xref: /linux/drivers/ata/pata_octeon_cf.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 /*
2  * Driver for the Octeon bootbus compact flash.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2005 - 2012 Cavium Inc.
9  * Copyright (C) 2008 Wind River Systems
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/hrtimer.h>
16 #include <linux/slab.h>
17 #include <linux/irq.h>
18 #include <linux/of.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <scsi/scsi_host.h>
22 
23 #include <asm/byteorder.h>
24 #include <asm/octeon/octeon.h>
25 
26 /*
27  * The Octeon bootbus compact flash interface is connected in at least
28  * 3 different configurations on various evaluation boards:
29  *
30  * -- 8  bits no irq, no DMA
31  * -- 16 bits no irq, no DMA
32  * -- 16 bits True IDE mode with DMA, but no irq.
33  *
34  * In the last case the DMA engine can generate an interrupt when the
35  * transfer is complete.  For the first two cases only PIO is supported.
36  *
37  */
38 
39 #define DRV_NAME	"pata_octeon_cf"
40 #define DRV_VERSION	"2.2"
41 
42 /* Poll interval in nS. */
43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000
44 
45 #define DMA_CFG 0
46 #define DMA_TIM 0x20
47 #define DMA_INT 0x38
48 #define DMA_INT_EN 0x50
49 
50 struct octeon_cf_port {
51 	struct hrtimer delayed_finish;
52 	struct ata_port *ap;
53 	int dma_finished;
54 	void		*c0;
55 	unsigned int cs0;
56 	unsigned int cs1;
57 	bool is_true_ide;
58 	u64 dma_base;
59 };
60 
61 static struct scsi_host_template octeon_cf_sht = {
62 	ATA_PIO_SHT(DRV_NAME),
63 };
64 
65 static int enable_dma;
66 module_param(enable_dma, int, 0444);
67 MODULE_PARM_DESC(enable_dma,
68 		 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
69 
70 /**
71  * Convert nanosecond based time to setting used in the
72  * boot bus timing register, based on timing multiple
73  */
74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
75 {
76 	unsigned int val;
77 
78 	/*
79 	 * Compute # of eclock periods to get desired duration in
80 	 * nanoseconds.
81 	 */
82 	val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
83 			  1000 * tim_mult);
84 
85 	return val;
86 }
87 
88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
89 {
90 	union cvmx_mio_boot_reg_cfgx reg_cfg;
91 	unsigned int tim_mult;
92 
93 	switch (multiplier) {
94 	case 8:
95 		tim_mult = 3;
96 		break;
97 	case 4:
98 		tim_mult = 0;
99 		break;
100 	case 2:
101 		tim_mult = 2;
102 		break;
103 	default:
104 		tim_mult = 1;
105 		break;
106 	}
107 
108 	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
109 	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
110 	reg_cfg.s.tim_mult = tim_mult;	/* Timing mutiplier */
111 	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
112 	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
113 	reg_cfg.s.we_ext = 0;	/* No write enable extension */
114 	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
115 	reg_cfg.s.en = 1;	/* Enable this region */
116 	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
117 	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
118 	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
119 }
120 
121 /**
122  * Called after libata determines the needed PIO mode. This
123  * function programs the Octeon bootbus regions to support the
124  * timing requirements of the PIO mode.
