xref: /linux/drivers/ata/libata-sff.c (revision e53b20598f394e37951d6355f1c88ae01165b53f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-sff.c - helper library for PCI IDE BMDMA
4  *
5  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2006 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21 #include <trace/events/libata.h>
22 #include "libata.h"
23 
24 static struct workqueue_struct *ata_sff_wq;
25 
26 const struct ata_port_operations ata_sff_port_ops = {
27 	.inherits		= &ata_base_port_ops,
28 
29 	.qc_prep		= ata_noop_qc_prep,
30 	.qc_issue		= ata_sff_qc_issue,
31 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
32 
33 	.freeze			= ata_sff_freeze,
34 	.thaw			= ata_sff_thaw,
35 	.prereset		= ata_sff_prereset,
36 	.softreset		= ata_sff_softreset,
37 	.hardreset		= sata_sff_hardreset,
38 	.postreset		= ata_sff_postreset,
39 	.error_handler		= ata_sff_error_handler,
40 
41 	.sff_dev_select		= ata_sff_dev_select,
42 	.sff_check_status	= ata_sff_check_status,
43 	.sff_tf_load		= ata_sff_tf_load,
44 	.sff_tf_read		= ata_sff_tf_read,
45 	.sff_exec_command	= ata_sff_exec_command,
46 	.sff_data_xfer		= ata_sff_data_xfer,
47 	.sff_drain_fifo		= ata_sff_drain_fifo,
48 
49 	.lost_interrupt		= ata_sff_lost_interrupt,
50 };
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52 
53 /**
54  *	ata_sff_check_status - Read device status reg & clear interrupt
55  *	@ap: port where the device is
56  *
57  *	Reads ATA taskfile status register for currently-selected device
58  *	and return its value. This also clears pending interrupts
59  *      from this device
60  *
61  *	LOCKING:
62  *	Inherited from caller.
63  */
64 u8 ata_sff_check_status(struct ata_port *ap)
65 {
66 	return ioread8(ap->ioaddr.status_addr);
67 }
68 EXPORT_SYMBOL_GPL(ata_sff_check_status);
69 
70 /**
71  *	ata_sff_altstatus - Read device alternate status reg
72  *	@ap: port where the device is
73  *	@status: pointer to a status value
74  *
75  *	Reads ATA alternate status register for currently-selected device
76  *	and return its value.
77  *
78  *	RETURN:
79  *	true if the register exists, false if not.
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
85 {
86 	u8 tmp;
87 
88 	if (ap->ops->sff_check_altstatus) {
89 		tmp = ap->ops->sff_check_altstatus(ap);
90 		goto read;
91 	}
92 	if (ap->ioaddr.altstatus_addr) {
93 		tmp = ioread8(ap->ioaddr.altstatus_addr);
94 		goto read;
95 	}
96 	return false;
97 
98 read:
99 	if (status)
100 		*status = tmp;
101 	return true;
102 }
103 
104 /**
105  *	ata_sff_irq_status - Check if the device is busy
106  *	@ap: port where the device is
107  *
108  *	Determine if the port is currently busy. Uses altstatus
109  *	if available in order to avoid clearing shared IRQ status
110  *	when finding an IRQ source. Non ctl capable devices don't
111  *	share interrupt lines fortunately for us.
112  *
113  *	LOCKING:
114  *	Inherited from caller.
115  */
116 static u8 ata_sff_irq_status(struct ata_port *ap)
117 {
118 	u8 status;
119 
120 	/* Not us: We are busy */
121 	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
122 		return status;
123 	/* Clear INTRQ latch */
124 	status = ap->ops->sff_check_status(ap);
125 	return status;
126 }
127 
128 /**
129  *	ata_sff_sync - Flush writes
130  *	@ap: Port to wait for.
131  *
132  *	CAUTION:
133  *	If we have an mmio device with no ctl and no altstatus
134  *	method this will fail. No such devices are known to exist.
135  *
136  *	LOCKING:
137  *	Inherited from caller.
138  */
139 
140 static void ata_sff_sync(struct ata_port *ap)
141 {
142 	ata_sff_altstatus(ap, NULL);
143 }
144 
145 /**
146  *	ata_sff_pause		-	Flush writes and wait 400nS
147  *	@ap: Port to pause for.
148  *
149  *	CAUTION:
150  *	If we have an mmio device with no ctl and no altstatus
151  *	method this will fail. No such devices are known to exist.
152  *
153  *	LOCKING:
154  *	Inherited from caller.
155  */
156 
157 void ata_sff_pause(struct ata_port *ap)
158 {
159 	ata_sff_sync(ap);
160 	ndelay(400);
161 }
162 EXPORT_SYMBOL_GPL(ata_sff_pause);
163 
164 /**
165  *	ata_sff_dma_pause	-	Pause before commencing DMA
166  *	@ap: Port to pause for.
167  *
168  *	Perform I/O fencing and ensure sufficient cycle delays occur
169  *	for the HDMA1:0 transition
170  */
171 
172 void ata_sff_dma_pause(struct ata_port *ap)
173 {
174 	/*
175 	 * An altstatus read will cause the needed delay without
176 	 * messing up the IRQ status
177 	 */
178 	if (ata_sff_altstatus(ap, NULL))
179 		return;
180 	/* There are no DMA controllers without ctl. BUG here to ensure
181 	   we never violate the HDMA1:0 transition timing and risk
182 	   corruption. */
183 	BUG();
184 }
185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
186 
187 /**
188  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
189  *	@ap: port containing status register to be polled
190  *	@tmout_pat: impatience timeout in msecs
191  *	@tmout: overall timeout in msecs
192  *
193  *	Sleep until ATA Status register bit BSY clears,
194  *	or a timeout occurs.
195  *
196  *	LOCKING:
197  *	Kernel thread context (may sleep).
198  *
199  *	RETURNS:
200  *	0 on success, -errno otherwise.
201  */
202 int ata_sff_busy_sleep(struct ata_port *ap,
203 		       unsigned long tmout_pat, unsigned long tmout)
204 {
205 	unsigned long timer_start, timeout;
206 	u8 status;
207 
208 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
209 	timer_start = jiffies;
210 	timeout = ata_deadline(timer_start, tmout_pat);
211 	while (status != 0xff && (status & ATA_BUSY) &&
212 	       time_before(jiffies, timeout)) {
213 		ata_msleep(ap, 50);
214 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
215 	}
216 
217 	if (status != 0xff && (status & ATA_BUSY))
218 		ata_port_warn(ap,
219 			      "port is slow to respond, please be patient (Status 0x%x)\n",
220 			      status);
221 
222 	timeout = ata_deadline(timer_start, tmout);
223 	while (status != 0xff && (status & ATA_BUSY) &&
224 	       time_before(jiffies, timeout)) {
225 		ata_msleep(ap, 50);
226 		status = ap->ops->sff_check_status(ap);
227 	}
228 
229 	if (status == 0xff)
230 		return -ENODEV;
231 
232 	if (status & ATA_BUSY) {
233 		ata_port_err(ap,
234 			     "port failed to respond (%lu secs, Status 0x%x)\n",
235 			     DIV_ROUND_UP(tmout, 1000), status);
236 		return -EBUSY;
237 	}
238 
239 	return 0;
240 }
241 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
242 
243 static int ata_sff_check_ready(struct ata_link *link)
244 {
245 	u8 status = link->ap->ops->sff_check_status(link->ap);
246 
247 	return ata_check_ready(status);
248 }
249 
250 /**
251  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
252  *	@link: SFF link to wait ready status for
253  *	@deadline: deadline jiffies for the operation
254  *
255  *	Sleep until ATA Status register bit BSY clears, or timeout
256  *	occurs.
257  *
258  *	LOCKING:
259  *	Kernel thread context (may sleep).
260  *
261  *	RETURNS:
262  *	0 on success, -errno otherwise.
263  */
264 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
265 {
266 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
267 }
268 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
269 
270 /**
271  *	ata_sff_set_devctl - Write device control reg
272  *	@ap: port where the device is
273  *	@ctl: value to write
274  *
275  *	Writes ATA device control register.
276  *
277  *	RETURN:
278  *	true if the register exists, false if not.
279  *
280  *	LOCKING:
281  *	Inherited from caller.
282  */
283 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
284 {
285 	if (ap->ops->sff_set_devctl) {
286 		ap->ops->sff_set_devctl(ap, ctl);
287 		return true;
288 	}
289 	if (ap->ioaddr.ctl_addr) {
290 		iowrite8(ctl, ap->ioaddr.ctl_addr);
291 		return true;
292 	}
293 
294 	return false;
295 }
296 
297 /**
298  *	ata_sff_dev_select - Select device 0/1 on ATA bus
299  *	@ap: ATA channel to manipulate
300  *	@device: ATA device (numbered from zero) to select
301  *
302  *	Use the method defined in the ATA specification to
303  *	make either device 0, or device 1, active on the
304  *	ATA channel.  Works with both PIO and MMIO.
305  *
306  *	May be used as the dev_select() entry in ata_port_operations.
307  *
308  *	LOCKING:
309  *	caller.
310  */
311 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
312 {
313 	u8 tmp;
314 
315 	if (device == 0)
316 		tmp = ATA_DEVICE_OBS;
317 	else
318 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
319 
320 	iowrite8(tmp, ap->ioaddr.device_addr);
321 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
322 }
323 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
324 
325 /**
326  *	ata_dev_select - Select device 0/1 on ATA bus
327  *	@ap: ATA channel to manipulate
328  *	@device: ATA device (numbered from zero) to select
329  *	@wait: non-zero to wait for Status register BSY bit to clear
330  *	@can_sleep: non-zero if context allows sleeping
331  *
332  *	Use the method defined in the ATA specification to
333  *	make either device 0, or device 1, active on the
334  *	ATA channel.
335  *
336  *	This is a high-level version of ata_sff_dev_select(), which
337  *	additionally provides the services of inserting the proper
338  *	pauses and status polling, where needed.
339  *
340  *	LOCKING:
341  *	caller.
342  */
343 static void ata_dev_select(struct ata_port *ap, unsigned int device,
344 			   unsigned int wait, unsigned int can_sleep)
345 {
346 	if (wait)
347 		ata_wait_idle(ap);
348 
349 	ap->ops->sff_dev_select(ap, device);
350 
351 	if (wait) {
352 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
353 			ata_msleep(ap, 150);
354 		ata_wait_idle(ap);
355 	}
356 }
357 
358 /**
359  *	ata_sff_irq_on - Enable interrupts on a port.
360  *	@ap: Port on which interrupts are enabled.
361  *
362  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
363  *	wait for idle, clear any pending interrupts.
364  *
365  *	Note: may NOT be used as the sff_irq_on() entry in
366  *	ata_port_operations.
367  *
368  *	LOCKING:
369  *	Inherited from caller.
370  */
371 void ata_sff_irq_on(struct ata_port *ap)
372 {
373 	if (ap->ops->sff_irq_on) {
374 		ap->ops->sff_irq_on(ap);
375 		return;
376 	}
377 
378 	ap->ctl &= ~ATA_NIEN;
379 	ap->last_ctl = ap->ctl;
380 
381 	ata_sff_set_devctl(ap, ap->ctl);
382 	ata_wait_idle(ap);
383 
384 	if (ap->ops->sff_irq_clear)
385 		ap->ops->sff_irq_clear(ap);
386 }
387 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
388 
389 /**
390  *	ata_sff_tf_load - send taskfile registers to host controller
391  *	@ap: Port to which output is sent
392  *	@tf: ATA taskfile register set
393  *
394  *	Outputs ATA taskfile to standard ATA host controller.
395  *
396  *	LOCKING:
397  *	Inherited from caller.
398  */
399 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
400 {
401 	struct ata_ioports *ioaddr = &ap->ioaddr;
402 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
403 
404 	if (tf->ctl != ap->last_ctl) {
405 		if (ioaddr->ctl_addr)
406 			iowrite8(tf->ctl, ioaddr->ctl_addr);
407 		ap->last_ctl = tf->ctl;
408 		ata_wait_idle(ap);
409 	}
410 
411 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
412 		WARN_ON_ONCE(!ioaddr->ctl_addr);
413 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
414 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
415 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
416 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
417 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
418 	}
419 
420 	if (is_addr) {
421 		iowrite8(tf->feature, ioaddr->feature_addr);
422 		iowrite8(tf->nsect, ioaddr->nsect_addr);
423 		iowrite8(tf->lbal, ioaddr->lbal_addr);
424 		iowrite8(tf->lbam, ioaddr->lbam_addr);
425 		iowrite8(tf->lbah, ioaddr->lbah_addr);
426 	}
427 
428 	if (tf->flags & ATA_TFLAG_DEVICE)
429 		iowrite8(tf->device, ioaddr->device_addr);
430 
431 	ata_wait_idle(ap);
432 }
433 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
434 
435 /**
436  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
437  *	@ap: Port from which input is read
438  *	@tf: ATA taskfile register set for storing input
439  *
440  *	Reads ATA taskfile registers for currently-selected device
441  *	into @tf. Assumes the device has a fully SFF compliant task file
442  *	layout and behaviour. If you device does not (eg has a different
443  *	status method) then you will need to provide a replacement tf_read
444  *
445  *	LOCKING:
446  *	Inherited from caller.
