xref: /linux/drivers/ata/libata-sff.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41 
42 #include "libata.h"
43 
44 static struct workqueue_struct *ata_sff_wq;
45 
46 const struct ata_port_operations ata_sff_port_ops = {
47 	.inherits		= &ata_base_port_ops,
48 
49 	.qc_prep		= ata_noop_qc_prep,
50 	.qc_issue		= ata_sff_qc_issue,
51 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52 
53 	.freeze			= ata_sff_freeze,
54 	.thaw			= ata_sff_thaw,
55 	.prereset		= ata_sff_prereset,
56 	.softreset		= ata_sff_softreset,
57 	.hardreset		= sata_sff_hardreset,
58 	.postreset		= ata_sff_postreset,
59 	.error_handler		= ata_sff_error_handler,
60 
61 	.sff_dev_select		= ata_sff_dev_select,
62 	.sff_check_status	= ata_sff_check_status,
63 	.sff_tf_load		= ata_sff_tf_load,
64 	.sff_tf_read		= ata_sff_tf_read,
65 	.sff_exec_command	= ata_sff_exec_command,
66 	.sff_data_xfer		= ata_sff_data_xfer,
67 	.sff_drain_fifo		= ata_sff_drain_fifo,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 
73 /**
74  *	ata_sff_check_status - Read device status reg & clear interrupt
75  *	@ap: port where the device is
76  *
77  *	Reads ATA taskfile status register for currently-selected device
78  *	and return its value. This also clears pending interrupts
79  *      from this device
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 	return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 
90 /**
91  *	ata_sff_altstatus - Read device alternate status reg
92  *	@ap: port where the device is
93  *
94  *	Reads ATA taskfile alternate status register for
95  *	currently-selected device and return its value.
96  *
97  *	Note: may NOT be used as the check_altstatus() entry in
98  *	ata_port_operations.
99  *
100  *	LOCKING:
101  *	Inherited from caller.
102  */
103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 	if (ap->ops->sff_check_altstatus)
106 		return ap->ops->sff_check_altstatus(ap);
107 
108 	return ioread8(ap->ioaddr.altstatus_addr);
109 }
110 
111 /**
112  *	ata_sff_irq_status - Check if the device is busy
113  *	@ap: port where the device is
114  *
115  *	Determine if the port is currently busy. Uses altstatus
116  *	if available in order to avoid clearing shared IRQ status
117  *	when finding an IRQ source. Non ctl capable devices don't
118  *	share interrupt lines fortunately for us.
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 	u8 status;
126 
127 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 		status = ata_sff_altstatus(ap);
129 		/* Not us: We are busy */
130 		if (status & ATA_BUSY)
131 			return status;
132 	}
133 	/* Clear INTRQ latch */
134 	status = ap->ops->sff_check_status(ap);
135 	return status;
136 }
137 
138 /**
139  *	ata_sff_sync - Flush writes
140  *	@ap: Port to wait for.
141  *
142  *	CAUTION:
143  *	If we have an mmio device with no ctl and no altstatus
144  *	method this will fail. No such devices are known to exist.
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
149 
150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 	if (ap->ops->sff_check_altstatus)
153 		ap->ops->sff_check_altstatus(ap);
154 	else if (ap->ioaddr.altstatus_addr)
155 		ioread8(ap->ioaddr.altstatus_addr);
156 }
157 
158 /**
159  *	ata_sff_pause		-	Flush writes and wait 400nS
160  *	@ap: Port to pause for.
161  *
162  *	CAUTION:
163  *	If we have an mmio device with no ctl and no altstatus
164  *	method this will fail. No such devices are known to exist.
165  *
166  *	LOCKING:
167  *	Inherited from caller.
168  */
169 
170 void ata_sff_pause(struct ata_port *ap)
171 {
172 	ata_sff_sync(ap);
173 	ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176 
177 /**
178  *	ata_sff_dma_pause	-	Pause before commencing DMA
179  *	@ap: Port to pause for.
180  *
181  *	Perform I/O fencing and ensure sufficient cycle delays occur
182  *	for the HDMA1:0 transition
183  */
184 
185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 		/* An altstatus read will cause the needed delay without
189 		   messing up the IRQ status */
190 		ata_sff_altstatus(ap);
191 		return;
192 	}
193 	/* There are no DMA controllers without ctl. BUG here to ensure
194 	   we never violate the HDMA1:0 transition timing and risk
195 	   corruption. */
196 	BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199 
200 /**
201  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202  *	@ap: port containing status register to be polled
203  *	@tmout_pat: impatience timeout in msecs
204  *	@tmout: overall timeout in msecs
205  *
206  *	Sleep until ATA Status register bit BSY clears,
207  *	or a timeout occurs.
208  *
209  *	LOCKING:
210  *	Kernel thread context (may sleep).
211  *
212  *	RETURNS:
213  *	0 on success, -errno otherwise.
214  */
215 int ata_sff_busy_sleep(struct ata_port *ap,
216 		       unsigned long tmout_pat, unsigned long tmout)
217 {
218 	unsigned long timer_start, timeout;
219 	u8 status;
220 
221 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 	timer_start = jiffies;
223 	timeout = ata_deadline(timer_start, tmout_pat);
224 	while (status != 0xff && (status & ATA_BUSY) &&
225 	       time_before(jiffies, timeout)) {
226 		ata_msleep(ap, 50);
227 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 	}
229 
230 	if (status != 0xff && (status & ATA_BUSY))
231 		ata_port_warn(ap,
232 			      "port is slow to respond, please be patient (Status 0x%x)\n",
233 			      status);
234 
235 	timeout = ata_deadline(timer_start, tmout);
236 	while (status != 0xff && (status & ATA_BUSY) &&
237 	       time_before(jiffies, timeout)) {
238 		ata_msleep(ap, 50);
239 		status = ap->ops->sff_check_status(ap);
240 	}
241 
242 	if (status == 0xff)
243 		return -ENODEV;
244 
245 	if (status & ATA_BUSY) {
246 		ata_port_err(ap,
247 			     "port failed to respond (%lu secs, Status 0x%x)\n",
248 			     DIV_ROUND_UP(tmout, 1000), status);
249 		return -EBUSY;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 
256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 	u8 status = link->ap->ops->sff_check_status(link->ap);
259 
260 	return ata_check_ready(status);
261 }
262 
263 /**
264  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265  *	@link: SFF link to wait ready status for
266  *	@deadline: deadline jiffies for the operation
267  *
268  *	Sleep until ATA Status register bit BSY clears, or timeout
269  *	occurs.
270  *
271  *	LOCKING:
272  *	Kernel thread context (may sleep).
273  *
274  *	RETURNS:
275  *	0 on success, -errno otherwise.
276  */
277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282 
283 /**
284  *	ata_sff_set_devctl - Write device control reg
285  *	@ap: port where the device is
286  *	@ctl: value to write
287  *
288  *	Writes ATA taskfile device control register.
289  *
290  *	Note: may NOT be used as the sff_set_devctl() entry in
291  *	ata_port_operations.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 	if (ap->ops->sff_set_devctl)
299 		ap->ops->sff_set_devctl(ap, ctl);
300 	else
301 		iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303 
304 /**
305  *	ata_sff_dev_select - Select device 0/1 on ATA bus
306  *	@ap: ATA channel to manipulate
307  *	@device: ATA device (numbered from zero) to select
308  *
309  *	Use the method defined in the ATA specification to
310  *	make either device 0, or device 1, active on the
311  *	ATA channel.  Works with both PIO and MMIO.
312  *
313  *	May be used as the dev_select() entry in ata_port_operations.
314  *
315  *	LOCKING:
316  *	caller.
317  */
318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 	u8 tmp;
321 
322 	if (device == 0)
323 		tmp = ATA_DEVICE_OBS;
324 	else
325 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 
327 	iowrite8(tmp, ap->ioaddr.device_addr);
328 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331 
332 /**
333  *	ata_dev_select - Select device 0/1 on ATA bus
334  *	@ap: ATA channel to manipulate
335  *	@device: ATA device (numbered from zero) to select
336  *	@wait: non-zero to wait for Status register BSY bit to clear
337  *	@can_sleep: non-zero if context allows sleeping
338  *
339  *	Use the method defined in the ATA specification to
340  *	make either device 0, or device 1, active on the
341  *	ATA channel.
342  *
343  *	This is a high-level version of ata_sff_dev_select(), which
344  *	additionally provides the services of inserting the proper
345  *	pauses and status polling, where needed.
346  *
347  *	LOCKING:
348  *	caller.
349  */
350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 			   unsigned int wait, unsigned int can_sleep)
352 {
353 	if (ata_msg_probe(ap))
354 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 			      device, wait);
356 
357 	if (wait)
358 		ata_wait_idle(ap);
359 
360 	ap->ops->sff_dev_select(ap, device);
361 
362 	if (wait) {
363 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 			ata_msleep(ap, 150);
365 		ata_wait_idle(ap);
366 	}
367 }
368 
369 /**
370  *	ata_sff_irq_on - Enable interrupts on a port.
371  *	@ap: Port on which interrupts are enabled.
372  *
373  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374  *	wait for idle, clear any pending interrupts.
375  *
376  *	Note: may NOT be used as the sff_irq_on() entry in
377  *	ata_port_operations.
378  *
379  *	LOCKING:
380  *	Inherited from caller.
381  */
382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 	struct ata_ioports *ioaddr = &ap->ioaddr;
385 
386 	if (ap->ops->sff_irq_on) {
387 		ap->ops->sff_irq_on(ap);
388 		return;
389 	}
390 
391 	ap->ctl &= ~ATA_NIEN;
392 	ap->last_ctl = ap->ctl;
393 
394 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 		ata_sff_set_devctl(ap, ap->ctl);
396 	ata_wait_idle(ap);
397 
398 	if (ap->ops->sff_irq_clear)
399 		ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402 
403 /**
404  *	ata_sff_tf_load - send taskfile registers to host controller
405  *	@ap: Port to which output is sent
406  *	@tf: ATA taskfile register set
407  *
408  *	Outputs ATA taskfile to standard ATA host controller.
409  *
410  *	LOCKING:
411  *	Inherited from caller.
412  */
413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 	struct ata_ioports *ioaddr = &ap->ioaddr;
416 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 
418 	if (tf->ctl != ap->last_ctl) {
419 		if (ioaddr->ctl_addr)
420 			iowrite8(tf->ctl, ioaddr->ctl_addr);
421 		ap->last_ctl = tf->ctl;
422 		ata_wait_idle(ap);
423 	}
424 
425 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 		WARN_ON_ONCE(!ioaddr->ctl_addr);
427 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 			tf->hob_feature,
434 			tf->hob_nsect,
435 			tf->hob_lbal,
436 			tf->hob_lbam,
437 			tf->hob_lbah);
438 	}
439 
440 	if (is_addr) {
441 		iowrite8(tf->feature, ioaddr->feature_addr);
442 		iowrite8(tf->nsect, ioaddr->nsect_addr);
443 		iowrite8(tf->lbal, ioaddr->lbal_addr);
444 		iowrite8(tf->lbam, ioaddr->lbam_addr);
445 		iowrite8(tf->lbah, ioaddr->lbah_addr);
446 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 			tf->feature,
448 			tf->nsect,
449 			tf->lbal,
450 			tf->lbam,
451 			tf->lbah);
452 	}
453 
454 	if (tf->flags & ATA_TFLAG_DEVICE) {
455 		iowrite8(tf->device, ioaddr->device_addr);
456 		VPRINTK("device 0x%X\n", tf->device);
457 	}
458 
459 	ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462 
463 /**
464  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465  *	@ap: Port from which input is read
466  *	@tf: ATA taskfile register set for storing input
467  *
468  *	Reads ATA taskfile registers for currently-selected device
469  *	into @tf. Assumes the device has a fully SFF compliant task file
470  *	layout and behaviour. If you device does not (eg has a different
471  *	status method) then you will need to provide a replacement tf_read
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  */
476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 	struct ata_ioports *ioaddr = &ap->ioaddr;
479 
480 	tf->command = ata_sff_check_status(ap);
481 	tf->feature = ioread8(ioaddr->error_addr);
482 	tf->nsect = ioread8(ioaddr->nsect_addr);
483 	tf->lbal = ioread8(ioaddr->lbal_addr);
484 	tf->lbam = ioread8(ioaddr->lbam_addr);
485 	tf->lbah = ioread8(ioaddr->lbah_addr);
486 	tf->device = ioread8(ioaddr->device_addr);
487 
488 	if (tf->flags & ATA_TFLAG_LBA48) {
489 		if (likely(ioaddr->ctl_addr)) {
490 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 			tf->hob_feature = ioread8(ioaddr->error_addr);
492 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 			iowrite8(tf->ctl, ioaddr->ctl_addr);
497 			ap->last_ctl = tf->ctl;
498 		} else
499 			WARN_ON_ONCE(1);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503 
504 /**
505  *	ata_sff_exec_command - issue ATA command to host controller
506  *	@ap: port to which command is being issued
507  *	@tf: ATA taskfile register set
508  *
509  *	Issues ATA command, with proper synchronization with interrupt
510  *	handler / other threads.
