xref: /linux/drivers/ata/sata_highbank.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Calxeda Highbank AHCI SATA platform driver
4  * Copyright 2012 Calxeda, Inc.
5  *
6  * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov
7  */
8 #include <linux/kernel.h>
9 #include <linux/gfp.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/spinlock.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/platform_device.h>
19 #include <linux/libata.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/export.h>
23 #include <linux/gpio/consumer.h>
24 
25 #include "ahci.h"
26 
27 #define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f))
28 #define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2)
29 #define SERDES_CR_CTL			0x80a0
30 #define SERDES_CR_ADDR			0x80a1
31 #define SERDES_CR_DATA			0x80a2
32 #define CR_BUSY				0x0001
33 #define CR_START			0x0001
34 #define CR_WR_RDN			0x0002
35 #define CPHY_TX_INPUT_STS		0x2001
36 #define CPHY_RX_INPUT_STS		0x2002
37 #define CPHY_SATA_TX_OVERRIDE		0x8000
38 #define CPHY_SATA_RX_OVERRIDE	 	0x4000
39 #define CPHY_TX_OVERRIDE		0x2004
40 #define CPHY_RX_OVERRIDE		0x2005
41 #define SPHY_LANE			0x100
42 #define SPHY_HALF_RATE			0x0001
43 #define CPHY_SATA_DPLL_MODE		0x0700
44 #define CPHY_SATA_DPLL_SHIFT		8
45 #define CPHY_SATA_DPLL_RESET		(1 << 11)
46 #define CPHY_SATA_TX_ATTEN		0x1c00
47 #define CPHY_SATA_TX_ATTEN_SHIFT	10
48 #define CPHY_PHY_COUNT			6
49 #define CPHY_LANE_COUNT			4
50 #define CPHY_PORT_COUNT			(CPHY_PHY_COUNT * CPHY_LANE_COUNT)
51 
52 static DEFINE_SPINLOCK(cphy_lock);
53 /* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based
54  * sata ports to their phys and then to their lanes within the phys
55  */
56 struct phy_lane_info {
57 	void __iomem *phy_base;
58 	u8 lane_mapping;
59 	u8 phy_devs;
60 	u8 tx_atten;
61 };
62 static struct phy_lane_info port_data[CPHY_PORT_COUNT];
63 
64 static DEFINE_SPINLOCK(sgpio_lock);
65 #define SCLOCK				0
66 #define SLOAD				1
67 #define SDATA				2
68 #define SGPIO_PINS			3
69 #define SGPIO_PORTS			8
70 
71 struct ecx_plat_data {
72 	u32		n_ports;
73 	/* number of extra clocks that the SGPIO PIC controller expects */
74 	u32		pre_clocks;
75 	u32		post_clocks;
76 	struct gpio_desc *sgpio_gpiod[SGPIO_PINS];
77 	u32		sgpio_pattern;
78 	u32		port_to_sgpio[SGPIO_PORTS];
79 };
80 
81 #define SGPIO_SIGNALS			3
82 #define ECX_ACTIVITY_BITS		0x300000
83 #define ECX_ACTIVITY_SHIFT		0
84 #define ECX_LOCATE_BITS			0x80000
85 #define ECX_LOCATE_SHIFT		1
86 #define ECX_FAULT_BITS			0x400000
87 #define ECX_FAULT_SHIFT			2
88 static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port,
89 				u32 shift)
90 {
91 	return 1 << (3 * pdata->port_to_sgpio[port] + shift);
92 }
93 
94 static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state)
95 {
96 	if (state & ECX_ACTIVITY_BITS)
97 		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
98 						ECX_ACTIVITY_SHIFT);
99 	else
100 		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
101 						ECX_ACTIVITY_SHIFT);
102 	if (state & ECX_LOCATE_BITS)
103 		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
104 						ECX_LOCATE_SHIFT);
105 	else
106 		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
107 						ECX_LOCATE_SHIFT);
108 	if (state & ECX_FAULT_BITS)
109 		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
110 						ECX_FAULT_SHIFT);
111 	else
112 		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
113 						ECX_FAULT_SHIFT);
114 }
115 
116 /*
117  * Tell the LED controller that the signal has changed by raising the clock
118  * line for 50 uS and then lowering it for 50 uS.
