1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Faraday Technology FTIDE010 driver 4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org> 5 * 6 * Includes portions of the SL2312/SL3516/Gemini PATA driver 7 * Copyright (C) 2003 StorLine, Inc <jason@storlink.com.tw> 8 * Copyright (C) 2009 Janos Laube <janos.dev@gmail.com> 9 * Copyright (C) 2010 Frederic Pecourt <opengemini@free.fr> 10 * Copyright (C) 2011 Tobias Waldvogel <tobias.waldvogel@gmail.com> 11 */ 12 13 #include <linux/platform_device.h> 14 #include <linux/module.h> 15 #include <linux/libata.h> 16 #include <linux/bitops.h> 17 #include <linux/of.h> 18 #include <linux/clk.h> 19 #include "sata_gemini.h" 20 21 #define DRV_NAME "pata_ftide010" 22 23 /** 24 * struct ftide010 - state container for the Faraday FTIDE010 25 * @dev: pointer back to the device representing this controller 26 * @base: remapped I/O space address 27 * @pclk: peripheral clock for the IDE block 28 * @host: pointer to the ATA host for this device 29 * @master_cbl: master cable type 30 * @slave_cbl: slave cable type 31 * @sg: Gemini SATA bridge pointer, if running on the Gemini 32 * @master_to_sata0: Gemini SATA bridge: the ATA master is connected 33 * to the SATA0 bridge 34 * @slave_to_sata0: Gemini SATA bridge: the ATA slave is connected 35 * to the SATA0 bridge 36 * @master_to_sata1: Gemini SATA bridge: the ATA master is connected 37 * to the SATA1 bridge 38 * @slave_to_sata1: Gemini SATA bridge: the ATA slave is connected 39 * to the SATA1 bridge 40 */ 41 struct ftide010 { 42 struct device *dev; 43 void __iomem *base; 44 struct clk *pclk; 45 struct ata_host *host; 46 unsigned int master_cbl; 47 unsigned int slave_cbl; 48 /* Gemini-specific properties */ 49 struct sata_gemini *sg; 50 bool master_to_sata0; 51 bool slave_to_sata0; 52 bool master_to_sata1; 53 bool slave_to_sata1; 54 }; 55 56 #define FTIDE010_DMA_REG 0x00 57 #define FTIDE010_DMA_STATUS 0x02 58 #define FTIDE010_IDE_BMDTPR 0x04 59 #define FTIDE010_IDE_DEVICE_ID 0x08 60 #define FTIDE010_PIO_TIMING 0x10 61 #define FTIDE010_MWDMA_TIMING 0x11 62 #define FTIDE010_UDMA_TIMING0 0x12 /* Master */ 63 #define FTIDE010_UDMA_TIMING1 0x13 /* Slave */ 64 #define FTIDE010_CLK_MOD 0x14 65 /* These registers are mapped directly to the IDE registers */ 66 #define FTIDE010_CMD_DATA 0x20 67 #define FTIDE010_ERROR_FEATURES 0x21 68 #define FTIDE010_NSECT 0x22 69 #define FTIDE010_LBAL 0x23 70 #define FTIDE010_LBAM 0x24 71 #define FTIDE010_LBAH 0x25 72 #define FTIDE010_DEVICE 0x26 73 #define FTIDE010_STATUS_COMMAND 0x27 74 #define FTIDE010_ALTSTAT_CTRL 0x36 75 76 /* Set this bit for UDMA mode 5 and 6 */ 77 #define FTIDE010_UDMA_TIMING_MODE_56 BIT(7) 78 79 /* 0 = 50 MHz, 1 = 66 MHz */ 80 #define FTIDE010_CLK_MOD_DEV0_CLK_SEL BIT(0) 81 #define FTIDE010_CLK_MOD_DEV1_CLK_SEL BIT(1) 82 /* Enable UDMA on a device */ 83 #define FTIDE010_CLK_MOD_DEV0_UDMA_EN BIT(4) 84 #define FTIDE010_CLK_MOD_DEV1_UDMA_EN BIT(5) 85 86 static const struct scsi_host_template pata_ftide010_sht = { 87 ATA_BMDMA_SHT(DRV_NAME), 88 }; 89 90 /* 91 * Bus timings 92 * 93 * The unit of the below required timings is two clock periods of the ATA 94 * reference clock which is 30 nanoseconds per unit at 66MHz and 20 95 * nanoseconds per unit at 50 MHz. The PIO timings assume 33MHz speed for 96 * PIO. 97 * 98 * pio_active_time: array of 5 elements for T2 timing for Mode 0, 99 * 1, 2, 3 and 4. Range 0..15. 