511  *
512  *	LOCKING:
513  *	spin_lock_irqsave(host lock)
514  */
515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 
519 	iowrite8(tf->command, ap->ioaddr.command_addr);
520 	ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523 
524 /**
525  *	ata_tf_to_host - issue ATA taskfile to host controller
526  *	@ap: port to which command is being issued
527  *	@tf: ATA taskfile register set
528  *
529  *	Issues ATA taskfile register set to ATA host controller,
530  *	with proper synchronization with interrupt handler and
531  *	other threads.
532  *
533  *	LOCKING:
534  *	spin_lock_irqsave(host lock)
535  */
536 static inline void ata_tf_to_host(struct ata_port *ap,
537 				  const struct ata_taskfile *tf)
538 {
539 	ap->ops->sff_tf_load(ap, tf);
540 	ap->ops->sff_exec_command(ap, tf);
541 }
542 
543 /**
544  *	ata_sff_data_xfer - Transfer data by PIO
545  *	@dev: device to target
546  *	@buf: data buffer
547  *	@buflen: buffer length
548  *	@rw: read/write
549  *
550  *	Transfer data from/to the device data register by PIO.
551  *
552  *	LOCKING:
553  *	Inherited from caller.
554  *
555  *	RETURNS:
556  *	Bytes consumed.
557  */
558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 			       unsigned int buflen, int rw)
560 {
561 	struct ata_port *ap = dev->link->ap;
562 	void __iomem *data_addr = ap->ioaddr.data_addr;
563 	unsigned int words = buflen >> 1;
564 
565 	/* Transfer multiple of 2 bytes */
566 	if (rw == READ)
567 		ioread16_rep(data_addr, buf, words);
568 	else
569 		iowrite16_rep(data_addr, buf, words);
570 
571 	/* Transfer trailing byte, if any. */
572 	if (unlikely(buflen & 0x01)) {
573 		unsigned char pad[2] = { };
574 
575 		/* Point buf to the tail of buffer */
576 		buf += buflen - 1;
577 
578 		/*
579 		 * Use io*16_rep() accessors here as well to avoid pointlessly
580 		 * swapping bytes to and from on the big endian machines...
581 		 */
582 		if (rw == READ) {
583 			ioread16_rep(data_addr, pad, 1);
584 			*buf = pad[0];
585 		} else {
586 			pad[0] = *buf;
587 			iowrite16_rep(data_addr, pad, 1);
588 		}
589 		words++;
590 	}
591 
592 	return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595 
596 /**
597  *	ata_sff_data_xfer32 - Transfer data by PIO
598  *	@dev: device to target
599  *	@buf: data buffer
600  *	@buflen: buffer length
601  *	@rw: read/write
602  *
603  *	Transfer data from/to the device data register by PIO using 32bit
604  *	I/O operations.
605  *
606  *	LOCKING:
607  *	Inherited from caller.
608  *
609  *	RETURNS:
610  *	Bytes consumed.
611  */
612 
613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 			       unsigned int buflen, int rw)
615 {
616 	struct ata_port *ap = dev->link->ap;
617 	void __iomem *data_addr = ap->ioaddr.data_addr;
618 	unsigned int words = buflen >> 2;
619 	int slop = buflen & 3;
620 
621 	if (!(ap->pflags & ATA_PFLAG_PIO32))
622 		return ata_sff_data_xfer(dev, buf, buflen, rw);
623 
624 	/* Transfer multiple of 4 bytes */
625 	if (rw == READ)
626 		ioread32_rep(data_addr, buf, words);
627 	else
628 		iowrite32_rep(data_addr, buf, words);
629 
630 	/* Transfer trailing bytes, if any */
631 	if (unlikely(slop)) {
632 		unsigned char pad[4] = { };
633 
634 		/* Point buf to the tail of buffer */
635 		buf += buflen - slop;
636 
637 		/*
638 		 * Use io*_rep() accessors here as well to avoid pointlessly
639 		 * swapping bytes to and from on the big endian machines...
640 		 */
641 		if (rw == READ) {
642 			if (slop < 3)
643 				ioread16_rep(data_addr, pad, 1);
644 			else
645 				ioread32_rep(data_addr, pad, 1);
646 			memcpy(buf, pad, slop);
647 		} else {
648 			memcpy(pad, buf, slop);
649 			if (slop < 3)
650 				iowrite16_rep(data_addr, pad, 1);
651 			else
652 				iowrite32_rep(data_addr, pad, 1);
653 		}
654 	}
655 	return (buflen + 1) & ~1;
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658 
659 /**
660  *	ata_sff_data_xfer_noirq - Transfer data by PIO
661  *	@dev: device to target
662  *	@buf: data buffer
663  *	@buflen: buffer length
664  *	@rw: read/write
665  *
666  *	Transfer data from/to the device data register by PIO. Do the
667  *	transfer with interrupts disabled.
668  *
669  *	LOCKING:
670  *	Inherited from caller.
671  *
672  *	RETURNS:
673  *	Bytes consumed.
674  */
675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 				     unsigned int buflen, int rw)
677 {
678 	unsigned long flags;
679 	unsigned int consumed;
680 
681 	local_irq_save(flags);
682 	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 	local_irq_restore(flags);
684 
685 	return consumed;
686 }
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688 
689 /**
690  *	ata_pio_sector - Transfer a sector of data.
691  *	@qc: Command on going
692  *
693  *	Transfer qc->sect_size bytes of data from/to the ATA device.
694  *
695  *	LOCKING:
696  *	Inherited from caller.
697  */
698 static void ata_pio_sector(struct ata_queued_cmd *qc)
699 {
700 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 	struct ata_port *ap = qc->ap;
702 	struct page *page;
703 	unsigned int offset;
704 	unsigned char *buf;
705 
706 	if (qc->curbytes == qc->nbytes - qc->sect_size)
707 		ap->hsm_task_state = HSM_ST_LAST;
708 
709 	page = sg_page(qc->cursg);
710 	offset = qc->cursg->offset + qc->cursg_ofs;
711 
712 	/* get the current page and offset */
713 	page = nth_page(page, (offset >> PAGE_SHIFT));
714 	offset %= PAGE_SIZE;
715 
716 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
717 
718 	if (PageHighMem(page)) {
719 		unsigned long flags;
720 
721 		/* FIXME: use a bounce buffer */
722 		local_irq_save(flags);
723 		buf = kmap_atomic(page);
724 
725 		/* do the actual data transfer */
726 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
727 				       do_write);
728 
729 		kunmap_atomic(buf);
730 		local_irq_restore(flags);
731 	} else {
732 		buf = page_address(page);
733 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
734 				       do_write);
735 	}
736 
737 	if (!do_write && !PageSlab(page))
738 		flush_dcache_page(page);
739 
740 	qc->curbytes += qc->sect_size;
741 	qc->cursg_ofs += qc->sect_size;
742 
743 	if (qc->cursg_ofs == qc->cursg->length) {
744 		qc->cursg = sg_next(qc->cursg);
745 		qc->cursg_ofs = 0;
746 	}
747 }
748 
749 /**
750  *	ata_pio_sectors - Transfer one or many sectors.
751  *	@qc: Command on going
752  *
753  *	Transfer one or many sectors of data from/to the
754  *	ATA device for the DRQ request.
755  *
756  *	LOCKING:
757  *	Inherited from caller.
758  */
759 static void ata_pio_sectors(struct ata_queued_cmd *qc)
760 {
761 	if (is_multi_taskfile(&qc->tf)) {
762 		/* READ/WRITE MULTIPLE */
763 		unsigned int nsect;
764 
765 		WARN_ON_ONCE(qc->dev->multi_count == 0);
766 
767 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
768 			    qc->dev->multi_count);
769 		while (nsect--)
770 			ata_pio_sector(qc);
771 	} else
772 		ata_pio_sector(qc);
773 
774 	ata_sff_sync(qc->ap); /* flush */
775 }
776 
777 /**
778  *	atapi_send_cdb - Write CDB bytes to hardware
779  *	@ap: Port to which ATAPI device is attached.
780  *	@qc: Taskfile currently active
781  *
782  *	When device has indicated its readiness to accept
783  *	a CDB, this function is called.  Send the CDB.
784  *
785  *	LOCKING:
786  *	caller.
787  */
788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
789 {
790 	/* send SCSI cdb */
791 	DPRINTK("send cdb\n");
792 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
793 
794 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
795 	ata_sff_sync(ap);
796 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
797 	   or is bmdma_start guaranteed to do it ? */
798 	switch (qc->tf.protocol) {
799 	case ATAPI_PROT_PIO:
800 		ap->hsm_task_state = HSM_ST;
801 		break;
802 	case ATAPI_PROT_NODATA:
803 		ap->hsm_task_state = HSM_ST_LAST;
804 		break;
805 #ifdef CONFIG_ATA_BMDMA
806 	case ATAPI_PROT_DMA:
807 		ap->hsm_task_state = HSM_ST_LAST;
808 		/* initiate bmdma */
809 		ap->ops->bmdma_start(qc);
810 		break;
811 #endif /* CONFIG_ATA_BMDMA */
812 	default:
813 		BUG();
814 	}
815 }
816 
817 /**
818  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
819  *	@qc: Command on going
820  *	@bytes: number of bytes
821  *
822  *	Transfer Transfer data from/to the ATAPI device.
823  *
824  *	LOCKING:
825  *	Inherited from caller.
826  *
827  */
828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
829 {
830 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
831 	struct ata_port *ap = qc->ap;
832 	struct ata_device *dev = qc->dev;
833 	struct ata_eh_info *ehi = &dev->link->eh_info;
834 	struct scatterlist *sg;
835 	struct page *page;
836 	unsigned char *buf;
837 	unsigned int offset, count, consumed;
838 
839 next_sg:
840 	sg = qc->cursg;
841 	if (unlikely(!sg)) {
842 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
843 				  "buf=%u cur=%u bytes=%u",
844 				  qc->nbytes, qc->curbytes, bytes);
845 		return -1;
846 	}
847 
848 	page = sg_page(sg);
849 	offset = sg->offset + qc->cursg_ofs;
850 
851 	/* get the current page and offset */
852 	page = nth_page(page, (offset >> PAGE_SHIFT));
853 	offset %= PAGE_SIZE;
854 
855 	/* don't overrun current sg */
856 	count = min(sg->length - qc->cursg_ofs, bytes);
857 
858 	/* don't cross page boundaries */
859 	count = min(count, (unsigned int)PAGE_SIZE - offset);
860 
861 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
862 
863 	if (PageHighMem(page)) {
864 		unsigned long flags;
865 
866 		/* FIXME: use bounce buffer */
867 		local_irq_save(flags);
868 		buf = kmap_atomic(page);
869 
870 		/* do the actual data transfer */
871 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
872 								count, rw);
873 
874 		kunmap_atomic(buf);
875 		local_irq_restore(flags);
876 	} else {
877 		buf = page_address(page);
878 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
879 								count, rw);
880 	}
881 
882 	bytes -= min(bytes, consumed);
883 	qc->curbytes += count;
884 	qc->cursg_ofs += count;
885 
886 	if (qc->cursg_ofs == sg->length) {
887 		qc->cursg = sg_next(qc->cursg);
888 		qc->cursg_ofs = 0;
889 	}
890 
891 	/*
892 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
893 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894 	 * check correctly as it doesn't know if it is the last request being
895 	 * made. Somebody should implement a proper sanity check.
896 	 */
897 	if (bytes)
898 		goto next_sg;
899 	return 0;
900 }
901 
902 /**
903  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
904  *	@qc: Command on going
905  *
906  *	Transfer Transfer data from/to the ATAPI device.
907  *
908  *	LOCKING:
909  *	Inherited from caller.
910  */
911 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
912 {
913 	struct ata_port *ap = qc->ap;
914 	struct ata_device *dev = qc->dev;
915 	struct ata_eh_info *ehi = &dev->link->eh_info;
916 	unsigned int ireason, bc_lo, bc_hi, bytes;
917 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
918 
919 	/* Abuse qc->result_tf for temp storage of intermediate TF
920 	 * here to save some kernel stack usage.
