1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/module.h> 39 #include <linux/libata.h> 40 #include <linux/highmem.h> 41 42 #include "libata.h" 43 44 static struct workqueue_struct *ata_sff_wq; 45 46 const struct ata_port_operations ata_sff_port_ops = { 47 .inherits = &ata_base_port_ops, 48 49 .qc_prep = ata_noop_qc_prep, 50 .qc_issue = ata_sff_qc_issue, 51 .qc_fill_rtf = ata_sff_qc_fill_rtf, 52 53 .freeze = ata_sff_freeze, 54 .thaw = ata_sff_thaw, 55 .prereset = ata_sff_prereset, 56 .softreset = ata_sff_softreset, 57 .hardreset = sata_sff_hardreset, 58 .postreset = ata_sff_postreset, 59 .error_handler = ata_sff_error_handler, 60 61 .sff_dev_select = ata_sff_dev_select, 62 .sff_check_status = ata_sff_check_status, 63 .sff_tf_load = ata_sff_tf_load, 64 .sff_tf_read = ata_sff_tf_read, 65 .sff_exec_command = ata_sff_exec_command, 66 .sff_data_xfer = ata_sff_data_xfer, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 }; 71 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73 /** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 u8 ata_sff_check_status(struct ata_port *ap) 85 { 86 return ioread8(ap->ioaddr.status_addr); 87 } 88 EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90 /** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_altstatus(struct ata_port *ap) 104 { 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109 } 110 111 /** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 static u8 ata_sff_irq_status(struct ata_port *ap) 124 { 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136 } 137 138 /** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 static void ata_sff_sync(struct ata_port *ap) 151 { 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156 } 157 158 /** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170 void ata_sff_pause(struct ata_port *ap) 171 { 172 ata_sff_sync(ap); 173 ndelay(400); 174 } 175 EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177 /** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185 void ata_sff_dma_pause(struct ata_port *ap) 186 { 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197 } 198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200 /** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215 int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217 { 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 ata_msleep(ap, 50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_warn(ap, 232 "port is slow to respond, please be patient (Status 0x%x)\n", 233 status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 ata_msleep(ap, 50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_err(ap, 247 "port failed to respond (%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256 static int ata_sff_check_ready(struct ata_link *link) 257 { 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261 } 262 263 /** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278 { 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280 } 281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283 /** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297 { 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302 } 303 304 /** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319 { 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332 /** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350 static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352 { 353 if (ata_msg_probe(ap)) 354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 355 device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 ata_msleep(ap, 150); 365 ata_wait_idle(ap); 366 } 367 } 368 369 /** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382 void ata_sff_irq_on(struct ata_port *ap) 383 { 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 if (ap->ops->sff_irq_clear) 399 ap->ops->sff_irq_clear(ap); 400 } 401 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 402 403 /** 404 * ata_sff_tf_load - send taskfile registers to host controller 405 * @ap: Port to which output is sent 406 * @tf: ATA taskfile register set 407 * 408 * Outputs ATA taskfile to standard ATA host controller. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 414 { 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 417 418 if (tf->ctl != ap->last_ctl) { 419 if (ioaddr->ctl_addr) 420 iowrite8(tf->ctl, ioaddr->ctl_addr); 421 ap->last_ctl = tf->ctl; 422 ata_wait_idle(ap); 423 } 424 425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 426 WARN_ON_ONCE(!ioaddr->ctl_addr); 427 iowrite8(tf->hob_feature, ioaddr->feature_addr); 428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 433 tf->hob_feature, 434 tf->hob_nsect, 435 tf->hob_lbal, 436 tf->hob_lbam, 437 tf->hob_lbah); 438 } 439 440 if (is_addr) { 441 iowrite8(tf->feature, ioaddr->feature_addr); 442 iowrite8(tf->nsect, ioaddr->nsect_addr); 443 iowrite8(tf->lbal, ioaddr->lbal_addr); 444 iowrite8(tf->lbam, ioaddr->lbam_addr); 445 iowrite8(tf->lbah, ioaddr->lbah_addr); 446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 447 tf->feature, 448 tf->nsect, 449 tf->lbal, 450 tf->lbam, 451 tf->lbah); 452 } 453 454 if (tf->flags & ATA_TFLAG_DEVICE) { 455 iowrite8(tf->device, ioaddr->device_addr); 456 VPRINTK("device 0x%X\n", tf->device); 457 } 458 459 ata_wait_idle(ap); 460 } 461 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 462 463 /** 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers 465 * @ap: Port from which input is read 466 * @tf: ATA taskfile register set for storing input 467 * 468 * Reads ATA taskfile registers for currently-selected device 469 * into @tf. Assumes the device has a fully SFF compliant task file 470 * layout and behaviour. If you device does not (eg has a different 471 * status method) then you will need to provide a replacement tf_read 472 * 473 * LOCKING: 474 * Inherited from caller. 475 */ 476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 477 { 478 struct ata_ioports *ioaddr = &ap->ioaddr; 479 480 tf->command = ata_sff_check_status(ap); 481 tf->feature = ioread8(ioaddr->error_addr); 482 tf->nsect = ioread8(ioaddr->nsect_addr); 483 tf->lbal = ioread8(ioaddr->lbal_addr); 484 tf->lbam = ioread8(ioaddr->lbam_addr); 485 tf->lbah = ioread8(ioaddr->lbah_addr); 486 tf->device = ioread8(ioaddr->device_addr); 487 488 if (tf->flags & ATA_TFLAG_LBA48) { 489 if (likely(ioaddr->ctl_addr)) { 490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 491 tf->hob_feature = ioread8(ioaddr->error_addr); 492 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 493 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 494 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 495 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 496 iowrite8(tf->ctl, ioaddr->ctl_addr); 497 ap->last_ctl = tf->ctl; 498 } else 499 WARN_ON_ONCE(1); 500 } 501 } 502 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 503 504 /** 505 * ata_sff_exec_command - issue ATA command to host controller 506 * @ap: port to which command is being issued 507 * @tf: ATA taskfile register set 508 * 509 * Issues ATA command, with proper synchronization with interrupt 510 * handler / other threads. 511 * 512 * LOCKING: 513 * spin_lock_irqsave(host lock) 514 */ 515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 516 { 517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 518 519 iowrite8(tf->command, ap->ioaddr.command_addr); 520 ata_sff_pause(ap); 521 } 522 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 523 524 /** 525 * ata_tf_to_host - issue ATA taskfile to host controller 526 * @ap: port to which command is being issued 527 * @tf: ATA taskfile register set 528 * 529 * Issues ATA taskfile register set to ATA host controller, 530 * with proper synchronization with interrupt handler and 531 * other threads. 532 * 533 * LOCKING: 534 * spin_lock_irqsave(host lock) 535 */ 536 static inline void ata_tf_to_host(struct ata_port *ap, 537 const struct ata_taskfile *tf) 538 { 539 ap->ops->sff_tf_load(ap, tf); 540 ap->ops->sff_exec_command(ap, tf); 541 } 542 543 /** 544 * ata_sff_data_xfer - Transfer data by PIO 545 * @qc: queued command 546 * @buf: data buffer 547 * @buflen: buffer length 548 * @rw: read/write 549 * 550 * Transfer data from/to the device data register by PIO. 551 * 552 * LOCKING: 553 * Inherited from caller. 554 * 555 * RETURNS: 556 * Bytes consumed. 557 */ 558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 559 unsigned int buflen, int rw) 560 { 561 struct ata_port *ap = qc->dev->link->ap; 562 void __iomem *data_addr = ap->ioaddr.data_addr; 563 unsigned int words = buflen >> 1; 564 565 /* Transfer multiple of 2 bytes */ 566 if (rw == READ) 567 ioread16_rep(data_addr, buf, words); 568 else 569 iowrite16_rep(data_addr, buf, words); 570 571 /* Transfer trailing byte, if any. */ 572 if (unlikely(buflen & 0x01)) { 573 unsigned char pad[2] = { }; 574 575 /* Point buf to the tail of buffer */ 576 buf += buflen - 1; 577 578 /* 579 * Use io*16_rep() accessors here as well to avoid pointlessly 580 * swapping bytes to and from on the big endian machines... 581 */ 582 if (rw == READ) { 583 ioread16_rep(data_addr, pad, 1); 584 *buf = pad[0]; 585 } else { 586 pad[0] = *buf; 587 iowrite16_rep(data_addr, pad, 1); 588 } 589 words++; 590 } 591 592 return words << 1; 593 } 594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 595 596 /** 597 * ata_sff_data_xfer32 - Transfer data by PIO 598 * @qc: queued command 599 * @buf: data buffer 600 * @buflen: buffer length 601 * @rw: read/write 602 * 603 * Transfer data from/to the device data register by PIO using 32bit 604 * I/O operations. 605 * 606 * LOCKING: 607 * Inherited from caller. 608 * 609 * RETURNS: 610 * Bytes consumed. 611 */ 612 613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 614 unsigned int buflen, int rw) 615 { 616 struct ata_device *dev = qc->dev; 617 struct ata_port *ap = dev->link->ap; 618 void __iomem *data_addr = ap->ioaddr.data_addr; 619 unsigned int words = buflen >> 2; 620 int slop = buflen & 3; 621 622 if (!(ap->pflags & ATA_PFLAG_PIO32)) 623 return ata_sff_data_xfer(qc, buf, buflen, rw); 624 625 /* Transfer multiple of 4 bytes */ 626 if (rw == READ) 627 ioread32_rep(data_addr, buf, words); 628 else 629 iowrite32_rep(data_addr, buf, words); 630 631 /* Transfer trailing bytes, if any */ 632 if (unlikely(slop)) { 633 unsigned char pad[4] = { }; 634 635 /* Point buf to the tail of buffer */ 636 buf += buflen - slop; 637 638 /* 639 * Use io*_rep() accessors here as well to avoid pointlessly 640 * swapping bytes to and from on the big endian machines... 641 */ 642 if (rw == READ) { 643 if (slop < 3) 644 ioread16_rep(data_addr, pad, 1); 645 else 646 ioread32_rep(data_addr, pad, 1); 647 memcpy(buf, pad, slop); 648 } else { 649 memcpy(pad, buf, slop); 650 if (slop < 3) 651 iowrite16_rep(data_addr, pad, 1); 652 else 653 iowrite32_rep(data_addr, pad, 1); 654 } 655 } 656 return (buflen + 1) & ~1; 657 } 658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 659 660 /** 661 * ata_sff_data_xfer_noirq - Transfer data by PIO 662 * @qc: queued command 663 * @buf: data buffer 664 * @buflen: buffer length 665 * @rw: read/write 666 * 667 * Transfer data from/to the device data register by PIO. Do the 668 * transfer with interrupts disabled. 