1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/driver-api/libata.rst 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/module.h> 39 #include <linux/libata.h> 40 #include <linux/highmem.h> 41 42 #include "libata.h" 43 44 static struct workqueue_struct *ata_sff_wq; 45 46 const struct ata_port_operations ata_sff_port_ops = { 47 .inherits = &ata_base_port_ops, 48 49 .qc_prep = ata_noop_qc_prep, 50 .qc_issue = ata_sff_qc_issue, 51 .qc_fill_rtf = ata_sff_qc_fill_rtf, 52 53 .freeze = ata_sff_freeze, 54 .thaw = ata_sff_thaw, 55 .prereset = ata_sff_prereset, 56 .softreset = ata_sff_softreset, 57 .hardreset = sata_sff_hardreset, 58 .postreset = ata_sff_postreset, 59 .error_handler = ata_sff_error_handler, 60 61 .sff_dev_select = ata_sff_dev_select, 62 .sff_check_status = ata_sff_check_status, 63 .sff_tf_load = ata_sff_tf_load, 64 .sff_tf_read = ata_sff_tf_read, 65 .sff_exec_command = ata_sff_exec_command, 66 .sff_data_xfer = ata_sff_data_xfer, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 }; 71 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73 /** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 u8 ata_sff_check_status(struct ata_port *ap) 85 { 86 return ioread8(ap->ioaddr.status_addr); 87 } 88 EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90 /** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_altstatus(struct ata_port *ap) 104 { 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109 } 110 111 /** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 static u8 ata_sff_irq_status(struct ata_port *ap) 124 { 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136 } 137 138 /** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 static void ata_sff_sync(struct ata_port *ap) 151 { 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156 } 157 158 /** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170 void ata_sff_pause(struct ata_port *ap) 171 { 172 ata_sff_sync(ap); 173 ndelay(400); 174 } 175 EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177 /** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185 void ata_sff_dma_pause(struct ata_port *ap) 186 { 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197 } 198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200 /** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215 int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217 { 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 ata_msleep(ap, 50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_warn(ap, 232 "port is slow to respond, please be patient (Status 0x%x)\n", 233 status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 ata_msleep(ap, 50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_err(ap, 247 "port failed to respond (%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256 static int ata_sff_check_ready(struct ata_link *link) 257 { 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261 } 262 263 /** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278 { 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280 } 281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283 /** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297 { 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302 } 303 304 /** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319 { 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332 /** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350 static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352 { 353 if (ata_msg_probe(ap)) 354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 355 device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 ata_msleep(ap, 150); 365 ata_wait_idle(ap); 366 } 367 } 368 369 /** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382 void ata_sff_irq_on(struct ata_port *ap) 383 { 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 if (ap->ops->sff_irq_clear) 399 ap->ops->sff_irq_clear(ap); 400 } 401 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 402 403 /** 404 * ata_sff_tf_load - send taskfile registers to host controller 405 * @ap: Port to which output is sent 406 * @tf: ATA taskfile register set 407 * 408 * Outputs ATA taskfile to standard ATA host controller. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 414 { 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 417 418 if (tf->ctl != ap->last_ctl) { 419 if (ioaddr->ctl_addr) 420 iowrite8(tf->ctl, ioaddr->ctl_addr); 421 ap->last_ctl = tf->ctl; 422 ata_wait_idle(ap); 423 } 424 425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 426 WARN_ON_ONCE(!ioaddr->ctl_addr); 427 iowrite8(tf->hob_feature, ioaddr->feature_addr); 428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 433 tf->hob_feature, 434 tf->hob_nsect, 435 tf->hob_lbal, 436 tf->hob_lbam, 437 tf->hob_lbah); 438 } 439 440 if (is_addr) { 441 iowrite8(tf->feature, ioaddr->feature_addr); 442 iowrite8(tf->nsect, ioaddr->nsect_addr); 443 iowrite8(tf->lbal, ioaddr->lbal_addr); 444 iowrite8(tf->lbam, ioaddr->lbam_addr); 445 iowrite8(tf->lbah, ioaddr->lbah_addr); 446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 447 tf->feature, 448 tf->nsect, 449 tf->lbal, 450 tf->lbam, 451 tf->lbah); 452 } 453 454 if (tf->flags & ATA_TFLAG_DEVICE) { 455 iowrite8(tf->device, ioaddr->device_addr); 456 VPRINTK("device 0x%X\n", tf->device); 457 } 458 459 ata_wait_idle(ap); 460 } 461 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 462 463 /** 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers 465 * @ap: Port from which input is read 466 * @tf: ATA taskfile register set for storing input 467 * 468 * Reads ATA taskfile registers for currently-selected device 469 * into @tf. Assumes the device has a fully SFF compliant task file 470 * layout and behaviour. If you device does not (eg has a different 471 * status method) then you will need to provide a replacement tf_read 472 * 473 * LOCKING: 474 * Inherited from caller. 475 */ 476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 477 { 478 struct ata_ioports *ioaddr = &ap->ioaddr; 479 480 tf->command = ata_sff_check_status(ap); 481 tf->feature = ioread8(ioaddr->error_addr); 482 tf->nsect = ioread8(ioaddr->nsect_addr); 483 tf->lbal = ioread8(ioaddr->lbal_addr); 484 tf->lbam = ioread8(ioaddr->lbam_addr); 485 tf->lbah = ioread8(ioaddr->lbah_addr); 486 tf->device = ioread8(ioaddr->device_addr); 487 488 if (tf->flags & ATA_TFLAG_LBA48) { 489 if (likely(ioaddr->ctl_addr)) { 490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 491 tf->hob_feature = ioread8(ioaddr->error_addr); 492 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 493 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 494 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 495 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 496 iowrite8(tf->ctl, ioaddr->ctl_addr); 497 ap->last_ctl = tf->ctl; 498 } else 499 WARN_ON_ONCE(1); 500 } 501 } 502 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 503 504 /** 505 * ata_sff_exec_command - issue ATA command to host controller 506 * @ap: port to which command is being issued 507 * @tf: ATA taskfile register set 508 * 509 * Issues ATA command, with proper synchronization with interrupt 510 * handler / other threads. 511 * 512 * LOCKING: 513 * spin_lock_irqsave(host lock) 514 */ 515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 516 { 517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 518 519 iowrite8(tf->command, ap->ioaddr.command_addr); 520 ata_sff_pause(ap); 521 } 522 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 523 524 /** 525 * ata_tf_to_host - issue ATA taskfile to host controller 526 * @ap: port to which command is being issued 527 * @tf: ATA taskfile register set 528 * 529 * Issues ATA taskfile register set to ATA host controller, 530 * with proper synchronization with interrupt handler and 531 * other threads. 532 * 533 * LOCKING: 534 * spin_lock_irqsave(host lock) 535 */ 536 static inline void ata_tf_to_host(struct ata_port *ap, 537 const struct ata_taskfile *tf) 538 { 539 ap->ops->sff_tf_load(ap, tf); 540 ap->ops->sff_exec_command(ap, tf); 541 } 542 543 /** 544 * ata_sff_data_xfer - Transfer data by PIO 545 * @qc: queued command 546 * @buf: data buffer 547 * @buflen: buffer length 548 * @rw: read/write 549 * 550 * Transfer data from/to the device data register by PIO. 551 * 552 * LOCKING: 553 * Inherited from caller. 554 * 555 * RETURNS: 556 * Bytes consumed. 557 */ 558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 559 unsigned int buflen, int rw) 560 { 561 struct ata_port *ap = qc->dev->link->ap; 562 void __iomem *data_addr = ap->ioaddr.data_addr; 563 unsigned int words = buflen >> 1; 564 565 /* Transfer multiple of 2 bytes */ 566 if (rw == READ) 567 ioread16_rep(data_addr, buf, words); 568 else 569 iowrite16_rep(data_addr, buf, words); 570 571 /* Transfer trailing byte, if any. */ 572 if (unlikely(buflen & 0x01)) { 573 unsigned char pad[2] = { }; 574 575 /* Point buf to the tail of buffer */ 576 buf += buflen - 1; 577 578 /* 579 * Use io*16_rep() accessors here as well to avoid pointlessly 580 * swapping bytes to and from on the big endian machines... 581 */ 582 if (rw == READ) { 583 ioread16_rep(data_addr, pad, 1); 584 *buf = pad[0]; 585 } else { 586 pad[0] = *buf; 587 iowrite16_rep(data_addr, pad, 1); 588 } 589 words++; 590 } 591 592 return words << 1; 593 } 594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 595 596 /** 597 * ata_sff_data_xfer32 - Transfer data by PIO 598 * @qc: queued command 599 * @buf: data buffer 600 * @buflen: buffer length 601 * @rw: read/write 602 * 603 * Transfer data from/to the device data register by PIO using 32bit 604 * I/O operations. 605 * 606 * LOCKING: 607 * Inherited from caller. 608 * 609 * RETURNS: 610 * Bytes consumed. 611 */ 612 613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 614 unsigned int buflen, int rw) 615 { 616 struct ata_device *dev = qc->dev; 617 struct ata_port *ap = dev->link->ap; 618 void __iomem *data_addr = ap->ioaddr.data_addr; 619 unsigned int words = buflen >> 2; 620 int slop = buflen & 3; 621 622 if (!(ap->pflags & ATA_PFLAG_PIO32)) 623 return ata_sff_data_xfer(qc, buf, buflen, rw); 624 625 /* Transfer multiple of 4 bytes */ 626 if (rw == READ) 627 ioread32_rep(data_addr, buf, words); 628 else 629 iowrite32_rep(data_addr, buf, words); 630 631 /* Transfer trailing bytes, if any */ 632 if (unlikely(slop)) { 633 unsigned char pad[4] = { }; 634 635 /* Point buf to the tail of buffer */ 636 buf += buflen - slop; 637 638 /* 639 * Use io*_rep() accessors here as well to avoid pointlessly 640 * swapping bytes to and from on the big endian machines... 641 */ 642 if (rw == READ) { 643 if (slop < 3) 644 ioread16_rep(data_addr, pad, 1); 645 else 646 ioread32_rep(data_addr, pad, 1); 647 memcpy(buf, pad, slop); 648 } else { 649 memcpy(pad, buf, slop); 650 if (slop < 3) 651 iowrite16_rep(data_addr, pad, 1); 652 else 653 iowrite32_rep(data_addr, pad, 1); 654 } 655 } 656 return (buflen + 1) & ~1; 657 } 658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 659 660 /** 661 * ata_sff_data_xfer_noirq - Transfer data by PIO 662 * @qc: queued command 663 * @buf: data buffer 664 * @buflen: buffer length 665 * @rw: read/write 666 * 667 * Transfer data from/to the device data register by PIO. Do the 668 * transfer with interrupts disabled. 