921 	 * For normal completion, qc->result_tf is not relevant. For
922 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
923 	 * So, the correctness of qc->result_tf is not affected.
924 	 */
925 	ap->ops->sff_tf_read(ap, &qc->result_tf);
926 	ireason = qc->result_tf.nsect;
927 	bc_lo = qc->result_tf.lbam;
928 	bc_hi = qc->result_tf.lbah;
929 	bytes = (bc_hi << 8) | bc_lo;
930 
931 	/* shall be cleared to zero, indicating xfer of data */
932 	if (unlikely(ireason & ATAPI_COD))
933 		goto atapi_check;
934 
935 	/* make sure transfer direction matches expected */
936 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
937 	if (unlikely(do_write != i_write))
938 		goto atapi_check;
939 
940 	if (unlikely(!bytes))
941 		goto atapi_check;
942 
943 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
944 
945 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
946 		goto err_out;
947 	ata_sff_sync(ap); /* flush */
948 
949 	return;
950 
951  atapi_check:
952 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
953 			  ireason, bytes);
954  err_out:
955 	qc->err_mask |= AC_ERR_HSM;
956 	ap->hsm_task_state = HSM_ST_ERR;
957 }
958 
959 /**
960  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961  *	@ap: the target ata_port
962  *	@qc: qc on going
963  *
964  *	RETURNS:
965  *	1 if ok in workqueue, 0 otherwise.
966  */
967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
968 						struct ata_queued_cmd *qc)
969 {
970 	if (qc->tf.flags & ATA_TFLAG_POLLING)
971 		return 1;
972 
973 	if (ap->hsm_task_state == HSM_ST_FIRST) {
974 		if (qc->tf.protocol == ATA_PROT_PIO &&
975 		   (qc->tf.flags & ATA_TFLAG_WRITE))
976 		    return 1;
977 
978 		if (ata_is_atapi(qc->tf.protocol) &&
979 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
980 			return 1;
981 	}
982 
983 	return 0;
984 }
985 
986 /**
987  *	ata_hsm_qc_complete - finish a qc running on standard HSM
988  *	@qc: Command to complete
989  *	@in_wq: 1 if called from workqueue, 0 otherwise
990  *
991  *	Finish @qc which is running on standard HSM.
992  *
993  *	LOCKING:
994  *	If @in_wq is zero, spin_lock_irqsave(host lock).
995  *	Otherwise, none on entry and grabs host lock.
996  */
997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
998 {
999 	struct ata_port *ap = qc->ap;
1000 
1001 	if (ap->ops->error_handler) {
1002 		if (in_wq) {
1003 			/* EH might have kicked in while host lock is
1004 			 * released.
1005 			 */
1006 			qc = ata_qc_from_tag(ap, qc->tag);
1007 			if (qc) {
1008 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1009 					ata_sff_irq_on(ap);
1010 					ata_qc_complete(qc);
1011 				} else
1012 					ata_port_freeze(ap);
1013 			}
1014 		} else {
1015 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1016 				ata_qc_complete(qc);
1017 			else
1018 				ata_port_freeze(ap);
1019 		}
1020 	} else {
1021 		if (in_wq) {
1022 			ata_sff_irq_on(ap);
1023 			ata_qc_complete(qc);
1024 		} else
1025 			ata_qc_complete(qc);
1026 	}
1027 }
1028 
1029 /**
1030  *	ata_sff_hsm_move - move the HSM to the next state.
1031  *	@ap: the target ata_port
1032  *	@qc: qc on going
1033  *	@status: current device status
1034  *	@in_wq: 1 if called from workqueue, 0 otherwise
1035  *
1036  *	RETURNS:
1037  *	1 when poll next status needed, 0 otherwise.
1038  */
1039 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1040 		     u8 status, int in_wq)
1041 {
1042 	struct ata_link *link = qc->dev->link;
1043 	struct ata_eh_info *ehi = &link->eh_info;
1044 	int poll_next;
1045 
1046 	lockdep_assert_held(ap->lock);
1047 
1048 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1049 
1050 	/* Make sure ata_sff_qc_issue() does not throw things
1051 	 * like DMA polling into the workqueue. Notice that
1052 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1053 	 */
1054 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1055 
1056 fsm_start:
1057 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1059 
1060 	switch (ap->hsm_task_state) {
1061 	case HSM_ST_FIRST:
1062 		/* Send first data block or PACKET CDB */
1063 
1064 		/* If polling, we will stay in the work queue after
1065 		 * sending the data. Otherwise, interrupt handler
1066 		 * takes over after sending the data.
1067 		 */
1068 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1069 
1070 		/* check device status */
1071 		if (unlikely((status & ATA_DRQ) == 0)) {
1072 			/* handle BSY=0, DRQ=0 as error */
1073 			if (likely(status & (ATA_ERR | ATA_DF)))
1074 				/* device stops HSM for abort/error */
1075 				qc->err_mask |= AC_ERR_DEV;
1076 			else {
1077 				/* HSM violation. Let EH handle this */
1078 				ata_ehi_push_desc(ehi,
1079 					"ST_FIRST: !(DRQ|ERR|DF)");
1080 				qc->err_mask |= AC_ERR_HSM;
1081 			}
1082 
1083 			ap->hsm_task_state = HSM_ST_ERR;
1084 			goto fsm_start;
1085 		}
1086 
1087 		/* Device should not ask for data transfer (DRQ=1)
1088 		 * when it finds something wrong.
1089 		 * We ignore DRQ here and stop the HSM by
1090 		 * changing hsm_task_state to HSM_ST_ERR and
1091 		 * let the EH abort the command or reset the device.
1092 		 */
1093 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1094 			/* Some ATAPI tape drives forget to clear the ERR bit
1095 			 * when doing the next command (mostly request sense).
1096 			 * We ignore ERR here to workaround and proceed sending
1097 			 * the CDB.
1098 			 */
1099 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1100 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1101 					"DRQ=1 with device error, "
1102 					"dev_stat 0x%X", status);
1103 				qc->err_mask |= AC_ERR_HSM;
1104 				ap->hsm_task_state = HSM_ST_ERR;
1105 				goto fsm_start;
1106 			}
1107 		}
1108 
1109 		if (qc->tf.protocol == ATA_PROT_PIO) {
1110 			/* PIO data out protocol.
1111 			 * send first data block.
1112 			 */
1113 
1114 			/* ata_pio_sectors() might change the state
1115 			 * to HSM_ST_LAST. so, the state is changed here
1116 			 * before ata_pio_sectors().
1117 			 */
1118 			ap->hsm_task_state = HSM_ST;
1119 			ata_pio_sectors(qc);
1120 		} else
1121 			/* send CDB */
1122 			atapi_send_cdb(ap, qc);
1123 
1124 		/* if polling, ata_sff_pio_task() handles the rest.
1125 		 * otherwise, interrupt handler takes over from here.
1126 		 */
1127 		break;
1128 
1129 	case HSM_ST:
1130 		/* complete command or read/write the data register */
1131 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1132 			/* ATAPI PIO protocol */
1133 			if ((status & ATA_DRQ) == 0) {
1134 				/* No more data to transfer or device error.
1135 				 * Device error will be tagged in HSM_ST_LAST.
1136 				 */
1137 				ap->hsm_task_state = HSM_ST_LAST;
1138 				goto fsm_start;
1139 			}
1140 
1141 			/* Device should not ask for data transfer (DRQ=1)
1142 			 * when it finds something wrong.
1143 			 * We ignore DRQ here and stop the HSM by
1144 			 * changing hsm_task_state to HSM_ST_ERR and
1145 			 * let the EH abort the command or reset the device.
1146 			 */
1147 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1149 					"DRQ=1 with device error, "
1150 					"dev_stat 0x%X", status);
1151 				qc->err_mask |= AC_ERR_HSM;
1152 				ap->hsm_task_state = HSM_ST_ERR;
1153 				goto fsm_start;
1154 			}
1155 
1156 			atapi_pio_bytes(qc);
1157 
1158 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1159 				/* bad ireason reported by device */
1160 				goto fsm_start;
1161 
1162 		} else {
1163 			/* ATA PIO protocol */
1164 			if (unlikely((status & ATA_DRQ) == 0)) {
1165 				/* handle BSY=0, DRQ=0 as error */
1166 				if (likely(status & (ATA_ERR | ATA_DF))) {
1167 					/* device stops HSM for abort/error */
1168 					qc->err_mask |= AC_ERR_DEV;
1169 
1170 					/* If diagnostic failed and this is
1171 					 * IDENTIFY, it's likely a phantom
1172 					 * device.  Mark hint.
1173 					 */
1174 					if (qc->dev->horkage &
1175 					    ATA_HORKAGE_DIAGNOSTIC)
1176 						qc->err_mask |=
1177 							AC_ERR_NODEV_HINT;
1178 				} else {
1179 					/* HSM violation. Let EH handle this.
1180 					 * Phantom devices also trigger this
1181 					 * condition.  Mark hint.
1182 					 */
1183 					ata_ehi_push_desc(ehi, "ST-ATA: "
1184 						"DRQ=0 without device error, "
1185 						"dev_stat 0x%X", status);
1186 					qc->err_mask |= AC_ERR_HSM |
1187 							AC_ERR_NODEV_HINT;
1188 				}
1189 
1190 				ap->hsm_task_state = HSM_ST_ERR;
1191 				goto fsm_start;
1192 			}
1193 
1194 			/* For PIO reads, some devices may ask for
1195 			 * data transfer (DRQ=1) alone with ERR=1.
1196 			 * We respect DRQ here and transfer one
1197 			 * block of junk data before changing the
1198 			 * hsm_task_state to HSM_ST_ERR.
1199 			 *
1200 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1201 			 * sense since the data block has been
1202 			 * transferred to the device.
1203 			 */
1204 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1205 				/* data might be corrputed */
1206 				qc->err_mask |= AC_ERR_DEV;
1207 
1208 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1209 					ata_pio_sectors(qc);
1210 					status = ata_wait_idle(ap);
1211 				}
1212 
1213 				if (status & (ATA_BUSY | ATA_DRQ)) {
1214 					ata_ehi_push_desc(ehi, "ST-ATA: "
1215 						"BUSY|DRQ persists on ERR|DF, "
1216 						"dev_stat 0x%X", status);
1217 					qc->err_mask |= AC_ERR_HSM;
1218 				}
1219 
1220 				/* There are oddball controllers with
1221 				 * status register stuck at 0x7f and
1222 				 * lbal/m/h at zero which makes it
1223 				 * pass all other presence detection
1224 				 * mechanisms we have.  Set NODEV_HINT
1225 				 * for it.  Kernel bz#7241.
1226 				 */
1227 				if (status == 0x7f)
1228 					qc->err_mask |= AC_ERR_NODEV_HINT;
1229 
1230 				/* ata_pio_sectors() might change the
1231 				 * state to HSM_ST_LAST. so, the state
1232 				 * is changed after ata_pio_sectors().