119  */
120 static void ecx_led_cycle_clock(struct ecx_plat_data *pdata)
121 {
122 	gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 1);
123 	udelay(50);
124 	gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 0);
125 	udelay(50);
126 }
127 
128 static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state,
129 					ssize_t size)
130 {
131 	struct ahci_host_priv *hpriv =  ap->host->private_data;
132 	struct ecx_plat_data *pdata = hpriv->plat_data;
133 	struct ahci_port_priv *pp = ap->private_data;
134 	unsigned long flags;
135 	int pmp, i;
136 	struct ahci_em_priv *emp;
137 	u32 sgpio_out;
138 
139 	/* get the slot number from the message */
140 	pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8;
141 	if (pmp < EM_MAX_SLOTS)
142 		emp = &pp->em_priv[pmp];
143 	else
144 		return -EINVAL;
145 
146 	if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED))
147 		return size;
148 
149 	spin_lock_irqsave(&sgpio_lock, flags);
150 	ecx_parse_sgpio(pdata, ap->port_no, state);
151 	sgpio_out = pdata->sgpio_pattern;
152 	for (i = 0; i < pdata->pre_clocks; i++)
153 		ecx_led_cycle_clock(pdata);
154 
155 	gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 1);
156 	ecx_led_cycle_clock(pdata);
157 	gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 0);
158 	/*
159 	 * bit-bang out the SGPIO pattern, by consuming a bit and then
160 	 * clocking it out.
161 	 */
162 	for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) {
163 		gpiod_set_value(pdata->sgpio_gpiod[SDATA], sgpio_out & 1);
164 		sgpio_out >>= 1;
165 		ecx_led_cycle_clock(pdata);
166 	}
167 	for (i = 0; i < pdata->post_clocks; i++)
168 		ecx_led_cycle_clock(pdata);
169 
170 	/* save off new led state for port/slot */
171 	emp->led_state = state;
172 
173 	spin_unlock_irqrestore(&sgpio_lock, flags);
174 	return size;
175 }
176 
177 static void highbank_set_em_messages(struct device *dev,
178 					struct ahci_host_priv *hpriv,
179 					struct ata_port_info *pi)
180 {
181 	struct device_node *np = dev->of_node;
182 	struct ecx_plat_data *pdata = hpriv->plat_data;
183 	int i;
184 
185 	for (i = 0; i < SGPIO_PINS; i++) {
186 		struct gpio_desc *gpiod;
187 
188 		gpiod = devm_gpiod_get_index(dev, "calxeda,sgpio", i,
189 					     GPIOD_OUT_HIGH);
190 		if (IS_ERR(gpiod)) {
191 			dev_err(dev, "failed to get GPIO %d\n", i);
192 			continue;
193 		}
194 		gpiod_set_consumer_name(gpiod, "CX SGPIO");
195 
196 		pdata->sgpio_gpiod[i] = gpiod;
197 	}
198 	of_property_read_u32_array(np, "calxeda,led-order",
199 						pdata->port_to_sgpio,
200 						pdata->n_ports);
201 	if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks))
202 		pdata->pre_clocks = 0;
203 	if (of_property_read_u32(np, "calxeda,post-clocks",
204 				&pdata->post_clocks))
205 		pdata->post_clocks = 0;
206 
207 	/* store em_loc */
208 	hpriv->em_loc = 0;
209 	hpriv->em_buf_sz = 4;
210 	hpriv->em_msg_type = EM_MSG_TYPE_LED;
211 	pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY;
212 }
213 
214 static u32 __combo_phy_reg_read(u8 sata_port, u32 addr)
215 {
216 	u32 data;
217 	u8 dev = port_data[sata_port].phy_devs;
218 	spin_lock(&cphy_lock);
219 	writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
220 	data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr));
221 	spin_unlock(&cphy_lock);
222 	return data;
223 }
224 
225 static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data)
226 {
227 	u8 dev = port_data[sata_port].phy_devs;
228 	spin_lock(&cphy_lock);
229 	writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
230 	writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr));
231 	spin_unlock(&cphy_lock);
232 }
233 
234 static void combo_phy_wait_for_ready(u8 sata_port)
235 {
236 	while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY)
237 		udelay(5);
238 }
239 
240 static u32 combo_phy_read(u8 sata_port, u32 addr)
241 {
242 	combo_phy_wait_for_ready(sata_port);
243 	__combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
244 	__combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START);
245 	combo_phy_wait_for_ready(sata_port);
246 	return __combo_phy_reg_read(sata_port, SERDES_CR_DATA);
247 }
248 
249 static void combo_phy_write(u8 sata_port, u32 addr, u32 data)