125  *
126  * @ap:     ATA port information
127  * @dev:    ATA device
128  */
129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
130 {
131 	struct octeon_cf_port *cf_port = ap->private_data;
132 	union cvmx_mio_boot_reg_timx reg_tim;
133 	int T;
134 	struct ata_timing timing;
135 
136 	unsigned int div;
137 	int use_iordy;
138 	int trh;
139 	int pause;
140 	/* These names are timing parameters from the ATA spec */
141 	int t2;
142 
143 	/*
144 	 * A divisor value of four will overflow the timing fields at
145 	 * clock rates greater than 800MHz
146 	 */
147 	if (octeon_get_io_clock_rate() <= 800000000)
148 		div = 4;
149 	else
150 		div = 8;
151 	T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
152 
153 	BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
154 
155 	t2 = timing.active;
156 	if (t2)
157 		t2--;
158 
159 	trh = ns_to_tim_reg(div, 20);
160 	if (trh)
161 		trh--;
162 
163 	pause = (int)timing.cycle - (int)timing.active -
164 		(int)timing.setup - trh;
165 	if (pause < 0)
166 		pause = 0;
167 	if (pause)
168 		pause--;
169 
170 	octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
171 	if (cf_port->is_true_ide)
172 		/* True IDE mode, program both chip selects.  */
173 		octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
174 
175 
176 	use_iordy = ata_pio_need_iordy(dev);
177 
178 	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
179 	/* Disable page mode */
180 	reg_tim.s.pagem = 0;
181 	/* Enable dynamic timing */
182 	reg_tim.s.waitm = use_iordy;
183 	/* Pages are disabled */
184 	reg_tim.s.pages = 0;
185 	/* We don't use multiplexed address mode */
186 	reg_tim.s.ale = 0;
187 	/* Not used */
188 	reg_tim.s.page = 0;
189 	/* Time after IORDY to coninue to assert the data */
190 	reg_tim.s.wait = 0;
191 	/* Time to wait to complete the cycle. */
192 	reg_tim.s.pause = pause;
193 	/* How long to hold after a write to de-assert CE. */
194 	reg_tim.s.wr_hld = trh;
195 	/* How long to wait after a read to de-assert CE. */
196 	reg_tim.s.rd_hld = trh;
197 	/* How long write enable is asserted */
198 	reg_tim.s.we = t2;
199 	/* How long read enable is asserted */
200 	reg_tim.s.oe = t2;
201 	/* Time after CE that read/write starts */
202 	reg_tim.s.ce = ns_to_tim_reg(div, 5);
203 	/* Time before CE that address is valid */
204 	reg_tim.s.adr = 0;
205 
206 	/* Program the bootbus region timing for the data port chip select. */
207 	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
208 	if (cf_port->is_true_ide)
209 		/* True IDE mode, program both chip selects.  */
210 		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
211 			       reg_tim.u64);
212 }
213 
214 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
215 {
216 	struct octeon_cf_port *cf_port = ap->private_data;
217 	union cvmx_mio_boot_pin_defs pin_defs;
218 	union cvmx_mio_boot_dma_timx dma_tim;
219 	unsigned int oe_a;
220 	unsigned int oe_n;
221 	unsigned int dma_ackh;
222 	unsigned int dma_arq;
223 	unsigned int pause;
224 	unsigned int T0, Tkr, Td;
225 	unsigned int tim_mult;
226 	int c;
227 
228 	const struct ata_timing *timing;
229 
230 	timing = ata_timing_find_mode(dev->dma_mode);
231 	T0	= timing->cycle;
232 	Td	= timing->active;
233 	Tkr	= timing->recover;
234 	dma_ackh = timing->dmack_hold;
235 
236 	dma_tim.u64 = 0;
237 	/* dma_tim.s.tim_mult = 0 --> 4x */
238 	tim_mult = 4;
239 
240 	/* not spec'ed, value in eclocks, not affected by tim_mult */
241 	dma_arq = 8;
242 	pause = 25 - dma_arq * 1000 /
243 		(octeon_get_io_clock_rate() / 1000000); /* Tz */
244 
245 	oe_a = Td;
246 	/* Tkr from cf spec, lengthened to meet T0 */
247 	oe_n = max(T0 - oe_a, Tkr);
248 
249 	pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
250 
251 	/* DMA channel number. */
252 	c = (cf_port->dma_base & 8) >> 3;
253 
254 	/* Invert the polarity if the default is 0*/
255 	dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
256 
257 	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
258 	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
259 
260 	/*
261 	 * This is tI, C.F. spec. says 0, but Sony CF card requires
262 	 * more, we use 20 nS.
263 	 */
264 	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
265 	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
266 
267 	dma_tim.s.dmarq = dma_arq;
268 	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
269 
270 	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
271 
272 	/*  writes only */
273 	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
274 	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
275 
276 	pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
277 		 ns_to_tim_reg(tim_mult, 60));
278 	pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
279 		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
280 		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
281 
282 	cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
283 }
284 
285 /**
286  * Handle an 8 bit I/O request.
