xref: /linux/drivers/ata/libata-sff.c (revision e190bfe56841551b1ad5abb42ebd0c4798cc8c01)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
40 
41 #include "libata.h"
42 
43 static struct workqueue_struct *ata_sff_wq;
44 
45 const struct ata_port_operations ata_sff_port_ops = {
46 	.inherits		= &ata_base_port_ops,
47 
48 	.qc_prep		= ata_noop_qc_prep,
49 	.qc_issue		= ata_sff_qc_issue,
50 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
51 
52 	.freeze			= ata_sff_freeze,
53 	.thaw			= ata_sff_thaw,
54 	.prereset		= ata_sff_prereset,
55 	.softreset		= ata_sff_softreset,
56 	.hardreset		= sata_sff_hardreset,
57 	.postreset		= ata_sff_postreset,
58 	.error_handler		= ata_sff_error_handler,
59 
60 	.sff_dev_select		= ata_sff_dev_select,
61 	.sff_check_status	= ata_sff_check_status,
62 	.sff_tf_load		= ata_sff_tf_load,
63 	.sff_tf_read		= ata_sff_tf_read,
64 	.sff_exec_command	= ata_sff_exec_command,
65 	.sff_data_xfer		= ata_sff_data_xfer,
66 	.sff_drain_fifo		= ata_sff_drain_fifo,
67 
68 	.lost_interrupt		= ata_sff_lost_interrupt,
69 };
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
71 
72 /**
73  *	ata_sff_check_status - Read device status reg & clear interrupt
74  *	@ap: port where the device is
75  *
76  *	Reads ATA taskfile status register for currently-selected device
77  *	and return its value. This also clears pending interrupts
78  *      from this device
79  *
80  *	LOCKING:
81  *	Inherited from caller.
82  */
83 u8 ata_sff_check_status(struct ata_port *ap)
84 {
85 	return ioread8(ap->ioaddr.status_addr);
86 }
87 EXPORT_SYMBOL_GPL(ata_sff_check_status);
88 
89 /**
90  *	ata_sff_altstatus - Read device alternate status reg
91  *	@ap: port where the device is
92  *
93  *	Reads ATA taskfile alternate status register for
94  *	currently-selected device and return its value.
95  *
96  *	Note: may NOT be used as the check_altstatus() entry in
97  *	ata_port_operations.
98  *
99  *	LOCKING:
100  *	Inherited from caller.
101  */
102 static u8 ata_sff_altstatus(struct ata_port *ap)
103 {
104 	if (ap->ops->sff_check_altstatus)
105 		return ap->ops->sff_check_altstatus(ap);
106 
107 	return ioread8(ap->ioaddr.altstatus_addr);
108 }
109 
110 /**
111  *	ata_sff_irq_status - Check if the device is busy
112  *	@ap: port where the device is
113  *
114  *	Determine if the port is currently busy. Uses altstatus
115  *	if available in order to avoid clearing shared IRQ status
116  *	when finding an IRQ source. Non ctl capable devices don't
117  *	share interrupt lines fortunately for us.
118  *
119  *	LOCKING:
120  *	Inherited from caller.
121  */
122 static u8 ata_sff_irq_status(struct ata_port *ap)
123 {
124 	u8 status;
125 
126 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 		status = ata_sff_altstatus(ap);
128 		/* Not us: We are busy */
129 		if (status & ATA_BUSY)
130 			return status;
131 	}
132 	/* Clear INTRQ latch */
133 	status = ap->ops->sff_check_status(ap);
134 	return status;
135 }
136 
137 /**
138  *	ata_sff_sync - Flush writes
139  *	@ap: Port to wait for.
140  *
141  *	CAUTION:
142  *	If we have an mmio device with no ctl and no altstatus
143  *	method this will fail. No such devices are known to exist.
144  *
145  *	LOCKING:
146  *	Inherited from caller.
147  */
148 
149 static void ata_sff_sync(struct ata_port *ap)
150 {
151 	if (ap->ops->sff_check_altstatus)
152 		ap->ops->sff_check_altstatus(ap);
153 	else if (ap->ioaddr.altstatus_addr)
154 		ioread8(ap->ioaddr.altstatus_addr);
155 }
156 
157 /**
158  *	ata_sff_pause		-	Flush writes and wait 400nS
159  *	@ap: Port to pause for.
160  *
161  *	CAUTION:
162  *	If we have an mmio device with no ctl and no altstatus
163  *	method this will fail. No such devices are known to exist.
164  *
165  *	LOCKING:
166  *	Inherited from caller.
167  */
168 
169 void ata_sff_pause(struct ata_port *ap)
170 {
171 	ata_sff_sync(ap);
172 	ndelay(400);
173 }
174 EXPORT_SYMBOL_GPL(ata_sff_pause);
175 
176 /**
177  *	ata_sff_dma_pause	-	Pause before commencing DMA
178  *	@ap: Port to pause for.
179  *
180  *	Perform I/O fencing and ensure sufficient cycle delays occur
181  *	for the HDMA1:0 transition
182  */
183 
184 void ata_sff_dma_pause(struct ata_port *ap)
185 {
186 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 		/* An altstatus read will cause the needed delay without
188 		   messing up the IRQ status */
189 		ata_sff_altstatus(ap);
190 		return;
191 	}
192 	/* There are no DMA controllers without ctl. BUG here to ensure
193 	   we never violate the HDMA1:0 transition timing and risk
194 	   corruption. */
195 	BUG();
196 }
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
198 
199 /**
200  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
201  *	@ap: port containing status register to be polled
202  *	@tmout_pat: impatience timeout in msecs
203  *	@tmout: overall timeout in msecs
204  *
205  *	Sleep until ATA Status register bit BSY clears,
206  *	or a timeout occurs.
207  *
208  *	LOCKING:
209  *	Kernel thread context (may sleep).
210  *
211  *	RETURNS:
212  *	0 on success, -errno otherwise.
213  */
214 int ata_sff_busy_sleep(struct ata_port *ap,
215 		       unsigned long tmout_pat, unsigned long tmout)
216 {
217 	unsigned long timer_start, timeout;
218 	u8 status;
219 
220 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
221 	timer_start = jiffies;
222 	timeout = ata_deadline(timer_start, tmout_pat);
223 	while (status != 0xff && (status & ATA_BUSY) &&
224 	       time_before(jiffies, timeout)) {
225 		msleep(50);
226 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
227 	}
228 
229 	if (status != 0xff && (status & ATA_BUSY))
230 		ata_port_printk(ap, KERN_WARNING,
231 				"port is slow to respond, please be patient "
232 				"(Status 0x%x)\n", status);
233 
234 	timeout = ata_deadline(timer_start, tmout);
235 	while (status != 0xff && (status & ATA_BUSY) &&
236 	       time_before(jiffies, timeout)) {
237 		msleep(50);
238 		status = ap->ops->sff_check_status(ap);
239 	}
240 
241 	if (status == 0xff)
242 		return -ENODEV;
243 
244 	if (status & ATA_BUSY) {
245 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 				"(%lu secs, Status 0x%x)\n",
247 				DIV_ROUND_UP(tmout, 1000), status);
248 		return -EBUSY;
249 	}
250 
251 	return 0;
252 }
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
254 
255 static int ata_sff_check_ready(struct ata_link *link)
256 {
257 	u8 status = link->ap->ops->sff_check_status(link->ap);
258 
259 	return ata_check_ready(status);
260 }
261 
262 /**
263  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
264  *	@link: SFF link to wait ready status for
265  *	@deadline: deadline jiffies for the operation
266  *
267  *	Sleep until ATA Status register bit BSY clears, or timeout
268  *	occurs.
269  *
270  *	LOCKING:
271  *	Kernel thread context (may sleep).
272  *
273  *	RETURNS:
274  *	0 on success, -errno otherwise.
275  */
276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
277 {
278 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
279 }
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
281 
282 /**
283  *	ata_sff_set_devctl - Write device control reg
284  *	@ap: port where the device is
285  *	@ctl: value to write
286  *
287  *	Writes ATA taskfile device control register.
288  *
289  *	Note: may NOT be used as the sff_set_devctl() entry in
290  *	ata_port_operations.
291  *
292  *	LOCKING:
293  *	Inherited from caller.
294  */
295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
296 {
297 	if (ap->ops->sff_set_devctl)
298 		ap->ops->sff_set_devctl(ap, ctl);
299 	else
300 		iowrite8(ctl, ap->ioaddr.ctl_addr);
301 }
302 
303 /**
304  *	ata_sff_dev_select - Select device 0/1 on ATA bus
305  *	@ap: ATA channel to manipulate
306  *	@device: ATA device (numbered from zero) to select
307  *
308  *	Use the method defined in the ATA specification to
309  *	make either device 0, or device 1, active on the
310  *	ATA channel.  Works with both PIO and MMIO.
311  *
312  *	May be used as the dev_select() entry in ata_port_operations.
313  *
314  *	LOCKING:
315  *	caller.
316  */
317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
318 {
319 	u8 tmp;
320 
321 	if (device == 0)
322 		tmp = ATA_DEVICE_OBS;
323 	else
324 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
325 
326 	iowrite8(tmp, ap->ioaddr.device_addr);
327 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
328 }
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
330 
331 /**
332  *	ata_dev_select - Select device 0/1 on ATA bus
333  *	@ap: ATA channel to manipulate
334  *	@device: ATA device (numbered from zero) to select
335  *	@wait: non-zero to wait for Status register BSY bit to clear
336  *	@can_sleep: non-zero if context allows sleeping
337  *
338  *	Use the method defined in the ATA specification to
339  *	make either device 0, or device 1, active on the
340  *	ATA channel.
341  *
342  *	This is a high-level version of ata_sff_dev_select(), which
343  *	additionally provides the services of inserting the proper
344  *	pauses and status polling, where needed.
345  *
346  *	LOCKING:
347  *	caller.
348  */
349 static void ata_dev_select(struct ata_port *ap, unsigned int device,
350 			   unsigned int wait, unsigned int can_sleep)
351 {
352 	if (ata_msg_probe(ap))
353 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 				"device %u, wait %u\n", device, wait);
355 
356 	if (wait)
357 		ata_wait_idle(ap);
358 
359 	ap->ops->sff_dev_select(ap, device);
360 
361 	if (wait) {
362 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 			msleep(150);
364 		ata_wait_idle(ap);
365 	}
366 }
367 
368 /**
369  *	ata_sff_irq_on - Enable interrupts on a port.
370  *	@ap: Port on which interrupts are enabled.
371  *
372  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
373  *	wait for idle, clear any pending interrupts.
374  *
375  *	Note: may NOT be used as the sff_irq_on() entry in
376  *	ata_port_operations.
377  *
378  *	LOCKING:
379  *	Inherited from caller.