669 * 670 * LOCKING: 671 * Inherited from caller. 672 * 673 * RETURNS: 674 * Bytes consumed. 675 */ 676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf, 677 unsigned int buflen, int rw) 678 { 679 unsigned long flags; 680 unsigned int consumed; 681 682 local_irq_save(flags); 683 consumed = ata_sff_data_xfer32(qc, buf, buflen, rw); 684 local_irq_restore(flags); 685 686 return consumed; 687 } 688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 689 690 /** 691 * ata_pio_sector - Transfer a sector of data. 692 * @qc: Command on going 693 * 694 * Transfer qc->sect_size bytes of data from/to the ATA device. 695 * 696 * LOCKING: 697 * Inherited from caller. 698 */ 699 static void ata_pio_sector(struct ata_queued_cmd *qc) 700 { 701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 702 struct ata_port *ap = qc->ap; 703 struct page *page; 704 unsigned int offset; 705 unsigned char *buf; 706 707 if (qc->curbytes == qc->nbytes - qc->sect_size) 708 ap->hsm_task_state = HSM_ST_LAST; 709 710 page = sg_page(qc->cursg); 711 offset = qc->cursg->offset + qc->cursg_ofs; 712 713 /* get the current page and offset */ 714 page = nth_page(page, (offset >> PAGE_SHIFT)); 715 offset %= PAGE_SIZE; 716 717 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 718 719 if (PageHighMem(page)) { 720 unsigned long flags; 721 722 /* FIXME: use a bounce buffer */ 723 local_irq_save(flags); 724 buf = kmap_atomic(page); 725 726 /* do the actual data transfer */ 727 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, 728 do_write); 729 730 kunmap_atomic(buf); 731 local_irq_restore(flags); 732 } else { 733 buf = page_address(page); 734 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, 735 do_write); 736 } 737 738 if (!do_write && !PageSlab(page)) 739 flush_dcache_page(page); 740 741 qc->curbytes += qc->sect_size; 742 qc->cursg_ofs += qc->sect_size; 743 744 if (qc->cursg_ofs == qc->cursg->length) { 745 qc->cursg = sg_next(qc->cursg); 746 qc->cursg_ofs = 0; 747 } 748 } 749 750 /** 751 * ata_pio_sectors - Transfer one or many sectors. 752 * @qc: Command on going 753 * 754 * Transfer one or many sectors of data from/to the 755 * ATA device for the DRQ request. 756 * 757 * LOCKING: 758 * Inherited from caller. 759 */ 760 static void ata_pio_sectors(struct ata_queued_cmd *qc) 761 { 762 if (is_multi_taskfile(&qc->tf)) { 763 /* READ/WRITE MULTIPLE */ 764 unsigned int nsect; 765 766 WARN_ON_ONCE(qc->dev->multi_count == 0); 767 768 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 769 qc->dev->multi_count); 770 while (nsect--) 771 ata_pio_sector(qc); 772 } else 773 ata_pio_sector(qc); 774 775 ata_sff_sync(qc->ap); /* flush */ 776 } 777 778 /** 779 * atapi_send_cdb - Write CDB bytes to hardware 780 * @ap: Port to which ATAPI device is attached. 781 * @qc: Taskfile currently active 782 * 783 * When device has indicated its readiness to accept 784 * a CDB, this function is called. Send the CDB. 785 * 786 * LOCKING: 787 * caller. 788 */ 789 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 790 { 791 /* send SCSI cdb */ 792 DPRINTK("send cdb\n"); 793 WARN_ON_ONCE(qc->dev->cdb_len < 12); 794 795 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 796 ata_sff_sync(ap); 797 /* FIXME: If the CDB is for DMA do we need to do the transition delay 798 or is bmdma_start guaranteed to do it ? */ 799 switch (qc->tf.protocol) { 800 case ATAPI_PROT_PIO: 801 ap->hsm_task_state = HSM_ST; 802 break; 803 case ATAPI_PROT_NODATA: 804 ap->hsm_task_state = HSM_ST_LAST; 805 break; 806 #ifdef CONFIG_ATA_BMDMA 807 case ATAPI_PROT_DMA: 808 ap->hsm_task_state = HSM_ST_LAST; 809 /* initiate bmdma */ 810 ap->ops->bmdma_start(qc); 811 break; 812 #endif /* CONFIG_ATA_BMDMA */ 813 default: 814 BUG(); 815 } 816 } 817 818 /** 819 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 820 * @qc: Command on going 821 * @bytes: number of bytes 822 * 823 * Transfer Transfer data from/to the ATAPI device. 824 * 825 * LOCKING: 826 * Inherited from caller. 827 * 828 */ 829 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 830 { 831 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 832 struct ata_port *ap = qc->ap; 833 struct ata_device *dev = qc->dev; 834 struct ata_eh_info *ehi = &dev->link->eh_info; 835 struct scatterlist *sg; 836 struct page *page; 837 unsigned char *buf; 838 unsigned int offset, count, consumed; 839 840 next_sg: 841 sg = qc->cursg; 842 if (unlikely(!sg)) { 843 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 844 "buf=%u cur=%u bytes=%u", 845 qc->nbytes, qc->curbytes, bytes); 846 return -1; 847 } 848 849 page = sg_page(sg); 850 offset = sg->offset + qc->cursg_ofs; 851 852 /* get the current page and offset */ 853 page = nth_page(page, (offset >> PAGE_SHIFT)); 854 offset %= PAGE_SIZE; 855 856 /* don't overrun current sg */ 857 count = min(sg->length - qc->cursg_ofs, bytes); 858 859 /* don't cross page boundaries */ 860 count = min(count, (unsigned int)PAGE_SIZE - offset); 861 862 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 863 864 if (PageHighMem(page)) { 865 unsigned long flags; 866 867 /* FIXME: use bounce buffer */ 868 local_irq_save(flags); 869 buf = kmap_atomic(page); 870 871 /* do the actual data transfer */ 872 consumed = ap->ops->sff_data_xfer(qc, buf + offset, 873 count, rw); 874 875 kunmap_atomic(buf); 876 local_irq_restore(flags); 877 } else { 878 buf = page_address(page); 879 consumed = ap->ops->sff_data_xfer(qc, buf + offset, 880 count, rw); 881 } 882 883 bytes -= min(bytes, consumed); 884 qc->curbytes += count; 885 qc->cursg_ofs += count; 886 887 if (qc->cursg_ofs == sg->length) { 888 qc->cursg = sg_next(qc->cursg); 889 qc->cursg_ofs = 0; 890 } 891 892 /* 893 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 894 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 895 * check correctly as it doesn't know if it is the last request being 896 * made. Somebody should implement a proper sanity check. 897 */ 898 if (bytes) 899 goto next_sg; 900 return 0; 901 } 902 903 /** 904 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 905 * @qc: Command on going 906 * 907 * Transfer Transfer data from/to the ATAPI device. 908 * 909 * LOCKING: 910 * Inherited from caller. 911 */ 912 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 913 { 914 struct ata_port *ap = qc->ap; 915 struct ata_device *dev = qc->dev; 916 struct ata_eh_info *ehi = &dev->link->eh_info; 917 unsigned int ireason, bc_lo, bc_hi, bytes; 918 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 919 920 /* Abuse qc->result_tf for temp storage of intermediate TF 921 * here to save some kernel stack usage. 922 * For normal completion, qc->result_tf is not relevant. For 923 * error, qc->result_tf is later overwritten by ata_qc_complete(). 924 * So, the correctness of qc->result_tf is not affected. 925 */ 926 ap->ops->sff_tf_read(ap, &qc->result_tf); 927 ireason = qc->result_tf.nsect; 928 bc_lo = qc->result_tf.lbam; 929 bc_hi = qc->result_tf.lbah; 930 bytes = (bc_hi << 8) | bc_lo; 931 932 /* shall be cleared to zero, indicating xfer of data */ 933 if (unlikely(ireason & ATAPI_COD)) 934 goto atapi_check; 935 936 /* make sure transfer direction matches expected */ 937 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 938 if (unlikely(do_write != i_write)) 939 goto atapi_check; 940 941 if (unlikely(!bytes)) 942 goto atapi_check; 943 944 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 945 946 if (unlikely(__atapi_pio_bytes(qc, bytes))) 947 goto err_out; 948 ata_sff_sync(ap); /* flush */ 949 950 return; 951 952 atapi_check: 953 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 954 ireason, bytes); 955 err_out: 956 qc->err_mask |= AC_ERR_HSM; 957 ap->hsm_task_state = HSM_ST_ERR; 958 } 959 960 /** 961 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 962 * @ap: the target ata_port 963 * @qc: qc on going 964 * 965 * RETURNS: 966 * 1 if ok in workqueue, 0 otherwise. 967 */ 968 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 969 struct ata_queued_cmd *qc) 970 { 971 if (qc->tf.flags & ATA_TFLAG_POLLING) 972 return 1; 973 974 if (ap->hsm_task_state == HSM_ST_FIRST) { 975 if (qc->tf.protocol == ATA_PROT_PIO && 976 (qc->tf.flags & ATA_TFLAG_WRITE)) 977 return 1; 978 979 if (ata_is_atapi(qc->tf.protocol) && 980 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 981 return 1; 982 } 983 984 return 0; 985 } 986 987 /** 988 * ata_hsm_qc_complete - finish a qc running on standard HSM 989 * @qc: Command to complete 990 * @in_wq: 1 if called from workqueue, 0 otherwise 991 * 992 * Finish @qc which is running on standard HSM. 993 * 994 * LOCKING: 995 * If @in_wq is zero, spin_lock_irqsave(host lock). 996 * Otherwise, none on entry and grabs host lock. 997 */ 998 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 999 { 1000 struct ata_port *ap = qc->ap; 1001 1002 if (ap->ops->error_handler) { 1003 if (in_wq) { 1004 /* EH might have kicked in while host lock is 1005 * released. 1006 */ 1007 qc = ata_qc_from_tag(ap, qc->tag); 1008 if (qc) { 1009 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1010 ata_sff_irq_on(ap); 1011 ata_qc_complete(qc); 1012 } else 1013 ata_port_freeze(ap); 1014 } 1015 } else { 1016 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1017 ata_qc_complete(qc); 1018 else 1019 ata_port_freeze(ap); 1020 } 1021 } else { 1022 if (in_wq) { 1023 ata_sff_irq_on(ap); 1024 ata_qc_complete(qc); 1025 } else 1026 ata_qc_complete(qc); 1027 } 1028 } 1029 1030 /** 1031 * ata_sff_hsm_move - move the HSM to the next state. 1032 * @ap: the target ata_port 1033 * @qc: qc on going 1034 * @status: current device status 1035 * @in_wq: 1 if called from workqueue, 0 otherwise 1036 * 1037 * RETURNS: 1038 * 1 when poll next status needed, 0 otherwise. 1039 */ 1040 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1041 u8 status, int in_wq) 1042 { 1043 struct ata_link *link = qc->dev->link; 1044 struct ata_eh_info *ehi = &link->eh_info; 1045 int poll_next; 1046 1047 lockdep_assert_held(ap->lock); 1048 1049 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1050 1051 /* Make sure ata_sff_qc_issue() does not throw things 1052 * like DMA polling into the workqueue. Notice that 1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1054 */ 1055 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1056 1057 fsm_start: 1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1059 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1060 1061 switch (ap->hsm_task_state) { 1062 case HSM_ST_FIRST: 1063 /* Send first data block or PACKET CDB */ 1064 1065 /* If polling, we will stay in the work queue after 1066 * sending the data. Otherwise, interrupt handler 1067 * takes over after sending the data. 1068 */ 1069 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1070 1071 /* check device status */ 1072 if (unlikely((status & ATA_DRQ) == 0)) { 1073 /* handle BSY=0, DRQ=0 as error */ 1074 if (likely(status & (ATA_ERR | ATA_DF))) 1075 /* device stops HSM for abort/error */ 1076 qc->err_mask |= AC_ERR_DEV; 1077 else { 1078 /* HSM violation. Let EH handle this */ 1079 ata_ehi_push_desc(ehi, 1080 "ST_FIRST: !