287  *
288  * @qc:         Queued command
289  * @buffer:     Data buffer
290  * @buflen:     Length of the buffer.
291  * @rw:         True to write.
292  */
293 static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
294 					 unsigned char *buffer,
295 					 unsigned int buflen,
296 					 int rw)
297 {
298 	struct ata_port *ap		= qc->dev->link->ap;
299 	void __iomem *data_addr		= ap->ioaddr.data_addr;
300 	unsigned long words;
301 	int count;
302 
303 	words = buflen;
304 	if (rw) {
305 		count = 16;
306 		while (words--) {
307 			iowrite8(*buffer, data_addr);
308 			buffer++;
309 			/*
310 			 * Every 16 writes do a read so the bootbus
311 			 * FIFO doesn't fill up.
312 			 */
313 			if (--count == 0) {
314 				ioread8(ap->ioaddr.altstatus_addr);
315 				count = 16;
316 			}
317 		}
318 	} else {
319 		ioread8_rep(data_addr, buffer, words);
320 	}
321 	return buflen;
322 }
323 
324 /**
325  * Handle a 16 bit I/O request.
326  *
327  * @qc:         Queued command
328  * @buffer:     Data buffer
329  * @buflen:     Length of the buffer.
330  * @rw:         True to write.
331  */
332 static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
333 					  unsigned char *buffer,
334 					  unsigned int buflen,
335 					  int rw)
336 {
337 	struct ata_port *ap		= qc->dev->link->ap;
338 	void __iomem *data_addr		= ap->ioaddr.data_addr;
339 	unsigned long words;
340 	int count;
341 
342 	words = buflen / 2;
343 	if (rw) {
344 		count = 16;
345 		while (words--) {
346 			iowrite16(*(uint16_t *)buffer, data_addr);
347 			buffer += sizeof(uint16_t);
348 			/*
349 			 * Every 16 writes do a read so the bootbus
350 			 * FIFO doesn't fill up.
351 			 */
352 			if (--count == 0) {
353 				ioread8(ap->ioaddr.altstatus_addr);
354 				count = 16;
355 			}
356 		}
357 	} else {
358 		while (words--) {
359 			*(uint16_t *)buffer = ioread16(data_addr);
360 			buffer += sizeof(uint16_t);
361 		}
362 	}
363 	/* Transfer trailing 1 byte, if any. */
364 	if (unlikely(buflen & 0x01)) {
365 		__le16 align_buf[1] = { 0 };
366 
367 		if (rw == READ) {
368 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
369 			memcpy(buffer, align_buf, 1);
370 		} else {
371 			memcpy(align_buf, buffer, 1);
372 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
373 		}
374 		words++;
375 	}
376 	return buflen;
377 }
378 
379 /**
380  * Read the taskfile for 16bit non-True IDE only.
381  */
382 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
383 {
384 	u16 blob;
385 	/* The base of the registers is at ioaddr.data_addr. */
386 	void __iomem *base = ap->ioaddr.data_addr;
387 
388 	blob = __raw_readw(base + 0xc);
389 	tf->feature = blob >> 8;
390 
391 	blob = __raw_readw(base + 2);
392 	tf->nsect = blob & 0xff;
393 	tf->lbal = blob >> 8;
394 
395 	blob = __raw_readw(base + 4);
396 	tf->lbam = blob & 0xff;
397 	tf->lbah = blob >> 8;
398 
399 	blob = __raw_readw(base + 6);
400 	tf->device = blob & 0xff;
401 	tf->command = blob >> 8;
402 
403 	if (tf->flags & ATA_TFLAG_LBA48) {
404 		if (likely(ap->ioaddr.ctl_addr)) {
405 			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
406 
407 			blob = __raw_readw(base + 0xc);
408 			tf->hob_feature = blob >> 8;
409 
410 			blob = __raw_readw(base + 2);
411 			tf->hob_nsect = blob & 0xff;
412 			tf->hob_lbal = blob >> 8;
413 
414 			blob = __raw_readw(base + 4);
415 			tf->hob_lbam = blob & 0xff;
416 			tf->hob_lbah = blob >> 8;
417 
418 			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
419 			ap->last_ctl = tf->ctl;
420 		} else {
421 			WARN_ON(1);
422 		}
423 	}
424 }
425 
426 static u8 octeon_cf_check_status16(struct ata_port *ap)
427 {
428 	u16 blob;
429 	void __iomem *base = ap->ioaddr.data_addr;
430 
431 	blob = __raw_readw(base + 6);
432 	return blob >> 8;
433 }
434 
435 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
436 				 unsigned long deadline)
437 {
438 	struct ata_port *ap = link->ap;