380  */
381 void ata_sff_irq_on(struct ata_port *ap)
382 {
383 	struct ata_ioports *ioaddr = &ap->ioaddr;
384 
385 	if (ap->ops->sff_irq_on) {
386 		ap->ops->sff_irq_on(ap);
387 		return;
388 	}
389 
390 	ap->ctl &= ~ATA_NIEN;
391 	ap->last_ctl = ap->ctl;
392 
393 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 		ata_sff_set_devctl(ap, ap->ctl);
395 	ata_wait_idle(ap);
396 
397 	if (ap->ops->sff_irq_clear)
398 		ap->ops->sff_irq_clear(ap);
399 }
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
401 
402 /**
403  *	ata_sff_tf_load - send taskfile registers to host controller
404  *	@ap: Port to which output is sent
405  *	@tf: ATA taskfile register set
406  *
407  *	Outputs ATA taskfile to standard ATA host controller.
408  *
409  *	LOCKING:
410  *	Inherited from caller.
411  */
412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
413 {
414 	struct ata_ioports *ioaddr = &ap->ioaddr;
415 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
416 
417 	if (tf->ctl != ap->last_ctl) {
418 		if (ioaddr->ctl_addr)
419 			iowrite8(tf->ctl, ioaddr->ctl_addr);
420 		ap->last_ctl = tf->ctl;
421 	}
422 
423 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
424 		WARN_ON_ONCE(!ioaddr->ctl_addr);
425 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
426 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
427 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
428 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
429 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
430 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
431 			tf->hob_feature,
432 			tf->hob_nsect,
433 			tf->hob_lbal,
434 			tf->hob_lbam,
435 			tf->hob_lbah);
436 	}
437 
438 	if (is_addr) {
439 		iowrite8(tf->feature, ioaddr->feature_addr);
440 		iowrite8(tf->nsect, ioaddr->nsect_addr);
441 		iowrite8(tf->lbal, ioaddr->lbal_addr);
442 		iowrite8(tf->lbam, ioaddr->lbam_addr);
443 		iowrite8(tf->lbah, ioaddr->lbah_addr);
444 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
445 			tf->feature,
446 			tf->nsect,
447 			tf->lbal,
448 			tf->lbam,
449 			tf->lbah);
450 	}
451 
452 	if (tf->flags & ATA_TFLAG_DEVICE) {
453 		iowrite8(tf->device, ioaddr->device_addr);
454 		VPRINTK("device 0x%X\n", tf->device);
455 	}
456 }
457 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
458 
459 /**
460  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
461  *	@ap: Port from which input is read
462  *	@tf: ATA taskfile register set for storing input
463  *
464  *	Reads ATA taskfile registers for currently-selected device
465  *	into @tf. Assumes the device has a fully SFF compliant task file
466  *	layout and behaviour. If you device does not (eg has a different
467  *	status method) then you will need to provide a replacement tf_read
468  *
469  *	LOCKING:
470  *	Inherited from caller.
471  */
472 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
473 {
474 	struct ata_ioports *ioaddr = &ap->ioaddr;
475 
476 	tf->command = ata_sff_check_status(ap);
477 	tf->feature = ioread8(ioaddr->error_addr);
478 	tf->nsect = ioread8(ioaddr->nsect_addr);
479 	tf->lbal = ioread8(ioaddr->lbal_addr);
480 	tf->lbam = ioread8(ioaddr->lbam_addr);
481 	tf->lbah = ioread8(ioaddr->lbah_addr);
482 	tf->device = ioread8(ioaddr->device_addr);
483 
484 	if (tf->flags & ATA_TFLAG_LBA48) {
485 		if (likely(ioaddr->ctl_addr)) {
486 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
487 			tf->hob_feature = ioread8(ioaddr->error_addr);
488 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
489 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
490 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
491 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
492 			iowrite8(tf->ctl, ioaddr->ctl_addr);
493 			ap->last_ctl = tf->ctl;
494 		} else
495 			WARN_ON_ONCE(1);
496 	}
497 }
498 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
499 
500 /**
501  *	ata_sff_exec_command - issue ATA command to host controller
502  *	@ap: port to which command is being issued
503  *	@tf: ATA taskfile register set
504  *
505  *	Issues ATA command, with proper synchronization with interrupt
506  *	handler / other threads.
507  *
508  *	LOCKING:
509  *	spin_lock_irqsave(host lock)
510  */
511 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
512 {
513 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
514 
515 	iowrite8(tf->command, ap->ioaddr.command_addr);
516 	ata_sff_pause(ap);
517 }
518 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
519 
520 /**
521  *	ata_tf_to_host - issue ATA taskfile to host controller
522  *	@ap: port to which command is being issued
523  *	@tf: ATA taskfile register set
524  *
525  *	Issues ATA taskfile register set to ATA host controller,
526  *	with proper synchronization with interrupt handler and
527  *	other threads.
528  *
529  *	LOCKING:
530  *	spin_lock_irqsave(host lock)
531  */
532 static inline void ata_tf_to_host(struct ata_port *ap,
533 				  const struct ata_taskfile *tf)
534 {
535 	ap->ops->sff_tf_load(ap, tf);
536 	ap->ops->sff_exec_command(ap, tf);
537 }
538 
539 /**
540  *	ata_sff_data_xfer - Transfer data by PIO
541  *	@dev: device to target
542  *	@buf: data buffer
543  *	@buflen: buffer length
544  *	@rw: read/write
545  *
546  *	Transfer data from/to the device data register by PIO.
547  *
548  *	LOCKING:
549  *	Inherited from caller.
550  *
551  *	RETURNS:
552  *	Bytes consumed.
553  */
554 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
555 			       unsigned int buflen, int rw)
556 {
557 	struct ata_port *ap = dev->link->ap;
558 	void __iomem *data_addr = ap->ioaddr.data_addr;
559 	unsigned int words = buflen >> 1;
560 
561 	/* Transfer multiple of 2 bytes */
562 	if (rw == READ)
563 		ioread16_rep(data_addr, buf, words);
564 	else
565 		iowrite16_rep(data_addr, buf, words);
566 
567 	/* Transfer trailing byte, if any. */
568 	if (unlikely(buflen & 0x01)) {
569 		unsigned char pad[2];
570 
571 		/* Point buf to the tail of buffer */
572 		buf += buflen - 1;
573 
574 		/*
575 		 * Use io*16_rep() accessors here as well to avoid pointlessly
576 		 * swapping bytes to and from on the big endian machines...
577 		 */
578 		if (rw == READ) {
579 			ioread16_rep(data_addr, pad, 1);
580 			*buf = pad[0];
581 		} else {
582 			pad[0] = *buf;
583 			iowrite16_rep(data_addr, pad, 1);
584 		}
585 		words++;
586 	}
587 
588 	return words << 1;
589 }
590 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
591 
592 /**
593  *	ata_sff_data_xfer32 - Transfer data by PIO
594  *	@dev: device to target
595  *	@buf: data buffer
596  *	@buflen: buffer length
597  *	@rw: read/write
598  *
599  *	Transfer data from/to the device data register by PIO using 32bit
600  *	I/O operations.
601  *
602  *	LOCKING:
603  *	Inherited from caller.
604  *
605  *	RETURNS:
606  *	Bytes consumed.
607  */
608 
609 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
610 			       unsigned int buflen, int rw)
611 {
612 	struct ata_port *ap = dev->link->ap;
613 	void __iomem *data_addr = ap->ioaddr.data_addr;
614 	unsigned int words = buflen >> 2;
615 	int slop = buflen & 3;
616 
617 	if (!(ap->pflags & ATA_PFLAG_PIO32))
618 		return ata_sff_data_xfer(dev, buf, buflen, rw);
619 
620 	/* Transfer multiple of 4 bytes */
621 	if (rw == READ)
622 		ioread32_rep(data_addr, buf, words);
623 	else
624 		iowrite32_rep(data_addr, buf, words);
625 
626 	/* Transfer trailing bytes, if any */
627 	if (unlikely(slop)) {
628 		unsigned char pad[4];
629 
630 		/* Point buf to the tail of buffer */
631 		buf += buflen - slop;
632 
633 		/*
634 		 * Use io*_rep() accessors here as well to avoid pointlessly
635 		 * swapping bytes to and from on the big endian machines...
636 		 */
637 		if (rw == READ) {
638 			if (slop < 3)
639 				ioread16_rep(data_addr, pad, 1);
640 			else
641 				ioread32_rep(data_addr, pad, 1);
642 			memcpy(buf, pad, slop);
643 		} else {
644 			memcpy(pad, buf, slop);
645 			if (slop < 3)
646 				iowrite16_rep(data_addr, pad, 1);
647 			else
648 				iowrite32_rep(data_addr, pad, 1);
649 		}
650 	}
651 	return (buflen + 1) & ~1;
652 }
653 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
654 
655 /**
656  *	ata_sff_data_xfer_noirq - Transfer data by PIO
657  *	@dev: device to target
658  *	@buf: data buffer
659  *	@buflen: buffer length
660  *	@rw: read/write
661  *
662  *	Transfer data from/to the device data register by PIO. Do the
663  *	transfer with interrupts disabled.
664  *
665  *	LOCKING:
666  *	Inherited from caller.
667  *
668  *	RETURNS:
669  *	Bytes consumed.
670  */
671 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
672 				     unsigned int buflen, int rw)
673 {
674 	unsigned long flags;
675 	unsigned int consumed;
676 
677 	local_irq_save(flags);
678 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
679 	local_irq_restore(flags);
680 
681 	return consumed;
682 }
683 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
684 
685 /**
686  *	ata_pio_sector - Transfer a sector of data.
687  *	@qc: Command on going
688  *
689  *	Transfer qc->sect_size bytes of data from/to the ATA device.
690  *
691  *	LOCKING:
692  *	Inherited from caller.
693  */
694 static void ata_pio_sector(struct ata_queued_cmd *qc)
695 {
696 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
697 	struct ata_port *ap = qc->ap;
698 	struct page *page;
699 	unsigned int offset;
700 	unsigned char *buf;
701 
702 	if (qc->curbytes == qc->nbytes - qc->sect_size)
703 		ap->hsm_task_state = HSM_ST_LAST;
704 
705 	page = sg_page(qc->cursg);
706 	offset = qc->cursg->offset + qc->cursg_ofs;
707 
708 	/* get the current page and offset */
709 	page = nth_page(page, (offset >> PAGE_SHIFT));
710 	offset %= PAGE_SIZE;
711 
712 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
713 
714 	if (PageHighMem(page)) {
715 		unsigned long flags;
716 
717 		/* FIXME: use a bounce buffer */
718 		local_irq_save(flags);
719 		buf = kmap_atomic(page, KM_IRQ0);
720 
721 		/* do the actual data transfer */
722 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
723 				       do_write);
724 
725 		kunmap_atomic(buf, KM_IRQ0);
726 		local_irq_restore(flags);
727 	} else {
728 		buf = page_address(page);
729 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
730 				       do_write);
731 	}
732 
733 	if (!do_write && !PageSlab(page))
734 		flush_dcache_page(page);
735 
736 	qc->curbytes += qc->sect_size;
737 	qc->cursg_ofs += qc->sect_size;
738 
739 	if (qc->cursg_ofs == qc->cursg->length) {
740 		qc->cursg = sg_next(qc->cursg);
741 		qc->cursg_ofs = 0;
742 	}
743 }
744 
745 /**
746  *	ata_pio_sectors - Transfer one or many sectors.