100 * pio_recovery_time: array of 5 elements for T2l timing for Mode 0, 101 * 1, 2, 3 and 4. Range 0..15. 102 * mdma_50_active_time: array of 4 elements for Td timing for multi 103 * word DMA, Mode 0, 1, and 2 at 50 MHz. Range 0..15. 104 * mdma_50_recovery_time: array of 4 elements for Tk timing for 105 * multi word DMA, Mode 0, 1 and 2 at 50 MHz. Range 0..15. 106 * mdma_66_active_time: array of 4 elements for Td timing for multi 107 * word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15. 108 * mdma_66_recovery_time: array of 4 elements for Tk timing for 109 * multi word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15. 110 * udma_50_setup_time: array of 4 elements for Tvds timing for ultra 111 * DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz. Range 0..7. 112 * udma_50_hold_time: array of 4 elements for Tdvh timing for 113 * multi word DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz, Range 0..7. 114 * udma_66_setup_time: array of 4 elements for Tvds timing for multi 115 * word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7. 116 * udma_66_hold_time: array of 4 elements for Tdvh timing for 117 * multi word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7. 118 */ 119 static const u8 pio_active_time[5] = {10, 10, 10, 3, 3}; 120 static const u8 pio_recovery_time[5] = {10, 3, 1, 3, 1}; 121 static const u8 mwdma_50_active_time[3] = {6, 2, 2}; 122 static const u8 mwdma_50_recovery_time[3] = {6, 2, 1}; 123 static const u8 mwdma_66_active_time[3] = {8, 3, 3}; 124 static const u8 mwdma_66_recovery_time[3] = {8, 2, 1}; 125 static const u8 udma_50_setup_time[6] = {3, 3, 2, 2, 1, 1}; 126 static const u8 udma_50_hold_time[6] = {3, 1, 1, 1, 1, 1}; 127 static const u8 udma_66_setup_time[7] = {4, 4, 3, 2, }; 128 static const u8 udma_66_hold_time[7] = {}; 129 130 /* 131 * We set 66 MHz for all MWDMA modes 132 */ 133 static const bool set_mdma_66_mhz[] = { true, true, true, true }; 134 135 /* 136 * We set 66 MHz for UDMA modes 3, 4 and 6 and no others 137 */ 138 static const bool set_udma_66_mhz[] = { false, false, false, true, true, false, true }; 139 140 static void ftide010_set_dmamode(struct ata_port *ap, struct ata_device *adev) 141 { 142 struct ftide010 *ftide = ap->host->private_data; 143 u8 speed = adev->dma_mode; 144 u8 devno = adev->devno & 1; 145 u8 udma_en_mask; 146 u8 f66m_en_mask; 147 u8 clkreg; 148 u8 timreg; 149 u8 i; 150 151 /* Target device 0 (master) or 1 (slave) */ 152 if (!devno) { 153 udma_en_mask = FTIDE010_CLK_MOD_DEV0_UDMA_EN; 154 f66m_en_mask = FTIDE010_CLK_MOD_DEV0_CLK_SEL; 155 } else { 156 udma_en_mask = FTIDE010_CLK_MOD_DEV1_UDMA_EN; 157 f66m_en_mask = FTIDE010_CLK_MOD_DEV1_CLK_SEL; 158 } 159 160 clkreg = readb(ftide->base + FTIDE010_CLK_MOD); 161 clkreg &= ~udma_en_mask; 162 clkreg &= ~f66m_en_mask; 163 164 if (speed & XFER_UDMA_0) { 165 i = speed & ~XFER_UDMA_0; 166 dev_dbg(ftide->dev, "set UDMA mode %02x, index %d\n", 167 speed, i); 168 169 clkreg |= udma_en_mask; 170 if (set_udma_66_mhz[i]) { 171 clkreg |= f66m_en_mask; 172 timreg = udma_66_setup_time[i] << 4 | 173 udma_66_hold_time[i]; 174 } else { 175 timreg = udma_50_setup_time[i] << 4 | 176 udma_50_hold_time[i]; 177 } 178 179 /* A special bit needs to be set for modes 5 and 6 */ 180 if (i >= 5) 181 timreg |= FTIDE010_UDMA_TIMING_MODE_56; 182 183 dev_dbg(ftide->dev, "UDMA write clkreg = %02x, timreg = %02x\n", 184 clkreg, timreg); 185 186 writeb(clkreg, ftide->base + FTIDE010_CLK_MOD); 187 writeb(timreg, ftide->base + FTIDE010_UDMA_TIMING0 + devno); 188 } else { 189 i = speed & ~XFER_MW_DMA_0; 190 dev_dbg(ftide->dev, "set MWDMA mode %02x, index %d\n", 191 speed, i); 192 193 if (set_mdma_66_mhz[i]) { 194 clkreg |= f66m_en_mask; 195 timreg = mwdma_66_active_time[i] << 4 | 196 mwdma_66_recovery_time[i]; 197 } else { 198 timreg = mwdma_50_active_time[i] << 4 | 199 mwdma_50_recovery_time[i]; 200 } 201 dev_dbg(ftide->dev, 202 "MWDMA write clkreg = %02x, timreg = %02x\n", 203 clkreg, timreg); 204 /* This will affect all devices */ 205 writeb(clkreg, ftide->base + FTIDE010_CLK_MOD); 206 writeb(timreg, ftide->base + FTIDE010_MWDMA_TIMING); 207 } 208 209 /* 210 * Store the current device (master or slave) in ap->private_data 211 * so that .qc_issue() can detect if this changes and reprogram 212 * the DMA settings. 213 */ 214 ap->private_data = adev; 215 216 return; 217 } 218 219 static void ftide010_set_piomode(struct ata_port *ap, struct ata_device *adev) 220 { 221 struct ftide010 *ftide = ap->host->private_data; 222 u8 pio = adev->pio_mode - XFER_PIO_0; 223 224 dev_dbg(ftide->dev, "set PIO mode %02x, index %d\n", 225 adev->pio_mode, pio); 226 writeb(pio_active_time[pio] << 4 | pio_recovery_time[pio], 227 ftide->base + FTIDE010_PIO_TIMING); 228 } 229 230 /* 231 * We implement our own qc_issue() callback since we may need to set up 232 * the timings differently for master and slave transfers: the CLK_MOD_REG 233 * and MWDMA_TIMING_REG is shared between master and slave, so reprogramming 234 * this may be necessary. 235 */ 236 static unsigned int ftide010_qc_issue(struct ata_queued_cmd *qc) 237 { 238 struct ata_port *ap = qc->ap; 239 struct ata_device *adev = qc->dev; 240 241 /* 242 * If the device changed, i.e. slave->master, master->slave, 243 * then set up the DMA mode again so we are sure the timings 244 * are correct. 