}
3917 
3918 	for (hc = 0; hc < n_hc; hc++) {
3919 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3920 
3921 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3922 			"(before clear)=0x%08x\n", hc,
3923 			readl(hc_mmio + HC_CFG),
3924 			readl(hc_mmio + HC_IRQ_CAUSE));
3925 
3926 		/* Clear any currently outstanding hc interrupt conditions */
3927 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3928 	}
3929 
3930 	if (!IS_SOC(hpriv)) {
3931 		/* Clear any currently outstanding host interrupt conditions */
3932 		writelfl(0, mmio + hpriv->irq_cause_offset);
3933 
3934 		/* and unmask interrupt generation for host regs */
3935 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3936 	}
3937 
3938 	/*
3939 	 * enable only global host interrupts for now.
3940 	 * The per-port interrupts get done later as ports are set up.
3941 	 */
3942 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3943 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3944 				    irq_coalescing_usecs);
3945 done:
3946 	return rc;
3947 }
3948 
3949 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3950 {
3951 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3952 							     MV_CRQB_Q_SZ, 0);
3953 	if (!hpriv->crqb_pool)
3954 		return -ENOMEM;
3955 
3956 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3957 							     MV_CRPB_Q_SZ, 0);
3958 	if (!hpriv->crpb_pool)
3959 		return -ENOMEM;
3960 
3961 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3962 							     MV_SG_TBL_SZ, 0);
3963 	if (!hpriv->sg_tbl_pool)
3964 		return -ENOMEM;
3965 
3966 	return 0;
3967 }
3968 
3969 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3970 				 struct mbus_dram_target_info *dram)
3971 {
3972 	int i;
3973 
3974 	for (i = 0; i < 4; i++) {
3975 		writel(0, hpriv->base + WINDOW_CTRL(i));
3976 		writel(0, hpriv->base + WINDOW_BASE(i));
3977 	}
3978 
3979 	for (i = 0; i < dram->num_cs; i++) {
3980 		struct mbus_dram_window *cs = dram->cs + i;
3981 
3982 		writel(((cs->size - 1) & 0xffff0000) |
3983 			(cs->mbus_attr << 8) |
3984 			(dram->mbus_dram_target_id << 4) | 1,
3985 			hpriv->base + WINDOW_CTRL(i));
3986 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3987 	}
3988 }
3989 
3990 /**
3991  *      mv_platform_probe - handle a positive probe of an soc Marvell
3992  *      host
3993  *      @pdev: platform device found
3994  *
3995  *      LOCKING:
3996  *      Inherited from caller.
3997  */
3998 static int mv_platform_probe(struct platform_device *pdev)
3999 {
4000 	static int printed_version;
4001 	const struct mv_sata_platform_data *mv_platform_data;
4002 	const struct ata_port_info *ppi[] =
4003 	    { &mv_port_info[chip_soc], NULL };
4004 	struct ata_host *host;
4005 	struct mv_host_priv *hpriv;
4006 	struct resource *res;
4007 	int n_ports, rc;
4008 
4009 	if (!printed_version++)
4010 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4011 
4012 	/*
4013 	 * Simple resource validation ..
4014 	 */
4015 	if (unlikely(pdev->num_resources != 2)) {
4016 		dev_err(&pdev->dev, "invalid number of resources\n");
4017 		return -EINVAL;
4018 	}
4019 
4020 	/*
4021 	 * Get the register base first
4022 	 */
4023 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4024 	if (res == NULL)
4025 		return -EINVAL;
4026 
4027 	/* allocate host */
4028 	mv_platform_data = pdev->dev.platform_data;
4029 	n_ports = mv_platform_data->n_ports;
4030 
4031 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4032 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4033 
4034 	if (!host || !hpriv)
4035 		return -ENOMEM;
4036 	host->private_data = hpriv;
4037 	hpriv->n_ports = n_ports;
4038 
4039 	host->iomap = NULL;
4040 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4041 				   resource_size(res));
4042 	hpriv->base -= SATAHC0_REG_BASE;
4043 
4044 	/*
4045 	 * (Re-)program MBUS remapping windows if we are asked to.
4046 	 */
4047 	if (mv_platform_data->dram != NULL)
4048 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4049 
4050 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4051 	if (rc)
4052 		return rc;
4053 
4054 	/* initialize adapter */
4055 	rc = mv_init_host(host, chip_soc);
4056 	if (rc)
4057 		return rc;
4058 
4059 	dev_printk(KERN_INFO, &pdev->dev,
4060 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4061 		   host->n_ports);
4062 
4063 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4064 				 IRQF_SHARED, &mv6_sht);
4065 }
4066 
4067 /*
4068  *
4069  *      mv_platform_remove    -       unplug a platform interface
4070  *      @pdev: platform device
4071  *
4072  *      A platform bus SATA device has been unplugged. Perform the needed
4073  *      cleanup. Also called on module unload for any active devices.
