xref: /linux/drivers/ata/sata_mv.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sata_mv.c - Marvell SATA support
4  *
5  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6  * Copyright 2005: EMC Corporation, all rights reserved.
7  * Copyright 2005 Red Hat, Inc.  All rights reserved.
8  *
9  * Originally written by Brett Russ.
10  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11  *
12  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13  */
14 
15 /*
16  * sata_mv TODO list:
17  *
18  * --> Develop a low-power-consumption strategy, and implement it.
19  *
20  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21  *
22  * --> [Experiment, Marvell value added] Is it possible to use target
23  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
24  *       creating LibATA target mode support would be very interesting.
25  *
26  *       Target mode, for those without docs, is the ability to directly
27  *       connect two SATA ports.
28  */
29 
30 /*
31  * 80x1-B2 errata PCI#11:
32  *
33  * Users of the 6041/6081 Rev.B2 chips (current is C0)
34  * should be careful to insert those cards only onto PCI-X bus #0,
35  * and only in device slots 0..7, not higher.  The chips may not
36  * work correctly otherwise  (note: this is a pretty rare condition).
37  */
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62 
63 #define DRV_NAME	"sata_mv"
64 #define DRV_VERSION	"1.28"
65 
66 /*
67  * module options
68  */
69 
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75 
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 		 "IRQ coalescing I/O count threshold (0..255)");
80 
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 		 "IRQ coalescing time threshold in usecs");
85 
86 enum {
87 	/* BAR's are enumerated in terms of pci_resource_start() terms */
88 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
89 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
90 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
91 
92 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
93 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
94 
95 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
97 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
98 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
99 
100 	MV_PCI_REG_BASE		= 0,
101 
102 	/*
103 	 * Per-chip ("all ports") interrupt coalescing feature.
104 	 * This is only for GEN_II / GEN_IIE hardware.
105 	 *
106 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 	 */
109 	COAL_REG_BASE		= 0x18000,
110 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
111 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
112 
113 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
114 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115 
116 	/*
117 	 * Registers for the (unused here) transaction coalescing feature:
118 	 */
119 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
120 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
121 
122 	SATAHC0_REG_BASE	= 0x20000,
123 	FLASH_CTL		= 0x1046c,
124 	GPIO_PORT_CTL		= 0x104f0,
125 	RESET_CFG		= 0x180d8,
126 
127 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
128 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
129 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
130 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
131 
132 	MV_MAX_Q_DEPTH		= 32,
133 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
134 
135 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 	 * CRPB needs alignment on a 256B boundary. Size == 256B
137 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 	 */
139 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
140 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
141 	MV_MAX_SG_CT		= 256,
142 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
143 
144 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 	MV_PORT_HC_SHIFT	= 2,
146 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
147 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
149 
150 	/* Host Flags */
151 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
152 
153 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154 
155 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156 
157 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159 
160 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
161 
162 	CRQB_FLAG_READ		= (1 << 0),
163 	CRQB_TAG_SHIFT		= 1,
164 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
165 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
166 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
167 	CRQB_CMD_ADDR_SHIFT	= 8,
168 	CRQB_CMD_CS		= (0x2 << 11),
169 	CRQB_CMD_LAST		= (1 << 15),
170 
171 	CRPB_FLAG_STATUS_SHIFT	= 8,
172 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
173 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
174 
175 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
176 
177 	/* PCI interface registers */
178 
179 	MV_PCI_COMMAND		= 0xc00,
180 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
181 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
182 
183 	PCI_MAIN_CMD_STS	= 0xd30,
184 	STOP_PCI_MASTER		= (1 << 2),
185 	PCI_MASTER_EMPTY	= (1 << 3),
186 	GLOB_SFT_RST		= (1 << 4),
187 
188 	MV_PCI_MODE		= 0xd00,
189 	MV_PCI_MODE_MASK	= 0x30,
190 
191 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
192 	MV_PCI_DISC_TIMER	= 0xd04,
193 	MV_PCI_MSI_TRIGGER	= 0xc38,
194 	MV_PCI_SERR_MASK	= 0xc28,
195 	MV_PCI_XBAR_TMOUT	= 0x1d04,
196 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
197 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
198 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
199 	MV_PCI_ERR_COMMAND	= 0x1d50,
200 
201 	PCI_IRQ_CAUSE		= 0x1d58,
202 	PCI_IRQ_MASK		= 0x1d5c,
203 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
204 
205 	PCIE_IRQ_CAUSE		= 0x1900,
206 	PCIE_IRQ_MASK		= 0x1910,
207 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
208 
209 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
211 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
212 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
213 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
214 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
215 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
216 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
217 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
218 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
219 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
220 	PCI_ERR			= (1 << 18),
221 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
222 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
223 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
224 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
225 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
226 	GPIO_INT		= (1 << 22),
227 	SELF_INT		= (1 << 23),
228 	TWSI_INT		= (1 << 24),
229 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
230 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
231 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
232 
233 	/* SATAHC registers */
234 	HC_CFG			= 0x00,
235 
236 	HC_IRQ_CAUSE		= 0x14,
237 	DMA_IRQ			= (1 << 0),	/* shift by port # */
238 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
239 	DEV_IRQ			= (1 << 8),	/* shift by port # */
240 
241 	/*
242 	 * Per-HC (Host-Controller) interrupt coalescing feature.
243 	 * This is present on all chip generations.
244 	 *
245 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 	 */
248 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
249 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
250 
251 	SOC_LED_CTRL		= 0x2c,
252 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
253 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
254 						/*  with dev activity LED */
255 
256 	/* Shadow block registers */
257 	SHD_BLK			= 0x100,
258 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
259 
260 	/* SATA registers */
261 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
262 	SATA_ACTIVE		= 0x350,
263 	FIS_IRQ_CAUSE		= 0x364,
264 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
265 
266 	LTMODE			= 0x30c,	/* requires read-after-write */
267 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
268 
269 	PHY_MODE2		= 0x330,
270 	PHY_MODE3		= 0x310,
271 
272 	PHY_MODE4		= 0x314,	/* requires read-after-write */
273 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
274 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
275 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
276 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
277 
278 	SATA_IFCTL		= 0x344,
279 	SATA_TESTCTL		= 0x348,
280 	SATA_IFSTAT		= 0x34c,
281 	VENDOR_UNIQUE_FIS	= 0x35c,
282 
283 	FISCFG			= 0x360,
284 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
285 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
286 
287 	PHY_MODE9_GEN2		= 0x398,
288 	PHY_MODE9_GEN1		= 0x39c,
289 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
290 
291 	MV5_PHY_MODE		= 0x74,
292 	MV5_LTMODE		= 0x30,
293 	MV5_PHY_CTL		= 0x0C,
294 	SATA_IFCFG		= 0x050,
295 	LP_PHY_CTL		= 0x058,
296 	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
297 	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
298 	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
299 	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
300 	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
301 
302 	MV_M2_PREAMP_MASK	= 0x7e0,
303 
304 	/* Port registers */
305 	EDMA_CFG		= 0,
306 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
307 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
308 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
309 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
310 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
311 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
312 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
313 
314 	EDMA_ERR_IRQ_CAUSE	= 0x8,
315 	EDMA_ERR_IRQ_MASK	= 0xc,
316 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
317 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
318 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
319 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
320 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
321 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
322 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
323 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
324 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
325 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
326 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
327 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
328 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
329 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
330 
331 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
332 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
333 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
334 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
335 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
336 
337 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
338 
339 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
340 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
341 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
342 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
343 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
344 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
345 
346 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
347 
348 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
349 	EDMA_ERR_OVERRUN_5	= (1 << 5),
350 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
351 
352 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
353 				  EDMA_ERR_LNK_CTRL_RX_1 |
354 				  EDMA_ERR_LNK_CTRL_RX_3 |
355 				  EDMA_ERR_LNK_CTRL_TX,
356 
357 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
358 				  EDMA_ERR_PRD_PAR |
359 				  EDMA_ERR_DEV_DCON |
360 				  EDMA_ERR_DEV_CON |
361 				  EDMA_ERR_SERR |
362 				  EDMA_ERR_SELF_DIS |
363 				  EDMA_ERR_CRQB_PAR |
364 				  EDMA_ERR_CRPB_PAR |
365 				  EDMA_ERR_INTRL_PAR |
366 				  EDMA_ERR_IORDY |
367 				  EDMA_ERR_LNK_CTRL_RX_2 |
368 				  EDMA_ERR_LNK_DATA_RX |
369 				  EDMA_ERR_LNK_DATA_TX |
370 				  EDMA_ERR_TRANS_PROTO,
371 
372 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
373 				  EDMA_ERR_PRD_PAR |
374 				  EDMA_ERR_DEV_DCON |
375 				  EDMA_ERR_DEV_CON |
376 				  EDMA_ERR_OVERRUN_5 |
377 				  EDMA_ERR_UNDERRUN_5 |
378 				  EDMA_ERR_SELF_DIS_5 |
379 				  EDMA_ERR_CRQB_PAR |
380 				  EDMA_ERR_CRPB_PAR |
381 				  EDMA_ERR_INTRL_PAR |
382 				  EDMA_ERR_IORDY,
383 
384 	EDMA_REQ_Q_BASE_HI	= 0x10,
385 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
386 
387 	EDMA_REQ_Q_OUT_PTR	= 0x18,
388 	EDMA_REQ_Q_PTR_SHIFT	= 5,
389 
390 	EDMA_RSP_Q_BASE_HI	= 0x1c,
391 	EDMA_RSP_Q_IN_PTR	= 0x20,
392 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
393 	EDMA_RSP_Q_PTR_SHIFT	= 3,
394 
395 	EDMA_CMD		= 0x28,		/* EDMA command register */
396 	EDMA_EN			= (1 << 0),	/* enable EDMA */
397 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
398 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
399 
400 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
401 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
402 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
403 
404 	EDMA_IORDY_TMOUT	= 0x34,
405 	EDMA_ARB_CFG		= 0x38,
406 
407 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
408 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
409 
410 	BMDMA_CMD		= 0x224,	/* bmdma command register */
411 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
412 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
413 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
414 
415 	/* Host private flags (hp_flags) */
416 	MV_HP_FLAG_MSI		= (1 << 0),
417 	MV_HP_ERRATA_50XXB0	= (1 << 1),
418 	MV_HP_ERRATA_50XXB2	= (1 << 2),
419 	MV_HP_ERRATA_60X1B2	= (1 << 3),
420 	MV_HP_ERRATA_60X1C0	= (1 << 4),
421 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
422 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
423 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
424 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
425 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
426 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
427 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
428 	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
429 
430 	/* Port private flags (pp_flags) */
431 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
432 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
433 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
434 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
435 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
436 };
437 
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443 
444 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
446 
447 enum {
448 	/* DMA boundary 0xffff is required by the s/g splitting
449 	 * we need on /length/ in mv_fill-sg().
450 	 */
451 	MV_DMA_BOUNDARY		= 0xffffU,
452 
453 	/* mask of register bits containing lower 32 bits
454 	 * of EDMA request queue DMA address
455 	 */
456 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
457 
458 	/* ditto, for response queue */
459 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
460 };
461 
462 enum chip_type {
463 	chip_504x,
464 	chip_508x,
465 	chip_5080,
466 	chip_604x,
467 	chip_608x,
468 	chip_6042,
469 	chip_7042,
470 	chip_soc,
471 };
472 
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 	__le32			sg_addr;
476 	__le32			sg_addr_hi;
477 	__le16			ctrl_flags;
478 	__le16			ata_cmd[11];
479 };
480 
481 struct mv_crqb_iie {
482 	__le32			addr;
483 	__le32			addr_hi;
484 	__le32			flags;
485 	__le32			len;
486 	__le32			ata_cmd[4];
487 };
488 
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 	__le16			id;
492 	__le16			flags;
493 	__le32			tmstmp;
494 };
495 
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 	__le32			addr;
499 	__le32			flags_size;
500 	__le32			addr_hi;
501 	__le32			reserved;
502 };
503 
504 /*
505  * We keep a local cache of a few frequently accessed port
506  * registers here, to avoid having to read them (very slow)
507  * when switching between EDMA and non-EDMA modes.
508  */
509 struct mv_cached_regs {
510 	u32			fiscfg;
511 	u32			ltmode;
512 	u32			haltcond;
513 	u32			unknown_rsvd;
514 };
515 
516 struct mv_port_priv {
517 	struct mv_crqb		*crqb;
518 	dma_addr_t		crqb_dma;
519 	struct mv_crpb		*crpb;
520 	dma_addr_t		crpb_dma;
521 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
522 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
523 
524 	unsigned int		req_idx;
525 	unsigned int		resp_idx;
526 
527 	u32			pp_flags;
528 	struct mv_cached_regs	cached;
529 	unsigned int		delayed_eh_pmp_map;
530 };
531 
532 struct mv_port_signal {
533 	u32			amps;
534 	u32			pre;
535 };
536 
537 struct mv_host_priv {
538 	u32			hp_flags;
539 	unsigned int 		board_idx;
540 	u32			main_irq_mask;
541 	struct mv_port_signal	signal[8];
542 	const struct mv_hw_ops	*ops;
543 	int			n_ports;
544 	void __iomem		*base;
545 	void __iomem		*main_irq_cause_addr;
546 	void __iomem		*main_irq_mask_addr;
547 	u32			irq_cause_offset;
548 	u32			irq_mask_offset;
549 	u32			unmask_all_irqs;
550 
551 	/*
552 	 * Needed on some devices that require their clocks to be enabled.
553 	 * These are optional: if the platform device does not have any
554 	 * clocks, they won't be used.  Also, if the underlying hardware
555 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 	 * all the clock operations become no-ops (see clk.h).
557 	 */
558 	struct clk		*clk;
559 	struct clk              **port_clks;
560 	/*
561 	 * Some devices have a SATA PHY which can be enabled/disabled
562 	 * in order to save power. These are optional: if the platform
563 	 * devices does not have any phy, they won't be used.
564 	 */
565 	struct phy		**port_phys;
566 	/*
567 	 * These consistent DMA memory pools give us guaranteed
568 	 * alignment for hardware-accessed data structures,
569 	 * and less memory waste in accomplishing the alignment.
570 	 */
571 	struct dma_pool		*crqb_pool;
572 	struct dma_pool		*crpb_pool;
573 	struct dma_pool		*sg_tbl_pool;
574 };
575 
576 struct mv_hw_ops {
577 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 			   unsigned int port);
579 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 			   void __iomem *mmio);
582 	int (*reset_hc)(struct ata_host *host, void __iomem *mmio,
583 			unsigned int n_hc);
584 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587 
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 			unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603 
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 			   unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 			   void __iomem *mmio);
609 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
610 			unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613 
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 			   unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 			   void __iomem *mmio);
619 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
620 			unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 				      void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 				      void __iomem *mmio);
626 static int mv_soc_reset_hc(struct ata_host *host,
627 				  void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 				      void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 				  void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 			     unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639 
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 				unsigned long deadline);
643 static int  mv_softreset(struct ata_link *link, unsigned int *class,
644 				unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 					struct mv_port_priv *pp);
648 
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8   mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656 
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658  * because we have to allow room for worst case splitting of
659  * PRDs for 64K boundaries in mv_fill_sg().