747  *	@qc: Command on going
748  *
749  *	Transfer one or many sectors of data from/to the
750  *	ATA device for the DRQ request.
751  *
752  *	LOCKING:
753  *	Inherited from caller.
754  */
755 static void ata_pio_sectors(struct ata_queued_cmd *qc)
756 {
757 	if (is_multi_taskfile(&qc->tf)) {
758 		/* READ/WRITE MULTIPLE */
759 		unsigned int nsect;
760 
761 		WARN_ON_ONCE(qc->dev->multi_count == 0);
762 
763 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
764 			    qc->dev->multi_count);
765 		while (nsect--)
766 			ata_pio_sector(qc);
767 	} else
768 		ata_pio_sector(qc);
769 
770 	ata_sff_sync(qc->ap); /* flush */
771 }
772 
773 /**
774  *	atapi_send_cdb - Write CDB bytes to hardware
775  *	@ap: Port to which ATAPI device is attached.
776  *	@qc: Taskfile currently active
777  *
778  *	When device has indicated its readiness to accept
779  *	a CDB, this function is called.  Send the CDB.
780  *
781  *	LOCKING:
782  *	caller.
783  */
784 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
785 {
786 	/* send SCSI cdb */
787 	DPRINTK("send cdb\n");
788 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
789 
790 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
791 	ata_sff_sync(ap);
792 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
793 	   or is bmdma_start guaranteed to do it ? */
794 	switch (qc->tf.protocol) {
795 	case ATAPI_PROT_PIO:
796 		ap->hsm_task_state = HSM_ST;
797 		break;
798 	case ATAPI_PROT_NODATA:
799 		ap->hsm_task_state = HSM_ST_LAST;
800 		break;
801 #ifdef CONFIG_ATA_BMDMA
802 	case ATAPI_PROT_DMA:
803 		ap->hsm_task_state = HSM_ST_LAST;
804 		/* initiate bmdma */
805 		ap->ops->bmdma_start(qc);
806 		break;
807 #endif /* CONFIG_ATA_BMDMA */
808 	default:
809 		BUG();
810 	}
811 }
812 
813 /**
814  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
815  *	@qc: Command on going
816  *	@bytes: number of bytes
817  *
818  *	Transfer Transfer data from/to the ATAPI device.
819  *
820  *	LOCKING:
821  *	Inherited from caller.
822  *
823  */
824 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
825 {
826 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
827 	struct ata_port *ap = qc->ap;
828 	struct ata_device *dev = qc->dev;
829 	struct ata_eh_info *ehi = &dev->link->eh_info;
830 	struct scatterlist *sg;
831 	struct page *page;
832 	unsigned char *buf;
833 	unsigned int offset, count, consumed;
834 
835 next_sg:
836 	sg = qc->cursg;
837 	if (unlikely(!sg)) {
838 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
839 				  "buf=%u cur=%u bytes=%u",
840 				  qc->nbytes, qc->curbytes, bytes);
841 		return -1;
842 	}
843 
844 	page = sg_page(sg);
845 	offset = sg->offset + qc->cursg_ofs;
846 
847 	/* get the current page and offset */
848 	page = nth_page(page, (offset >> PAGE_SHIFT));
849 	offset %= PAGE_SIZE;
850 
851 	/* don't overrun current sg */
852 	count = min(sg->length - qc->cursg_ofs, bytes);
853 
854 	/* don't cross page boundaries */
855 	count = min(count, (unsigned int)PAGE_SIZE - offset);
856 
857 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
858 
859 	if (PageHighMem(page)) {
860 		unsigned long flags;
861 
862 		/* FIXME: use bounce buffer */
863 		local_irq_save(flags);
864 		buf = kmap_atomic(page, KM_IRQ0);
865 
866 		/* do the actual data transfer */
867 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
868 								count, rw);
869 
870 		kunmap_atomic(buf, KM_IRQ0);
871 		local_irq_restore(flags);
872 	} else {
873 		buf = page_address(page);
874 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
875 								count, rw);
876 	}
877 
878 	bytes -= min(bytes, consumed);
879 	qc->curbytes += count;
880 	qc->cursg_ofs += count;
881 
882 	if (qc->cursg_ofs == sg->length) {
883 		qc->cursg = sg_next(qc->cursg);
884 		qc->cursg_ofs = 0;
885 	}
886 
887 	/*
888 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
889 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
890 	 * check correctly as it doesn't know if it is the last request being
891 	 * made. Somebody should implement a proper sanity check.
892 	 */
893 	if (bytes)
894 		goto next_sg;
895 	return 0;
896 }
897 
898 /**
899  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
900  *	@qc: Command on going
901  *
902  *	Transfer Transfer data from/to the ATAPI device.
903  *
904  *	LOCKING:
905  *	Inherited from caller.
906  */
907 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
908 {
909 	struct ata_port *ap = qc->ap;
910 	struct ata_device *dev = qc->dev;
911 	struct ata_eh_info *ehi = &dev->link->eh_info;
912 	unsigned int ireason, bc_lo, bc_hi, bytes;
913 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
914 
915 	/* Abuse qc->result_tf for temp storage of intermediate TF
916 	 * here to save some kernel stack usage.
917 	 * For normal completion, qc->result_tf is not relevant. For
918 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
919 	 * So, the correctness of qc->result_tf is not affected.
920 	 */
921 	ap->ops->sff_tf_read(ap, &qc->result_tf);
922 	ireason = qc->result_tf.nsect;
923 	bc_lo = qc->result_tf.lbam;
924 	bc_hi = qc->result_tf.lbah;
925 	bytes = (bc_hi << 8) | bc_lo;
926 
927 	/* shall be cleared to zero, indicating xfer of data */
928 	if (unlikely(ireason & (1 << 0)))
929 		goto atapi_check;
930 
931 	/* make sure transfer direction matches expected */
932 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
933 	if (unlikely(do_write != i_write))
934 		goto atapi_check;
935 
936 	if (unlikely(!bytes))
937 		goto atapi_check;
938 
939 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
940 
941 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
942 		goto err_out;
943 	ata_sff_sync(ap); /* flush */
944 
945 	return;
946 
947  atapi_check:
948 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
949 			  ireason, bytes);
950  err_out:
951 	qc->err_mask |= AC_ERR_HSM;
952 	ap->hsm_task_state = HSM_ST_ERR;
953 }
954 
955 /**
956  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
957  *	@ap: the target ata_port
958  *	@qc: qc on going
959  *
960  *	RETURNS:
961  *	1 if ok in workqueue, 0 otherwise.
962  */
963 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
964 						struct ata_queued_cmd *qc)
965 {
966 	if (qc->tf.flags & ATA_TFLAG_POLLING)
967 		return 1;
968 
969 	if (ap->hsm_task_state == HSM_ST_FIRST) {
970 		if (qc->tf.protocol == ATA_PROT_PIO &&
971 		   (qc->tf.flags & ATA_TFLAG_WRITE))
972 		    return 1;
973 
974 		if (ata_is_atapi(qc->tf.protocol) &&
975 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
976 			return 1;
977 	}
978 
979 	return 0;
980 }
981 
982 /**
983  *	ata_hsm_qc_complete - finish a qc running on standard HSM
984  *	@qc: Command to complete
985  *	@in_wq: 1 if called from workqueue, 0 otherwise
986  *
987  *	Finish @qc which is running on standard HSM.
988  *
989  *	LOCKING:
990  *	If @in_wq is zero, spin_lock_irqsave(host lock).
991  *	Otherwise, none on entry and grabs host lock.
992  */
993 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
994 {
995 	struct ata_port *ap = qc->ap;
996 	unsigned long flags;
997 
998 	if (ap->ops->error_handler) {
999 		if (in_wq) {
1000 			spin_lock_irqsave(ap->lock, flags);
1001 
1002 			/* EH might have kicked in while host lock is
1003 			 * released.
1004 			 */
1005 			qc = ata_qc_from_tag(ap, qc->tag);
1006 			if (qc) {
1007 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1008 					ata_sff_irq_on(ap);
1009 					ata_qc_complete(qc);
1010 				} else
1011 					ata_port_freeze(ap);
1012 			}
1013 
1014 			spin_unlock_irqrestore(ap->lock, flags);
1015 		} else {
1016 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1017 				ata_qc_complete(qc);
1018 			else
1019 				ata_port_freeze(ap);
1020 		}
1021 	} else {
1022 		if (in_wq) {
1023 			spin_lock_irqsave(ap->lock, flags);
1024 			ata_sff_irq_on(ap);
1025 			ata_qc_complete(qc);
1026 			spin_unlock_irqrestore(ap->lock, flags);
1027 		} else
1028 			ata_qc_complete(qc);
1029 	}
1030 }
1031 
1032 /**
1033  *	ata_sff_hsm_move - move the HSM to the next state.
1034  *	@ap: the target ata_port
1035  *	@qc: qc on going
1036  *	@status: current device status
1037  *	@in_wq: 1 if called from workqueue, 0 otherwise
1038  *
1039  *	RETURNS:
1040  *	1 when poll next status needed, 0 otherwise.
1041  */
1042 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1043 		     u8 status, int in_wq)
1044 {
1045 	struct ata_eh_info *ehi = &ap->link.eh_info;
1046 	unsigned long flags = 0;
1047 	int poll_next;
1048 
1049 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1050 
1051 	/* Make sure ata_sff_qc_issue() does not throw things
1052 	 * like DMA polling into the workqueue. Notice that
1053 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1054 	 */
1055 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1056 
1057 fsm_start:
1058 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1059 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1060 
1061 	switch (ap->hsm_task_state) {
1062 	case HSM_ST_FIRST:
1063 		/* Send first data block or PACKET CDB */
1064 
1065 		/* If polling, we will stay in the work queue after
1066 		 * sending the data. Otherwise, interrupt handler
1067 		 * takes over after sending the data.
1068 		 */
1069 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1070 
1071 		/* check device status */
1072 		if (unlikely((status & ATA_DRQ) == 0)) {
1073 			/* handle BSY=0, DRQ=0 as error */
1074 			if (likely(status & (ATA_ERR | ATA_DF)))
1075 				/* device stops HSM for abort/error */
1076 				qc->err_mask |= AC_ERR_DEV;
1077 			else {
1078 				/* HSM violation. Let EH handle this */
1079 				ata_ehi_push_desc(ehi,
1080 					"ST_FIRST: !(DRQ|ERR|DF)");
1081 				qc->err_mask |= AC_ERR_HSM;
1082 			}
1083 
1084 			ap->hsm_task_state = HSM_ST_ERR;
1085 			goto fsm_start;
1086 		}
1087 
1088 		/* Device should not ask for data transfer (DRQ=1)
1089 		 * when it finds something wrong.