245 */ 246 if (adev != ap->private_data && ata_dma_enabled(adev)) 247 ftide010_set_dmamode(ap, adev); 248 249 return ata_bmdma_qc_issue(qc); 250 } 251 252 static struct ata_port_operations pata_ftide010_port_ops = { 253 .inherits = &ata_bmdma_port_ops, 254 .set_dmamode = ftide010_set_dmamode, 255 .set_piomode = ftide010_set_piomode, 256 .qc_issue = ftide010_qc_issue, 257 }; 258 259 static struct ata_port_info ftide010_port_info = { 260 .flags = ATA_FLAG_SLAVE_POSS, 261 .mwdma_mask = ATA_MWDMA2, 262 .udma_mask = ATA_UDMA6, 263 .pio_mask = ATA_PIO4, 264 .port_ops = &pata_ftide010_port_ops, 265 }; 266 267 #if IS_ENABLED(CONFIG_SATA_GEMINI) 268 269 static int pata_ftide010_gemini_port_start(struct ata_port *ap) 270 { 271 struct ftide010 *ftide = ap->host->private_data; 272 struct device *dev = ftide->dev; 273 struct sata_gemini *sg = ftide->sg; 274 int bridges = 0; 275 int ret; 276 277 ret = ata_bmdma_port_start(ap); 278 if (ret) 279 return ret; 280 281 if (ftide->master_to_sata0) { 282 dev_info(dev, "SATA0 (master) start\n"); 283 ret = gemini_sata_start_bridge(sg, 0); 284 if (!ret) 285 bridges++; 286 } 287 if (ftide->master_to_sata1) { 288 dev_info(dev, "SATA1 (master) start\n"); 289 ret = gemini_sata_start_bridge(sg, 1); 290 if (!ret) 291 bridges++; 292 } 293 /* Avoid double-starting */ 294 if (ftide->slave_to_sata0 && !ftide->master_to_sata0) { 295 dev_info(dev, "SATA0 (slave) start\n"); 296 ret = gemini_sata_start_bridge(sg, 0); 297 if (!ret) 298 bridges++; 299 } 300 /* Avoid double-starting */ 301 if (ftide->slave_to_sata1 && !ftide->master_to_sata1) { 302 dev_info(dev, "SATA1 (slave) start\n"); 303 ret = gemini_sata_start_bridge(sg, 1); 304 if (!ret) 305 bridges++; 306 } 307 308 dev_info(dev, "brought %d bridges online\n", bridges); 309 return (bridges > 0) ? 0 : -EINVAL; // -ENODEV; 310 } 311 312 static void pata_ftide010_gemini_port_stop(struct ata_port *ap) 313 { 314 struct ftide010 *ftide = ap->host->private_data; 315 struct device *dev = ftide->dev; 316 struct sata_gemini *sg = ftide->sg; 317 318 if (ftide->master_to_sata0) { 319 dev_info(dev, "SATA0 (master) stop\n"); 320 gemini_sata_stop_bridge(sg, 0); 321 } 322 if (ftide->master_to_sata1) { 323 dev_info(dev, "SATA1 (master) stop\n"); 324 gemini_sata_stop_bridge(sg, 1); 325 } 326 /* Avoid double-stopping */ 327 if (ftide->slave_to_sata0 && !ftide->master_to_sata0) { 328 dev_info(dev, "SATA0 (slave) stop\n"); 329 gemini_sata_stop_bridge(sg, 0); 330 } 331 /* Avoid double-stopping */ 332 if (ftide->slave_to_sata1 && !ftide->master_to_sata1) { 333 dev_info(dev, "SATA1 (slave) stop\n"); 334 gemini_sata_stop_bridge(sg, 1); 335 } 336 } 337 338 static int pata_ftide010_gemini_cable_detect(struct ata_port *ap) 339 { 340 struct ftide010 *ftide = ap->host->private_data; 341 342 /* 343 * Return the master cable, I have no clue how to return a different 344 * cable for the slave than for the master. 