447  */
448 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
449 {
450 	struct ata_ioports *ioaddr = &ap->ioaddr;
451 
452 	tf->status = ata_sff_check_status(ap);
453 	tf->error = ioread8(ioaddr->error_addr);
454 	tf->nsect = ioread8(ioaddr->nsect_addr);
455 	tf->lbal = ioread8(ioaddr->lbal_addr);
456 	tf->lbam = ioread8(ioaddr->lbam_addr);
457 	tf->lbah = ioread8(ioaddr->lbah_addr);
458 	tf->device = ioread8(ioaddr->device_addr);
459 
460 	if (tf->flags & ATA_TFLAG_LBA48) {
461 		if (likely(ioaddr->ctl_addr)) {
462 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
463 			tf->hob_feature = ioread8(ioaddr->error_addr);
464 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
465 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
466 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
467 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
468 			iowrite8(tf->ctl, ioaddr->ctl_addr);
469 			ap->last_ctl = tf->ctl;
470 		} else
471 			WARN_ON_ONCE(1);
472 	}
473 }
474 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
475 
476 /**
477  *	ata_sff_exec_command - issue ATA command to host controller
478  *	@ap: port to which command is being issued
479  *	@tf: ATA taskfile register set
480  *
481  *	Issues ATA command, with proper synchronization with interrupt
482  *	handler / other threads.
483  *
484  *	LOCKING:
485  *	spin_lock_irqsave(host lock)
486  */
487 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
488 {
489 	iowrite8(tf->command, ap->ioaddr.command_addr);
490 	ata_sff_pause(ap);
491 }
492 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
493 
494 /**
495  *	ata_tf_to_host - issue ATA taskfile to host controller
496  *	@ap: port to which command is being issued
497  *	@tf: ATA taskfile register set
498  *	@tag: tag of the associated command
499  *
500  *	Issues ATA taskfile register set to ATA host controller,
501  *	with proper synchronization with interrupt handler and
502  *	other threads.
503  *
504  *	LOCKING:
505  *	spin_lock_irqsave(host lock)
506  */
507 static inline void ata_tf_to_host(struct ata_port *ap,
508 				  const struct ata_taskfile *tf,
509 				  unsigned int tag)
510 {
511 	trace_ata_tf_load(ap, tf);
512 	ap->ops->sff_tf_load(ap, tf);
513 	trace_ata_exec_command(ap, tf, tag);
514 	ap->ops->sff_exec_command(ap, tf);
515 }
516 
517 /**
518  *	ata_sff_data_xfer - Transfer data by PIO
519  *	@qc: queued command
520  *	@buf: data buffer
521  *	@buflen: buffer length
522  *	@rw: read/write
523  *
524  *	Transfer data from/to the device data register by PIO.
525  *
526  *	LOCKING:
527  *	Inherited from caller.
528  *
529  *	RETURNS:
530  *	Bytes consumed.
531  */
532 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
533 			       unsigned int buflen, int rw)
534 {
535 	struct ata_port *ap = qc->dev->link->ap;
536 	void __iomem *data_addr = ap->ioaddr.data_addr;
537 	unsigned int words = buflen >> 1;
538 
539 	/* Transfer multiple of 2 bytes */
540 	if (rw == READ)
541 		ioread16_rep(data_addr, buf, words);
542 	else
543 		iowrite16_rep(data_addr, buf, words);
544 
545 	/* Transfer trailing byte, if any. */
546 	if (unlikely(buflen & 0x01)) {
547 		unsigned char pad[2] = { };
548 
549 		/* Point buf to the tail of buffer */
550 		buf += buflen - 1;
551 
552 		/*
553 		 * Use io*16_rep() accessors here as well to avoid pointlessly
554 		 * swapping bytes to and from on the big endian machines...
555 		 */
556 		if (rw == READ) {
557 			ioread16_rep(data_addr, pad, 1);
558 			*buf = pad[0];
559 		} else {
560 			pad[0] = *buf;
561 			iowrite16_rep(data_addr, pad, 1);
562 		}
563 		words++;
564 	}
565 
566 	return words << 1;
567 }
568 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
569 
570 /**
571  *	ata_sff_data_xfer32 - Transfer data by PIO
572  *	@qc: queued command
573  *	@buf: data buffer
574  *	@buflen: buffer length
575  *	@rw: read/write
576  *
577  *	Transfer data from/to the device data register by PIO using 32bit
578  *	I/O operations.
579  *
580  *	LOCKING:
581  *	Inherited from caller.
582  *
583  *	RETURNS:
584  *	Bytes consumed.
585  */
586 
587 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
588 			       unsigned int buflen, int rw)
589 {
590 	struct ata_device *dev = qc->dev;
591 	struct ata_port *ap = dev->link->ap;
592 	void __iomem *data_addr = ap->ioaddr.data_addr;
593 	unsigned int words = buflen >> 2;
594 	int slop = buflen & 3;
595 
596 	if (!(ap->pflags & ATA_PFLAG_PIO32))
597 		return ata_sff_data_xfer(qc, buf, buflen, rw);
598 
599 	/* Transfer multiple of 4 bytes */
600 	if (rw == READ)
601 		ioread32_rep(data_addr, buf, words);
602 	else
603 		iowrite32_rep(data_addr, buf, words);
604 
605 	/* Transfer trailing bytes, if any */
606 	if (unlikely(slop)) {
607 		unsigned char pad[4] = { };
608 
609 		/* Point buf to the tail of buffer */
610 		buf += buflen - slop;
611 
612 		/*
613 		 * Use io*_rep() accessors here as well to avoid pointlessly
614 		 * swapping bytes to and from on the big endian machines...
615 		 */
616 		if (rw == READ) {
617 			if (slop < 3)
618 				ioread16_rep(data_addr, pad, 1);
619 			else
620 				ioread32_rep(data_addr, pad, 1);
621 			memcpy(buf, pad, slop);
622 		} else {
623 			memcpy(pad, buf, slop);
624 			if (slop < 3)
625 				iowrite16_rep(data_addr, pad, 1);
626 			else
627 				iowrite32_rep(data_addr, pad, 1);
628 		}
629 	}
630 	return (buflen + 1) & ~1;
631 }
632 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
633 
634 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
635 		unsigned int offset, size_t xfer_size)
636 {
637 	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
638 	unsigned char *buf;
639 
640 	buf = kmap_atomic(page);
641 	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
642 	kunmap_atomic(buf);
643 
644 	if (!do_write && !PageSlab(page))
645 		flush_dcache_page(page);
646 }
647 
648 /**
649  *	ata_pio_sector - Transfer a sector of data.
650  *	@qc: Command on going
651  *
652  *	Transfer qc->sect_size bytes of data from/to the ATA device.
653  *
654  *	LOCKING:
655  *	Inherited from caller.
656  */
657 static void ata_pio_sector(struct ata_queued_cmd *qc)
658 {
659 	struct ata_port *ap = qc->ap;
660 	struct page *page;
661 	unsigned int offset;
662 
663 	if (!qc->cursg) {
664 		qc->curbytes = qc->nbytes;
665 		return;
666 	}
667 	if (qc->curbytes == qc->nbytes - qc->sect_size)
668 		ap->hsm_task_state = HSM_ST_LAST;
669 
670 	page = sg_page(qc->cursg);
671 	offset = qc->cursg->offset + qc->cursg_ofs;
672 
673 	/* get the current page and offset */
674 	page = nth_page(page, (offset >> PAGE_SHIFT));
675 	offset %= PAGE_SIZE;
676 
677 	trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
678 
679 	/*
680 	 * Split the transfer when it splits a page boundary.  Note that the
681 	 * split still has to be dword aligned like all ATA data transfers.
682 	 */
683 	WARN_ON_ONCE(offset % 4);
684 	if (offset + qc->sect_size > PAGE_SIZE) {
685 		unsigned int split_len = PAGE_SIZE - offset;
686 
687 		ata_pio_xfer(qc, page, offset, split_len);
688 		ata_pio_xfer(qc, nth_page(page, 1), 0,
689 			     qc->sect_size - split_len);
690 	} else {
691 		ata_pio_xfer(qc, page, offset, qc->sect_size);
692 	}
693 
694 	qc->curbytes += qc->sect_size;
695 	qc->cursg_ofs += qc->sect_size;
696 
697 	if (qc->cursg_ofs == qc->cursg->length) {
698 		qc->cursg = sg_next(qc->cursg);
699 		if (!qc->cursg)
700 			ap->hsm_task_state = HSM_ST_LAST;
701 		qc->cursg_ofs = 0;
702 	}
703 }
704 
705 /**
706  *	ata_pio_sectors - Transfer one or many sectors.
707  *	@qc: Command on going
708  *
709  *	Transfer one or many sectors of data from/to the
710  *	ATA device for the DRQ request.
711  *
712  *	LOCKING:
713  *	Inherited from caller.
714  */
715 static void ata_pio_sectors(struct ata_queued_cmd *qc)
716 {
717 	if (is_multi_taskfile(&qc->tf)) {
718 		/* READ/WRITE MULTIPLE */
719 		unsigned int nsect;
720 
721 		WARN_ON_ONCE(qc->dev->multi_count == 0);
722 
723 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
724 			    qc->dev->multi_count);
725 		while (nsect--)
726 			ata_pio_sector(qc);
727 	} else
728 		ata_pio_sector(qc);
729 
730 	ata_sff_sync(qc->ap); /* flush */
731 }
732 
733 /**
734  *	atapi_send_cdb - Write CDB bytes to hardware
735  *	@ap: Port to which ATAPI device is attached.
736  *	@qc: Taskfile currently active
737  *
738  *	When device has indicated its readiness to accept
739  *	a CDB, this function is called.  Send the CDB.
740  *
741  *	LOCKING:
742  *	caller.
743  */
744 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
745 {
746 	/* send SCSI cdb */
747 	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
748 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
749 
750 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
751 	ata_sff_sync(ap);
752 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
753 	   or is bmdma_start guaranteed to do it ? */
754 	switch (qc->tf.protocol) {
755 	case ATAPI_PROT_PIO:
756 		ap->hsm_task_state = HSM_ST;
757 		break;
758 	case ATAPI_PROT_NODATA:
759 		ap->hsm_task_state = HSM_ST_LAST;
760 		break;
761 #ifdef CONFIG_ATA_BMDMA
762 	case ATAPI_PROT_DMA:
763 		ap->hsm_task_state = HSM_ST_LAST;
764 		/* initiate bmdma */
765 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
766 		ap->ops->bmdma_start(qc);
767 		break;
768 #endif /* CONFIG_ATA_BMDMA */
769 	default:
770 		BUG();
771 	}
772 }
773 
774 /**
775  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
776  *	@qc: Command on going
777  *	@bytes: number of bytes
778  *
779  *	Transfer Transfer data from/to the ATAPI device.
780  *
781  *	LOCKING:
782  *	Inherited from caller.
783  *
784  */
785 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
786 {
787 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
788 	struct ata_port *ap = qc->ap;
789 	struct ata_device *dev = qc->dev;
790 	struct ata_eh_info *ehi = &dev->link->eh_info;
791 	struct scatterlist *sg;
792 	struct page *page;
793 	unsigned char *buf;
794 	unsigned int offset, count, consumed;
795 
796 next_sg:
797 	sg = qc->cursg;
798 	if (unlikely(!sg)) {
799 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
800 				  "buf=%u cur=%u bytes=%u",
801 				  qc->nbytes, qc->curbytes, bytes);
802 		return -1;
803 	}
804 
805 	page = sg_page(sg);
806 	offset = sg->offset + qc->cursg_ofs;
807 
808 	/* get the current page and offset */
809 	page = nth_page(page, (offset >> PAGE_SHIFT));
810 	offset %= PAGE_SIZE;
811 
812 	/* don't overrun current sg */
813 	count = min(sg->length - qc->cursg_ofs, bytes);
814 
815 	/* don't cross page boundaries */
816 	count = min(count, (unsigned int)PAGE_SIZE - offset);
817 
818 	trace_atapi_pio_transfer_data(qc, offset, count);
819 
820 	/* do the actual data transfer */
821 	buf = kmap_atomic(page);
822 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
823 	kunmap_atomic(buf);
824 
825 	bytes -= min(bytes, consumed);
826 	qc->curbytes += count;
827 	qc->cursg_ofs += count;
828 
829 	if (qc->cursg_ofs == sg->length) {
830 		qc->cursg = sg_next(qc->cursg);
831 		qc->cursg_ofs = 0;
832 	}
833 
834 	/*
835 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
836 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
837 	 * check correctly as it doesn't know if it is the last request being
838 	 * made. Somebody should implement a proper sanity check.