1090 		 * We ignore DRQ here and stop the HSM by
1091 		 * changing hsm_task_state to HSM_ST_ERR and
1092 		 * let the EH abort the command or reset the device.
1093 		 */
1094 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1095 			/* Some ATAPI tape drives forget to clear the ERR bit
1096 			 * when doing the next command (mostly request sense).
1097 			 * We ignore ERR here to workaround and proceed sending
1098 			 * the CDB.
1099 			 */
1100 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1101 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1102 					"DRQ=1 with device error, "
1103 					"dev_stat 0x%X", status);
1104 				qc->err_mask |= AC_ERR_HSM;
1105 				ap->hsm_task_state = HSM_ST_ERR;
1106 				goto fsm_start;
1107 			}
1108 		}
1109 
1110 		/* Send the CDB (atapi) or the first data block (ata pio out).
1111 		 * During the state transition, interrupt handler shouldn't
1112 		 * be invoked before the data transfer is complete and
1113 		 * hsm_task_state is changed. Hence, the following locking.
1114 		 */
1115 		if (in_wq)
1116 			spin_lock_irqsave(ap->lock, flags);
1117 
1118 		if (qc->tf.protocol == ATA_PROT_PIO) {
1119 			/* PIO data out protocol.
1120 			 * send first data block.
1121 			 */
1122 
1123 			/* ata_pio_sectors() might change the state
1124 			 * to HSM_ST_LAST. so, the state is changed here
1125 			 * before ata_pio_sectors().
1126 			 */
1127 			ap->hsm_task_state = HSM_ST;
1128 			ata_pio_sectors(qc);
1129 		} else
1130 			/* send CDB */
1131 			atapi_send_cdb(ap, qc);
1132 
1133 		if (in_wq)
1134 			spin_unlock_irqrestore(ap->lock, flags);
1135 
1136 		/* if polling, ata_sff_pio_task() handles the rest.
1137 		 * otherwise, interrupt handler takes over from here.
1138 		 */
1139 		break;
1140 
1141 	case HSM_ST:
1142 		/* complete command or read/write the data register */
1143 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1144 			/* ATAPI PIO protocol */
1145 			if ((status & ATA_DRQ) == 0) {
1146 				/* No more data to transfer or device error.
1147 				 * Device error will be tagged in HSM_ST_LAST.
1148 				 */
1149 				ap->hsm_task_state = HSM_ST_LAST;
1150 				goto fsm_start;
1151 			}
1152 
1153 			/* Device should not ask for data transfer (DRQ=1)
1154 			 * when it finds something wrong.
1155 			 * We ignore DRQ here and stop the HSM by
1156 			 * changing hsm_task_state to HSM_ST_ERR and
1157 			 * let the EH abort the command or reset the device.
1158 			 */
1159 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1160 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1161 					"DRQ=1 with device error, "
1162 					"dev_stat 0x%X", status);
1163 				qc->err_mask |= AC_ERR_HSM;
1164 				ap->hsm_task_state = HSM_ST_ERR;
1165 				goto fsm_start;
1166 			}
1167 
1168 			atapi_pio_bytes(qc);
1169 
1170 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1171 				/* bad ireason reported by device */
1172 				goto fsm_start;
1173 
1174 		} else {
1175 			/* ATA PIO protocol */
1176 			if (unlikely((status & ATA_DRQ) == 0)) {
1177 				/* handle BSY=0, DRQ=0 as error */
1178 				if (likely(status & (ATA_ERR | ATA_DF))) {
1179 					/* device stops HSM for abort/error */
1180 					qc->err_mask |= AC_ERR_DEV;
1181 
1182 					/* If diagnostic failed and this is
1183 					 * IDENTIFY, it's likely a phantom
1184 					 * device.  Mark hint.
1185 					 */
1186 					if (qc->dev->horkage &
1187 					    ATA_HORKAGE_DIAGNOSTIC)
1188 						qc->err_mask |=
1189 							AC_ERR_NODEV_HINT;
1190 				} else {
1191 					/* HSM violation. Let EH handle this.
1192 					 * Phantom devices also trigger this
1193 					 * condition.  Mark hint.
1194 					 */
1195 					ata_ehi_push_desc(ehi, "ST-ATA: "
1196 						"DRQ=0 without device error, "
1197 						"dev_stat 0x%X", status);
1198 					qc->err_mask |= AC_ERR_HSM |
1199 							AC_ERR_NODEV_HINT;
1200 				}
1201 
1202 				ap->hsm_task_state = HSM_ST_ERR;
1203 				goto fsm_start;
1204 			}
1205 
1206 			/* For PIO reads, some devices may ask for
1207 			 * data transfer (DRQ=1) alone with ERR=1.
1208 			 * We respect DRQ here and transfer one
1209 			 * block of junk data before changing the
1210 			 * hsm_task_state to HSM_ST_ERR.
1211 			 *
1212 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1213 			 * sense since the data block has been
1214 			 * transferred to the device.
1215 			 */
1216 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1217 				/* data might be corrputed */
1218 				qc->err_mask |= AC_ERR_DEV;
1219 
1220 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1221 					ata_pio_sectors(qc);
1222 					status = ata_wait_idle(ap);
1223 				}
1224 
1225 				if (status & (ATA_BUSY | ATA_DRQ)) {
1226 					ata_ehi_push_desc(ehi, "ST-ATA: "
1227 						"BUSY|DRQ persists on ERR|DF, "
1228 						"dev_stat 0x%X", status);
1229 					qc->err_mask |= AC_ERR_HSM;
1230 				}
1231 
1232 				/* There are oddball controllers with
1233 				 * status register stuck at 0x7f and
1234 				 * lbal/m/h at zero which makes it
1235 				 * pass all other presence detection
1236 				 * mechanisms we have.  Set NODEV_HINT
1237 				 * for it.  Kernel bz#7241.
1238 				 */
1239 				if (status == 0x7f)
1240 					qc->err_mask |= AC_ERR_NODEV_HINT;
1241 
1242 				/* ata_pio_sectors() might change the
1243 				 * state to HSM_ST_LAST. so, the state
1244 				 * is changed after ata_pio_sectors().
1245 				 */
1246 				ap->hsm_task_state = HSM_ST_ERR;
1247 				goto fsm_start;
1248 			}
1249 
1250 			ata_pio_sectors(qc);
1251 
1252 			if (ap->hsm_task_state == HSM_ST_LAST &&
1253 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1254 				/* all data read */
1255 				status = ata_wait_idle(ap);
1256 				goto fsm_start;
1257 			}
1258 		}
1259 
1260 		poll_next = 1;
1261 		break;
1262 
1263 	case HSM_ST_LAST:
1264 		if (unlikely(!ata_ok(status))) {
1265 			qc->err_mask |= __ac_err_mask(status);
1266 			ap->hsm_task_state = HSM_ST_ERR;
1267 			goto fsm_start;
1268 		}
1269 
1270 		/* no more data to transfer */
1271 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1272 			ap->print_id, qc->dev->devno, status);
1273 
1274 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1275 
1276 		ap->hsm_task_state = HSM_ST_IDLE;
1277 
1278 		/* complete taskfile transaction */
1279 		ata_hsm_qc_complete(qc, in_wq);
1280 
1281 		poll_next = 0;
1282 		break;
1283 
1284 	case HSM_ST_ERR:
1285 		ap->hsm_task_state = HSM_ST_IDLE;
1286 
1287 		/* complete taskfile transaction */
1288 		ata_hsm_qc_complete(qc, in_wq);
1289 
1290 		poll_next = 0;
1291 		break;
1292 	default:
1293 		poll_next = 0;
1294 		BUG();
1295 	}
1296 
1297 	return poll_next;
1298 }
1299 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1300 
1301 void ata_sff_queue_pio_task(struct ata_port *ap, unsigned long delay)
1302 {
1303 	/* may fail if ata_sff_flush_pio_task() in progress */
1304 	queue_delayed_work(ata_sff_wq, &ap->sff_pio_task,
1305 			   msecs_to_jiffies(delay));
1306 }
1307 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1308 
1309 void ata_sff_flush_pio_task(struct ata_port *ap)
1310 {
1311 	DPRINTK("ENTER\n");
1312 
1313 	cancel_rearming_delayed_work(&ap->sff_pio_task);
1314 	ap->hsm_task_state = HSM_ST_IDLE;
1315 
1316 	if (ata_msg_ctl(ap))
1317 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1318 }
1319 
1320 static void ata_sff_pio_task(struct work_struct *work)
1321 {
1322 	struct ata_port *ap =
1323 		container_of(work, struct ata_port, sff_pio_task.work);
1324 	struct ata_queued_cmd *qc;
1325 	u8 status;
1326 	int poll_next;
1327 
1328 	/* qc can be NULL if timeout occurred */
1329 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1330 	if (!qc)
1331 		return;
1332 
1333 fsm_start:
1334 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1335 
1336 	/*
1337 	 * This is purely heuristic.  This is a fast path.
1338 	 * Sometimes when we enter, BSY will be cleared in
1339 	 * a chk-status or two.  If not, the drive is probably seeking
1340 	 * or something.  Snooze for a couple msecs, then
1341 	 * chk-status again.  If still busy, queue delayed work.
1342 	 */
1343 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1344 	if (status & ATA_BUSY) {
1345 		msleep(2);
1346 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1347 		if (status & ATA_BUSY) {
1348 			ata_sff_queue_pio_task(ap, ATA_SHORT_PAUSE);
1349 			return;
1350 		}
1351 	}
1352 
1353 	/* move the HSM */
1354 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1355 
1356 	/* another command or interrupt handler
1357 	 * may be running at this point.
1358 	 */
1359 	if (poll_next)
1360 		goto fsm_start;
1361 }
1362 
1363 /**
1364  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1365  *	@qc: command to issue to device
1366  *
1367  *	This function issues a PIO or NODATA command to a SFF
1368  *	controller.
1369  *
1370  *	LOCKING:
1371  *	spin_lock_irqsave(host lock)
1372  *
1373  *	RETURNS:
1374  *	Zero on success, AC_ERR_* mask on failure
1375  */
1376 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1377 {
1378 	struct ata_port *ap = qc->ap;
1379 
1380 	/* Use polling pio if the LLD doesn't handle
1381 	 * interrupt driven pio and atapi CDB interrupt.
