1 /* 2 * Driver for the Octeon bootbus compact flash. 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 2005 - 2009 Cavium Networks 9 * Copyright (C) 2008 Wind River Systems 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/libata.h> 15 #include <linux/irq.h> 16 #include <linux/slab.h> 17 #include <linux/platform_device.h> 18 #include <linux/workqueue.h> 19 #include <scsi/scsi_host.h> 20 21 #include <asm/octeon/octeon.h> 22 23 /* 24 * The Octeon bootbus compact flash interface is connected in at least 25 * 3 different configurations on various evaluation boards: 26 * 27 * -- 8 bits no irq, no DMA 28 * -- 16 bits no irq, no DMA 29 * -- 16 bits True IDE mode with DMA, but no irq. 30 * 31 * In the last case the DMA engine can generate an interrupt when the 32 * transfer is complete. For the first two cases only PIO is supported. 33 * 34 */ 35 36 #define DRV_NAME "pata_octeon_cf" 37 #define DRV_VERSION "2.1" 38 39 40 struct octeon_cf_port { 41 struct workqueue_struct *wq; 42 struct delayed_work delayed_finish; 43 struct ata_port *ap; 44 int dma_finished; 45 }; 46 47 static struct scsi_host_template octeon_cf_sht = { 48 ATA_PIO_SHT(DRV_NAME), 49 }; 50 51 /** 52 * Convert nanosecond based time to setting used in the 53 * boot bus timing register, based on timing multiple 54 */ 55 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs) 56 { 57 unsigned int val; 58 59 /* 60 * Compute # of eclock periods to get desired duration in 61 * nanoseconds. 62 */ 63 val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000), 64 1000 * tim_mult); 65 66 return val; 67 } 68 69 static void octeon_cf_set_boot_reg_cfg(int cs) 70 { 71 union cvmx_mio_boot_reg_cfgx reg_cfg; 72 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 73 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */ 74 reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */ 75 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */ 76 reg_cfg.s.sam = 0; /* Don't combine write and output enable */ 77 reg_cfg.s.we_ext = 0; /* No write enable extension */ 78 reg_cfg.s.oe_ext = 0; /* No read enable extension */ 79 reg_cfg.s.en = 1; /* Enable this region */ 80 reg_cfg.s.orbit = 0; /* Don't combine with previous region */ 81 reg_cfg.s.ale = 0; /* Don't do address multiplexing */ 82 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64); 83 } 84 85 /** 86 * Called after libata determines the needed PIO mode. This 87 * function programs the Octeon bootbus regions to support the 88 * timing requirements of the PIO mode. 89 * 90 * @ap: ATA port information 91 * @dev: ATA device 92 */ 93 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev) 94 { 95 struct octeon_cf_data *ocd = ap->dev->platform_data; 96 union cvmx_mio_boot_reg_timx reg_tim; 97 int cs = ocd->base_region; 98 int T; 99 struct ata_timing timing; 100 101 int use_iordy; 102 int trh; 103 int pause; 104 /* These names are timing parameters from the ATA spec */ 105 int t1; 106 int t2; 107 int t2i; 108 109 T = (int)(2000000000000LL / octeon_get_clock_rate()); 110 111 if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T)) 112 BUG(); 113 114 t1 = timing.setup; 115 if (t1) 116 t1--; 117 t2 = timing.active; 118 if (t2) 119 t2--; 120 t2i = timing.act8b; 121 if (t2i) 122 t2i--; 123 124 trh = ns_to_tim_reg(2, 20); 125 if (trh) 126 trh--; 127 128 pause = timing.cycle - timing.active - timing.setup - trh; 129 if (pause) 130 pause--; 131 132 octeon_cf_set_boot_reg_cfg(cs); 133 if (ocd->dma_engine >= 0) 134 /* True IDE mode, program both chip selects. */ 135 octeon_cf_set_boot_reg_cfg(cs + 1); 136 137 138 use_iordy = ata_pio_need_iordy(dev); 139 140 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs)); 141 /* Disable page mode */ 142 reg_tim.s.pagem = 0; 143 /* Enable dynamic timing */ 144 reg_tim.s.waitm = use_iordy; 