(DRQ|ERR|DF)"); 1081 qc->err_mask |= AC_ERR_HSM; 1082 } 1083 1084 ap->hsm_task_state = HSM_ST_ERR; 1085 goto fsm_start; 1086 } 1087 1088 /* Device should not ask for data transfer (DRQ=1) 1089 * when it finds something wrong. 1090 * We ignore DRQ here and stop the HSM by 1091 * changing hsm_task_state to HSM_ST_ERR and 1092 * let the EH abort the command or reset the device. 1093 */ 1094 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1095 /* Some ATAPI tape drives forget to clear the ERR bit 1096 * when doing the next command (mostly request sense). 1097 * We ignore ERR here to workaround and proceed sending 1098 * the CDB. 1099 */ 1100 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1101 ata_ehi_push_desc(ehi, "ST_FIRST: " 1102 "DRQ=1 with device error, " 1103 "dev_stat 0x%X", status); 1104 qc->err_mask |= AC_ERR_HSM; 1105 ap->hsm_task_state = HSM_ST_ERR; 1106 goto fsm_start; 1107 } 1108 } 1109 1110 if (qc->tf.protocol == ATA_PROT_PIO) { 1111 /* PIO data out protocol. 1112 * send first data block. 1113 */ 1114 1115 /* ata_pio_sectors() might change the state 1116 * to HSM_ST_LAST. so, the state is changed here 1117 * before ata_pio_sectors(). 1118 */ 1119 ap->hsm_task_state = HSM_ST; 1120 ata_pio_sectors(qc); 1121 } else 1122 /* send CDB */ 1123 atapi_send_cdb(ap, qc); 1124 1125 /* if polling, ata_sff_pio_task() handles the rest. 1126 * otherwise, interrupt handler takes over from here. 1127 */ 1128 break; 1129 1130 case HSM_ST: 1131 /* complete command or read/write the data register */ 1132 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1133 /* ATAPI PIO protocol */ 1134 if ((status & ATA_DRQ) == 0) { 1135 /* No more data to transfer or device error. 1136 * Device error will be tagged in HSM_ST_LAST. 1137 */ 1138 ap->hsm_task_state = HSM_ST_LAST; 1139 goto fsm_start; 1140 } 1141 1142 /* Device should not ask for data transfer (DRQ=1) 1143 * when it finds something wrong. 1144 * We ignore DRQ here and stop the HSM by 1145 * changing hsm_task_state to HSM_ST_ERR and 1146 * let the EH abort the command or reset the device. 1147 */ 1148 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1149 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1150 "DRQ=1 with device error, " 1151 "dev_stat 0x%X", status); 1152 qc->err_mask |= AC_ERR_HSM; 1153 ap->hsm_task_state = HSM_ST_ERR; 1154 goto fsm_start; 1155 } 1156 1157 atapi_pio_bytes(qc); 1158 1159 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1160 /* bad ireason reported by device */ 1161 goto fsm_start; 1162 1163 } else { 1164 /* ATA PIO protocol */ 1165 if (unlikely((status & ATA_DRQ) == 0)) { 1166 /* handle BSY=0, DRQ=0 as error */ 1167 if (likely(status & (ATA_ERR | ATA_DF))) { 1168 /* device stops HSM for abort/error */ 1169 qc->err_mask |= AC_ERR_DEV; 1170 1171 /* If diagnostic failed and this is 1172 * IDENTIFY, it's likely a phantom 1173 * device. Mark hint. 1174 */ 1175 if (qc->dev->horkage & 1176 ATA_HORKAGE_DIAGNOSTIC) 1177 qc->err_mask |= 1178 AC_ERR_NODEV_HINT; 1179 } else { 1180 /* HSM violation. Let EH handle this. 1181 * Phantom devices also trigger this 1182 * condition. Mark hint. 1183 */ 1184 ata_ehi_push_desc(ehi, "ST-ATA: " 1185 "DRQ=0 without device error, " 1186 "dev_stat 0x%X", status); 1187 qc->err_mask |= AC_ERR_HSM | 1188 AC_ERR_NODEV_HINT; 1189 } 1190 1191 ap->hsm_task_state = HSM_ST_ERR; 1192 goto fsm_start; 1193 } 1194 1195 /* For PIO reads, some devices may ask for 1196 * data transfer (DRQ=1) alone with ERR=1. 1197 * We respect DRQ here and transfer one 1198 * block of junk data before changing the 1199 * hsm_task_state to HSM_ST_ERR. 1200 * 1201 * For PIO writes, ERR=1 DRQ=1 doesn't make 1202 * sense since the data block has been 1203 * transferred to the device. 1204 */ 1205 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1206 /* data might be corrputed */ 1207 qc->err_mask |= AC_ERR_DEV; 1208 1209 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1210 ata_pio_sectors(qc); 1211 status = ata_wait_idle(ap); 1212 } 1213 1214 if (status & (ATA_BUSY | ATA_DRQ)) { 1215 ata_ehi_push_desc(ehi, "ST-ATA: " 1216 "BUSY|DRQ persists on ERR|DF, " 1217 "dev_stat 0x%X", status); 1218 qc->err_mask |= AC_ERR_HSM; 1219 } 1220 1221 /* There are oddball controllers with 1222 * status register stuck at 0x7f and 1223 * lbal/m/h at zero which makes it 1224 * pass all other presence detection 1225 * mechanisms we have. Set NODEV_HINT 1226 * for it. Kernel bz#7241. 1227 */ 1228 if (status == 0x7f) 1229 qc->err_mask |= AC_ERR_NODEV_HINT; 1230 1231 /* ata_pio_sectors() might change the 1232 * state to HSM_ST_LAST. so, the state 1233 * is changed after ata_pio_sectors(). 1234 */ 1235 ap->hsm_task_state = HSM_ST_ERR; 1236 goto fsm_start; 1237 } 1238 1239 ata_pio_sectors(qc); 1240 1241 if (ap->hsm_task_state == HSM_ST_LAST && 1242 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1243 /* all data read */ 1244 status = ata_wait_idle(ap); 1245 goto fsm_start; 1246 } 1247 } 1248 1249 poll_next = 1; 1250 break; 1251 1252 case HSM_ST_LAST: 1253 if (unlikely(!ata_ok(status))) { 1254 qc->err_mask |= __ac_err_mask(status); 1255 ap->hsm_task_state = HSM_ST_ERR; 1256 goto fsm_start; 1257 } 1258 1259 /* no more data to transfer */ 1260 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1261 ap->print_id, qc->dev->devno, status); 1262 1263 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1264 1265 ap->hsm_task_state = HSM_ST_IDLE; 1266 1267 /* complete taskfile transaction */ 1268 ata_hsm_qc_complete(qc, in_wq); 1269 1270 poll_next = 0; 1271 break; 1272 1273 case HSM_ST_ERR: 1274 ap->hsm_task_state = HSM_ST_IDLE; 1275 1276 /* complete taskfile transaction */ 1277 ata_hsm_qc_complete(qc, in_wq); 1278 1279 poll_next = 0; 1280 break; 1281 default: 1282 poll_next = 0; 1283 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1284 ap->print_id, ap->hsm_task_state); 1285 } 1286 1287 return poll_next; 1288 } 1289 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1290 1291 void ata_sff_queue_work(struct work_struct *work) 1292 { 1293 queue_work(ata_sff_wq, work); 1294 } 1295 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1296 1297 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1298 { 1299 queue_delayed_work(ata_sff_wq, dwork, delay); 1300 } 1301 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1302 1303 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1304 { 1305 struct ata_port *ap = link->ap; 1306 1307 WARN_ON((ap->sff_pio_task_link != NULL) && 1308 (ap->sff_pio_task_link != link)); 1309 ap->sff_pio_task_link = link; 1310 1311 /* may fail if ata_sff_flush_pio_task() in progress */ 1312 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1313 } 1314 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1315 1316 void ata_sff_flush_pio_task(struct ata_port *ap) 1317 { 1318 DPRINTK("ENTER\n"); 1319 1320 cancel_delayed_work_sync(&ap->sff_pio_task); 1321 1322 /* 1323 * We wanna reset the HSM state to IDLE. If we do so without 1324 * grabbing the port lock, critical sections protected by it which 1325 * expect the HSM state to stay stable may get surprised. For 1326 * example, we may set IDLE in between the time 1327 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1328 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1329 */ 1330 spin_lock_irq(ap->lock); 1331 ap->hsm_task_state = HSM_ST_IDLE; 1332 spin_unlock_irq(ap->lock); 1333 1334 ap->sff_pio_task_link = NULL; 1335 1336 if (ata_msg_ctl(ap)) 1337 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1338 } 1339 1340 static void ata_sff_pio_task(struct work_struct *work) 1341 { 1342 struct ata_port *ap = 1343 container_of(work, struct ata_port, sff_pio_task.work); 1344 struct ata_link *link = ap->sff_pio_task_link; 1345 struct ata_queued_cmd *qc; 1346 u8 status; 1347 int poll_next; 1348 1349 spin_lock_irq(ap->lock); 1350 1351 BUG_ON(ap->sff_pio_task_link == NULL); 1352 /* qc can be NULL if timeout occurred */ 1353 qc = ata_qc_from_tag(ap, link->active_tag); 1354 if (!qc) { 1355 ap->sff_pio_task_link = NULL; 1356 goto out_unlock; 1357 } 1358 1359 fsm_start: 1360 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1361 1362 /* 1363 * This is purely heuristic. This is a fast path. 1364 * Sometimes when we enter, BSY will be cleared in 1365 * a chk-status or two. If not, the drive is probably seeking 1366 * or something. Snooze for a couple msecs, then 1367 * chk-status again. If still busy, queue delayed work. 1368 */ 1369 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1370 if (status & ATA_BUSY) { 1371 spin_unlock_irq(ap->lock); 1372 ata_msleep(ap, 2); 1373 spin_lock_irq(ap->lock); 1374 1375 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1376 if (status & ATA_BUSY) { 1377 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1378 goto out_unlock; 1379 } 1380 } 1381 1382 /* 1383 * hsm_move() may trigger another command to be processed. 1384 * clean the link beforehand. 1385 */ 1386 ap->sff_pio_task_link = NULL; 1387 /* move the HSM */ 1388 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1389 1390 /* another command or interrupt handler 1391 * may be running at this point. 1392 */ 1393 if (poll_next) 1394 goto fsm_start; 1395 out_unlock: 1396 spin_unlock_irq(ap->lock); 1397 } 1398 1399 /** 1400 * ata_sff_qc_issue - issue taskfile to a SFF controller 1401 * @qc: command to issue to device 1402 * 1403 * This function issues a PIO or NODATA command to a SFF 1404 * controller. 1405 * 1406 * LOCKING: 1407 * spin_lock_irqsave(host lock) 1408 * 1409 * RETURNS: 1410 * Zero on success, AC_ERR_* mask on failure 1411 */ 1412 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1413 { 1414 struct ata_port *ap = qc->ap; 1415 struct ata_link *link = qc->dev->link; 1416 1417 /* Use polling pio if the LLD doesn't handle 1418 * interrupt driven pio and atapi CDB interrupt. 1419 */ 1420 if (ap->flags & ATA_FLAG_PIO_POLLING) 1421 qc->tf.flags |= ATA_TFLAG_POLLING; 1422 1423 /* select the device */ 1424 ata_dev_select(ap, qc->dev->devno, 1, 0); 1425 1426 /* start the command */ 1427 switch (qc->tf.protocol) { 1428 case ATA_PROT_NODATA: 1429 if (qc->tf.flags & ATA_TFLAG_POLLING) 1430 ata_qc_set_polling(qc); 1431 1432 ata_tf_to_host(ap, &qc->tf); 1433 ap->hsm_task_state = HSM_ST_LAST; 1434 1435 if (qc->tf.flags & ATA_TFLAG_POLLING) 1436 ata_sff_queue_pio_task(link, 0); 1437 1438 break; 1439 1440 case ATA_PROT_PIO: 1441 if (qc->tf.flags & ATA_TFLAG_POLLING) 1442 ata_qc_set_polling(qc); 1443 1444 ata_tf_to_host(ap, &qc->tf); 1445 1446 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1447 /* PIO data out protocol */ 1448 ap->hsm_task_state = HSM_ST_FIRST; 1449 ata_sff_queue_pio_task(link, 0); 1450 1451 /* always send first data block using the 1452 * ata_sff_pio_task() codepath. 