439 	void __iomem *base = ap->ioaddr.data_addr;
440 	int rc;
441 	u8 err;
442 
443 	DPRINTK("about to softreset\n");
444 	__raw_writew(ap->ctl, base + 0xe);
445 	udelay(20);
446 	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
447 	udelay(20);
448 	__raw_writew(ap->ctl, base + 0xe);
449 
450 	rc = ata_sff_wait_after_reset(link, 1, deadline);
451 	if (rc) {
452 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
453 		return rc;
454 	}
455 
456 	/* determine by signature whether we have ATA or ATAPI devices */
457 	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
458 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
459 	return 0;
460 }
461 
462 /**
463  * Load the taskfile for 16bit non-True IDE only.  The device_addr is
464  * not loaded, we do this as part of octeon_cf_exec_command16.
465  */
466 static void octeon_cf_tf_load16(struct ata_port *ap,
467 				const struct ata_taskfile *tf)
468 {
469 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
470 	/* The base of the registers is at ioaddr.data_addr. */
471 	void __iomem *base = ap->ioaddr.data_addr;
472 
473 	if (tf->ctl != ap->last_ctl) {
474 		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
475 		ap->last_ctl = tf->ctl;
476 		ata_wait_idle(ap);
477 	}
478 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
479 		__raw_writew(tf->hob_feature << 8, base + 0xc);
480 		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
481 		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
482 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
483 			tf->hob_feature,
484 			tf->hob_nsect,
485 			tf->hob_lbal,
486 			tf->hob_lbam,
487 			tf->hob_lbah);
488 	}
489 	if (is_addr) {
490 		__raw_writew(tf->feature << 8, base + 0xc);
491 		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
492 		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
493 		VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
494 			tf->feature,
495 			tf->nsect,
496 			tf->lbal,
497 			tf->lbam,
498 			tf->lbah);
499 	}
500 	ata_wait_idle(ap);
501 }
502 
503 
504 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
505 {
506 /*  There is only one device, do nothing. */
507 	return;
508 }
509 
510 /*
511  * Issue ATA command to host controller.  The device_addr is also sent
512  * as it must be written in a combined write with the command.
513  */
514 static void octeon_cf_exec_command16(struct ata_port *ap,
515 				const struct ata_taskfile *tf)
516 {
517 	/* The base of the registers is at ioaddr.data_addr. */
518 	void __iomem *base = ap->ioaddr.data_addr;
519 	u16 blob;
520 
521 	if (tf->flags & ATA_TFLAG_DEVICE) {
522 		VPRINTK("device 0x%X\n", tf->device);
523 		blob = tf->device;
524 	} else {
525 		blob = 0;
526 	}
527 
528 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
529 	blob |= (tf->command << 8);
530 	__raw_writew(blob, base + 6);
531 
532 
533 	ata_wait_idle(ap);
534 }
535 
536 static void octeon_cf_ata_port_noaction(struct ata_port *ap)
537 {
538 }
539 
540 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
541 {
542 	struct ata_port *ap = qc->ap;
543 	struct octeon_cf_port *cf_port;
544 
545 	cf_port = ap->private_data;
546 	DPRINTK("ENTER\n");
547 	/* issue r/w command */
548 	qc->cursg = qc->sg;
549 	cf_port->dma_finished = 0;
550 	ap->ops->sff_exec_command(ap, &qc->tf);
551 	DPRINTK("EXIT\n");
552 }
553 
554 /**
555  * Start a DMA transfer that was already setup
556  *
557  * @qc:     Information about the DMA
558  */
559 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
560 {
561 	struct octeon_cf_port *cf_port = qc->ap->private_data;
562 	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
563 	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
564 	struct scatterlist *sg;
565 
566 	VPRINTK("%d scatterlists\n", qc->n_elem);
567 
568 	/* Get the scatter list entry we need to DMA into */
569 	sg = qc->cursg;
570 	BUG_ON(!sg);
571 
572 	/*
573 	 * Clear the DMA complete status.