145 /* Pages are disabled */ 146 reg_tim.s.pages = 0; 147 /* We don't use multiplexed address mode */ 148 reg_tim.s.ale = 0; 149 /* Not used */ 150 reg_tim.s.page = 0; 151 /* Time after IORDY to coninue to assert the data */ 152 reg_tim.s.wait = 0; 153 /* Time to wait to complete the cycle. */ 154 reg_tim.s.pause = pause; 155 /* How long to hold after a write to de-assert CE. */ 156 reg_tim.s.wr_hld = trh; 157 /* How long to wait after a read to de-assert CE. */ 158 reg_tim.s.rd_hld = trh; 159 /* How long write enable is asserted */ 160 reg_tim.s.we = t2; 161 /* How long read enable is asserted */ 162 reg_tim.s.oe = t2; 163 /* Time after CE that read/write starts */ 164 reg_tim.s.ce = ns_to_tim_reg(2, 5); 165 /* Time before CE that address is valid */ 166 reg_tim.s.adr = 0; 167 168 /* Program the bootbus region timing for the data port chip select. */ 169 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64); 170 if (ocd->dma_engine >= 0) 171 /* True IDE mode, program both chip selects. */ 172 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64); 173 } 174 175 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev) 176 { 177 struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data; 178 union cvmx_mio_boot_dma_timx dma_tim; 179 unsigned int oe_a; 180 unsigned int oe_n; 181 unsigned int dma_ackh; 182 unsigned int dma_arq; 183 unsigned int pause; 184 unsigned int T0, Tkr, Td; 185 unsigned int tim_mult; 186 187 const struct ata_timing *timing; 188 189 timing = ata_timing_find_mode(dev->dma_mode); 190 T0 = timing->cycle; 191 Td = timing->active; 192 Tkr = timing->recover; 193 dma_ackh = timing->dmack_hold; 194 195 dma_tim.u64 = 0; 196 /* dma_tim.s.tim_mult = 0 --> 4x */ 197 tim_mult = 4; 198 199 /* not spec'ed, value in eclocks, not affected by tim_mult */ 200 dma_arq = 8; 201 pause = 25 - dma_arq * 1000 / 202 (octeon_get_clock_rate() / 1000000); /* Tz */ 203 204 oe_a = Td; 205 /* Tkr from cf spec, lengthened to meet T0 */ 206 oe_n = max(T0 - oe_a, Tkr); 207 208 dma_tim.s.dmack_pi = 1; 209 210 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n); 211 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a); 212 213 /* 214 * This is tI, C.F. spec. says 0, but Sony CF card requires 215 * more, we use 20 nS. 216 */ 217 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20); 218 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh); 219 220 dma_tim.s.dmarq = dma_arq; 221 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause); 222 223 dma_tim.s.rd_dly = 0; /* Sample right on edge */ 224 225 /* writes only */ 226 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n); 227 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a); 228 229 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60, 230 ns_to_tim_reg(tim_mult, 60)); 231 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: " 232 "%d, dmarq: %d, pause: %d\n", 233 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, 234 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause); 235 236 cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine), 237 dma_tim.u64); 238 239 } 240 241 /** 242 * Handle an 8 bit I/O request. 243 * 244 * @dev: Device to access 245 * @buffer: Data buffer 246 * @buflen: Length of the buffer. 247 * @rw: True to write. 248 */ 249 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev, 250 unsigned char *buffer, 251 unsigned int buflen, 252 int rw) 253 { 254 struct ata_port *ap = dev->link->ap; 255 void __iomem *data_addr = ap->ioaddr.data_addr; 256 unsigned long words; 257 int count; 258 259 words = buflen; 260 if (rw) { 261 count = 16; 262 while (words--) { 263 iowrite8(*buffer, data_addr); 264 buffer++; 265 /* 266 * Every 16 writes do a read so the bootbus 267 * FIFO doesn't fill up. 268 */ 269 if (--count == 0) { 270 ioread8(ap->ioaddr.altstatus_addr); 271 count = 16; 272 } 273 } 274 } else { 275 ioread8_rep(data_addr, buffer, words); 276 } 277 return buflen; 278 } 279 280 /** 281 * Handle a 16 bit I/O request. 