669 * 670 * LOCKING: 671 * Inherited from caller. 672 * 673 * RETURNS: 674 * Bytes consumed. 675 */ 676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf, 677 unsigned int buflen, int rw) 678 { 679 unsigned long flags; 680 unsigned int consumed; 681 682 local_irq_save(flags); 683 consumed = ata_sff_data_xfer32(qc, buf, buflen, rw); 684 local_irq_restore(flags); 685 686 return consumed; 687 } 688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 689 690 /** 691 * ata_pio_sector - Transfer a sector of data. 692 * @qc: Command on going 693 * 694 * Transfer qc->sect_size bytes of data from/to the ATA device. 695 * 696 * LOCKING: 697 * Inherited from caller. 698 */ 699 static void ata_pio_sector(struct ata_queued_cmd *qc) 700 { 701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 702 struct ata_port *ap = qc->ap; 703 struct page *page; 704 unsigned int offset; 705 unsigned char *buf; 706 707 if (qc->curbytes == qc->nbytes - qc->sect_size) 708 ap->hsm_task_state = HSM_ST_LAST; 709 710 page = sg_page(qc->cursg); 711 offset = qc->cursg->offset + qc->cursg_ofs; 712 713 /* get the current page and offset */ 714 page = nth_page(page, (offset >> PAGE_SHIFT)); 715 offset %= PAGE_SIZE; 716 717 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 718 719 /* do the actual data transfer */ 720 buf = kmap_atomic(page); 721 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write); 722 kunmap_atomic(buf); 723 724 if (!do_write && !PageSlab(page)) 725 flush_dcache_page(page); 726 727 qc->curbytes += qc->sect_size; 728 qc->cursg_ofs += qc->sect_size; 729 730 if (qc->cursg_ofs == qc->cursg->length) { 731 qc->cursg = sg_next(qc->cursg); 732 qc->cursg_ofs = 0; 733 } 734 } 735 736 /** 737 * ata_pio_sectors - Transfer one or many sectors. 738 * @qc: Command on going 739 * 740 * Transfer one or many sectors of data from/to the 741 * ATA device for the DRQ request. 742 * 743 * LOCKING: 744 * Inherited from caller. 745 */ 746 static void ata_pio_sectors(struct ata_queued_cmd *qc) 747 { 748 if (is_multi_taskfile(&qc->tf)) { 749 /* READ/WRITE MULTIPLE */ 750 unsigned int nsect; 751 752 WARN_ON_ONCE(qc->dev->multi_count == 0); 753 754 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 755 qc->dev->multi_count); 756 while (nsect--) 757 ata_pio_sector(qc); 758 } else 759 ata_pio_sector(qc); 760 761 ata_sff_sync(qc->ap); /* flush */ 762 } 763 764 /** 765 * atapi_send_cdb - Write CDB bytes to hardware 766 * @ap: Port to which ATAPI device is attached. 767 * @qc: Taskfile currently active 768 * 769 * When device has indicated its readiness to accept 770 * a CDB, this function is called. Send the CDB. 771 * 772 * LOCKING: 773 * caller. 774 */ 775 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 776 { 777 /* send SCSI cdb */ 778 DPRINTK("send cdb\n"); 779 WARN_ON_ONCE(qc->dev->cdb_len < 12); 780 781 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 782 ata_sff_sync(ap); 783 /* FIXME: If the CDB is for DMA do we need to do the transition delay 784 or is bmdma_start guaranteed to do it ? */ 785 switch (qc->tf.protocol) { 786 case ATAPI_PROT_PIO: 787 ap->hsm_task_state = HSM_ST; 788 break; 789 case ATAPI_PROT_NODATA: 790 ap->hsm_task_state = HSM_ST_LAST; 791 break; 792 #ifdef CONFIG_ATA_BMDMA 793 case ATAPI_PROT_DMA: 794 ap->hsm_task_state = HSM_ST_LAST; 795 /* initiate bmdma */ 796 ap->ops->bmdma_start(qc); 797 break; 798 #endif /* CONFIG_ATA_BMDMA */ 799 default: 800 BUG(); 801 } 802 } 803 804 /** 805 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 806 * @qc: Command on going 807 * @bytes: number of bytes 808 * 809 * Transfer Transfer data from/to the ATAPI device. 810 * 811 * LOCKING: 812 * Inherited from caller. 813 * 814 */ 815 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 816 { 817 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 818 struct ata_port *ap = qc->ap; 819 struct ata_device *dev = qc->dev; 820 struct ata_eh_info *ehi = &dev->link->eh_info; 821 struct scatterlist *sg; 822 struct page *page; 823 unsigned char *buf; 824 unsigned int offset, count, consumed; 825 826 next_sg: 827 sg = qc->cursg; 828 if (unlikely(!sg)) { 829 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 830 "buf=%u cur=%u bytes=%u", 831 qc->nbytes, qc->curbytes, bytes); 832 return -1; 833 } 834 835 page = sg_page(sg); 836 offset = sg->offset + qc->cursg_ofs; 837 838 /* get the current page and offset */ 839 page = nth_page(page, (offset >> PAGE_SHIFT)); 840 offset %= PAGE_SIZE; 841 842 /* don't overrun current sg */ 843 count = min(sg->length - qc->cursg_ofs, bytes); 844 845 /* don't cross page boundaries */ 846 count = min(count, (unsigned int)PAGE_SIZE - offset); 847 848 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 849 850 /* do the actual data transfer */ 851 buf = kmap_atomic(page); 852 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 853 kunmap_atomic(buf); 854 855 bytes -= min(bytes, consumed); 856 qc->curbytes += count; 857 qc->cursg_ofs += count; 858 859 if (qc->cursg_ofs == sg->length) { 860 qc->cursg = sg_next(qc->cursg); 861 qc->cursg_ofs = 0; 862 } 863 864 /* 865 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 866 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 867 * check correctly as it doesn't know if it is the last request being 868 * made. Somebody should implement a proper sanity check. 869 */ 870 if (bytes) 871 goto next_sg; 872 return 0; 873 } 874 875 /** 876 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 877 * @qc: Command on going 878 * 879 * Transfer Transfer data from/to the ATAPI device. 880 * 881 * LOCKING: 882 * Inherited from caller. 883 */ 884 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 885 { 886 struct ata_port *ap = qc->ap; 887 struct ata_device *dev = qc->dev; 888 struct ata_eh_info *ehi = &dev->link->eh_info; 889 unsigned int ireason, bc_lo, bc_hi, bytes; 890 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 891 892 /* Abuse qc->result_tf for temp storage of intermediate TF 893 * here to save some kernel stack usage. 894 * For normal completion, qc->result_tf is not relevant. For 895 * error, qc->result_tf is later overwritten by ata_qc_complete(). 896 * So, the correctness of qc->result_tf is not affected. 897 */ 898 ap->ops->sff_tf_read(ap, &qc->result_tf); 899 ireason = qc->result_tf.nsect; 900 bc_lo = qc->result_tf.lbam; 901 bc_hi = qc->result_tf.lbah; 902 bytes = (bc_hi << 8) | bc_lo; 903 904 /* shall be cleared to zero, indicating xfer of data */ 905 if (unlikely(ireason & ATAPI_COD)) 906 goto atapi_check; 907 908 /* make sure transfer direction matches expected */ 909 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 910 if (unlikely(do_write != i_write)) 911 goto atapi_check; 912 913 if (unlikely(!bytes)) 914 goto atapi_check; 915 916 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 917 918 if (unlikely(__atapi_pio_bytes(qc, bytes))) 919 goto err_out; 920 ata_sff_sync(ap); /* flush */ 921 922 return; 923 924 atapi_check: 925 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 926 ireason, bytes); 927 err_out: 928 qc->err_mask |= AC_ERR_HSM; 929 ap->hsm_task_state = HSM_ST_ERR; 930 } 931 932 /** 933 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 934 * @ap: the target ata_port 935 * @qc: qc on going 936 * 937 * RETURNS: 938 * 1 if ok in workqueue, 0 otherwise. 939 */ 940 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 941 struct ata_queued_cmd *qc) 942 { 943 if (qc->tf.flags & ATA_TFLAG_POLLING) 944 return 1; 945 946 if (ap->hsm_task_state == HSM_ST_FIRST) { 947 if (qc->tf.protocol == ATA_PROT_PIO && 948 (qc->tf.flags & ATA_TFLAG_WRITE)) 949 return 1; 950 951 if (ata_is_atapi(qc->tf.protocol) && 952 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 953 return 1; 954 } 955 956 return 0; 957 } 958 959 /** 960 * ata_hsm_qc_complete - finish a qc running on standard HSM 961 * @qc: Command to complete 962 * @in_wq: 1 if called from workqueue, 0 otherwise 963 * 964 * Finish @qc which is running on standard HSM. 965 * 966 * LOCKING: 967 * If @in_wq is zero, spin_lock_irqsave(host lock). 968 * Otherwise, none on entry and grabs host lock. 969 */ 970 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 971 { 972 struct ata_port *ap = qc->ap; 973 974 if (ap->ops->error_handler) { 975 if (in_wq) { 976 /* EH might have kicked in while host lock is 977 * released. 978 */ 979 qc = ata_qc_from_tag(ap, qc->tag); 980 if (qc) { 981 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 982 ata_sff_irq_on(ap); 983 ata_qc_complete(qc); 984 } else 985 ata_port_freeze(ap); 986 } 987 } else { 988 if (likely(!(qc->err_mask & AC_ERR_HSM))) 989 ata_qc_complete(qc); 990 else 991 ata_port_freeze(ap); 992 } 993 } else { 994 if (in_wq) { 995 ata_sff_irq_on(ap); 996 ata_qc_complete(qc); 997 } else 998 ata_qc_complete(qc); 999 } 1000 } 1001 1002 /** 1003 * ata_sff_hsm_move - move the HSM to the next state. 1004 * @ap: the target ata_port 1005 * @qc: qc on going 1006 * @status: current device status 1007 * @in_wq: 1 if called from workqueue, 0 otherwise 1008 * 1009 * RETURNS: 1010 * 1 when poll next status needed, 0 otherwise. 1011 */ 1012 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1013 u8 status, int in_wq) 1014 { 1015 struct ata_link *link = qc->dev->link; 1016 struct ata_eh_info *ehi = &link->eh_info; 1017 int poll_next; 1018 1019 lockdep_assert_held(ap->lock); 1020 1021 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1022 1023 /* Make sure ata_sff_qc_issue() does not throw things 1024 * like DMA polling into the workqueue. Notice that 1025 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1026 */ 1027 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1028 1029 fsm_start: 1030 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1031 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1032 1033 switch (ap->hsm_task_state) { 1034 case HSM_ST_FIRST: 1035 /* Send first data block or PACKET CDB */ 1036 1037 /* If polling, we will stay in the work queue after 1038 * sending the data. Otherwise, interrupt handler 1039 * takes over after sending the data. 1040 */ 1041 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1042 1043 /* check device status */ 1044 if (unlikely((status & ATA_DRQ) == 0)) { 1045 /* handle BSY=0, DRQ=0 as error */ 1046 if (likely(status & (ATA_ERR | ATA_DF))) 1047 /* device stops HSM for abort/error */ 1048 qc->err_mask |= AC_ERR_DEV; 1049 else { 1050 /* HSM violation. Let EH handle this */ 1051 ata_ehi_push_desc(ehi, 1052 "ST_FIRST: !(DRQ|ERR|DF)"); 1053 qc->err_mask |= AC_ERR_HSM; 1054 } 1055 1056 ap->hsm_task_state = HSM_ST_ERR; 1057 goto fsm_start; 1058 } 1059 1060 /* Device should not ask for data transfer (DRQ=1) 1061 * when it finds something wrong. 