660  */
661 #ifdef CONFIG_PCI
662 static const struct scsi_host_template mv5_sht = {
663 	ATA_BASE_SHT(DRV_NAME),
664 	.sg_tablesize		= MV_MAX_SG_CT / 2,
665 	.dma_boundary		= MV_DMA_BOUNDARY,
666 };
667 #endif
668 static const struct scsi_host_template mv6_sht = {
669 	__ATA_BASE_SHT(DRV_NAME),
670 	.can_queue		= MV_MAX_Q_DEPTH - 1,
671 	.sg_tablesize		= MV_MAX_SG_CT / 2,
672 	.dma_boundary		= MV_DMA_BOUNDARY,
673 	.sdev_groups		= ata_ncq_sdev_groups,
674 	.change_queue_depth	= ata_scsi_change_queue_depth,
675 	.tag_alloc_policy	= BLK_TAG_ALLOC_RR,
676 	.device_configure	= ata_scsi_device_configure
677 };
678 
679 static struct ata_port_operations mv5_ops = {
680 	.inherits		= &ata_sff_port_ops,
681 
682 	.lost_interrupt		= ATA_OP_NULL,
683 
684 	.qc_defer		= mv_qc_defer,
685 	.qc_prep		= mv_qc_prep,
686 	.qc_issue		= mv_qc_issue,
687 
688 	.freeze			= mv_eh_freeze,
689 	.thaw			= mv_eh_thaw,
690 	.hardreset		= mv_hardreset,
691 
692 	.scr_read		= mv5_scr_read,
693 	.scr_write		= mv5_scr_write,
694 
695 	.port_start		= mv_port_start,
696 	.port_stop		= mv_port_stop,
697 };
698 
699 static struct ata_port_operations mv6_ops = {
700 	.inherits		= &ata_bmdma_port_ops,
701 
702 	.lost_interrupt		= ATA_OP_NULL,
703 
704 	.qc_defer		= mv_qc_defer,
705 	.qc_prep		= mv_qc_prep,
706 	.qc_issue		= mv_qc_issue,
707 
708 	.dev_config             = mv6_dev_config,
709 
710 	.freeze			= mv_eh_freeze,
711 	.thaw			= mv_eh_thaw,
712 	.hardreset		= mv_hardreset,
713 	.softreset		= mv_softreset,
714 	.pmp_hardreset		= mv_pmp_hardreset,
715 	.pmp_softreset		= mv_softreset,
716 	.error_handler		= mv_pmp_error_handler,
717 
718 	.scr_read		= mv_scr_read,
719 	.scr_write		= mv_scr_write,
720 
721 	.sff_check_status	= mv_sff_check_status,
722 	.sff_irq_clear		= mv_sff_irq_clear,
723 	.check_atapi_dma	= mv_check_atapi_dma,
724 	.bmdma_setup		= mv_bmdma_setup,
725 	.bmdma_start		= mv_bmdma_start,
726 	.bmdma_stop		= mv_bmdma_stop,
727 	.bmdma_status		= mv_bmdma_status,
728 
729 	.port_start		= mv_port_start,
730 	.port_stop		= mv_port_stop,
731 };
732 
733 static struct ata_port_operations mv_iie_ops = {
734 	.inherits		= &mv6_ops,
735 	.dev_config		= ATA_OP_NULL,
736 	.qc_prep		= mv_qc_prep_iie,
737 };
738 
739 static const struct ata_port_info mv_port_info[] = {
740 	{  /* chip_504x */
741 		.flags		= MV_GEN_I_FLAGS,
742 		.pio_mask	= ATA_PIO4,
743 		.udma_mask	= ATA_UDMA6,
744 		.port_ops	= &mv5_ops,
745 	},
746 	{  /* chip_508x */
747 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
748 		.pio_mask	= ATA_PIO4,
749 		.udma_mask	= ATA_UDMA6,
750 		.port_ops	= &mv5_ops,
751 	},
752 	{  /* chip_5080 */
753 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
754 		.pio_mask	= ATA_PIO4,
755 		.udma_mask	= ATA_UDMA6,
756 		.port_ops	= &mv5_ops,
757 	},
758 	{  /* chip_604x */
759 		.flags		= MV_GEN_II_FLAGS,
760 		.pio_mask	= ATA_PIO4,
761 		.udma_mask	= ATA_UDMA6,
762 		.port_ops	= &mv6_ops,
763 	},
764 	{  /* chip_608x */
765 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
766 		.pio_mask	= ATA_PIO4,
767 		.udma_mask	= ATA_UDMA6,
768 		.port_ops	= &mv6_ops,
769 	},
770 	{  /* chip_6042 */
771 		.flags		= MV_GEN_IIE_FLAGS,
772 		.pio_mask	= ATA_PIO4,
773 		.udma_mask	= ATA_UDMA6,
774 		.port_ops	= &mv_iie_ops,
775 	},
776 	{  /* chip_7042 */
777 		.flags		= MV_GEN_IIE_FLAGS,
778 		.pio_mask	= ATA_PIO4,
779 		.udma_mask	= ATA_UDMA6,
780 		.port_ops	= &mv_iie_ops,
781 	},
782 	{  /* chip_soc */
783 		.flags		= MV_GEN_IIE_FLAGS,
784 		.pio_mask	= ATA_PIO4,
785 		.udma_mask	= ATA_UDMA6,
786 		.port_ops	= &mv_iie_ops,
787 	},
788 };
789 
790 static const struct mv_hw_ops mv5xxx_ops = {
791 	.phy_errata		= mv5_phy_errata,
792 	.enable_leds		= mv5_enable_leds,
793 	.read_preamp		= mv5_read_preamp,
794 	.reset_hc		= mv5_reset_hc,
795 	.reset_flash		= mv5_reset_flash,
796 	.reset_bus		= mv5_reset_bus,
797 };
798 
799 static const struct mv_hw_ops mv6xxx_ops = {
800 	.phy_errata		= mv6_phy_errata,
801 	.enable_leds		= mv6_enable_leds,
802 	.read_preamp		= mv6_read_preamp,
803 	.reset_hc		= mv6_reset_hc,
804 	.reset_flash		= mv6_reset_flash,
805 	.reset_bus		= mv_reset_pci_bus,
806 };
807 
808 static const struct mv_hw_ops mv_soc_ops = {
809 	.phy_errata		= mv6_phy_errata,
810 	.enable_leds		= mv_soc_enable_leds,
811 	.read_preamp		= mv_soc_read_preamp,
812 	.reset_hc		= mv_soc_reset_hc,
813 	.reset_flash		= mv_soc_reset_flash,
814 	.reset_bus		= mv_soc_reset_bus,
815 };
816 
817 static const struct mv_hw_ops mv_soc_65n_ops = {
818 	.phy_errata		= mv_soc_65n_phy_errata,
819 	.enable_leds		= mv_soc_enable_leds,
820 	.reset_hc		= mv_soc_reset_hc,
821 	.reset_flash		= mv_soc_reset_flash,
822 	.reset_bus		= mv_soc_reset_bus,
823 };
824 
825 /*
826  * Functions
827  */
828 
829 static inline void writelfl(unsigned long data, void __iomem *addr)
830 {
831 	writel(data, addr);
832 	(void) readl(addr);	/* flush to avoid PCI posted write */
833 }
834 
835 static inline unsigned int mv_hc_from_port(unsigned int port)
836 {
837 	return port >> MV_PORT_HC_SHIFT;
838 }
839 
840 static inline unsigned int mv_hardport_from_port(unsigned int port)
841 {
842 	return port & MV_PORT_MASK;
843 }
844 
845 /*
846  * Consolidate some rather tricky bit shift calculations.
847  * This is hot-path stuff, so not a function.
848  * Simple code, with two return values, so macro rather than inline.
849  *
850  * port is the sole input, in range 0..7.
851  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
852  * hardport is the other output, in range 0..3.
853  *
854  * Note that port and hardport may be the same variable in some cases.
855  */
856 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
857 {								\
858 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
859 	hardport = mv_hardport_from_port(port);			\
860 	shift   += hardport * 2;				\
861 }
862 
863 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
864 {
865 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
866 }
867 
868 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
869 						 unsigned int port)
870 {
871 	return mv_hc_base(base, mv_hc_from_port(port));
872 }
873 
874 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
875 {
876 	return  mv_hc_base_from_port(base, port) +
877 		MV_SATAHC_ARBTR_REG_SZ +
878 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
879 }
880 
881 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
882 {
883 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
884 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
885 
886 	return hc_mmio + ofs;
887 }
888 
889 static inline void __iomem *mv_host_base(struct ata_host *host)
890 {
891 	struct mv_host_priv *hpriv = host->private_data;
892 	return hpriv->base;
893 }
894 
895 static inline void __iomem *mv_ap_base(struct ata_port *ap)
896 {
897 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
898 }
899 
900 static inline int mv_get_hc_count(unsigned long port_flags)
901 {
902 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
903 }
904 
905 /**
906  *      mv_save_cached_regs - (re-)initialize cached port registers
907  *      @ap: the port whose registers we are caching
908  *
909  *	Initialize the local cache of port registers,
910  *	so that reading them over and over again can
911  *	be avoided on the hotter paths of this driver.
912  *	This saves a few microseconds each time we switch
913  *	to/from EDMA mode to perform (eg.) a drive cache flush.
914  */
915 static void mv_save_cached_regs(struct ata_port *ap)
916 {
917 	void __iomem *port_mmio = mv_ap_base(ap);
918 	struct mv_port_priv *pp = ap->private_data;
919 
920 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
921 	pp->cached.ltmode = readl(port_mmio + LTMODE);
922 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
923 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
924 }
925 
926 /**
927  *      mv_write_cached_reg - write to a cached port register
928  *      @addr: hardware address of the register
929  *      @old: pointer to cached value of the register
930  *      @new: new value for the register
931  *
932  *	Write a new value to a cached register,
933  *	but only if the value is different from before.
934  */
935 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
936 {
937 	if (new != *old) {
938 		unsigned long laddr;
939 		*old = new;
940 		/*
941 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
942 		 * Read-after-write is needed to prevent generating 64-bit
943 		 * write cycles on the PCI bus for SATA interface registers
944 		 * at offsets ending in 0x4 or 0xc.
945 		 *
946 		 * Looks like a lot of fuss, but it avoids an unnecessary
947 		 * +1 usec read-after-write delay for unaffected registers.
948 		 */
949 		laddr = (unsigned long)addr & 0xffff;
950 		if (laddr >= 0x300 && laddr <= 0x33c) {
951 			laddr &= 0x000f;
952 			if (laddr == 0x4 || laddr == 0xc) {
953 				writelfl(new, addr); /* read after write */
954 				return;
955 			}
956 		}
957 		writel(new, addr); /* unaffected by the errata */
958 	}
959 }
960 
961 static void mv_set_edma_ptrs(void __iomem *port_mmio,
962 			     struct mv_host_priv *hpriv,
963 			     struct mv_port_priv *pp)
964 {
965 	u32 index;
966 
967 	/*
968 	 * initialize request queue
969 	 */
970 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
971 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
972 
973 	WARN_ON(pp->crqb_dma & 0x3ff);
974 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
975 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
976 		 port_mmio + EDMA_REQ_Q_IN_PTR);
977 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
978 
979 	/*
980 	 * initialize response queue
981 	 */
982 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
983 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
984 
985 	WARN_ON(pp->crpb_dma & 0xff);
986 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
987 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
988 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
989 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
990 }
991 
992 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
993 {
994 	/*
995 	 * When writing to the main_irq_mask in hardware,
996 	 * we must ensure exclusivity between the interrupt coalescing bits
997 	 * and the corresponding individual port DONE_IRQ bits.
998 	 *
999 	 * Note that this register is really an "IRQ enable" register,
1000 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1001 	 */
1002 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1003 		mask &= ~DONE_IRQ_0_3;
1004 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1005 		mask &= ~DONE_IRQ_4_7;
1006 	writelfl(mask, hpriv->main_irq_mask_addr);
1007 }
1008 
1009 static void mv_set_main_irq_mask(struct ata_host *host,
1010 				 u32 disable_bits, u32 enable_bits)
1011 {
1012 	struct mv_host_priv *hpriv = host->private_data;
1013 	u32 old_mask, new_mask;
1014 
1015 	old_mask = hpriv->main_irq_mask;
1016 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1017 	if (new_mask != old_mask) {
1018 		hpriv->main_irq_mask = new_mask;
1019 		mv_write_main_irq_mask(new_mask, hpriv);
1020 	}
1021 }
1022 
1023 static void mv_enable_port_irqs(struct ata_port *ap,
1024 				     unsigned int port_bits)
1025 {
1026 	unsigned int shift, hardport, port = ap->port_no;
1027 	u32 disable_bits, enable_bits;
1028 
1029 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1030 
1031 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1032 	enable_bits  = port_bits << shift;
1033 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1034 }
1035 
1036 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1037 					  void __iomem *port_mmio,
1038 					  unsigned int port_irqs)
1039 {
1040 	struct mv_host_priv *hpriv = ap->host->private_data;
1041 	int hardport = mv_hardport_from_port(ap->port_no);
1042 	void __iomem *hc_mmio = mv_hc_base_from_port(
1043 				mv_host_base(ap->host), ap->port_no);
1044 	u32 hc_irq_cause;
1045 
1046 	/* clear EDMA event indicators, if any */
1047 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1048 
1049 	/* clear pending irq events */
1050 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1051 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1052 
1053 	/* clear FIS IRQ Cause */
1054 	if (IS_GEN_IIE(hpriv))
1055 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1056 
1057 	mv_enable_port_irqs(ap, port_irqs);
1058 }
1059 
1060 static void mv_set_irq_coalescing(struct ata_host *host,
1061 				  unsigned int count, unsigned int usecs)
1062 {
1063 	struct mv_host_priv *hpriv = host->private_data;
1064 	void __iomem *mmio = hpriv->base, *hc_mmio;
1065 	u32 coal_enable = 0;
1066 	unsigned long flags;
1067 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1068 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1069 							ALL_PORTS_COAL_DONE;
1070 
1071 	/* Disable IRQ coalescing if either threshold is zero */
1072 	if (!usecs || !count) {
1073 		clks = count = 0;
1074 	} else {
1075 		/* Respect maximum limits of the hardware */
1076 		clks = usecs * COAL_CLOCKS_PER_USEC;
1077 		if (clks > MAX_COAL_TIME_THRESHOLD)
1078 			clks = MAX_COAL_TIME_THRESHOLD;
1079 		if (count > MAX_COAL_IO_COUNT)
1080 			count = MAX_COAL_IO_COUNT;
1081 	}
1082 
1083 	spin_lock_irqsave(&host->lock, flags);
1084 	mv_set_main_irq_mask(host, coal_disable, 0);
1085 
1086 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1087 		/*
1088 		 * GEN_II/GEN_IIE with dual host controllers:
1089 		 * one set of global thresholds for the entire chip.
1090 		 */
1091 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1092 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1093 		/* clear leftover coal IRQ bit */
1094 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1095 		if (count)
1096 			coal_enable = ALL_PORTS_COAL_DONE;
1097 		clks = count = 0; /* force clearing of regular regs below */
1098 	}
1099 
1100 	/*
1101 	 * All chips: independent thresholds for each HC on the chip.
1102 	 */
1103 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1104 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1105 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1106 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1107 	if (count)
1108 		coal_enable |= PORTS_0_3_COAL_DONE;
1109 	if (is_dual_hc) {
1110 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1111 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1112 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1113 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1114 		if (count)
1115 			coal_enable |= PORTS_4_7_COAL_DONE;
1116 	}
1117 
1118 	mv_set_main_irq_mask(host, 0, coal_enable);
1119 	spin_unlock_irqrestore(&host->lock, flags);
1120 }
1121 
1122 /*
1123  *      mv_start_edma - Enable eDMA engine
1124  *      @pp: port private data
1125  *
1126  *      Verify the local cache of the eDMA state is accurate with a
1127  *      WARN_ON.
1128  *
1129  *      LOCKING:
1130  *      Inherited from caller.
1131  */
1132 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1133 			 struct mv_port_priv *pp, u8 protocol)
1134 {
1135 	int want_ncq = (protocol == ATA_PROT_NCQ);
1136 
1137 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1138 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1139 		if (want_ncq != using_ncq)
1140 			mv_stop_edma(ap);
1141 	}
1142 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1143 		struct mv_host_priv *hpriv = ap->host->private_data;
1144 
1145 		mv_edma_cfg(ap, want_ncq, 1);
1146 
1147 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1148 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1149 
1150 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1151 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1152 	}
1153 }
1154 
1155 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1156 {
1157 	void __iomem *port_mmio = mv_ap_base(ap);
1158 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1159 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1160 	int i;
1161 
1162 	/*
1163 	 * Wait for the EDMA engine to finish transactions in progress.
1164 	 * No idea what a good "timeout" value might be, but measurements
1165 	 * indicate that it often requires hundreds of microseconds
1166 	 * with two drives in-use.  So we use the 15msec value above
1167 	 * as a rough guess at what even more drives might require.
1168 	 */
1169 	for (i = 0; i < timeout; ++i) {
1170 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1171 		if ((edma_stat & empty_idle) == empty_idle)
1172 			break;
1173 		udelay(per_loop);
1174 	}
1175 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1176 }
1177 
1178 /**
1179  *      mv_stop_edma_engine - Disable eDMA engine
1180  *      @port_mmio: io base address
1181  *
1182  *      LOCKING:
1183  *      Inherited from caller.