1382 	 */
1383 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1384 		qc->tf.flags |= ATA_TFLAG_POLLING;
1385 
1386 	/* select the device */
1387 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1388 
1389 	/* start the command */
1390 	switch (qc->tf.protocol) {
1391 	case ATA_PROT_NODATA:
1392 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1393 			ata_qc_set_polling(qc);
1394 
1395 		ata_tf_to_host(ap, &qc->tf);
1396 		ap->hsm_task_state = HSM_ST_LAST;
1397 
1398 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1399 			ata_sff_queue_pio_task(ap, 0);
1400 
1401 		break;
1402 
1403 	case ATA_PROT_PIO:
1404 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1405 			ata_qc_set_polling(qc);
1406 
1407 		ata_tf_to_host(ap, &qc->tf);
1408 
1409 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1410 			/* PIO data out protocol */
1411 			ap->hsm_task_state = HSM_ST_FIRST;
1412 			ata_sff_queue_pio_task(ap, 0);
1413 
1414 			/* always send first data block using the
1415 			 * ata_sff_pio_task() codepath.
1416 			 */
1417 		} else {
1418 			/* PIO data in protocol */
1419 			ap->hsm_task_state = HSM_ST;
1420 
1421 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1422 				ata_sff_queue_pio_task(ap, 0);
1423 
1424 			/* if polling, ata_sff_pio_task() handles the
1425 			 * rest.  otherwise, interrupt handler takes
1426 			 * over from here.
1427 			 */
1428 		}
1429 
1430 		break;
1431 
1432 	case ATAPI_PROT_PIO:
1433 	case ATAPI_PROT_NODATA:
1434 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1435 			ata_qc_set_polling(qc);
1436 
1437 		ata_tf_to_host(ap, &qc->tf);
1438 
1439 		ap->hsm_task_state = HSM_ST_FIRST;
1440 
1441 		/* send cdb by polling if no cdb interrupt */
1442 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1443 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1444 			ata_sff_queue_pio_task(ap, 0);
1445 		break;
1446 
1447 	default:
1448 		WARN_ON_ONCE(1);
1449 		return AC_ERR_SYSTEM;
1450 	}
1451 
1452 	return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1455 
1456 /**
1457  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1458  *	@qc: qc to fill result TF for
1459  *
1460  *	@qc is finished and result TF needs to be filled.  Fill it
1461  *	using ->sff_tf_read.
1462  *
1463  *	LOCKING:
1464  *	spin_lock_irqsave(host lock)
1465  *
1466  *	RETURNS:
1467  *	true indicating that result TF is successfully filled.
1468  */
1469 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1470 {
1471 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1472 	return true;
1473 }
1474 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1475 
1476 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1477 {
1478 	ap->stats.idle_irq++;
1479 
1480 #ifdef ATA_IRQ_TRAP
1481 	if ((ap->stats.idle_irq % 1000) == 0) {
1482 		ap->ops->sff_check_status(ap);
1483 		if (ap->ops->sff_irq_clear)
1484 			ap->ops->sff_irq_clear(ap);
1485 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1486 		return 1;
1487 	}
1488 #endif
1489 	return 0;	/* irq not handled */
1490 }
1491 
1492 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1493 					struct ata_queued_cmd *qc,
1494 					bool hsmv_on_idle)
1495 {
1496 	u8 status;
1497 
1498 	VPRINTK("ata%u: protocol %d task_state %d\n",
1499 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1500 
1501 	/* Check whether we are expecting interrupt in this state */
1502 	switch (ap->hsm_task_state) {
1503 	case HSM_ST_FIRST:
1504 		/* Some pre-ATAPI-4 devices assert INTRQ
1505 		 * at this state when ready to receive CDB.
1506 		 */
1507 
1508 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1509 		 * The flag was turned on only for atapi devices.  No
1510 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1511 		 */
1512 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1513 			return ata_sff_idle_irq(ap);
1514 		break;
1515 	case HSM_ST:
1516 	case HSM_ST_LAST:
1517 		break;
1518 	default:
1519 		return ata_sff_idle_irq(ap);
1520 	}
1521 
1522 	/* check main status, clearing INTRQ if needed */
1523 	status = ata_sff_irq_status(ap);
1524 	if (status & ATA_BUSY) {
1525 		if (hsmv_on_idle) {
1526 			/* BMDMA engine is already stopped, we're screwed */
1527 			qc->err_mask |= AC_ERR_HSM;
1528 			ap->hsm_task_state = HSM_ST_ERR;
1529 		} else
1530 			return ata_sff_idle_irq(ap);
1531 	}
1532 
1533 	/* clear irq events */
1534 	if (ap->ops->sff_irq_clear)
1535 		ap->ops->sff_irq_clear(ap);
1536 
1537 	ata_sff_hsm_move(ap, qc, status, 0);
1538 
1539 	return 1;	/* irq handled */
1540 }
1541 
1542 /**
1543  *	ata_sff_port_intr - Handle SFF port interrupt
1544  *	@ap: Port on which interrupt arrived (possibly...)
1545  *	@qc: Taskfile currently active in engine
1546  *
1547  *	Handle port interrupt for given queued command.
1548  *
1549  *	LOCKING:
1550  *	spin_lock_irqsave(host lock)
1551  *
1552  *	RETURNS:
1553  *	One if interrupt was handled, zero if not (shared irq).
1554  */
1555 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1556 {
1557 	return __ata_sff_port_intr(ap, qc, false);
1558 }
1559 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1560 
1561 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1562 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1563 {
1564 	struct ata_host *host = dev_instance;
1565 	bool retried = false;
1566 	unsigned int i;
1567 	unsigned int handled, idle, polling;
1568 	unsigned long flags;
1569 
1570 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1571 	spin_lock_irqsave(&host->lock, flags);
1572 
1573 retry:
1574 	handled = idle = polling = 0;
1575 	for (i = 0; i < host->n_ports; i++) {
1576 		struct ata_port *ap = host->ports[i];
1577 		struct ata_queued_cmd *qc;
1578 
1579 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1580 		if (qc) {
1581 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1582 				handled |= port_intr(ap, qc);
1583 			else
1584 				polling |= 1 << i;
1585 		} else
1586 			idle |= 1 << i;
1587 	}
1588 
1589 	/*
1590 	 * If no port was expecting IRQ but the controller is actually
1591 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1592 	 * pending status if available and clear spurious IRQ.
1593 	 */
1594 	if (!handled && !retried) {
1595 		bool retry = false;
1596 
1597 		for (i = 0; i < host->n_ports; i++) {
1598 			struct ata_port *ap = host->ports[i];
1599 
1600 			if (polling & (1 << i))
1601 				continue;
1602 
1603 			if (!ap->ops->sff_irq_check ||
1604 			    !ap->ops->sff_irq_check(ap))
1605 				continue;
1606 
1607 			if (idle & (1 << i)) {
1608 				ap->ops->sff_check_status(ap);
1609 				if (ap->ops->sff_irq_clear)
1610 					ap->ops->sff_irq_clear(ap);
1611 			} else {
1612 				/* clear INTRQ and check if BUSY cleared */
1613 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1614 					retry |= true;
1615 				/*
1616 				 * With command in flight, we can't do
1617 				 * sff_irq_clear() w/o racing with completion.
1618 				 */
1619 			}
1620 		}
1621 
1622 		if (retry) {
1623 			retried = true;
1624 			goto retry;
1625 		}
1626 	}
1627 
1628 	spin_unlock_irqrestore(&host->lock, flags);
1629 
1630 	return IRQ_RETVAL(handled);
1631 }
1632 
1633 /**
1634  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1635  *	@irq: irq line (unused)
1636  *	@dev_instance: pointer to our ata_host information structure
1637  *
1638  *	Default interrupt handler for PCI IDE devices.  Calls
1639  *	ata_sff_port_intr() for each port that is not disabled.
1640  *
1641  *	LOCKING:
1642  *	Obtains host lock during operation.
1643  *
1644  *	RETURNS:
1645  *	IRQ_NONE or IRQ_HANDLED.
1646  */
1647 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1648 {
1649 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1650 }
1651 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1652 
1653 /**
1654  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1655  *	@ap: port that appears to have timed out
1656  *
1657  *	Called from the libata error handlers when the core code suspects
1658  *	an interrupt has been lost. If it has complete anything we can and
1659  *	then return. Interface must support altstatus for this faster
1660  *	recovery to occur.
1661  *
1662  *	Locking:
1663  *	Caller holds host lock
1664  */
1665 
1666 void ata_sff_lost_interrupt(struct ata_port *ap)
1667 {
1668 	u8 status;
1669 	struct ata_queued_cmd *qc;
1670 
1671 	/* Only one outstanding command per SFF channel */
1672 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1673 	/* We cannot lose an interrupt on a non-existent or polled command */
1674 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1675 		return;
1676 	/* See if the controller thinks it is still busy - if so the command
1677 	   isn't a lost IRQ but is still in progress */
1678 	status = ata_sff_altstatus(ap);
1679 	if (status & ATA_BUSY)
1680 		return;
1681 
1682 	/* There was a command running, we are no longer busy and we have
1683 	   no interrupt. */
1684 	ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1685 								status);
1686 	/* Run the host interrupt logic as if the interrupt had not been
1687 	   lost */
1688 	ata_sff_port_intr(ap, qc);
1689 }
1690 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1691 
1692 /**
1693  *	ata_sff_freeze - Freeze SFF controller port
1694  *	@ap: port to freeze
1695  *
1696  *	Freeze SFF controller port.
1697  *
1698  *	LOCKING:
1699  *	Inherited from caller.
1700  */
1701 void ata_sff_freeze(struct ata_port *ap)
1702 {
1703 	ap->ctl |= ATA_NIEN;
1704 	ap->last_ctl = ap->ctl;
1705 
1706 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1707 		ata_sff_set_devctl(ap, ap->ctl);
1708 
1709 	/* Under certain circumstances, some controllers raise IRQ on
1710 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1711 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1712 	 */
1713 	ap->ops->sff_check_status(ap);
1714 
1715 	if (ap->ops->sff_irq_clear)
1716 		ap->ops->sff_irq_clear(ap);
1717 }
1718 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1719 
1720 /**
1721  *	ata_sff_thaw - Thaw SFF controller port
1722  *	@ap: port to thaw
1723  *
1724  *	Thaw SFF controller port.
1725  *
1726  *	LOCKING:
1727  *	Inherited from caller.
1728  */
1729 void ata_sff_thaw(struct ata_port *ap)
1730 {
1731 	/* clear & re-enable interrupts */
1732 	ap->ops->sff_check_status(ap);
1733 	if (ap->ops->sff_irq_clear)
1734 		ap->ops->sff_irq_clear(ap);
1735 	ata_sff_irq_on(ap);
1736 }
1737 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1738 
1739 /**
1740  *	ata_sff_prereset - prepare SFF link for reset
1741  *	@link: SFF link to be reset
1742  *	@deadline: deadline jiffies for the operation
1743  *
1744  *	SFF link @link is about to be reset.  Initialize it.  It first
1745  *	calls ata_std_prereset() and wait for !BSY if the port is
1746  *	being softreset.