574 	 */
575 	mio_boot_dma_int.u64 = 0;
576 	mio_boot_dma_int.s.done = 1;
577 	cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
578 
579 	/* Enable the interrupt.  */
580 	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
581 
582 	/* Set the direction of the DMA */
583 	mio_boot_dma_cfg.u64 = 0;
584 #ifdef __LITTLE_ENDIAN
585 	mio_boot_dma_cfg.s.endian = 1;
586 #endif
587 	mio_boot_dma_cfg.s.en = 1;
588 	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
589 
590 	/*
591 	 * Don't stop the DMA if the device deasserts DMARQ. Many
592 	 * compact flashes deassert DMARQ for a short time between
593 	 * sectors. Instead of stopping and restarting the DMA, we'll
594 	 * let the hardware do it. If the DMA is really stopped early
595 	 * due to an error condition, a later timeout will force us to
596 	 * stop.
597 	 */
598 	mio_boot_dma_cfg.s.clr = 0;
599 
600 	/* Size is specified in 16bit words and minus one notation */
601 	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
602 
603 	/* We need to swap the high and low bytes of every 16 bits */
604 	mio_boot_dma_cfg.s.swap8 = 1;
605 
606 	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
607 
608 	VPRINTK("%s %d bytes address=%p\n",
609 		(mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
610 		(void *)(unsigned long)mio_boot_dma_cfg.s.adr);
611 
612 	cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
613 }
614 
615 /**
616  *
617  *	LOCKING:
618  *	spin_lock_irqsave(host lock)
619  *
620  */
621 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
622 					struct ata_queued_cmd *qc)
623 {
624 	struct ata_eh_info *ehi = &ap->link.eh_info;
625 	struct octeon_cf_port *cf_port = ap->private_data;
626 	union cvmx_mio_boot_dma_cfgx dma_cfg;
627 	union cvmx_mio_boot_dma_intx dma_int;
628 	u8 status;
629 
630 	VPRINTK("ata%u: protocol %d task_state %d\n",
631 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
632 
633 
634 	if (ap->hsm_task_state != HSM_ST_LAST)
635 		return 0;
636 
637 	dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
638 	if (dma_cfg.s.size != 0xfffff) {
639 		/* Error, the transfer was not complete.  */
640 		qc->err_mask |= AC_ERR_HOST_BUS;
641 		ap->hsm_task_state = HSM_ST_ERR;
642 	}
643 
644 	/* Stop and clear the dma engine.  */
645 	dma_cfg.u64 = 0;
646 	dma_cfg.s.size = -1;
647 	cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
648 
649 	/* Disable the interrupt.  */
650 	dma_int.u64 = 0;
651 	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
652 
653 	/* Clear the DMA complete status */
654 	dma_int.s.done = 1;
655 	cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
656 
657 	status = ap->ops->sff_check_status(ap);
658 
659 	ata_sff_hsm_move(ap, qc, status, 0);
660 
661 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
662 		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
663 
664 	return 1;
665 }
666 
667 /*
668  * Check if any queued commands have more DMAs, if so start the next
669  * transfer, else do end of transfer handling.