839 	 */
840 	if (bytes)
841 		goto next_sg;
842 	return 0;
843 }
844 
845 /**
846  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
847  *	@qc: Command on going
848  *
849  *	Transfer Transfer data from/to the ATAPI device.
850  *
851  *	LOCKING:
852  *	Inherited from caller.
853  */
854 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
855 {
856 	struct ata_port *ap = qc->ap;
857 	struct ata_device *dev = qc->dev;
858 	struct ata_eh_info *ehi = &dev->link->eh_info;
859 	unsigned int ireason, bc_lo, bc_hi, bytes;
860 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
861 
862 	/* Abuse qc->result_tf for temp storage of intermediate TF
863 	 * here to save some kernel stack usage.
864 	 * For normal completion, qc->result_tf is not relevant. For
865 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
866 	 * So, the correctness of qc->result_tf is not affected.
867 	 */
868 	ap->ops->sff_tf_read(ap, &qc->result_tf);
869 	ireason = qc->result_tf.nsect;
870 	bc_lo = qc->result_tf.lbam;
871 	bc_hi = qc->result_tf.lbah;
872 	bytes = (bc_hi << 8) | bc_lo;
873 
874 	/* shall be cleared to zero, indicating xfer of data */
875 	if (unlikely(ireason & ATAPI_COD))
876 		goto atapi_check;
877 
878 	/* make sure transfer direction matches expected */
879 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
880 	if (unlikely(do_write != i_write))
881 		goto atapi_check;
882 
883 	if (unlikely(!bytes))
884 		goto atapi_check;
885 
886 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
887 		goto err_out;
888 	ata_sff_sync(ap); /* flush */
889 
890 	return;
891 
892  atapi_check:
893 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
894 			  ireason, bytes);
895  err_out:
896 	qc->err_mask |= AC_ERR_HSM;
897 	ap->hsm_task_state = HSM_ST_ERR;
898 }
899 
900 /**
901  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
902  *	@ap: the target ata_port
903  *	@qc: qc on going
904  *
905  *	RETURNS:
906  *	1 if ok in workqueue, 0 otherwise.
907  */
908 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
909 						struct ata_queued_cmd *qc)
910 {
911 	if (qc->tf.flags & ATA_TFLAG_POLLING)
912 		return 1;
913 
914 	if (ap->hsm_task_state == HSM_ST_FIRST) {
915 		if (qc->tf.protocol == ATA_PROT_PIO &&
916 		   (qc->tf.flags & ATA_TFLAG_WRITE))
917 		    return 1;
918 
919 		if (ata_is_atapi(qc->tf.protocol) &&
920 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
921 			return 1;
922 	}
923 
924 	return 0;
925 }
926 
927 /**
928  *	ata_hsm_qc_complete - finish a qc running on standard HSM
929  *	@qc: Command to complete
930  *	@in_wq: 1 if called from workqueue, 0 otherwise
931  *
932  *	Finish @qc which is running on standard HSM.
933  *
934  *	LOCKING:
935  *	If @in_wq is zero, spin_lock_irqsave(host lock).
936  *	Otherwise, none on entry and grabs host lock.
937  */
938 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
939 {
940 	struct ata_port *ap = qc->ap;
941 
942 	if (ap->ops->error_handler) {
943 		if (in_wq) {
944 			/* EH might have kicked in while host lock is
945 			 * released.
946 			 */
947 			qc = ata_qc_from_tag(ap, qc->tag);
948 			if (qc) {
949 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
950 					ata_sff_irq_on(ap);
951 					ata_qc_complete(qc);
952 				} else
953 					ata_port_freeze(ap);
954 			}
955 		} else {
956 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
957 				ata_qc_complete(qc);
958 			else
959 				ata_port_freeze(ap);
960 		}
961 	} else {
962 		if (in_wq) {
963 			ata_sff_irq_on(ap);
964 			ata_qc_complete(qc);
965 		} else
966 			ata_qc_complete(qc);
967 	}
968 }
969 
970 /**
971  *	ata_sff_hsm_move - move the HSM to the next state.
972  *	@ap: the target ata_port
973  *	@qc: qc on going
974  *	@status: current device status
975  *	@in_wq: 1 if called from workqueue, 0 otherwise
976  *
977  *	RETURNS:
978  *	1 when poll next status needed, 0 otherwise.
979  */
980 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
981 		     u8 status, int in_wq)
982 {
983 	struct ata_link *link = qc->dev->link;
984 	struct ata_eh_info *ehi = &link->eh_info;
985 	int poll_next;
986 
987 	lockdep_assert_held(ap->lock);
988 
989 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
990 
991 	/* Make sure ata_sff_qc_issue() does not throw things
992 	 * like DMA polling into the workqueue. Notice that
993 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
994 	 */
995 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
996 
997 fsm_start:
998 	trace_ata_sff_hsm_state(qc, status);
999 
1000 	switch (ap->hsm_task_state) {
1001 	case HSM_ST_FIRST:
1002 		/* Send first data block or PACKET CDB */
1003 
1004 		/* If polling, we will stay in the work queue after
1005 		 * sending the data. Otherwise, interrupt handler
1006 		 * takes over after sending the data.
1007 		 */
1008 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1009 
1010 		/* check device status */
1011 		if (unlikely((status & ATA_DRQ) == 0)) {
1012 			/* handle BSY=0, DRQ=0 as error */
1013 			if (likely(status & (ATA_ERR | ATA_DF)))
1014 				/* device stops HSM for abort/error */
1015 				qc->err_mask |= AC_ERR_DEV;
1016 			else {
1017 				/* HSM violation. Let EH handle this */
1018 				ata_ehi_push_desc(ehi,
1019 					"ST_FIRST: !(DRQ|ERR|DF)");
1020 				qc->err_mask |= AC_ERR_HSM;
1021 			}
1022 
1023 			ap->hsm_task_state = HSM_ST_ERR;
1024 			goto fsm_start;
1025 		}
1026 
1027 		/* Device should not ask for data transfer (DRQ=1)
1028 		 * when it finds something wrong.
1029 		 * We ignore DRQ here and stop the HSM by
1030 		 * changing hsm_task_state to HSM_ST_ERR and
1031 		 * let the EH abort the command or reset the device.
1032 		 */
1033 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1034 			/* Some ATAPI tape drives forget to clear the ERR bit
1035 			 * when doing the next command (mostly request sense).
1036 			 * We ignore ERR here to workaround and proceed sending
1037 			 * the CDB.
1038 			 */
1039 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1040 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1041 					"DRQ=1 with device error, "
1042 					"dev_stat 0x%X", status);
1043 				qc->err_mask |= AC_ERR_HSM;
1044 				ap->hsm_task_state = HSM_ST_ERR;
1045 				goto fsm_start;
1046 			}
1047 		}
1048 
1049 		if (qc->tf.protocol == ATA_PROT_PIO) {
1050 			/* PIO data out protocol.
1051 			 * send first data block.
1052 			 */
1053 
1054 			/* ata_pio_sectors() might change the state
1055 			 * to HSM_ST_LAST. so, the state is changed here
1056 			 * before ata_pio_sectors().
1057 			 */
1058 			ap->hsm_task_state = HSM_ST;
1059 			ata_pio_sectors(qc);
1060 		} else
1061 			/* send CDB */
1062 			atapi_send_cdb(ap, qc);
1063 
1064 		/* if polling, ata_sff_pio_task() handles the rest.
1065 		 * otherwise, interrupt handler takes over from here.
1066 		 */
1067 		break;
1068 
1069 	case HSM_ST:
1070 		/* complete command or read/write the data register */
1071 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1072 			/* ATAPI PIO protocol */
1073 			if ((status & ATA_DRQ) == 0) {
1074 				/* No more data to transfer or device error.
1075 				 * Device error will be tagged in HSM_ST_LAST.
1076 				 */
1077 				ap->hsm_task_state = HSM_ST_LAST;
1078 				goto fsm_start;
1079 			}
1080 
1081 			/* Device should not ask for data transfer (DRQ=1)
1082 			 * when it finds something wrong.
1083 			 * We ignore DRQ here and stop the HSM by
1084 			 * changing hsm_task_state to HSM_ST_ERR and
1085 			 * let the EH abort the command or reset the device.
1086 			 */
1087 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1088 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1089 					"DRQ=1 with device error, "
1090 					"dev_stat 0x%X", status);
1091 				qc->err_mask |= AC_ERR_HSM;
1092 				ap->hsm_task_state = HSM_ST_ERR;
1093 				goto fsm_start;
1094 			}
1095 
1096 			atapi_pio_bytes(qc);
1097 
1098 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1099 				/* bad ireason reported by device */
1100 				goto fsm_start;
1101 
1102 		} else {
1103 			/* ATA PIO protocol */
1104 			if (unlikely((status & ATA_DRQ) == 0)) {
1105 				/* handle BSY=0, DRQ=0 as error */
1106 				if (likely(status & (ATA_ERR | ATA_DF))) {
1107 					/* device stops HSM for abort/error */
1108 					qc->err_mask |= AC_ERR_DEV;
1109 
1110 					/* If diagnostic failed and this is
1111 					 * IDENTIFY, it's likely a phantom
1112 					 * device.  Mark hint.
1113 					 */
1114 					if (qc->dev->horkage &
1115 					    ATA_HORKAGE_DIAGNOSTIC)
1116 						qc->err_mask |=
1117 							AC_ERR_NODEV_HINT;
1118 				} else {
1119 					/* HSM violation. Let EH handle this.
1120 					 * Phantom devices also trigger this
1121 					 * condition.  Mark hint.
1122 					 */
1123 					ata_ehi_push_desc(ehi, "ST-ATA: "
1124 						"DRQ=0 without device error, "
1125 						"dev_stat 0x%X", status);
1126 					qc->err_mask |= AC_ERR_HSM |
1127 							AC_ERR_NODEV_HINT;
1128 				}
1129 
1130 				ap->hsm_task_state = HSM_ST_ERR;
1131 				goto fsm_start;
1132 			}
1133 
1134 			/* For PIO reads, some devices may ask for
1135 			 * data transfer (DRQ=1) alone with ERR=1.
1136 			 * We respect DRQ here and transfer one
1137 			 * block of junk data before changing the
1138 			 * hsm_task_state to HSM_ST_ERR.
1139 			 *
1140 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1141 			 * sense since the data block has been
1142 			 * transferred to the device.
1143 			 */
1144 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1145 				/* data might be corrputed */
1146 				qc->err_mask |= AC_ERR_DEV;
1147 
1148 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1149 					ata_pio_sectors(qc);
1150 					status = ata_wait_idle(ap);
1151 				}
1152 
1153 				if (status & (ATA_BUSY | ATA_DRQ)) {
1154 					ata_ehi_push_desc(ehi, "ST-ATA: "
1155 						"BUSY|DRQ persists on ERR|DF, "
1156 						"dev_stat 0x%X", status);
1157 					qc->err_mask |= AC_ERR_HSM;
1158 				}
1159 
1160 				/* There are oddball controllers with
1161 				 * status register stuck at 0x7f and
1162 				 * lbal/m/h at zero which makes it
1163 				 * pass all other presence detection
1164 				 * mechanisms we have.  Set NODEV_HINT
1165 				 * for it.  Kernel bz#7241.
1166 				 */
1167 				if (status == 0x7f)
1168 					qc->err_mask |= AC_ERR_NODEV_HINT;
1169 
1170 				/* ata_pio_sectors() might change the
1171 				 * state to HSM_ST_LAST. so, the state
1172 				 * is changed after ata_pio_sectors().