1233 				 */
1234 				ap->hsm_task_state = HSM_ST_ERR;
1235 				goto fsm_start;
1236 			}
1237 
1238 			ata_pio_sectors(qc);
1239 
1240 			if (ap->hsm_task_state == HSM_ST_LAST &&
1241 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1242 				/* all data read */
1243 				status = ata_wait_idle(ap);
1244 				goto fsm_start;
1245 			}
1246 		}
1247 
1248 		poll_next = 1;
1249 		break;
1250 
1251 	case HSM_ST_LAST:
1252 		if (unlikely(!ata_ok(status))) {
1253 			qc->err_mask |= __ac_err_mask(status);
1254 			ap->hsm_task_state = HSM_ST_ERR;
1255 			goto fsm_start;
1256 		}
1257 
1258 		/* no more data to transfer */
1259 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260 			ap->print_id, qc->dev->devno, status);
1261 
1262 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1263 
1264 		ap->hsm_task_state = HSM_ST_IDLE;
1265 
1266 		/* complete taskfile transaction */
1267 		ata_hsm_qc_complete(qc, in_wq);
1268 
1269 		poll_next = 0;
1270 		break;
1271 
1272 	case HSM_ST_ERR:
1273 		ap->hsm_task_state = HSM_ST_IDLE;
1274 
1275 		/* complete taskfile transaction */
1276 		ata_hsm_qc_complete(qc, in_wq);
1277 
1278 		poll_next = 0;
1279 		break;
1280 	default:
1281 		poll_next = 0;
1282 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1283 		     ap->print_id, ap->hsm_task_state);
1284 	}
1285 
1286 	return poll_next;
1287 }
1288 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1289 
1290 void ata_sff_queue_work(struct work_struct *work)
1291 {
1292 	queue_work(ata_sff_wq, work);
1293 }
1294 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1295 
1296 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1297 {
1298 	queue_delayed_work(ata_sff_wq, dwork, delay);
1299 }
1300 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1301 
1302 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1303 {
1304 	struct ata_port *ap = link->ap;
1305 
1306 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1307 		(ap->sff_pio_task_link != link));
1308 	ap->sff_pio_task_link = link;
1309 
1310 	/* may fail if ata_sff_flush_pio_task() in progress */
1311 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1312 }
1313 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1314 
1315 void ata_sff_flush_pio_task(struct ata_port *ap)
1316 {
1317 	DPRINTK("ENTER\n");
1318 
1319 	cancel_delayed_work_sync(&ap->sff_pio_task);
1320 
1321 	/*
1322 	 * We wanna reset the HSM state to IDLE.  If we do so without
1323 	 * grabbing the port lock, critical sections protected by it which
1324 	 * expect the HSM state to stay stable may get surprised.  For
1325 	 * example, we may set IDLE in between the time
1326 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1327 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1328 	 */
1329 	spin_lock_irq(ap->lock);
1330 	ap->hsm_task_state = HSM_ST_IDLE;
1331 	spin_unlock_irq(ap->lock);
1332 
1333 	ap->sff_pio_task_link = NULL;
1334 
1335 	if (ata_msg_ctl(ap))
1336 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1337 }
1338 
1339 static void ata_sff_pio_task(struct work_struct *work)
1340 {
1341 	struct ata_port *ap =
1342 		container_of(work, struct ata_port, sff_pio_task.work);
1343 	struct ata_link *link = ap->sff_pio_task_link;
1344 	struct ata_queued_cmd *qc;
1345 	u8 status;
1346 	int poll_next;
1347 
1348 	spin_lock_irq(ap->lock);
1349 
1350 	BUG_ON(ap->sff_pio_task_link == NULL);
1351 	/* qc can be NULL if timeout occurred */
1352 	qc = ata_qc_from_tag(ap, link->active_tag);
1353 	if (!qc) {
1354 		ap->sff_pio_task_link = NULL;
1355 		goto out_unlock;
1356 	}
1357 
1358 fsm_start:
1359 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1360 
1361 	/*
1362 	 * This is purely heuristic.  This is a fast path.
1363 	 * Sometimes when we enter, BSY will be cleared in
1364 	 * a chk-status or two.  If not, the drive is probably seeking
1365 	 * or something.  Snooze for a couple msecs, then
1366 	 * chk-status again.  If still busy, queue delayed work.
1367 	 */
1368 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1369 	if (status & ATA_BUSY) {
1370 		spin_unlock_irq(ap->lock);
1371 		ata_msleep(ap, 2);
1372 		spin_lock_irq(ap->lock);
1373 
1374 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1375 		if (status & ATA_BUSY) {
1376 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1377 			goto out_unlock;
1378 		}
1379 	}
1380 
1381 	/*
1382 	 * hsm_move() may trigger another command to be processed.
1383 	 * clean the link beforehand.
1384 	 */
1385 	ap->sff_pio_task_link = NULL;
1386 	/* move the HSM */
1387 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1388 
1389 	/* another command or interrupt handler
1390 	 * may be running at this point.
1391 	 */
1392 	if (poll_next)
1393 		goto fsm_start;
1394 out_unlock:
1395 	spin_unlock_irq(ap->lock);
1396 }
1397 
1398 /**
1399  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1400  *	@qc: command to issue to device
1401  *
1402  *	This function issues a PIO or NODATA command to a SFF
1403  *	controller.
1404  *
1405  *	LOCKING:
1406  *	spin_lock_irqsave(host lock)
1407  *
1408  *	RETURNS:
1409  *	Zero on success, AC_ERR_* mask on failure
1410  */
1411 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1412 {
1413 	struct ata_port *ap = qc->ap;
1414 	struct ata_link *link = qc->dev->link;
1415 
1416 	/* Use polling pio if the LLD doesn't handle
1417 	 * interrupt driven pio and atapi CDB interrupt.
1418 	 */
1419 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1420 		qc->tf.flags |= ATA_TFLAG_POLLING;
1421 
1422 	/* select the device */
1423 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1424 
1425 	/* start the command */
1426 	switch (qc->tf.protocol) {
1427 	case ATA_PROT_NODATA:
1428 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1429 			ata_qc_set_polling(qc);
1430 
1431 		ata_tf_to_host(ap, &qc->tf);
1432 		ap->hsm_task_state = HSM_ST_LAST;
1433 
1434 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1435 			ata_sff_queue_pio_task(link, 0);
1436 
1437 		break;
1438 
1439 	case ATA_PROT_PIO:
1440 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1441 			ata_qc_set_polling(qc);
1442 
1443 		ata_tf_to_host(ap, &qc->tf);
1444 
1445 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1446 			/* PIO data out protocol */
1447 			ap->hsm_task_state = HSM_ST_FIRST;
1448 			ata_sff_queue_pio_task(link, 0);
1449 
1450 			/* always send first data block using the
1451 			 * ata_sff_pio_task() codepath.
1452 			 */
1453 		} else {
1454 			/* PIO data in protocol */
1455 			ap->hsm_task_state = HSM_ST;
1456 
1457 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1458 				ata_sff_queue_pio_task(link, 0);
1459 
1460 			/* if polling, ata_sff_pio_task() handles the
1461 			 * rest.  otherwise, interrupt handler takes
1462 			 * over from here.
1463 			 */
1464 		}
1465 
1466 		break;
1467 
1468 	case ATAPI_PROT_PIO:
1469 	case ATAPI_PROT_NODATA:
1470 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1471 			ata_qc_set_polling(qc);
1472 
1473 		ata_tf_to_host(ap, &qc->tf);
1474 
1475 		ap->hsm_task_state = HSM_ST_FIRST;
1476 
1477 		/* send cdb by polling if no cdb interrupt */
1478 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1479 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1480 			ata_sff_queue_pio_task(link, 0);
1481 		break;
1482 
1483 	default:
1484 		WARN_ON_ONCE(1);
1485 		return AC_ERR_SYSTEM;
1486 	}
1487 
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1491 
1492 /**
1493  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1494  *	@qc: qc to fill result TF for
1495  *
1496  *	@qc is finished and result TF needs to be filled.  Fill it
1497  *	using ->sff_tf_read.
1498  *
1499  *	LOCKING:
1500  *	spin_lock_irqsave(host lock)
1501  *
1502  *	RETURNS:
1503  *	true indicating that result TF is successfully filled.
1504  */
1505 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1506 {
1507 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1508 	return true;
1509 }
1510 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1511 
1512 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1513 {
1514 	ap->stats.idle_irq++;
1515 
1516 #ifdef ATA_IRQ_TRAP
1517 	if ((ap->stats.idle_irq % 1000) == 0) {
1518 		ap->ops->sff_check_status(ap);
1519 		if (ap->ops->sff_irq_clear)
1520 			ap->ops->sff_irq_clear(ap);
1521 		ata_port_warn(ap, "irq trap\n");
1522 		return 1;
1523 	}
1524 #endif
1525 	return 0;	/* irq not handled */
1526 }
1527 
1528 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1529 					struct ata_queued_cmd *qc,
1530 					bool hsmv_on_idle)
1531 {
1532 	u8 status;
1533 
1534 	VPRINTK("ata%u: protocol %d task_state %d\n",
1535 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1536 
1537 	/* Check whether we are expecting interrupt in this state */
1538 	switch (ap->hsm_task_state) {
1539 	case HSM_ST_FIRST:
1540 		/* Some pre-ATAPI-4 devices assert INTRQ
1541 		 * at this state when ready to receive CDB.
1542 		 */
1543 
1544 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1545 		 * The flag was turned on only for atapi devices.  No
1546 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1547 		 */
1548 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1549 			return ata_sff_idle_irq(ap);
1550 		break;
1551 	case HSM_ST_IDLE:
1552 		return ata_sff_idle_irq(ap);
1553 	default:
1554 		break;
1555 	}
1556 
1557 	/* check main status, clearing INTRQ if needed */
1558 	status = ata_sff_irq_status(ap);
1559 	if (status & ATA_BUSY) {
1560 		if (hsmv_on_idle) {
1561 			/* BMDMA engine is already stopped, we're screwed */
1562 			qc->err_mask |= AC_ERR_HSM;
1563 			ap->hsm_task_state = HSM_ST_ERR;
1564 		} else
1565 			return ata_sff_idle_irq(ap);
1566 	}
1567 
1568 	/* clear irq events */
1569 	if (ap->ops->sff_irq_clear)
1570 		ap->ops->sff_irq_clear(ap);
1571 
1572 	ata_sff_hsm_move(ap, qc, status, 0);
1573 
1574 	return 1;	/* irq handled */
1575 }
1576 
1577 /**
1578  *	ata_sff_port_intr - Handle SFF port interrupt
1579  *	@ap: Port on which interrupt arrived (possibly...)
1580  *	@qc: Taskfile currently active in engine
1581  *
1582  *	Handle port interrupt for given queued command.
1583  *
1584  *	LOCKING:
1585  *	spin_lock_irqsave(host lock)
1586  *
1587  *	RETURNS:
1588  *	One if interrupt was handled, zero if not (shared irq).
1589  */
1590 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1591 {
1592 	return __ata_sff_port_intr(ap, qc, false);
1593 }
1594 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1595 
1596 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1597 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1598 {
1599 	struct ata_host *host = dev_instance;
1600 	bool retried = false;
1601 	unsigned int i;
1602 	unsigned int handled, idle, polling;
1603 	unsigned long flags;
1604 
1605 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1606 	spin_lock_irqsave(&host->lock, flags);
1607 
1608 retry:
1609 	handled = idle = polling = 0;
1610 	for (i = 0; i < host->n_ports; i++) {
1611 		struct ata_port *ap = host->ports[i];
1612 		struct ata_queued_cmd *qc;
1613 
1614 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1615 		if (qc) {
1616 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1617 				handled |= port_intr(ap, qc);
1618 			else
1619 				polling |= 1 << i;
1620 		} else
1621 			idle |= 1 << i;
1622 	}
1623 
1624 	/*
1625 	 * If no port was expecting IRQ but the controller is actually
1626 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1627 	 * pending status if available and clear spurious IRQ.
1628 	 */
1629 	if (!handled && !retried) {
1630 		bool retry = false;
1631 
1632 		for (i = 0; i < host->n_ports; i++) {
1633 			struct ata_port *ap = host->ports[i];
1634 
1635 			if (polling & (1 << i))
1636 				continue;
1637 
1638 			if (!ap->ops->sff_irq_check ||
1639 			    !ap->ops->sff_irq_check(ap))
1640 				continue;
1641 
1642 			if (idle & (1 << i)) {
1643 				ap->ops->sff_check_status(ap);
1644 				if (ap->ops->sff_irq_clear)
1645 					ap->ops->sff_irq_clear(ap);
1646 			} else {
1647 				/* clear INTRQ and check if BUSY cleared */
1648 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1649 					retry |= true;
1650 				/*
1651 				 * With command in flight, we can't do
1652 				 * sff_irq_clear() w/o racing with completion.
1653 				 */
1654 			}
1655 		}
1656 
1657 		if (retry) {
1658 			retried = true;
1659 			goto retry;
1660 		}
1661 	}
1662 
1663 	spin_unlock_irqrestore(&host->lock, flags);
1664 
1665 	return IRQ_RETVAL(handled);
1666 }
1667 
1668 /**
1669  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1670  *	@irq: irq line (unused)
1671  *	@dev_instance: pointer to our ata_host information structure
1672  *
1673  *	Default interrupt handler for PCI IDE devices.  Calls
1674  *	ata_sff_port_intr() for each port that is not disabled.
1675  *
1676  *	LOCKING:
1677  *	Obtains host lock during operation.
1678  *
1679  *	RETURNS:
1680  *	IRQ_NONE or IRQ_HANDLED.
1681  */
1682 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1683 {
1684 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1685 }
1686 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1687 
1688 /**
1689  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1690  *	@ap: port that appears to have timed out
1691  *
1692  *	Called from the libata error handlers when the core code suspects
1693  *	an interrupt has been lost. If it has complete anything we can and
1694  *	then return. Interface must support altstatus for this faster
1695  *	recovery to occur.