1062 * We ignore DRQ here and stop the HSM by 1063 * changing hsm_task_state to HSM_ST_ERR and 1064 * let the EH abort the command or reset the device. 1065 */ 1066 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1067 /* Some ATAPI tape drives forget to clear the ERR bit 1068 * when doing the next command (mostly request sense). 1069 * We ignore ERR here to workaround and proceed sending 1070 * the CDB. 1071 */ 1072 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1073 ata_ehi_push_desc(ehi, "ST_FIRST: " 1074 "DRQ=1 with device error, " 1075 "dev_stat 0x%X", status); 1076 qc->err_mask |= AC_ERR_HSM; 1077 ap->hsm_task_state = HSM_ST_ERR; 1078 goto fsm_start; 1079 } 1080 } 1081 1082 if (qc->tf.protocol == ATA_PROT_PIO) { 1083 /* PIO data out protocol. 1084 * send first data block. 1085 */ 1086 1087 /* ata_pio_sectors() might change the state 1088 * to HSM_ST_LAST. so, the state is changed here 1089 * before ata_pio_sectors(). 1090 */ 1091 ap->hsm_task_state = HSM_ST; 1092 ata_pio_sectors(qc); 1093 } else 1094 /* send CDB */ 1095 atapi_send_cdb(ap, qc); 1096 1097 /* if polling, ata_sff_pio_task() handles the rest. 1098 * otherwise, interrupt handler takes over from here. 1099 */ 1100 break; 1101 1102 case HSM_ST: 1103 /* complete command or read/write the data register */ 1104 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1105 /* ATAPI PIO protocol */ 1106 if ((status & ATA_DRQ) == 0) { 1107 /* No more data to transfer or device error. 1108 * Device error will be tagged in HSM_ST_LAST. 1109 */ 1110 ap->hsm_task_state = HSM_ST_LAST; 1111 goto fsm_start; 1112 } 1113 1114 /* Device should not ask for data transfer (DRQ=1) 1115 * when it finds something wrong. 1116 * We ignore DRQ here and stop the HSM by 1117 * changing hsm_task_state to HSM_ST_ERR and 1118 * let the EH abort the command or reset the device. 1119 */ 1120 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1121 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1122 "DRQ=1 with device error, " 1123 "dev_stat 0x%X", status); 1124 qc->err_mask |= AC_ERR_HSM; 1125 ap->hsm_task_state = HSM_ST_ERR; 1126 goto fsm_start; 1127 } 1128 1129 atapi_pio_bytes(qc); 1130 1131 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1132 /* bad ireason reported by device */ 1133 goto fsm_start; 1134 1135 } else { 1136 /* ATA PIO protocol */ 1137 if (unlikely((status & ATA_DRQ) == 0)) { 1138 /* handle BSY=0, DRQ=0 as error */ 1139 if (likely(status & (ATA_ERR | ATA_DF))) { 1140 /* device stops HSM for abort/error */ 1141 qc->err_mask |= AC_ERR_DEV; 1142 1143 /* If diagnostic failed and this is 1144 * IDENTIFY, it's likely a phantom 1145 * device. Mark hint. 1146 */ 1147 if (qc->dev->horkage & 1148 ATA_HORKAGE_DIAGNOSTIC) 1149 qc->err_mask |= 1150 AC_ERR_NODEV_HINT; 1151 } else { 1152 /* HSM violation. Let EH handle this. 1153 * Phantom devices also trigger this 1154 * condition. Mark hint. 1155 */ 1156 ata_ehi_push_desc(ehi, "ST-ATA: " 1157 "DRQ=0 without device error, " 1158 "dev_stat 0x%X", status); 1159 qc->err_mask |= AC_ERR_HSM | 1160 AC_ERR_NODEV_HINT; 1161 } 1162 1163 ap->hsm_task_state = HSM_ST_ERR; 1164 goto fsm_start; 1165 } 1166 1167 /* For PIO reads, some devices may ask for 1168 * data transfer (DRQ=1) alone with ERR=1. 1169 * We respect DRQ here and transfer one 1170 * block of junk data before changing the 1171 * hsm_task_state to HSM_ST_ERR. 1172 * 1173 * For PIO writes, ERR=1 DRQ=1 doesn't make 1174 * sense since the data block has been 1175 * transferred to the device. 1176 */ 1177 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1178 /* data might be corrputed */ 1179 qc->err_mask |= AC_ERR_DEV; 1180 1181 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1182 ata_pio_sectors(qc); 1183 status = ata_wait_idle(ap); 1184 } 1185 1186 if (status & (ATA_BUSY | ATA_DRQ)) { 1187 ata_ehi_push_desc(ehi, "ST-ATA: " 1188 "BUSY|DRQ persists on ERR|DF, " 1189 "dev_stat 0x%X", status); 1190 qc->err_mask |= AC_ERR_HSM; 1191 } 1192 1193 /* There are oddball controllers with 1194 * status register stuck at 0x7f and 1195 * lbal/m/h at zero which makes it 1196 * pass all other presence detection 1197 * mechanisms we have. Set NODEV_HINT 1198 * for it. Kernel bz#7241. 1199 */ 1200 if (status == 0x7f) 1201 qc->err_mask |= AC_ERR_NODEV_HINT; 1202 1203 /* ata_pio_sectors() might change the 1204 * state to HSM_ST_LAST. so, the state 1205 * is changed after ata_pio_sectors(). 1206 */ 1207 ap->hsm_task_state = HSM_ST_ERR; 1208 goto fsm_start; 1209 } 1210 1211 ata_pio_sectors(qc); 1212 1213 if (ap->hsm_task_state == HSM_ST_LAST && 1214 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1215 /* all data read */ 1216 status = ata_wait_idle(ap); 1217 goto fsm_start; 1218 } 1219 } 1220 1221 poll_next = 1; 1222 break; 1223 1224 case HSM_ST_LAST: 1225 if (unlikely(!ata_ok(status))) { 1226 qc->err_mask |= __ac_err_mask(status); 1227 ap->hsm_task_state = HSM_ST_ERR; 1228 goto fsm_start; 1229 } 1230 1231 /* no more data to transfer */ 1232 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1233 ap->print_id, qc->dev->devno, status); 1234 1235 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1236 1237 ap->hsm_task_state = HSM_ST_IDLE; 1238 1239 /* complete taskfile transaction */ 1240 ata_hsm_qc_complete(qc, in_wq); 1241 1242 poll_next = 0; 1243 break; 1244 1245 case HSM_ST_ERR: 1246 ap->hsm_task_state = HSM_ST_IDLE; 1247 1248 /* complete taskfile transaction */ 1249 ata_hsm_qc_complete(qc, in_wq); 1250 1251 poll_next = 0; 1252 break; 1253 default: 1254 poll_next = 0; 1255 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1256 ap->print_id, ap->hsm_task_state); 1257 } 1258 1259 return poll_next; 1260 } 1261 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1262 1263 void ata_sff_queue_work(struct work_struct *work) 1264 { 1265 queue_work(ata_sff_wq, work); 1266 } 1267 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1268 1269 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1270 { 1271 queue_delayed_work(ata_sff_wq, dwork, delay); 1272 } 1273 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1274 1275 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1276 { 1277 struct ata_port *ap = link->ap; 1278 1279 WARN_ON((ap->sff_pio_task_link != NULL) && 1280 (ap->sff_pio_task_link != link)); 1281 ap->sff_pio_task_link = link; 1282 1283 /* may fail if ata_sff_flush_pio_task() in progress */ 1284 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1285 } 1286 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1287 1288 void ata_sff_flush_pio_task(struct ata_port *ap) 1289 { 1290 DPRINTK("ENTER\n"); 1291 1292 cancel_delayed_work_sync(&ap->sff_pio_task); 1293 1294 /* 1295 * We wanna reset the HSM state to IDLE. If we do so without 1296 * grabbing the port lock, critical sections protected by it which 1297 * expect the HSM state to stay stable may get surprised. For 1298 * example, we may set IDLE in between the time 1299 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1300 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1301 */ 1302 spin_lock_irq(ap->lock); 1303 ap->hsm_task_state = HSM_ST_IDLE; 1304 spin_unlock_irq(ap->lock); 1305 1306 ap->sff_pio_task_link = NULL; 1307 1308 if (ata_msg_ctl(ap)) 1309 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1310 } 1311 1312 static void ata_sff_pio_task(struct work_struct *work) 1313 { 1314 struct ata_port *ap = 1315 container_of(work, struct ata_port, sff_pio_task.work); 1316 struct ata_link *link = ap->sff_pio_task_link; 1317 struct ata_queued_cmd *qc; 1318 u8 status; 1319 int poll_next; 1320 1321 spin_lock_irq(ap->lock); 1322 1323 BUG_ON(ap->sff_pio_task_link == NULL); 1324 /* qc can be NULL if timeout occurred */ 1325 qc = ata_qc_from_tag(ap, link->active_tag); 1326 if (!qc) { 1327 ap->sff_pio_task_link = NULL; 1328 goto out_unlock; 1329 } 1330 1331 fsm_start: 1332 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1333 1334 /* 1335 * This is purely heuristic. This is a fast path. 1336 * Sometimes when we enter, BSY will be cleared in 1337 * a chk-status or two. If not, the drive is probably seeking 1338 * or something. Snooze for a couple msecs, then 1339 * chk-status again. If still busy, queue delayed work. 1340 */ 1341 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1342 if (status & ATA_BUSY) { 1343 spin_unlock_irq(ap->lock); 1344 ata_msleep(ap, 2); 1345 spin_lock_irq(ap->lock); 1346 1347 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1348 if (status & ATA_BUSY) { 1349 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1350 goto out_unlock; 1351 } 1352 } 1353 1354 /* 1355 * hsm_move() may trigger another command to be processed. 1356 * clean the link beforehand. 1357 */ 1358 ap->sff_pio_task_link = NULL; 1359 /* move the HSM */ 1360 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1361 1362 /* another command or interrupt handler 1363 * may be running at this point. 1364 */ 1365 if (poll_next) 1366 goto fsm_start; 1367 out_unlock: 1368 spin_unlock_irq(ap->lock); 1369 } 1370 1371 /** 1372 * ata_sff_qc_issue - issue taskfile to a SFF controller 1373 * @qc: command to issue to device 1374 * 1375 * This function issues a PIO or NODATA command to a SFF 1376 * controller. 1377 * 1378 * LOCKING: 1379 * spin_lock_irqsave(host lock) 1380 * 1381 * RETURNS: 1382 * Zero on success, AC_ERR_* mask on failure 1383 */ 1384 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1385 { 1386 struct ata_port *ap = qc->ap; 1387 struct ata_link *link = qc->dev->link; 1388 1389 /* Use polling pio if the LLD doesn't handle 1390 * interrupt driven pio and atapi CDB interrupt. 1391 */ 1392 if (ap->flags & ATA_FLAG_PIO_POLLING) 1393 qc->tf.flags |= ATA_TFLAG_POLLING; 1394 1395 /* select the device */ 1396 ata_dev_select(ap, qc->dev->devno, 1, 0); 1397 1398 /* start the command */ 1399 switch (qc->tf.protocol) { 1400 case ATA_PROT_NODATA: 1401 if (qc->tf.flags & ATA_TFLAG_POLLING) 1402 ata_qc_set_polling(qc); 1403 1404 ata_tf_to_host(ap, &qc->tf); 1405 ap->hsm_task_state = HSM_ST_LAST; 1406 1407 if (qc->tf.flags & ATA_TFLAG_POLLING) 1408 ata_sff_queue_pio_task(link, 0); 1409 1410 break; 1411 1412 case ATA_PROT_PIO: 1413 if (qc->tf.flags & ATA_TFLAG_POLLING) 1414 ata_qc_set_polling(qc); 1415 1416 ata_tf_to_host(ap, &qc->tf); 1417 1418 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1419 /* PIO data out protocol */ 1420 ap->hsm_task_state = HSM_ST_FIRST; 1421 ata_sff_queue_pio_task(link, 0); 1422 1423 /* always send first data block using the 1424 * ata_sff_pio_task() codepath. 