1184  */
1185 static int mv_stop_edma_engine(void __iomem *port_mmio)
1186 {
1187 	int i;
1188 
1189 	/* Disable eDMA.  The disable bit auto clears. */
1190 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1191 
1192 	/* Wait for the chip to confirm eDMA is off. */
1193 	for (i = 10000; i > 0; i--) {
1194 		u32 reg = readl(port_mmio + EDMA_CMD);
1195 		if (!(reg & EDMA_EN))
1196 			return 0;
1197 		udelay(10);
1198 	}
1199 	return -EIO;
1200 }
1201 
1202 static int mv_stop_edma(struct ata_port *ap)
1203 {
1204 	void __iomem *port_mmio = mv_ap_base(ap);
1205 	struct mv_port_priv *pp = ap->private_data;
1206 	int err = 0;
1207 
1208 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1209 		return 0;
1210 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1211 	mv_wait_for_edma_empty_idle(ap);
1212 	if (mv_stop_edma_engine(port_mmio)) {
1213 		ata_port_err(ap, "Unable to stop eDMA\n");
1214 		err = -EIO;
1215 	}
1216 	mv_edma_cfg(ap, 0, 0);
1217 	return err;
1218 }
1219 
1220 static void mv_dump_mem(struct device *dev, void __iomem *start, unsigned bytes)
1221 {
1222 	int b, w, o;
1223 	unsigned char linebuf[38];
1224 
1225 	for (b = 0; b < bytes; ) {
1226 		for (w = 0, o = 0; b < bytes && w < 4; w++) {
1227 			o += scnprintf(linebuf + o, sizeof(linebuf) - o,
1228 				       "%08x ", readl(start + b));
1229 			b += sizeof(u32);
1230 		}
1231 		dev_dbg(dev, "%s: %p: %s\n",
1232 			__func__, start + b, linebuf);
1233 	}
1234 }
1235 
1236 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1237 {
1238 	int b, w, o;
1239 	u32 dw = 0;
1240 	unsigned char linebuf[38];
1241 
1242 	for (b = 0; b < bytes; ) {
1243 		for (w = 0, o = 0; b < bytes && w < 4; w++) {
1244 			(void) pci_read_config_dword(pdev, b, &dw);
1245 			o += snprintf(linebuf + o, sizeof(linebuf) - o,
1246 				      "%08x ", dw);
1247 			b += sizeof(u32);
1248 		}
1249 		dev_dbg(&pdev->dev, "%s: %02x: %s\n",
1250 			__func__, b, linebuf);
1251 	}
1252 }
1253 
1254 static void mv_dump_all_regs(void __iomem *mmio_base,
1255 			     struct pci_dev *pdev)
1256 {
1257 	void __iomem *hc_base;
1258 	void __iomem *port_base;
1259 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1260 
1261 	start_hc = start_port = 0;
1262 	num_ports = 8;		/* should be benign for 4 port devs */
1263 	num_hcs = 2;
1264 	dev_dbg(&pdev->dev,
1265 		"%s: All registers for port(s) %u-%u:\n", __func__,
1266 		start_port, num_ports > 1 ? num_ports - 1 : start_port);
1267 
1268 	dev_dbg(&pdev->dev, "%s: PCI config space regs:\n", __func__);
1269 	mv_dump_pci_cfg(pdev, 0x68);
1270 
1271 	dev_dbg(&pdev->dev, "%s: PCI regs:\n", __func__);
1272 	mv_dump_mem(&pdev->dev, mmio_base+0xc00, 0x3c);
1273 	mv_dump_mem(&pdev->dev, mmio_base+0xd00, 0x34);
1274 	mv_dump_mem(&pdev->dev, mmio_base+0xf00, 0x4);
1275 	mv_dump_mem(&pdev->dev, mmio_base+0x1d00, 0x6c);
1276 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1277 		hc_base = mv_hc_base(mmio_base, hc);
1278 		dev_dbg(&pdev->dev, "%s: HC regs (HC %i):\n", __func__, hc);
1279 		mv_dump_mem(&pdev->dev, hc_base, 0x1c);
1280 	}
1281 	for (p = start_port; p < start_port + num_ports; p++) {
1282 		port_base = mv_port_base(mmio_base, p);
1283 		dev_dbg(&pdev->dev, "%s: EDMA regs (port %i):\n", __func__, p);
1284 		mv_dump_mem(&pdev->dev, port_base, 0x54);
1285 		dev_dbg(&pdev->dev, "%s: SATA regs (port %i):\n", __func__, p);
1286 		mv_dump_mem(&pdev->dev, port_base+0x300, 0x60);
1287 	}
1288 }
1289 
1290 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1291 {
1292 	unsigned int ofs;
1293 
1294 	switch (sc_reg_in) {
1295 	case SCR_STATUS:
1296 	case SCR_CONTROL:
1297 	case SCR_ERROR:
1298 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1299 		break;
1300 	case SCR_ACTIVE:
1301 		ofs = SATA_ACTIVE;   /* active is not with the others */
1302 		break;
1303 	default:
1304 		ofs = 0xffffffffU;
1305 		break;
1306 	}
1307 	return ofs;
1308 }
1309 
1310 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1311 {
1312 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1313 
1314 	if (ofs != 0xffffffffU) {
1315 		*val = readl(mv_ap_base(link->ap) + ofs);
1316 		return 0;
1317 	} else
1318 		return -EINVAL;
1319 }
1320 
1321 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1322 {
1323 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1324 
1325 	if (ofs != 0xffffffffU) {
1326 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1327 		struct mv_host_priv *hpriv = link->ap->host->private_data;
1328 		if (sc_reg_in == SCR_CONTROL) {
1329 			/*
1330 			 * Workaround for 88SX60x1 FEr SATA#26:
1331 			 *
1332 			 * COMRESETs have to take care not to accidentally
1333 			 * put the drive to sleep when writing SCR_CONTROL.
1334 			 * Setting bits 12..15 prevents this problem.
1335 			 *
1336 			 * So if we see an outbound COMMRESET, set those bits.
1337 			 * Ditto for the followup write that clears the reset.
1338 			 *
1339 			 * The proprietary driver does this for
1340 			 * all chip versions, and so do we.
1341 			 */
1342 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1343 				val |= 0xf000;
1344 
1345 			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1346 				void __iomem *lp_phy_addr =
1347 					mv_ap_base(link->ap) + LP_PHY_CTL;
1348 				/*
1349 				 * Set PHY speed according to SControl speed.
1350 				 */
1351 				u32 lp_phy_val =
1352 					LP_PHY_CTL_PIN_PU_PLL |
1353 					LP_PHY_CTL_PIN_PU_RX  |
1354 					LP_PHY_CTL_PIN_PU_TX;
1355 
1356 				if ((val & 0xf0) != 0x10)
1357 					lp_phy_val |=
1358 						LP_PHY_CTL_GEN_TX_3G |
1359 						LP_PHY_CTL_GEN_RX_3G;
1360 
1361 				writelfl(lp_phy_val, lp_phy_addr);
1362 			}
1363 		}
1364 		writelfl(val, addr);
1365 		return 0;
1366 	} else
1367 		return -EINVAL;
1368 }
1369 
1370 static void mv6_dev_config(struct ata_device *adev)
1371 {
1372 	/*
1373 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1374 	 *
1375 	 * Gen-II does not support NCQ over a port multiplier
1376 	 *  (no FIS-based switching).
1377 	 */
1378 	if (adev->flags & ATA_DFLAG_NCQ) {
1379 		if (sata_pmp_attached(adev->link->ap)) {
1380 			adev->flags &= ~ATA_DFLAG_NCQ;
1381 			ata_dev_info(adev,
1382 				"NCQ disabled for command-based switching\n");
1383 		}
1384 	}
1385 }
1386 
1387 static int mv_qc_defer(struct ata_queued_cmd *qc)
1388 {
1389 	struct ata_link *link = qc->dev->link;
1390 	struct ata_port *ap = link->ap;
1391 	struct mv_port_priv *pp = ap->private_data;
1392 
1393 	/*
1394 	 * Don't allow new commands if we're in a delayed EH state
1395 	 * for NCQ and/or FIS-based switching.
1396 	 */
1397 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1398 		return ATA_DEFER_PORT;
1399 
1400 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1401 	 * can run concurrently.
1402 	 * set excl_link when we want to send a PIO command in DMA mode
1403 	 * or a non-NCQ command in NCQ mode.
1404 	 * When we receive a command from that link, and there are no
1405 	 * outstanding commands, mark a flag to clear excl_link and let
1406 	 * the command go through.
1407 	 */
1408 	if (unlikely(ap->excl_link)) {
1409 		if (link == ap->excl_link) {
1410 			if (ap->nr_active_links)
1411 				return ATA_DEFER_PORT;
1412 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1413 			return 0;
1414 		} else
1415 			return ATA_DEFER_PORT;
1416 	}
1417 
1418 	/*
1419 	 * If the port is completely idle, then allow the new qc.
1420 	 */
1421 	if (ap->nr_active_links == 0)
1422 		return 0;
1423 
1424 	/*
1425 	 * The port is operating in host queuing mode (EDMA) with NCQ
1426 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1427 	 * queueing multiple DMA commands but libata core currently
1428 	 * doesn't allow it.
1429 	 */
1430 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1431 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1432 		if (ata_is_ncq(qc->tf.protocol))
1433 			return 0;
1434 		else {
1435 			ap->excl_link = link;
1436 			return ATA_DEFER_PORT;
1437 		}
1438 	}
1439 
1440 	return ATA_DEFER_PORT;
1441 }
1442 
1443 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1444 {
1445 	struct mv_port_priv *pp = ap->private_data;
1446 	void __iomem *port_mmio;
1447 
1448 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1449 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1450 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1451 
1452 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1453 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1454 
1455 	if (want_fbs) {
1456 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1457 		ltmode = *old_ltmode | LTMODE_BIT8;
1458 		if (want_ncq)
1459 			haltcond &= ~EDMA_ERR_DEV;
1460 		else
1461 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1462 	} else {
1463 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1464 	}
1465 
1466 	port_mmio = mv_ap_base(ap);
1467 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1468 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1469 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1470 }
1471 
1472 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1473 {
1474 	struct mv_host_priv *hpriv = ap->host->private_data;
1475 	u32 old, new;
1476 
1477 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1478 	old = readl(hpriv->base + GPIO_PORT_CTL);
1479 	if (want_ncq)
1480 		new = old | (1 << 22);
1481 	else
1482 		new = old & ~(1 << 22);
1483 	if (new != old)
1484 		writel(new, hpriv->base + GPIO_PORT_CTL);
1485 }
1486 
1487 /*
1488  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1489  *	@ap: Port being initialized
1490  *
1491  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1492  *
1493  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1494  *	of basic DMA on the GEN_IIE versions of the chips.
1495  *
1496  *	This bit survives EDMA resets, and must be set for basic DMA
1497  *	to function, and should be cleared when EDMA is active.
1498  */
1499 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1500 {
1501 	struct mv_port_priv *pp = ap->private_data;
1502 	u32 new, *old = &pp->cached.unknown_rsvd;
1503 
1504 	if (enable_bmdma)
1505 		new = *old | 1;
1506 	else
1507 		new = *old & ~1;
1508 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1509 }
1510 
1511 /*
1512  * SOC chips have an issue whereby the HDD LEDs don't always blink
1513  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1514  * of the SOC takes care of it, generating a steady blink rate when
1515  * any drive on the chip is active.
1516  *
1517  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1518  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1519  *
1520  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1521  * LED operation works then, and provides better (more accurate) feedback.
1522  *
1523  * Note that this code assumes that an SOC never has more than one HC onboard.
1524  */
1525 static void mv_soc_led_blink_enable(struct ata_port *ap)
1526 {
1527 	struct ata_host *host = ap->host;
1528 	struct mv_host_priv *hpriv = host->private_data;
1529 	void __iomem *hc_mmio;
1530 	u32 led_ctrl;
1531 
1532 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1533 		return;
1534 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1535 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1536 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1537 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1538 }
1539 
1540 static void mv_soc_led_blink_disable(struct ata_port *ap)
1541 {
1542 	struct ata_host *host = ap->host;
1543 	struct mv_host_priv *hpriv = host->private_data;
1544 	void __iomem *hc_mmio;
1545 	u32 led_ctrl;
1546 	unsigned int port;
1547 
1548 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1549 		return;
1550 
1551 	/* disable led-blink only if no ports are using NCQ */
1552 	for (port = 0; port < hpriv->n_ports; port++) {
1553 		struct ata_port *this_ap = host->ports[port];
1554 		struct mv_port_priv *pp = this_ap->private_data;
1555 
1556 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1557 			return;
1558 	}
1559 
1560 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1561 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1562 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1563 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1564 }
1565 
1566 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1567 {
1568 	u32 cfg;
1569 	struct mv_port_priv *pp    = ap->private_data;
1570 	struct mv_host_priv *hpriv = ap->host->private_data;
1571 	void __iomem *port_mmio    = mv_ap_base(ap);
1572 
1573 	/* set up non-NCQ EDMA configuration */
1574 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1575 	pp->pp_flags &=
1576 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1577 
1578 	if (IS_GEN_I(hpriv))
1579 		cfg |= (1 << 8);	/* enab config burst size mask */
1580 
1581 	else if (IS_GEN_II(hpriv)) {
1582 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1583 		mv_60x1_errata_sata25(ap, want_ncq);
1584 
1585 	} else if (IS_GEN_IIE(hpriv)) {
1586 		int want_fbs = sata_pmp_attached(ap);
1587 		/*
1588 		 * Possible future enhancement:
1589 		 *
1590 		 * The chip can use FBS with non-NCQ, if we allow it,
1591 		 * But first we need to have the error handling in place
1592 		 * for this mode (datasheet section 7.3.15.4.2.3).
1593 		 * So disallow non-NCQ FBS for now.
1594 		 */
1595 		want_fbs &= want_ncq;
1596 
1597 		mv_config_fbs(ap, want_ncq, want_fbs);
1598 
1599 		if (want_fbs) {
1600 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1601 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1602 		}
1603 
1604 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1605 		if (want_edma) {
1606 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1607 			if (!IS_SOC(hpriv))
1608 				cfg |= (1 << 18); /* enab early completion */
1609 		}
1610 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1611 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1612 		mv_bmdma_enable_iie(ap, !want_edma);
1613 
1614 		if (IS_SOC(hpriv)) {
1615 			if (want_ncq)
1616 				mv_soc_led_blink_enable(ap);
1617 			else
1618 				mv_soc_led_blink_disable(ap);
1619 		}
1620 	}
1621 
1622 	if (want_ncq) {
1623 		cfg |= EDMA_CFG_NCQ;
1624 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1625 	}
1626 
1627 	writelfl(cfg, port_mmio + EDMA_CFG);
1628 }
1629 
1630 static void mv_port_free_dma_mem(struct ata_port *ap)
1631 {
1632 	struct mv_host_priv *hpriv = ap->host->private_data;
1633 	struct mv_port_priv *pp = ap->private_data;
1634 	int tag;
1635 
1636 	if (pp->crqb) {
1637 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1638 		pp->crqb = NULL;
1639 	}
1640 	if (pp->crpb) {
1641 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1642 		pp->crpb = NULL;
1643 	}
1644 	/*
1645 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1646 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1647 	 */
1648 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1649 		if (pp->sg_tbl[tag]) {
1650 			if (tag == 0 || !IS_GEN_I(hpriv))
1651 				dma_pool_free(hpriv->sg_tbl_pool,
1652 					      pp->sg_tbl[tag],
1653 					      pp->sg_tbl_dma[tag]);
1654 			pp->sg_tbl[tag] = NULL;
1655 		}
1656 	}
1657 }
1658 
1659 /**
1660  *      mv_port_start - Port specific init/start routine.
1661  *      @ap: ATA channel to manipulate
1662  *
1663  *      Allocate and point to DMA memory, init port private memory,
1664  *      zero indices.
1665  *
1666  *      LOCKING:
1667  *      Inherited from caller.
1668  */
1669 static int mv_port_start(struct ata_port *ap)
1670 {
1671 	struct device *dev = ap->host->dev;
1672 	struct mv_host_priv *hpriv = ap->host->private_data;
1673 	struct mv_port_priv *pp;
1674 	unsigned long flags;
1675 	int tag;
1676 
1677 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1678 	if (!pp)
1679 		return -ENOMEM;
1680 	ap->private_data = pp;
1681 
1682 	pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1683 	if (!pp->crqb)
1684 		return -ENOMEM;
1685 
1686 	pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1687 	if (!pp->crpb)
1688 		goto out_port_free_dma_mem;
1689 
1690 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1691 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1692 		ap->flags |= ATA_FLAG_AN;
1693 	/*
1694 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1695 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1696 	 */
1697 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1698 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1699 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1700 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1701 			if (!pp->sg_tbl[tag])
1702 				goto out_port_free_dma_mem;
1703 		} else {
1704 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1705 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1706 		}
1707 	}
1708 
1709 	spin_lock_irqsave(ap->lock, flags);
1710 	mv_save_cached_regs(ap);
1711 	mv_edma_cfg(ap, 0, 0);
1712 	spin_unlock_irqrestore(ap->lock, flags);
1713 
1714 	return 0;
1715 
1716 out_port_free_dma_mem:
1717 	mv_port_free_dma_mem(ap);
1718 	return -ENOMEM;
1719 }
1720 
1721 /**
1722  *      mv_port_stop - Port specific cleanup/stop routine.
1723  *      @ap: ATA channel to manipulate
1724  *
1725  *      Stop DMA, cleanup port memory.
1726  *
1727  *      LOCKING:
1728  *      This routine uses the host lock to protect the DMA stop.
1729  */
1730 static void mv_port_stop(struct ata_port *ap)
1731 {
1732 	unsigned long flags;
1733 
1734 	spin_lock_irqsave(ap->lock, flags);
1735 	mv_stop_edma(ap);
1736 	mv_enable_port_irqs(ap, 0);
1737 	spin_unlock_irqrestore(ap->lock, flags);
1738 	mv_port_free_dma_mem(ap);
1739 }
1740 
1741 /**
1742  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1743  *      @qc: queued command whose SG list to source from
1744  *
1745  *      Populate the SG list and mark the last entry.
1746  *
1747  *      LOCKING:
1748  *      Inherited from caller.