1747  *
1748  *	LOCKING:
1749  *	Kernel thread context (may sleep)
1750  *
1751  *	RETURNS:
1752  *	0 on success, -errno otherwise.
1753  */
1754 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1755 {
1756 	struct ata_eh_context *ehc = &link->eh_context;
1757 	int rc;
1758 
1759 	rc = ata_std_prereset(link, deadline);
1760 	if (rc)
1761 		return rc;
1762 
1763 	/* if we're about to do hardreset, nothing more to do */
1764 	if (ehc->i.action & ATA_EH_HARDRESET)
1765 		return 0;
1766 
1767 	/* wait for !BSY if we don't know that no device is attached */
1768 	if (!ata_link_offline(link)) {
1769 		rc = ata_sff_wait_ready(link, deadline);
1770 		if (rc && rc != -ENODEV) {
1771 			ata_link_printk(link, KERN_WARNING, "device not ready "
1772 					"(errno=%d), forcing hardreset\n", rc);
1773 			ehc->i.action |= ATA_EH_HARDRESET;
1774 		}
1775 	}
1776 
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1780 
1781 /**
1782  *	ata_devchk - PATA device presence detection
1783  *	@ap: ATA channel to examine
1784  *	@device: Device to examine (starting at zero)
1785  *
1786  *	This technique was originally described in
1787  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1788  *	later found its way into the ATA/ATAPI spec.
1789  *
1790  *	Write a pattern to the ATA shadow registers,
1791  *	and if a device is present, it will respond by
1792  *	correctly storing and echoing back the
1793  *	ATA shadow register contents.
1794  *
1795  *	LOCKING:
1796  *	caller.
1797  */
1798 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1799 {
1800 	struct ata_ioports *ioaddr = &ap->ioaddr;
1801 	u8 nsect, lbal;
1802 
1803 	ap->ops->sff_dev_select(ap, device);
1804 
1805 	iowrite8(0x55, ioaddr->nsect_addr);
1806 	iowrite8(0xaa, ioaddr->lbal_addr);
1807 
1808 	iowrite8(0xaa, ioaddr->nsect_addr);
1809 	iowrite8(0x55, ioaddr->lbal_addr);
1810 
1811 	iowrite8(0x55, ioaddr->nsect_addr);
1812 	iowrite8(0xaa, ioaddr->lbal_addr);
1813 
1814 	nsect = ioread8(ioaddr->nsect_addr);
1815 	lbal = ioread8(ioaddr->lbal_addr);
1816 
1817 	if ((nsect == 0x55) && (lbal == 0xaa))
1818 		return 1;	/* we found a device */
1819 
1820 	return 0;		/* nothing found */
1821 }
1822 
1823 /**
1824  *	ata_sff_dev_classify - Parse returned ATA device signature
1825  *	@dev: ATA device to classify (starting at zero)
1826  *	@present: device seems present
1827  *	@r_err: Value of error register on completion
1828  *
1829  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1830  *	an ATA/ATAPI-defined set of values is placed in the ATA
1831  *	shadow registers, indicating the results of device detection
1832  *	and diagnostics.
1833  *
1834  *	Select the ATA device, and read the values from the ATA shadow
1835  *	registers.  Then parse according to the Error register value,
1836  *	and the spec-defined values examined by ata_dev_classify().
1837  *
1838  *	LOCKING:
1839  *	caller.
1840  *
1841  *	RETURNS:
1842  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1843  */
1844 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1845 				  u8 *r_err)
1846 {
1847 	struct ata_port *ap = dev->link->ap;
1848 	struct ata_taskfile tf;
1849 	unsigned int class;
1850 	u8 err;
1851 
1852 	ap->ops->sff_dev_select(ap, dev->devno);
1853 
1854 	memset(&tf, 0, sizeof(tf));
1855 
1856 	ap->ops->sff_tf_read(ap, &tf);
1857 	err = tf.feature;
1858 	if (r_err)
1859 		*r_err = err;
1860 
1861 	/* see if device passed diags: continue and warn later */
1862 	if (err == 0)
1863 		/* diagnostic fail : do nothing _YET_ */
1864 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1865 	else if (err == 1)
1866 		/* do nothing */ ;
1867 	else if ((dev->devno == 0) && (err == 0x81))
1868 		/* do nothing */ ;
1869 	else
1870 		return ATA_DEV_NONE;
1871 
1872 	/* determine if device is ATA or ATAPI */
1873 	class = ata_dev_classify(&tf);
1874 
1875 	if (class == ATA_DEV_UNKNOWN) {
1876 		/* If the device failed diagnostic, it's likely to
1877 		 * have reported incorrect device signature too.
1878 		 * Assume ATA device if the device seems present but
1879 		 * device signature is invalid with diagnostic
1880 		 * failure.
1881 		 */
1882 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1883 			class = ATA_DEV_ATA;
1884 		else
1885 			class = ATA_DEV_NONE;
1886 	} else if ((class == ATA_DEV_ATA) &&
1887 		   (ap->ops->sff_check_status(ap) == 0))
1888 		class = ATA_DEV_NONE;
1889 
1890 	return class;
1891 }
1892 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1893 
1894 /**
1895  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1896  *	@link: SFF link which is just reset
1897  *	@devmask: mask of present devices
1898  *	@deadline: deadline jiffies for the operation
1899  *
1900  *	Wait devices attached to SFF @link to become ready after
1901  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1902  *	status register too early.
1903  *
1904  *	LOCKING:
1905  *	Kernel thread context (may sleep).
1906  *
1907  *	RETURNS:
1908  *	0 on success, -ENODEV if some or all of devices in @devmask
1909  *	don't seem to exist.  -errno on other errors.
1910  */
1911 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1912 			     unsigned long deadline)
1913 {
1914 	struct ata_port *ap = link->ap;
1915 	struct ata_ioports *ioaddr = &ap->ioaddr;
1916 	unsigned int dev0 = devmask & (1 << 0);
1917 	unsigned int dev1 = devmask & (1 << 1);
1918 	int rc, ret = 0;
1919 
1920 	msleep(ATA_WAIT_AFTER_RESET);
1921 
1922 	/* always check readiness of the master device */
1923 	rc = ata_sff_wait_ready(link, deadline);
1924 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1925 	 * and TF status is 0xff, bail out on it too.
1926 	 */
1927 	if (rc)
1928 		return rc;
1929 
1930 	/* if device 1 was found in ata_devchk, wait for register
1931 	 * access briefly, then wait for BSY to clear.
1932 	 */
1933 	if (dev1) {
1934 		int i;
1935 
1936 		ap->ops->sff_dev_select(ap, 1);
1937 
1938 		/* Wait for register access.  Some ATAPI devices fail
1939 		 * to set nsect/lbal after reset, so don't waste too
1940 		 * much time on it.  We're gonna wait for !BSY anyway.
1941 		 */
1942 		for (i = 0; i < 2; i++) {
1943 			u8 nsect, lbal;
1944 
1945 			nsect = ioread8(ioaddr->nsect_addr);
1946 			lbal = ioread8(ioaddr->lbal_addr);
1947 			if ((nsect == 1) && (lbal == 1))
1948 				break;
1949 			msleep(50);	/* give drive a breather */
1950 		}
1951 
1952 		rc = ata_sff_wait_ready(link, deadline);
1953 		if (rc) {
1954 			if (rc != -ENODEV)
1955 				return rc;
1956 			ret = rc;
1957 		}
1958 	}
1959 
1960 	/* is all this really necessary? */
1961 	ap->ops->sff_dev_select(ap, 0);
1962 	if (dev1)
1963 		ap->ops->sff_dev_select(ap, 1);
1964 	if (dev0)
1965 		ap->ops->sff_dev_select(ap, 0);
1966 
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1970 
1971 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1972 			     unsigned long deadline)
1973 {
1974 	struct ata_ioports *ioaddr = &ap->ioaddr;
1975 
1976 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1977 
1978 	/* software reset.  causes dev0 to be selected */
1979 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1980 	udelay(20);	/* FIXME: flush */
1981 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1982 	udelay(20);	/* FIXME: flush */
1983 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1984 	ap->last_ctl = ap->ctl;
1985 
1986 	/* wait the port to become ready */
1987 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1988 }
1989 
1990 /**
1991  *	ata_sff_softreset - reset host port via ATA SRST
1992  *	@link: ATA link to reset
1993  *	@classes: resulting classes of attached devices
1994  *	@deadline: deadline jiffies for the operation
1995  *
1996  *	Reset host port using ATA SRST.
1997  *
1998  *	LOCKING:
1999  *	Kernel thread context (may sleep)
2000  *
2001  *	RETURNS:
2002  *	0 on success, -errno otherwise.
2003  */
2004 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2005 		      unsigned long deadline)
2006 {
2007 	struct ata_port *ap = link->ap;
2008 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2009 	unsigned int devmask = 0;
2010 	int rc;
2011 	u8 err;
2012 
2013 	DPRINTK("ENTER\n");
2014 
2015 	/* determine if device 0/1 are present */
2016 	if (ata_devchk(ap, 0))
2017 		devmask |= (1 << 0);
2018 	if (slave_possible && ata_devchk(ap, 1))
2019 		devmask |= (1 << 1);
2020 
2021 	/* select device 0 again */
2022 	ap->ops->sff_dev_select(ap, 0);
2023 
2024 	/* issue bus reset */
2025 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2026 	rc = ata_bus_softreset(ap, devmask, deadline);
2027 	/* if link is occupied, -ENODEV too is an error */
2028 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2029 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2030 		return rc;
2031 	}
2032 
2033 	/* determine by signature whether we have ATA or ATAPI devices */
2034 	classes[0] = ata_sff_dev_classify(&link->device[0],
2035 					  devmask & (1 << 0), &err);
2036 	if (slave_possible && err != 0x81)
2037 		classes[1] = ata_sff_dev_classify(&link->device[1],
2038 						  devmask & (1 << 1), &err);
2039 
2040 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2041 	return 0;
2042 }
2043 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2044 
2045 /**
2046  *	sata_sff_hardreset - reset host port via SATA phy reset
2047  *	@link: link to reset
2048  *	@class: resulting class of attached device
2049  *	@deadline: deadline jiffies for the operation
2050  *
2051  *	SATA phy-reset host port using DET bits of SControl register,
2052  *	wait for !BSY and classify the attached device.
2053  *
2054  *	LOCKING:
2055  *	Kernel thread context (may sleep)
2056  *
2057  *	RETURNS:
2058  *	0 on success, -errno otherwise.