1425 */ 1426 } else { 1427 /* PIO data in protocol */ 1428 ap->hsm_task_state = HSM_ST; 1429 1430 if (qc->tf.flags & ATA_TFLAG_POLLING) 1431 ata_sff_queue_pio_task(link, 0); 1432 1433 /* if polling, ata_sff_pio_task() handles the 1434 * rest. otherwise, interrupt handler takes 1435 * over from here. 1436 */ 1437 } 1438 1439 break; 1440 1441 case ATAPI_PROT_PIO: 1442 case ATAPI_PROT_NODATA: 1443 if (qc->tf.flags & ATA_TFLAG_POLLING) 1444 ata_qc_set_polling(qc); 1445 1446 ata_tf_to_host(ap, &qc->tf); 1447 1448 ap->hsm_task_state = HSM_ST_FIRST; 1449 1450 /* send cdb by polling if no cdb interrupt */ 1451 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1452 (qc->tf.flags & ATA_TFLAG_POLLING)) 1453 ata_sff_queue_pio_task(link, 0); 1454 break; 1455 1456 default: 1457 return AC_ERR_SYSTEM; 1458 } 1459 1460 return 0; 1461 } 1462 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1463 1464 /** 1465 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1466 * @qc: qc to fill result TF for 1467 * 1468 * @qc is finished and result TF needs to be filled. Fill it 1469 * using ->sff_tf_read. 1470 * 1471 * LOCKING: 1472 * spin_lock_irqsave(host lock) 1473 * 1474 * RETURNS: 1475 * true indicating that result TF is successfully filled. 1476 */ 1477 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1478 { 1479 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1480 return true; 1481 } 1482 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1483 1484 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1485 { 1486 ap->stats.idle_irq++; 1487 1488 #ifdef ATA_IRQ_TRAP 1489 if ((ap->stats.idle_irq % 1000) == 0) { 1490 ap->ops->sff_check_status(ap); 1491 if (ap->ops->sff_irq_clear) 1492 ap->ops->sff_irq_clear(ap); 1493 ata_port_warn(ap, "irq trap\n"); 1494 return 1; 1495 } 1496 #endif 1497 return 0; /* irq not handled */ 1498 } 1499 1500 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1501 struct ata_queued_cmd *qc, 1502 bool hsmv_on_idle) 1503 { 1504 u8 status; 1505 1506 VPRINTK("ata%u: protocol %d task_state %d\n", 1507 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1508 1509 /* Check whether we are expecting interrupt in this state */ 1510 switch (ap->hsm_task_state) { 1511 case HSM_ST_FIRST: 1512 /* Some pre-ATAPI-4 devices assert INTRQ 1513 * at this state when ready to receive CDB. 1514 */ 1515 1516 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1517 * The flag was turned on only for atapi devices. No 1518 * need to check ata_is_atapi(qc->tf.protocol) again. 1519 */ 1520 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1521 return ata_sff_idle_irq(ap); 1522 break; 1523 case HSM_ST_IDLE: 1524 return ata_sff_idle_irq(ap); 1525 default: 1526 break; 1527 } 1528 1529 /* check main status, clearing INTRQ if needed */ 1530 status = ata_sff_irq_status(ap); 1531 if (status & ATA_BUSY) { 1532 if (hsmv_on_idle) { 1533 /* BMDMA engine is already stopped, we're screwed */ 1534 qc->err_mask |= AC_ERR_HSM; 1535 ap->hsm_task_state = HSM_ST_ERR; 1536 } else 1537 return ata_sff_idle_irq(ap); 1538 } 1539 1540 /* clear irq events */ 1541 if (ap->ops->sff_irq_clear) 1542 ap->ops->sff_irq_clear(ap); 1543 1544 ata_sff_hsm_move(ap, qc, status, 0); 1545 1546 return 1; /* irq handled */ 1547 } 1548 1549 /** 1550 * ata_sff_port_intr - Handle SFF port interrupt 1551 * @ap: Port on which interrupt arrived (possibly...) 1552 * @qc: Taskfile currently active in engine 1553 * 1554 * Handle port interrupt for given queued command. 1555 * 1556 * LOCKING: 1557 * spin_lock_irqsave(host lock) 1558 * 1559 * RETURNS: 1560 * One if interrupt was handled, zero if not (shared irq). 1561 */ 1562 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1563 { 1564 return __ata_sff_port_intr(ap, qc, false); 1565 } 1566 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1567 1568 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1569 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1570 { 1571 struct ata_host *host = dev_instance; 1572 bool retried = false; 1573 unsigned int i; 1574 unsigned int handled, idle, polling; 1575 unsigned long flags; 1576 1577 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1578 spin_lock_irqsave(&host->lock, flags); 1579 1580 retry: 1581 handled = idle = polling = 0; 1582 for (i = 0; i < host->n_ports; i++) { 1583 struct ata_port *ap = host->ports[i]; 1584 struct ata_queued_cmd *qc; 1585 1586 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1587 if (qc) { 1588 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1589 handled |= port_intr(ap, qc); 1590 else 1591 polling |= 1 << i; 1592 } else 1593 idle |= 1 << i; 1594 } 1595 1596 /* 1597 * If no port was expecting IRQ but the controller is actually 1598 * asserting IRQ line, nobody cared will ensue. Check IRQ 1599 * pending status if available and clear spurious IRQ. 1600 */ 1601 if (!handled && !retried) { 1602 bool retry = false; 1603 1604 for (i = 0; i < host->n_ports; i++) { 1605 struct ata_port *ap = host->ports[i]; 1606 1607 if (polling & (1 << i)) 1608 continue; 1609 1610 if (!ap->ops->sff_irq_check || 1611 !ap->ops->sff_irq_check(ap)) 1612 continue; 1613 1614 if (idle & (1 << i)) { 1615 ap->ops->sff_check_status(ap); 1616 if (ap->ops->sff_irq_clear) 1617 ap->ops->sff_irq_clear(ap); 1618 } else { 1619 /* clear INTRQ and check if BUSY cleared */ 1620 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1621 retry |= true; 1622 /* 1623 * With command in flight, we can't do 1624 * sff_irq_clear() w/o racing with completion. 1625 */ 1626 } 1627 } 1628 1629 if (retry) { 1630 retried = true; 1631 goto retry; 1632 } 1633 } 1634 1635 spin_unlock_irqrestore(&host->lock, flags); 1636 1637 return IRQ_RETVAL(handled); 1638 } 1639 1640 /** 1641 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1642 * @irq: irq line (unused) 1643 * @dev_instance: pointer to our ata_host information structure 1644 * 1645 * Default interrupt handler for PCI IDE devices. Calls 1646 * ata_sff_port_intr() for each port that is not disabled. 1647 * 1648 * LOCKING: 1649 * Obtains host lock during operation. 1650 * 1651 * RETURNS: 1652 * IRQ_NONE or IRQ_HANDLED. 1653 */ 1654 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1655 { 1656 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1657 } 1658 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1659 1660 /** 1661 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1662 * @ap: port that appears to have timed out 1663 * 1664 * Called from the libata error handlers when the core code suspects 1665 * an interrupt has been lost. If it has complete anything we can and 1666 * then return. Interface must support altstatus for this faster 1667 * recovery to occur. 1668 * 1669 * Locking: 1670 * Caller holds host lock 1671 */ 1672 1673 void ata_sff_lost_interrupt(struct ata_port *ap) 1674 { 1675 u8 status; 1676 struct ata_queued_cmd *qc; 1677 1678 /* Only one outstanding command per SFF channel */ 1679 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1680 /* We cannot lose an interrupt on a non-existent or polled command */ 1681 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1682 return; 1683 /* See if the controller thinks it is still busy - if so the command 1684 isn't a lost IRQ but is still in progress */ 1685 status = ata_sff_altstatus(ap); 1686 if (status & ATA_BUSY) 1687 return; 1688 1689 /* There was a command running, we are no longer busy and we have 1690 no interrupt. */ 1691 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1692 status); 1693 /* Run the host interrupt logic as if the interrupt had not been 1694 lost */ 1695 ata_sff_port_intr(ap, qc); 1696 } 1697 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1698 1699 /** 1700 * ata_sff_freeze - Freeze SFF controller port 1701 * @ap: port to freeze 1702 * 1703 * Freeze SFF controller port. 1704 * 1705 * LOCKING: 1706 * Inherited from caller. 1707 */ 1708 void ata_sff_freeze(struct ata_port *ap) 1709 { 1710 ap->ctl |= ATA_NIEN; 1711 ap->last_ctl = ap->ctl; 1712 1713 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1714 ata_sff_set_devctl(ap, ap->ctl); 1715 1716 /* Under certain circumstances, some controllers raise IRQ on 1717 * ATA_NIEN manipulation. Also, many controllers fail to mask 1718 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1719 */ 1720 ap->ops->sff_check_status(ap); 1721 1722 if (ap->ops->sff_irq_clear) 1723 ap->ops->sff_irq_clear(ap); 1724 } 1725 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1726 1727 /** 1728 * ata_sff_thaw - Thaw SFF controller port 1729 * @ap: port to thaw 1730 * 1731 * Thaw SFF controller port. 1732 * 1733 * LOCKING: 1734 * Inherited from caller. 1735 */ 1736 void ata_sff_thaw(struct ata_port *ap) 1737 { 1738 /* clear & re-enable interrupts */ 1739 ap->ops->sff_check_status(ap); 1740 if (ap->ops->sff_irq_clear) 1741 ap->ops->sff_irq_clear(ap); 1742 ata_sff_irq_on(ap); 1743 } 1744 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1745 1746 /** 1747 * ata_sff_prereset - prepare SFF link for reset 1748 * @link: SFF link to be reset 1749 * @deadline: deadline jiffies for the operation 1750 * 1751 * SFF link @link is about to be reset. Initialize it. It first 1752 * calls ata_std_prereset() and wait for !BSY if the port is 1753 * being softreset. 1754 * 1755 * LOCKING: 1756 * Kernel thread context (may sleep) 1757 * 1758 * RETURNS: 1759 * 0 on success, -errno otherwise. 1760 */ 1761 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1762 { 1763 struct ata_eh_context *ehc = &link->eh_context; 1764 int rc; 1765 1766 rc = ata_std_prereset(link, deadline); 1767 if (rc) 1768 return rc; 1769 1770 /* if we're about to do hardreset, nothing more to do */ 1771 if (ehc->i.action & ATA_EH_HARDRESET) 1772 return 0; 1773 1774 /* wait for !BSY if we don't know that no device is attached */ 1775 if (!ata_link_offline(link)) { 1776 rc = ata_sff_wait_ready(link, deadline); 1777 if (rc && rc != -ENODEV) { 1778 ata_link_warn(link, 1779 "device not ready (errno=%d), forcing hardreset\n", 1780 rc); 1781 ehc->i.action |= ATA_EH_HARDRESET; 1782 } 1783 } 1784 1785 return 0; 1786 } 1787 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1788 1789 /** 1790 * ata_devchk - PATA device presence detection 1791 * @ap: ATA channel to examine 1792 * @device: Device to examine (starting at zero) 1793 * 1794 * This technique was originally described in 1795 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1796 * later found its way into the ATA/ATAPI spec. 1797 * 1798 * Write a pattern to the ATA shadow registers, 1799 * and if a device is present, it will respond by 1800 * correctly storing and echoing back the 1801 * ATA shadow register contents. 1802 * 1803 * LOCKING: 1804 * caller. 1805 */ 1806 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1807 { 1808 struct ata_ioports *ioaddr = &ap->ioaddr; 1809 u8 nsect, lbal; 1810 1811 ap->ops->sff_dev_select(ap, device); 1812 1813 iowrite8(0x55, ioaddr->nsect_addr); 1814 iowrite8(0xaa, ioaddr->lbal_addr); 1815 1816 iowrite8(0xaa, ioaddr->nsect_addr); 1817 iowrite8(0x55, ioaddr->lbal_addr); 1818 1819 iowrite8(0x55, ioaddr->nsect_addr); 1820 iowrite8(0xaa, ioaddr->lbal_addr); 1821 1822 nsect = ioread8(ioaddr->nsect_addr); 1823 lbal = ioread8(ioaddr->lbal_addr); 1824 1825 if ((nsect == 0x55) && (lbal == 0xaa)) 1826 return 1; /* we found a device */ 1827 1828 return 0; /* nothing found */ 1829 } 1830 1831 /** 1832 * ata_sff_dev_classify - Parse returned ATA device signature 1833 * @dev: ATA device to classify (starting at zero) 1834 * @present: device seems present 1835 * @r_err: Value of error register on completion 1836 * 1837 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1838 * an ATA/ATAPI-defined set of values is placed in the ATA 1839 * shadow registers, indicating the results of device detection 1840 * and diagnostics. 