1173 				 */
1174 				ap->hsm_task_state = HSM_ST_ERR;
1175 				goto fsm_start;
1176 			}
1177 
1178 			ata_pio_sectors(qc);
1179 
1180 			if (ap->hsm_task_state == HSM_ST_LAST &&
1181 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1182 				/* all data read */
1183 				status = ata_wait_idle(ap);
1184 				goto fsm_start;
1185 			}
1186 		}
1187 
1188 		poll_next = 1;
1189 		break;
1190 
1191 	case HSM_ST_LAST:
1192 		if (unlikely(!ata_ok(status))) {
1193 			qc->err_mask |= __ac_err_mask(status);
1194 			ap->hsm_task_state = HSM_ST_ERR;
1195 			goto fsm_start;
1196 		}
1197 
1198 		/* no more data to transfer */
1199 		trace_ata_sff_hsm_command_complete(qc, status);
1200 
1201 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1202 
1203 		ap->hsm_task_state = HSM_ST_IDLE;
1204 
1205 		/* complete taskfile transaction */
1206 		ata_hsm_qc_complete(qc, in_wq);
1207 
1208 		poll_next = 0;
1209 		break;
1210 
1211 	case HSM_ST_ERR:
1212 		ap->hsm_task_state = HSM_ST_IDLE;
1213 
1214 		/* complete taskfile transaction */
1215 		ata_hsm_qc_complete(qc, in_wq);
1216 
1217 		poll_next = 0;
1218 		break;
1219 	default:
1220 		poll_next = 0;
1221 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1222 		     ap->print_id, ap->hsm_task_state);
1223 	}
1224 
1225 	return poll_next;
1226 }
1227 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1228 
1229 void ata_sff_queue_work(struct work_struct *work)
1230 {
1231 	queue_work(ata_sff_wq, work);
1232 }
1233 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1234 
1235 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1236 {
1237 	queue_delayed_work(ata_sff_wq, dwork, delay);
1238 }
1239 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1240 
1241 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1242 {
1243 	struct ata_port *ap = link->ap;
1244 
1245 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1246 		(ap->sff_pio_task_link != link));
1247 	ap->sff_pio_task_link = link;
1248 
1249 	/* may fail if ata_sff_flush_pio_task() in progress */
1250 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1251 }
1252 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1253 
1254 void ata_sff_flush_pio_task(struct ata_port *ap)
1255 {
1256 	trace_ata_sff_flush_pio_task(ap);
1257 
1258 	cancel_delayed_work_sync(&ap->sff_pio_task);
1259 
1260 	/*
1261 	 * We wanna reset the HSM state to IDLE.  If we do so without
1262 	 * grabbing the port lock, critical sections protected by it which
1263 	 * expect the HSM state to stay stable may get surprised.  For
1264 	 * example, we may set IDLE in between the time
1265 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1266 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1267 	 */
1268 	spin_lock_irq(ap->lock);
1269 	ap->hsm_task_state = HSM_ST_IDLE;
1270 	spin_unlock_irq(ap->lock);
1271 
1272 	ap->sff_pio_task_link = NULL;
1273 }
1274 
1275 static void ata_sff_pio_task(struct work_struct *work)
1276 {
1277 	struct ata_port *ap =
1278 		container_of(work, struct ata_port, sff_pio_task.work);
1279 	struct ata_link *link = ap->sff_pio_task_link;
1280 	struct ata_queued_cmd *qc;
1281 	u8 status;
1282 	int poll_next;
1283 
1284 	spin_lock_irq(ap->lock);
1285 
1286 	BUG_ON(ap->sff_pio_task_link == NULL);
1287 	/* qc can be NULL if timeout occurred */
1288 	qc = ata_qc_from_tag(ap, link->active_tag);
1289 	if (!qc) {
1290 		ap->sff_pio_task_link = NULL;
1291 		goto out_unlock;
1292 	}
1293 
1294 fsm_start:
1295 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1296 
1297 	/*
1298 	 * This is purely heuristic.  This is a fast path.
1299 	 * Sometimes when we enter, BSY will be cleared in
1300 	 * a chk-status or two.  If not, the drive is probably seeking
1301 	 * or something.  Snooze for a couple msecs, then
1302 	 * chk-status again.  If still busy, queue delayed work.
1303 	 */
1304 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1305 	if (status & ATA_BUSY) {
1306 		spin_unlock_irq(ap->lock);
1307 		ata_msleep(ap, 2);
1308 		spin_lock_irq(ap->lock);
1309 
1310 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1311 		if (status & ATA_BUSY) {
1312 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1313 			goto out_unlock;
1314 		}
1315 	}
1316 
1317 	/*
1318 	 * hsm_move() may trigger another command to be processed.
1319 	 * clean the link beforehand.
1320 	 */
1321 	ap->sff_pio_task_link = NULL;
1322 	/* move the HSM */
1323 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1324 
1325 	/* another command or interrupt handler
1326 	 * may be running at this point.
1327 	 */
1328 	if (poll_next)
1329 		goto fsm_start;
1330 out_unlock:
1331 	spin_unlock_irq(ap->lock);
1332 }
1333 
1334 /**
1335  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1336  *	@qc: command to issue to device
1337  *
1338  *	This function issues a PIO or NODATA command to a SFF
1339  *	controller.
1340  *
1341  *	LOCKING:
1342  *	spin_lock_irqsave(host lock)
1343  *
1344  *	RETURNS:
1345  *	Zero on success, AC_ERR_* mask on failure
1346  */
1347 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1348 {
1349 	struct ata_port *ap = qc->ap;
1350 	struct ata_link *link = qc->dev->link;
1351 
1352 	/* Use polling pio if the LLD doesn't handle
1353 	 * interrupt driven pio and atapi CDB interrupt.
1354 	 */
1355 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1356 		qc->tf.flags |= ATA_TFLAG_POLLING;
1357 
1358 	/* select the device */
1359 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1360 
1361 	/* start the command */
1362 	switch (qc->tf.protocol) {
1363 	case ATA_PROT_NODATA:
1364 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1365 			ata_qc_set_polling(qc);
1366 
1367 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1368 		ap->hsm_task_state = HSM_ST_LAST;
1369 
1370 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1371 			ata_sff_queue_pio_task(link, 0);
1372 
1373 		break;
1374 
1375 	case ATA_PROT_PIO:
1376 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1377 			ata_qc_set_polling(qc);
1378 
1379 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1380 
1381 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1382 			/* PIO data out protocol */
1383 			ap->hsm_task_state = HSM_ST_FIRST;
1384 			ata_sff_queue_pio_task(link, 0);
1385 
1386 			/* always send first data block using the
1387 			 * ata_sff_pio_task() codepath.
1388 			 */
1389 		} else {
1390 			/* PIO data in protocol */
1391 			ap->hsm_task_state = HSM_ST;
1392 
1393 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1394 				ata_sff_queue_pio_task(link, 0);
1395 
1396 			/* if polling, ata_sff_pio_task() handles the
1397 			 * rest.  otherwise, interrupt handler takes
1398 			 * over from here.
1399 			 */
1400 		}
1401 
1402 		break;
1403 
1404 	case ATAPI_PROT_PIO:
1405 	case ATAPI_PROT_NODATA:
1406 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1407 			ata_qc_set_polling(qc);
1408 
1409 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1410 
1411 		ap->hsm_task_state = HSM_ST_FIRST;
1412 
1413 		/* send cdb by polling if no cdb interrupt */
1414 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1415 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1416 			ata_sff_queue_pio_task(link, 0);
1417 		break;
1418 
1419 	default:
1420 		return AC_ERR_SYSTEM;
1421 	}
1422 
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1426 
1427 /**
1428  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1429  *	@qc: qc to fill result TF for
1430  *
1431  *	@qc is finished and result TF needs to be filled.  Fill it
1432  *	using ->sff_tf_read.
1433  *
1434  *	LOCKING:
1435  *	spin_lock_irqsave(host lock)
1436  *
1437  *	RETURNS:
1438  *	true indicating that result TF is successfully filled.
1439  */
1440 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1441 {
1442 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1443 	return true;
1444 }
1445 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1446 
1447 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1448 {
1449 	ap->stats.idle_irq++;
1450 
1451 #ifdef ATA_IRQ_TRAP
1452 	if ((ap->stats.idle_irq % 1000) == 0) {
1453 		ap->ops->sff_check_status(ap);
1454 		if (ap->ops->sff_irq_clear)
1455 			ap->ops->sff_irq_clear(ap);
1456 		ata_port_warn(ap, "irq trap\n");
1457 		return 1;
1458 	}
1459 #endif
1460 	return 0;	/* irq not handled */
1461 }
1462 
1463 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1464 					struct ata_queued_cmd *qc,
1465 					bool hsmv_on_idle)
1466 {
1467 	u8 status;
1468 
1469 	trace_ata_sff_port_intr(qc, hsmv_on_idle);
1470 
1471 	/* Check whether we are expecting interrupt in this state */
1472 	switch (ap->hsm_task_state) {
1473 	case HSM_ST_FIRST:
1474 		/* Some pre-ATAPI-4 devices assert INTRQ
1475 		 * at this state when ready to receive CDB.
1476 		 */
1477 
1478 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1479 		 * The flag was turned on only for atapi devices.  No
1480 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1481 		 */
1482 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1483 			return ata_sff_idle_irq(ap);
1484 		break;
1485 	case HSM_ST_IDLE:
1486 		return ata_sff_idle_irq(ap);
1487 	default:
1488 		break;
1489 	}
1490 
1491 	/* check main status, clearing INTRQ if needed */
1492 	status = ata_sff_irq_status(ap);
1493 	if (status & ATA_BUSY) {
1494 		if (hsmv_on_idle) {
1495 			/* BMDMA engine is already stopped, we're screwed */
1496 			qc->err_mask |= AC_ERR_HSM;
1497 			ap->hsm_task_state = HSM_ST_ERR;
1498 		} else
1499 			return ata_sff_idle_irq(ap);
1500 	}
1501 
1502 	/* clear irq events */
1503 	if (ap->ops->sff_irq_clear)
1504 		ap->ops->sff_irq_clear(ap);
1505 
1506 	ata_sff_hsm_move(ap, qc, status, 0);
1507 
1508 	return 1;	/* irq handled */
1509 }
1510 
1511 /**
1512  *	ata_sff_port_intr - Handle SFF port interrupt
1513  *	@ap: Port on which interrupt arrived (possibly...)
1514  *	@qc: Taskfile currently active in engine
1515  *
1516  *	Handle port interrupt for given queued command.
1517  *
1518  *	LOCKING:
1519  *	spin_lock_irqsave(host lock)
1520  *
1521  *	RETURNS:
1522  *	One if interrupt was handled, zero if not (shared irq).
1523  */
1524 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1525 {
1526 	return __ata_sff_port_intr(ap, qc, false);
1527 }
1528 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1529 
1530 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1531 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1532 {
1533 	struct ata_host *host = dev_instance;
1534 	bool retried = false;
1535 	unsigned int i;
1536 	unsigned int handled, idle, polling;
1537 	unsigned long flags;
1538 
1539 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1540 	spin_lock_irqsave(&host->lock, flags);
1541 
1542 retry:
1543 	handled = idle = polling = 0;
1544 	for (i = 0; i < host->n_ports; i++) {
1545 		struct ata_port *ap = host->ports[i];
1546 		struct ata_queued_cmd *qc;
1547 
1548 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1549 		if (qc) {
1550 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1551 				handled |= port_intr(ap, qc);
1552 			else
1553 				polling |= 1 << i;
1554 		} else
1555 			idle |= 1 << i;
1556 	}
1557 
1558 	/*
1559 	 * If no port was expecting IRQ but the controller is actually
1560 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1561 	 * pending status if available and clear spurious IRQ.
1562 	 */
1563 	if (!handled && !retried) {
1564 		bool retry = false;
1565 
1566 		for (i = 0; i < host->n_ports; i++) {
1567 			struct ata_port *ap = host->ports[i];
1568 
1569 			if (polling & (1 << i))
1570 				continue;
1571 
1572 			if (!ap->ops->sff_irq_check ||
1573 			    !ap->ops->sff_irq_check(ap))
1574 				continue;
1575 
1576 			if (idle & (1 << i)) {
1577 				ap->ops->sff_check_status(ap);
1578 				if (ap->ops->sff_irq_clear)
1579 					ap->ops->sff_irq_clear(ap);
1580 			} else {
1581 				/* clear INTRQ and check if BUSY cleared */
1582 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1583 					retry |= true;
1584 				/*
1585 				 * With command in flight, we can't do
1586 				 * sff_irq_clear() w/o racing with completion.
1587 				 */
1588 			}
1589 		}
1590 
1591 		if (retry) {
1592 			retried = true;
1593 			goto retry;
1594 		}
1595 	}
1596 
1597 	spin_unlock_irqrestore(&host->lock, flags);
1598 
1599 	return IRQ_RETVAL(handled);
1600 }
1601 
1602 /**
1603  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1604  *	@irq: irq line (unused)
1605  *	@dev_instance: pointer to our ata_host information structure
1606  *
1607  *	Default interrupt handler for PCI IDE devices.  Calls
1608  *	ata_sff_port_intr() for each port that is not disabled.
1609  *
1610  *	LOCKING:
1611  *	Obtains host lock during operation.
1612  *
1613  *	RETURNS:
1614  *	IRQ_NONE or IRQ_HANDLED.