1453 */ 1454 } else { 1455 /* PIO data in protocol */ 1456 ap->hsm_task_state = HSM_ST; 1457 1458 if (qc->tf.flags & ATA_TFLAG_POLLING) 1459 ata_sff_queue_pio_task(link, 0); 1460 1461 /* if polling, ata_sff_pio_task() handles the 1462 * rest. otherwise, interrupt handler takes 1463 * over from here. 1464 */ 1465 } 1466 1467 break; 1468 1469 case ATAPI_PROT_PIO: 1470 case ATAPI_PROT_NODATA: 1471 if (qc->tf.flags & ATA_TFLAG_POLLING) 1472 ata_qc_set_polling(qc); 1473 1474 ata_tf_to_host(ap, &qc->tf); 1475 1476 ap->hsm_task_state = HSM_ST_FIRST; 1477 1478 /* send cdb by polling if no cdb interrupt */ 1479 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1480 (qc->tf.flags & ATA_TFLAG_POLLING)) 1481 ata_sff_queue_pio_task(link, 0); 1482 break; 1483 1484 default: 1485 return AC_ERR_SYSTEM; 1486 } 1487 1488 return 0; 1489 } 1490 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1491 1492 /** 1493 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1494 * @qc: qc to fill result TF for 1495 * 1496 * @qc is finished and result TF needs to be filled. Fill it 1497 * using ->sff_tf_read. 1498 * 1499 * LOCKING: 1500 * spin_lock_irqsave(host lock) 1501 * 1502 * RETURNS: 1503 * true indicating that result TF is successfully filled. 1504 */ 1505 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1506 { 1507 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1508 return true; 1509 } 1510 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1511 1512 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1513 { 1514 ap->stats.idle_irq++; 1515 1516 #ifdef ATA_IRQ_TRAP 1517 if ((ap->stats.idle_irq % 1000) == 0) { 1518 ap->ops->sff_check_status(ap); 1519 if (ap->ops->sff_irq_clear) 1520 ap->ops->sff_irq_clear(ap); 1521 ata_port_warn(ap, "irq trap\n"); 1522 return 1; 1523 } 1524 #endif 1525 return 0; /* irq not handled */ 1526 } 1527 1528 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1529 struct ata_queued_cmd *qc, 1530 bool hsmv_on_idle) 1531 { 1532 u8 status; 1533 1534 VPRINTK("ata%u: protocol %d task_state %d\n", 1535 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1536 1537 /* Check whether we are expecting interrupt in this state */ 1538 switch (ap->hsm_task_state) { 1539 case HSM_ST_FIRST: 1540 /* Some pre-ATAPI-4 devices assert INTRQ 1541 * at this state when ready to receive CDB. 1542 */ 1543 1544 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1545 * The flag was turned on only for atapi devices. No 1546 * need to check ata_is_atapi(qc->tf.protocol) again. 1547 */ 1548 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1549 return ata_sff_idle_irq(ap); 1550 break; 1551 case HSM_ST_IDLE: 1552 return ata_sff_idle_irq(ap); 1553 default: 1554 break; 1555 } 1556 1557 /* check main status, clearing INTRQ if needed */ 1558 status = ata_sff_irq_status(ap); 1559 if (status & ATA_BUSY) { 1560 if (hsmv_on_idle) { 1561 /* BMDMA engine is already stopped, we're screwed */ 1562 qc->err_mask |= AC_ERR_HSM; 1563 ap->hsm_task_state = HSM_ST_ERR; 1564 } else 1565 return ata_sff_idle_irq(ap); 1566 } 1567 1568 /* clear irq events */ 1569 if (ap->ops->sff_irq_clear) 1570 ap->ops->sff_irq_clear(ap); 1571 1572 ata_sff_hsm_move(ap, qc, status, 0); 1573 1574 return 1; /* irq handled */ 1575 } 1576 1577 /** 1578 * ata_sff_port_intr - Handle SFF port interrupt 1579 * @ap: Port on which interrupt arrived (possibly...) 1580 * @qc: Taskfile currently active in engine 1581 * 1582 * Handle port interrupt for given queued command. 1583 * 1584 * LOCKING: 1585 * spin_lock_irqsave(host lock) 1586 * 1587 * RETURNS: 1588 * One if interrupt was handled, zero if not (shared irq). 1589 */ 1590 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1591 { 1592 return __ata_sff_port_intr(ap, qc, false); 1593 } 1594 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1595 1596 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1597 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1598 { 1599 struct ata_host *host = dev_instance; 1600 bool retried = false; 1601 unsigned int i; 1602 unsigned int handled, idle, polling; 1603 unsigned long flags; 1604 1605 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1606 spin_lock_irqsave(&host->lock, flags); 1607 1608 retry: 1609 handled = idle = polling = 0; 1610 for (i = 0; i < host->n_ports; i++) { 1611 struct ata_port *ap = host->ports[i]; 1612 struct ata_queued_cmd *qc; 1613 1614 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1615 if (qc) { 1616 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1617 handled |= port_intr(ap, qc); 1618 else 1619 polling |= 1 << i; 1620 } else 1621 idle |= 1 << i; 1622 } 1623 1624 /* 1625 * If no port was expecting IRQ but the controller is actually 1626 * asserting IRQ line, nobody cared will ensue. Check IRQ 1627 * pending status if available and clear spurious IRQ. 1628 */ 1629 if (!handled && !retried) { 1630 bool retry = false; 1631 1632 for (i = 0; i < host->n_ports; i++) { 1633 struct ata_port *ap = host->ports[i]; 1634 1635 if (polling & (1 << i)) 1636 continue; 1637 1638 if (!ap->ops->sff_irq_check || 1639 !ap->ops->sff_irq_check(ap)) 1640 continue; 1641 1642 if (idle & (1 << i)) { 1643 ap->ops->sff_check_status(ap); 1644 if (ap->ops->sff_irq_clear) 1645 ap->ops->sff_irq_clear(ap); 1646 } else { 1647 /* clear INTRQ and check if BUSY cleared */ 1648 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1649 retry |= true; 1650 /* 1651 * With command in flight, we can't do 1652 * sff_irq_clear() w/o racing with completion. 1653 */ 1654 } 1655 } 1656 1657 if (retry) { 1658 retried = true; 1659 goto retry; 1660 } 1661 } 1662 1663 spin_unlock_irqrestore(&host->lock, flags); 1664 1665 return IRQ_RETVAL(handled); 1666 } 1667 1668 /** 1669 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1670 * @irq: irq line (unused) 1671 * @dev_instance: pointer to our ata_host information structure 1672 * 1673 * Default interrupt handler for PCI IDE devices. Calls 1674 * ata_sff_port_intr() for each port that is not disabled. 1675 * 1676 * LOCKING: 1677 * Obtains host lock during operation. 1678 * 1679 * RETURNS: 1680 * IRQ_NONE or IRQ_HANDLED. 1681 */ 1682 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1683 { 1684 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1685 } 1686 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1687 1688 /** 1689 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1690 * @ap: port that appears to have timed out 1691 * 1692 * Called from the libata error handlers when the core code suspects 1693 * an interrupt has been lost. If it has complete anything we can and 1694 * then return. Interface must support altstatus for this faster 1695 * recovery to occur. 1696 * 1697 * Locking: 1698 * Caller holds host lock 1699 */ 1700 1701 void ata_sff_lost_interrupt(struct ata_port *ap) 1702 { 1703 u8 status; 1704 struct ata_queued_cmd *qc; 1705 1706 /* Only one outstanding command per SFF channel */ 1707 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1708 /* We cannot lose an interrupt on a non-existent or polled command */ 1709 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1710 return; 1711 /* See if the controller thinks it is still busy - if so the command 1712 isn't a lost IRQ but is still in progress */ 1713 status = ata_sff_altstatus(ap); 1714 if (status & ATA_BUSY) 1715 return; 1716 1717 /* There was a command running, we are no longer busy and we have 1718 no interrupt. */ 1719 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1720 status); 1721 /* Run the host interrupt logic as if the interrupt had not been 1722 lost */ 1723 ata_sff_port_intr(ap, qc); 1724 } 1725 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1726 1727 /** 1728 * ata_sff_freeze - Freeze SFF controller port 1729 * @ap: port to freeze 1730 * 1731 * Freeze SFF controller port. 1732 * 1733 * LOCKING: 1734 * Inherited from caller. 1735 */ 1736 void ata_sff_freeze(struct ata_port *ap) 1737 { 1738 ap->ctl |= ATA_NIEN; 1739 ap->last_ctl = ap->ctl; 1740 1741 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1742 ata_sff_set_devctl(ap, ap->ctl); 1743 1744 /* Under certain circumstances, some controllers raise IRQ on 1745 * ATA_NIEN manipulation. Also, many controllers fail to mask 1746 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1747 */ 1748 ap->ops->sff_check_status(ap); 1749 1750 if (ap->ops->sff_irq_clear) 1751 ap->ops->sff_irq_clear(ap); 1752 } 1753 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1754 1755 /** 1756 * ata_sff_thaw - Thaw SFF controller port 1757 * @ap: port to thaw 1758 * 1759 * Thaw SFF controller port. 1760 * 1761 * LOCKING: 1762 * Inherited from caller. 1763 */ 1764 void ata_sff_thaw(struct ata_port *ap) 1765 { 1766 /* clear & re-enable interrupts */ 1767 ap->ops->sff_check_status(ap); 1768 if (ap->ops->sff_irq_clear) 1769 ap->ops->sff_irq_clear(ap); 1770 ata_sff_irq_on(ap); 1771 } 1772 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1773 1774 /** 1775 * ata_sff_prereset - prepare SFF link for reset 1776 * @link: SFF link to be reset 1777 * @deadline: deadline jiffies for the operation 1778 * 1779 * SFF link @link is about to be reset. Initialize it. It first 1780 * calls ata_std_prereset() and wait for !BSY if the port is 1781 * being softreset. 1782 * 1783 * LOCKING: 1784 * Kernel thread context (may sleep) 1785 * 1786 * RETURNS: 1787 * 0 on success, -errno otherwise. 1788 */ 1789 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1790 { 1791 struct ata_eh_context *ehc = &link->eh_context; 1792 int rc; 1793 1794 rc = ata_std_prereset(link, deadline); 1795 if (rc) 1796 return rc; 1797 1798 /* if we're about to do hardreset, nothing more to do */ 1799 if (ehc->i.action & ATA_EH_HARDRESET) 1800 return 0; 1801 1802 /* wait for !BSY if we don't know that no device is attached */ 1803 if (!ata_link_offline(link)) { 1804 rc = ata_sff_wait_ready(link, deadline); 1805 if (rc && rc != -ENODEV) { 1806 ata_link_warn(link, 1807 "device not ready (errno=%d), forcing hardreset\n", 1808 rc); 1809 ehc->i.action |= ATA_EH_HARDRESET; 1810 } 1811 } 1812 1813 return 0; 1814 } 1815 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1816 1817 /** 1818 * ata_devchk - PATA device presence detection 1819 * @ap: ATA channel to examine 1820 * @device: Device to examine (starting at zero) 1821 * 1822 * This technique was originally described in 1823 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1824 * later found its way into the ATA/ATAPI spec. 1825 * 1826 * Write a pattern to the ATA shadow registers, 1827 * and if a device is present, it will respond by 1828 * correctly storing and echoing back the 1829 * ATA shadow register contents. 1830 * 1831 * LOCKING: 1832 * caller. 1833 */ 1834 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1835 { 1836 struct ata_ioports *ioaddr = &ap->ioaddr; 1837 u8 nsect, lbal; 1838 1839 ap->ops->sff_dev_select(ap, device); 1840 1841 iowrite8(0x55, ioaddr->nsect_addr); 1842 iowrite8(0xaa, ioaddr->lbal_addr); 1843 1844 iowrite8(0xaa, ioaddr->nsect_addr); 1845 iowrite8(0x55, ioaddr->lbal_addr); 1846 1847 iowrite8(0x55, ioaddr->nsect_addr); 1848 iowrite8(0xaa, ioaddr->lbal_addr); 1849 1850 nsect = ioread8(ioaddr->nsect_addr); 1851 lbal = ioread8(ioaddr->lbal_addr); 1852 1853 if ((nsect == 0x55) && (lbal == 0xaa)) 1854 return 1; /* we found a device */ 1855 1856 return 0; /* nothing found */ 1857 } 1858 1859 /** 1860 * ata_sff_dev_classify - Parse returned ATA device signature 1861 * @dev: ATA device to classify (starting at zero) 1862 * @present: device seems present 1863 * @r_err: Value of error register on completion 1864 * 1865 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1866 * an ATA/ATAPI-defined set of values is placed in the ATA 1867 * shadow registers, indicating the results of device detection 1868 * and diagnostics. 