1841 * 1842 * Select the ATA device, and read the values from the ATA shadow 1843 * registers. Then parse according to the Error register value, 1844 * and the spec-defined values examined by ata_dev_classify(). 1845 * 1846 * LOCKING: 1847 * caller. 1848 * 1849 * RETURNS: 1850 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1851 */ 1852 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1853 u8 *r_err) 1854 { 1855 struct ata_port *ap = dev->link->ap; 1856 struct ata_taskfile tf; 1857 unsigned int class; 1858 u8 err; 1859 1860 ap->ops->sff_dev_select(ap, dev->devno); 1861 1862 memset(&tf, 0, sizeof(tf)); 1863 1864 ap->ops->sff_tf_read(ap, &tf); 1865 err = tf.feature; 1866 if (r_err) 1867 *r_err = err; 1868 1869 /* see if device passed diags: continue and warn later */ 1870 if (err == 0) 1871 /* diagnostic fail : do nothing _YET_ */ 1872 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1873 else if (err == 1) 1874 /* do nothing */ ; 1875 else if ((dev->devno == 0) && (err == 0x81)) 1876 /* do nothing */ ; 1877 else 1878 return ATA_DEV_NONE; 1879 1880 /* determine if device is ATA or ATAPI */ 1881 class = ata_dev_classify(&tf); 1882 1883 if (class == ATA_DEV_UNKNOWN) { 1884 /* If the device failed diagnostic, it's likely to 1885 * have reported incorrect device signature too. 1886 * Assume ATA device if the device seems present but 1887 * device signature is invalid with diagnostic 1888 * failure. 1889 */ 1890 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1891 class = ATA_DEV_ATA; 1892 else 1893 class = ATA_DEV_NONE; 1894 } else if ((class == ATA_DEV_ATA) && 1895 (ap->ops->sff_check_status(ap) == 0)) 1896 class = ATA_DEV_NONE; 1897 1898 return class; 1899 } 1900 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1901 1902 /** 1903 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1904 * @link: SFF link which is just reset 1905 * @devmask: mask of present devices 1906 * @deadline: deadline jiffies for the operation 1907 * 1908 * Wait devices attached to SFF @link to become ready after 1909 * reset. It contains preceding 150ms wait to avoid accessing TF 1910 * status register too early. 1911 * 1912 * LOCKING: 1913 * Kernel thread context (may sleep). 1914 * 1915 * RETURNS: 1916 * 0 on success, -ENODEV if some or all of devices in @devmask 1917 * don't seem to exist. -errno on other errors. 1918 */ 1919 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1920 unsigned long deadline) 1921 { 1922 struct ata_port *ap = link->ap; 1923 struct ata_ioports *ioaddr = &ap->ioaddr; 1924 unsigned int dev0 = devmask & (1 << 0); 1925 unsigned int dev1 = devmask & (1 << 1); 1926 int rc, ret = 0; 1927 1928 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1929 1930 /* always check readiness of the master device */ 1931 rc = ata_sff_wait_ready(link, deadline); 1932 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1933 * and TF status is 0xff, bail out on it too. 1934 */ 1935 if (rc) 1936 return rc; 1937 1938 /* if device 1 was found in ata_devchk, wait for register 1939 * access briefly, then wait for BSY to clear. 1940 */ 1941 if (dev1) { 1942 int i; 1943 1944 ap->ops->sff_dev_select(ap, 1); 1945 1946 /* Wait for register access. Some ATAPI devices fail 1947 * to set nsect/lbal after reset, so don't waste too 1948 * much time on it. We're gonna wait for !BSY anyway. 1949 */ 1950 for (i = 0; i < 2; i++) { 1951 u8 nsect, lbal; 1952 1953 nsect = ioread8(ioaddr->nsect_addr); 1954 lbal = ioread8(ioaddr->lbal_addr); 1955 if ((nsect == 1) && (lbal == 1)) 1956 break; 1957 ata_msleep(ap, 50); /* give drive a breather */ 1958 } 1959 1960 rc = ata_sff_wait_ready(link, deadline); 1961 if (rc) { 1962 if (rc != -ENODEV) 1963 return rc; 1964 ret = rc; 1965 } 1966 } 1967 1968 /* is all this really necessary? */ 1969 ap->ops->sff_dev_select(ap, 0); 1970 if (dev1) 1971 ap->ops->sff_dev_select(ap, 1); 1972 if (dev0) 1973 ap->ops->sff_dev_select(ap, 0); 1974 1975 return ret; 1976 } 1977 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1978 1979 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1980 unsigned long deadline) 1981 { 1982 struct ata_ioports *ioaddr = &ap->ioaddr; 1983 1984 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1985 1986 if (ap->ioaddr.ctl_addr) { 1987 /* software reset. causes dev0 to be selected */ 1988 iowrite8(ap->ctl, ioaddr->ctl_addr); 1989 udelay(20); /* FIXME: flush */ 1990 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1991 udelay(20); /* FIXME: flush */ 1992 iowrite8(ap->ctl, ioaddr->ctl_addr); 1993 ap->last_ctl = ap->ctl; 1994 } 1995 1996 /* wait the port to become ready */ 1997 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1998 } 1999 2000 /** 2001 * ata_sff_softreset - reset host port via ATA SRST 2002 * @link: ATA link to reset 2003 * @classes: resulting classes of attached devices 2004 * @deadline: deadline jiffies for the operation 2005 * 2006 * Reset host port using ATA SRST. 2007 * 2008 * LOCKING: 2009 * Kernel thread context (may sleep) 2010 * 2011 * RETURNS: 2012 * 0 on success, -errno otherwise. 2013 */ 2014 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2015 unsigned long deadline) 2016 { 2017 struct ata_port *ap = link->ap; 2018 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2019 unsigned int devmask = 0; 2020 int rc; 2021 u8 err; 2022 2023 DPRINTK("ENTER\n"); 2024 2025 /* determine if device 0/1 are present */ 2026 if (ata_devchk(ap, 0)) 2027 devmask |= (1 << 0); 2028 if (slave_possible && ata_devchk(ap, 1)) 2029 devmask |= (1 << 1); 2030 2031 /* select device 0 again */ 2032 ap->ops->sff_dev_select(ap, 0); 2033 2034 /* issue bus reset */ 2035 DPRINTK("about to softreset, devmask=%x\n", devmask); 2036 rc = ata_bus_softreset(ap, devmask, deadline); 2037 /* if link is occupied, -ENODEV too is an error */ 2038 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2039 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2040 return rc; 2041 } 2042 2043 /* determine by signature whether we have ATA or ATAPI devices */ 2044 classes[0] = ata_sff_dev_classify(&link->device[0], 2045 devmask & (1 << 0), &err); 2046 if (slave_possible && err != 0x81) 2047 classes[1] = ata_sff_dev_classify(&link->device[1], 2048 devmask & (1 << 1), &err); 2049 2050 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2051 return 0; 2052 } 2053 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2054 2055 /** 2056 * sata_sff_hardreset - reset host port via SATA phy reset 2057 * @link: link to reset 2058 * @class: resulting class of attached device 2059 * @deadline: deadline jiffies for the operation 2060 * 2061 * SATA phy-reset host port using DET bits of SControl register, 2062 * wait for !BSY and classify the attached device. 2063 * 2064 * LOCKING: 2065 * Kernel thread context (may sleep) 2066 * 2067 * RETURNS: 2068 * 0 on success, -errno otherwise. 2069 */ 2070 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2071 unsigned long deadline) 2072 { 2073 struct ata_eh_context *ehc = &link->eh_context; 2074 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2075 bool online; 2076 int rc; 2077 2078 rc = sata_link_hardreset(link, timing, deadline, &online, 2079 ata_sff_check_ready); 2080 if (online) 2081 *class = ata_sff_dev_classify(link->device, 1, NULL); 2082 2083 DPRINTK("EXIT, class=%u\n", *class); 2084 return rc; 2085 } 2086 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2087 2088 /** 2089 * ata_sff_postreset - SFF postreset callback 2090 * @link: the target SFF ata_link 2091 * @classes: classes of attached devices 2092 * 2093 * This function is invoked after a successful reset. It first 2094 * calls ata_std_postreset() and performs SFF specific postreset 2095 * processing. 2096 * 2097 * LOCKING: 2098 * Kernel thread context (may sleep) 2099 */ 2100 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2101 { 2102 struct ata_port *ap = link->ap; 2103 2104 ata_std_postreset(link, classes); 2105 2106 /* is double-select really necessary? */ 2107 if (classes[0] != ATA_DEV_NONE) 2108 ap->ops->sff_dev_select(ap, 1); 2109 if (classes[1] != ATA_DEV_NONE) 2110 ap->ops->sff_dev_select(ap, 0); 2111 2112 /* bail out if no device is present */ 2113 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2114 DPRINTK("EXIT, no device\n"); 2115 return; 2116 } 2117 2118 /* set up device control */ 2119 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2120 ata_sff_set_devctl(ap, ap->ctl); 2121 ap->last_ctl = ap->ctl; 2122 } 2123 } 2124 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2125 2126 /** 2127 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2128 * @qc: command 2129 * 2130 * Drain the FIFO and device of any stuck data following a command 2131 * failing to complete. In some cases this is necessary before a 2132 * reset will recover the device. 2133 * 2134 */ 2135 2136 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2137 { 2138 int count; 2139 struct ata_port *ap; 2140 2141 /* We only need to flush incoming data when a command was running */ 2142 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2143 return; 2144 2145 ap = qc->ap; 2146 /* Drain up to 64K of data before we give up this recovery method */ 2147 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2148 && count < 65536; count += 2) 2149 ioread16(ap->ioaddr.data_addr); 2150 2151 /* Can become DEBUG later */ 2152 if (count) 2153 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2154 2155 } 2156 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2157 2158 /** 2159 * ata_sff_error_handler - Stock error handler for SFF controller 2160 * @ap: port to handle error for 2161 * 2162 * Stock error handler for SFF controller. It can handle both 2163 * PATA and SATA controllers. Many controllers should be able to 2164 * use this EH as-is or with some added handling before and 2165 * after. 