1615  */
1616 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1617 {
1618 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1619 }
1620 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1621 
1622 /**
1623  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1624  *	@ap: port that appears to have timed out
1625  *
1626  *	Called from the libata error handlers when the core code suspects
1627  *	an interrupt has been lost. If it has complete anything we can and
1628  *	then return. Interface must support altstatus for this faster
1629  *	recovery to occur.
1630  *
1631  *	Locking:
1632  *	Caller holds host lock
1633  */
1634 
1635 void ata_sff_lost_interrupt(struct ata_port *ap)
1636 {
1637 	u8 status = 0;
1638 	struct ata_queued_cmd *qc;
1639 
1640 	/* Only one outstanding command per SFF channel */
1641 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1642 	/* We cannot lose an interrupt on a non-existent or polled command */
1643 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1644 		return;
1645 	/* See if the controller thinks it is still busy - if so the command
1646 	   isn't a lost IRQ but is still in progress */
1647 	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1648 		return;
1649 	if (status & ATA_BUSY)
1650 		return;
1651 
1652 	/* There was a command running, we are no longer busy and we have
1653 	   no interrupt. */
1654 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1655 	/* Run the host interrupt logic as if the interrupt had not been
1656 	   lost */
1657 	ata_sff_port_intr(ap, qc);
1658 }
1659 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1660 
1661 /**
1662  *	ata_sff_freeze - Freeze SFF controller port
1663  *	@ap: port to freeze
1664  *
1665  *	Freeze SFF controller port.
1666  *
1667  *	LOCKING:
1668  *	Inherited from caller.
1669  */
1670 void ata_sff_freeze(struct ata_port *ap)
1671 {
1672 	ap->ctl |= ATA_NIEN;
1673 	ap->last_ctl = ap->ctl;
1674 
1675 	ata_sff_set_devctl(ap, ap->ctl);
1676 
1677 	/* Under certain circumstances, some controllers raise IRQ on
1678 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1679 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1680 	 */
1681 	ap->ops->sff_check_status(ap);
1682 
1683 	if (ap->ops->sff_irq_clear)
1684 		ap->ops->sff_irq_clear(ap);
1685 }
1686 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1687 
1688 /**
1689  *	ata_sff_thaw - Thaw SFF controller port
1690  *	@ap: port to thaw
1691  *
1692  *	Thaw SFF controller port.
1693  *
1694  *	LOCKING:
1695  *	Inherited from caller.
1696  */
1697 void ata_sff_thaw(struct ata_port *ap)
1698 {
1699 	/* clear & re-enable interrupts */
1700 	ap->ops->sff_check_status(ap);
1701 	if (ap->ops->sff_irq_clear)
1702 		ap->ops->sff_irq_clear(ap);
1703 	ata_sff_irq_on(ap);
1704 }
1705 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1706 
1707 /**
1708  *	ata_sff_prereset - prepare SFF link for reset
1709  *	@link: SFF link to be reset
1710  *	@deadline: deadline jiffies for the operation
1711  *
1712  *	SFF link @link is about to be reset.  Initialize it.  It first
1713  *	calls ata_std_prereset() and wait for !BSY if the port is
1714  *	being softreset.
1715  *
1716  *	LOCKING:
1717  *	Kernel thread context (may sleep)
1718  *
1719  *	RETURNS:
1720  *	Always 0.
1721  */
1722 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1723 {
1724 	struct ata_eh_context *ehc = &link->eh_context;
1725 	int rc;
1726 
1727 	/* The standard prereset is best-effort and always returns 0 */
1728 	ata_std_prereset(link, deadline);
1729 
1730 	/* if we're about to do hardreset, nothing more to do */
1731 	if (ehc->i.action & ATA_EH_HARDRESET)
1732 		return 0;
1733 
1734 	/* wait for !BSY if we don't know that no device is attached */
1735 	if (!ata_link_offline(link)) {
1736 		rc = ata_sff_wait_ready(link, deadline);
1737 		if (rc && rc != -ENODEV) {
1738 			ata_link_warn(link,
1739 				      "device not ready (errno=%d), forcing hardreset\n",
1740 				      rc);
1741 			ehc->i.action |= ATA_EH_HARDRESET;
1742 		}
1743 	}
1744 
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1748 
1749 /**
1750  *	ata_devchk - PATA device presence detection
1751  *	@ap: ATA channel to examine
1752  *	@device: Device to examine (starting at zero)
1753  *
1754  *	This technique was originally described in
1755  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1756  *	later found its way into the ATA/ATAPI spec.
1757  *
1758  *	Write a pattern to the ATA shadow registers,
1759  *	and if a device is present, it will respond by
1760  *	correctly storing and echoing back the
1761  *	ATA shadow register contents.
1762  *
1763  *	RETURN:
1764  *	true if device is present, false if not.
1765  *
1766  *	LOCKING:
1767  *	caller.
1768  */
1769 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1770 {
1771 	struct ata_ioports *ioaddr = &ap->ioaddr;
1772 	u8 nsect, lbal;
1773 
1774 	ap->ops->sff_dev_select(ap, device);
1775 
1776 	iowrite8(0x55, ioaddr->nsect_addr);
1777 	iowrite8(0xaa, ioaddr->lbal_addr);
1778 
1779 	iowrite8(0xaa, ioaddr->nsect_addr);
1780 	iowrite8(0x55, ioaddr->lbal_addr);
1781 
1782 	iowrite8(0x55, ioaddr->nsect_addr);
1783 	iowrite8(0xaa, ioaddr->lbal_addr);
1784 
1785 	nsect = ioread8(ioaddr->nsect_addr);
1786 	lbal = ioread8(ioaddr->lbal_addr);
1787 
1788 	if ((nsect == 0x55) && (lbal == 0xaa))
1789 		return true;	/* we found a device */
1790 
1791 	return false;		/* nothing found */
1792 }
1793 
1794 /**
1795  *	ata_sff_dev_classify - Parse returned ATA device signature
1796  *	@dev: ATA device to classify (starting at zero)
1797  *	@present: device seems present
1798  *	@r_err: Value of error register on completion
1799  *
1800  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1801  *	an ATA/ATAPI-defined set of values is placed in the ATA
1802  *	shadow registers, indicating the results of device detection
1803  *	and diagnostics.
1804  *
1805  *	Select the ATA device, and read the values from the ATA shadow
1806  *	registers.  Then parse according to the Error register value,
1807  *	and the spec-defined values examined by ata_dev_classify().
1808  *
1809  *	LOCKING:
1810  *	caller.
1811  *
1812  *	RETURNS:
1813  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1814  */
1815 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1816 				  u8 *r_err)
1817 {
1818 	struct ata_port *ap = dev->link->ap;
1819 	struct ata_taskfile tf;
1820 	unsigned int class;
1821 	u8 err;
1822 
1823 	ap->ops->sff_dev_select(ap, dev->devno);
1824 
1825 	memset(&tf, 0, sizeof(tf));
1826 
1827 	ap->ops->sff_tf_read(ap, &tf);
1828 	err = tf.error;
1829 	if (r_err)
1830 		*r_err = err;
1831 
1832 	/* see if device passed diags: continue and warn later */
1833 	if (err == 0)
1834 		/* diagnostic fail : do nothing _YET_ */
1835 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1836 	else if (err == 1)
1837 		/* do nothing */ ;
1838 	else if ((dev->devno == 0) && (err == 0x81))
1839 		/* do nothing */ ;
1840 	else
1841 		return ATA_DEV_NONE;
1842 
1843 	/* determine if device is ATA or ATAPI */
1844 	class = ata_port_classify(ap, &tf);
1845 	switch (class) {
1846 	case ATA_DEV_UNKNOWN:
1847 		/*
1848 		 * If the device failed diagnostic, it's likely to
1849 		 * have reported incorrect device signature too.
1850 		 * Assume ATA device if the device seems present but
1851 		 * device signature is invalid with diagnostic
1852 		 * failure.
1853 		 */
1854 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1855 			class = ATA_DEV_ATA;
1856 		else
1857 			class = ATA_DEV_NONE;
1858 		break;
1859 	case ATA_DEV_ATA:
1860 		if (ap->ops->sff_check_status(ap) == 0)
1861 			class = ATA_DEV_NONE;
1862 		break;
1863 	}
1864 	return class;
1865 }
1866 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1867 
1868 /**
1869  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1870  *	@link: SFF link which is just reset
1871  *	@devmask: mask of present devices
1872  *	@deadline: deadline jiffies for the operation
1873  *
1874  *	Wait devices attached to SFF @link to become ready after
1875  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1876  *	status register too early.
1877  *
1878  *	LOCKING:
1879  *	Kernel thread context (may sleep).
1880  *
1881  *	RETURNS:
1882  *	0 on success, -ENODEV if some or all of devices in @devmask
1883  *	don't seem to exist.  -errno on other errors.
1884  */
1885 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1886 			     unsigned long deadline)
1887 {
1888 	struct ata_port *ap = link->ap;
1889 	struct ata_ioports *ioaddr = &ap->ioaddr;
1890 	unsigned int dev0 = devmask & (1 << 0);
1891 	unsigned int dev1 = devmask & (1 << 1);
1892 	int rc, ret = 0;
1893 
1894 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1895 
1896 	/* always check readiness of the master device */
1897 	rc = ata_sff_wait_ready(link, deadline);
1898 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1899 	 * and TF status is 0xff, bail out on it too.
1900 	 */
1901 	if (rc)
1902 		return rc;
1903 
1904 	/* if device 1 was found in ata_devchk, wait for register
1905 	 * access briefly, then wait for BSY to clear.
1906 	 */
1907 	if (dev1) {
1908 		int i;
1909 
1910 		ap->ops->sff_dev_select(ap, 1);
1911 
1912 		/* Wait for register access.  Some ATAPI devices fail
1913 		 * to set nsect/lbal after reset, so don't waste too
1914 		 * much time on it.  We're gonna wait for !BSY anyway.
1915 		 */
1916 		for (i = 0; i < 2; i++) {
1917 			u8 nsect, lbal;
1918 
1919 			nsect = ioread8(ioaddr->nsect_addr);
1920 			lbal = ioread8(ioaddr->lbal_addr);
1921 			if ((nsect == 1) && (lbal == 1))
1922 				break;
1923 			ata_msleep(ap, 50);	/* give drive a breather */
1924 		}
1925 
1926 		rc = ata_sff_wait_ready(link, deadline);
1927 		if (rc) {
1928 			if (rc != -ENODEV)
1929 				return rc;
1930 			ret = rc;
1931 		}
1932 	}
1933 
1934 	/* is all this really necessary? */
1935 	ap->ops->sff_dev_select(ap, 0);
1936 	if (dev1)
1937 		ap->ops->sff_dev_select(ap, 1);
1938 	if (dev0)
1939 		ap->ops->sff_dev_select(ap, 0);
1940 
1941 	return ret;
1942 }
1943 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1944 
1945 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1946 			     unsigned long deadline)
1947 {
1948 	struct ata_ioports *ioaddr = &ap->ioaddr;
1949 
1950 	if (ap->ioaddr.ctl_addr) {
1951 		/* software reset.  causes dev0 to be selected */
1952 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1953 		udelay(20);	/* FIXME: flush */
1954 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1955 		udelay(20);	/* FIXME: flush */
1956 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1957 		ap->last_ctl = ap->ctl;
1958 	}
1959 
1960 	/* wait the port to become ready */
1961 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1962 }
1963 
1964 /**
1965  *	ata_sff_softreset - reset host port via ATA SRST
1966  *	@link: ATA link to reset
1967  *	@classes: resulting classes of attached devices
1968  *	@deadline: deadline jiffies for the operation
1969  *
1970  *	Reset host port using ATA SRST.
1971  *
1972  *	LOCKING:
1973  *	Kernel thread context (may sleep)
1974  *
1975  *	RETURNS:
1976  *	0 on success, -errno otherwise.
1977  */
1978 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1979 		      unsigned long deadline)
1980 {
1981 	struct ata_port *ap = link->ap;
1982 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1983 	unsigned int devmask = 0;
1984 	int rc;
1985 	u8 err;
1986 
1987 	/* determine if device 0/1 are present */
1988 	if (ata_devchk(ap, 0))
1989 		devmask |= (1 << 0);
1990 	if (slave_possible && ata_devchk(ap, 1))
1991 		devmask |= (1 << 1);
1992 
1993 	/* select device 0 again */
1994 	ap->ops->sff_dev_select(ap, 0);
1995 
1996 	/* issue bus reset */
1997 	rc = ata_bus_softreset(ap, devmask, deadline);
1998 	/* if link is occupied, -ENODEV too is an error */
1999 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2000 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2001 		return rc;
2002 	}
2003 
2004 	/* determine by signature whether we have ATA or ATAPI devices */
2005 	classes[0] = ata_sff_dev_classify(&link->device[0],
2006 					  devmask & (1 << 0), &err);
2007 	if (slave_possible && err != 0x81)
2008 		classes[1] = ata_sff_dev_classify(&link->device[1],
2009 						  devmask & (1 << 1), &err);
2010 
2011 	return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2014 
2015 /**
2016  *	sata_sff_hardreset - reset host port via SATA phy reset
2017  *	@link: link to reset
2018  *	@class: resulting class of attached device
2019  *	@deadline: deadline jiffies for the operation
2020  *
2021  *	SATA phy-reset host port using DET bits of SControl register,
2022  *	wait for !BSY and classify the attached device.