1749  */
1750 static void mv_fill_sg(struct ata_queued_cmd *qc)
1751 {
1752 	struct mv_port_priv *pp = qc->ap->private_data;
1753 	struct scatterlist *sg;
1754 	struct mv_sg *mv_sg, *last_sg = NULL;
1755 	unsigned int si;
1756 
1757 	mv_sg = pp->sg_tbl[qc->hw_tag];
1758 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1759 		dma_addr_t addr = sg_dma_address(sg);
1760 		u32 sg_len = sg_dma_len(sg);
1761 
1762 		while (sg_len) {
1763 			u32 offset = addr & 0xffff;
1764 			u32 len = sg_len;
1765 
1766 			if (offset + len > 0x10000)
1767 				len = 0x10000 - offset;
1768 
1769 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1770 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1771 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1772 			mv_sg->reserved = 0;
1773 
1774 			sg_len -= len;
1775 			addr += len;
1776 
1777 			last_sg = mv_sg;
1778 			mv_sg++;
1779 		}
1780 	}
1781 
1782 	if (likely(last_sg))
1783 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1784 	mb(); /* ensure data structure is visible to the chipset */
1785 }
1786 
1787 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1788 {
1789 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1790 		(last ? CRQB_CMD_LAST : 0);
1791 	*cmdw = cpu_to_le16(tmp);
1792 }
1793 
1794 /**
1795  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1796  *	@ap: Port associated with this ATA transaction.
1797  *
1798  *	We need this only for ATAPI bmdma transactions,
1799  *	as otherwise we experience spurious interrupts
1800  *	after libata-sff handles the bmdma interrupts.
1801  */
1802 static void mv_sff_irq_clear(struct ata_port *ap)
1803 {
1804 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1805 }
1806 
1807 /**
1808  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1809  *	@qc: queued command to check for chipset/DMA compatibility.
1810  *
1811  *	The bmdma engines cannot handle speculative data sizes
1812  *	(bytecount under/over flow).  So only allow DMA for
1813  *	data transfer commands with known data sizes.
1814  *
1815  *	LOCKING:
1816  *	Inherited from caller.
1817  */
1818 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1819 {
1820 	struct scsi_cmnd *scmd = qc->scsicmd;
1821 
1822 	if (scmd) {
1823 		switch (scmd->cmnd[0]) {
1824 		case READ_6:
1825 		case READ_10:
1826 		case READ_12:
1827 		case WRITE_6:
1828 		case WRITE_10:
1829 		case WRITE_12:
1830 		case GPCMD_READ_CD:
1831 		case GPCMD_SEND_DVD_STRUCTURE:
1832 		case GPCMD_SEND_CUE_SHEET:
1833 			return 0; /* DMA is safe */
1834 		}
1835 	}
1836 	return -EOPNOTSUPP; /* use PIO instead */
1837 }
1838 
1839 /**
1840  *	mv_bmdma_setup - Set up BMDMA transaction
1841  *	@qc: queued command to prepare DMA for.
1842  *
1843  *	LOCKING:
1844  *	Inherited from caller.
1845  */
1846 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1847 {
1848 	struct ata_port *ap = qc->ap;
1849 	void __iomem *port_mmio = mv_ap_base(ap);
1850 	struct mv_port_priv *pp = ap->private_data;
1851 
1852 	mv_fill_sg(qc);
1853 
1854 	/* clear all DMA cmd bits */
1855 	writel(0, port_mmio + BMDMA_CMD);
1856 
1857 	/* load PRD table addr. */
1858 	writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1859 		port_mmio + BMDMA_PRD_HIGH);
1860 	writelfl(pp->sg_tbl_dma[qc->hw_tag],
1861 		port_mmio + BMDMA_PRD_LOW);
1862 
1863 	/* issue r/w command */
1864 	ap->ops->sff_exec_command(ap, &qc->tf);
1865 }
1866 
1867 /**
1868  *	mv_bmdma_start - Start a BMDMA transaction
1869  *	@qc: queued command to start DMA on.
1870  *
1871  *	LOCKING:
1872  *	Inherited from caller.
1873  */
1874 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1875 {
1876 	struct ata_port *ap = qc->ap;
1877 	void __iomem *port_mmio = mv_ap_base(ap);
1878 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1879 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1880 
1881 	/* start host DMA transaction */
1882 	writelfl(cmd, port_mmio + BMDMA_CMD);
1883 }
1884 
1885 /**
1886  *	mv_bmdma_stop_ap - Stop BMDMA transfer
1887  *	@ap: port to stop
1888  *
1889  *	Clears the ATA_DMA_START flag in the bmdma control register
1890  *
1891  *	LOCKING:
1892  *	Inherited from caller.
1893  */
1894 static void mv_bmdma_stop_ap(struct ata_port *ap)
1895 {
1896 	void __iomem *port_mmio = mv_ap_base(ap);
1897 	u32 cmd;
1898 
1899 	/* clear start/stop bit */
1900 	cmd = readl(port_mmio + BMDMA_CMD);
1901 	if (cmd & ATA_DMA_START) {
1902 		cmd &= ~ATA_DMA_START;
1903 		writelfl(cmd, port_mmio + BMDMA_CMD);
1904 
1905 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1906 		ata_sff_dma_pause(ap);
1907 	}
1908 }
1909 
1910 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1911 {
1912 	mv_bmdma_stop_ap(qc->ap);
1913 }
1914 
1915 /**
1916  *	mv_bmdma_status - Read BMDMA status
1917  *	@ap: port for which to retrieve DMA status.
1918  *
1919  *	Read and return equivalent of the sff BMDMA status register.
1920  *
1921  *	LOCKING:
1922  *	Inherited from caller.
1923  */
1924 static u8 mv_bmdma_status(struct ata_port *ap)
1925 {
1926 	void __iomem *port_mmio = mv_ap_base(ap);
1927 	u32 reg, status;
1928 
1929 	/*
1930 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1931 	 * and the ATA_DMA_INTR bit doesn't exist.
1932 	 */
1933 	reg = readl(port_mmio + BMDMA_STATUS);
1934 	if (reg & ATA_DMA_ACTIVE)
1935 		status = ATA_DMA_ACTIVE;
1936 	else if (reg & ATA_DMA_ERR)
1937 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1938 	else {
1939 		/*
1940 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1941 		 * this does _not_ mean the device is "done".
1942 		 * So we should not yet be signalling ATA_DMA_INTR
1943 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1944 		 */
1945 		mv_bmdma_stop_ap(ap);
1946 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1947 			status = 0;
1948 		else
1949 			status = ATA_DMA_INTR;
1950 	}
1951 	return status;
1952 }
1953 
1954 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1955 {
1956 	struct ata_taskfile *tf = &qc->tf;
1957 	/*
1958 	 * Workaround for 88SX60x1 FEr SATA#24.
1959 	 *
1960 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1961 	 * Note that READs are unaffected.
1962 	 *
1963 	 * It's not clear if this errata really means "4K bytes",
1964 	 * or if it always happens for multi_count > 7
1965 	 * regardless of device sector_size.
1966 	 *
1967 	 * So, for safety, any write with multi_count > 7
1968 	 * gets converted here into a regular PIO write instead:
1969 	 */
1970 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1971 		if (qc->dev->multi_count > 7) {
1972 			switch (tf->command) {
1973 			case ATA_CMD_WRITE_MULTI:
1974 				tf->command = ATA_CMD_PIO_WRITE;
1975 				break;
1976 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1977 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1978 				fallthrough;
1979 			case ATA_CMD_WRITE_MULTI_EXT:
1980 				tf->command = ATA_CMD_PIO_WRITE_EXT;
1981 				break;
1982 			}
1983 		}
1984 	}
1985 }
1986 
1987 /**
1988  *      mv_qc_prep - Host specific command preparation.
1989  *      @qc: queued command to prepare
1990  *
1991  *      This routine simply redirects to the general purpose routine
1992  *      if command is not DMA.  Else, it handles prep of the CRQB
1993  *      (command request block), does some sanity checking, and calls
1994  *      the SG load routine.
1995  *
1996  *      LOCKING:
1997  *      Inherited from caller.
1998  */
1999 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2000 {
2001 	struct ata_port *ap = qc->ap;
2002 	struct mv_port_priv *pp = ap->private_data;
2003 	__le16 *cw;
2004 	struct ata_taskfile *tf = &qc->tf;
2005 	u16 flags = 0;
2006 	unsigned in_index;
2007 
2008 	switch (tf->protocol) {
2009 	case ATA_PROT_DMA:
2010 		if (tf->command == ATA_CMD_DSM)
2011 			return AC_ERR_OK;
2012 		fallthrough;
2013 	case ATA_PROT_NCQ:
2014 		break;	/* continue below */
2015 	case ATA_PROT_PIO:
2016 		mv_rw_multi_errata_sata24(qc);
2017 		return AC_ERR_OK;
2018 	default:
2019 		return AC_ERR_OK;
2020 	}
2021 
2022 	/* Fill in command request block
2023 	 */
2024 	if (!(tf->flags & ATA_TFLAG_WRITE))
2025 		flags |= CRQB_FLAG_READ;
2026 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2027 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2028 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2029 
2030 	/* get current queue index from software */
2031 	in_index = pp->req_idx;
2032 
2033 	pp->crqb[in_index].sg_addr =
2034 		cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2035 	pp->crqb[in_index].sg_addr_hi =
2036 		cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2037 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2038 
2039 	cw = &pp->crqb[in_index].ata_cmd[0];
2040 
2041 	/* Sadly, the CRQB cannot accommodate all registers--there are
2042 	 * only 11 bytes...so we must pick and choose required
2043 	 * registers based on the command.  So, we drop feature and
2044 	 * hob_feature for [RW] DMA commands, but they are needed for
2045 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2046 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2047 	 */
2048 	switch (tf->command) {
2049 	case ATA_CMD_READ:
2050 	case ATA_CMD_READ_EXT:
2051 	case ATA_CMD_WRITE:
2052 	case ATA_CMD_WRITE_EXT:
2053 	case ATA_CMD_WRITE_FUA_EXT:
2054 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2055 		break;
2056 	case ATA_CMD_FPDMA_READ:
2057 	case ATA_CMD_FPDMA_WRITE:
2058 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2059 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2060 		break;
2061 	default:
2062 		/* The only other commands EDMA supports in non-queued and
2063 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2064 		 * of which are defined/used by Linux.  If we get here, this
2065 		 * driver needs work.
2066 		 */
2067 		ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2068 				tf->command);
2069 		return AC_ERR_INVALID;
2070 	}
2071 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2072 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2073 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2074 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2075 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2076 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2077 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2078 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2079 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2080 
2081 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2082 		return AC_ERR_OK;
2083 	mv_fill_sg(qc);
2084 
2085 	return AC_ERR_OK;
2086 }
2087 
2088 /**
2089  *      mv_qc_prep_iie - Host specific command preparation.
2090  *      @qc: queued command to prepare
2091  *
2092  *      This routine simply redirects to the general purpose routine
2093  *      if command is not DMA.  Else, it handles prep of the CRQB
2094  *      (command request block), does some sanity checking, and calls
2095  *      the SG load routine.
2096  *
2097  *      LOCKING:
2098  *      Inherited from caller.
2099  */
2100 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2101 {
2102 	struct ata_port *ap = qc->ap;
2103 	struct mv_port_priv *pp = ap->private_data;
2104 	struct mv_crqb_iie *crqb;
2105 	struct ata_taskfile *tf = &qc->tf;
2106 	unsigned in_index;
2107 	u32 flags = 0;
2108 
2109 	if ((tf->protocol != ATA_PROT_DMA) &&
2110 	    (tf->protocol != ATA_PROT_NCQ))
2111 		return AC_ERR_OK;
2112 	if (tf->command == ATA_CMD_DSM)
2113 		return AC_ERR_OK;  /* use bmdma for this */
2114 
2115 	/* Fill in Gen IIE command request block */
2116 	if (!(tf->flags & ATA_TFLAG_WRITE))
2117 		flags |= CRQB_FLAG_READ;
2118 
2119 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2120 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2121 	flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2122 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2123 
2124 	/* get current queue index from software */
2125 	in_index = pp->req_idx;
2126 
2127 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2128 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2129 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2130 	crqb->flags = cpu_to_le32(flags);
2131 
2132 	crqb->ata_cmd[0] = cpu_to_le32(
2133 			(tf->command << 16) |
2134 			(tf->feature << 24)
2135 		);
2136 	crqb->ata_cmd[1] = cpu_to_le32(
2137 			(tf->lbal << 0) |
2138 			(tf->lbam << 8) |
2139 			(tf->lbah << 16) |
2140 			(tf->device << 24)
2141 		);
2142 	crqb->ata_cmd[2] = cpu_to_le32(
2143 			(tf->hob_lbal << 0) |
2144 			(tf->hob_lbam << 8) |
2145 			(tf->hob_lbah << 16) |
2146 			(tf->hob_feature << 24)
2147 		);
2148 	crqb->ata_cmd[3] = cpu_to_le32(
2149 			(tf->nsect << 0) |
2150 			(tf->hob_nsect << 8)
2151 		);
2152 
2153 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2154 		return AC_ERR_OK;
2155 	mv_fill_sg(qc);
2156 
2157 	return AC_ERR_OK;
2158 }
2159 
2160 /**
2161  *	mv_sff_check_status - fetch device status, if valid
2162  *	@ap: ATA port to fetch status from
2163  *
2164  *	When using command issue via mv_qc_issue_fis(),
2165  *	the initial ATA_BUSY state does not show up in the
2166  *	ATA status (shadow) register.  This can confuse libata!
2167  *
2168  *	So we have a hook here to fake ATA_BUSY for that situation,
2169  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2170  *
2171  *	The rest of the time, it simply returns the ATA status register.
2172  */
2173 static u8 mv_sff_check_status(struct ata_port *ap)
2174 {
2175 	u8 stat = ioread8(ap->ioaddr.status_addr);
2176 	struct mv_port_priv *pp = ap->private_data;
2177 
2178 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2179 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2180 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2181 		else
2182 			stat = ATA_BUSY;
2183 	}
2184 	return stat;
2185 }
2186 
2187 /**
2188  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2189  *	@ap: ATA port to send a FIS
2190  *	@fis: fis to be sent
2191  *	@nwords: number of 32-bit words in the fis
2192  */
2193 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2194 {
2195 	void __iomem *port_mmio = mv_ap_base(ap);
2196 	u32 ifctl, old_ifctl, ifstat;
2197 	int i, timeout = 200, final_word = nwords - 1;
2198 
2199 	/* Initiate FIS transmission mode */
2200 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2201 	ifctl = 0x100 | (old_ifctl & 0xf);
2202 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2203 
2204 	/* Send all words of the FIS except for the final word */
2205 	for (i = 0; i < final_word; ++i)
2206 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2207 
2208 	/* Flag end-of-transmission, and then send the final word */
2209 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2210 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2211 
2212 	/*
2213 	 * Wait for FIS transmission to complete.
2214 	 * This typically takes just a single iteration.
2215 	 */
2216 	do {
2217 		ifstat = readl(port_mmio + SATA_IFSTAT);
2218 	} while (!(ifstat & 0x1000) && --timeout);
2219 
2220 	/* Restore original port configuration */
2221 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2222 
2223 	/* See if it worked */
2224 	if ((ifstat & 0x3000) != 0x1000) {
2225 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2226 			      __func__, ifstat);
2227 		return AC_ERR_OTHER;
2228 	}
2229 	return 0;
2230 }
2231 
2232 /**
2233  *	mv_qc_issue_fis - Issue a command directly as a FIS
2234  *	@qc: queued command to start
2235  *
2236  *	Note that the ATA shadow registers are not updated
2237  *	after command issue, so the device will appear "READY"
2238  *	if polled, even while it is BUSY processing the command.
2239  *
2240  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2241  *
2242  *	Note: we don't get updated shadow regs on *completion*
2243  *	of non-data commands. So avoid sending them via this function,
2244  *	as they will appear to have completed immediately.
2245  *
2246  *	GEN_IIE has special registers that we could get the result tf from,
2247  *	but earlier chipsets do not.  For now, we ignore those registers.
2248  */
2249 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2250 {
2251 	struct ata_port *ap = qc->ap;
2252 	struct mv_port_priv *pp = ap->private_data;
2253 	struct ata_link *link = qc->dev->link;
2254 	u32 fis[5];
2255 	int err = 0;
2256 
2257 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2258 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2259 	if (err)
2260 		return err;
2261 
2262 	switch (qc->tf.protocol) {
2263 	case ATAPI_PROT_PIO:
2264 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2265 		fallthrough;
2266 	case ATAPI_PROT_NODATA:
2267 		ap->hsm_task_state = HSM_ST_FIRST;
2268 		break;
2269 	case ATA_PROT_PIO:
2270 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2271 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2272 			ap->hsm_task_state = HSM_ST_FIRST;
2273 		else
2274 			ap->hsm_task_state = HSM_ST;
2275 		break;
2276 	default:
2277 		ap->hsm_task_state = HSM_ST_LAST;
2278 		break;
2279 	}
2280 
2281 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2282 		ata_sff_queue_pio_task(link, 0);
2283 	return 0;
2284 }
2285 
2286 /**
2287  *      mv_qc_issue - Initiate a command to the host
2288  *      @qc: queued command to start
2289  *
2290  *      This routine simply redirects to the general purpose routine
2291  *      if command is not DMA.  Else, it sanity checks our local
2292  *      caches of the request producer/consumer indices then enables
2293  *      DMA and bumps the request producer index.