1869 * 1870 * Select the ATA device, and read the values from the ATA shadow 1871 * registers. Then parse according to the Error register value, 1872 * and the spec-defined values examined by ata_dev_classify(). 1873 * 1874 * LOCKING: 1875 * caller. 1876 * 1877 * RETURNS: 1878 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1879 */ 1880 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1881 u8 *r_err) 1882 { 1883 struct ata_port *ap = dev->link->ap; 1884 struct ata_taskfile tf; 1885 unsigned int class; 1886 u8 err; 1887 1888 ap->ops->sff_dev_select(ap, dev->devno); 1889 1890 memset(&tf, 0, sizeof(tf)); 1891 1892 ap->ops->sff_tf_read(ap, &tf); 1893 err = tf.feature; 1894 if (r_err) 1895 *r_err = err; 1896 1897 /* see if device passed diags: continue and warn later */ 1898 if (err == 0) 1899 /* diagnostic fail : do nothing _YET_ */ 1900 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1901 else if (err == 1) 1902 /* do nothing */ ; 1903 else if ((dev->devno == 0) && (err == 0x81)) 1904 /* do nothing */ ; 1905 else 1906 return ATA_DEV_NONE; 1907 1908 /* determine if device is ATA or ATAPI */ 1909 class = ata_dev_classify(&tf); 1910 1911 if (class == ATA_DEV_UNKNOWN) { 1912 /* If the device failed diagnostic, it's likely to 1913 * have reported incorrect device signature too. 1914 * Assume ATA device if the device seems present but 1915 * device signature is invalid with diagnostic 1916 * failure. 1917 */ 1918 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1919 class = ATA_DEV_ATA; 1920 else 1921 class = ATA_DEV_NONE; 1922 } else if ((class == ATA_DEV_ATA) && 1923 (ap->ops->sff_check_status(ap) == 0)) 1924 class = ATA_DEV_NONE; 1925 1926 return class; 1927 } 1928 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1929 1930 /** 1931 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1932 * @link: SFF link which is just reset 1933 * @devmask: mask of present devices 1934 * @deadline: deadline jiffies for the operation 1935 * 1936 * Wait devices attached to SFF @link to become ready after 1937 * reset. It contains preceding 150ms wait to avoid accessing TF 1938 * status register too early. 1939 * 1940 * LOCKING: 1941 * Kernel thread context (may sleep). 1942 * 1943 * RETURNS: 1944 * 0 on success, -ENODEV if some or all of devices in @devmask 1945 * don't seem to exist. -errno on other errors. 1946 */ 1947 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1948 unsigned long deadline) 1949 { 1950 struct ata_port *ap = link->ap; 1951 struct ata_ioports *ioaddr = &ap->ioaddr; 1952 unsigned int dev0 = devmask & (1 << 0); 1953 unsigned int dev1 = devmask & (1 << 1); 1954 int rc, ret = 0; 1955 1956 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1957 1958 /* always check readiness of the master device */ 1959 rc = ata_sff_wait_ready(link, deadline); 1960 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1961 * and TF status is 0xff, bail out on it too. 1962 */ 1963 if (rc) 1964 return rc; 1965 1966 /* if device 1 was found in ata_devchk, wait for register 1967 * access briefly, then wait for BSY to clear. 1968 */ 1969 if (dev1) { 1970 int i; 1971 1972 ap->ops->sff_dev_select(ap, 1); 1973 1974 /* Wait for register access. Some ATAPI devices fail 1975 * to set nsect/lbal after reset, so don't waste too 1976 * much time on it. We're gonna wait for !BSY anyway. 1977 */ 1978 for (i = 0; i < 2; i++) { 1979 u8 nsect, lbal; 1980 1981 nsect = ioread8(ioaddr->nsect_addr); 1982 lbal = ioread8(ioaddr->lbal_addr); 1983 if ((nsect == 1) && (lbal == 1)) 1984 break; 1985 ata_msleep(ap, 50); /* give drive a breather */ 1986 } 1987 1988 rc = ata_sff_wait_ready(link, deadline); 1989 if (rc) { 1990 if (rc != -ENODEV) 1991 return rc; 1992 ret = rc; 1993 } 1994 } 1995 1996 /* is all this really necessary? */ 1997 ap->ops->sff_dev_select(ap, 0); 1998 if (dev1) 1999 ap->ops->sff_dev_select(ap, 1); 2000 if (dev0) 2001 ap->ops->sff_dev_select(ap, 0); 2002 2003 return ret; 2004 } 2005 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2006 2007 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2008 unsigned long deadline) 2009 { 2010 struct ata_ioports *ioaddr = &ap->ioaddr; 2011 2012 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2013 2014 if (ap->ioaddr.ctl_addr) { 2015 /* software reset. causes dev0 to be selected */ 2016 iowrite8(ap->ctl, ioaddr->ctl_addr); 2017 udelay(20); /* FIXME: flush */ 2018 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2019 udelay(20); /* FIXME: flush */ 2020 iowrite8(ap->ctl, ioaddr->ctl_addr); 2021 ap->last_ctl = ap->ctl; 2022 } 2023 2024 /* wait the port to become ready */ 2025 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2026 } 2027 2028 /** 2029 * ata_sff_softreset - reset host port via ATA SRST 2030 * @link: ATA link to reset 2031 * @classes: resulting classes of attached devices 2032 * @deadline: deadline jiffies for the operation 2033 * 2034 * Reset host port using ATA SRST. 2035 * 2036 * LOCKING: 2037 * Kernel thread context (may sleep) 2038 * 2039 * RETURNS: 2040 * 0 on success, -errno otherwise. 2041 */ 2042 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2043 unsigned long deadline) 2044 { 2045 struct ata_port *ap = link->ap; 2046 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2047 unsigned int devmask = 0; 2048 int rc; 2049 u8 err; 2050 2051 DPRINTK("ENTER\n"); 2052 2053 /* determine if device 0/1 are present */ 2054 if (ata_devchk(ap, 0)) 2055 devmask |= (1 << 0); 2056 if (slave_possible && ata_devchk(ap, 1)) 2057 devmask |= (1 << 1); 2058 2059 /* select device 0 again */ 2060 ap->ops->sff_dev_select(ap, 0); 2061 2062 /* issue bus reset */ 2063 DPRINTK("about to softreset, devmask=%x\n", devmask); 2064 rc = ata_bus_softreset(ap, devmask, deadline); 2065 /* if link is occupied, -ENODEV too is an error */ 2066 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2067 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2068 return rc; 2069 } 2070 2071 /* determine by signature whether we have ATA or ATAPI devices */ 2072 classes[0] = ata_sff_dev_classify(&link->device[0], 2073 devmask & (1 << 0), &err); 2074 if (slave_possible && err != 0x81) 2075 classes[1] = ata_sff_dev_classify(&link->device[1], 2076 devmask & (1 << 1), &err); 2077 2078 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2079 return 0; 2080 } 2081 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2082 2083 /** 2084 * sata_sff_hardreset - reset host port via SATA phy reset 2085 * @link: link to reset 2086 * @class: resulting class of attached device 2087 * @deadline: deadline jiffies for the operation 2088 * 2089 * SATA phy-reset host port using DET bits of SControl register, 2090 * wait for !BSY and classify the attached device. 2091 * 2092 * LOCKING: 2093 * Kernel thread context (may sleep) 2094 * 2095 * RETURNS: 2096 * 0 on success, -errno otherwise. 2097 */ 2098 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2099 unsigned long deadline) 2100 { 2101 struct ata_eh_context *ehc = &link->eh_context; 2102 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2103 bool online; 2104 int rc; 2105 2106 rc = sata_link_hardreset(link, timing, deadline, &online, 2107 ata_sff_check_ready); 2108 if (online) 2109 *class = ata_sff_dev_classify(link->device, 1, NULL); 2110 2111 DPRINTK("EXIT, class=%u\n", *class); 2112 return rc; 2113 } 2114 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2115 2116 /** 2117 * ata_sff_postreset - SFF postreset callback 2118 * @link: the target SFF ata_link 2119 * @classes: classes of attached devices 2120 * 2121 * This function is invoked after a successful reset. It first 2122 * calls ata_std_postreset() and performs SFF specific postreset 2123 * processing. 2124 * 2125 * LOCKING: 2126 * Kernel thread context (may sleep) 2127 */ 2128 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2129 { 2130 struct ata_port *ap = link->ap; 2131 2132 ata_std_postreset(link, classes); 2133 2134 /* is double-select really necessary? */ 2135 if (classes[0] != ATA_DEV_NONE) 2136 ap->ops->sff_dev_select(ap, 1); 2137 if (classes[1] != ATA_DEV_NONE) 2138 ap->ops->sff_dev_select(ap, 0); 2139 2140 /* bail out if no device is present */ 2141 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2142 DPRINTK("EXIT, no device\n"); 2143 return; 2144 } 2145 2146 /* set up device control */ 2147 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2148 ata_sff_set_devctl(ap, ap->ctl); 2149 ap->last_ctl = ap->ctl; 2150 } 2151 } 2152 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2153 2154 /** 2155 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2156 * @qc: command 2157 * 2158 * Drain the FIFO and device of any stuck data following a command 2159 * failing to complete. In some cases this is necessary before a 2160 * reset will recover the device. 2161 * 2162 */ 2163 2164 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2165 { 2166 int count; 2167 struct ata_port *ap; 2168 2169 /* We only need to flush incoming data when a command was running */ 2170 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2171 return; 2172 2173 ap = qc->ap; 2174 /* Drain up to 64K of data before we give up this recovery method */ 2175 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2176 && count < 65536; count += 2) 2177 ioread16(ap->ioaddr.data_addr); 2178 2179 /* Can become DEBUG later */ 2180 if (count) 2181 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2182 2183 } 2184 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2185 2186 /** 2187 * ata_sff_error_handler - Stock error handler for SFF controller 2188 * @ap: port to handle error for 2189 * 2190 * Stock error handler for SFF controller. It can handle both 2191 * PATA and SATA controllers. Many controllers should be able to 2192 * use this EH as-is or with some added handling before and 2193 * after. 