2023  *
2024  *	LOCKING:
2025  *	Kernel thread context (may sleep)
2026  *
2027  *	RETURNS:
2028  *	0 on success, -errno otherwise.
2029  */
2030 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2031 		       unsigned long deadline)
2032 {
2033 	struct ata_eh_context *ehc = &link->eh_context;
2034 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2035 	bool online;
2036 	int rc;
2037 
2038 	rc = sata_link_hardreset(link, timing, deadline, &online,
2039 				 ata_sff_check_ready);
2040 	if (online)
2041 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2042 
2043 	return rc;
2044 }
2045 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2046 
2047 /**
2048  *	ata_sff_postreset - SFF postreset callback
2049  *	@link: the target SFF ata_link
2050  *	@classes: classes of attached devices
2051  *
2052  *	This function is invoked after a successful reset.  It first
2053  *	calls ata_std_postreset() and performs SFF specific postreset
2054  *	processing.
2055  *
2056  *	LOCKING:
2057  *	Kernel thread context (may sleep)
2058  */
2059 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2060 {
2061 	struct ata_port *ap = link->ap;
2062 
2063 	ata_std_postreset(link, classes);
2064 
2065 	/* is double-select really necessary? */
2066 	if (classes[0] != ATA_DEV_NONE)
2067 		ap->ops->sff_dev_select(ap, 1);
2068 	if (classes[1] != ATA_DEV_NONE)
2069 		ap->ops->sff_dev_select(ap, 0);
2070 
2071 	/* bail out if no device is present */
2072 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2073 		return;
2074 
2075 	/* set up device control */
2076 	if (ata_sff_set_devctl(ap, ap->ctl))
2077 		ap->last_ctl = ap->ctl;
2078 }
2079 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2080 
2081 /**
2082  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2083  *	@qc: command
2084  *
2085  *	Drain the FIFO and device of any stuck data following a command
2086  *	failing to complete. In some cases this is necessary before a
2087  *	reset will recover the device.
2088  *
2089  */
2090 
2091 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2092 {
2093 	int count;
2094 	struct ata_port *ap;
2095 
2096 	/* We only need to flush incoming data when a command was running */
2097 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2098 		return;
2099 
2100 	ap = qc->ap;
2101 	/* Drain up to 64K of data before we give up this recovery method */
2102 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2103 						&& count < 65536; count += 2)
2104 		ioread16(ap->ioaddr.data_addr);
2105 
2106 	if (count)
2107 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2108 
2109 }
2110 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2111 
2112 /**
2113  *	ata_sff_error_handler - Stock error handler for SFF controller
2114  *	@ap: port to handle error for
2115  *
2116  *	Stock error handler for SFF controller.  It can handle both
2117  *	PATA and SATA controllers.  Many controllers should be able to
2118  *	use this EH as-is or with some added handling before and
2119  *	after.
2120  *
2121  *	LOCKING:
2122  *	Kernel thread context (may sleep)
2123  */
2124 void ata_sff_error_handler(struct ata_port *ap)
2125 {
2126 	ata_reset_fn_t softreset = ap->ops->softreset;
2127 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2128 	struct ata_queued_cmd *qc;
2129 	unsigned long flags;
2130 
2131 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2132 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2133 		qc = NULL;
2134 
2135 	spin_lock_irqsave(ap->lock, flags);
2136 
2137 	/*
2138 	 * We *MUST* do FIFO draining before we issue a reset as
2139 	 * several devices helpfully clear their internal state and
2140 	 * will lock solid if we touch the data port post reset. Pass
2141 	 * qc in case anyone wants to do different PIO/DMA recovery or
2142 	 * has per command fixups
2143 	 */
2144 	if (ap->ops->sff_drain_fifo)
2145 		ap->ops->sff_drain_fifo(qc);
2146 
2147 	spin_unlock_irqrestore(ap->lock, flags);
2148 
2149 	/* ignore built-in hardresets if SCR access is not available */
2150 	if ((hardreset == sata_std_hardreset ||
2151 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2152 		hardreset = NULL;
2153 
2154 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2155 		  ap->ops->postreset);
2156 }
2157 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2158 
2159 /**
2160  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2161  *	@ioaddr: IO address structure to be initialized
2162  *
2163  *	Utility function which initializes data_addr, error_addr,
2164  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2165  *	device_addr, status_addr, and command_addr to standard offsets
2166  *	relative to cmd_addr.
2167  *
2168  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2169  */
2170 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2171 {
2172 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2173 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2174 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2175 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2176 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2177 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2178 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2179 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2180 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2181 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2182 }
2183 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2184 
2185 #ifdef CONFIG_PCI
2186 
2187 static bool ata_resources_present(struct pci_dev *pdev, int port)
2188 {
2189 	int i;
2190 
2191 	/* Check the PCI resources for this channel are enabled */
2192 	port *= 2;
2193 	for (i = 0; i < 2; i++) {
2194 		if (pci_resource_start(pdev, port + i) == 0 ||
2195 		    pci_resource_len(pdev, port + i) == 0)
2196 			return false;
2197 	}
2198 	return true;
2199 }
2200 
2201 /**
2202  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2203  *	@host: target ATA host
2204  *
2205  *	Acquire native PCI ATA resources for @host and initialize the
2206  *	first two ports of @host accordingly.  Ports marked dummy are
2207  *	skipped and allocation failure makes the port dummy.
2208  *
2209  *	Note that native PCI resources are valid even for legacy hosts
2210  *	as we fix up pdev resources array early in boot, so this
2211  *	function can be used for both native and legacy SFF hosts.
2212  *
2213  *	LOCKING:
2214  *	Inherited from calling layer (may sleep).
2215  *
2216  *	RETURNS:
2217  *	0 if at least one port is initialized, -ENODEV if no port is
2218  *	available.
2219  */
2220 int ata_pci_sff_init_host(struct ata_host *host)
2221 {
2222 	struct device *gdev = host->dev;
2223 	struct pci_dev *pdev = to_pci_dev(gdev);
2224 	unsigned int mask = 0;
2225 	int i, rc;
2226 
2227 	/* request, iomap BARs and init port addresses accordingly */
2228 	for (i = 0; i < 2; i++) {
2229 		struct ata_port *ap = host->ports[i];
2230 		int base = i * 2;
2231 		void __iomem * const *iomap;
2232 
2233 		if (ata_port_is_dummy(ap))
2234 			continue;
2235 
2236 		/* Discard disabled ports.  Some controllers show
2237 		 * their unused channels this way.  Disabled ports are
2238 		 * made dummy.
2239 		 */
2240 		if (!ata_resources_present(pdev, i)) {
2241 			ap->ops = &ata_dummy_port_ops;
2242 			continue;
2243 		}
2244 
2245 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2246 					dev_driver_string(gdev));
2247 		if (rc) {
2248 			dev_warn(gdev,
2249 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2250 				 i, rc);
2251 			if (rc == -EBUSY)
2252 				pcim_pin_device(pdev);
2253 			ap->ops = &ata_dummy_port_ops;
2254 			continue;
2255 		}
2256 		host->iomap = iomap = pcim_iomap_table(pdev);
2257 
2258 		ap->ioaddr.cmd_addr = iomap[base];
2259 		ap->ioaddr.altstatus_addr =
2260 		ap->ioaddr.ctl_addr = (void __iomem *)
2261 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2262 		ata_sff_std_ports(&ap->ioaddr);
2263 
2264 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2265 			(unsigned long long)pci_resource_start(pdev, base),
2266 			(unsigned long long)pci_resource_start(pdev, base + 1));
2267 
2268 		mask |= 1 << i;
2269 	}
2270 
2271 	if (!mask) {
2272 		dev_err(gdev, "no available native port\n");
2273 		return -ENODEV;
2274 	}
2275 
2276 	return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2279 
2280 /**
2281  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2282  *	@pdev: target PCI device
2283  *	@ppi: array of port_info, must be enough for two ports
2284  *	@r_host: out argument for the initialized ATA host
2285  *
2286  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2287  *	all PCI resources and initialize it accordingly in one go.
2288  *
2289  *	LOCKING:
2290  *	Inherited from calling layer (may sleep).
2291  *
2292  *	RETURNS:
2293  *	0 on success, -errno otherwise.
2294  */
2295 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2296 			     const struct ata_port_info * const *ppi,
2297 			     struct ata_host **r_host)
2298 {
2299 	struct ata_host *host;
2300 	int rc;
2301 
2302 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2303 		return -ENOMEM;
2304 
2305 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2306 	if (!host) {
2307 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2308 		rc = -ENOMEM;
2309 		goto err_out;
2310 	}
2311 
2312 	rc = ata_pci_sff_init_host(host);
2313 	if (rc)
2314 		goto err_out;
2315 
2316 	devres_remove_group(&pdev->dev, NULL);
2317 	*r_host = host;
2318 	return 0;
2319 
2320 err_out:
2321 	devres_release_group(&pdev->dev, NULL);
2322 	return rc;
2323 }
2324 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2325 
2326 /**
2327  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2328  *	@host: target SFF ATA host
2329  *	@irq_handler: irq_handler used when requesting IRQ(s)
2330  *	@sht: scsi_host_template to use when registering the host
2331  *
2332  *	This is the counterpart of ata_host_activate() for SFF ATA
2333  *	hosts.  This separate helper is necessary because SFF hosts
2334  *	use two separate interrupts in legacy mode.
2335  *
2336  *	LOCKING:
2337  *	Inherited from calling layer (may sleep).
2338  *
2339  *	RETURNS:
2340  *	0 on success, -errno otherwise.