282 * 283 * @dev: Device to access 284 * @buffer: Data buffer 285 * @buflen: Length of the buffer. 286 * @rw: True to write. 287 */ 288 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev, 289 unsigned char *buffer, 290 unsigned int buflen, 291 int rw) 292 { 293 struct ata_port *ap = dev->link->ap; 294 void __iomem *data_addr = ap->ioaddr.data_addr; 295 unsigned long words; 296 int count; 297 298 words = buflen / 2; 299 if (rw) { 300 count = 16; 301 while (words--) { 302 iowrite16(*(uint16_t *)buffer, data_addr); 303 buffer += sizeof(uint16_t); 304 /* 305 * Every 16 writes do a read so the bootbus 306 * FIFO doesn't fill up. 307 */ 308 if (--count == 0) { 309 ioread8(ap->ioaddr.altstatus_addr); 310 count = 16; 311 } 312 } 313 } else { 314 while (words--) { 315 *(uint16_t *)buffer = ioread16(data_addr); 316 buffer += sizeof(uint16_t); 317 } 318 } 319 /* Transfer trailing 1 byte, if any. */ 320 if (unlikely(buflen & 0x01)) { 321 __le16 align_buf[1] = { 0 }; 322 323 if (rw == READ) { 324 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 325 memcpy(buffer, align_buf, 1); 326 } else { 327 memcpy(align_buf, buffer, 1); 328 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 329 } 330 words++; 331 } 332 return buflen; 333 } 334 335 /** 336 * Read the taskfile for 16bit non-True IDE only. 337 */ 338 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf) 339 { 340 u16 blob; 341 /* The base of the registers is at ioaddr.data_addr. */ 342 void __iomem *base = ap->ioaddr.data_addr; 343 344 blob = __raw_readw(base + 0xc); 345 tf->feature = blob >> 8; 346 347 blob = __raw_readw(base + 2); 348 tf->nsect = blob & 0xff; 349 tf->lbal = blob >> 8; 350 351 blob = __raw_readw(base + 4); 352 tf->lbam = blob & 0xff; 353 tf->lbah = blob >> 8; 354 355 blob = __raw_readw(base + 6); 356 tf->device = blob & 0xff; 357 tf->command = blob >> 8; 358 359 if (tf->flags & ATA_TFLAG_LBA48) { 360 if (likely(ap->ioaddr.ctl_addr)) { 361 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr); 362 363 blob = __raw_readw(base + 0xc); 364 tf->hob_feature = blob >> 8; 365 366 blob = __raw_readw(base + 2); 367 tf->hob_nsect = blob & 0xff; 368 tf->hob_lbal = blob >> 8; 369 370 blob = __raw_readw(base + 4); 371 tf->hob_lbam = blob & 0xff; 372 tf->hob_lbah = blob >> 8; 373 374 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 375 ap->last_ctl = tf->ctl; 376 } else { 377 WARN_ON(1); 378 } 379 } 380 } 381 382 static u8 octeon_cf_check_status16(struct ata_port *ap) 383 { 384 u16 blob; 385 void __iomem *base = ap->ioaddr.data_addr; 386 387 blob = __raw_readw(base + 6); 388 return blob >> 8; 389 } 390 391 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes, 392 unsigned long deadline) 393 { 394 struct ata_port *ap = link->ap; 395 void __iomem *base = ap->ioaddr.data_addr; 396 int rc; 397 u8 err; 398 399 DPRINTK("about to softreset\n"); 400 __raw_writew(ap->ctl, base + 0xe); 401 udelay(20); 402 __raw_writew(ap->ctl | ATA_SRST, base + 0xe); 403 udelay(20); 404 __raw_writew(ap->ctl, base + 0xe); 405 406 rc = ata_sff_wait_after_reset(link, 1, deadline); 407 if (rc) { 408 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 409 return rc; 410 } 411 412 /* determine by signature whether we have ATA or ATAPI devices */ 413 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err); 414 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 415 return 0; 416 } 417 418 /** 419 * Load the taskfile for 16bit non-True IDE only. The device_addr is 420 * not loaded, we do this as part of octeon_cf_exec_command16. 