4074  */
4075 static int __devexit mv_platform_remove(struct platform_device *pdev)
4076 {
4077 	struct device *dev = &pdev->dev;
4078 	struct ata_host *host = dev_get_drvdata(dev);
4079 
4080 	ata_host_detach(host);
4081 	return 0;
4082 }
4083 
4084 static struct platform_driver mv_platform_driver = {
4085 	.probe			= mv_platform_probe,
4086 	.remove			= __devexit_p(mv_platform_remove),
4087 	.driver			= {
4088 				   .name = DRV_NAME,
4089 				   .owner = THIS_MODULE,
4090 				  },
4091 };
4092 
4093 
4094 #ifdef CONFIG_PCI
4095 static int mv_pci_init_one(struct pci_dev *pdev,
4096 			   const struct pci_device_id *ent);
4097 
4098 
4099 static struct pci_driver mv_pci_driver = {
4100 	.name			= DRV_NAME,
4101 	.id_table		= mv_pci_tbl,
4102 	.probe			= mv_pci_init_one,
4103 	.remove			= ata_pci_remove_one,
4104 };
4105 
4106 /* move to PCI layer or libata core? */
4107 static int pci_go_64(struct pci_dev *pdev)
4108 {
4109 	int rc;
4110 
4111 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4112 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4113 		if (rc) {
4114 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4115 			if (rc) {
4116 				dev_printk(KERN_ERR, &pdev->dev,
4117 					   "64-bit DMA enable failed\n");
4118 				return rc;
4119 			}
4120 		}
4121 	} else {
4122 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4123 		if (rc) {
4124 			dev_printk(KERN_ERR, &pdev->dev,
4125 				   "32-bit DMA enable failed\n");
4126 			return rc;
4127 		}
4128 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4129 		if (rc) {
4130 			dev_printk(KERN_ERR, &pdev->dev,
4131 				   "32-bit consistent DMA enable failed\n");
4132 			return rc;
4133 		}
4134 	}
4135 
4136 	return rc;
4137 }
4138 
4139 /**
4140  *      mv_print_info - Dump key info to kernel log for perusal.
4141  *      @host: ATA host to print info about
4142  *
4143  *      FIXME: complete this.
4144  *
4145  *      LOCKING:
4146  *      Inherited from caller.
4147  */
4148 static void mv_print_info(struct ata_host *host)
4149 {
4150 	struct pci_dev *pdev = to_pci_dev(host->dev);
4151 	struct mv_host_priv *hpriv = host->private_data;
4152 	u8 scc;
4153 	const char *scc_s, *gen;
4154 
4155 	/* Use this to determine the HW stepping of the chip so we know
4156 	 * what errata to workaround
4157 	 */
4158 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4159 	if (scc == 0)
4160 		scc_s = "SCSI";
4161 	else if (scc == 0x01)
4162 		scc_s = "RAID";
4163 	else
4164 		scc_s = "?";
4165 
4166 	if (IS_GEN_I(hpriv))
4167 		gen = "I";
4168 	else if (IS_GEN_II(hpriv))
4169 		gen = "II";
4170 	else if (IS_GEN_IIE(hpriv))
4171 		gen = "IIE";
4172 	else
4173 		gen = "?";
4174 
4175 	dev_printk(KERN_INFO, &pdev->dev,
4176 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4177 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4178 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4179 }
4180 
4181 /**
4182  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4183  *      @pdev: PCI device found
4184  *      @ent: PCI device ID entry for the matched host
4185  *
4186  *      LOCKING:
4187  *      Inherited from caller.
4188  */
4189 static int mv_pci_init_one(struct pci_dev *pdev,
4190 			   const struct pci_device_id *ent)
4191 {
4192 	static int printed_version;
4193 	unsigned int board_idx = (unsigned int)ent->driver_data;
4194 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4195 	struct ata_host *host;
4196 	struct mv_host_priv *hpriv;
4197 	int n_ports, rc;
4198 
4199 	if (!printed_version++)
4200 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4201 
4202 	/* allocate host */
4203 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4204 
4205 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4206 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4207 	if (!host || !hpriv)
4208 		return -ENOMEM;
4209 	host->private_data = hpriv;
4210 	hpriv->n_ports = n_ports;
4211 
4212 	/* acquire resources */
4213 	rc = pcim_enable_device(pdev);
4214 	if (rc)
4215 		return rc;
4216 
4217 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4218 	if (rc == -EBUSY)
4219 		pcim_pin_device(pdev);
4220 	if (rc)
4221 		return rc;
4222 	host->iomap = pcim_iomap_table(pdev);
4223 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4224 
4225 	rc = pci_go_64(pdev);
4226 	if (rc)
4227 		return rc;
4228 
4229 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4230 	if (rc)
4231 		return rc;
4232 
4233 	/* initialize adapter */
4234 	rc = mv_init_host(host, board_idx);
4235 	if (rc)
4236 		return rc;
4237 
4238 	/* Enable message-switched interrupts, if requested */
4239 	if (msi && pci_enable_msi(pdev) == 0)
4240 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4241 
4242 	mv_dump_pci_cfg(pdev, 0x68);
4243 	mv_print_info(host);
4244 
4245 	pci_set_master(pdev);
4246 	pci_try_set_mwi(pdev);
4247 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4248 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4249 }
4250 #endif
4251 
4252 static int mv_platform_probe(struct platform_device *pdev);
4253 static int __devexit mv_platform_remove(struct platform_device *pdev);
4254 
4255 static int __init mv_init(void)
4256 {
4257 	int rc = -ENODEV;
4258 #ifdef CONFIG_PCI
4259 	rc = pci_register_driver(&mv_pci_driver);
4260 	if (rc < 0)
4261 		return rc;
4262 #endif
4263 	rc = platform_driver_register(&mv_platform_driver);
4264 
4265 #ifdef CONFIG_PCI
4266 	if (rc < 0)
4267 		pci_unregister_driver(&mv_pci_driver);
4268 #endif
4269 	return rc;
4270 }
4271 
4272 static void __exit mv_exit(void)
4273 {
4274 #ifdef CONFIG_PCI
4275 	pci_unregister_driver(&mv_pci_driver);
4276 #endif
4277 	platform_driver_unregister(&mv_platform_driver);
4278 }
4279 
4280 MODULE_AUTHOR("Brett Russ");
4281 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4282 MODULE_LICENSE("GPL");
4283 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4284 MODULE_VERSION(DRV_VERSION);
4285 MODULE_ALIAS("platform:" DRV_NAME);
4286 
4287 module_init(mv_init);
4288 module_exit(mv_exit);
4289