2341  */
2342 int ata_pci_sff_activate_host(struct ata_host *host,
2343 			      irq_handler_t irq_handler,
2344 			      struct scsi_host_template *sht)
2345 {
2346 	struct device *dev = host->dev;
2347 	struct pci_dev *pdev = to_pci_dev(dev);
2348 	const char *drv_name = dev_driver_string(host->dev);
2349 	int legacy_mode = 0, rc;
2350 
2351 	rc = ata_host_start(host);
2352 	if (rc)
2353 		return rc;
2354 
2355 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2356 		u8 tmp8, mask = 0;
2357 
2358 		/*
2359 		 * ATA spec says we should use legacy mode when one
2360 		 * port is in legacy mode, but disabled ports on some
2361 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2362 		 * on which the secondary port is not wired, so
2363 		 * ignore ports that are marked as 'dummy' during
2364 		 * this check
2365 		 */
2366 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2367 		if (!ata_port_is_dummy(host->ports[0]))
2368 			mask |= (1 << 0);
2369 		if (!ata_port_is_dummy(host->ports[1]))
2370 			mask |= (1 << 2);
2371 		if ((tmp8 & mask) != mask)
2372 			legacy_mode = 1;
2373 	}
2374 
2375 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2376 		return -ENOMEM;
2377 
2378 	if (!legacy_mode && pdev->irq) {
2379 		int i;
2380 
2381 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2382 				      IRQF_SHARED, drv_name, host);
2383 		if (rc)
2384 			goto out;
2385 
2386 		for (i = 0; i < 2; i++) {
2387 			if (ata_port_is_dummy(host->ports[i]))
2388 				continue;
2389 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2390 		}
2391 	} else if (legacy_mode) {
2392 		if (!ata_port_is_dummy(host->ports[0])) {
2393 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2394 					      irq_handler, IRQF_SHARED,
2395 					      drv_name, host);
2396 			if (rc)
2397 				goto out;
2398 
2399 			ata_port_desc(host->ports[0], "irq %d",
2400 				      ATA_PRIMARY_IRQ(pdev));
2401 		}
2402 
2403 		if (!ata_port_is_dummy(host->ports[1])) {
2404 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2405 					      irq_handler, IRQF_SHARED,
2406 					      drv_name, host);
2407 			if (rc)
2408 				goto out;
2409 
2410 			ata_port_desc(host->ports[1], "irq %d",
2411 				      ATA_SECONDARY_IRQ(pdev));
2412 		}
2413 	}
2414 
2415 	rc = ata_host_register(host, sht);
2416 out:
2417 	if (rc == 0)
2418 		devres_remove_group(dev, NULL);
2419 	else
2420 		devres_release_group(dev, NULL);
2421 
2422 	return rc;
2423 }
2424 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2425 
2426 static const struct ata_port_info *ata_sff_find_valid_pi(
2427 					const struct ata_port_info * const *ppi)
2428 {
2429 	int i;
2430 
2431 	/* look up the first valid port_info */
2432 	for (i = 0; i < 2 && ppi[i]; i++)
2433 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2434 			return ppi[i];
2435 
2436 	return NULL;
2437 }
2438 
2439 static int ata_pci_init_one(struct pci_dev *pdev,
2440 		const struct ata_port_info * const *ppi,
2441 		struct scsi_host_template *sht, void *host_priv,
2442 		int hflags, bool bmdma)
2443 {
2444 	struct device *dev = &pdev->dev;
2445 	const struct ata_port_info *pi;
2446 	struct ata_host *host = NULL;
2447 	int rc;
2448 
2449 	pi = ata_sff_find_valid_pi(ppi);
2450 	if (!pi) {
2451 		dev_err(&pdev->dev, "no valid port_info specified\n");
2452 		return -EINVAL;
2453 	}
2454 
2455 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2456 		return -ENOMEM;
2457 
2458 	rc = pcim_enable_device(pdev);
2459 	if (rc)
2460 		goto out;
2461 
2462 #ifdef CONFIG_ATA_BMDMA
2463 	if (bmdma)
2464 		/* prepare and activate BMDMA host */
2465 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2466 	else
2467 #endif
2468 		/* prepare and activate SFF host */
2469 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2470 	if (rc)
2471 		goto out;
2472 	host->private_data = host_priv;
2473 	host->flags |= hflags;
2474 
2475 #ifdef CONFIG_ATA_BMDMA
2476 	if (bmdma) {
2477 		pci_set_master(pdev);
2478 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2479 	} else
2480 #endif
2481 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2482 out:
2483 	if (rc == 0)
2484 		devres_remove_group(&pdev->dev, NULL);
2485 	else
2486 		devres_release_group(&pdev->dev, NULL);
2487 
2488 	return rc;
2489 }
2490 
2491 /**
2492  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2493  *	@pdev: Controller to be initialized
2494  *	@ppi: array of port_info, must be enough for two ports
2495  *	@sht: scsi_host_template to use when registering the host
2496  *	@host_priv: host private_data
2497  *	@hflag: host flags
2498  *
2499  *	This is a helper function which can be called from a driver's
2500  *	xxx_init_one() probe function if the hardware uses traditional
2501  *	IDE taskfile registers and is PIO only.
2502  *
2503  *	ASSUMPTION:
2504  *	Nobody makes a single channel controller that appears solely as
2505  *	the secondary legacy port on PCI.
2506  *
2507  *	LOCKING:
2508  *	Inherited from PCI layer (may sleep).
2509  *
2510  *	RETURNS:
2511  *	Zero on success, negative on errno-based value on error.
2512  */
2513 int ata_pci_sff_init_one(struct pci_dev *pdev,
2514 		 const struct ata_port_info * const *ppi,
2515 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2516 {
2517 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2518 }
2519 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2520 
2521 #endif /* CONFIG_PCI */
2522 
2523 /*
2524  *	BMDMA support
2525  */
2526 
2527 #ifdef CONFIG_ATA_BMDMA
2528 
2529 const struct ata_port_operations ata_bmdma_port_ops = {
2530 	.inherits		= &ata_sff_port_ops,
2531 
2532 	.error_handler		= ata_bmdma_error_handler,
2533 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2534 
2535 	.qc_prep		= ata_bmdma_qc_prep,
2536 	.qc_issue		= ata_bmdma_qc_issue,
2537 
2538 	.sff_irq_clear		= ata_bmdma_irq_clear,
2539 	.bmdma_setup		= ata_bmdma_setup,
2540 	.bmdma_start		= ata_bmdma_start,
2541 	.bmdma_stop		= ata_bmdma_stop,
2542 	.bmdma_status		= ata_bmdma_status,
2543 
2544 	.port_start		= ata_bmdma_port_start,
2545 };
2546 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2547 
2548 const struct ata_port_operations ata_bmdma32_port_ops = {
2549 	.inherits		= &ata_bmdma_port_ops,
2550 
2551 	.sff_data_xfer		= ata_sff_data_xfer32,
2552 	.port_start		= ata_bmdma_port_start32,
2553 };
2554 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2555 
2556 /**
2557  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2558  *	@qc: Metadata associated with taskfile to be transferred
2559  *
2560  *	Fill PCI IDE PRD (scatter-gather) table with segments
2561  *	associated with the current disk command.
2562  *
2563  *	LOCKING:
2564  *	spin_lock_irqsave(host lock)
2565  *
2566  */
2567 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2568 {
2569 	struct ata_port *ap = qc->ap;
2570 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2571 	struct scatterlist *sg;
2572 	unsigned int si, pi;
2573 
2574 	pi = 0;
2575 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2576 		u32 addr, offset;
2577 		u32 sg_len, len;
2578 
2579 		/* determine if physical DMA addr spans 64K boundary.
2580 		 * Note h/w doesn't support 64-bit, so we unconditionally
2581 		 * truncate dma_addr_t to u32.
2582 		 */
2583 		addr = (u32) sg_dma_address(sg);
2584 		sg_len = sg_dma_len(sg);
2585 
2586 		while (sg_len) {
2587 			offset = addr & 0xffff;
2588 			len = sg_len;
2589 			if ((offset + sg_len) > 0x10000)
2590 				len = 0x10000 - offset;
2591 
2592 			prd[pi].addr = cpu_to_le32(addr);
2593 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2594 
2595 			pi++;
2596 			sg_len -= len;
2597 			addr += len;
2598 		}
2599 	}
2600 
2601 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2602 }
2603 
2604 /**
2605  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2606  *	@qc: Metadata associated with taskfile to be transferred
2607  *
2608  *	Fill PCI IDE PRD (scatter-gather) table with segments
2609  *	associated with the current disk command. Perform the fill
2610  *	so that we avoid writing any length 64K records for
2611  *	controllers that don't follow the spec.
2612  *
2613  *	LOCKING:
2614  *	spin_lock_irqsave(host lock)
2615  *
2616  */
2617 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2618 {
2619 	struct ata_port *ap = qc->ap;
2620 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2621 	struct scatterlist *sg;
2622 	unsigned int si, pi;
2623 
2624 	pi = 0;
2625 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2626 		u32 addr, offset;
2627 		u32 sg_len, len, blen;
2628 
2629 		/* determine if physical DMA addr spans 64K boundary.
2630 		 * Note h/w doesn't support 64-bit, so we unconditionally
2631 		 * truncate dma_addr_t to u32.
2632 		 */
2633 		addr = (u32) sg_dma_address(sg);
2634 		sg_len = sg_dma_len(sg);
2635 
2636 		while (sg_len) {
2637 			offset = addr & 0xffff;
2638 			len = sg_len;
2639 			if ((offset + sg_len) > 0x10000)
2640 				len = 0x10000 - offset;
2641 
2642 			blen = len & 0xffff;
2643 			prd[pi].addr = cpu_to_le32(addr);
2644 			if (blen == 0) {
2645 				/* Some PATA chipsets like the CS5530 can't
2646 				   cope with 0x0000 meaning 64K as the spec
2647 				   says */
2648 				prd[pi].flags_len = cpu_to_le32(0x8000);
2649 				blen = 0x8000;
2650 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2651 			}
2652 			prd[pi].flags_len = cpu_to_le32(blen);
2653 
2654 			pi++;
2655 			sg_len -= len;
2656 			addr += len;
2657 		}
2658 	}
2659 
2660 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2661 }
2662 
2663 /**
2664  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2665  *	@qc: Metadata associated with taskfile to be prepared
2666  *
2667  *	Prepare ATA taskfile for submission.
2668  *
2669  *	LOCKING:
2670  *	spin_lock_irqsave(host lock)
2671  */
2672 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2673 {
2674 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2675 		return AC_ERR_OK;
2676 
2677 	ata_bmdma_fill_sg(qc);
2678 
2679 	return AC_ERR_OK;
2680 }
2681 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2682 
2683 /**
2684  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2685  *	@qc: Metadata associated with taskfile to be prepared
2686  *
2687  *	Prepare ATA taskfile for submission.
2688  *
2689  *	LOCKING:
2690  *	spin_lock_irqsave(host lock)
2691  */
2692 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2693 {
2694 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2695 		return AC_ERR_OK;
2696 
2697 	ata_bmdma_fill_sg_dumb(qc);
2698 
2699 	return AC_ERR_OK;
2700 }
2701 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2702 
2703 /**
2704  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2705  *	@qc: command to issue to device
2706  *
2707  *	This function issues a PIO, NODATA or DMA command to a
2708  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2709  *	ata_sff_qc_issue().
2710  *
2711  *	LOCKING:
2712  *	spin_lock_irqsave(host lock)
2713  *
2714  *	RETURNS:
2715  *	Zero on success, AC_ERR_* mask on failure
2716  */
2717 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2718 {
2719 	struct ata_port *ap = qc->ap;
2720 	struct ata_link *link = qc->dev->link;
2721 
2722 	/* defer PIO handling to sff_qc_issue */
2723 	if (!ata_is_dma(qc->tf.protocol))
2724 		return ata_sff_qc_issue(qc);
2725 
2726 	/* select the device */
2727 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2728 
2729 	/* start the command */
2730 	switch (qc->tf.protocol) {
2731 	case ATA_PROT_DMA:
2732 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2733 
2734 		trace_ata_tf_load(ap, &qc->tf);
2735 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2736 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2737 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2738 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2739 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2740 		ap->hsm_task_state = HSM_ST_LAST;
2741 		break;
2742 
2743 	case ATAPI_PROT_DMA:
2744 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2745 
2746 		trace_ata_tf_load(ap, &qc->tf);
2747 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2748 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2749 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2750 		ap->hsm_task_state = HSM_ST_FIRST;
2751 
2752 		/* send cdb by polling if no cdb interrupt */
2753 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2754 			ata_sff_queue_pio_task(link, 0);
2755 		break;
2756 
2757 	default:
2758 		WARN_ON(1);
2759 		return AC_ERR_SYSTEM;
2760 	}
2761 
2762 	return 0;
2763 }
2764 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2765 
2766 /**
2767  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2768  *	@ap: Port on which interrupt arrived (possibly...)
2769  *	@qc: Taskfile currently active in engine
2770  *
2771  *	Handle port interrupt for given queued command.
2772  *
2773  *	LOCKING:
2774  *	spin_lock_irqsave(host lock)
2775  *
2776  *	RETURNS:
2777  *	One if interrupt was handled, zero if not (shared irq).
2778  */
2779 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2780 {
2781 	struct ata_eh_info *ehi = &ap->link.eh_info;
2782 	u8 host_stat = 0;
2783 	bool bmdma_stopped = false;
2784 	unsigned int handled;
2785 
2786 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2787 		/* check status of DMA engine */
2788 		host_stat = ap->ops->bmdma_status(ap);
2789 		trace_ata_bmdma_status(ap, host_stat);
2790 
2791 		/* if it's not our irq... */
2792 		if (!(host_stat & ATA_DMA_INTR))
2793 			return ata_sff_idle_irq(ap);
2794 
2795 		/* before we do anything else, clear DMA-Start bit */
2796 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2797 		ap->ops->bmdma_stop(qc);
2798 		bmdma_stopped = true;
2799 
2800 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2801 			/* error when transferring data to/from memory */
2802 			qc->err_mask |= AC_ERR_HOST_BUS;
2803 			ap->hsm_task_state = HSM_ST_ERR;
2804 		}
2805 	}
2806 
2807 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2808 
2809 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2810 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2811 
2812 	return handled;
2813 }
2814 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2815 
2816 /**
2817  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818  *	@irq: irq line (unused)
2819  *	@dev_instance: pointer to our ata_host information structure
2820  *
2821  *	Default interrupt handler for PCI IDE devices.  Calls
2822  *	ata_bmdma_port_intr() for each port that is not disabled.
2823  *
2824  *	LOCKING:
2825  *	Obtains host lock during operation.
2826  *
2827  *	RETURNS:
2828  *	IRQ_NONE or IRQ_HANDLED.
2829  */
2830 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2831 {
2832 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2833 }
2834 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2835 
2836 /**
2837  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838  *	@ap: port to handle error for
2839  *
2840  *	Stock error handler for BMDMA controller.  It can handle both
2841  *	PATA and SATA controllers.  Most BMDMA controllers should be
2842  *	able to use this EH as-is or with some added handling before
2843  *	and after.