421 */ 422 static void octeon_cf_tf_load16(struct ata_port *ap, 423 const struct ata_taskfile *tf) 424 { 425 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 426 /* The base of the registers is at ioaddr.data_addr. */ 427 void __iomem *base = ap->ioaddr.data_addr; 428 429 if (tf->ctl != ap->last_ctl) { 430 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 431 ap->last_ctl = tf->ctl; 432 ata_wait_idle(ap); 433 } 434 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 435 __raw_writew(tf->hob_feature << 8, base + 0xc); 436 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2); 437 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4); 438 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 439 tf->hob_feature, 440 tf->hob_nsect, 441 tf->hob_lbal, 442 tf->hob_lbam, 443 tf->hob_lbah); 444 } 445 if (is_addr) { 446 __raw_writew(tf->feature << 8, base + 0xc); 447 __raw_writew(tf->nsect | tf->lbal << 8, base + 2); 448 __raw_writew(tf->lbam | tf->lbah << 8, base + 4); 449 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 450 tf->feature, 451 tf->nsect, 452 tf->lbal, 453 tf->lbam, 454 tf->lbah); 455 } 456 ata_wait_idle(ap); 457 } 458 459 460 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device) 461 { 462 /* There is only one device, do nothing. */ 463 return; 464 } 465 466 /* 467 * Issue ATA command to host controller. The device_addr is also sent 468 * as it must be written in a combined write with the command. 469 */ 470 static void octeon_cf_exec_command16(struct ata_port *ap, 471 const struct ata_taskfile *tf) 472 { 473 /* The base of the registers is at ioaddr.data_addr. */ 474 void __iomem *base = ap->ioaddr.data_addr; 475 u16 blob; 476 477 if (tf->flags & ATA_TFLAG_DEVICE) { 478 VPRINTK("device 0x%X\n", tf->device); 479 blob = tf->device; 480 } else { 481 blob = 0; 482 } 483 484 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 485 blob |= (tf->command << 8); 486 __raw_writew(blob, base + 6); 487 488 489 ata_wait_idle(ap); 490 } 491 492 static void octeon_cf_irq_on(struct ata_port *ap) 493 { 494 } 495 496 static void octeon_cf_irq_clear(struct ata_port *ap) 497 { 498 return; 499 } 500 501 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc) 502 { 503 struct ata_port *ap = qc->ap; 504 struct octeon_cf_port *cf_port; 505 506 cf_port = ap->private_data; 507 DPRINTK("ENTER\n"); 508 /* issue r/w command */ 509 qc->cursg = qc->sg; 510 cf_port->dma_finished = 0; 511 ap->ops->sff_exec_command(ap, &qc->tf); 512 DPRINTK("EXIT\n"); 513 } 514 515 /** 516 * Start a DMA transfer that was already setup 517 * 518 * @qc: Information about the DMA 519 */ 520 static void octeon_cf_dma_start(struct ata_queued_cmd *qc) 521 { 522 struct octeon_cf_data *ocd = qc->ap->dev->platform_data; 523 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg; 524 union cvmx_mio_boot_dma_intx mio_boot_dma_int; 525 struct scatterlist *sg; 526 527 VPRINTK("%d scatterlists\n", qc->n_elem); 528 529 /* Get the scatter list entry we need to DMA into */ 530 sg = qc->cursg; 531 BUG_ON(!sg); 532 533 /* 534 * Clear the DMA complete status. 535 */ 536 mio_boot_dma_int.u64 = 0; 537 mio_boot_dma_int.s.done = 1; 538 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), 539 mio_boot_dma_int.u64); 540 541 /* Enable the interrupt. */ 542 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), 543 mio_boot_dma_int.u64); 544 545 /* Set the direction of the DMA */ 546 mio_boot_dma_cfg.u64 = 0; 547 mio_boot_dma_cfg.s.en = 1; 548 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0); 549 550 /* 551 * Don't stop the DMA if the device deasserts DMARQ. Many 552 * compact flashes deassert DMARQ for a short time between 553 * sectors. Instead of stopping and restarting the DMA, we'll 554 * let the hardware do it. If the DMA is really stopped early 555 * due to an error condition, a later timeout will force us to 556 * stop. 557 */ 558 mio_boot_dma_cfg.s.clr = 0; 559 560 /* Size is specified in 16bit words and minus one notation */ 561 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1; 562 563 /* We need to swap the high and low bytes of every 16 bits */ 564 mio_boot_dma_cfg.s.swap8 = 1; 565 566 mio_boot_dma_cfg.s.adr = sg_dma_address(sg); 567 568 VPRINTK("%s %d bytes address=%p\n", 569 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length, 570 (void *)(unsigned long)mio_boot_dma_cfg.s.adr); 571 572 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), 573 mio_boot_dma_cfg.u64); 574 } 575 576 /** 577 * 578 * LOCKING: 579 * spin_lock_irqsave(host lock) 580 * 581 */ 582 static unsigned int octeon_cf_dma_finished(struct ata_port *ap, 583 struct ata_queued_cmd *qc) 584 { 585 struct ata_eh_info *ehi = &ap->link.eh_info; 586 struct octeon_cf_data *ocd = ap->dev->platform_data; 587 union cvmx_mio_boot_dma_cfgx dma_cfg; 588 union cvmx_mio_boot_dma_intx dma_int; 589 struct octeon_cf_port *cf_port; 590 u8 status; 591 592 VPRINTK("ata%u: protocol %d task_state %d\n", 593 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 594 595 596 if (ap->hsm_task_state != HSM_ST_LAST) 597 return 0; 598 599 cf_port = ap->private_data; 600 601 dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine)); 602 if (dma_cfg.s.size != 0xfffff) { 603 /* Error, the transfer was not complete. */ 604 qc->err_mask |= AC_ERR_HOST_BUS; 605 ap->hsm_task_state = HSM_ST_ERR; 606 } 607 608 /* Stop and clear the dma engine. */ 609 dma_cfg.u64 = 0; 610 dma_cfg.s.size = -1; 611 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64); 612 613 /* Disable the interrupt. */ 614 dma_int.u64 = 0; 615 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64); 616 617 /* Clear the DMA complete status */ 618 dma_int.s.done = 1; 619 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64); 620 621 status = ap->ops->sff_check_status(ap); 622 623 ata_sff_hsm_move(ap, qc, status, 0); 624 625 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA)) 626 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status); 627 628 return 1; 629 } 630 631 /* 632 * Check if any queued commands have more DMAs, if so start the next 633 * transfer, else do end of transfer handling. 634 */ 635 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance) 636 { 637 struct ata_host *host = dev_instance; 638 struct octeon_cf_port *cf_port; 639 int i; 640 unsigned int handled = 0; 641 unsigned long flags; 642 643 spin_lock_irqsave(&host->lock, flags); 644 645 DPRINTK("ENTER\n"); 646 for (i = 0; i < host->n_ports; i++) { 647 u8 status; 648 struct ata_port *ap; 649 struct ata_queued_cmd *qc; 650 union cvmx_mio_boot_dma_intx dma_int; 651 union cvmx_mio_boot_dma_cfgx dma_cfg; 652 struct octeon_cf_data *ocd; 653 654 ap = host->ports[i]; 655 ocd = ap->dev->platform_data; 656 cf_port = ap->private_data; 657 dma_int.u64 = 658 cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine)); 659 dma_cfg.u64 = 660 cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine)); 661 662 qc = ata_qc_from_tag(ap, ap->link.active_tag); 663 664 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) { 665 if (dma_int.s.done && !dma_cfg.s.en) { 666 if (!sg_is_last(qc->cursg)) { 667 qc->cursg = sg_next(qc->cursg); 668 handled = 1; 669 octeon_cf_dma_start(qc); 670 continue; 671 } else { 672 cf_port->dma_finished = 1; 673 } 674 } 675 if (!cf_port->dma_finished) 676 continue; 677 status = ioread8(ap->ioaddr.altstatus_addr); 678 if (status & (ATA_BUSY | ATA_DRQ)) { 679 /* 680 * We are busy, try to handle it 681 * later. This is the DMA finished 682 * interrupt, and it could take a 683 * little while for the card to be 684 * ready for more commands. 