2194 * 2195 * LOCKING: 2196 * Kernel thread context (may sleep) 2197 */ 2198 void ata_sff_error_handler(struct ata_port *ap) 2199 { 2200 ata_reset_fn_t softreset = ap->ops->softreset; 2201 ata_reset_fn_t hardreset = ap->ops->hardreset; 2202 struct ata_queued_cmd *qc; 2203 unsigned long flags; 2204 2205 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2206 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2207 qc = NULL; 2208 2209 spin_lock_irqsave(ap->lock, flags); 2210 2211 /* 2212 * We *MUST* do FIFO draining before we issue a reset as 2213 * several devices helpfully clear their internal state and 2214 * will lock solid if we touch the data port post reset. Pass 2215 * qc in case anyone wants to do different PIO/DMA recovery or 2216 * has per command fixups 2217 */ 2218 if (ap->ops->sff_drain_fifo) 2219 ap->ops->sff_drain_fifo(qc); 2220 2221 spin_unlock_irqrestore(ap->lock, flags); 2222 2223 /* ignore built-in hardresets if SCR access is not available */ 2224 if ((hardreset == sata_std_hardreset || 2225 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2226 hardreset = NULL; 2227 2228 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2229 ap->ops->postreset); 2230 } 2231 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2232 2233 /** 2234 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2235 * @ioaddr: IO address structure to be initialized 2236 * 2237 * Utility function which initializes data_addr, error_addr, 2238 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2239 * device_addr, status_addr, and command_addr to standard offsets 2240 * relative to cmd_addr. 2241 * 2242 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2243 */ 2244 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2245 { 2246 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2247 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2248 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2249 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2250 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2251 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2252 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2253 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2254 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2255 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2256 } 2257 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2258 2259 #ifdef CONFIG_PCI 2260 2261 static int ata_resources_present(struct pci_dev *pdev, int port) 2262 { 2263 int i; 2264 2265 /* Check the PCI resources for this channel are enabled */ 2266 port = port * 2; 2267 for (i = 0; i < 2; i++) { 2268 if (pci_resource_start(pdev, port + i) == 0 || 2269 pci_resource_len(pdev, port + i) == 0) 2270 return 0; 2271 } 2272 return 1; 2273 } 2274 2275 /** 2276 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2277 * @host: target ATA host 2278 * 2279 * Acquire native PCI ATA resources for @host and initialize the 2280 * first two ports of @host accordingly. Ports marked dummy are 2281 * skipped and allocation failure makes the port dummy. 2282 * 2283 * Note that native PCI resources are valid even for legacy hosts 2284 * as we fix up pdev resources array early in boot, so this 2285 * function can be used for both native and legacy SFF hosts. 2286 * 2287 * LOCKING: 2288 * Inherited from calling layer (may sleep). 2289 * 2290 * RETURNS: 2291 * 0 if at least one port is initialized, -ENODEV if no port is 2292 * available. 2293 */ 2294 int ata_pci_sff_init_host(struct ata_host *host) 2295 { 2296 struct device *gdev = host->dev; 2297 struct pci_dev *pdev = to_pci_dev(gdev); 2298 unsigned int mask = 0; 2299 int i, rc; 2300 2301 /* request, iomap BARs and init port addresses accordingly */ 2302 for (i = 0; i < 2; i++) { 2303 struct ata_port *ap = host->ports[i]; 2304 int base = i * 2; 2305 void __iomem * const *iomap; 2306 2307 if (ata_port_is_dummy(ap)) 2308 continue; 2309 2310 /* Discard disabled ports. Some controllers show 2311 * their unused channels this way. Disabled ports are 2312 * made dummy. 2313 */ 2314 if (!ata_resources_present(pdev, i)) { 2315 ap->ops = &ata_dummy_port_ops; 2316 continue; 2317 } 2318 2319 rc = pcim_iomap_regions(pdev, 0x3 << base, 2320 dev_driver_string(gdev)); 2321 if (rc) { 2322 dev_warn(gdev, 2323 "failed to request/iomap BARs for port %d (errno=%d)\n", 2324 i, rc); 2325 if (rc == -EBUSY) 2326 pcim_pin_device(pdev); 2327 ap->ops = &ata_dummy_port_ops; 2328 continue; 2329 } 2330 host->iomap = iomap = pcim_iomap_table(pdev); 2331 2332 ap->ioaddr.cmd_addr = iomap[base]; 2333 ap->ioaddr.altstatus_addr = 2334 ap->ioaddr.ctl_addr = (void __iomem *) 2335 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2336 ata_sff_std_ports(&ap->ioaddr); 2337 2338 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2339 (unsigned long long)pci_resource_start(pdev, base), 2340 (unsigned long long)pci_resource_start(pdev, base + 1)); 2341 2342 mask |= 1 << i; 2343 } 2344 2345 if (!mask) { 2346 dev_err(gdev, "no available native port\n"); 2347 return -ENODEV; 2348 } 2349 2350 return 0; 2351 } 2352 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2353 2354 /** 2355 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2356 * @pdev: target PCI device 2357 * @ppi: array of port_info, must be enough for two ports 2358 * @r_host: out argument for the initialized ATA host 2359 * 2360 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2361 * all PCI resources and initialize it accordingly in one go. 2362 * 2363 * LOCKING: 2364 * Inherited from calling layer (may sleep). 2365 * 2366 * RETURNS: 2367 * 0 on success, -errno otherwise. 2368 */ 2369 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2370 const struct ata_port_info * const *ppi, 2371 struct ata_host **r_host) 2372 { 2373 struct ata_host *host; 2374 int rc; 2375 2376 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2377 return -ENOMEM; 2378 2379 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2380 if (!host) { 2381 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2382 rc = -ENOMEM; 2383 goto err_out; 2384 } 2385 2386 rc = ata_pci_sff_init_host(host); 2387 if (rc) 2388 goto err_out; 2389 2390 devres_remove_group(&pdev->dev, NULL); 2391 *r_host = host; 2392 return 0; 2393 2394 err_out: 2395 devres_release_group(&pdev->dev, NULL); 2396 return rc; 2397 } 2398 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2399 2400 /** 2401 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2402 * @host: target SFF ATA host 2403 * @irq_handler: irq_handler used when requesting IRQ(s) 2404 * @sht: scsi_host_template to use when registering the host 2405 * 2406 * This is the counterpart of ata_host_activate() for SFF ATA 2407 * hosts. This separate helper is necessary because SFF hosts 2408 * use two separate interrupts in legacy mode. 2409 * 2410 * LOCKING: 2411 * Inherited from calling layer (may sleep). 2412 * 2413 * RETURNS: 2414 * 0 on success, -errno otherwise. 2415 */ 2416 int ata_pci_sff_activate_host(struct ata_host *host, 2417 irq_handler_t irq_handler, 2418 struct scsi_host_template *sht) 2419 { 2420 struct device *dev = host->dev; 2421 struct pci_dev *pdev = to_pci_dev(dev); 2422 const char *drv_name = dev_driver_string(host->dev); 2423 int legacy_mode = 0, rc; 2424 2425 rc = ata_host_start(host); 2426 if (rc) 2427 return rc; 2428 2429 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2430 u8 tmp8, mask = 0; 2431 2432 /* 2433 * ATA spec says we should use legacy mode when one 2434 * port is in legacy mode, but disabled ports on some 2435 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2436 * on which the secondary port is not wired, so 2437 * ignore ports that are marked as 'dummy' during 2438 * this check 2439 */ 2440 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2441 if (!ata_port_is_dummy(host->ports[0])) 2442 mask |= (1 << 0); 2443 if (!ata_port_is_dummy(host->ports[1])) 2444 mask |= (1 << 2); 2445 if ((tmp8 & mask) != mask) 2446 legacy_mode = 1; 2447 } 2448 2449 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2450 return -ENOMEM; 2451 2452 if (!legacy_mode && pdev->irq) { 2453 int i; 2454 2455 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2456 IRQF_SHARED, drv_name, host); 2457 if (rc) 2458 goto out; 2459 2460 for (i = 0; i < 2; i++) { 2461 if (ata_port_is_dummy(host->ports[i])) 2462 continue; 2463 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2464 } 2465 } else if (legacy_mode) { 2466 if (!ata_port_is_dummy(host->ports[0])) { 2467 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2468 irq_handler, IRQF_SHARED, 2469 drv_name, host); 2470 if (rc) 2471 goto out; 2472 2473 ata_port_desc(host->ports[0], "irq %d", 2474 ATA_PRIMARY_IRQ(pdev)); 2475 } 2476 2477 if (!ata_port_is_dummy(host->ports[1])) { 2478 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2479 irq_handler, IRQF_SHARED, 2480 drv_name, host); 2481 if (rc) 2482 goto out; 2483 2484 ata_port_desc(host->ports[1], "irq %d", 2485 ATA_SECONDARY_IRQ(pdev)); 2486 } 2487 } 2488 2489 rc = ata_host_register(host, sht); 2490 out: 2491 if (rc == 0) 2492 devres_remove_group(dev, NULL); 2493 else 2494 devres_release_group(dev, NULL); 2495 2496 return rc; 2497 } 2498 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2499 2500 static const struct ata_port_info *ata_sff_find_valid_pi( 2501 const struct ata_port_info * const *ppi) 2502 { 2503 int i; 2504 2505 /* look up the first valid port_info */ 2506 for (i = 0; i < 2 && ppi[i]; i++) 2507 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2508 return ppi[i]; 2509 2510 return NULL; 2511 } 2512 2513 static int ata_pci_init_one(struct pci_dev *pdev, 2514 const struct ata_port_info * const *ppi, 2515 struct scsi_host_template *sht, void *host_priv, 2516 int hflags, bool bmdma) 2517 { 2518 struct device *dev = &pdev->dev; 2519 const struct ata_port_info *pi; 2520 struct ata_host *host = NULL; 2521 int rc; 2522 2523 DPRINTK("ENTER\n"); 2524 2525 pi = ata_sff_find_valid_pi(ppi); 2526 if (!pi) { 2527 dev_err(&pdev->dev, "no valid port_info specified\n"); 2528 return -EINVAL; 2529 } 2530 2531 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2532 return -ENOMEM; 2533 2534 rc = pcim_enable_device(pdev); 2535 if (rc) 2536 goto out; 2537 2538 #ifdef CONFIG_ATA_BMDMA 2539 if (bmdma) 2540 /* prepare and activate BMDMA host */ 2541 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2542 else 2543 #endif 2544 /* prepare and activate SFF host */ 2545 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2546 if (rc) 2547 goto out; 2548 host->private_data = host_priv; 2549 host->flags |= hflags; 2550 2551 #ifdef CONFIG_ATA_BMDMA 2552 if (bmdma) { 2553 pci_set_master(pdev); 2554 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2555 } else 2556 #endif 2557 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2558 out: 2559 if (rc == 0) 2560 devres_remove_group(&pdev->dev, NULL); 2561 else 2562 devres_release_group(&pdev->dev, NULL); 2563 2564 return rc; 2565 } 2566 2567 /** 2568 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2569 * @pdev: Controller to be initialized 2570 * @ppi: array of port_info, must be enough for two ports 2571 * @sht: scsi_host_template to use when registering the host 2572 * @host_priv: host private_data 2573 * @hflag: host flags 2574 * 2575 * This is a helper function which can be called from a driver's 2576 * xxx_init_one() probe function if the hardware uses traditional 2577 * IDE taskfile registers and is PIO only. 2578 * 2579 * ASSUMPTION: 2580 * Nobody makes a single channel controller that appears solely as 2581 * the secondary legacy port on PCI. 2582 * 2583 * LOCKING: 2584 * Inherited from PCI layer (may sleep). 2585 * 2586 * RETURNS: 2587 * Zero on success, negative on errno-based value on error. 