345 */ 346 return ftide->master_cbl; 347 } 348 349 static int pata_ftide010_gemini_init(struct ftide010 *ftide, 350 struct ata_port_info *pi, 351 bool is_ata1) 352 { 353 struct device *dev = ftide->dev; 354 struct sata_gemini *sg; 355 enum gemini_muxmode muxmode; 356 357 /* Look up SATA bridge */ 358 sg = gemini_sata_bridge_get(); 359 if (IS_ERR(sg)) 360 return PTR_ERR(sg); 361 ftide->sg = sg; 362 363 muxmode = gemini_sata_get_muxmode(sg); 364 365 /* Special ops */ 366 pata_ftide010_port_ops.port_start = 367 pata_ftide010_gemini_port_start; 368 pata_ftide010_port_ops.port_stop = 369 pata_ftide010_gemini_port_stop; 370 pata_ftide010_port_ops.cable_detect = 371 pata_ftide010_gemini_cable_detect; 372 373 /* Flag port as SATA-capable */ 374 if (gemini_sata_bridge_enabled(sg, is_ata1)) 375 pi->flags |= ATA_FLAG_SATA; 376 377 /* This device has broken DMA, only PIO works */ 378 if (of_machine_is_compatible("itian,sq201")) { 379 pi->mwdma_mask = 0; 380 pi->udma_mask = 0; 381 } 382 383 /* 384 * We assume that a simple 40-wire cable is used in the PATA mode. 385 * if you're adding a system using the PATA interface, make sure 386 * the right cable is set up here, it might be necessary to use 387 * special hardware detection or encode the cable type in the device 388 * tree with special properties. 389 */ 390 if (!is_ata1) { 391 switch (muxmode) { 392 case GEMINI_MUXMODE_0: 393 ftide->master_cbl = ATA_CBL_SATA; 394 ftide->slave_cbl = ATA_CBL_PATA40; 395 ftide->master_to_sata0 = true; 396 break; 397 case GEMINI_MUXMODE_1: 398 ftide->master_cbl = ATA_CBL_SATA; 399 ftide->slave_cbl = ATA_CBL_NONE; 400 ftide->master_to_sata0 = true; 401 break; 402 case GEMINI_MUXMODE_2: 403 ftide->master_cbl = ATA_CBL_PATA40; 404 ftide->slave_cbl = ATA_CBL_PATA40; 405 break; 406 case GEMINI_MUXMODE_3: 407 ftide->master_cbl = ATA_CBL_SATA; 408 ftide->slave_cbl = ATA_CBL_SATA; 409 ftide->master_to_sata0 = true; 410 ftide->slave_to_sata1 = true; 411 break; 412 } 413 } else { 414 switch (muxmode) { 415 case GEMINI_MUXMODE_0: 416 ftide->master_cbl = ATA_CBL_SATA; 417 ftide->slave_cbl = ATA_CBL_NONE; 418 ftide->master_to_sata1 = true; 419 break; 420 case GEMINI_MUXMODE_1: 421 ftide->master_cbl = ATA_CBL_SATA; 422 ftide->slave_cbl = ATA_CBL_PATA40; 423 ftide->master_to_sata1 = true; 424 break; 425 case GEMINI_MUXMODE_2: 426 ftide->master_cbl = ATA_CBL_SATA; 427 ftide->slave_cbl = ATA_CBL_SATA; 428 ftide->slave_to_sata0 = true; 429 ftide->master_to_sata1 = true; 430 break; 431 case GEMINI_MUXMODE_3: 432 ftide->master_cbl = ATA_CBL_PATA40; 433 ftide->slave_cbl = ATA_CBL_PATA40; 434 break; 435 } 436 } 437 dev_info(dev, "set up Gemini PATA%d\n", is_ata1); 438 439 return 0; 440 } 441 #else 442 static int pata_ftide010_gemini_init(struct ftide010 *ftide, 443 struct ata_port_info *pi, 444 bool is_ata1) 445 { 446 return -ENOTSUPP; 447 } 448 #endif 449 450 451 static int pata_ftide010_probe(struct platform_device *pdev) 452 { 453 struct device *dev = &pdev->dev; 454 struct device_node *np = dev->of_node; 455 struct ata_port_info pi = ftide010_port_info; 456 const struct ata_port_info *ppi[] = { &pi, NULL }; 457 struct ftide010 *ftide; 458 struct resource *res; 459 int irq; 460 int ret; 461 int i; 462 463 ftide = devm_kzalloc(dev, sizeof(*ftide), GFP_KERNEL); 464 if (!ftide) 465 return -ENOMEM; 