670  */
671 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
672 {
673 	struct ata_host *host = dev_instance;
674 	struct octeon_cf_port *cf_port;
675 	int i;
676 	unsigned int handled = 0;
677 	unsigned long flags;
678 
679 	spin_lock_irqsave(&host->lock, flags);
680 
681 	DPRINTK("ENTER\n");
682 	for (i = 0; i < host->n_ports; i++) {
683 		u8 status;
684 		struct ata_port *ap;
685 		struct ata_queued_cmd *qc;
686 		union cvmx_mio_boot_dma_intx dma_int;
687 		union cvmx_mio_boot_dma_cfgx dma_cfg;
688 
689 		ap = host->ports[i];
690 		cf_port = ap->private_data;
691 
692 		dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
693 		dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
694 
695 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
696 
697 		if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
698 			continue;
699 
700 		if (dma_int.s.done && !dma_cfg.s.en) {
701 			if (!sg_is_last(qc->cursg)) {
702 				qc->cursg = sg_next(qc->cursg);
703 				handled = 1;
704 				octeon_cf_dma_start(qc);
705 				continue;
706 			} else {
707 				cf_port->dma_finished = 1;
708 			}
709 		}
710 		if (!cf_port->dma_finished)
711 			continue;
712 		status = ioread8(ap->ioaddr.altstatus_addr);
713 		if (status & (ATA_BUSY | ATA_DRQ)) {
714 			/*
715 			 * We are busy, try to handle it later.  This
716 			 * is the DMA finished interrupt, and it could
717 			 * take a little while for the card to be
718 			 * ready for more commands.
719 			 */
720 			/* Clear DMA irq. */
721 			dma_int.u64 = 0;
722 			dma_int.s.done = 1;
723 			cvmx_write_csr(cf_port->dma_base + DMA_INT,
724 				       dma_int.u64);
725 			hrtimer_start_range_ns(&cf_port->delayed_finish,
726 					       ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
727 					       OCTEON_CF_BUSY_POLL_INTERVAL / 5,
728 					       HRTIMER_MODE_REL);
729 			handled = 1;
730 		} else {
731 			handled |= octeon_cf_dma_finished(ap, qc);
732 		}
733 	}
734 	spin_unlock_irqrestore(&host->lock, flags);
735 	DPRINTK("EXIT\n");
736 	return IRQ_RETVAL(handled);
737 }
738 
739 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
740 {
741 	struct octeon_cf_port *cf_port = container_of(hrt,
742 						      struct octeon_cf_port,
743 						      delayed_finish);
744 	struct ata_port *ap = cf_port->ap;
745 	struct ata_host *host = ap->host;
746 	struct ata_queued_cmd *qc;
747 	unsigned long flags;
748 	u8 status;
749 	enum hrtimer_restart rv = HRTIMER_NORESTART;
750 
751 	spin_lock_irqsave(&host->lock, flags);
752 
753 	/*
754 	 * If the port is not waiting for completion, it must have
755 	 * handled it previously.  The hsm_task_state is
756 	 * protected by host->lock.
757 	 */
758 	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
759 		goto out;
760 
761 	status = ioread8(ap->ioaddr.altstatus_addr);
762 	if (status & (ATA_BUSY | ATA_DRQ)) {
763 		/* Still busy, try again. */
764 		hrtimer_forward_now(hrt,
765 				    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
766 		rv = HRTIMER_RESTART;
767 		goto out;
768 	}
769 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
770 	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
771 		octeon_cf_dma_finished(ap, qc);
772 out:
773 	spin_unlock_irqrestore(&host->lock, flags);
774 	return rv;
775 }
776 
777 static void octeon_cf_dev_config(struct ata_device *dev)
778 {
779 	/*
780 	 * A maximum of 2^20 - 1 16 bit transfers are possible with
781 	 * the bootbus DMA.  So we need to throttle max_sectors to
782 	 * (2^12 - 1 == 4095) to assure that this can never happen.
783 	 */
784 	dev->max_sectors = min(dev->max_sectors, 4095U);
785 }
786 
787 /*
788  * We don't do ATAPI DMA so return 0.