2059  */
2060 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2061 		       unsigned long deadline)
2062 {
2063 	struct ata_eh_context *ehc = &link->eh_context;
2064 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2065 	bool online;
2066 	int rc;
2067 
2068 	rc = sata_link_hardreset(link, timing, deadline, &online,
2069 				 ata_sff_check_ready);
2070 	if (online)
2071 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2072 
2073 	DPRINTK("EXIT, class=%u\n", *class);
2074 	return rc;
2075 }
2076 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2077 
2078 /**
2079  *	ata_sff_postreset - SFF postreset callback
2080  *	@link: the target SFF ata_link
2081  *	@classes: classes of attached devices
2082  *
2083  *	This function is invoked after a successful reset.  It first
2084  *	calls ata_std_postreset() and performs SFF specific postreset
2085  *	processing.
2086  *
2087  *	LOCKING:
2088  *	Kernel thread context (may sleep)
2089  */
2090 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2091 {
2092 	struct ata_port *ap = link->ap;
2093 
2094 	ata_std_postreset(link, classes);
2095 
2096 	/* is double-select really necessary? */
2097 	if (classes[0] != ATA_DEV_NONE)
2098 		ap->ops->sff_dev_select(ap, 1);
2099 	if (classes[1] != ATA_DEV_NONE)
2100 		ap->ops->sff_dev_select(ap, 0);
2101 
2102 	/* bail out if no device is present */
2103 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2104 		DPRINTK("EXIT, no device\n");
2105 		return;
2106 	}
2107 
2108 	/* set up device control */
2109 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2110 		ata_sff_set_devctl(ap, ap->ctl);
2111 		ap->last_ctl = ap->ctl;
2112 	}
2113 }
2114 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2115 
2116 /**
2117  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2118  *	@qc: command
2119  *
2120  *	Drain the FIFO and device of any stuck data following a command
2121  *	failing to complete. In some cases this is necessary before a
2122  *	reset will recover the device.
2123  *
2124  */
2125 
2126 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2127 {
2128 	int count;
2129 	struct ata_port *ap;
2130 
2131 	/* We only need to flush incoming data when a command was running */
2132 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2133 		return;
2134 
2135 	ap = qc->ap;
2136 	/* Drain up to 64K of data before we give up this recovery method */
2137 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2138 						&& count < 65536; count += 2)
2139 		ioread16(ap->ioaddr.data_addr);
2140 
2141 	/* Can become DEBUG later */
2142 	if (count)
2143 		ata_port_printk(ap, KERN_DEBUG,
2144 			"drained %d bytes to clear DRQ.\n", count);
2145 
2146 }
2147 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2148 
2149 /**
2150  *	ata_sff_error_handler - Stock error handler for SFF controller
2151  *	@ap: port to handle error for
2152  *
2153  *	Stock error handler for SFF controller.  It can handle both
2154  *	PATA and SATA controllers.  Many controllers should be able to
2155  *	use this EH as-is or with some added handling before and
2156  *	after.
2157  *
2158  *	LOCKING:
2159  *	Kernel thread context (may sleep)
2160  */
2161 void ata_sff_error_handler(struct ata_port *ap)
2162 {
2163 	ata_reset_fn_t softreset = ap->ops->softreset;
2164 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2165 	struct ata_queued_cmd *qc;
2166 	unsigned long flags;
2167 
2168 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2169 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2170 		qc = NULL;
2171 
2172 	spin_lock_irqsave(ap->lock, flags);
2173 
2174 	/*
2175 	 * We *MUST* do FIFO draining before we issue a reset as
2176 	 * several devices helpfully clear their internal state and
2177 	 * will lock solid if we touch the data port post reset. Pass
2178 	 * qc in case anyone wants to do different PIO/DMA recovery or
2179 	 * has per command fixups
2180 	 */
2181 	if (ap->ops->sff_drain_fifo)
2182 		ap->ops->sff_drain_fifo(qc);
2183 
2184 	spin_unlock_irqrestore(ap->lock, flags);
2185 
2186 	/* ignore ata_sff_softreset if ctl isn't accessible */
2187 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2188 		softreset = NULL;
2189 
2190 	/* ignore built-in hardresets if SCR access is not available */
2191 	if ((hardreset == sata_std_hardreset ||
2192 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2193 		hardreset = NULL;
2194 
2195 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2196 		  ap->ops->postreset);
2197 }
2198 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2199 
2200 /**
2201  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2202  *	@ioaddr: IO address structure to be initialized
2203  *
2204  *	Utility function which initializes data_addr, error_addr,
2205  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2206  *	device_addr, status_addr, and command_addr to standard offsets
2207  *	relative to cmd_addr.
2208  *
2209  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2210  */
2211 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2212 {
2213 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2214 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2215 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2216 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2217 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2218 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2219 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2220 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2221 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2222 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2223 }
2224 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2225 
2226 #ifdef CONFIG_PCI
2227 
2228 static int ata_resources_present(struct pci_dev *pdev, int port)
2229 {
2230 	int i;
2231 
2232 	/* Check the PCI resources for this channel are enabled */
2233 	port = port * 2;
2234 	for (i = 0; i < 2; i++) {
2235 		if (pci_resource_start(pdev, port + i) == 0 ||
2236 		    pci_resource_len(pdev, port + i) == 0)
2237 			return 0;
2238 	}
2239 	return 1;
2240 }
2241 
2242 /**
2243  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2244  *	@host: target ATA host
2245  *
2246  *	Acquire native PCI ATA resources for @host and initialize the
2247  *	first two ports of @host accordingly.  Ports marked dummy are
2248  *	skipped and allocation failure makes the port dummy.
2249  *
2250  *	Note that native PCI resources are valid even for legacy hosts
2251  *	as we fix up pdev resources array early in boot, so this
2252  *	function can be used for both native and legacy SFF hosts.
2253  *
2254  *	LOCKING:
2255  *	Inherited from calling layer (may sleep).
2256  *
2257  *	RETURNS:
2258  *	0 if at least one port is initialized, -ENODEV if no port is
2259  *	available.
2260  */
2261 int ata_pci_sff_init_host(struct ata_host *host)
2262 {
2263 	struct device *gdev = host->dev;
2264 	struct pci_dev *pdev = to_pci_dev(gdev);
2265 	unsigned int mask = 0;
2266 	int i, rc;
2267 
2268 	/* request, iomap BARs and init port addresses accordingly */
2269 	for (i = 0; i < 2; i++) {
2270 		struct ata_port *ap = host->ports[i];
2271 		int base = i * 2;
2272 		void __iomem * const *iomap;
2273 
2274 		if (ata_port_is_dummy(ap))
2275 			continue;
2276 
2277 		/* Discard disabled ports.  Some controllers show
2278 		 * their unused channels this way.  Disabled ports are
2279 		 * made dummy.
2280 		 */
2281 		if (!ata_resources_present(pdev, i)) {
2282 			ap->ops = &ata_dummy_port_ops;
2283 			continue;
2284 		}
2285 
2286 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2287 					dev_driver_string(gdev));
2288 		if (rc) {
2289 			dev_printk(KERN_WARNING, gdev,
2290 				   "failed to request/iomap BARs for port %d "
2291 				   "(errno=%d)\n", i, rc);
2292 			if (rc == -EBUSY)
2293 				pcim_pin_device(pdev);
2294 			ap->ops = &ata_dummy_port_ops;
2295 			continue;
2296 		}
2297 		host->iomap = iomap = pcim_iomap_table(pdev);
2298 
2299 		ap->ioaddr.cmd_addr = iomap[base];
2300 		ap->ioaddr.altstatus_addr =
2301 		ap->ioaddr.ctl_addr = (void __iomem *)
2302 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2303 		ata_sff_std_ports(&ap->ioaddr);
2304 
2305 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2306 			(unsigned long long)pci_resource_start(pdev, base),
2307 			(unsigned long long)pci_resource_start(pdev, base + 1));
2308 
2309 		mask |= 1 << i;
2310 	}
2311 
2312 	if (!mask) {
2313 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2314 		return -ENODEV;
2315 	}
2316 
2317 	return 0;
2318 }
2319 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2320 
2321 /**
2322  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2323  *	@pdev: target PCI device
2324  *	@ppi: array of port_info, must be enough for two ports
2325  *	@r_host: out argument for the initialized ATA host
2326  *
2327  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2328  *	all PCI resources and initialize it accordingly in one go.
2329  *
2330  *	LOCKING:
2331  *	Inherited from calling layer (may sleep).
2332  *
2333  *	RETURNS:
2334  *	0 on success, -errno otherwise.
2335  */
2336 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2337 			     const struct ata_port_info * const *ppi,
2338 			     struct ata_host **r_host)
2339 {
2340 	struct ata_host *host;
2341 	int rc;
2342 
2343 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2344 		return -ENOMEM;
2345 
2346 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2347 	if (!host) {
2348 		dev_printk(KERN_ERR, &pdev->dev,
2349 			   "failed to allocate ATA host\n");
2350 		rc = -ENOMEM;
2351 		goto err_out;
2352 	}
2353 
2354 	rc = ata_pci_sff_init_host(host);
2355 	if (rc)
2356 		goto err_out;
2357 
2358 	devres_remove_group(&pdev->dev, NULL);
2359 	*r_host = host;
2360 	return 0;
2361 
2362 err_out:
2363 	devres_release_group(&pdev->dev, NULL);
2364 	return rc;
2365 }
2366 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2367 
2368 /**
2369  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2370  *	@host: target SFF ATA host
2371  *	@irq_handler: irq_handler used when requesting IRQ(s)
2372  *	@sht: scsi_host_template to use when registering the host
2373  *
2374  *	This is the counterpart of ata_host_activate() for SFF ATA
2375  *	hosts.  This separate helper is necessary because SFF hosts
2376  *	use two separate interrupts in legacy mode.
2377  *
2378  *	LOCKING:
2379  *	Inherited from calling layer (may sleep).
2380  *
2381  *	RETURNS:
2382  *	0 on success, -errno otherwise.