2844  *
2845  *	LOCKING:
2846  *	Kernel thread context (may sleep)
2847  */
2848 void ata_bmdma_error_handler(struct ata_port *ap)
2849 {
2850 	struct ata_queued_cmd *qc;
2851 	unsigned long flags;
2852 	bool thaw = false;
2853 
2854 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2855 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2856 		qc = NULL;
2857 
2858 	/* reset PIO HSM and stop DMA engine */
2859 	spin_lock_irqsave(ap->lock, flags);
2860 
2861 	if (qc && ata_is_dma(qc->tf.protocol)) {
2862 		u8 host_stat;
2863 
2864 		host_stat = ap->ops->bmdma_status(ap);
2865 		trace_ata_bmdma_status(ap, host_stat);
2866 
2867 		/* BMDMA controllers indicate host bus error by
2868 		 * setting DMA_ERR bit and timing out.  As it wasn't
2869 		 * really a timeout event, adjust error mask and
2870 		 * cancel frozen state.
2871 		 */
2872 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2873 			qc->err_mask = AC_ERR_HOST_BUS;
2874 			thaw = true;
2875 		}
2876 
2877 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2878 		ap->ops->bmdma_stop(qc);
2879 
2880 		/* if we're gonna thaw, make sure IRQ is clear */
2881 		if (thaw) {
2882 			ap->ops->sff_check_status(ap);
2883 			if (ap->ops->sff_irq_clear)
2884 				ap->ops->sff_irq_clear(ap);
2885 		}
2886 	}
2887 
2888 	spin_unlock_irqrestore(ap->lock, flags);
2889 
2890 	if (thaw)
2891 		ata_eh_thaw_port(ap);
2892 
2893 	ata_sff_error_handler(ap);
2894 }
2895 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2896 
2897 /**
2898  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2899  *	@qc: internal command to clean up
2900  *
2901  *	LOCKING:
2902  *	Kernel thread context (may sleep)
2903  */
2904 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2905 {
2906 	struct ata_port *ap = qc->ap;
2907 	unsigned long flags;
2908 
2909 	if (ata_is_dma(qc->tf.protocol)) {
2910 		spin_lock_irqsave(ap->lock, flags);
2911 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2912 		ap->ops->bmdma_stop(qc);
2913 		spin_unlock_irqrestore(ap->lock, flags);
2914 	}
2915 }
2916 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2917 
2918 /**
2919  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2920  *	@ap: Port associated with this ATA transaction.
2921  *
2922  *	Clear interrupt and error flags in DMA status register.
2923  *
2924  *	May be used as the irq_clear() entry in ata_port_operations.
2925  *
2926  *	LOCKING:
2927  *	spin_lock_irqsave(host lock)
2928  */
2929 void ata_bmdma_irq_clear(struct ata_port *ap)
2930 {
2931 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2932 
2933 	if (!mmio)
2934 		return;
2935 
2936 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2937 }
2938 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2939 
2940 /**
2941  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2942  *	@qc: Info associated with this ATA transaction.
2943  *
2944  *	LOCKING:
2945  *	spin_lock_irqsave(host lock)
2946  */
2947 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2948 {
2949 	struct ata_port *ap = qc->ap;
2950 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2951 	u8 dmactl;
2952 
2953 	/* load PRD table addr. */
2954 	mb();	/* make sure PRD table writes are visible to controller */
2955 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2956 
2957 	/* specify data direction, triple-check start bit is clear */
2958 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2959 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2960 	if (!rw)
2961 		dmactl |= ATA_DMA_WR;
2962 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2963 
2964 	/* issue r/w command */
2965 	ap->ops->sff_exec_command(ap, &qc->tf);
2966 }
2967 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2968 
2969 /**
2970  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2971  *	@qc: Info associated with this ATA transaction.
2972  *
2973  *	LOCKING:
2974  *	spin_lock_irqsave(host lock)
2975  */
2976 void ata_bmdma_start(struct ata_queued_cmd *qc)
2977 {
2978 	struct ata_port *ap = qc->ap;
2979 	u8 dmactl;
2980 
2981 	/* start host DMA transaction */
2982 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2983 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2984 
2985 	/* Strictly, one may wish to issue an ioread8() here, to
2986 	 * flush the mmio write.  However, control also passes
2987 	 * to the hardware at this point, and it will interrupt
2988 	 * us when we are to resume control.  So, in effect,
2989 	 * we don't care when the mmio write flushes.
2990 	 * Further, a read of the DMA status register _immediately_
2991 	 * following the write may not be what certain flaky hardware
2992 	 * is expected, so I think it is best to not add a readb()
2993 	 * without first all the MMIO ATA cards/mobos.
2994 	 * Or maybe I'm just being paranoid.
2995 	 *
2996 	 * FIXME: The posting of this write means I/O starts are
2997 	 * unnecessarily delayed for MMIO
2998 	 */
2999 }
3000 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3001 
3002 /**
3003  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3004  *	@qc: Command we are ending DMA for
3005  *
3006  *	Clears the ATA_DMA_START flag in the dma control register
3007  *
3008  *	May be used as the bmdma_stop() entry in ata_port_operations.
3009  *
3010  *	LOCKING:
3011  *	spin_lock_irqsave(host lock)
3012  */
3013 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3014 {
3015 	struct ata_port *ap = qc->ap;
3016 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3017 
3018 	/* clear start/stop bit */
3019 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3020 		 mmio + ATA_DMA_CMD);
3021 
3022 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3023 	ata_sff_dma_pause(ap);
3024 }
3025 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3026 
3027 /**
3028  *	ata_bmdma_status - Read PCI IDE BMDMA status
3029  *	@ap: Port associated with this ATA transaction.
3030  *
3031  *	Read and return BMDMA status register.
3032  *
3033  *	May be used as the bmdma_status() entry in ata_port_operations.
3034  *
3035  *	LOCKING:
3036  *	spin_lock_irqsave(host lock)
3037  */
3038 u8 ata_bmdma_status(struct ata_port *ap)
3039 {
3040 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3041 }
3042 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3043 
3044 
3045 /**
3046  *	ata_bmdma_port_start - Set port up for bmdma.
3047  *	@ap: Port to initialize
3048  *
3049  *	Called just after data structures for each port are
3050  *	initialized.  Allocates space for PRD table.
3051  *
3052  *	May be used as the port_start() entry in ata_port_operations.
3053  *
3054  *	LOCKING:
3055  *	Inherited from caller.
3056  */
3057 int ata_bmdma_port_start(struct ata_port *ap)
3058 {
3059 	if (ap->mwdma_mask || ap->udma_mask) {
3060 		ap->bmdma_prd =
3061 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3062 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3063 		if (!ap->bmdma_prd)
3064 			return -ENOMEM;
3065 	}
3066 
3067 	return 0;
3068 }
3069 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3070 
3071 /**
3072  *	ata_bmdma_port_start32 - Set port up for dma.
3073  *	@ap: Port to initialize
3074  *
3075  *	Called just after data structures for each port are
3076  *	initialized.  Enables 32bit PIO and allocates space for PRD
3077  *	table.
3078  *
3079  *	May be used as the port_start() entry in ata_port_operations for
3080  *	devices that are capable of 32bit PIO.
3081  *
3082  *	LOCKING:
3083  *	Inherited from caller.
3084  */
3085 int ata_bmdma_port_start32(struct ata_port *ap)
3086 {
3087 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3088 	return ata_bmdma_port_start(ap);
3089 }
3090 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3091 
3092 #ifdef CONFIG_PCI
3093 
3094 /**
3095  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3096  *	@pdev: PCI device
3097  *
3098  *	Some PCI ATA devices report simplex mode but in fact can be told to
3099  *	enter non simplex mode. This implements the necessary logic to
3100  *	perform the task on such devices. Calling it on other devices will
3101  *	have -undefined- behaviour.
3102  */
3103 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3104 {
3105 	unsigned long bmdma = pci_resource_start(pdev, 4);
3106 	u8 simplex;
3107 
3108 	if (bmdma == 0)
3109 		return -ENOENT;
3110 
3111 	simplex = inb(bmdma + 0x02);
3112 	outb(simplex & 0x60, bmdma + 0x02);
3113 	simplex = inb(bmdma + 0x02);
3114 	if (simplex & 0x80)
3115 		return -EOPNOTSUPP;
3116 	return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3119 
3120 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3121 {
3122 	int i;
3123 
3124 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3125 
3126 	for (i = 0; i < 2; i++) {
3127 		host->ports[i]->mwdma_mask = 0;
3128 		host->ports[i]->udma_mask = 0;
3129 	}
3130 }
3131 
3132 /**
3133  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3134  *	@host: target ATA host
3135  *
3136  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3137  *
3138  *	LOCKING:
3139  *	Inherited from calling layer (may sleep).
3140  */
3141 void ata_pci_bmdma_init(struct ata_host *host)
3142 {
3143 	struct device *gdev = host->dev;
3144 	struct pci_dev *pdev = to_pci_dev(gdev);
3145 	int i, rc;
3146 
3147 	/* No BAR4 allocation: No DMA */
3148 	if (pci_resource_start(pdev, 4) == 0) {
3149 		ata_bmdma_nodma(host, "BAR4 is zero");
3150 		return;
3151 	}
3152 
3153 	/*
3154 	 * Some controllers require BMDMA region to be initialized
3155 	 * even if DMA is not in use to clear IRQ status via
3156 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3157 	 * regardless of dma masks.
3158 	 */
3159 	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3160 	if (rc)
3161 		ata_bmdma_nodma(host, "failed to set dma mask");
3162 
3163 	/* request and iomap DMA region */
3164 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3165 	if (rc) {
3166 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3167 		return;
3168 	}
3169 	host->iomap = pcim_iomap_table(pdev);
3170 
3171 	for (i = 0; i < 2; i++) {
3172 		struct ata_port *ap = host->ports[i];
3173 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3174 
3175 		if (ata_port_is_dummy(ap))
3176 			continue;
3177 
3178 		ap->ioaddr.bmdma_addr = bmdma;
3179 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3180 		    (ioread8(bmdma + 2) & 0x80))
3181 			host->flags |= ATA_HOST_SIMPLEX;
3182 
3183 		ata_port_desc(ap, "bmdma 0x%llx",
3184 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3185 	}
3186 }
3187 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3188 
3189 /**
3190  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3191  *	@pdev: target PCI device
3192  *	@ppi: array of port_info, must be enough for two ports
3193  *	@r_host: out argument for the initialized ATA host
3194  *
3195  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3196  *	resources and initialize it accordingly in one go.
3197  *
3198  *	LOCKING:
3199  *	Inherited from calling layer (may sleep).
3200  *
3201  *	RETURNS:
3202  *	0 on success, -errno otherwise.
3203  */
3204 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3205 			       const struct ata_port_info * const * ppi,
3206 			       struct ata_host **r_host)
3207 {
3208 	int rc;
3209 
3210 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3211 	if (rc)
3212 		return rc;
3213 
3214 	ata_pci_bmdma_init(*r_host);
3215 	return 0;
3216 }
3217 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3218 
3219 /**
3220  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3221  *	@pdev: Controller to be initialized
3222  *	@ppi: array of port_info, must be enough for two ports
3223  *	@sht: scsi_host_template to use when registering the host
3224  *	@host_priv: host private_data
3225  *	@hflags: host flags
3226  *
3227  *	This function is similar to ata_pci_sff_init_one() but also
3228  *	takes care of BMDMA initialization.
3229  *
3230  *	LOCKING:
3231  *	Inherited from PCI layer (may sleep).
3232  *
3233  *	RETURNS:
3234  *	Zero on success, negative on errno-based value on error.
3235  */
3236 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3237 			   const struct ata_port_info * const * ppi,
3238 			   struct scsi_host_template *sht, void *host_priv,
3239 			   int hflags)
3240 {
3241 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3242 }
3243 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3244 
3245 #endif /* CONFIG_PCI */
3246 #endif /* CONFIG_ATA_BMDMA */
3247 
3248 /**
3249  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3250  *	@ap: Port to initialize
3251  *
3252  *	Called on port allocation to initialize SFF/BMDMA specific
3253  *	fields.
3254  *
3255  *	LOCKING:
3256  *	None.
3257  */
3258 void ata_sff_port_init(struct ata_port *ap)
3259 {
3260 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3261 	ap->ctl = ATA_DEVCTL_OBS;
3262 	ap->last_ctl = 0xFF;
3263 }
3264 
3265 int __init ata_sff_init(void)
3266 {
3267 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3268 	if (!ata_sff_wq)
3269 		return -ENOMEM;
3270 
3271 	return 0;
3272 }
3273 
3274 void ata_sff_exit(void)
3275 {
3276 	destroy_workqueue(ata_sff_wq);
3277 }
3278