2166 * 2167 * LOCKING: 2168 * Kernel thread context (may sleep) 2169 */ 2170 void ata_sff_error_handler(struct ata_port *ap) 2171 { 2172 ata_reset_fn_t softreset = ap->ops->softreset; 2173 ata_reset_fn_t hardreset = ap->ops->hardreset; 2174 struct ata_queued_cmd *qc; 2175 unsigned long flags; 2176 2177 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2178 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2179 qc = NULL; 2180 2181 spin_lock_irqsave(ap->lock, flags); 2182 2183 /* 2184 * We *MUST* do FIFO draining before we issue a reset as 2185 * several devices helpfully clear their internal state and 2186 * will lock solid if we touch the data port post reset. Pass 2187 * qc in case anyone wants to do different PIO/DMA recovery or 2188 * has per command fixups 2189 */ 2190 if (ap->ops->sff_drain_fifo) 2191 ap->ops->sff_drain_fifo(qc); 2192 2193 spin_unlock_irqrestore(ap->lock, flags); 2194 2195 /* ignore built-in hardresets if SCR access is not available */ 2196 if ((hardreset == sata_std_hardreset || 2197 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2198 hardreset = NULL; 2199 2200 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2201 ap->ops->postreset); 2202 } 2203 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2204 2205 /** 2206 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2207 * @ioaddr: IO address structure to be initialized 2208 * 2209 * Utility function which initializes data_addr, error_addr, 2210 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2211 * device_addr, status_addr, and command_addr to standard offsets 2212 * relative to cmd_addr. 2213 * 2214 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2215 */ 2216 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2217 { 2218 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2219 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2220 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2221 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2222 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2223 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2224 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2225 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2226 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2227 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2228 } 2229 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2230 2231 #ifdef CONFIG_PCI 2232 2233 static int ata_resources_present(struct pci_dev *pdev, int port) 2234 { 2235 int i; 2236 2237 /* Check the PCI resources for this channel are enabled */ 2238 port = port * 2; 2239 for (i = 0; i < 2; i++) { 2240 if (pci_resource_start(pdev, port + i) == 0 || 2241 pci_resource_len(pdev, port + i) == 0) 2242 return 0; 2243 } 2244 return 1; 2245 } 2246 2247 /** 2248 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2249 * @host: target ATA host 2250 * 2251 * Acquire native PCI ATA resources for @host and initialize the 2252 * first two ports of @host accordingly. Ports marked dummy are 2253 * skipped and allocation failure makes the port dummy. 2254 * 2255 * Note that native PCI resources are valid even for legacy hosts 2256 * as we fix up pdev resources array early in boot, so this 2257 * function can be used for both native and legacy SFF hosts. 2258 * 2259 * LOCKING: 2260 * Inherited from calling layer (may sleep). 2261 * 2262 * RETURNS: 2263 * 0 if at least one port is initialized, -ENODEV if no port is 2264 * available. 2265 */ 2266 int ata_pci_sff_init_host(struct ata_host *host) 2267 { 2268 struct device *gdev = host->dev; 2269 struct pci_dev *pdev = to_pci_dev(gdev); 2270 unsigned int mask = 0; 2271 int i, rc; 2272 2273 /* request, iomap BARs and init port addresses accordingly */ 2274 for (i = 0; i < 2; i++) { 2275 struct ata_port *ap = host->ports[i]; 2276 int base = i * 2; 2277 void __iomem * const *iomap; 2278 2279 if (ata_port_is_dummy(ap)) 2280 continue; 2281 2282 /* Discard disabled ports. Some controllers show 2283 * their unused channels this way. Disabled ports are 2284 * made dummy. 2285 */ 2286 if (!ata_resources_present(pdev, i)) { 2287 ap->ops = &ata_dummy_port_ops; 2288 continue; 2289 } 2290 2291 rc = pcim_iomap_regions(pdev, 0x3 << base, 2292 dev_driver_string(gdev)); 2293 if (rc) { 2294 dev_warn(gdev, 2295 "failed to request/iomap BARs for port %d (errno=%d)\n", 2296 i, rc); 2297 if (rc == -EBUSY) 2298 pcim_pin_device(pdev); 2299 ap->ops = &ata_dummy_port_ops; 2300 continue; 2301 } 2302 host->iomap = iomap = pcim_iomap_table(pdev); 2303 2304 ap->ioaddr.cmd_addr = iomap[base]; 2305 ap->ioaddr.altstatus_addr = 2306 ap->ioaddr.ctl_addr = (void __iomem *) 2307 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2308 ata_sff_std_ports(&ap->ioaddr); 2309 2310 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2311 (unsigned long long)pci_resource_start(pdev, base), 2312 (unsigned long long)pci_resource_start(pdev, base + 1)); 2313 2314 mask |= 1 << i; 2315 } 2316 2317 if (!mask) { 2318 dev_err(gdev, "no available native port\n"); 2319 return -ENODEV; 2320 } 2321 2322 return 0; 2323 } 2324 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2325 2326 /** 2327 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2328 * @pdev: target PCI device 2329 * @ppi: array of port_info, must be enough for two ports 2330 * @r_host: out argument for the initialized ATA host 2331 * 2332 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2333 * all PCI resources and initialize it accordingly in one go. 2334 * 2335 * LOCKING: 2336 * Inherited from calling layer (may sleep). 2337 * 2338 * RETURNS: 2339 * 0 on success, -errno otherwise. 2340 */ 2341 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2342 const struct ata_port_info * const *ppi, 2343 struct ata_host **r_host) 2344 { 2345 struct ata_host *host; 2346 int rc; 2347 2348 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2349 return -ENOMEM; 2350 2351 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2352 if (!host) { 2353 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2354 rc = -ENOMEM; 2355 goto err_out; 2356 } 2357 2358 rc = ata_pci_sff_init_host(host); 2359 if (rc) 2360 goto err_out; 2361 2362 devres_remove_group(&pdev->dev, NULL); 2363 *r_host = host; 2364 return 0; 2365 2366 err_out: 2367 devres_release_group(&pdev->dev, NULL); 2368 return rc; 2369 } 2370 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2371 2372 /** 2373 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2374 * @host: target SFF ATA host 2375 * @irq_handler: irq_handler used when requesting IRQ(s) 2376 * @sht: scsi_host_template to use when registering the host 2377 * 2378 * This is the counterpart of ata_host_activate() for SFF ATA 2379 * hosts. This separate helper is necessary because SFF hosts 2380 * use two separate interrupts in legacy mode. 2381 * 2382 * LOCKING: 2383 * Inherited from calling layer (may sleep). 2384 * 2385 * RETURNS: 2386 * 0 on success, -errno otherwise. 2387 */ 2388 int ata_pci_sff_activate_host(struct ata_host *host, 2389 irq_handler_t irq_handler, 2390 struct scsi_host_template *sht) 2391 { 2392 struct device *dev = host->dev; 2393 struct pci_dev *pdev = to_pci_dev(dev); 2394 const char *drv_name = dev_driver_string(host->dev); 2395 int legacy_mode = 0, rc; 2396 2397 rc = ata_host_start(host); 2398 if (rc) 2399 return rc; 2400 2401 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2402 u8 tmp8, mask = 0; 2403 2404 /* 2405 * ATA spec says we should use legacy mode when one 2406 * port is in legacy mode, but disabled ports on some 2407 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2408 * on which the secondary port is not wired, so 2409 * ignore ports that are marked as 'dummy' during 2410 * this check 2411 */ 2412 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2413 if (!ata_port_is_dummy(host->ports[0])) 2414 mask |= (1 << 0); 2415 if (!ata_port_is_dummy(host->ports[1])) 2416 mask |= (1 << 2); 2417 if ((tmp8 & mask) != mask) 2418 legacy_mode = 1; 2419 } 2420 2421 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2422 return -ENOMEM; 2423 2424 if (!legacy_mode && pdev->irq) { 2425 int i; 2426 2427 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2428 IRQF_SHARED, drv_name, host); 2429 if (rc) 2430 goto out; 2431 2432 for (i = 0; i < 2; i++) { 2433 if (ata_port_is_dummy(host->ports[i])) 2434 continue; 2435 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2436 } 2437 } else if (legacy_mode) { 2438 if (!ata_port_is_dummy(host->ports[0])) { 2439 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2440 irq_handler, IRQF_SHARED, 2441 drv_name, host); 2442 if (rc) 2443 goto out; 2444 2445 ata_port_desc(host->ports[0], "irq %d", 2446 ATA_PRIMARY_IRQ(pdev)); 2447 } 2448 2449 if (!ata_port_is_dummy(host->ports[1])) { 2450 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2451 irq_handler, IRQF_SHARED, 2452 drv_name, host); 2453 if (rc) 2454 goto out; 2455 2456 ata_port_desc(host->ports[1], "irq %d", 2457 ATA_SECONDARY_IRQ(pdev)); 2458 } 2459 } 2460 2461 rc = ata_host_register(host, sht); 2462 out: 2463 if (rc == 0) 2464 devres_remove_group(dev, NULL); 2465 else 2466 devres_release_group(dev, NULL); 2467 2468 return rc; 2469 } 2470 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2471 2472 static const struct ata_port_info *ata_sff_find_valid_pi( 2473 const struct ata_port_info * const *ppi) 2474 { 2475 int i; 2476 2477 /* look up the first valid port_info */ 2478 for (i = 0; i < 2 && ppi[i]; i++) 2479 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2480 return ppi[i]; 2481 2482 return NULL; 2483 } 2484 2485 static int ata_pci_init_one(struct pci_dev *pdev, 2486 const struct ata_port_info * const *ppi, 2487 struct scsi_host_template *sht, void *host_priv, 2488 int hflags, bool bmdma) 2489 { 2490 struct device *dev = &pdev->dev; 2491 const struct ata_port_info *pi; 2492 struct ata_host *host = NULL; 2493 int rc; 2494 2495 DPRINTK("ENTER\n"); 2496 2497 pi = ata_sff_find_valid_pi(ppi); 2498 if (!pi) { 2499 dev_err(&pdev->dev, "no valid port_info specified\n"); 2500 return -EINVAL; 2501 } 2502 2503 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2504 return -ENOMEM; 2505 2506 rc = pcim_enable_device(pdev); 2507 if (rc) 2508 goto out; 2509 2510 #ifdef CONFIG_ATA_BMDMA 2511 if (bmdma) 2512 /* prepare and activate BMDMA host */ 2513 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2514 else 2515 #endif 2516 /* prepare and activate SFF host */ 2517 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2518 if (rc) 2519 goto out; 2520 host->private_data = host_priv; 2521 host->flags |= hflags; 2522 2523 #ifdef CONFIG_ATA_BMDMA 2524 if (bmdma) { 2525 pci_set_master(pdev); 2526 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2527 } else 2528 #endif 2529 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2530 out: 2531 if (rc == 0) 2532 devres_remove_group(&pdev->dev, NULL); 2533 else 2534 devres_release_group(&pdev->dev, NULL); 2535 2536 return rc; 2537 } 2538 2539 /** 2540 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2541 * @pdev: Controller to be initialized 2542 * @ppi: array of port_info, must be enough for two ports 2543 * @sht: scsi_host_template to use when registering the host 2544 * @host_priv: host private_data 2545 * @hflag: host flags 2546 * 2547 * This is a helper function which can be called from a driver's 2548 * xxx_init_one() probe function if the hardware uses traditional 2549 * IDE taskfile registers and is PIO only. 2550 * 2551 * ASSUMPTION: 2552 * Nobody makes a single channel controller that appears solely as 2553 * the secondary legacy port on PCI. 2554 * 2555 * LOCKING: 2556 * Inherited from PCI layer (may sleep). 2557 * 2558 * RETURNS: 2559 * Zero on success, negative on errno-based value on error. 