250 {
251 	combo_phy_wait_for_ready(sata_port);
252 	__combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
253 	__combo_phy_reg_write(sata_port, SERDES_CR_DATA, data);
254 	__combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START);
255 }
256 
257 static void highbank_cphy_disable_overrides(u8 sata_port)
258 {
259 	u8 lane = port_data[sata_port].lane_mapping;
260 	u32 tmp;
261 	if (unlikely(port_data[sata_port].phy_base == NULL))
262 		return;
263 	tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
264 	tmp &= ~CPHY_SATA_RX_OVERRIDE;
265 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
266 }
267 
268 static void cphy_override_tx_attenuation(u8 sata_port, u32 val)
269 {
270 	u8 lane = port_data[sata_port].lane_mapping;
271 	u32 tmp;
272 
273 	if (val & 0x8)
274 		return;
275 
276 	tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE);
277 	tmp &= ~CPHY_SATA_TX_OVERRIDE;
278 	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
279 
280 	tmp |= CPHY_SATA_TX_OVERRIDE;
281 	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
282 
283 	tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN;
284 	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
285 }
286 
287 static void cphy_override_rx_mode(u8 sata_port, u32 val)
288 {
289 	u8 lane = port_data[sata_port].lane_mapping;
290 	u32 tmp;
291 	tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
292 	tmp &= ~CPHY_SATA_RX_OVERRIDE;
293 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
294 
295 	tmp |= CPHY_SATA_RX_OVERRIDE;
296 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
297 
298 	tmp &= ~CPHY_SATA_DPLL_MODE;
299 	tmp |= val << CPHY_SATA_DPLL_SHIFT;
300 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
301 
302 	tmp |= CPHY_SATA_DPLL_RESET;
303 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
304 
305 	tmp &= ~CPHY_SATA_DPLL_RESET;
306 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
307 
308 	msleep(15);
309 }
310 
311 static void highbank_cphy_override_lane(u8 sata_port)
312 {
313 	u8 lane = port_data[sata_port].lane_mapping;
314 	u32 tmp, k = 0;
315 
316 	if (unlikely(port_data[sata_port].phy_base == NULL))
317 		return;
318 	do {
319 		tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS +
320 						lane * SPHY_LANE);
321 	} while ((tmp & SPHY_HALF_RATE) && (k++ < 1000));
322 	cphy_override_rx_mode(sata_port, 3);
323 	cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten);
324 }
325 
326 static int highbank_initialize_phys(struct device *dev, void __iomem *addr)
327 {
328 	struct device_node *sata_node = dev->of_node;
329 	int phy_count = 0, phy, port = 0, i;
330 	void __iomem *cphy_base[CPHY_PHY_COUNT] = {};
331 	struct device_node *phy_nodes[CPHY_PHY_COUNT] = {};
332 	u32 tx_atten[CPHY_PORT_COUNT] = {};
333 
334 	memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT);
335 
336 	do {
337 		u32 tmp;
338 		struct of_phandle_args phy_data;
339 		if (of_parse_phandle_with_args(sata_node,
340 				"calxeda,port-phys", "#phy-cells",
341 				port, &phy_data))
342 			break;
343 		for (phy = 0; phy < phy_count; phy++) {
344 			if (phy_nodes[phy] == phy_data.np)
345 				break;
346 		}
347 		if (phy_nodes[phy] == NULL) {
348 			phy_nodes[phy] = phy_data.np;
349 			cphy_base[phy] = of_iomap(phy_nodes[phy], 0);
350 			if (cphy_base[phy] == NULL) {
351 				of_node_put(phy_data.np);
352 				return 0;
353 			}
354 			phy_count += 1;
355 		}
356 		port_data[port].lane_mapping = phy_data.args[0];
357 		of_property_read_u32(phy_nodes[phy], "phydev", &tmp);
358 		port_data[port].phy_devs = tmp;
359 		port_data[port].phy_base = cphy_base[phy];
360 		of_node_put(phy_data.np);
361 		port += 1;
362 	} while (port < CPHY_PORT_COUNT);
363 	of_property_read_u32_array(sata_node, "calxeda,tx-atten",
364 				tx_atten, port);
365 	for (i = 0; i < port; i++)
366 		port_data[i].tx_atten = (u8) tx_atten[i];
367 	return 0;
368 }
369 
370 /*
371  * The Calxeda SATA phy intermittently fails to bring up a link with Gen3
372  * Retrying the phy hard reset can work around the issue, but the drive
373  * may fail again. In less than 150 out of 15000 test runs, it took more
374  * than 10 tries for the link to be established (but never more than 35).