2294  *
2295  *      LOCKING:
2296  *      Inherited from caller.
2297  */
2298 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2299 {
2300 	static int limit_warnings = 10;
2301 	struct ata_port *ap = qc->ap;
2302 	void __iomem *port_mmio = mv_ap_base(ap);
2303 	struct mv_port_priv *pp = ap->private_data;
2304 	u32 in_index;
2305 	unsigned int port_irqs;
2306 
2307 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2308 
2309 	switch (qc->tf.protocol) {
2310 	case ATA_PROT_DMA:
2311 		if (qc->tf.command == ATA_CMD_DSM) {
2312 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2313 				return AC_ERR_OTHER;
2314 			break;  /* use bmdma for this */
2315 		}
2316 		fallthrough;
2317 	case ATA_PROT_NCQ:
2318 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2319 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2320 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2321 
2322 		/* Write the request in pointer to kick the EDMA to life */
2323 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2324 					port_mmio + EDMA_REQ_Q_IN_PTR);
2325 		return 0;
2326 
2327 	case ATA_PROT_PIO:
2328 		/*
2329 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2330 		 *
2331 		 * Someday, we might implement special polling workarounds
2332 		 * for these, but it all seems rather unnecessary since we
2333 		 * normally use only DMA for commands which transfer more
2334 		 * than a single block of data.
2335 		 *
2336 		 * Much of the time, this could just work regardless.
2337 		 * So for now, just log the incident, and allow the attempt.
2338 		 */
2339 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2340 			--limit_warnings;
2341 			ata_link_warn(qc->dev->link, DRV_NAME
2342 				      ": attempting PIO w/multiple DRQ: "
2343 				      "this may fail due to h/w errata\n");
2344 		}
2345 		fallthrough;
2346 	case ATA_PROT_NODATA:
2347 	case ATAPI_PROT_PIO:
2348 	case ATAPI_PROT_NODATA:
2349 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2350 			qc->tf.flags |= ATA_TFLAG_POLLING;
2351 		break;
2352 	}
2353 
2354 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2355 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2356 	else
2357 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2358 
2359 	/*
2360 	 * We're about to send a non-EDMA capable command to the
2361 	 * port.  Turn off EDMA so there won't be problems accessing
2362 	 * shadow block, etc registers.
2363 	 */
2364 	mv_stop_edma(ap);
2365 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2366 	mv_pmp_select(ap, qc->dev->link->pmp);
2367 
2368 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2369 		struct mv_host_priv *hpriv = ap->host->private_data;
2370 		/*
2371 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2372 		 *
2373 		 * After any NCQ error, the READ_LOG_EXT command
2374 		 * from libata-eh *must* use mv_qc_issue_fis().
2375 		 * Otherwise it might fail, due to chip errata.
2376 		 *
2377 		 * Rather than special-case it, we'll just *always*
2378 		 * use this method here for READ_LOG_EXT, making for
2379 		 * easier testing.
2380 		 */
2381 		if (IS_GEN_II(hpriv))
2382 			return mv_qc_issue_fis(qc);
2383 	}
2384 	return ata_bmdma_qc_issue(qc);
2385 }
2386 
2387 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2388 {
2389 	struct mv_port_priv *pp = ap->private_data;
2390 	struct ata_queued_cmd *qc;
2391 
2392 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2393 		return NULL;
2394 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2395 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2396 		return qc;
2397 	return NULL;
2398 }
2399 
2400 static void mv_pmp_error_handler(struct ata_port *ap)
2401 {
2402 	unsigned int pmp, pmp_map;
2403 	struct mv_port_priv *pp = ap->private_data;
2404 
2405 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2406 		/*
2407 		 * Perform NCQ error analysis on failed PMPs
2408 		 * before we freeze the port entirely.
2409 		 *
2410 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2411 		 */
2412 		pmp_map = pp->delayed_eh_pmp_map;
2413 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2414 		for (pmp = 0; pmp_map != 0; pmp++) {
2415 			unsigned int this_pmp = (1 << pmp);
2416 			if (pmp_map & this_pmp) {
2417 				struct ata_link *link = &ap->pmp_link[pmp];
2418 				pmp_map &= ~this_pmp;
2419 				ata_eh_analyze_ncq_error(link);
2420 			}
2421 		}
2422 		ata_port_freeze(ap);
2423 	}
2424 	sata_pmp_error_handler(ap);
2425 }
2426 
2427 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2428 {
2429 	void __iomem *port_mmio = mv_ap_base(ap);
2430 
2431 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2432 }
2433 
2434 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2435 {
2436 	unsigned int pmp;
2437 
2438 	/*
2439 	 * Initialize EH info for PMPs which saw device errors
2440 	 */
2441 	for (pmp = 0; pmp_map != 0; pmp++) {
2442 		unsigned int this_pmp = (1 << pmp);
2443 		if (pmp_map & this_pmp) {
2444 			struct ata_link *link = &ap->pmp_link[pmp];
2445 			struct ata_eh_info *ehi = &link->eh_info;
2446 
2447 			pmp_map &= ~this_pmp;
2448 			ata_ehi_clear_desc(ehi);
2449 			ata_ehi_push_desc(ehi, "dev err");
2450 			ehi->err_mask |= AC_ERR_DEV;
2451 			ehi->action |= ATA_EH_RESET;
2452 			ata_link_abort(link);
2453 		}
2454 	}
2455 }
2456 
2457 static int mv_req_q_empty(struct ata_port *ap)
2458 {
2459 	void __iomem *port_mmio = mv_ap_base(ap);
2460 	u32 in_ptr, out_ptr;
2461 
2462 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2463 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2464 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2465 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2466 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2467 }
2468 
2469 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2470 {
2471 	struct mv_port_priv *pp = ap->private_data;
2472 	int failed_links;
2473 	unsigned int old_map, new_map;
2474 
2475 	/*
2476 	 * Device error during FBS+NCQ operation:
2477 	 *
2478 	 * Set a port flag to prevent further I/O being enqueued.
2479 	 * Leave the EDMA running to drain outstanding commands from this port.
2480 	 * Perform the post-mortem/EH only when all responses are complete.
2481 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2482 	 */
2483 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2484 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2485 		pp->delayed_eh_pmp_map = 0;
2486 	}
2487 	old_map = pp->delayed_eh_pmp_map;
2488 	new_map = old_map | mv_get_err_pmp_map(ap);
2489 
2490 	if (old_map != new_map) {
2491 		pp->delayed_eh_pmp_map = new_map;
2492 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2493 	}
2494 	failed_links = hweight16(new_map);
2495 
2496 	ata_port_info(ap,
2497 		      "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2498 		      __func__, pp->delayed_eh_pmp_map,
2499 		      ap->qc_active, failed_links,
2500 		      ap->nr_active_links);
2501 
2502 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2503 		mv_process_crpb_entries(ap, pp);
2504 		mv_stop_edma(ap);
2505 		mv_eh_freeze(ap);
2506 		ata_port_info(ap, "%s: done\n", __func__);
2507 		return 1;	/* handled */
2508 	}
2509 	ata_port_info(ap, "%s: waiting\n", __func__);
2510 	return 1;	/* handled */
2511 }
2512 
2513 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2514 {
2515 	/*
2516 	 * Possible future enhancement:
2517 	 *
2518 	 * FBS+non-NCQ operation is not yet implemented.
2519 	 * See related notes in mv_edma_cfg().
2520 	 *
2521 	 * Device error during FBS+non-NCQ operation:
2522 	 *
2523 	 * We need to snapshot the shadow registers for each failed command.
2524 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2525 	 */
2526 	return 0;	/* not handled */
2527 }
2528 
2529 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2530 {
2531 	struct mv_port_priv *pp = ap->private_data;
2532 
2533 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2534 		return 0;	/* EDMA was not active: not handled */
2535 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2536 		return 0;	/* FBS was not active: not handled */
2537 
2538 	if (!(edma_err_cause & EDMA_ERR_DEV))
2539 		return 0;	/* non DEV error: not handled */
2540 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2541 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2542 		return 0;	/* other problems: not handled */
2543 
2544 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2545 		/*
2546 		 * EDMA should NOT have self-disabled for this case.
2547 		 * If it did, then something is wrong elsewhere,
2548 		 * and we cannot handle it here.
2549 		 */
2550 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2551 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2552 				      __func__, edma_err_cause, pp->pp_flags);
2553 			return 0; /* not handled */
2554 		}
2555 		return mv_handle_fbs_ncq_dev_err(ap);
2556 	} else {
2557 		/*
2558 		 * EDMA should have self-disabled for this case.
2559 		 * If it did not, then something is wrong elsewhere,
2560 		 * and we cannot handle it here.
2561 		 */
2562 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2563 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2564 				      __func__, edma_err_cause, pp->pp_flags);
2565 			return 0; /* not handled */
2566 		}
2567 		return mv_handle_fbs_non_ncq_dev_err(ap);
2568 	}
2569 	return 0;	/* not handled */
2570 }
2571 
2572 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2573 {
2574 	struct ata_eh_info *ehi = &ap->link.eh_info;
2575 	char *when = "idle";
2576 
2577 	ata_ehi_clear_desc(ehi);
2578 	if (edma_was_enabled) {
2579 		when = "EDMA enabled";
2580 	} else {
2581 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2582 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2583 			when = "polling";
2584 	}
2585 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2586 	ehi->err_mask |= AC_ERR_OTHER;
2587 	ehi->action   |= ATA_EH_RESET;
2588 	ata_port_freeze(ap);
2589 }
2590 
2591 /**
2592  *      mv_err_intr - Handle error interrupts on the port
2593  *      @ap: ATA channel to manipulate
2594  *
2595  *      Most cases require a full reset of the chip's state machine,
2596  *      which also performs a COMRESET.
2597  *      Also, if the port disabled DMA, update our cached copy to match.
2598  *
2599  *      LOCKING:
2600  *      Inherited from caller.
2601  */
2602 static void mv_err_intr(struct ata_port *ap)
2603 {
2604 	void __iomem *port_mmio = mv_ap_base(ap);
2605 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2606 	u32 fis_cause = 0;
2607 	struct mv_port_priv *pp = ap->private_data;
2608 	struct mv_host_priv *hpriv = ap->host->private_data;
2609 	unsigned int action = 0, err_mask = 0;
2610 	struct ata_eh_info *ehi = &ap->link.eh_info;
2611 	struct ata_queued_cmd *qc;
2612 	int abort = 0;
2613 
2614 	/*
2615 	 * Read and clear the SError and err_cause bits.
2616 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2617 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2618 	 */
2619 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2620 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2621 
2622 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2623 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2624 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2625 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2626 	}
2627 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2628 
2629 	if (edma_err_cause & EDMA_ERR_DEV) {
2630 		/*
2631 		 * Device errors during FIS-based switching operation
2632 		 * require special handling.
2633 		 */
2634 		if (mv_handle_dev_err(ap, edma_err_cause))
2635 			return;
2636 	}
2637 
2638 	qc = mv_get_active_qc(ap);
2639 	ata_ehi_clear_desc(ehi);
2640 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2641 			  edma_err_cause, pp->pp_flags);
2642 
2643 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2644 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2645 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2646 			u32 ec = edma_err_cause &
2647 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2648 			sata_async_notification(ap);
2649 			if (!ec)
2650 				return; /* Just an AN; no need for the nukes */
2651 			ata_ehi_push_desc(ehi, "SDB notify");
2652 		}
2653 	}
2654 	/*
2655 	 * All generations share these EDMA error cause bits:
2656 	 */
2657 	if (edma_err_cause & EDMA_ERR_DEV) {
2658 		err_mask |= AC_ERR_DEV;
2659 		action |= ATA_EH_RESET;
2660 		ata_ehi_push_desc(ehi, "dev error");
2661 	}
2662 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2663 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2664 			EDMA_ERR_INTRL_PAR)) {
2665 		err_mask |= AC_ERR_ATA_BUS;
2666 		action |= ATA_EH_RESET;
2667 		ata_ehi_push_desc(ehi, "parity error");
2668 	}
2669 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2670 		ata_ehi_hotplugged(ehi);
2671 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2672 			"dev disconnect" : "dev connect");
2673 		action |= ATA_EH_RESET;
2674 	}
2675 
2676 	/*
2677 	 * Gen-I has a different SELF_DIS bit,
2678 	 * different FREEZE bits, and no SERR bit:
2679 	 */
2680 	if (IS_GEN_I(hpriv)) {
2681 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2682 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2683 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2684 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2685 		}
2686 	} else {
2687 		eh_freeze_mask = EDMA_EH_FREEZE;
2688 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2689 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2690 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2691 		}
2692 		if (edma_err_cause & EDMA_ERR_SERR) {
2693 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2694 			err_mask |= AC_ERR_ATA_BUS;
2695 			action |= ATA_EH_RESET;
2696 		}
2697 	}
2698 
2699 	if (!err_mask) {
2700 		err_mask = AC_ERR_OTHER;
2701 		action |= ATA_EH_RESET;
2702 	}
2703 
2704 	ehi->serror |= serr;
2705 	ehi->action |= action;
2706 
2707 	if (qc)
2708 		qc->err_mask |= err_mask;
2709 	else
2710 		ehi->err_mask |= err_mask;
2711 
2712 	if (err_mask == AC_ERR_DEV) {
2713 		/*
2714 		 * Cannot do ata_port_freeze() here,
2715 		 * because it would kill PIO access,
2716 		 * which is needed for further diagnosis.
2717 		 */
2718 		mv_eh_freeze(ap);
2719 		abort = 1;
2720 	} else if (edma_err_cause & eh_freeze_mask) {
2721 		/*
2722 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2723 		 */
2724 		ata_port_freeze(ap);
2725 	} else {
2726 		abort = 1;
2727 	}
2728 
2729 	if (abort) {
2730 		if (qc)
2731 			ata_link_abort(qc->dev->link);
2732 		else
2733 			ata_port_abort(ap);
2734 	}
2735 }
2736 
2737 static bool mv_process_crpb_response(struct ata_port *ap,
2738 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2739 {
2740 	u8 ata_status;
2741 	u16 edma_status = le16_to_cpu(response->flags);
2742 
2743 	/*
2744 	 * edma_status from a response queue entry:
2745 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2746 	 *   MSB is saved ATA status from command completion.
2747 	 */
2748 	if (!ncq_enabled) {
2749 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2750 		if (err_cause) {
2751 			/*
2752 			 * Error will be seen/handled by
2753 			 * mv_err_intr().  So do nothing at all here.
2754 			 */
2755 			return false;
2756 		}
2757 	}
2758 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2759 	if (!ac_err_mask(ata_status))
2760 		return true;
2761 	/* else: leave it for mv_err_intr() */
2762 	return false;
2763 }
2764 
2765 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2766 {
2767 	void __iomem *port_mmio = mv_ap_base(ap);
2768 	struct mv_host_priv *hpriv = ap->host->private_data;
2769 	u32 in_index;
2770 	bool work_done = false;
2771 	u32 done_mask = 0;
2772 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2773 
2774 	/* Get the hardware queue position index */
2775 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2776 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2777 
2778 	/* Process new responses from since the last time we looked */
2779 	while (in_index != pp->resp_idx) {
2780 		unsigned int tag;
2781 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2782 
2783 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2784 
2785 		if (IS_GEN_I(hpriv)) {
2786 			/* 50xx: no NCQ, only one command active at a time */
2787 			tag = ap->link.active_tag;
2788 		} else {
2789 			/* Gen II/IIE: get command tag from CRPB entry */
2790 			tag = le16_to_cpu(response->id) & 0x1f;
2791 		}
2792 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2793 			done_mask |= 1 << tag;
2794 		work_done = true;
2795 	}
2796 
2797 	if (work_done) {
2798 		ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2799 
2800 		/* Update the software queue position index in hardware */
2801 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2802 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2803 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2804 	}
2805 }
2806 
2807 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2808 {
2809 	struct mv_port_priv *pp;
2810 	int edma_was_enabled;
2811 
2812 	/*
2813 	 * Grab a snapshot of the EDMA_EN flag setting,
2814 	 * so that we have a consistent view for this port,
2815 	 * even if something we call of our routines changes it.
2816 	 */
2817 	pp = ap->private_data;
2818 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2819 	/*
2820 	 * Process completed CRPB response(s) before other events.
2821 	 */
2822 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2823 		mv_process_crpb_entries(ap, pp);
2824 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2825 			mv_handle_fbs_ncq_dev_err(ap);
2826 	}
2827 	/*
2828 	 * Handle chip-reported errors, or continue on to handle PIO.
2829 	 */
2830 	if (unlikely(port_cause & ERR_IRQ)) {
2831 		mv_err_intr(ap);
2832 	} else if (!edma_was_enabled) {
2833 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2834 		if (qc)
2835 			ata_bmdma_port_intr(ap, qc);
2836 		else
2837 			mv_unexpected_intr(ap, edma_was_enabled);
2838 	}
2839 }
2840 
2841 /**
2842  *      mv_host_intr - Handle all interrupts on the given host controller
2843  *      @host: host specific structure
2844  *      @main_irq_cause: Main interrupt cause register for the chip.