2560 */ 2561 int ata_pci_sff_init_one(struct pci_dev *pdev, 2562 const struct ata_port_info * const *ppi, 2563 struct scsi_host_template *sht, void *host_priv, int hflag) 2564 { 2565 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2566 } 2567 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2568 2569 #endif /* CONFIG_PCI */ 2570 2571 /* 2572 * BMDMA support 2573 */ 2574 2575 #ifdef CONFIG_ATA_BMDMA 2576 2577 const struct ata_port_operations ata_bmdma_port_ops = { 2578 .inherits = &ata_sff_port_ops, 2579 2580 .error_handler = ata_bmdma_error_handler, 2581 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2582 2583 .qc_prep = ata_bmdma_qc_prep, 2584 .qc_issue = ata_bmdma_qc_issue, 2585 2586 .sff_irq_clear = ata_bmdma_irq_clear, 2587 .bmdma_setup = ata_bmdma_setup, 2588 .bmdma_start = ata_bmdma_start, 2589 .bmdma_stop = ata_bmdma_stop, 2590 .bmdma_status = ata_bmdma_status, 2591 2592 .port_start = ata_bmdma_port_start, 2593 }; 2594 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2595 2596 const struct ata_port_operations ata_bmdma32_port_ops = { 2597 .inherits = &ata_bmdma_port_ops, 2598 2599 .sff_data_xfer = ata_sff_data_xfer32, 2600 .port_start = ata_bmdma_port_start32, 2601 }; 2602 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2603 2604 /** 2605 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2606 * @qc: Metadata associated with taskfile to be transferred 2607 * 2608 * Fill PCI IDE PRD (scatter-gather) table with segments 2609 * associated with the current disk command. 2610 * 2611 * LOCKING: 2612 * spin_lock_irqsave(host lock) 2613 * 2614 */ 2615 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2616 { 2617 struct ata_port *ap = qc->ap; 2618 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2619 struct scatterlist *sg; 2620 unsigned int si, pi; 2621 2622 pi = 0; 2623 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2624 u32 addr, offset; 2625 u32 sg_len, len; 2626 2627 /* determine if physical DMA addr spans 64K boundary. 2628 * Note h/w doesn't support 64-bit, so we unconditionally 2629 * truncate dma_addr_t to u32. 2630 */ 2631 addr = (u32) sg_dma_address(sg); 2632 sg_len = sg_dma_len(sg); 2633 2634 while (sg_len) { 2635 offset = addr & 0xffff; 2636 len = sg_len; 2637 if ((offset + sg_len) > 0x10000) 2638 len = 0x10000 - offset; 2639 2640 prd[pi].addr = cpu_to_le32(addr); 2641 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2642 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2643 2644 pi++; 2645 sg_len -= len; 2646 addr += len; 2647 } 2648 } 2649 2650 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2651 } 2652 2653 /** 2654 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2655 * @qc: Metadata associated with taskfile to be transferred 2656 * 2657 * Fill PCI IDE PRD (scatter-gather) table with segments 2658 * associated with the current disk command. Perform the fill 2659 * so that we avoid writing any length 64K records for 2660 * controllers that don't follow the spec. 2661 * 2662 * LOCKING: 2663 * spin_lock_irqsave(host lock) 2664 * 2665 */ 2666 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2667 { 2668 struct ata_port *ap = qc->ap; 2669 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2670 struct scatterlist *sg; 2671 unsigned int si, pi; 2672 2673 pi = 0; 2674 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2675 u32 addr, offset; 2676 u32 sg_len, len, blen; 2677 2678 /* determine if physical DMA addr spans 64K boundary. 2679 * Note h/w doesn't support 64-bit, so we unconditionally 2680 * truncate dma_addr_t to u32. 2681 */ 2682 addr = (u32) sg_dma_address(sg); 2683 sg_len = sg_dma_len(sg); 2684 2685 while (sg_len) { 2686 offset = addr & 0xffff; 2687 len = sg_len; 2688 if ((offset + sg_len) > 0x10000) 2689 len = 0x10000 - offset; 2690 2691 blen = len & 0xffff; 2692 prd[pi].addr = cpu_to_le32(addr); 2693 if (blen == 0) { 2694 /* Some PATA chipsets like the CS5530 can't 2695 cope with 0x0000 meaning 64K as the spec 2696 says */ 2697 prd[pi].flags_len = cpu_to_le32(0x8000); 2698 blen = 0x8000; 2699 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2700 } 2701 prd[pi].flags_len = cpu_to_le32(blen); 2702 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2703 2704 pi++; 2705 sg_len -= len; 2706 addr += len; 2707 } 2708 } 2709 2710 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2711 } 2712 2713 /** 2714 * ata_bmdma_qc_prep - Prepare taskfile for submission 2715 * @qc: Metadata associated with taskfile to be prepared 2716 * 2717 * Prepare ATA taskfile for submission. 2718 * 2719 * LOCKING: 2720 * spin_lock_irqsave(host lock) 2721 */ 2722 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2723 { 2724 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2725 return; 2726 2727 ata_bmdma_fill_sg(qc); 2728 } 2729 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2730 2731 /** 2732 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2733 * @qc: Metadata associated with taskfile to be prepared 2734 * 2735 * Prepare ATA taskfile for submission. 2736 * 2737 * LOCKING: 2738 * spin_lock_irqsave(host lock) 2739 */ 2740 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2741 { 2742 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2743 return; 2744 2745 ata_bmdma_fill_sg_dumb(qc); 2746 } 2747 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2748 2749 /** 2750 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2751 * @qc: command to issue to device 2752 * 2753 * This function issues a PIO, NODATA or DMA command to a 2754 * SFF/BMDMA controller. PIO and NODATA are handled by 2755 * ata_sff_qc_issue(). 2756 * 2757 * LOCKING: 2758 * spin_lock_irqsave(host lock) 2759 * 2760 * RETURNS: 2761 * Zero on success, AC_ERR_* mask on failure 2762 */ 2763 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2764 { 2765 struct ata_port *ap = qc->ap; 2766 struct ata_link *link = qc->dev->link; 2767 2768 /* defer PIO handling to sff_qc_issue */ 2769 if (!ata_is_dma(qc->tf.protocol)) 2770 return ata_sff_qc_issue(qc); 2771 2772 /* select the device */ 2773 ata_dev_select(ap, qc->dev->devno, 1, 0); 2774 2775 /* start the command */ 2776 switch (qc->tf.protocol) { 2777 case ATA_PROT_DMA: 2778 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2779 2780 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2781 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2782 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2783 ap->hsm_task_state = HSM_ST_LAST; 2784 break; 2785 2786 case ATAPI_PROT_DMA: 2787 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2788 2789 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2790 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2791 ap->hsm_task_state = HSM_ST_FIRST; 2792 2793 /* send cdb by polling if no cdb interrupt */ 2794 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2795 ata_sff_queue_pio_task(link, 0); 2796 break; 2797 2798 default: 2799 WARN_ON(1); 2800 return AC_ERR_SYSTEM; 2801 } 2802 2803 return 0; 2804 } 2805 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2806 2807 /** 2808 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2809 * @ap: Port on which interrupt arrived (possibly...) 2810 * @qc: Taskfile currently active in engine 2811 * 2812 * Handle port interrupt for given queued command. 2813 * 2814 * LOCKING: 2815 * spin_lock_irqsave(host lock) 2816 * 2817 * RETURNS: 2818 * One if interrupt was handled, zero if not (shared irq). 2819 */ 2820 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2821 { 2822 struct ata_eh_info *ehi = &ap->link.eh_info; 2823 u8 host_stat = 0; 2824 bool bmdma_stopped = false; 2825 unsigned int handled; 2826 2827 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2828 /* check status of DMA engine */ 2829 host_stat = ap->ops->bmdma_status(ap); 2830 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2831 2832 /* if it's not our irq... */ 2833 if (!(host_stat & ATA_DMA_INTR)) 2834 return ata_sff_idle_irq(ap); 2835 2836 /* before we do anything else, clear DMA-Start bit */ 2837 ap->ops->bmdma_stop(qc); 2838 bmdma_stopped = true; 2839 2840 if (unlikely(host_stat & ATA_DMA_ERR)) { 2841 /* error when transferring data to/from memory */ 2842 qc->err_mask |= AC_ERR_HOST_BUS; 2843 ap->hsm_task_state = HSM_ST_ERR; 2844 } 2845 } 2846 2847 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2848 2849 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2850 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2851 2852 return handled; 2853 } 2854 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2855 2856 /** 2857 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2858 * @irq: irq line (unused) 2859 * @dev_instance: pointer to our ata_host information structure 2860 * 2861 * Default interrupt handler for PCI IDE devices. Calls 2862 * ata_bmdma_port_intr() for each port that is not disabled. 2863 * 2864 * LOCKING: 2865 * Obtains host lock during operation. 2866 * 2867 * RETURNS: 2868 * IRQ_NONE or IRQ_HANDLED. 2869 */ 2870 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2871 { 2872 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2873 } 2874 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2875 2876 /** 2877 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2878 * @ap: port to handle error for 2879 * 2880 * Stock error handler for BMDMA controller. It can handle both 2881 * PATA and SATA controllers. Most BMDMA controllers should be 2882 * able to use this EH as-is or with some added handling before 2883 * and after. 2884 * 2885 * LOCKING: 2886 * Kernel thread context (may sleep) 2887 */ 2888 void ata_bmdma_error_handler(struct ata_port *ap) 2889 { 2890 struct ata_queued_cmd *qc; 2891 unsigned long flags; 2892 bool thaw = false; 2893 2894 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2895 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2896 qc = NULL; 2897 2898 /* reset PIO HSM and stop DMA engine */ 2899 spin_lock_irqsave(ap->lock, flags); 2900 2901 if (qc && ata_is_dma(qc->tf.protocol)) { 2902 u8 host_stat; 2903 2904 host_stat = ap->ops->bmdma_status(ap); 2905 2906 /* BMDMA controllers indicate host bus error by 2907 * setting DMA_ERR bit and timing out. As it wasn't 2908 * really a timeout event, adjust error mask and 2909 * cancel frozen state. 2910 */ 2911 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2912 qc->err_mask = AC_ERR_HOST_BUS; 2913 thaw = true; 2914 } 2915 2916 ap->ops->bmdma_stop(qc); 2917 2918 /* if we're gonna thaw, make sure IRQ is clear */ 2919 if (thaw) { 2920 ap->ops->sff_check_status(ap); 2921 if (ap->ops->sff_irq_clear) 2922 ap->ops->sff_irq_clear(ap); 2923 } 2924 } 2925 2926 spin_unlock_irqrestore(ap->lock, flags); 2927 2928 if (thaw) 2929 ata_eh_thaw_port(ap); 2930 2931 ata_sff_error_handler(ap); 2932 } 2933 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2934 2935 /** 2936 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2937 * @qc: internal command to clean up 2938 * 2939 * LOCKING: 2940 * Kernel thread context (may sleep) 2941 */ 2942 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2943 { 2944 struct ata_port *ap = qc->ap; 2945 unsigned long flags; 2946 2947 if (ata_is_dma(qc->tf.protocol)) { 2948 spin_lock_irqsave(ap->lock, flags); 2949 ap->ops->bmdma_stop(qc); 2950 spin_unlock_irqrestore(ap->lock, flags); 2951 } 2952 } 2953 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2954 2955 /** 2956 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2957 * @ap: Port associated with this ATA transaction. 