685 */ 686 /* Clear DMA irq. */ 687 dma_int.u64 = 0; 688 dma_int.s.done = 1; 689 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), 690 dma_int.u64); 691 692 queue_delayed_work(cf_port->wq, 693 &cf_port->delayed_finish, 1); 694 handled = 1; 695 } else { 696 handled |= octeon_cf_dma_finished(ap, qc); 697 } 698 } 699 } 700 spin_unlock_irqrestore(&host->lock, flags); 701 DPRINTK("EXIT\n"); 702 return IRQ_RETVAL(handled); 703 } 704 705 static void octeon_cf_delayed_finish(struct work_struct *work) 706 { 707 struct octeon_cf_port *cf_port = container_of(work, 708 struct octeon_cf_port, 709 delayed_finish.work); 710 struct ata_port *ap = cf_port->ap; 711 struct ata_host *host = ap->host; 712 struct ata_queued_cmd *qc; 713 unsigned long flags; 714 u8 status; 715 716 spin_lock_irqsave(&host->lock, flags); 717 718 /* 719 * If the port is not waiting for completion, it must have 720 * handled it previously. The hsm_task_state is 721 * protected by host->lock. 722 */ 723 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished) 724 goto out; 725 726 status = ioread8(ap->ioaddr.altstatus_addr); 727 if (status & (ATA_BUSY | ATA_DRQ)) { 728 /* Still busy, try again. */ 729 queue_delayed_work(cf_port->wq, 730 &cf_port->delayed_finish, 1); 731 goto out; 732 } 733 qc = ata_qc_from_tag(ap, ap->link.active_tag); 734 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) 735 octeon_cf_dma_finished(ap, qc); 736 out: 737 spin_unlock_irqrestore(&host->lock, flags); 738 } 739 740 static void octeon_cf_dev_config(struct ata_device *dev) 741 { 742 /* 743 * A maximum of 2^20 - 1 16 bit transfers are possible with 744 * the bootbus DMA. So we need to throttle max_sectors to 745 * (2^12 - 1 == 4095) to assure that this can never happen. 746 */ 747 dev->max_sectors = min(dev->max_sectors, 4095U); 748 } 749 750 /* 751 * We don't do ATAPI DMA so return 0. 752 */ 753 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc) 754 { 755 return 0; 756 } 757 758 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc) 759 { 760 struct ata_port *ap = qc->ap; 761 762 switch (qc->tf.protocol) { 763 case ATA_PROT_DMA: 764 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 765 766 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 767 octeon_cf_dma_setup(qc); /* set up dma */ 768 octeon_cf_dma_start(qc); /* initiate dma */ 769 ap->hsm_task_state = HSM_ST_LAST; 770 break; 771 772 case ATAPI_PROT_DMA: 773 dev_err(ap->dev, "Error, ATAPI not supported\n"); 774 BUG(); 775 776 default: 777 return ata_sff_qc_issue(qc); 778 } 779 780 return 0; 781 } 782 783 static struct ata_port_operations octeon_cf_ops = { 784 .inherits = &ata_sff_port_ops, 785 .check_atapi_dma = octeon_cf_check_atapi_dma, 786 .qc_prep = ata_noop_qc_prep, 787 .qc_issue = octeon_cf_qc_issue, 788 .sff_dev_select = octeon_cf_dev_select, 789 .sff_irq_on = octeon_cf_irq_on, 790 .sff_irq_clear = octeon_cf_irq_clear, 791 .cable_detect = ata_cable_40wire, 792 .set_piomode = octeon_cf_set_piomode, 793 .set_dmamode = octeon_cf_set_dmamode, 794 .dev_config = octeon_cf_dev_config, 795 }; 796 797 static int __devinit octeon_cf_probe(struct platform_device *pdev) 798 { 799 struct resource *res_cs0, *res_cs1; 800 801 void __iomem *cs0; 802 void __iomem *cs1 = NULL; 803 struct ata_host *host; 804 struct ata_port *ap; 805 struct octeon_cf_data *ocd; 806 int irq = 0; 807 irq_handler_t irq_handler = NULL; 808 void __iomem *base; 809 struct octeon_cf_port *cf_port; 810 char version[32]; 811 812 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 813 814 if (!res_cs0) 815 return -EINVAL; 816 817 ocd = pdev->dev.platform_data; 818 819 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start, 820 resource_size(res_cs0)); 821 822 if (!cs0) 823 return -ENOMEM; 824 825 /* Determine from availability of DMA if True IDE mode or not */ 826 if (ocd->dma_engine >= 0) { 827 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 