789  */
790 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
791 {
792 	return 0;
793 }
794 
795 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
796 {
797 	struct ata_port *ap = qc->ap;
798 
799 	switch (qc->tf.protocol) {
800 	case ATA_PROT_DMA:
801 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
802 
803 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
804 		octeon_cf_dma_setup(qc);	    /* set up dma */
805 		octeon_cf_dma_start(qc);	    /* initiate dma */
806 		ap->hsm_task_state = HSM_ST_LAST;
807 		break;
808 
809 	case ATAPI_PROT_DMA:
810 		dev_err(ap->dev, "Error, ATAPI not supported\n");
811 		BUG();
812 
813 	default:
814 		return ata_sff_qc_issue(qc);
815 	}
816 
817 	return 0;
818 }
819 
820 static struct ata_port_operations octeon_cf_ops = {
821 	.inherits		= &ata_sff_port_ops,
822 	.check_atapi_dma	= octeon_cf_check_atapi_dma,
823 	.qc_prep		= ata_noop_qc_prep,
824 	.qc_issue		= octeon_cf_qc_issue,
825 	.sff_dev_select		= octeon_cf_dev_select,
826 	.sff_irq_on		= octeon_cf_ata_port_noaction,
827 	.sff_irq_clear		= octeon_cf_ata_port_noaction,
828 	.cable_detect		= ata_cable_40wire,
829 	.set_piomode		= octeon_cf_set_piomode,
830 	.set_dmamode		= octeon_cf_set_dmamode,
831 	.dev_config		= octeon_cf_dev_config,
832 };
833 
834 static int octeon_cf_probe(struct platform_device *pdev)
835 {
836 	struct resource *res_cs0, *res_cs1;
837 
838 	bool is_16bit;
839 	const __be32 *cs_num;
840 	struct property *reg_prop;
841 	int n_addr, n_size, reg_len;
842 	struct device_node *node;
843 	void __iomem *cs0;
844 	void __iomem *cs1 = NULL;
845 	struct ata_host *host;
846 	struct ata_port *ap;
847 	int irq = 0;
848 	irq_handler_t irq_handler = NULL;
849 	void __iomem *base;
850 	struct octeon_cf_port *cf_port;
851 	int rv = -ENOMEM;
852 	u32 bus_width;
853 
854 	node = pdev->dev.of_node;
855 	if (node == NULL)
856 		return -EINVAL;
857 
858 	cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
859 	if (!cf_port)
860 		return -ENOMEM;
861 
862 	cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
863 
864 	if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
865 		is_16bit = (bus_width == 16);
866 	else
867 		is_16bit = false;
868 
869 	n_addr = of_n_addr_cells(node);
870 	n_size = of_n_size_cells(node);
871 
872 	reg_prop = of_find_property(node, "reg", &reg_len);
873 	if (!reg_prop || reg_len < sizeof(__be32))
874 		return -EINVAL;
875 
876 	cs_num = reg_prop->value;
877 	cf_port->cs0 = be32_to_cpup(cs_num);
878 
879 	if (cf_port->is_true_ide) {
880 		struct device_node *dma_node;
881 		dma_node = of_parse_phandle(node,
882 					    "cavium,dma-engine-handle", 0);
883 		if (dma_node) {
884 			struct platform_device *dma_dev;
885 			dma_dev = of_find_device_by_node(dma_node);
886 			if (dma_dev) {
887 				struct resource *res_dma;
888 				int i;
889 				res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
890 				if (!res_dma) {
891 					of_node_put(dma_node);
892 					return -EINVAL;
893 				}
894 				cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start,
895 									 resource_size(res_dma));
896 				if (!cf_port->dma_base) {
897 					of_node_put(dma_node);
898 					return -EINVAL;
899 				}
900 
901 				irq_handler = octeon_cf_interrupt;
902 				i = platform_get_irq(dma_dev, 0);
903 				if (i > 0)
904 					irq = i;
905 			}
906 			of_node_put(dma_node);
907 		}
908 		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
909 		if (!res_cs1)
910 			return -EINVAL;
911 
912 		cs1 = devm_ioremap(&pdev->dev, res_cs1->start,
913 					   resource_size(res_cs1));
914 		if (!cs1)
915 			return rv;
916 
917 		if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
918 			return -EINVAL;
919 
920 		cs_num += n_addr + n_size;
921 		cf_port->cs1 = be32_to_cpup(cs_num);
922 	}
923 
924 	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
925 	if (!res_cs0)
926 		return -EINVAL;
927 
928 	cs0 = devm_ioremap(&pdev->dev, res_cs0->start,
929 				   resource_size(res_cs0));
930 	if (!cs0)
931 		return rv;
932 
933 	/* allocate host */
934 	host = ata_host_alloc(&pdev->dev, 1);
935 	if (!host)
936 		return rv;
937 
938 	ap = host->ports[0];
939 	ap->private_data = cf_port;
940 	pdev->dev.platform_data = cf_port;
941 	cf_port->ap = ap;
942 	ap->ops = &octeon_cf_ops;
943 	ap->pio_mask = ATA_PIO6;
944 	ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