1696  *
1697  *	Locking:
1698  *	Caller holds host lock
1699  */
1700 
1701 void ata_sff_lost_interrupt(struct ata_port *ap)
1702 {
1703 	u8 status;
1704 	struct ata_queued_cmd *qc;
1705 
1706 	/* Only one outstanding command per SFF channel */
1707 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1708 	/* We cannot lose an interrupt on a non-existent or polled command */
1709 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1710 		return;
1711 	/* See if the controller thinks it is still busy - if so the command
1712 	   isn't a lost IRQ but is still in progress */
1713 	status = ata_sff_altstatus(ap);
1714 	if (status & ATA_BUSY)
1715 		return;
1716 
1717 	/* There was a command running, we are no longer busy and we have
1718 	   no interrupt. */
1719 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1720 								status);
1721 	/* Run the host interrupt logic as if the interrupt had not been
1722 	   lost */
1723 	ata_sff_port_intr(ap, qc);
1724 }
1725 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1726 
1727 /**
1728  *	ata_sff_freeze - Freeze SFF controller port
1729  *	@ap: port to freeze
1730  *
1731  *	Freeze SFF controller port.
1732  *
1733  *	LOCKING:
1734  *	Inherited from caller.
1735  */
1736 void ata_sff_freeze(struct ata_port *ap)
1737 {
1738 	ap->ctl |= ATA_NIEN;
1739 	ap->last_ctl = ap->ctl;
1740 
1741 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1742 		ata_sff_set_devctl(ap, ap->ctl);
1743 
1744 	/* Under certain circumstances, some controllers raise IRQ on
1745 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1746 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1747 	 */
1748 	ap->ops->sff_check_status(ap);
1749 
1750 	if (ap->ops->sff_irq_clear)
1751 		ap->ops->sff_irq_clear(ap);
1752 }
1753 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1754 
1755 /**
1756  *	ata_sff_thaw - Thaw SFF controller port
1757  *	@ap: port to thaw
1758  *
1759  *	Thaw SFF controller port.
1760  *
1761  *	LOCKING:
1762  *	Inherited from caller.
1763  */
1764 void ata_sff_thaw(struct ata_port *ap)
1765 {
1766 	/* clear & re-enable interrupts */
1767 	ap->ops->sff_check_status(ap);
1768 	if (ap->ops->sff_irq_clear)
1769 		ap->ops->sff_irq_clear(ap);
1770 	ata_sff_irq_on(ap);
1771 }
1772 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1773 
1774 /**
1775  *	ata_sff_prereset - prepare SFF link for reset
1776  *	@link: SFF link to be reset
1777  *	@deadline: deadline jiffies for the operation
1778  *
1779  *	SFF link @link is about to be reset.  Initialize it.  It first
1780  *	calls ata_std_prereset() and wait for !BSY if the port is
1781  *	being softreset.
1782  *
1783  *	LOCKING:
1784  *	Kernel thread context (may sleep)
1785  *
1786  *	RETURNS:
1787  *	0 on success, -errno otherwise.
1788  */
1789 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1790 {
1791 	struct ata_eh_context *ehc = &link->eh_context;
1792 	int rc;
1793 
1794 	rc = ata_std_prereset(link, deadline);
1795 	if (rc)
1796 		return rc;
1797 
1798 	/* if we're about to do hardreset, nothing more to do */
1799 	if (ehc->i.action & ATA_EH_HARDRESET)
1800 		return 0;
1801 
1802 	/* wait for !BSY if we don't know that no device is attached */
1803 	if (!ata_link_offline(link)) {
1804 		rc = ata_sff_wait_ready(link, deadline);
1805 		if (rc && rc != -ENODEV) {
1806 			ata_link_warn(link,
1807 				      "device not ready (errno=%d), forcing hardreset\n",
1808 				      rc);
1809 			ehc->i.action |= ATA_EH_HARDRESET;
1810 		}
1811 	}
1812 
1813 	return 0;
1814 }
1815 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1816 
1817 /**
1818  *	ata_devchk - PATA device presence detection
1819  *	@ap: ATA channel to examine
1820  *	@device: Device to examine (starting at zero)
1821  *
1822  *	This technique was originally described in
1823  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1824  *	later found its way into the ATA/ATAPI spec.
1825  *
1826  *	Write a pattern to the ATA shadow registers,
1827  *	and if a device is present, it will respond by
1828  *	correctly storing and echoing back the
1829  *	ATA shadow register contents.
1830  *
1831  *	LOCKING:
1832  *	caller.
1833  */
1834 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1835 {
1836 	struct ata_ioports *ioaddr = &ap->ioaddr;
1837 	u8 nsect, lbal;
1838 
1839 	ap->ops->sff_dev_select(ap, device);
1840 
1841 	iowrite8(0x55, ioaddr->nsect_addr);
1842 	iowrite8(0xaa, ioaddr->lbal_addr);
1843 
1844 	iowrite8(0xaa, ioaddr->nsect_addr);
1845 	iowrite8(0x55, ioaddr->lbal_addr);
1846 
1847 	iowrite8(0x55, ioaddr->nsect_addr);
1848 	iowrite8(0xaa, ioaddr->lbal_addr);
1849 
1850 	nsect = ioread8(ioaddr->nsect_addr);
1851 	lbal = ioread8(ioaddr->lbal_addr);
1852 
1853 	if ((nsect == 0x55) && (lbal == 0xaa))
1854 		return 1;	/* we found a device */
1855 
1856 	return 0;		/* nothing found */
1857 }
1858 
1859 /**
1860  *	ata_sff_dev_classify - Parse returned ATA device signature
1861  *	@dev: ATA device to classify (starting at zero)
1862  *	@present: device seems present
1863  *	@r_err: Value of error register on completion
1864  *
1865  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1866  *	an ATA/ATAPI-defined set of values is placed in the ATA
1867  *	shadow registers, indicating the results of device detection
1868  *	and diagnostics.
1869  *
1870  *	Select the ATA device, and read the values from the ATA shadow
1871  *	registers.  Then parse according to the Error register value,
1872  *	and the spec-defined values examined by ata_dev_classify().
1873  *
1874  *	LOCKING:
1875  *	caller.
1876  *
1877  *	RETURNS:
1878  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1879  */
1880 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1881 				  u8 *r_err)
1882 {
1883 	struct ata_port *ap = dev->link->ap;
1884 	struct ata_taskfile tf;
1885 	unsigned int class;
1886 	u8 err;
1887 
1888 	ap->ops->sff_dev_select(ap, dev->devno);
1889 
1890 	memset(&tf, 0, sizeof(tf));
1891 
1892 	ap->ops->sff_tf_read(ap, &tf);
1893 	err = tf.feature;
1894 	if (r_err)
1895 		*r_err = err;
1896 
1897 	/* see if device passed diags: continue and warn later */
1898 	if (err == 0)
1899 		/* diagnostic fail : do nothing _YET_ */
1900 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1901 	else if (err == 1)
1902 		/* do nothing */ ;
1903 	else if ((dev->devno == 0) && (err == 0x81))
1904 		/* do nothing */ ;
1905 	else
1906 		return ATA_DEV_NONE;
1907 
1908 	/* determine if device is ATA or ATAPI */
1909 	class = ata_dev_classify(&tf);
1910 
1911 	if (class == ATA_DEV_UNKNOWN) {
1912 		/* If the device failed diagnostic, it's likely to
1913 		 * have reported incorrect device signature too.
1914 		 * Assume ATA device if the device seems present but
1915 		 * device signature is invalid with diagnostic
1916 		 * failure.
1917 		 */
1918 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1919 			class = ATA_DEV_ATA;
1920 		else
1921 			class = ATA_DEV_NONE;
1922 	} else if ((class == ATA_DEV_ATA) &&
1923 		   (ap->ops->sff_check_status(ap) == 0))
1924 		class = ATA_DEV_NONE;
1925 
1926 	return class;
1927 }
1928 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1929 
1930 /**
1931  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1932  *	@link: SFF link which is just reset
1933  *	@devmask: mask of present devices
1934  *	@deadline: deadline jiffies for the operation
1935  *
1936  *	Wait devices attached to SFF @link to become ready after
1937  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1938  *	status register too early.
1939  *
1940  *	LOCKING:
1941  *	Kernel thread context (may sleep).
1942  *
1943  *	RETURNS:
1944  *	0 on success, -ENODEV if some or all of devices in @devmask
1945  *	don't seem to exist.  -errno on other errors.
1946  */
1947 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1948 			     unsigned long deadline)
1949 {
1950 	struct ata_port *ap = link->ap;
1951 	struct ata_ioports *ioaddr = &ap->ioaddr;
1952 	unsigned int dev0 = devmask & (1 << 0);
1953 	unsigned int dev1 = devmask & (1 << 1);
1954 	int rc, ret = 0;
1955 
1956 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1957 
1958 	/* always check readiness of the master device */
1959 	rc = ata_sff_wait_ready(link, deadline);
1960 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1961 	 * and TF status is 0xff, bail out on it too.
1962 	 */
1963 	if (rc)
1964 		return rc;
1965 
1966 	/* if device 1 was found in ata_devchk, wait for register
1967 	 * access briefly, then wait for BSY to clear.
1968 	 */
1969 	if (dev1) {
1970 		int i;
1971 
1972 		ap->ops->sff_dev_select(ap, 1);
1973 
1974 		/* Wait for register access.  Some ATAPI devices fail
1975 		 * to set nsect/lbal after reset, so don't waste too
1976 		 * much time on it.  We're gonna wait for !BSY anyway.
1977 		 */
1978 		for (i = 0; i < 2; i++) {
1979 			u8 nsect, lbal;
1980 
1981 			nsect = ioread8(ioaddr->nsect_addr);
1982 			lbal = ioread8(ioaddr->lbal_addr);
1983 			if ((nsect == 1) && (lbal == 1))
1984 				break;
1985 			ata_msleep(ap, 50);	/* give drive a breather */
1986 		}
1987 
1988 		rc = ata_sff_wait_ready(link, deadline);
1989 		if (rc) {
1990 			if (rc != -ENODEV)
1991 				return rc;
1992 			ret = rc;
1993 		}
1994 	}
1995 
1996 	/* is all this really necessary? */
1997 	ap->ops->sff_dev_select(ap, 0);
1998 	if (dev1)
1999 		ap->ops->sff_dev_select(ap, 1);
2000 	if (dev0)
2001 		ap->ops->sff_dev_select(ap, 0);
2002 
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2006 
2007 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2008 			     unsigned long deadline)
2009 {
2010 	struct ata_ioports *ioaddr = &ap->ioaddr;
2011 
2012 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2013 
2014 	if (ap->ioaddr.ctl_addr) {
2015 		/* software reset.  causes dev0 to be selected */
2016 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2017 		udelay(20);	/* FIXME: flush */
2018 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2019 		udelay(20);	/* FIXME: flush */
2020 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2021 		ap->last_ctl = ap->ctl;
2022 	}
2023 
2024 	/* wait the port to become ready */
2025 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2026 }
2027 
2028 /**
2029  *	ata_sff_softreset - reset host port via ATA SRST
2030  *	@link: ATA link to reset
2031  *	@classes: resulting classes of attached devices
2032  *	@deadline: deadline jiffies for the operation
2033  *
2034  *	Reset host port using ATA SRST.
2035  *
2036  *	LOCKING:
2037  *	Kernel thread context (may sleep)
2038  *
2039  *	RETURNS:
2040  *	0 on success, -errno otherwise.
2041  */
2042 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2043 		      unsigned long deadline)
2044 {
2045 	struct ata_port *ap = link->ap;
2046 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2047 	unsigned int devmask = 0;
2048 	int rc;
2049 	u8 err;
2050 
2051 	DPRINTK("ENTER\n");
2052 
2053 	/* determine if device 0/1 are present */
2054 	if (ata_devchk(ap, 0))
2055 		devmask |= (1 << 0);
2056 	if (slave_possible && ata_devchk(ap, 1))
2057 		devmask |= (1 << 1);
2058 
2059 	/* select device 0 again */
2060 	ap->ops->sff_dev_select(ap, 0);
2061 
2062 	/* issue bus reset */
2063 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2064 	rc = ata_bus_softreset(ap, devmask, deadline);
2065 	/* if link is occupied, -ENODEV too is an error */
2066 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2067 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2068 		return rc;
2069 	}
2070 
2071 	/* determine by signature whether we have ATA or ATAPI devices */
2072 	classes[0] = ata_sff_dev_classify(&link->device[0],
2073 					  devmask & (1 << 0), &err);
2074 	if (slave_possible && err != 0x81)
2075 		classes[1] = ata_sff_dev_classify(&link->device[1],
2076 						  devmask & (1 << 1), &err);
2077 
2078 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2082 
2083 /**
2084  *	sata_sff_hardreset - reset host port via SATA phy reset
2085  *	@link: link to reset
2086  *	@class: resulting class of attached device
2087  *	@deadline: deadline jiffies for the operation
2088  *
2089  *	SATA phy-reset host port using DET bits of SControl register,
2090  *	wait for !BSY and classify the attached device.