2588 */ 2589 int ata_pci_sff_init_one(struct pci_dev *pdev, 2590 const struct ata_port_info * const *ppi, 2591 struct scsi_host_template *sht, void *host_priv, int hflag) 2592 { 2593 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2594 } 2595 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2596 2597 #endif /* CONFIG_PCI */ 2598 2599 /* 2600 * BMDMA support 2601 */ 2602 2603 #ifdef CONFIG_ATA_BMDMA 2604 2605 const struct ata_port_operations ata_bmdma_port_ops = { 2606 .inherits = &ata_sff_port_ops, 2607 2608 .error_handler = ata_bmdma_error_handler, 2609 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2610 2611 .qc_prep = ata_bmdma_qc_prep, 2612 .qc_issue = ata_bmdma_qc_issue, 2613 2614 .sff_irq_clear = ata_bmdma_irq_clear, 2615 .bmdma_setup = ata_bmdma_setup, 2616 .bmdma_start = ata_bmdma_start, 2617 .bmdma_stop = ata_bmdma_stop, 2618 .bmdma_status = ata_bmdma_status, 2619 2620 .port_start = ata_bmdma_port_start, 2621 }; 2622 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2623 2624 const struct ata_port_operations ata_bmdma32_port_ops = { 2625 .inherits = &ata_bmdma_port_ops, 2626 2627 .sff_data_xfer = ata_sff_data_xfer32, 2628 .port_start = ata_bmdma_port_start32, 2629 }; 2630 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2631 2632 /** 2633 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2634 * @qc: Metadata associated with taskfile to be transferred 2635 * 2636 * Fill PCI IDE PRD (scatter-gather) table with segments 2637 * associated with the current disk command. 2638 * 2639 * LOCKING: 2640 * spin_lock_irqsave(host lock) 2641 * 2642 */ 2643 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2644 { 2645 struct ata_port *ap = qc->ap; 2646 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2647 struct scatterlist *sg; 2648 unsigned int si, pi; 2649 2650 pi = 0; 2651 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2652 u32 addr, offset; 2653 u32 sg_len, len; 2654 2655 /* determine if physical DMA addr spans 64K boundary. 2656 * Note h/w doesn't support 64-bit, so we unconditionally 2657 * truncate dma_addr_t to u32. 2658 */ 2659 addr = (u32) sg_dma_address(sg); 2660 sg_len = sg_dma_len(sg); 2661 2662 while (sg_len) { 2663 offset = addr & 0xffff; 2664 len = sg_len; 2665 if ((offset + sg_len) > 0x10000) 2666 len = 0x10000 - offset; 2667 2668 prd[pi].addr = cpu_to_le32(addr); 2669 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2670 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2671 2672 pi++; 2673 sg_len -= len; 2674 addr += len; 2675 } 2676 } 2677 2678 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2679 } 2680 2681 /** 2682 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2683 * @qc: Metadata associated with taskfile to be transferred 2684 * 2685 * Fill PCI IDE PRD (scatter-gather) table with segments 2686 * associated with the current disk command. Perform the fill 2687 * so that we avoid writing any length 64K records for 2688 * controllers that don't follow the spec. 2689 * 2690 * LOCKING: 2691 * spin_lock_irqsave(host lock) 2692 * 2693 */ 2694 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2695 { 2696 struct ata_port *ap = qc->ap; 2697 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2698 struct scatterlist *sg; 2699 unsigned int si, pi; 2700 2701 pi = 0; 2702 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2703 u32 addr, offset; 2704 u32 sg_len, len, blen; 2705 2706 /* determine if physical DMA addr spans 64K boundary. 2707 * Note h/w doesn't support 64-bit, so we unconditionally 2708 * truncate dma_addr_t to u32. 2709 */ 2710 addr = (u32) sg_dma_address(sg); 2711 sg_len = sg_dma_len(sg); 2712 2713 while (sg_len) { 2714 offset = addr & 0xffff; 2715 len = sg_len; 2716 if ((offset + sg_len) > 0x10000) 2717 len = 0x10000 - offset; 2718 2719 blen = len & 0xffff; 2720 prd[pi].addr = cpu_to_le32(addr); 2721 if (blen == 0) { 2722 /* Some PATA chipsets like the CS5530 can't 2723 cope with 0x0000 meaning 64K as the spec 2724 says */ 2725 prd[pi].flags_len = cpu_to_le32(0x8000); 2726 blen = 0x8000; 2727 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2728 } 2729 prd[pi].flags_len = cpu_to_le32(blen); 2730 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2731 2732 pi++; 2733 sg_len -= len; 2734 addr += len; 2735 } 2736 } 2737 2738 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2739 } 2740 2741 /** 2742 * ata_bmdma_qc_prep - Prepare taskfile for submission 2743 * @qc: Metadata associated with taskfile to be prepared 2744 * 2745 * Prepare ATA taskfile for submission. 2746 * 2747 * LOCKING: 2748 * spin_lock_irqsave(host lock) 2749 */ 2750 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2751 { 2752 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2753 return; 2754 2755 ata_bmdma_fill_sg(qc); 2756 } 2757 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2758 2759 /** 2760 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2761 * @qc: Metadata associated with taskfile to be prepared 2762 * 2763 * Prepare ATA taskfile for submission. 2764 * 2765 * LOCKING: 2766 * spin_lock_irqsave(host lock) 2767 */ 2768 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2769 { 2770 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2771 return; 2772 2773 ata_bmdma_fill_sg_dumb(qc); 2774 } 2775 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2776 2777 /** 2778 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2779 * @qc: command to issue to device 2780 * 2781 * This function issues a PIO, NODATA or DMA command to a 2782 * SFF/BMDMA controller. PIO and NODATA are handled by 2783 * ata_sff_qc_issue(). 2784 * 2785 * LOCKING: 2786 * spin_lock_irqsave(host lock) 2787 * 2788 * RETURNS: 2789 * Zero on success, AC_ERR_* mask on failure 2790 */ 2791 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2792 { 2793 struct ata_port *ap = qc->ap; 2794 struct ata_link *link = qc->dev->link; 2795 2796 /* defer PIO handling to sff_qc_issue */ 2797 if (!ata_is_dma(qc->tf.protocol)) 2798 return ata_sff_qc_issue(qc); 2799 2800 /* select the device */ 2801 ata_dev_select(ap, qc->dev->devno, 1, 0); 2802 2803 /* start the command */ 2804 switch (qc->tf.protocol) { 2805 case ATA_PROT_DMA: 2806 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2807 2808 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2809 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2810 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2811 ap->hsm_task_state = HSM_ST_LAST; 2812 break; 2813 2814 case ATAPI_PROT_DMA: 2815 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2816 2817 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2818 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2819 ap->hsm_task_state = HSM_ST_FIRST; 2820 2821 /* send cdb by polling if no cdb interrupt */ 2822 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2823 ata_sff_queue_pio_task(link, 0); 2824 break; 2825 2826 default: 2827 WARN_ON(1); 2828 return AC_ERR_SYSTEM; 2829 } 2830 2831 return 0; 2832 } 2833 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2834 2835 /** 2836 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2837 * @ap: Port on which interrupt arrived (possibly...) 2838 * @qc: Taskfile currently active in engine 2839 * 2840 * Handle port interrupt for given queued command. 2841 * 2842 * LOCKING: 2843 * spin_lock_irqsave(host lock) 2844 * 2845 * RETURNS: 2846 * One if interrupt was handled, zero if not (shared irq). 2847 */ 2848 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2849 { 2850 struct ata_eh_info *ehi = &ap->link.eh_info; 2851 u8 host_stat = 0; 2852 bool bmdma_stopped = false; 2853 unsigned int handled; 2854 2855 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2856 /* check status of DMA engine */ 2857 host_stat = ap->ops->bmdma_status(ap); 2858 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2859 2860 /* if it's not our irq... */ 2861 if (!(host_stat & ATA_DMA_INTR)) 2862 return ata_sff_idle_irq(ap); 2863 2864 /* before we do anything else, clear DMA-Start bit */ 2865 ap->ops->bmdma_stop(qc); 2866 bmdma_stopped = true; 2867 2868 if (unlikely(host_stat & ATA_DMA_ERR)) { 2869 /* error when transferring data to/from memory */ 2870 qc->err_mask |= AC_ERR_HOST_BUS; 2871 ap->hsm_task_state = HSM_ST_ERR; 2872 } 2873 } 2874 2875 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2876 2877 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2878 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2879 2880 return handled; 2881 } 2882 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2883 2884 /** 2885 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2886 * @irq: irq line (unused) 2887 * @dev_instance: pointer to our ata_host information structure 2888 * 2889 * Default interrupt handler for PCI IDE devices. Calls 2890 * ata_bmdma_port_intr() for each port that is not disabled. 2891 * 2892 * LOCKING: 2893 * Obtains host lock during operation. 2894 * 2895 * RETURNS: 2896 * IRQ_NONE or IRQ_HANDLED. 2897 */ 2898 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2899 { 2900 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2901 } 2902 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2903 2904 /** 2905 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2906 * @ap: port to handle error for 2907 * 2908 * Stock error handler for BMDMA controller. It can handle both 2909 * PATA and SATA controllers. Most BMDMA controllers should be 2910 * able to use this EH as-is or with some added handling before 2911 * and after. 2912 * 2913 * LOCKING: 2914 * Kernel thread context (may sleep) 2915 */ 2916 void ata_bmdma_error_handler(struct ata_port *ap) 2917 { 2918 struct ata_queued_cmd *qc; 2919 unsigned long flags; 2920 bool thaw = false; 2921 2922 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2923 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2924 qc = NULL; 2925 2926 /* reset PIO HSM and stop DMA engine */ 2927 spin_lock_irqsave(ap->lock, flags); 2928 2929 if (qc && ata_is_dma(qc->tf.protocol)) { 2930 u8 host_stat; 2931 2932 host_stat = ap->ops->bmdma_status(ap); 2933 2934 /* BMDMA controllers indicate host bus error by 2935 * setting DMA_ERR bit and timing out. As it wasn't 2936 * really a timeout event, adjust error mask and 2937 * cancel frozen state. 2938 */ 2939 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2940 qc->err_mask = AC_ERR_HOST_BUS; 2941 thaw = true; 2942 } 2943 2944 ap->ops->bmdma_stop(qc); 2945 2946 /* if we're gonna thaw, make sure IRQ is clear */ 2947 if (thaw) { 2948 ap->ops->sff_check_status(ap); 2949 if (ap->ops->sff_irq_clear) 2950 ap->ops->sff_irq_clear(ap); 2951 } 2952 } 2953 2954 spin_unlock_irqrestore(ap->lock, flags); 2955 2956 if (thaw) 2957 ata_eh_thaw_port(ap); 2958 2959 ata_sff_error_handler(ap); 2960 } 2961 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2962 2963 /** 2964 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2965 * @qc: internal command to clean up 2966 * 2967 * LOCKING: 2968 * Kernel thread context (may sleep) 2969 */ 2970 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2971 { 2972 struct ata_port *ap = qc->ap; 2973 unsigned long flags; 2974 2975 if (ata_is_dma(qc->tf.protocol)) { 2976 spin_lock_irqsave(ap->lock, flags); 2977 ap->ops->bmdma_stop(qc); 2978 spin_unlock_irqrestore(ap->lock, flags); 2979 } 2980 } 2981 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2982 2983 /** 2984 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2985 * @ap: Port associated with this ATA transaction. 