828 if (!res_cs1) 829 return -EINVAL; 830 831 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start, 832 resource_size(res_cs1)); 833 834 if (!cs1) 835 return -ENOMEM; 836 } 837 838 cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL); 839 if (!cf_port) 840 return -ENOMEM; 841 842 /* allocate host */ 843 host = ata_host_alloc(&pdev->dev, 1); 844 if (!host) 845 goto free_cf_port; 846 847 ap = host->ports[0]; 848 ap->private_data = cf_port; 849 cf_port->ap = ap; 850 ap->ops = &octeon_cf_ops; 851 ap->pio_mask = ATA_PIO6; 852 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING; 853 854 base = cs0 + ocd->base_region_bias; 855 if (!ocd->is16bit) { 856 ap->ioaddr.cmd_addr = base; 857 ata_sff_std_ports(&ap->ioaddr); 858 859 ap->ioaddr.altstatus_addr = base + 0xe; 860 ap->ioaddr.ctl_addr = base + 0xe; 861 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8; 862 } else if (cs1) { 863 /* Presence of cs1 indicates True IDE mode. */ 864 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1; 865 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1); 866 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1; 867 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1; 868 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1; 869 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1; 870 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1; 871 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1; 872 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1; 873 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1; 874 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1; 875 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1; 876 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1; 877 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 878 879 ap->mwdma_mask = ATA_MWDMA4; 880 irq = platform_get_irq(pdev, 0); 881 irq_handler = octeon_cf_interrupt; 882 883 /* True IDE mode needs delayed work to poll for not-busy. */ 884 cf_port->wq = create_singlethread_workqueue(DRV_NAME); 885 if (!cf_port->wq) 886 goto free_cf_port; 887 INIT_DELAYED_WORK(&cf_port->delayed_finish, 888 octeon_cf_delayed_finish); 889 890 } else { 891 /* 16 bit but not True IDE */ 892 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 893 octeon_cf_ops.softreset = octeon_cf_softreset16; 894 octeon_cf_ops.sff_check_status = octeon_cf_check_status16; 895 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16; 896 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16; 897 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16; 898 899 ap->ioaddr.data_addr = base + ATA_REG_DATA; 900 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT; 901 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL; 902 ap->ioaddr.ctl_addr = base + 0xe; 903 ap->ioaddr.altstatus_addr = base + 0xe; 904 } 905 906 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr); 907 908 909 snprintf(version, sizeof(version), "%s %d bit%s", 910 DRV_VERSION, 911 (ocd->is16bit) ? 16 : 8, 912 (cs1) ? ", True IDE" : ""); 913 ata_print_version_once(&pdev->dev, version); 914 915 return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht); 916 917 free_cf_port: 918 kfree(cf_port); 919 return -ENOMEM; 920 } 921 922 static struct platform_driver octeon_cf_driver = { 923 .probe = octeon_cf_probe, 924 .driver = { 925 .name = DRV_NAME, 926 .owner = THIS_MODULE, 927 }, 928 }; 929 930 static int __init octeon_cf_init(void) 931 { 932 return platform_driver_register(&octeon_cf_driver); 933 } 934 935 936 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); 937 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA"); 938 MODULE_LICENSE("GPL"); 939 MODULE_VERSION(DRV_VERSION); 940 MODULE_ALIAS("platform:" DRV_NAME); 941 942 module_init(octeon_cf_init); 943