2091  *
2092  *	LOCKING:
2093  *	Kernel thread context (may sleep)
2094  *
2095  *	RETURNS:
2096  *	0 on success, -errno otherwise.
2097  */
2098 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2099 		       unsigned long deadline)
2100 {
2101 	struct ata_eh_context *ehc = &link->eh_context;
2102 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2103 	bool online;
2104 	int rc;
2105 
2106 	rc = sata_link_hardreset(link, timing, deadline, &online,
2107 				 ata_sff_check_ready);
2108 	if (online)
2109 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2110 
2111 	DPRINTK("EXIT, class=%u\n", *class);
2112 	return rc;
2113 }
2114 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2115 
2116 /**
2117  *	ata_sff_postreset - SFF postreset callback
2118  *	@link: the target SFF ata_link
2119  *	@classes: classes of attached devices
2120  *
2121  *	This function is invoked after a successful reset.  It first
2122  *	calls ata_std_postreset() and performs SFF specific postreset
2123  *	processing.
2124  *
2125  *	LOCKING:
2126  *	Kernel thread context (may sleep)
2127  */
2128 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2129 {
2130 	struct ata_port *ap = link->ap;
2131 
2132 	ata_std_postreset(link, classes);
2133 
2134 	/* is double-select really necessary? */
2135 	if (classes[0] != ATA_DEV_NONE)
2136 		ap->ops->sff_dev_select(ap, 1);
2137 	if (classes[1] != ATA_DEV_NONE)
2138 		ap->ops->sff_dev_select(ap, 0);
2139 
2140 	/* bail out if no device is present */
2141 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2142 		DPRINTK("EXIT, no device\n");
2143 		return;
2144 	}
2145 
2146 	/* set up device control */
2147 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2148 		ata_sff_set_devctl(ap, ap->ctl);
2149 		ap->last_ctl = ap->ctl;
2150 	}
2151 }
2152 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2153 
2154 /**
2155  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2156  *	@qc: command
2157  *
2158  *	Drain the FIFO and device of any stuck data following a command
2159  *	failing to complete. In some cases this is necessary before a
2160  *	reset will recover the device.
2161  *
2162  */
2163 
2164 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2165 {
2166 	int count;
2167 	struct ata_port *ap;
2168 
2169 	/* We only need to flush incoming data when a command was running */
2170 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2171 		return;
2172 
2173 	ap = qc->ap;
2174 	/* Drain up to 64K of data before we give up this recovery method */
2175 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2176 						&& count < 65536; count += 2)
2177 		ioread16(ap->ioaddr.data_addr);
2178 
2179 	/* Can become DEBUG later */
2180 	if (count)
2181 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2182 
2183 }
2184 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2185 
2186 /**
2187  *	ata_sff_error_handler - Stock error handler for SFF controller
2188  *	@ap: port to handle error for
2189  *
2190  *	Stock error handler for SFF controller.  It can handle both
2191  *	PATA and SATA controllers.  Many controllers should be able to
2192  *	use this EH as-is or with some added handling before and
2193  *	after.
2194  *
2195  *	LOCKING:
2196  *	Kernel thread context (may sleep)
2197  */
2198 void ata_sff_error_handler(struct ata_port *ap)
2199 {
2200 	ata_reset_fn_t softreset = ap->ops->softreset;
2201 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2202 	struct ata_queued_cmd *qc;
2203 	unsigned long flags;
2204 
2205 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2206 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2207 		qc = NULL;
2208 
2209 	spin_lock_irqsave(ap->lock, flags);
2210 
2211 	/*
2212 	 * We *MUST* do FIFO draining before we issue a reset as
2213 	 * several devices helpfully clear their internal state and
2214 	 * will lock solid if we touch the data port post reset. Pass
2215 	 * qc in case anyone wants to do different PIO/DMA recovery or
2216 	 * has per command fixups
2217 	 */
2218 	if (ap->ops->sff_drain_fifo)
2219 		ap->ops->sff_drain_fifo(qc);
2220 
2221 	spin_unlock_irqrestore(ap->lock, flags);
2222 
2223 	/* ignore built-in hardresets if SCR access is not available */
2224 	if ((hardreset == sata_std_hardreset ||
2225 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2226 		hardreset = NULL;
2227 
2228 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2229 		  ap->ops->postreset);
2230 }
2231 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2232 
2233 /**
2234  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2235  *	@ioaddr: IO address structure to be initialized
2236  *
2237  *	Utility function which initializes data_addr, error_addr,
2238  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2239  *	device_addr, status_addr, and command_addr to standard offsets
2240  *	relative to cmd_addr.
2241  *
2242  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2243  */
2244 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2245 {
2246 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2247 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2248 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2249 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2250 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2251 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2252 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2253 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2254 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2255 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2256 }
2257 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2258 
2259 #ifdef CONFIG_PCI
2260 
2261 static int ata_resources_present(struct pci_dev *pdev, int port)
2262 {
2263 	int i;
2264 
2265 	/* Check the PCI resources for this channel are enabled */
2266 	port = port * 2;
2267 	for (i = 0; i < 2; i++) {
2268 		if (pci_resource_start(pdev, port + i) == 0 ||
2269 		    pci_resource_len(pdev, port + i) == 0)
2270 			return 0;
2271 	}
2272 	return 1;
2273 }
2274 
2275 /**
2276  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2277  *	@host: target ATA host
2278  *
2279  *	Acquire native PCI ATA resources for @host and initialize the
2280  *	first two ports of @host accordingly.  Ports marked dummy are
2281  *	skipped and allocation failure makes the port dummy.
2282  *
2283  *	Note that native PCI resources are valid even for legacy hosts
2284  *	as we fix up pdev resources array early in boot, so this
2285  *	function can be used for both native and legacy SFF hosts.
2286  *
2287  *	LOCKING:
2288  *	Inherited from calling layer (may sleep).
2289  *
2290  *	RETURNS:
2291  *	0 if at least one port is initialized, -ENODEV if no port is
2292  *	available.
2293  */
2294 int ata_pci_sff_init_host(struct ata_host *host)
2295 {
2296 	struct device *gdev = host->dev;
2297 	struct pci_dev *pdev = to_pci_dev(gdev);
2298 	unsigned int mask = 0;
2299 	int i, rc;
2300 
2301 	/* request, iomap BARs and init port addresses accordingly */
2302 	for (i = 0; i < 2; i++) {
2303 		struct ata_port *ap = host->ports[i];
2304 		int base = i * 2;
2305 		void __iomem * const *iomap;
2306 
2307 		if (ata_port_is_dummy(ap))
2308 			continue;
2309 
2310 		/* Discard disabled ports.  Some controllers show
2311 		 * their unused channels this way.  Disabled ports are
2312 		 * made dummy.
2313 		 */
2314 		if (!ata_resources_present(pdev, i)) {
2315 			ap->ops = &ata_dummy_port_ops;
2316 			continue;
2317 		}
2318 
2319 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2320 					dev_driver_string(gdev));
2321 		if (rc) {
2322 			dev_warn(gdev,
2323 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324 				 i, rc);
2325 			if (rc == -EBUSY)
2326 				pcim_pin_device(pdev);
2327 			ap->ops = &ata_dummy_port_ops;
2328 			continue;
2329 		}
2330 		host->iomap = iomap = pcim_iomap_table(pdev);
2331 
2332 		ap->ioaddr.cmd_addr = iomap[base];
2333 		ap->ioaddr.altstatus_addr =
2334 		ap->ioaddr.ctl_addr = (void __iomem *)
2335 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2336 		ata_sff_std_ports(&ap->ioaddr);
2337 
2338 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2339 			(unsigned long long)pci_resource_start(pdev, base),
2340 			(unsigned long long)pci_resource_start(pdev, base + 1));
2341 
2342 		mask |= 1 << i;
2343 	}
2344 
2345 	if (!mask) {
2346 		dev_err(gdev, "no available native port\n");
2347 		return -ENODEV;
2348 	}
2349 
2350 	return 0;
2351 }
2352 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2353 
2354 /**
2355  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2356  *	@pdev: target PCI device
2357  *	@ppi: array of port_info, must be enough for two ports
2358  *	@r_host: out argument for the initialized ATA host
2359  *
2360  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2361  *	all PCI resources and initialize it accordingly in one go.
2362  *
2363  *	LOCKING:
2364  *	Inherited from calling layer (may sleep).
2365  *
2366  *	RETURNS:
2367  *	0 on success, -errno otherwise.
2368  */
2369 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2370 			     const struct ata_port_info * const *ppi,
2371 			     struct ata_host **r_host)
2372 {
2373 	struct ata_host *host;
2374 	int rc;
2375 
2376 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2377 		return -ENOMEM;
2378 
2379 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2380 	if (!host) {
2381 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2382 		rc = -ENOMEM;
2383 		goto err_out;
2384 	}
2385 
2386 	rc = ata_pci_sff_init_host(host);
2387 	if (rc)
2388 		goto err_out;
2389 
2390 	devres_remove_group(&pdev->dev, NULL);
2391 	*r_host = host;
2392 	return 0;
2393 
2394 err_out:
2395 	devres_release_group(&pdev->dev, NULL);
2396 	return rc;
2397 }
2398 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2399 
2400 /**
2401  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2402  *	@host: target SFF ATA host
2403  *	@irq_handler: irq_handler used when requesting IRQ(s)
2404  *	@sht: scsi_host_template to use when registering the host
2405  *
2406  *	This is the counterpart of ata_host_activate() for SFF ATA
2407  *	hosts.  This separate helper is necessary because SFF hosts
2408  *	use two separate interrupts in legacy mode.
2409  *
2410  *	LOCKING:
2411  *	Inherited from calling layer (may sleep).
2412  *
2413  *	RETURNS:
2414  *	0 on success, -errno otherwise.