2986 * 2987 * Clear interrupt and error flags in DMA status register. 2988 * 2989 * May be used as the irq_clear() entry in ata_port_operations. 2990 * 2991 * LOCKING: 2992 * spin_lock_irqsave(host lock) 2993 */ 2994 void ata_bmdma_irq_clear(struct ata_port *ap) 2995 { 2996 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2997 2998 if (!mmio) 2999 return; 3000 3001 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 3002 } 3003 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 3004 3005 /** 3006 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 3007 * @qc: Info associated with this ATA transaction. 3008 * 3009 * LOCKING: 3010 * spin_lock_irqsave(host lock) 3011 */ 3012 void ata_bmdma_setup(struct ata_queued_cmd *qc) 3013 { 3014 struct ata_port *ap = qc->ap; 3015 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 3016 u8 dmactl; 3017 3018 /* load PRD table addr. */ 3019 mb(); /* make sure PRD table writes are visible to controller */ 3020 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 3021 3022 /* specify data direction, triple-check start bit is clear */ 3023 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3024 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 3025 if (!rw) 3026 dmactl |= ATA_DMA_WR; 3027 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3028 3029 /* issue r/w command */ 3030 ap->ops->sff_exec_command(ap, &qc->tf); 3031 } 3032 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 3033 3034 /** 3035 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 3036 * @qc: Info associated with this ATA transaction. 3037 * 3038 * LOCKING: 3039 * spin_lock_irqsave(host lock) 3040 */ 3041 void ata_bmdma_start(struct ata_queued_cmd *qc) 3042 { 3043 struct ata_port *ap = qc->ap; 3044 u8 dmactl; 3045 3046 /* start host DMA transaction */ 3047 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3048 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3049 3050 /* Strictly, one may wish to issue an ioread8() here, to 3051 * flush the mmio write. However, control also passes 3052 * to the hardware at this point, and it will interrupt 3053 * us when we are to resume control. So, in effect, 3054 * we don't care when the mmio write flushes. 3055 * Further, a read of the DMA status register _immediately_ 3056 * following the write may not be what certain flaky hardware 3057 * is expected, so I think it is best to not add a readb() 3058 * without first all the MMIO ATA cards/mobos. 3059 * Or maybe I'm just being paranoid. 3060 * 3061 * FIXME: The posting of this write means I/O starts are 3062 * unnecessarily delayed for MMIO 3063 */ 3064 } 3065 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3066 3067 /** 3068 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3069 * @qc: Command we are ending DMA for 3070 * 3071 * Clears the ATA_DMA_START flag in the dma control register 3072 * 3073 * May be used as the bmdma_stop() entry in ata_port_operations. 3074 * 3075 * LOCKING: 3076 * spin_lock_irqsave(host lock) 3077 */ 3078 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3079 { 3080 struct ata_port *ap = qc->ap; 3081 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3082 3083 /* clear start/stop bit */ 3084 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3085 mmio + ATA_DMA_CMD); 3086 3087 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3088 ata_sff_dma_pause(ap); 3089 } 3090 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3091 3092 /** 3093 * ata_bmdma_status - Read PCI IDE BMDMA status 3094 * @ap: Port associated with this ATA transaction. 3095 * 3096 * Read and return BMDMA status register. 3097 * 3098 * May be used as the bmdma_status() entry in ata_port_operations. 3099 * 3100 * LOCKING: 3101 * spin_lock_irqsave(host lock) 3102 */ 3103 u8 ata_bmdma_status(struct ata_port *ap) 3104 { 3105 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3106 } 3107 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3108 3109 3110 /** 3111 * ata_bmdma_port_start - Set port up for bmdma. 3112 * @ap: Port to initialize 3113 * 3114 * Called just after data structures for each port are 3115 * initialized. Allocates space for PRD table. 3116 * 3117 * May be used as the port_start() entry in ata_port_operations. 3118 * 3119 * LOCKING: 3120 * Inherited from caller. 3121 */ 3122 int ata_bmdma_port_start(struct ata_port *ap) 3123 { 3124 if (ap->mwdma_mask || ap->udma_mask) { 3125 ap->bmdma_prd = 3126 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3127 &ap->bmdma_prd_dma, GFP_KERNEL); 3128 if (!ap->bmdma_prd) 3129 return -ENOMEM; 3130 } 3131 3132 return 0; 3133 } 3134 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3135 3136 /** 3137 * ata_bmdma_port_start32 - Set port up for dma. 3138 * @ap: Port to initialize 3139 * 3140 * Called just after data structures for each port are 3141 * initialized. Enables 32bit PIO and allocates space for PRD 3142 * table. 3143 * 3144 * May be used as the port_start() entry in ata_port_operations for 3145 * devices that are capable of 32bit PIO. 3146 * 3147 * LOCKING: 3148 * Inherited from caller. 3149 */ 3150 int ata_bmdma_port_start32(struct ata_port *ap) 3151 { 3152 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3153 return ata_bmdma_port_start(ap); 3154 } 3155 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3156 3157 #ifdef CONFIG_PCI 3158 3159 /** 3160 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3161 * @pdev: PCI device 3162 * 3163 * Some PCI ATA devices report simplex mode but in fact can be told to 3164 * enter non simplex mode. This implements the necessary logic to 3165 * perform the task on such devices. Calling it on other devices will 3166 * have -undefined- behaviour. 3167 */ 3168 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3169 { 3170 unsigned long bmdma = pci_resource_start(pdev, 4); 3171 u8 simplex; 3172 3173 if (bmdma == 0) 3174 return -ENOENT; 3175 3176 simplex = inb(bmdma + 0x02); 3177 outb(simplex & 0x60, bmdma + 0x02); 3178 simplex = inb(bmdma + 0x02); 3179 if (simplex & 0x80) 3180 return -EOPNOTSUPP; 3181 return 0; 3182 } 3183 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3184 3185 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3186 { 3187 int i; 3188 3189 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3190 3191 for (i = 0; i < 2; i++) { 3192 host->ports[i]->mwdma_mask = 0; 3193 host->ports[i]->udma_mask = 0; 3194 } 3195 } 3196 3197 /** 3198 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3199 * @host: target ATA host 3200 * 3201 * Acquire PCI BMDMA resources and initialize @host accordingly. 3202 * 3203 * LOCKING: 3204 * Inherited from calling layer (may sleep). 3205 */ 3206 void ata_pci_bmdma_init(struct ata_host *host) 3207 { 3208 struct device *gdev = host->dev; 3209 struct pci_dev *pdev = to_pci_dev(gdev); 3210 int i, rc; 3211 3212 /* No BAR4 allocation: No DMA */ 3213 if (pci_resource_start(pdev, 4) == 0) { 3214 ata_bmdma_nodma(host, "BAR4 is zero"); 3215 return; 3216 } 3217 3218 /* 3219 * Some controllers require BMDMA region to be initialized 3220 * even if DMA is not in use to clear IRQ status via 3221 * ->sff_irq_clear method. Try to initialize bmdma_addr 3222 * regardless of dma masks. 3223 */ 3224 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK); 3225 if (rc) 3226 ata_bmdma_nodma(host, "failed to set dma mask"); 3227 if (!rc) { 3228 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK); 3229 if (rc) 3230 ata_bmdma_nodma(host, 3231 "failed to set consistent dma mask"); 3232 } 3233 3234 /* request and iomap DMA region */ 3235 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3236 if (rc) { 3237 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3238 return; 3239 } 3240 host->iomap = pcim_iomap_table(pdev); 3241 3242 for (i = 0; i < 2; i++) { 3243 struct ata_port *ap = host->ports[i]; 3244 void __iomem *bmdma = host->iomap[4] + 8 * i; 3245 3246 if (ata_port_is_dummy(ap)) 3247 continue; 3248 3249 ap->ioaddr.bmdma_addr = bmdma; 3250 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3251 (ioread8(bmdma + 2) & 0x80)) 3252 host->flags |= ATA_HOST_SIMPLEX; 3253 3254 ata_port_desc(ap, "bmdma 0x%llx", 3255 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3256 } 3257 } 3258 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3259 3260 /** 3261 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3262 * @pdev: target PCI device 3263 * @ppi: array of port_info, must be enough for two ports 3264 * @r_host: out argument for the initialized ATA host 3265 * 3266 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3267 * resources and initialize it accordingly in one go. 3268 * 3269 * LOCKING: 3270 * Inherited from calling layer (may sleep). 3271 * 3272 * RETURNS: 3273 * 0 on success, -errno otherwise. 3274 */ 3275 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3276 const struct ata_port_info * const * ppi, 3277 struct ata_host **r_host) 3278 { 3279 int rc; 3280 3281 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3282 if (rc) 3283 return rc; 3284 3285 ata_pci_bmdma_init(*r_host); 3286 return 0; 3287 } 3288 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3289 3290 /** 3291 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3292 * @pdev: Controller to be initialized 3293 * @ppi: array of port_info, must be enough for two ports 3294 * @sht: scsi_host_template to use when registering the host 3295 * @host_priv: host private_data 3296 * @hflags: host flags 3297 * 3298 * This function is similar to ata_pci_sff_init_one() but also 3299 * takes care of BMDMA initialization. 3300 * 3301 * LOCKING: 3302 * Inherited from PCI layer (may sleep). 3303 * 3304 * RETURNS: 3305 * Zero on success, negative on errno-based value on error. 3306 */ 3307 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3308 const struct ata_port_info * const * ppi, 3309 struct scsi_host_template *sht, void *host_priv, 3310 int hflags) 3311 { 3312 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3313 } 3314 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3315 3316 #endif /* CONFIG_PCI */ 3317 #endif /* CONFIG_ATA_BMDMA */ 3318 3319 /** 3320 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3321 * @ap: Port to initialize 3322 * 3323 * Called on port allocation to initialize SFF/BMDMA specific 3324 * fields. 3325 * 3326 * LOCKING: 3327 * None. 3328 */ 3329 void ata_sff_port_init(struct ata_port *ap) 3330 { 3331 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3332 ap->ctl = ATA_DEVCTL_OBS; 3333 ap->last_ctl = 0xFF; 3334 } 3335 3336 int __init ata_sff_init(void) 3337 { 3338 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3339 if (!ata_sff_wq) 3340 return -ENOMEM; 3341 3342 return 0; 3343 } 3344 3345 void ata_sff_exit(void) 3346 { 3347 destroy_workqueue(ata_sff_wq); 3348 } 3349