375  * Triple the maximum observed retry count to provide plenty of margin for
376  * rare events and to guarantee that the link is established.
377  *
378  * Also, the default 2 second time-out on a failed drive is too long in
379  * this situation. The uboot implementation of the same driver function
380  * uses a much shorter time-out period and never experiences a time out
381  * issue. Reducing the time-out to 500ms improves the responsiveness.
382  * The other timing constants were kept the same as the stock AHCI driver.
383  * This change was also tested 15000 times on 24 drives and none of them
384  * experienced a time out.
385  */
386 static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class,
387 				unsigned long deadline)
388 {
389 	static const unsigned int timing[] = { 5, 100, 500};
390 	struct ata_port *ap = link->ap;
391 	struct ahci_port_priv *pp = ap->private_data;
392 	struct ahci_host_priv *hpriv = ap->host->private_data;
393 	u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG;
394 	struct ata_taskfile tf;
395 	bool online;
396 	u32 sstatus;
397 	int rc;
398 	int retry = 100;
399 
400 	hpriv->stop_engine(ap);
401 
402 	/* clear D2H reception area to properly wait for D2H FIS */
403 	ata_tf_init(link->device, &tf);
404 	tf.status = ATA_BUSY;
405 	ata_tf_to_fis(&tf, 0, 0, d2h_fis);
406 
407 	do {
408 		highbank_cphy_disable_overrides(link->ap->port_no);
409 		rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
410 		highbank_cphy_override_lane(link->ap->port_no);
411 
412 		/* If the status is 1, we are connected, but the link did not
413 		 * come up. So retry resetting the link again.
414 		 */
415 		if (sata_scr_read(link, SCR_STATUS, &sstatus))
416 			break;
417 		if (!(sstatus & 0x3))
418 			break;
419 	} while (!online && retry--);
420 
421 	hpriv->start_engine(ap);
422 
423 	if (online)
424 		*class = ahci_dev_classify(ap);
425 
426 	return rc;
427 }
428 
429 static struct ata_port_operations ahci_highbank_ops = {
430 	.inherits		= &ahci_ops,
431 	.hardreset		= ahci_highbank_hardreset,
432 	.transmit_led_message   = ecx_transmit_led_message,
433 };
434 
435 static const struct ata_port_info ahci_highbank_port_info = {
436 	.flags          = AHCI_FLAG_COMMON,
437 	.pio_mask       = ATA_PIO4,
438 	.udma_mask      = ATA_UDMA6,
439 	.port_ops       = &ahci_highbank_ops,
440 };
441 
442 static const struct scsi_host_template ahci_highbank_platform_sht = {
443 	AHCI_SHT("sata_highbank"),
444 };
445 
446 static const struct of_device_id ahci_of_match[] = {
447 	{ .compatible = "calxeda,hb-ahci" },
448 	{ /* sentinel */ }
449 };
450 MODULE_DEVICE_TABLE(of, ahci_of_match);
451 
452 static int ahci_highbank_probe(struct platform_device *pdev)
453 {
454 	struct device *dev = &pdev->dev;
455 	struct ahci_host_priv *hpriv;
456 	struct ecx_plat_data *pdata;
457 	struct ata_host *host;
458 	struct resource *mem;
459 	int irq;
460 	int i;
461 	int rc;
462 	u32 n_ports;
463 	struct ata_port_info pi = ahci_highbank_port_info;
464 	const struct ata_port_info *ppi[] = { &pi, NULL };
465 
466 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
467 	if (!mem) {
468 		dev_err(dev, "no mmio space\n");
469 		return -EINVAL;
470 	}
471 
472 	irq = platform_get_irq(pdev, 0);
473 	if (irq < 0)
474 		return irq;
475 	if (!irq)
476 		return -EINVAL;
477 
478 	hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
479 	if (!hpriv) {
480 		dev_err(dev, "can't alloc ahci_host_priv\n");
481 		return -ENOMEM;
482 	}
483 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
484 	if (!pdata) {
485 		dev_err(dev, "can't alloc ecx_plat_data\n");
486 		return -ENOMEM;
487 	}
488 
489 	hpriv->irq = irq;
490 	hpriv->flags |= (unsigned long)pi.private_data;
491 
492 	hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem));
493 	if (!hpriv->mmio) {
494 		dev_err(dev, "can't map %pR\n", mem);
495 		return -ENOMEM;
496 	}
497 
498 	rc = highbank_initialize_phys(dev, hpriv->mmio);
499 	if (rc)
500 		return rc;
501 
502 
503 	ahci_save_initial_config(dev, hpriv);
504 
505 	/* prepare host */
506 	if (hpriv->cap & HOST_CAP_NCQ)
507 		pi.flags |= ATA_FLAG_NCQ;
508 
509 	if (hpriv->cap & HOST_CAP_PMP)
510 		pi.flags |= ATA_FLAG_PMP;
511 
512 	if (hpriv->cap & HOST_CAP_64)
513 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
514 
515 	/* CAP.NP sometimes indicate the index of the last enabled
516 	 * port, at other times, that of the last possible port, so
517 	 * determining the maximum port number requires looking at
518 	 * both CAP.NP and port_map.