2845  *
2846  *      LOCKING:
2847  *      Inherited from caller.
2848  */
2849 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2850 {
2851 	struct mv_host_priv *hpriv = host->private_data;
2852 	void __iomem *mmio = hpriv->base, *hc_mmio;
2853 	unsigned int handled = 0, port;
2854 
2855 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2856 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2857 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2858 
2859 	for (port = 0; port < hpriv->n_ports; port++) {
2860 		struct ata_port *ap = host->ports[port];
2861 		unsigned int p, shift, hardport, port_cause;
2862 
2863 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2864 		/*
2865 		 * Each hc within the host has its own hc_irq_cause register,
2866 		 * where the interrupting ports bits get ack'd.
2867 		 */
2868 		if (hardport == 0) {	/* first port on this hc ? */
2869 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2870 			u32 port_mask, ack_irqs;
2871 			/*
2872 			 * Skip this entire hc if nothing pending for any ports
2873 			 */
2874 			if (!hc_cause) {
2875 				port += MV_PORTS_PER_HC - 1;
2876 				continue;
2877 			}
2878 			/*
2879 			 * We don't need/want to read the hc_irq_cause register,
2880 			 * because doing so hurts performance, and
2881 			 * main_irq_cause already gives us everything we need.
2882 			 *
2883 			 * But we do have to *write* to the hc_irq_cause to ack
2884 			 * the ports that we are handling this time through.
2885 			 *
2886 			 * This requires that we create a bitmap for those
2887 			 * ports which interrupted us, and use that bitmap
2888 			 * to ack (only) those ports via hc_irq_cause.
2889 			 */
2890 			ack_irqs = 0;
2891 			if (hc_cause & PORTS_0_3_COAL_DONE)
2892 				ack_irqs = HC_COAL_IRQ;
2893 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2894 				if ((port + p) >= hpriv->n_ports)
2895 					break;
2896 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2897 				if (hc_cause & port_mask)
2898 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2899 			}
2900 			hc_mmio = mv_hc_base_from_port(mmio, port);
2901 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2902 			handled = 1;
2903 		}
2904 		/*
2905 		 * Handle interrupts signalled for this port:
2906 		 */
2907 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2908 		if (port_cause)
2909 			mv_port_intr(ap, port_cause);
2910 	}
2911 	return handled;
2912 }
2913 
2914 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2915 {
2916 	struct mv_host_priv *hpriv = host->private_data;
2917 	struct ata_port *ap;
2918 	struct ata_queued_cmd *qc;
2919 	struct ata_eh_info *ehi;
2920 	unsigned int i, err_mask, printed = 0;
2921 	u32 err_cause;
2922 
2923 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2924 
2925 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2926 
2927 	dev_dbg(host->dev, "%s: All regs @ PCI error\n", __func__);
2928 	mv_dump_all_regs(mmio, to_pci_dev(host->dev));
2929 
2930 	writelfl(0, mmio + hpriv->irq_cause_offset);
2931 
2932 	for (i = 0; i < host->n_ports; i++) {
2933 		ap = host->ports[i];
2934 		if (!ata_link_offline(&ap->link)) {
2935 			ehi = &ap->link.eh_info;
2936 			ata_ehi_clear_desc(ehi);
2937 			if (!printed++)
2938 				ata_ehi_push_desc(ehi,
2939 					"PCI err cause 0x%08x", err_cause);
2940 			err_mask = AC_ERR_HOST_BUS;
2941 			ehi->action = ATA_EH_RESET;
2942 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2943 			if (qc)
2944 				qc->err_mask |= err_mask;
2945 			else
2946 				ehi->err_mask |= err_mask;
2947 
2948 			ata_port_freeze(ap);
2949 		}
2950 	}
2951 	return 1;	/* handled */
2952 }
2953 
2954 /**
2955  *      mv_interrupt - Main interrupt event handler
2956  *      @irq: unused
2957  *      @dev_instance: private data; in this case the host structure
2958  *
2959  *      Read the read only register to determine if any host
2960  *      controllers have pending interrupts.  If so, call lower level
2961  *      routine to handle.  Also check for PCI errors which are only
2962  *      reported here.
2963  *
2964  *      LOCKING:
2965  *      This routine holds the host lock while processing pending
2966  *      interrupts.
2967  */
2968 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2969 {
2970 	struct ata_host *host = dev_instance;
2971 	struct mv_host_priv *hpriv = host->private_data;
2972 	unsigned int handled = 0;
2973 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2974 	u32 main_irq_cause, pending_irqs;
2975 
2976 	spin_lock(&host->lock);
2977 
2978 	/* for MSI:  block new interrupts while in here */
2979 	if (using_msi)
2980 		mv_write_main_irq_mask(0, hpriv);
2981 
2982 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2983 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2984 	/*
2985 	 * Deal with cases where we either have nothing pending, or have read
2986 	 * a bogus register value which can indicate HW removal or PCI fault.
2987 	 */
2988 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2989 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2990 			handled = mv_pci_error(host, hpriv->base);
2991 		else
2992 			handled = mv_host_intr(host, pending_irqs);
2993 	}
2994 
2995 	/* for MSI: unmask; interrupt cause bits will retrigger now */
2996 	if (using_msi)
2997 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2998 
2999 	spin_unlock(&host->lock);
3000 
3001 	return IRQ_RETVAL(handled);
3002 }
3003 
3004 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3005 {
3006 	unsigned int ofs;
3007 
3008 	switch (sc_reg_in) {
3009 	case SCR_STATUS:
3010 	case SCR_ERROR:
3011 	case SCR_CONTROL:
3012 		ofs = sc_reg_in * sizeof(u32);
3013 		break;
3014 	default:
3015 		ofs = 0xffffffffU;
3016 		break;
3017 	}
3018 	return ofs;
3019 }
3020 
3021 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3022 {
3023 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3024 	void __iomem *mmio = hpriv->base;
3025 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3026 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3027 
3028 	if (ofs != 0xffffffffU) {
3029 		*val = readl(addr + ofs);
3030 		return 0;
3031 	} else
3032 		return -EINVAL;
3033 }
3034 
3035 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3036 {
3037 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3038 	void __iomem *mmio = hpriv->base;
3039 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3040 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3041 
3042 	if (ofs != 0xffffffffU) {
3043 		writelfl(val, addr + ofs);
3044 		return 0;
3045 	} else
3046 		return -EINVAL;
3047 }
3048 
3049 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3050 {
3051 	struct pci_dev *pdev = to_pci_dev(host->dev);
3052 	int early_5080;
3053 
3054 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3055 
3056 	if (!early_5080) {
3057 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3058 		tmp |= (1 << 0);
3059 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3060 	}
3061 
3062 	mv_reset_pci_bus(host, mmio);
3063 }
3064 
3065 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3066 {
3067 	writel(0x0fcfffff, mmio + FLASH_CTL);
3068 }
3069 
3070 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3071 			   void __iomem *mmio)
3072 {
3073 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3074 	u32 tmp;
3075 
3076 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3077 
3078 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3079 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3080 }
3081 
3082 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3083 {
3084 	u32 tmp;
3085 
3086 	writel(0, mmio + GPIO_PORT_CTL);
3087 
3088 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3089 
3090 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3091 	tmp |= ~(1 << 0);
3092 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3093 }
3094 
3095 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3096 			   unsigned int port)
3097 {
3098 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3099 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3100 	u32 tmp;
3101 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3102 
3103 	if (fix_apm_sq) {
3104 		tmp = readl(phy_mmio + MV5_LTMODE);
3105 		tmp |= (1 << 19);
3106 		writel(tmp, phy_mmio + MV5_LTMODE);
3107 
3108 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3109 		tmp &= ~0x3;
3110 		tmp |= 0x1;
3111 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3112 	}
3113 
3114 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3115 	tmp &= ~mask;
3116 	tmp |= hpriv->signal[port].pre;
3117 	tmp |= hpriv->signal[port].amps;
3118 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3119 }
3120 
3121 
3122 #undef ZERO
3123 #define ZERO(reg) writel(0, port_mmio + (reg))
3124 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3125 			     unsigned int port)
3126 {
3127 	void __iomem *port_mmio = mv_port_base(mmio, port);
3128 
3129 	mv_reset_channel(hpriv, mmio, port);
3130 
3131 	ZERO(0x028);	/* command */
3132 	writel(0x11f, port_mmio + EDMA_CFG);
3133 	ZERO(0x004);	/* timer */
3134 	ZERO(0x008);	/* irq err cause */
3135 	ZERO(0x00c);	/* irq err mask */
3136 	ZERO(0x010);	/* rq bah */
3137 	ZERO(0x014);	/* rq inp */
3138 	ZERO(0x018);	/* rq outp */
3139 	ZERO(0x01c);	/* respq bah */
3140 	ZERO(0x024);	/* respq outp */
3141 	ZERO(0x020);	/* respq inp */
3142 	ZERO(0x02c);	/* test control */
3143 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3144 }
3145 #undef ZERO
3146 
3147 #define ZERO(reg) writel(0, hc_mmio + (reg))
3148 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3149 			unsigned int hc)
3150 {
3151 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3152 	u32 tmp;
3153 
3154 	ZERO(0x00c);
3155 	ZERO(0x010);
3156 	ZERO(0x014);
3157 	ZERO(0x018);
3158 
3159 	tmp = readl(hc_mmio + 0x20);
3160 	tmp &= 0x1c1c1c1c;
3161 	tmp |= 0x03030303;
3162 	writel(tmp, hc_mmio + 0x20);
3163 }
3164 #undef ZERO
3165 
3166 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
3167 			unsigned int n_hc)
3168 {
3169 	struct mv_host_priv *hpriv = host->private_data;
3170 	unsigned int hc, port;
3171 
3172 	for (hc = 0; hc < n_hc; hc++) {
3173 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3174 			mv5_reset_hc_port(hpriv, mmio,
3175 					  (hc * MV_PORTS_PER_HC) + port);
3176 
3177 		mv5_reset_one_hc(hpriv, mmio, hc);
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 #undef ZERO
3184 #define ZERO(reg) writel(0, mmio + (reg))
3185 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3186 {
3187 	struct mv_host_priv *hpriv = host->private_data;
3188 	u32 tmp;
3189 
3190 	tmp = readl(mmio + MV_PCI_MODE);
3191 	tmp &= 0xff00ffff;
3192 	writel(tmp, mmio + MV_PCI_MODE);
3193 
3194 	ZERO(MV_PCI_DISC_TIMER);
3195 	ZERO(MV_PCI_MSI_TRIGGER);
3196 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3197 	ZERO(MV_PCI_SERR_MASK);
3198 	ZERO(hpriv->irq_cause_offset);
3199 	ZERO(hpriv->irq_mask_offset);
3200 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3201 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3202 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3203 	ZERO(MV_PCI_ERR_COMMAND);
3204 }
3205 #undef ZERO
3206 
3207 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3208 {
3209 	u32 tmp;
3210 
3211 	mv5_reset_flash(hpriv, mmio);
3212 
3213 	tmp = readl(mmio + GPIO_PORT_CTL);
3214 	tmp &= 0x3;
3215 	tmp |= (1 << 5) | (1 << 6);
3216 	writel(tmp, mmio + GPIO_PORT_CTL);
3217 }
3218 
3219 /*
3220  *      mv6_reset_hc - Perform the 6xxx global soft reset
3221  *      @mmio: base address of the HBA
3222  *
3223  *      This routine only applies to 6xxx parts.
3224  *
3225  *      LOCKING:
3226  *      Inherited from caller.
3227  */
3228 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
3229 			unsigned int n_hc)
3230 {
3231 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3232 	int i, rc = 0;
3233 	u32 t;
3234 
3235 	/* Following procedure defined in PCI "main command and status
3236 	 * register" table.
3237 	 */
3238 	t = readl(reg);
3239 	writel(t | STOP_PCI_MASTER, reg);
3240 
3241 	for (i = 0; i < 1000; i++) {
3242 		udelay(1);
3243 		t = readl(reg);
3244 		if (PCI_MASTER_EMPTY & t)
3245 			break;
3246 	}
3247 	if (!(PCI_MASTER_EMPTY & t)) {
3248 		dev_err(host->dev, "PCI master won't flush\n");
3249 		rc = 1;
3250 		goto done;
3251 	}
3252 
3253 	/* set reset */
3254 	i = 5;
3255 	do {
3256 		writel(t | GLOB_SFT_RST, reg);
3257 		t = readl(reg);
3258 		udelay(1);
3259 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3260 
3261 	if (!(GLOB_SFT_RST & t)) {
3262 		dev_err(host->dev, "can't set global reset\n");
3263 		rc = 1;
3264 		goto done;
3265 	}
3266 
3267 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3268 	i = 5;
3269 	do {
3270 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3271 		t = readl(reg);
3272 		udelay(1);
3273 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3274 
3275 	if (GLOB_SFT_RST & t) {
3276 		dev_err(host->dev, "can't clear global reset\n");
3277 		rc = 1;
3278 	}
3279 done:
3280 	return rc;
3281 }
3282 
3283 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3284 			   void __iomem *mmio)
3285 {
3286 	void __iomem *port_mmio;
3287 	u32 tmp;
3288 
3289 	tmp = readl(mmio + RESET_CFG);
3290 	if ((tmp & (1 << 0)) == 0) {
3291 		hpriv->signal[idx].amps = 0x7 << 8;
3292 		hpriv->signal[idx].pre = 0x1 << 5;
3293 		return;
3294 	}
3295 
3296 	port_mmio = mv_port_base(mmio, idx);
3297 	tmp = readl(port_mmio + PHY_MODE2);
3298 
3299 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3300 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3301 }
3302 
3303 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3304 {
3305 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3306 }
3307 
3308 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3309 			   unsigned int port)
3310 {
3311 	void __iomem *port_mmio = mv_port_base(mmio, port);
3312 
3313 	u32 hp_flags = hpriv->hp_flags;
3314 	int fix_phy_mode2 =
3315 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3316 	int fix_phy_mode4 =
3317 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3318 	u32 m2, m3;
3319 
3320 	if (fix_phy_mode2) {
3321 		m2 = readl(port_mmio + PHY_MODE2);
3322 		m2 &= ~(1 << 16);
3323 		m2 |= (1 << 31);
3324 		writel(m2, port_mmio + PHY_MODE2);
3325 
3326 		udelay(200);
3327 
3328 		m2 = readl(port_mmio + PHY_MODE2);
3329 		m2 &= ~((1 << 16) | (1 << 31));
3330 		writel(m2, port_mmio + PHY_MODE2);
3331 
3332 		udelay(200);
3333 	}
3334 
3335 	/*
3336 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3337 	 * Achieves better receiver noise performance than the h/w default:
3338 	 */
3339 	m3 = readl(port_mmio + PHY_MODE3);
3340 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3341 
3342 	/* Guideline 88F5182 (GL# SATA-S11) */
3343 	if (IS_SOC(hpriv))
3344 		m3 &= ~0x1c;
3345 
3346 	if (fix_phy_mode4) {
3347 		u32 m4 = readl(port_mmio + PHY_MODE4);
3348 		/*
3349 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3350 		 * For earlier chipsets, force only the internal config field
3351 		 *  (workaround for errata FEr SATA#10 part 1).