2958 * 2959 * Clear interrupt and error flags in DMA status register. 2960 * 2961 * May be used as the irq_clear() entry in ata_port_operations. 2962 * 2963 * LOCKING: 2964 * spin_lock_irqsave(host lock) 2965 */ 2966 void ata_bmdma_irq_clear(struct ata_port *ap) 2967 { 2968 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2969 2970 if (!mmio) 2971 return; 2972 2973 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2974 } 2975 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2976 2977 /** 2978 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2979 * @qc: Info associated with this ATA transaction. 2980 * 2981 * LOCKING: 2982 * spin_lock_irqsave(host lock) 2983 */ 2984 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2985 { 2986 struct ata_port *ap = qc->ap; 2987 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2988 u8 dmactl; 2989 2990 /* load PRD table addr. */ 2991 mb(); /* make sure PRD table writes are visible to controller */ 2992 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2993 2994 /* specify data direction, triple-check start bit is clear */ 2995 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2996 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2997 if (!rw) 2998 dmactl |= ATA_DMA_WR; 2999 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3000 3001 /* issue r/w command */ 3002 ap->ops->sff_exec_command(ap, &qc->tf); 3003 } 3004 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 3005 3006 /** 3007 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 3008 * @qc: Info associated with this ATA transaction. 3009 * 3010 * LOCKING: 3011 * spin_lock_irqsave(host lock) 3012 */ 3013 void ata_bmdma_start(struct ata_queued_cmd *qc) 3014 { 3015 struct ata_port *ap = qc->ap; 3016 u8 dmactl; 3017 3018 /* start host DMA transaction */ 3019 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3020 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3021 3022 /* Strictly, one may wish to issue an ioread8() here, to 3023 * flush the mmio write. However, control also passes 3024 * to the hardware at this point, and it will interrupt 3025 * us when we are to resume control. So, in effect, 3026 * we don't care when the mmio write flushes. 3027 * Further, a read of the DMA status register _immediately_ 3028 * following the write may not be what certain flaky hardware 3029 * is expected, so I think it is best to not add a readb() 3030 * without first all the MMIO ATA cards/mobos. 3031 * Or maybe I'm just being paranoid. 3032 * 3033 * FIXME: The posting of this write means I/O starts are 3034 * unnecessarily delayed for MMIO 3035 */ 3036 } 3037 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3038 3039 /** 3040 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3041 * @qc: Command we are ending DMA for 3042 * 3043 * Clears the ATA_DMA_START flag in the dma control register 3044 * 3045 * May be used as the bmdma_stop() entry in ata_port_operations. 3046 * 3047 * LOCKING: 3048 * spin_lock_irqsave(host lock) 3049 */ 3050 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3051 { 3052 struct ata_port *ap = qc->ap; 3053 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3054 3055 /* clear start/stop bit */ 3056 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3057 mmio + ATA_DMA_CMD); 3058 3059 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3060 ata_sff_dma_pause(ap); 3061 } 3062 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3063 3064 /** 3065 * ata_bmdma_status - Read PCI IDE BMDMA status 3066 * @ap: Port associated with this ATA transaction. 3067 * 3068 * Read and return BMDMA status register. 3069 * 3070 * May be used as the bmdma_status() entry in ata_port_operations. 3071 * 3072 * LOCKING: 3073 * spin_lock_irqsave(host lock) 3074 */ 3075 u8 ata_bmdma_status(struct ata_port *ap) 3076 { 3077 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3078 } 3079 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3080 3081 3082 /** 3083 * ata_bmdma_port_start - Set port up for bmdma. 3084 * @ap: Port to initialize 3085 * 3086 * Called just after data structures for each port are 3087 * initialized. Allocates space for PRD table. 3088 * 3089 * May be used as the port_start() entry in ata_port_operations. 3090 * 3091 * LOCKING: 3092 * Inherited from caller. 3093 */ 3094 int ata_bmdma_port_start(struct ata_port *ap) 3095 { 3096 if (ap->mwdma_mask || ap->udma_mask) { 3097 ap->bmdma_prd = 3098 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3099 &ap->bmdma_prd_dma, GFP_KERNEL); 3100 if (!ap->bmdma_prd) 3101 return -ENOMEM; 3102 } 3103 3104 return 0; 3105 } 3106 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3107 3108 /** 3109 * ata_bmdma_port_start32 - Set port up for dma. 3110 * @ap: Port to initialize 3111 * 3112 * Called just after data structures for each port are 3113 * initialized. Enables 32bit PIO and allocates space for PRD 3114 * table. 3115 * 3116 * May be used as the port_start() entry in ata_port_operations for 3117 * devices that are capable of 32bit PIO. 3118 * 3119 * LOCKING: 3120 * Inherited from caller. 3121 */ 3122 int ata_bmdma_port_start32(struct ata_port *ap) 3123 { 3124 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3125 return ata_bmdma_port_start(ap); 3126 } 3127 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3128 3129 #ifdef CONFIG_PCI 3130 3131 /** 3132 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3133 * @pdev: PCI device 3134 * 3135 * Some PCI ATA devices report simplex mode but in fact can be told to 3136 * enter non simplex mode. This implements the necessary logic to 3137 * perform the task on such devices. Calling it on other devices will 3138 * have -undefined- behaviour. 3139 */ 3140 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3141 { 3142 unsigned long bmdma = pci_resource_start(pdev, 4); 3143 u8 simplex; 3144 3145 if (bmdma == 0) 3146 return -ENOENT; 3147 3148 simplex = inb(bmdma + 0x02); 3149 outb(simplex & 0x60, bmdma + 0x02); 3150 simplex = inb(bmdma + 0x02); 3151 if (simplex & 0x80) 3152 return -EOPNOTSUPP; 3153 return 0; 3154 } 3155 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3156 3157 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3158 { 3159 int i; 3160 3161 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3162 3163 for (i = 0; i < 2; i++) { 3164 host->ports[i]->mwdma_mask = 0; 3165 host->ports[i]->udma_mask = 0; 3166 } 3167 } 3168 3169 /** 3170 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3171 * @host: target ATA host 3172 * 3173 * Acquire PCI BMDMA resources and initialize @host accordingly. 3174 * 3175 * LOCKING: 3176 * Inherited from calling layer (may sleep). 3177 */ 3178 void ata_pci_bmdma_init(struct ata_host *host) 3179 { 3180 struct device *gdev = host->dev; 3181 struct pci_dev *pdev = to_pci_dev(gdev); 3182 int i, rc; 3183 3184 /* No BAR4 allocation: No DMA */ 3185 if (pci_resource_start(pdev, 4) == 0) { 3186 ata_bmdma_nodma(host, "BAR4 is zero"); 3187 return; 3188 } 3189 3190 /* 3191 * Some controllers require BMDMA region to be initialized 3192 * even if DMA is not in use to clear IRQ status via 3193 * ->sff_irq_clear method. Try to initialize bmdma_addr 3194 * regardless of dma masks. 3195 */ 3196 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK); 3197 if (rc) 3198 ata_bmdma_nodma(host, "failed to set dma mask"); 3199 if (!rc) { 3200 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK); 3201 if (rc) 3202 ata_bmdma_nodma(host, 3203 "failed to set consistent dma mask"); 3204 } 3205 3206 /* request and iomap DMA region */ 3207 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3208 if (rc) { 3209 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3210 return; 3211 } 3212 host->iomap = pcim_iomap_table(pdev); 3213 3214 for (i = 0; i < 2; i++) { 3215 struct ata_port *ap = host->ports[i]; 3216 void __iomem *bmdma = host->iomap[4] + 8 * i; 3217 3218 if (ata_port_is_dummy(ap)) 3219 continue; 3220 3221 ap->ioaddr.bmdma_addr = bmdma; 3222 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3223 (ioread8(bmdma + 2) & 0x80)) 3224 host->flags |= ATA_HOST_SIMPLEX; 3225 3226 ata_port_desc(ap, "bmdma 0x%llx", 3227 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3228 } 3229 } 3230 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3231 3232 /** 3233 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3234 * @pdev: target PCI device 3235 * @ppi: array of port_info, must be enough for two ports 3236 * @r_host: out argument for the initialized ATA host 3237 * 3238 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3239 * resources and initialize it accordingly in one go. 3240 * 3241 * LOCKING: 3242 * Inherited from calling layer (may sleep). 3243 * 3244 * RETURNS: 3245 * 0 on success, -errno otherwise. 3246 */ 3247 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3248 const struct ata_port_info * const * ppi, 3249 struct ata_host **r_host) 3250 { 3251 int rc; 3252 3253 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3254 if (rc) 3255 return rc; 3256 3257 ata_pci_bmdma_init(*r_host); 3258 return 0; 3259 } 3260 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3261 3262 /** 3263 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3264 * @pdev: Controller to be initialized 3265 * @ppi: array of port_info, must be enough for two ports 3266 * @sht: scsi_host_template to use when registering the host 3267 * @host_priv: host private_data 3268 * @hflags: host flags 3269 * 3270 * This function is similar to ata_pci_sff_init_one() but also 3271 * takes care of BMDMA initialization. 3272 * 3273 * LOCKING: 3274 * Inherited from PCI layer (may sleep). 3275 * 3276 * RETURNS: 3277 * Zero on success, negative on errno-based value on error. 3278 */ 3279 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3280 const struct ata_port_info * const * ppi, 3281 struct scsi_host_template *sht, void *host_priv, 3282 int hflags) 3283 { 3284 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3285 } 3286 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3287 3288 #endif /* CONFIG_PCI */ 3289 #endif /* CONFIG_ATA_BMDMA */ 3290 3291 /** 3292 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3293 * @ap: Port to initialize 3294 * 3295 * Called on port allocation to initialize SFF/BMDMA specific 3296 * fields. 3297 * 3298 * LOCKING: 3299 * None. 3300 */ 3301 void ata_sff_port_init(struct ata_port *ap) 3302 { 3303 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3304 ap->ctl = ATA_DEVCTL_OBS; 3305 ap->last_ctl = 0xFF; 3306 } 3307 3308 int __init ata_sff_init(void) 3309 { 3310 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3311 if (!ata_sff_wq) 3312 return -ENOMEM; 3313 3314 return 0; 3315 } 3316 3317 void ata_sff_exit(void) 3318 { 3319 destroy_workqueue(ata_sff_wq); 3320 } 3321