466 ftide->dev = dev; 467 468 irq = platform_get_irq(pdev, 0); 469 if (irq < 0) 470 return irq; 471 472 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 473 if (!res) 474 return -ENODEV; 475 476 ftide->base = devm_ioremap_resource(dev, res); 477 if (IS_ERR(ftide->base)) 478 return PTR_ERR(ftide->base); 479 480 ftide->pclk = devm_clk_get(dev, "PCLK"); 481 if (!IS_ERR(ftide->pclk)) { 482 ret = clk_prepare_enable(ftide->pclk); 483 if (ret) { 484 dev_err(dev, "failed to enable PCLK\n"); 485 return ret; 486 } 487 } 488 489 /* Some special Cortina Gemini init, if needed */ 490 if (of_device_is_compatible(np, "cortina,gemini-pata")) { 491 /* 492 * We need to know which instance is probing (the 493 * Gemini has two instances of FTIDE010) and we do 494 * this simply by looking at the physical base 495 * address, which is 0x63400000 for ATA1, else we 496 * are ATA0. This will also set up the cable types. 497 */ 498 ret = pata_ftide010_gemini_init(ftide, 499 &pi, 500 (res->start == 0x63400000)); 501 if (ret) 502 goto err_dis_clk; 503 } else { 504 /* Else assume we are connected using PATA40 */ 505 ftide->master_cbl = ATA_CBL_PATA40; 506 ftide->slave_cbl = ATA_CBL_PATA40; 507 } 508 509 ftide->host = ata_host_alloc_pinfo(dev, ppi, 1); 510 if (!ftide->host) { 511 ret = -ENOMEM; 512 goto err_dis_clk; 513 } 514 ftide->host->private_data = ftide; 515 516 for (i = 0; i < ftide->host->n_ports; i++) { 517 struct ata_port *ap = ftide->host->ports[i]; 518 struct ata_ioports *ioaddr = &ap->ioaddr; 519 520 ioaddr->bmdma_addr = ftide->base + FTIDE010_DMA_REG; 521 ioaddr->cmd_addr = ftide->base + FTIDE010_CMD_DATA; 522 ioaddr->ctl_addr = ftide->base + FTIDE010_ALTSTAT_CTRL; 523 ioaddr->altstatus_addr = ftide->base + FTIDE010_ALTSTAT_CTRL; 524 ata_sff_std_ports(ioaddr); 525 } 526 527 dev_info(dev, "device ID %08x, irq %d, reg %pR\n", 528 readl(ftide->base + FTIDE010_IDE_DEVICE_ID), irq, res); 529 530 ret = ata_host_activate(ftide->host, irq, ata_bmdma_interrupt, 531 0, &pata_ftide010_sht); 532 if (ret) 533 goto err_dis_clk; 534 535 return 0; 536 537 err_dis_clk: 538 clk_disable_unprepare(ftide->pclk); 539 540 return ret; 541 } 542 543 static int pata_ftide010_remove(struct platform_device *pdev) 544 { 545 struct ata_host *host = platform_get_drvdata(pdev); 546 struct ftide010 *ftide = host->private_data; 547 548 ata_host_detach(ftide->host); 549 clk_disable_unprepare(ftide->pclk); 550 551 return 0; 552 } 553 554 static const struct of_device_id pata_ftide010_of_match[] = { 555 { .compatible = "faraday,ftide010", }, 556 { /* sentinel */ } 557 }; 558 559 static struct platform_driver pata_ftide010_driver = { 560 .driver = { 561 .name = DRV_NAME, 562 .of_match_table = pata_ftide010_of_match, 563 }, 564 .probe = pata_ftide010_probe, 565 .remove = pata_ftide010_remove, 566 }; 567 module_platform_driver(pata_ftide010_driver); 568 569 MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>"); 570 MODULE_LICENSE("GPL"); 571 MODULE_ALIAS("platform:" DRV_NAME); 572