3352 		 */
3353 		if (IS_GEN_IIE(hpriv))
3354 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3355 		else
3356 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3357 		writel(m4, port_mmio + PHY_MODE4);
3358 	}
3359 	/*
3360 	 * Workaround for 60x1-B2 errata SATA#13:
3361 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3362 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3363 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3364 	 */
3365 	writel(m3, port_mmio + PHY_MODE3);
3366 
3367 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3368 	m2 = readl(port_mmio + PHY_MODE2);
3369 
3370 	m2 &= ~MV_M2_PREAMP_MASK;
3371 	m2 |= hpriv->signal[port].amps;
3372 	m2 |= hpriv->signal[port].pre;
3373 	m2 &= ~(1 << 16);
3374 
3375 	/* according to mvSata 3.6.1, some IIE values are fixed */
3376 	if (IS_GEN_IIE(hpriv)) {
3377 		m2 &= ~0xC30FF01F;
3378 		m2 |= 0x0000900F;
3379 	}
3380 
3381 	writel(m2, port_mmio + PHY_MODE2);
3382 }
3383 
3384 /* TODO: use the generic LED interface to configure the SATA Presence */
3385 /* & Acitivy LEDs on the board */
3386 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3387 				      void __iomem *mmio)
3388 {
3389 	return;
3390 }
3391 
3392 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3393 			   void __iomem *mmio)
3394 {
3395 	void __iomem *port_mmio;
3396 	u32 tmp;
3397 
3398 	port_mmio = mv_port_base(mmio, idx);
3399 	tmp = readl(port_mmio + PHY_MODE2);
3400 
3401 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3402 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3403 }
3404 
3405 #undef ZERO
3406 #define ZERO(reg) writel(0, port_mmio + (reg))
3407 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3408 					void __iomem *mmio, unsigned int port)
3409 {
3410 	void __iomem *port_mmio = mv_port_base(mmio, port);
3411 
3412 	mv_reset_channel(hpriv, mmio, port);
3413 
3414 	ZERO(0x028);		/* command */
3415 	writel(0x101f, port_mmio + EDMA_CFG);
3416 	ZERO(0x004);		/* timer */
3417 	ZERO(0x008);		/* irq err cause */
3418 	ZERO(0x00c);		/* irq err mask */
3419 	ZERO(0x010);		/* rq bah */
3420 	ZERO(0x014);		/* rq inp */
3421 	ZERO(0x018);		/* rq outp */
3422 	ZERO(0x01c);		/* respq bah */
3423 	ZERO(0x024);		/* respq outp */
3424 	ZERO(0x020);		/* respq inp */
3425 	ZERO(0x02c);		/* test control */
3426 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3427 }
3428 
3429 #undef ZERO
3430 
3431 #define ZERO(reg) writel(0, hc_mmio + (reg))
3432 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3433 				       void __iomem *mmio)
3434 {
3435 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3436 
3437 	ZERO(0x00c);
3438 	ZERO(0x010);
3439 	ZERO(0x014);
3440 
3441 }
3442 
3443 #undef ZERO
3444 
3445 static int mv_soc_reset_hc(struct ata_host *host,
3446 				  void __iomem *mmio, unsigned int n_hc)
3447 {
3448 	struct mv_host_priv *hpriv = host->private_data;
3449 	unsigned int port;
3450 
3451 	for (port = 0; port < hpriv->n_ports; port++)
3452 		mv_soc_reset_hc_port(hpriv, mmio, port);
3453 
3454 	mv_soc_reset_one_hc(hpriv, mmio);
3455 
3456 	return 0;
3457 }
3458 
3459 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3460 				      void __iomem *mmio)
3461 {
3462 	return;
3463 }
3464 
3465 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3466 {
3467 	return;
3468 }
3469 
3470 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3471 				  void __iomem *mmio, unsigned int port)
3472 {
3473 	void __iomem *port_mmio = mv_port_base(mmio, port);
3474 	u32	reg;
3475 
3476 	reg = readl(port_mmio + PHY_MODE3);
3477 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3478 	reg |= (0x1 << 27);
3479 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3480 	reg |= (0x1 << 29);
3481 	writel(reg, port_mmio + PHY_MODE3);
3482 
3483 	reg = readl(port_mmio + PHY_MODE4);
3484 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3485 	reg |= (0x1 << 16);
3486 	writel(reg, port_mmio + PHY_MODE4);
3487 
3488 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3489 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3490 	reg |= 0x8;
3491 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3492 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3493 
3494 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3495 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3496 	reg |= 0x8;
3497 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3498 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3499 }
3500 
3501 /*
3502  *	soc_is_65 - check if the soc is 65 nano device
3503  *
3504  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3505  *	register, this register should contain non-zero value and it exists only
3506  *	in the 65 nano devices, when reading it from older devices we get 0.
3507  */
3508 static bool soc_is_65n(struct mv_host_priv *hpriv)
3509 {
3510 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3511 
3512 	if (readl(port0_mmio + PHYCFG_OFS))
3513 		return true;
3514 	return false;
3515 }
3516 
3517 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3518 {
3519 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3520 
3521 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3522 	if (want_gen2i)
3523 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3524 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3525 }
3526 
3527 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3528 			     unsigned int port_no)
3529 {
3530 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3531 
3532 	/*
3533 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3534 	 * (but doesn't say what the problem might be).  So we first try
3535 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3536 	 */
3537 	mv_stop_edma_engine(port_mmio);
3538 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3539 
3540 	if (!IS_GEN_I(hpriv)) {
3541 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3542 		mv_setup_ifcfg(port_mmio, 1);
3543 	}
3544 	/*
3545 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3546 	 * link, and physical layers.  It resets all SATA interface registers
3547 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3548 	 */
3549 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3550 	udelay(25);	/* allow reset propagation */
3551 	writelfl(0, port_mmio + EDMA_CMD);
3552 
3553 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3554 
3555 	if (IS_GEN_I(hpriv))
3556 		usleep_range(500, 1000);
3557 }
3558 
3559 static void mv_pmp_select(struct ata_port *ap, int pmp)
3560 {
3561 	if (sata_pmp_supported(ap)) {
3562 		void __iomem *port_mmio = mv_ap_base(ap);
3563 		u32 reg = readl(port_mmio + SATA_IFCTL);
3564 		int old = reg & 0xf;
3565 
3566 		if (old != pmp) {
3567 			reg = (reg & ~0xf) | pmp;
3568 			writelfl(reg, port_mmio + SATA_IFCTL);
3569 		}
3570 	}
3571 }
3572 
3573 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3574 				unsigned long deadline)
3575 {
3576 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3577 	return sata_std_hardreset(link, class, deadline);
3578 }
3579 
3580 static int mv_softreset(struct ata_link *link, unsigned int *class,
3581 				unsigned long deadline)
3582 {
3583 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3584 	return ata_sff_softreset(link, class, deadline);
3585 }
3586 
3587 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3588 			unsigned long deadline)
3589 {
3590 	struct ata_port *ap = link->ap;
3591 	struct mv_host_priv *hpriv = ap->host->private_data;
3592 	struct mv_port_priv *pp = ap->private_data;
3593 	void __iomem *mmio = hpriv->base;
3594 	int rc, attempts = 0, extra = 0;
3595 	u32 sstatus;
3596 	bool online;
3597 
3598 	mv_reset_channel(hpriv, mmio, ap->port_no);
3599 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3600 	pp->pp_flags &=
3601 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3602 
3603 	/* Workaround for errata FEr SATA#10 (part 2) */
3604 	do {
3605 		const unsigned int *timing =
3606 				sata_ehc_deb_timing(&link->eh_context);
3607 
3608 		rc = sata_link_hardreset(link, timing, deadline + extra,
3609 					 &online, NULL);
3610 		rc = online ? -EAGAIN : rc;
3611 		if (rc)
3612 			return rc;
3613 		sata_scr_read(link, SCR_STATUS, &sstatus);
3614 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3615 			/* Force 1.5gb/s link speed and try again */
3616 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3617 			if (time_after(jiffies + HZ, deadline))
3618 				extra = HZ; /* only extend it once, max */
3619 		}
3620 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3621 	mv_save_cached_regs(ap);
3622 	mv_edma_cfg(ap, 0, 0);
3623 
3624 	return rc;
3625 }
3626 
3627 static void mv_eh_freeze(struct ata_port *ap)
3628 {
3629 	mv_stop_edma(ap);
3630 	mv_enable_port_irqs(ap, 0);
3631 }
3632 
3633 static void mv_eh_thaw(struct ata_port *ap)
3634 {
3635 	struct mv_host_priv *hpriv = ap->host->private_data;
3636 	unsigned int port = ap->port_no;
3637 	unsigned int hardport = mv_hardport_from_port(port);
3638 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3639 	void __iomem *port_mmio = mv_ap_base(ap);
3640 	u32 hc_irq_cause;
3641 
3642 	/* clear EDMA errors on this port */
3643 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3644 
3645 	/* clear pending irq events */
3646 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3647 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3648 
3649 	mv_enable_port_irqs(ap, ERR_IRQ);
3650 }
3651 
3652 /**
3653  *      mv_port_init - Perform some early initialization on a single port.
3654  *      @port: libata data structure storing shadow register addresses
3655  *      @port_mmio: base address of the port
3656  *
3657  *      Initialize shadow register mmio addresses, clear outstanding
3658  *      interrupts on the port, and unmask interrupts for the future
3659  *      start of the port.
3660  *
3661  *      LOCKING:
3662  *      Inherited from caller.
3663  */
3664 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3665 {
3666 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3667 
3668 	/* PIO related setup
3669 	 */
3670 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3671 	port->error_addr =
3672 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3673 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3674 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3675 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3676 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3677 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3678 	port->status_addr =
3679 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3680 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3681 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3682 
3683 	/* Clear any currently outstanding port interrupt conditions */
3684 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3685 	writelfl(readl(serr), serr);
3686 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3687 
3688 	/* unmask all non-transient EDMA error interrupts */
3689 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3690 }
3691 
3692 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3693 {
3694 	struct mv_host_priv *hpriv = host->private_data;
3695 	void __iomem *mmio = hpriv->base;
3696 	u32 reg;
3697 
3698 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3699 		return 0;	/* not PCI-X capable */
3700 	reg = readl(mmio + MV_PCI_MODE);
3701 	if ((reg & MV_PCI_MODE_MASK) == 0)
3702 		return 0;	/* conventional PCI mode */
3703 	return 1;	/* chip is in PCI-X mode */
3704 }
3705 
3706 static int mv_pci_cut_through_okay(struct ata_host *host)
3707 {
3708 	struct mv_host_priv *hpriv = host->private_data;
3709 	void __iomem *mmio = hpriv->base;
3710 	u32 reg;
3711 
3712 	if (!mv_in_pcix_mode(host)) {
3713 		reg = readl(mmio + MV_PCI_COMMAND);
3714 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3715 			return 0; /* not okay */
3716 	}
3717 	return 1; /* okay */
3718 }
3719 
3720 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3721 {
3722 	struct mv_host_priv *hpriv = host->private_data;
3723 	void __iomem *mmio = hpriv->base;
3724 
3725 	/* workaround for 60x1-B2 errata PCI#7 */
3726 	if (mv_in_pcix_mode(host)) {
3727 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3728 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3729 	}
3730 }
3731 
3732 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3733 {
3734 	struct pci_dev *pdev = to_pci_dev(host->dev);
3735 	struct mv_host_priv *hpriv = host->private_data;
3736 	u32 hp_flags = hpriv->hp_flags;
3737 
3738 	switch (board_idx) {
3739 	case chip_5080:
3740 		hpriv->ops = &mv5xxx_ops;
3741 		hp_flags |= MV_HP_GEN_I;
3742 
3743 		switch (pdev->revision) {
3744 		case 0x1:
3745 			hp_flags |= MV_HP_ERRATA_50XXB0;
3746 			break;
3747 		case 0x3:
3748 			hp_flags |= MV_HP_ERRATA_50XXB2;
3749 			break;
3750 		default:
3751 			dev_warn(&pdev->dev,
3752 				 "Applying 50XXB2 workarounds to unknown rev\n");
3753 			hp_flags |= MV_HP_ERRATA_50XXB2;
3754 			break;
3755 		}
3756 		break;
3757 
3758 	case chip_504x:
3759 	case chip_508x:
3760 		hpriv->ops = &mv5xxx_ops;
3761 		hp_flags |= MV_HP_GEN_I;
3762 
3763 		switch (pdev->revision) {
3764 		case 0x0:
3765 			hp_flags |= MV_HP_ERRATA_50XXB0;
3766 			break;
3767 		case 0x3:
3768 			hp_flags |= MV_HP_ERRATA_50XXB2;
3769 			break;
3770 		default:
3771 			dev_warn(&pdev->dev,
3772 				 "Applying B2 workarounds to unknown rev\n");
3773 			hp_flags |= MV_HP_ERRATA_50XXB2;
3774 			break;
3775 		}
3776 		break;
3777 
3778 	case chip_604x:
3779 	case chip_608x:
3780 		hpriv->ops = &mv6xxx_ops;
3781 		hp_flags |= MV_HP_GEN_II;
3782 
3783 		switch (pdev->revision) {
3784 		case 0x7:
3785 			mv_60x1b2_errata_pci7(host);
3786 			hp_flags |= MV_HP_ERRATA_60X1B2;
3787 			break;
3788 		case 0x9:
3789 			hp_flags |= MV_HP_ERRATA_60X1C0;
3790 			break;
3791 		default:
3792 			dev_warn(&pdev->dev,
3793 				 "Applying B2 workarounds to unknown rev\n");
3794 			hp_flags |= MV_HP_ERRATA_60X1B2;
3795 			break;
3796 		}
3797 		break;
3798 
3799 	case chip_7042:
3800 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3801 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3802 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3803 		{
3804 			/*
3805 			 * Highpoint RocketRAID PCIe 23xx series cards:
3806 			 *
3807 			 * Unconfigured drives are treated as "Legacy"
3808 			 * by the BIOS, and it overwrites sector 8 with
3809 			 * a "Lgcy" metadata block prior to Linux boot.
3810 			 *
3811 			 * Configured drives (RAID or JBOD) leave sector 8
3812 			 * alone, but instead overwrite a high numbered
3813 			 * sector for the RAID metadata.  This sector can
3814 			 * be determined exactly, by truncating the physical
3815 			 * drive capacity to a nice even GB value.
3816 			 *
3817 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3818 			 *
3819 			 * Warn the user, lest they think we're just buggy.
3820 			 */
3821 			dev_warn(&pdev->dev, "Highpoint RocketRAID"
3822 				" BIOS CORRUPTS DATA on all attached drives,"
3823 				" regardless of if/how they are configured."
3824 				" BEWARE!\n");
3825 			dev_warn(&pdev->dev, "For data safety, do not"
3826 				" use sectors 8-9 on \"Legacy\" drives,"
3827 				" and avoid the final two gigabytes on"
3828 				" all RocketRAID BIOS initialized drives.\n");
3829 		}
3830 		fallthrough;
3831 	case chip_6042:
3832 		hpriv->ops = &mv6xxx_ops;
3833 		hp_flags |= MV_HP_GEN_IIE;
3834 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3835 			hp_flags |= MV_HP_CUT_THROUGH;
3836 
3837 		switch (pdev->revision) {
3838 		case 0x2: /* Rev.B0: the first/only public release */
3839 			hp_flags |= MV_HP_ERRATA_60X1C0;
3840 			break;
3841 		default:
3842 			dev_warn(&pdev->dev,
3843 				 "Applying 60X1C0 workarounds to unknown rev\n");
3844 			hp_flags |= MV_HP_ERRATA_60X1C0;
3845 			break;
3846 		}
3847 		break;
3848 	case chip_soc:
3849 		if (soc_is_65n(hpriv))
3850 			hpriv->ops = &mv_soc_65n_ops;
3851 		else
3852 			hpriv->ops = &mv_soc_ops;
3853 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3854 			MV_HP_ERRATA_60X1C0;
3855 		break;
3856 
3857 	default:
3858 		dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3859 		return -EINVAL;
3860 	}
3861 
3862 	hpriv->hp_flags = hp_flags;
3863 	if (hp_flags & MV_HP_PCIE) {
3864 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3865 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3866 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3867 	} else {
3868 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3869 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3870 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3871 	}
3872 
3873 	return 0;
3874 }
3875 
3876 /**
3877  *      mv_init_host - Perform some early initialization of the host.
3878  *	@host: ATA host to initialize
3879  *
3880  *      If possible, do an early global reset of the host.  Then do
3881  *      our port init and clear/unmask all/relevant host interrupts.
3882  *
3883  *      LOCKING:
3884  *      Inherited from caller.
3885  */
3886 static int mv_init_host(struct ata_host *host)
3887 {
3888 	int rc = 0, n_hc, port, hc;
3889 	struct mv_host_priv *hpriv = host->private_data;
3890 	void __iomem *mmio = hpriv->base;
3891 
3892 	rc = mv_chip_id(host, hpriv->board_idx);
3893 	if (rc)
3894 		goto done;
3895 
3896 	if (IS_SOC(hpriv)) {
3897 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3898 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3899 	} else {
3900 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3901 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3902 	}
3903 
3904 	/* initialize shadow irq mask with register's value */
3905 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3906 
3907 	/* global interrupt mask: 0 == mask everything */
3908 	mv_set_main_irq_mask(host, ~0, 0);
3909 
3910 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3911 
3912 	for (port = 0; port < host->n_ports; port++)
3913 		if (hpriv->ops->read_preamp)
3914 			hpriv->ops->read_preamp(hpriv, port, mmio);
3915 
3916 	rc = hpriv->ops->reset_hc(host, mmio, n_hc);
3917 	if (rc)
3918 		goto done;
3919 
3920 	hpriv->ops->reset_flash(hpriv, mmio);
3921 	hpriv->ops->reset_bus(host, mmio);
3922 	hpriv->ops->enable_leds(hpriv, mmio);
3923 
3924 	for (port = 0; port < host->n_ports; port++) {
3925 		struct ata_port *ap = host->ports[port];
3926 		void __iomem *port_mmio = mv_port_base(mmio, port);
3927 
3928 		mv_port_init(&ap->ioaddr, port_mmio);
3929 	}
3930 
3931 	for (hc = 0; hc < n_hc; hc++) {
3932 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3933 
3934 		dev_dbg(host->dev, "HC%i: HC config=0x%08x HC IRQ cause "
3935 			"(before clear)=0x%08x\n", hc,
3936 			readl(hc_mmio + HC_CFG),
3937 			readl(hc_mmio + HC_IRQ_CAUSE));
3938 
3939 		/* Clear any currently outstanding hc interrupt conditions */
3940 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3941 	}
3942 
3943 	if (!IS_SOC(hpriv)) {
3944 		/* Clear any currently outstanding host interrupt conditions */
3945 		writelfl(0, mmio + hpriv->irq_cause_offset);
3946 
3947 		/* and unmask interrupt generation for host regs */
3948 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3949 	}
3950 
3951 	/*
3952 	 * enable only global host interrupts for now.