2415  */
2416 int ata_pci_sff_activate_host(struct ata_host *host,
2417 			      irq_handler_t irq_handler,
2418 			      struct scsi_host_template *sht)
2419 {
2420 	struct device *dev = host->dev;
2421 	struct pci_dev *pdev = to_pci_dev(dev);
2422 	const char *drv_name = dev_driver_string(host->dev);
2423 	int legacy_mode = 0, rc;
2424 
2425 	rc = ata_host_start(host);
2426 	if (rc)
2427 		return rc;
2428 
2429 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2430 		u8 tmp8, mask;
2431 
2432 		/* TODO: What if one channel is in native mode ... */
2433 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2434 		mask = (1 << 2) | (1 << 0);
2435 		if ((tmp8 & mask) != mask)
2436 			legacy_mode = 1;
2437 	}
2438 
2439 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2440 		return -ENOMEM;
2441 
2442 	if (!legacy_mode && pdev->irq) {
2443 		int i;
2444 
2445 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2446 				      IRQF_SHARED, drv_name, host);
2447 		if (rc)
2448 			goto out;
2449 
2450 		for (i = 0; i < 2; i++) {
2451 			if (ata_port_is_dummy(host->ports[i]))
2452 				continue;
2453 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2454 		}
2455 	} else if (legacy_mode) {
2456 		if (!ata_port_is_dummy(host->ports[0])) {
2457 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2458 					      irq_handler, IRQF_SHARED,
2459 					      drv_name, host);
2460 			if (rc)
2461 				goto out;
2462 
2463 			ata_port_desc(host->ports[0], "irq %d",
2464 				      ATA_PRIMARY_IRQ(pdev));
2465 		}
2466 
2467 		if (!ata_port_is_dummy(host->ports[1])) {
2468 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2469 					      irq_handler, IRQF_SHARED,
2470 					      drv_name, host);
2471 			if (rc)
2472 				goto out;
2473 
2474 			ata_port_desc(host->ports[1], "irq %d",
2475 				      ATA_SECONDARY_IRQ(pdev));
2476 		}
2477 	}
2478 
2479 	rc = ata_host_register(host, sht);
2480 out:
2481 	if (rc == 0)
2482 		devres_remove_group(dev, NULL);
2483 	else
2484 		devres_release_group(dev, NULL);
2485 
2486 	return rc;
2487 }
2488 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2489 
2490 static const struct ata_port_info *ata_sff_find_valid_pi(
2491 					const struct ata_port_info * const *ppi)
2492 {
2493 	int i;
2494 
2495 	/* look up the first valid port_info */
2496 	for (i = 0; i < 2 && ppi[i]; i++)
2497 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2498 			return ppi[i];
2499 
2500 	return NULL;
2501 }
2502 
2503 static int ata_pci_init_one(struct pci_dev *pdev,
2504 		const struct ata_port_info * const *ppi,
2505 		struct scsi_host_template *sht, void *host_priv,
2506 		int hflags, bool bmdma)
2507 {
2508 	struct device *dev = &pdev->dev;
2509 	const struct ata_port_info *pi;
2510 	struct ata_host *host = NULL;
2511 	int rc;
2512 
2513 	DPRINTK("ENTER\n");
2514 
2515 	pi = ata_sff_find_valid_pi(ppi);
2516 	if (!pi) {
2517 		dev_err(&pdev->dev, "no valid port_info specified\n");
2518 		return -EINVAL;
2519 	}
2520 
2521 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2522 		return -ENOMEM;
2523 
2524 	rc = pcim_enable_device(pdev);
2525 	if (rc)
2526 		goto out;
2527 
2528 #ifdef CONFIG_ATA_BMDMA
2529 	if (bmdma)
2530 		/* prepare and activate BMDMA host */
2531 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2532 	else
2533 #endif
2534 		/* prepare and activate SFF host */
2535 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2536 	if (rc)
2537 		goto out;
2538 	host->private_data = host_priv;
2539 	host->flags |= hflags;
2540 
2541 #ifdef CONFIG_ATA_BMDMA
2542 	if (bmdma) {
2543 		pci_set_master(pdev);
2544 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2545 	} else
2546 #endif
2547 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2548 out:
2549 	if (rc == 0)
2550 		devres_remove_group(&pdev->dev, NULL);
2551 	else
2552 		devres_release_group(&pdev->dev, NULL);
2553 
2554 	return rc;
2555 }
2556 
2557 /**
2558  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2559  *	@pdev: Controller to be initialized
2560  *	@ppi: array of port_info, must be enough for two ports
2561  *	@sht: scsi_host_template to use when registering the host
2562  *	@host_priv: host private_data
2563  *	@hflag: host flags
2564  *
2565  *	This is a helper function which can be called from a driver's
2566  *	xxx_init_one() probe function if the hardware uses traditional
2567  *	IDE taskfile registers and is PIO only.
2568  *
2569  *	ASSUMPTION:
2570  *	Nobody makes a single channel controller that appears solely as
2571  *	the secondary legacy port on PCI.
2572  *
2573  *	LOCKING:
2574  *	Inherited from PCI layer (may sleep).
2575  *
2576  *	RETURNS:
2577  *	Zero on success, negative on errno-based value on error.
2578  */
2579 int ata_pci_sff_init_one(struct pci_dev *pdev,
2580 		 const struct ata_port_info * const *ppi,
2581 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2582 {
2583 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2584 }
2585 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2586 
2587 #endif /* CONFIG_PCI */
2588 
2589 /*
2590  *	BMDMA support
2591  */
2592 
2593 #ifdef CONFIG_ATA_BMDMA
2594 
2595 const struct ata_port_operations ata_bmdma_port_ops = {
2596 	.inherits		= &ata_sff_port_ops,
2597 
2598 	.error_handler		= ata_bmdma_error_handler,
2599 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2600 
2601 	.qc_prep		= ata_bmdma_qc_prep,
2602 	.qc_issue		= ata_bmdma_qc_issue,
2603 
2604 	.sff_irq_clear		= ata_bmdma_irq_clear,
2605 	.bmdma_setup		= ata_bmdma_setup,
2606 	.bmdma_start		= ata_bmdma_start,
2607 	.bmdma_stop		= ata_bmdma_stop,
2608 	.bmdma_status		= ata_bmdma_status,
2609 
2610 	.port_start		= ata_bmdma_port_start,
2611 };
2612 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2613 
2614 const struct ata_port_operations ata_bmdma32_port_ops = {
2615 	.inherits		= &ata_bmdma_port_ops,
2616 
2617 	.sff_data_xfer		= ata_sff_data_xfer32,
2618 	.port_start		= ata_bmdma_port_start32,
2619 };
2620 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2621 
2622 /**
2623  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2624  *	@qc: Metadata associated with taskfile to be transferred
2625  *
2626  *	Fill PCI IDE PRD (scatter-gather) table with segments
2627  *	associated with the current disk command.
2628  *
2629  *	LOCKING:
2630  *	spin_lock_irqsave(host lock)
2631  *
2632  */
2633 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2634 {
2635 	struct ata_port *ap = qc->ap;
2636 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2637 	struct scatterlist *sg;
2638 	unsigned int si, pi;
2639 
2640 	pi = 0;
2641 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2642 		u32 addr, offset;
2643 		u32 sg_len, len;
2644 
2645 		/* determine if physical DMA addr spans 64K boundary.
2646 		 * Note h/w doesn't support 64-bit, so we unconditionally
2647 		 * truncate dma_addr_t to u32.
2648 		 */
2649 		addr = (u32) sg_dma_address(sg);
2650 		sg_len = sg_dma_len(sg);
2651 
2652 		while (sg_len) {
2653 			offset = addr & 0xffff;
2654 			len = sg_len;
2655 			if ((offset + sg_len) > 0x10000)
2656 				len = 0x10000 - offset;
2657 
2658 			prd[pi].addr = cpu_to_le32(addr);
2659 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2660 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2661 
2662 			pi++;
2663 			sg_len -= len;
2664 			addr += len;
2665 		}
2666 	}
2667 
2668 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2669 }
2670 
2671 /**
2672  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2673  *	@qc: Metadata associated with taskfile to be transferred
2674  *
2675  *	Fill PCI IDE PRD (scatter-gather) table with segments
2676  *	associated with the current disk command. Perform the fill
2677  *	so that we avoid writing any length 64K records for
2678  *	controllers that don't follow the spec.
2679  *
2680  *	LOCKING:
2681  *	spin_lock_irqsave(host lock)
2682  *
2683  */
2684 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2685 {
2686 	struct ata_port *ap = qc->ap;
2687 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2688 	struct scatterlist *sg;
2689 	unsigned int si, pi;
2690 
2691 	pi = 0;
2692 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2693 		u32 addr, offset;
2694 		u32 sg_len, len, blen;
2695 
2696 		/* determine if physical DMA addr spans 64K boundary.
2697 		 * Note h/w doesn't support 64-bit, so we unconditionally
2698 		 * truncate dma_addr_t to u32.
2699 		 */
2700 		addr = (u32) sg_dma_address(sg);
2701 		sg_len = sg_dma_len(sg);
2702 
2703 		while (sg_len) {
2704 			offset = addr & 0xffff;
2705 			len = sg_len;
2706 			if ((offset + sg_len) > 0x10000)
2707 				len = 0x10000 - offset;
2708 
2709 			blen = len & 0xffff;
2710 			prd[pi].addr = cpu_to_le32(addr);
2711 			if (blen == 0) {
2712 				/* Some PATA chipsets like the CS5530 can't
2713 				   cope with 0x0000 meaning 64K as the spec
2714 				   says */
2715 				prd[pi].flags_len = cpu_to_le32(0x8000);
2716 				blen = 0x8000;
2717 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2718 			}
2719 			prd[pi].flags_len = cpu_to_le32(blen);
2720 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2721 
2722 			pi++;
2723 			sg_len -= len;
2724 			addr += len;
2725 		}
2726 	}
2727 
2728 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2729 }
2730 
2731 /**
2732  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2733  *	@qc: Metadata associated with taskfile to be prepared
2734  *
2735  *	Prepare ATA taskfile for submission.
2736  *
2737  *	LOCKING:
2738  *	spin_lock_irqsave(host lock)
2739  */
2740 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2741 {
2742 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2743 		return;
2744 
2745 	ata_bmdma_fill_sg(qc);
2746 }
2747 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2748 
2749 /**
2750  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2751  *	@qc: Metadata associated with taskfile to be prepared
2752  *
2753  *	Prepare ATA taskfile for submission.
2754  *
2755  *	LOCKING:
2756  *	spin_lock_irqsave(host lock)
2757  */
2758 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2759 {
2760 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2761 		return;
2762 
2763 	ata_bmdma_fill_sg_dumb(qc);
2764 }
2765 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2766 
2767 /**
2768  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2769  *	@qc: command to issue to device
2770  *
2771  *	This function issues a PIO, NODATA or DMA command to a
2772  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2773  *	ata_sff_qc_issue().
2774  *
2775  *	LOCKING:
2776  *	spin_lock_irqsave(host lock)
2777  *
2778  *	RETURNS:
2779  *	Zero on success, AC_ERR_* mask on failure
2780  */
2781 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2782 {
2783 	struct ata_port *ap = qc->ap;
2784 	struct ata_link *link = qc->dev->link;
2785 
2786 	/* defer PIO handling to sff_qc_issue */
2787 	if (!ata_is_dma(qc->tf.protocol))
2788 		return ata_sff_qc_issue(qc);
2789 
2790 	/* select the device */
2791 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2792 
2793 	/* start the command */
2794 	switch (qc->tf.protocol) {
2795 	case ATA_PROT_DMA:
2796 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2797 
2798 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2799 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2800 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2801 		ap->hsm_task_state = HSM_ST_LAST;
2802 		break;
2803 
2804 	case ATAPI_PROT_DMA:
2805 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2806 
2807 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2808 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2809 		ap->hsm_task_state = HSM_ST_FIRST;
2810 
2811 		/* send cdb by polling if no cdb interrupt */
2812 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2813 			ata_sff_queue_pio_task(link, 0);
2814 		break;
2815 
2816 	default:
2817 		WARN_ON(1);
2818 		return AC_ERR_SYSTEM;
2819 	}
2820 
2821 	return 0;
2822 }
2823 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2824 
2825 /**
2826  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2827  *	@ap: Port on which interrupt arrived (possibly...)
2828  *	@qc: Taskfile currently active in engine
2829  *
2830  *	Handle port interrupt for given queued command.
2831  *
2832  *	LOCKING:
2833  *	spin_lock_irqsave(host lock)
2834  *
2835  *	RETURNS:
2836  *	One if interrupt was handled, zero if not (shared irq).
2837  */
2838 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2839 {
2840 	struct ata_eh_info *ehi = &ap->link.eh_info;
2841 	u8 host_stat = 0;
2842 	bool bmdma_stopped = false;
2843 	unsigned int handled;
2844 
2845 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2846 		/* check status of DMA engine */
2847 		host_stat = ap->ops->bmdma_status(ap);
2848 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2849 
2850 		/* if it's not our irq... */
2851 		if (!(host_stat & ATA_DMA_INTR))
2852 			return ata_sff_idle_irq(ap);
2853 
2854 		/* before we do anything else, clear DMA-Start bit */
2855 		ap->ops->bmdma_stop(qc);
2856 		bmdma_stopped = true;
2857 
2858 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2859 			/* error when transferring data to/from memory */
2860 			qc->err_mask |= AC_ERR_HOST_BUS;
2861 			ap->hsm_task_state = HSM_ST_ERR;
2862 		}
2863 	}
2864 
2865 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2866 
2867 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2868 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2869 
2870 	return handled;
2871 }
2872 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2873 
2874 /**
2875  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2876  *	@irq: irq line (unused)
2877  *	@dev_instance: pointer to our ata_host information structure
2878  *
2879  *	Default interrupt handler for PCI IDE devices.  Calls
2880  *	ata_bmdma_port_intr() for each port that is not disabled.
2881  *
2882  *	LOCKING:
2883  *	Obtains host lock during operation.
2884  *
2885  *	RETURNS:
2886  *	IRQ_NONE or IRQ_HANDLED.
2887  */
2888 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2889 {
2890 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2891 }
2892 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2893 
2894 /**
2895  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2896  *	@ap: port to handle error for
2897  *
2898  *	Stock error handler for BMDMA controller.  It can handle both
2899  *	PATA and SATA controllers.  Most BMDMA controllers should be
2900  *	able to use this EH as-is or with some added handling before
2901  *	and after.