519 	 */
520 	n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map));
521 
522 	pdata->n_ports = n_ports;
523 	hpriv->plat_data = pdata;
524 	highbank_set_em_messages(dev, hpriv, &pi);
525 
526 	host = ata_host_alloc_pinfo(dev, ppi, n_ports);
527 	if (!host) {
528 		rc = -ENOMEM;
529 		goto err0;
530 	}
531 
532 	host->private_data = hpriv;
533 
534 	if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss)
535 		host->flags |= ATA_HOST_PARALLEL_SCAN;
536 
537 	for (i = 0; i < host->n_ports; i++) {
538 		struct ata_port *ap = host->ports[i];
539 
540 		ata_port_desc(ap, "mmio %pR", mem);
541 		ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80);
542 
543 		/* set enclosure management message type */
544 		if (ap->flags & ATA_FLAG_EM)
545 			ap->em_message_type = hpriv->em_msg_type;
546 
547 		/* disabled/not-implemented port */
548 		if (!(hpriv->port_map & (1 << i)))
549 			ap->ops = &ata_dummy_port_ops;
550 	}
551 
552 	rc = ahci_reset_controller(host);
553 	if (rc)
554 		goto err0;
555 
556 	ahci_init_controller(host);
557 	ahci_print_info(host, "platform");
558 
559 	rc = ahci_host_activate(host, &ahci_highbank_platform_sht);
560 	if (rc)
561 		goto err0;
562 
563 	return 0;
564 err0:
565 	return rc;
566 }
567 
568 #ifdef CONFIG_PM_SLEEP
569 static int ahci_highbank_suspend(struct device *dev)
570 {
571 	struct ata_host *host = dev_get_drvdata(dev);
572 	struct ahci_host_priv *hpriv = host->private_data;
573 	void __iomem *mmio = hpriv->mmio;
574 	u32 ctl;
575 
576 	if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) {
577 		dev_err(dev, "firmware update required for suspend/resume\n");
578 		return -EIO;
579 	}
580 
581 	/*
582 	 * AHCI spec rev1.1 section 8.3.3:
583 	 * Software must disable interrupts prior to requesting a
584 	 * transition of the HBA to D3 state.
585 	 */
586 	ctl = readl(mmio + HOST_CTL);
587 	ctl &= ~HOST_IRQ_EN;
588 	writel(ctl, mmio + HOST_CTL);
589 	readl(mmio + HOST_CTL); /* flush */
590 
591 	ata_host_suspend(host, PMSG_SUSPEND);
592 	return 0;
593 }
594 
595 static int ahci_highbank_resume(struct device *dev)
596 {
597 	struct ata_host *host = dev_get_drvdata(dev);
598 	int rc;
599 
600 	if (dev->power.power_state.event == PM_EVENT_SUSPEND) {
601 		rc = ahci_reset_controller(host);
602 		if (rc)
603 			return rc;
604 
605 		ahci_init_controller(host);
606 	}
607 
608 	ata_host_resume(host);
609 
610 	return 0;
611 }
612 #endif
613 
614 static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops,
615 		  ahci_highbank_suspend, ahci_highbank_resume);
616 
617 static struct platform_driver ahci_highbank_driver = {
618 	.remove = ata_platform_remove_one,
619 	.driver = {
620 		.name = "highbank-ahci",
621 		.of_match_table = ahci_of_match,
622 		.pm = &ahci_highbank_pm_ops,
623 	},
624 	.probe = ahci_highbank_probe,
625 };
626 
627 module_platform_driver(ahci_highbank_driver);
628 
629 MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver");
630 MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>");
631 MODULE_LICENSE("GPL");
632 MODULE_ALIAS("sata:highbank");
633