3953 	 * The per-port interrupts get done later as ports are set up.
3954 	 */
3955 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3956 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3957 				    irq_coalescing_usecs);
3958 done:
3959 	return rc;
3960 }
3961 
3962 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3963 {
3964 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3965 							     MV_CRQB_Q_SZ, 0);
3966 	if (!hpriv->crqb_pool)
3967 		return -ENOMEM;
3968 
3969 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3970 							     MV_CRPB_Q_SZ, 0);
3971 	if (!hpriv->crpb_pool)
3972 		return -ENOMEM;
3973 
3974 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3975 							     MV_SG_TBL_SZ, 0);
3976 	if (!hpriv->sg_tbl_pool)
3977 		return -ENOMEM;
3978 
3979 	return 0;
3980 }
3981 
3982 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3983 				 const struct mbus_dram_target_info *dram)
3984 {
3985 	int i;
3986 
3987 	for (i = 0; i < 4; i++) {
3988 		writel(0, hpriv->base + WINDOW_CTRL(i));
3989 		writel(0, hpriv->base + WINDOW_BASE(i));
3990 	}
3991 
3992 	for (i = 0; i < dram->num_cs; i++) {
3993 		const struct mbus_dram_window *cs = dram->cs + i;
3994 
3995 		writel(((cs->size - 1) & 0xffff0000) |
3996 			(cs->mbus_attr << 8) |
3997 			(dram->mbus_dram_target_id << 4) | 1,
3998 			hpriv->base + WINDOW_CTRL(i));
3999 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4000 	}
4001 }
4002 
4003 /**
4004  *      mv_platform_probe - handle a positive probe of an soc Marvell
4005  *      host
4006  *      @pdev: platform device found
4007  *
4008  *      LOCKING:
4009  *      Inherited from caller.
4010  */
4011 static int mv_platform_probe(struct platform_device *pdev)
4012 {
4013 	const struct mv_sata_platform_data *mv_platform_data;
4014 	const struct mbus_dram_target_info *dram;
4015 	const struct ata_port_info *ppi[] =
4016 	    { &mv_port_info[chip_soc], NULL };
4017 	struct ata_host *host;
4018 	struct mv_host_priv *hpriv;
4019 	struct resource *res;
4020 	int n_ports = 0, irq = 0;
4021 	int rc;
4022 	int port;
4023 
4024 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4025 
4026 	/*
4027 	 * Simple resource validation ..
4028 	 */
4029 	if (unlikely(pdev->num_resources != 1)) {
4030 		dev_err(&pdev->dev, "invalid number of resources\n");
4031 		return -EINVAL;
4032 	}
4033 
4034 	/*
4035 	 * Get the register base first
4036 	 */
4037 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4038 	if (res == NULL)
4039 		return -EINVAL;
4040 
4041 	/* allocate host */
4042 	if (pdev->dev.of_node) {
4043 		rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4044 					   &n_ports);
4045 		if (rc) {
4046 			dev_err(&pdev->dev,
4047 				"error parsing nr-ports property: %d\n", rc);
4048 			return rc;
4049 		}
4050 
4051 		if (n_ports <= 0) {
4052 			dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4053 				n_ports);
4054 			return -EINVAL;
4055 		}
4056 
4057 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4058 	} else {
4059 		mv_platform_data = dev_get_platdata(&pdev->dev);
4060 		n_ports = mv_platform_data->n_ports;
4061 		irq = platform_get_irq(pdev, 0);
4062 	}
4063 	if (irq < 0)
4064 		return irq;
4065 	if (!irq)
4066 		return -EINVAL;
4067 
4068 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4069 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4070 
4071 	if (!host || !hpriv)
4072 		return -ENOMEM;
4073 	hpriv->port_clks = devm_kcalloc(&pdev->dev,
4074 					n_ports, sizeof(struct clk *),
4075 					GFP_KERNEL);
4076 	if (!hpriv->port_clks)
4077 		return -ENOMEM;
4078 	hpriv->port_phys = devm_kcalloc(&pdev->dev,
4079 					n_ports, sizeof(struct phy *),
4080 					GFP_KERNEL);
4081 	if (!hpriv->port_phys)
4082 		return -ENOMEM;
4083 	host->private_data = hpriv;
4084 	hpriv->board_idx = chip_soc;
4085 
4086 	host->iomap = NULL;
4087 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4088 				   resource_size(res));
4089 	if (!hpriv->base)
4090 		return -ENOMEM;
4091 
4092 	hpriv->base -= SATAHC0_REG_BASE;
4093 
4094 	hpriv->clk = clk_get(&pdev->dev, NULL);
4095 	if (IS_ERR(hpriv->clk)) {
4096 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4097 	} else {
4098 		rc = clk_prepare_enable(hpriv->clk);
4099 		if (rc)
4100 			goto err;
4101 	}
4102 
4103 	for (port = 0; port < n_ports; port++) {
4104 		char port_number[16];
4105 		sprintf(port_number, "%d", port);
4106 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4107 		if (!IS_ERR(hpriv->port_clks[port]))
4108 			clk_prepare_enable(hpriv->port_clks[port]);
4109 
4110 		sprintf(port_number, "port%d", port);
4111 		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4112 							       port_number);
4113 		if (IS_ERR(hpriv->port_phys[port])) {
4114 			rc = PTR_ERR(hpriv->port_phys[port]);
4115 			hpriv->port_phys[port] = NULL;
4116 			if (rc != -EPROBE_DEFER)
4117 				dev_warn(&pdev->dev, "error getting phy %d", rc);
4118 
4119 			/* Cleanup only the initialized ports */
4120 			hpriv->n_ports = port;
4121 			goto err;
4122 		} else
4123 			phy_power_on(hpriv->port_phys[port]);
4124 	}
4125 
4126 	/* All the ports have been initialized */
4127 	hpriv->n_ports = n_ports;
4128 
4129 	/*
4130 	 * (Re-)program MBUS remapping windows if we are asked to.
4131 	 */
4132 	dram = mv_mbus_dram_info();
4133 	if (dram)
4134 		mv_conf_mbus_windows(hpriv, dram);
4135 
4136 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4137 	if (rc)
4138 		goto err;
4139 
4140 	/*
4141 	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4142 	 * updated in the LP_PHY_CTL register.
4143 	 */
4144 	if (pdev->dev.of_node &&
4145 		of_device_is_compatible(pdev->dev.of_node,
4146 					"marvell,armada-370-sata"))
4147 		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4148 
4149 	/* initialize adapter */
4150 	rc = mv_init_host(host);
4151 	if (rc)
4152 		goto err;
4153 
4154 	dev_info(&pdev->dev, "slots %u ports %d\n",
4155 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4156 
4157 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4158 	if (!rc)
4159 		return 0;
4160 
4161 err:
4162 	if (!IS_ERR(hpriv->clk)) {
4163 		clk_disable_unprepare(hpriv->clk);
4164 		clk_put(hpriv->clk);
4165 	}
4166 	for (port = 0; port < hpriv->n_ports; port++) {
4167 		if (!IS_ERR(hpriv->port_clks[port])) {
4168 			clk_disable_unprepare(hpriv->port_clks[port]);
4169 			clk_put(hpriv->port_clks[port]);
4170 		}
4171 		phy_power_off(hpriv->port_phys[port]);
4172 	}
4173 
4174 	return rc;
4175 }
4176 
4177 /*
4178  *
4179  *      mv_platform_remove    -       unplug a platform interface
4180  *      @pdev: platform device
4181  *
4182  *      A platform bus SATA device has been unplugged. Perform the needed
4183  *      cleanup. Also called on module unload for any active devices.
4184  */
4185 static void mv_platform_remove(struct platform_device *pdev)
4186 {
4187 	struct ata_host *host = platform_get_drvdata(pdev);
4188 	struct mv_host_priv *hpriv = host->private_data;
4189 	int port;
4190 	ata_host_detach(host);
4191 
4192 	if (!IS_ERR(hpriv->clk)) {
4193 		clk_disable_unprepare(hpriv->clk);
4194 		clk_put(hpriv->clk);
4195 	}
4196 	for (port = 0; port < host->n_ports; port++) {
4197 		if (!IS_ERR(hpriv->port_clks[port])) {
4198 			clk_disable_unprepare(hpriv->port_clks[port]);
4199 			clk_put(hpriv->port_clks[port]);
4200 		}
4201 		phy_power_off(hpriv->port_phys[port]);
4202 	}
4203 }
4204 
4205 #ifdef CONFIG_PM_SLEEP
4206 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4207 {
4208 	struct ata_host *host = platform_get_drvdata(pdev);
4209 
4210 	if (host)
4211 		ata_host_suspend(host, state);
4212 	return 0;
4213 }
4214 
4215 static int mv_platform_resume(struct platform_device *pdev)
4216 {
4217 	struct ata_host *host = platform_get_drvdata(pdev);
4218 	const struct mbus_dram_target_info *dram;
4219 	int ret;
4220 
4221 	if (host) {
4222 		struct mv_host_priv *hpriv = host->private_data;
4223 
4224 		/*
4225 		 * (Re-)program MBUS remapping windows if we are asked to.
4226 		 */
4227 		dram = mv_mbus_dram_info();
4228 		if (dram)
4229 			mv_conf_mbus_windows(hpriv, dram);
4230 
4231 		/* initialize adapter */
4232 		ret = mv_init_host(host);
4233 		if (ret) {
4234 			dev_err(&pdev->dev, "Error during HW init\n");
4235 			return ret;
4236 		}
4237 		ata_host_resume(host);
4238 	}
4239 
4240 	return 0;
4241 }
4242 #else
4243 #define mv_platform_suspend NULL
4244 #define mv_platform_resume NULL
4245 #endif
4246 
4247 #ifdef CONFIG_OF
4248 static const struct of_device_id mv_sata_dt_ids[] = {
4249 	{ .compatible = "marvell,armada-370-sata", },
4250 	{ .compatible = "marvell,orion-sata", },
4251 	{ /* sentinel */ }
4252 };
4253 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4254 #endif
4255 
4256 static struct platform_driver mv_platform_driver = {
4257 	.probe		= mv_platform_probe,
4258 	.remove_new	= mv_platform_remove,
4259 	.suspend	= mv_platform_suspend,
4260 	.resume		= mv_platform_resume,
4261 	.driver		= {
4262 		.name = DRV_NAME,
4263 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4264 	},
4265 };
4266 
4267 
4268 #ifdef CONFIG_PCI
4269 static int mv_pci_init_one(struct pci_dev *pdev,
4270 			   const struct pci_device_id *ent);
4271 #ifdef CONFIG_PM_SLEEP
4272 static int mv_pci_device_resume(struct pci_dev *pdev);
4273 #endif
4274 
4275 static const struct pci_device_id mv_pci_tbl[] = {
4276 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
4277 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
4278 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
4279 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
4280 	/* RocketRAID 1720/174x have different identifiers */
4281 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4282 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
4283 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
4284 
4285 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
4286 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
4287 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
4288 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
4289 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
4290 
4291 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
4292 
4293 	/* Adaptec 1430SA */
4294 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
4295 
4296 	/* Marvell 7042 support */
4297 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
4298 
4299 	/* Highpoint RocketRAID PCIe series */
4300 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
4301 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
4302 
4303 	{ }			/* terminate list */
4304 };
4305 
4306 static struct pci_driver mv_pci_driver = {
4307 	.name			= DRV_NAME,
4308 	.id_table		= mv_pci_tbl,
4309 	.probe			= mv_pci_init_one,
4310 	.remove			= ata_pci_remove_one,
4311 #ifdef CONFIG_PM_SLEEP
4312 	.suspend		= ata_pci_device_suspend,
4313 	.resume			= mv_pci_device_resume,
4314 #endif
4315 
4316 };
4317 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4318 
4319 /**
4320  *      mv_print_info - Dump key info to kernel log for perusal.
4321  *      @host: ATA host to print info about
4322  *
4323  *      FIXME: complete this.
4324  *
4325  *      LOCKING:
4326  *      Inherited from caller.
4327  */
4328 static void mv_print_info(struct ata_host *host)
4329 {
4330 	struct pci_dev *pdev = to_pci_dev(host->dev);
4331 	struct mv_host_priv *hpriv = host->private_data;
4332 	u8 scc;
4333 	const char *scc_s, *gen;
4334 
4335 	/* Use this to determine the HW stepping of the chip so we know
4336 	 * what errata to workaround
4337 	 */
4338 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4339 	if (scc == 0)
4340 		scc_s = "SCSI";
4341 	else if (scc == 0x01)
4342 		scc_s = "RAID";
4343 	else
4344 		scc_s = "?";
4345 
4346 	if (IS_GEN_I(hpriv))
4347 		gen = "I";
4348 	else if (IS_GEN_II(hpriv))
4349 		gen = "II";
4350 	else if (IS_GEN_IIE(hpriv))
4351 		gen = "IIE";
4352 	else
4353 		gen = "?";
4354 
4355 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4356 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4357 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4358 }
4359 
4360 /**
4361  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4362  *      @pdev: PCI device found
4363  *      @ent: PCI device ID entry for the matched host
4364  *
4365  *      LOCKING:
4366  *      Inherited from caller.
4367  */
4368 static int mv_pci_init_one(struct pci_dev *pdev,
4369 			   const struct pci_device_id *ent)
4370 {
4371 	unsigned int board_idx = (unsigned int)ent->driver_data;
4372 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4373 	struct ata_host *host;
4374 	struct mv_host_priv *hpriv;
4375 	int n_ports, port, rc;
4376 
4377 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4378 
4379 	/* allocate host */
4380 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4381 
4382 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4383 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4384 	if (!host || !hpriv)
4385 		return -ENOMEM;
4386 	host->private_data = hpriv;
4387 	hpriv->n_ports = n_ports;
4388 	hpriv->board_idx = board_idx;
4389 
4390 	/* acquire resources */
4391 	rc = pcim_enable_device(pdev);
4392 	if (rc)
4393 		return rc;
4394 
4395 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4396 	if (rc == -EBUSY)
4397 		pcim_pin_device(pdev);
4398 	if (rc)
4399 		return rc;
4400 	host->iomap = pcim_iomap_table(pdev);
4401 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4402 
4403 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4404 	if (rc) {
4405 		dev_err(&pdev->dev, "DMA enable failed\n");
4406 		return rc;
4407 	}
4408 
4409 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4410 	if (rc)
4411 		return rc;
4412 
4413 	for (port = 0; port < host->n_ports; port++) {
4414 		struct ata_port *ap = host->ports[port];
4415 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4416 		unsigned int offset = port_mmio - hpriv->base;
4417 
4418 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4419 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4420 	}
4421 
4422 	/* initialize adapter */
4423 	rc = mv_init_host(host);
4424 	if (rc)
4425 		return rc;
4426 
4427 	/* Enable message-switched interrupts, if requested */
4428 	if (msi && pci_enable_msi(pdev) == 0)
4429 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4430 
4431 	mv_dump_pci_cfg(pdev, 0x68);
4432 	mv_print_info(host);
4433 
4434 	pci_set_master(pdev);
4435 	pci_try_set_mwi(pdev);
4436 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4437 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4438 }
4439 
4440 #ifdef CONFIG_PM_SLEEP
4441 static int mv_pci_device_resume(struct pci_dev *pdev)
4442 {
4443 	struct ata_host *host = pci_get_drvdata(pdev);
4444 	int rc;
4445 
4446 	rc = ata_pci_device_do_resume(pdev);
4447 	if (rc)
4448 		return rc;
4449 
4450 	/* initialize adapter */
4451 	rc = mv_init_host(host);
4452 	if (rc)
4453 		return rc;
4454 
4455 	ata_host_resume(host);
4456 
4457 	return 0;
4458 }
4459 #endif
4460 #endif
4461 
4462 static int __init mv_init(void)
4463 {
4464 	int rc = -ENODEV;
4465 #ifdef CONFIG_PCI
4466 	rc = pci_register_driver(&mv_pci_driver);
4467 	if (rc < 0)
4468 		return rc;
4469 #endif
4470 	rc = platform_driver_register(&mv_platform_driver);
4471 
4472 #ifdef CONFIG_PCI
4473 	if (rc < 0)
4474 		pci_unregister_driver(&mv_pci_driver);
4475 #endif
4476 	return rc;
4477 }
4478 
4479 static void __exit mv_exit(void)
4480 {
4481 #ifdef CONFIG_PCI
4482 	pci_unregister_driver(&mv_pci_driver);
4483 #endif
4484 	platform_driver_unregister(&mv_platform_driver);
4485 }
4486 
4487 MODULE_AUTHOR("Brett Russ");
4488 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4489 MODULE_LICENSE("GPL v2");
4490 MODULE_VERSION(DRV_VERSION);
4491 MODULE_ALIAS("platform:" DRV_NAME);
4492 
4493 module_init(mv_init);
4494 module_exit(mv_exit);
4495