2902  *
2903  *	LOCKING:
2904  *	Kernel thread context (may sleep)
2905  */
2906 void ata_bmdma_error_handler(struct ata_port *ap)
2907 {
2908 	struct ata_queued_cmd *qc;
2909 	unsigned long flags;
2910 	bool thaw = false;
2911 
2912 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2913 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2914 		qc = NULL;
2915 
2916 	/* reset PIO HSM and stop DMA engine */
2917 	spin_lock_irqsave(ap->lock, flags);
2918 
2919 	if (qc && ata_is_dma(qc->tf.protocol)) {
2920 		u8 host_stat;
2921 
2922 		host_stat = ap->ops->bmdma_status(ap);
2923 
2924 		/* BMDMA controllers indicate host bus error by
2925 		 * setting DMA_ERR bit and timing out.  As it wasn't
2926 		 * really a timeout event, adjust error mask and
2927 		 * cancel frozen state.
2928 		 */
2929 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2930 			qc->err_mask = AC_ERR_HOST_BUS;
2931 			thaw = true;
2932 		}
2933 
2934 		ap->ops->bmdma_stop(qc);
2935 
2936 		/* if we're gonna thaw, make sure IRQ is clear */
2937 		if (thaw) {
2938 			ap->ops->sff_check_status(ap);
2939 			if (ap->ops->sff_irq_clear)
2940 				ap->ops->sff_irq_clear(ap);
2941 		}
2942 	}
2943 
2944 	spin_unlock_irqrestore(ap->lock, flags);
2945 
2946 	if (thaw)
2947 		ata_eh_thaw_port(ap);
2948 
2949 	ata_sff_error_handler(ap);
2950 }
2951 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2952 
2953 /**
2954  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2955  *	@qc: internal command to clean up
2956  *
2957  *	LOCKING:
2958  *	Kernel thread context (may sleep)
2959  */
2960 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2961 {
2962 	struct ata_port *ap = qc->ap;
2963 	unsigned long flags;
2964 
2965 	if (ata_is_dma(qc->tf.protocol)) {
2966 		spin_lock_irqsave(ap->lock, flags);
2967 		ap->ops->bmdma_stop(qc);
2968 		spin_unlock_irqrestore(ap->lock, flags);
2969 	}
2970 }
2971 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2972 
2973 /**
2974  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2975  *	@ap: Port associated with this ATA transaction.
2976  *
2977  *	Clear interrupt and error flags in DMA status register.
2978  *
2979  *	May be used as the irq_clear() entry in ata_port_operations.
2980  *
2981  *	LOCKING:
2982  *	spin_lock_irqsave(host lock)
2983  */
2984 void ata_bmdma_irq_clear(struct ata_port *ap)
2985 {
2986 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2987 
2988 	if (!mmio)
2989 		return;
2990 
2991 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2992 }
2993 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2994 
2995 /**
2996  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2997  *	@qc: Info associated with this ATA transaction.
2998  *
2999  *	LOCKING:
3000  *	spin_lock_irqsave(host lock)
3001  */
3002 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3003 {
3004 	struct ata_port *ap = qc->ap;
3005 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3006 	u8 dmactl;
3007 
3008 	/* load PRD table addr. */
3009 	mb();	/* make sure PRD table writes are visible to controller */
3010 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3011 
3012 	/* specify data direction, triple-check start bit is clear */
3013 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3014 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3015 	if (!rw)
3016 		dmactl |= ATA_DMA_WR;
3017 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3018 
3019 	/* issue r/w command */
3020 	ap->ops->sff_exec_command(ap, &qc->tf);
3021 }
3022 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3023 
3024 /**
3025  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3026  *	@qc: Info associated with this ATA transaction.
3027  *
3028  *	LOCKING:
3029  *	spin_lock_irqsave(host lock)
3030  */
3031 void ata_bmdma_start(struct ata_queued_cmd *qc)
3032 {
3033 	struct ata_port *ap = qc->ap;
3034 	u8 dmactl;
3035 
3036 	/* start host DMA transaction */
3037 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3038 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3039 
3040 	/* Strictly, one may wish to issue an ioread8() here, to
3041 	 * flush the mmio write.  However, control also passes
3042 	 * to the hardware at this point, and it will interrupt
3043 	 * us when we are to resume control.  So, in effect,
3044 	 * we don't care when the mmio write flushes.
3045 	 * Further, a read of the DMA status register _immediately_
3046 	 * following the write may not be what certain flaky hardware
3047 	 * is expected, so I think it is best to not add a readb()
3048 	 * without first all the MMIO ATA cards/mobos.
3049 	 * Or maybe I'm just being paranoid.
3050 	 *
3051 	 * FIXME: The posting of this write means I/O starts are
3052 	 * unnecessarily delayed for MMIO
3053 	 */
3054 }
3055 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3056 
3057 /**
3058  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3059  *	@qc: Command we are ending DMA for
3060  *
3061  *	Clears the ATA_DMA_START flag in the dma control register
3062  *
3063  *	May be used as the bmdma_stop() entry in ata_port_operations.
3064  *
3065  *	LOCKING:
3066  *	spin_lock_irqsave(host lock)
3067  */
3068 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3069 {
3070 	struct ata_port *ap = qc->ap;
3071 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3072 
3073 	/* clear start/stop bit */
3074 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3075 		 mmio + ATA_DMA_CMD);
3076 
3077 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3078 	ata_sff_dma_pause(ap);
3079 }
3080 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3081 
3082 /**
3083  *	ata_bmdma_status - Read PCI IDE BMDMA status
3084  *	@ap: Port associated with this ATA transaction.
3085  *
3086  *	Read and return BMDMA status register.
3087  *
3088  *	May be used as the bmdma_status() entry in ata_port_operations.
3089  *
3090  *	LOCKING:
3091  *	spin_lock_irqsave(host lock)
3092  */
3093 u8 ata_bmdma_status(struct ata_port *ap)
3094 {
3095 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3096 }
3097 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3098 
3099 
3100 /**
3101  *	ata_bmdma_port_start - Set port up for bmdma.
3102  *	@ap: Port to initialize
3103  *
3104  *	Called just after data structures for each port are
3105  *	initialized.  Allocates space for PRD table.
3106  *
3107  *	May be used as the port_start() entry in ata_port_operations.
3108  *
3109  *	LOCKING:
3110  *	Inherited from caller.
3111  */
3112 int ata_bmdma_port_start(struct ata_port *ap)
3113 {
3114 	if (ap->mwdma_mask || ap->udma_mask) {
3115 		ap->bmdma_prd =
3116 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3117 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3118 		if (!ap->bmdma_prd)
3119 			return -ENOMEM;
3120 	}
3121 
3122 	return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3125 
3126 /**
3127  *	ata_bmdma_port_start32 - Set port up for dma.
3128  *	@ap: Port to initialize
3129  *
3130  *	Called just after data structures for each port are
3131  *	initialized.  Enables 32bit PIO and allocates space for PRD
3132  *	table.
3133  *
3134  *	May be used as the port_start() entry in ata_port_operations for
3135  *	devices that are capable of 32bit PIO.
3136  *
3137  *	LOCKING:
3138  *	Inherited from caller.
3139  */
3140 int ata_bmdma_port_start32(struct ata_port *ap)
3141 {
3142 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3143 	return ata_bmdma_port_start(ap);
3144 }
3145 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3146 
3147 #ifdef CONFIG_PCI
3148 
3149 /**
3150  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3151  *	@pdev: PCI device
3152  *
3153  *	Some PCI ATA devices report simplex mode but in fact can be told to
3154  *	enter non simplex mode. This implements the necessary logic to
3155  *	perform the task on such devices. Calling it on other devices will
3156  *	have -undefined- behaviour.
3157  */
3158 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3159 {
3160 	unsigned long bmdma = pci_resource_start(pdev, 4);
3161 	u8 simplex;
3162 
3163 	if (bmdma == 0)
3164 		return -ENOENT;
3165 
3166 	simplex = inb(bmdma + 0x02);
3167 	outb(simplex & 0x60, bmdma + 0x02);
3168 	simplex = inb(bmdma + 0x02);
3169 	if (simplex & 0x80)
3170 		return -EOPNOTSUPP;
3171 	return 0;
3172 }
3173 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3174 
3175 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3176 {
3177 	int i;
3178 
3179 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3180 
3181 	for (i = 0; i < 2; i++) {
3182 		host->ports[i]->mwdma_mask = 0;
3183 		host->ports[i]->udma_mask = 0;
3184 	}
3185 }
3186 
3187 /**
3188  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3189  *	@host: target ATA host
3190  *
3191  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3192  *
3193  *	LOCKING:
3194  *	Inherited from calling layer (may sleep).
3195  */
3196 void ata_pci_bmdma_init(struct ata_host *host)
3197 {
3198 	struct device *gdev = host->dev;
3199 	struct pci_dev *pdev = to_pci_dev(gdev);
3200 	int i, rc;
3201 
3202 	/* No BAR4 allocation: No DMA */
3203 	if (pci_resource_start(pdev, 4) == 0) {
3204 		ata_bmdma_nodma(host, "BAR4 is zero");
3205 		return;
3206 	}
3207 
3208 	/*
3209 	 * Some controllers require BMDMA region to be initialized
3210 	 * even if DMA is not in use to clear IRQ status via
3211 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3212 	 * regardless of dma masks.
3213 	 */
3214 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3215 	if (rc)
3216 		ata_bmdma_nodma(host, "failed to set dma mask");
3217 	if (!rc) {
3218 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3219 		if (rc)
3220 			ata_bmdma_nodma(host,
3221 					"failed to set consistent dma mask");
3222 	}
3223 
3224 	/* request and iomap DMA region */
3225 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3226 	if (rc) {
3227 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3228 		return;
3229 	}
3230 	host->iomap = pcim_iomap_table(pdev);
3231 
3232 	for (i = 0; i < 2; i++) {
3233 		struct ata_port *ap = host->ports[i];
3234 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3235 
3236 		if (ata_port_is_dummy(ap))
3237 			continue;
3238 
3239 		ap->ioaddr.bmdma_addr = bmdma;
3240 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3241 		    (ioread8(bmdma + 2) & 0x80))
3242 			host->flags |= ATA_HOST_SIMPLEX;
3243 
3244 		ata_port_desc(ap, "bmdma 0x%llx",
3245 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3246 	}
3247 }
3248 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3249 
3250 /**
3251  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3252  *	@pdev: target PCI device
3253  *	@ppi: array of port_info, must be enough for two ports
3254  *	@r_host: out argument for the initialized ATA host
3255  *
3256  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3257  *	resources and initialize it accordingly in one go.
3258  *
3259  *	LOCKING:
3260  *	Inherited from calling layer (may sleep).
3261  *
3262  *	RETURNS:
3263  *	0 on success, -errno otherwise.
3264  */
3265 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3266 			       const struct ata_port_info * const * ppi,
3267 			       struct ata_host **r_host)
3268 {
3269 	int rc;
3270 
3271 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3272 	if (rc)
3273 		return rc;
3274 
3275 	ata_pci_bmdma_init(*r_host);
3276 	return 0;
3277 }
3278 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3279 
3280 /**
3281  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3282  *	@pdev: Controller to be initialized
3283  *	@ppi: array of port_info, must be enough for two ports
3284  *	@sht: scsi_host_template to use when registering the host
3285  *	@host_priv: host private_data
3286  *	@hflags: host flags
3287  *
3288  *	This function is similar to ata_pci_sff_init_one() but also
3289  *	takes care of BMDMA initialization.
3290  *
3291  *	LOCKING:
3292  *	Inherited from PCI layer (may sleep).
3293  *
3294  *	RETURNS:
3295  *	Zero on success, negative on errno-based value on error.
3296  */
3297 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3298 			   const struct ata_port_info * const * ppi,
3299 			   struct scsi_host_template *sht, void *host_priv,
3300 			   int hflags)
3301 {
3302 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3303 }
3304 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3305 
3306 #endif /* CONFIG_PCI */
3307 #endif /* CONFIG_ATA_BMDMA */
3308 
3309 /**
3310  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3311  *	@ap: Port to initialize
3312  *
3313  *	Called on port allocation to initialize SFF/BMDMA specific
3314  *	fields.
3315  *
3316  *	LOCKING:
3317  *	None.
3318  */
3319 void ata_sff_port_init(struct ata_port *ap)
3320 {
3321 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3322 	ap->ctl = ATA_DEVCTL_OBS;
3323 	ap->last_ctl = 0xFF;
3324 }
3325 
3326 int __init ata_sff_init(void)
3327 {
3328 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3329 	if (!ata_sff_wq)
3330 		return -ENOMEM;
3331 
3332 	return 0;
3333 }
3334 
3335 void ata_sff_exit(void)
3336 {
3337 	destroy_workqueue(ata_sff_wq);
3338 }
3339