945 
946 	if (!is_16bit) {
947 		base = cs0 + 0x800;
948 		ap->ioaddr.cmd_addr	= base;
949 		ata_sff_std_ports(&ap->ioaddr);
950 
951 		ap->ioaddr.altstatus_addr = base + 0xe;
952 		ap->ioaddr.ctl_addr	= base + 0xe;
953 		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
954 	} else if (cf_port->is_true_ide) {
955 		base = cs0;
956 		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
957 		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
958 		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
959 		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
960 		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
961 		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
962 		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
963 		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
964 		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
965 		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
966 		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
967 		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
968 		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
969 		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
970 
971 		ap->mwdma_mask	= enable_dma ? ATA_MWDMA4 : 0;
972 
973 		/* True IDE mode needs a timer to poll for not-busy.  */
974 		hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
975 			     HRTIMER_MODE_REL);
976 		cf_port->delayed_finish.function = octeon_cf_delayed_finish;
977 	} else {
978 		/* 16 bit but not True IDE */
979 		base = cs0 + 0x800;
980 		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
981 		octeon_cf_ops.softreset		= octeon_cf_softreset16;
982 		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
983 		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
984 		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
985 		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
986 
987 		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
988 		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
989 		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
990 		ap->ioaddr.ctl_addr	= base + 0xe;
991 		ap->ioaddr.altstatus_addr = base + 0xe;
992 	}
993 	cf_port->c0 = ap->ioaddr.ctl_addr;
994 
995 	rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
996 	if (rv)
997 		return rv;
998 
999 	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
1000 
1001 	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
1002 		 is_16bit ? 16 : 8,
1003 		 cf_port->is_true_ide ? ", True IDE" : "");
1004 
1005 	return ata_host_activate(host, irq, irq_handler,
1006 				 IRQF_SHARED, &octeon_cf_sht);
1007 }
1008 
1009 static void octeon_cf_shutdown(struct device *dev)
1010 {
1011 	union cvmx_mio_boot_dma_cfgx dma_cfg;
1012 	union cvmx_mio_boot_dma_intx dma_int;
1013 
1014 	struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1015 
1016 	if (cf_port->dma_base) {
1017 		/* Stop and clear the dma engine.  */
1018 		dma_cfg.u64 = 0;
1019 		dma_cfg.s.size = -1;
1020 		cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
1021 
1022 		/* Disable the interrupt.  */
1023 		dma_int.u64 = 0;
1024 		cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
1025 
1026 		/* Clear the DMA complete status */
1027 		dma_int.s.done = 1;
1028 		cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1029 
1030 		__raw_writeb(0, cf_port->c0);
1031 		udelay(20);
1032 		__raw_writeb(ATA_SRST, cf_port->c0);
1033 		udelay(20);
1034 		__raw_writeb(0, cf_port->c0);
1035 		mdelay(100);
1036 	}
1037 }
1038 
1039 static const struct of_device_id octeon_cf_match[] = {
1040 	{
1041 		.compatible = "cavium,ebt3000-compact-flash",
1042 	},
1043 	{},
1044 };
1045 MODULE_DEVICE_TABLE(of, octeon_cf_match);
1046 
1047 static struct platform_driver octeon_cf_driver = {
1048 	.probe		= octeon_cf_probe,
1049 	.driver		= {
1050 		.name	= DRV_NAME,
1051 		.of_match_table = octeon_cf_match,
1052 		.shutdown = octeon_cf_shutdown
1053 	},
1054 };
1055 
1056 static int __init octeon_cf_init(void)
1057 {
1058 	return platform_driver_register(&octeon_cf_driver);
1059 }
1060 
1061 
1062 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1063 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1064 MODULE_LICENSE("GPL");
1065 MODULE_VERSION(DRV_VERSION);
1066 MODULE_ALIAS("platform:" DRV_NAME);
1067 
1068 module_init(octeon_cf_init);
1069