2383  */
2384 int ata_pci_sff_activate_host(struct ata_host *host,
2385 			      irq_handler_t irq_handler,
2386 			      struct scsi_host_template *sht)
2387 {
2388 	struct device *dev = host->dev;
2389 	struct pci_dev *pdev = to_pci_dev(dev);
2390 	const char *drv_name = dev_driver_string(host->dev);
2391 	int legacy_mode = 0, rc;
2392 
2393 	rc = ata_host_start(host);
2394 	if (rc)
2395 		return rc;
2396 
2397 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2398 		u8 tmp8, mask;
2399 
2400 		/* TODO: What if one channel is in native mode ... */
2401 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2402 		mask = (1 << 2) | (1 << 0);
2403 		if ((tmp8 & mask) != mask)
2404 			legacy_mode = 1;
2405 #if defined(CONFIG_NO_ATA_LEGACY)
2406 		/* Some platforms with PCI limits cannot address compat
2407 		   port space. In that case we punt if their firmware has
2408 		   left a device in compatibility mode */
2409 		if (legacy_mode) {
2410 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2411 			return -EOPNOTSUPP;
2412 		}
2413 #endif
2414 	}
2415 
2416 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2417 		return -ENOMEM;
2418 
2419 	if (!legacy_mode && pdev->irq) {
2420 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2421 				      IRQF_SHARED, drv_name, host);
2422 		if (rc)
2423 			goto out;
2424 
2425 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2426 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2427 	} else if (legacy_mode) {
2428 		if (!ata_port_is_dummy(host->ports[0])) {
2429 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2430 					      irq_handler, IRQF_SHARED,
2431 					      drv_name, host);
2432 			if (rc)
2433 				goto out;
2434 
2435 			ata_port_desc(host->ports[0], "irq %d",
2436 				      ATA_PRIMARY_IRQ(pdev));
2437 		}
2438 
2439 		if (!ata_port_is_dummy(host->ports[1])) {
2440 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2441 					      irq_handler, IRQF_SHARED,
2442 					      drv_name, host);
2443 			if (rc)
2444 				goto out;
2445 
2446 			ata_port_desc(host->ports[1], "irq %d",
2447 				      ATA_SECONDARY_IRQ(pdev));
2448 		}
2449 	}
2450 
2451 	rc = ata_host_register(host, sht);
2452 out:
2453 	if (rc == 0)
2454 		devres_remove_group(dev, NULL);
2455 	else
2456 		devres_release_group(dev, NULL);
2457 
2458 	return rc;
2459 }
2460 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2461 
2462 static const struct ata_port_info *ata_sff_find_valid_pi(
2463 					const struct ata_port_info * const *ppi)
2464 {
2465 	int i;
2466 
2467 	/* look up the first valid port_info */
2468 	for (i = 0; i < 2 && ppi[i]; i++)
2469 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2470 			return ppi[i];
2471 
2472 	return NULL;
2473 }
2474 
2475 /**
2476  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2477  *	@pdev: Controller to be initialized
2478  *	@ppi: array of port_info, must be enough for two ports
2479  *	@sht: scsi_host_template to use when registering the host
2480  *	@host_priv: host private_data
2481  *	@hflag: host flags
2482  *
2483  *	This is a helper function which can be called from a driver's
2484  *	xxx_init_one() probe function if the hardware uses traditional
2485  *	IDE taskfile registers and is PIO only.
2486  *
2487  *	ASSUMPTION:
2488  *	Nobody makes a single channel controller that appears solely as
2489  *	the secondary legacy port on PCI.
2490  *
2491  *	LOCKING:
2492  *	Inherited from PCI layer (may sleep).
2493  *
2494  *	RETURNS:
2495  *	Zero on success, negative on errno-based value on error.
2496  */
2497 int ata_pci_sff_init_one(struct pci_dev *pdev,
2498 		 const struct ata_port_info * const *ppi,
2499 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2500 {
2501 	struct device *dev = &pdev->dev;
2502 	const struct ata_port_info *pi;
2503 	struct ata_host *host = NULL;
2504 	int rc;
2505 
2506 	DPRINTK("ENTER\n");
2507 
2508 	pi = ata_sff_find_valid_pi(ppi);
2509 	if (!pi) {
2510 		dev_printk(KERN_ERR, &pdev->dev,
2511 			   "no valid port_info specified\n");
2512 		return -EINVAL;
2513 	}
2514 
2515 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2516 		return -ENOMEM;
2517 
2518 	rc = pcim_enable_device(pdev);
2519 	if (rc)
2520 		goto out;
2521 
2522 	/* prepare and activate SFF host */
2523 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2524 	if (rc)
2525 		goto out;
2526 	host->private_data = host_priv;
2527 	host->flags |= hflag;
2528 
2529 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2530 out:
2531 	if (rc == 0)
2532 		devres_remove_group(&pdev->dev, NULL);
2533 	else
2534 		devres_release_group(&pdev->dev, NULL);
2535 
2536 	return rc;
2537 }
2538 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2539 
2540 #endif /* CONFIG_PCI */
2541 
2542 /*
2543  *	BMDMA support
2544  */
2545 
2546 #ifdef CONFIG_ATA_BMDMA
2547 
2548 const struct ata_port_operations ata_bmdma_port_ops = {
2549 	.inherits		= &ata_sff_port_ops,
2550 
2551 	.error_handler		= ata_bmdma_error_handler,
2552 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2553 
2554 	.qc_prep		= ata_bmdma_qc_prep,
2555 	.qc_issue		= ata_bmdma_qc_issue,
2556 
2557 	.sff_irq_clear		= ata_bmdma_irq_clear,
2558 	.bmdma_setup		= ata_bmdma_setup,
2559 	.bmdma_start		= ata_bmdma_start,
2560 	.bmdma_stop		= ata_bmdma_stop,
2561 	.bmdma_status		= ata_bmdma_status,
2562 
2563 	.port_start		= ata_bmdma_port_start,
2564 };
2565 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2566 
2567 const struct ata_port_operations ata_bmdma32_port_ops = {
2568 	.inherits		= &ata_bmdma_port_ops,
2569 
2570 	.sff_data_xfer		= ata_sff_data_xfer32,
2571 	.port_start		= ata_bmdma_port_start32,
2572 };
2573 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2574 
2575 /**
2576  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2577  *	@qc: Metadata associated with taskfile to be transferred
2578  *
2579  *	Fill PCI IDE PRD (scatter-gather) table with segments
2580  *	associated with the current disk command.
2581  *
2582  *	LOCKING:
2583  *	spin_lock_irqsave(host lock)
2584  *
2585  */
2586 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2587 {
2588 	struct ata_port *ap = qc->ap;
2589 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2590 	struct scatterlist *sg;
2591 	unsigned int si, pi;
2592 
2593 	pi = 0;
2594 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2595 		u32 addr, offset;
2596 		u32 sg_len, len;
2597 
2598 		/* determine if physical DMA addr spans 64K boundary.
2599 		 * Note h/w doesn't support 64-bit, so we unconditionally
2600 		 * truncate dma_addr_t to u32.
2601 		 */
2602 		addr = (u32) sg_dma_address(sg);
2603 		sg_len = sg_dma_len(sg);
2604 
2605 		while (sg_len) {
2606 			offset = addr & 0xffff;
2607 			len = sg_len;
2608 			if ((offset + sg_len) > 0x10000)
2609 				len = 0x10000 - offset;
2610 
2611 			prd[pi].addr = cpu_to_le32(addr);
2612 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2613 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2614 
2615 			pi++;
2616 			sg_len -= len;
2617 			addr += len;
2618 		}
2619 	}
2620 
2621 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2622 }
2623 
2624 /**
2625  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2626  *	@qc: Metadata associated with taskfile to be transferred
2627  *
2628  *	Fill PCI IDE PRD (scatter-gather) table with segments
2629  *	associated with the current disk command. Perform the fill
2630  *	so that we avoid writing any length 64K records for
2631  *	controllers that don't follow the spec.
2632  *
2633  *	LOCKING:
2634  *	spin_lock_irqsave(host lock)
2635  *
2636  */
2637 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2638 {
2639 	struct ata_port *ap = qc->ap;
2640 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2641 	struct scatterlist *sg;
2642 	unsigned int si, pi;
2643 
2644 	pi = 0;
2645 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2646 		u32 addr, offset;
2647 		u32 sg_len, len, blen;
2648 
2649 		/* determine if physical DMA addr spans 64K boundary.
2650 		 * Note h/w doesn't support 64-bit, so we unconditionally
2651 		 * truncate dma_addr_t to u32.
2652 		 */
2653 		addr = (u32) sg_dma_address(sg);
2654 		sg_len = sg_dma_len(sg);
2655 
2656 		while (sg_len) {
2657 			offset = addr & 0xffff;
2658 			len = sg_len;
2659 			if ((offset + sg_len) > 0x10000)
2660 				len = 0x10000 - offset;
2661 
2662 			blen = len & 0xffff;
2663 			prd[pi].addr = cpu_to_le32(addr);
2664 			if (blen == 0) {
2665 				/* Some PATA chipsets like the CS5530 can't
2666 				   cope with 0x0000 meaning 64K as the spec
2667 				   says */
2668 				prd[pi].flags_len = cpu_to_le32(0x8000);
2669 				blen = 0x8000;
2670 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2671 			}
2672 			prd[pi].flags_len = cpu_to_le32(blen);
2673 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2674 
2675 			pi++;
2676 			sg_len -= len;
2677 			addr += len;
2678 		}
2679 	}
2680 
2681 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2682 }
2683 
2684 /**
2685  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2686  *	@qc: Metadata associated with taskfile to be prepared
2687  *
2688  *	Prepare ATA taskfile for submission.
2689  *
2690  *	LOCKING:
2691  *	spin_lock_irqsave(host lock)
2692  */
2693 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2694 {
2695 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2696 		return;
2697 
2698 	ata_bmdma_fill_sg(qc);
2699 }
2700 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2701 
2702 /**
2703  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2704  *	@qc: Metadata associated with taskfile to be prepared
2705  *
2706  *	Prepare ATA taskfile for submission.
2707  *
2708  *	LOCKING:
2709  *	spin_lock_irqsave(host lock)
2710  */
2711 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2712 {
2713 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2714 		return;
2715 
2716 	ata_bmdma_fill_sg_dumb(qc);
2717 }
2718 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2719 
2720 /**
2721  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2722  *	@qc: command to issue to device
2723  *
2724  *	This function issues a PIO, NODATA or DMA command to a
2725  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2726  *	ata_sff_qc_issue().
2727  *
2728  *	LOCKING:
2729  *	spin_lock_irqsave(host lock)
2730  *
2731  *	RETURNS:
2732  *	Zero on success, AC_ERR_* mask on failure
2733  */
2734 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2735 {
2736 	struct ata_port *ap = qc->ap;
2737 
2738 	/* see ata_dma_blacklisted() */
2739 	BUG_ON((ap->flags & ATA_FLAG_PIO_POLLING) &&
2740 	       qc->tf.protocol == ATAPI_PROT_DMA);
2741 
2742 	/* defer PIO handling to sff_qc_issue */
2743 	if (!ata_is_dma(qc->tf.protocol))
2744 		return ata_sff_qc_issue(qc);
2745 
2746 	/* select the device */
2747 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2748 
2749 	/* start the command */
2750 	switch (qc->tf.protocol) {
2751 	case ATA_PROT_DMA:
2752 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2753 
2754 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2755 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2756 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2757 		ap->hsm_task_state = HSM_ST_LAST;
2758 		break;
2759 
2760 	case ATAPI_PROT_DMA:
2761 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2762 
2763 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2764 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2765 		ap->hsm_task_state = HSM_ST_FIRST;
2766 
2767 		/* send cdb by polling if no cdb interrupt */
2768 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2769 			ata_sff_queue_pio_task(ap, 0);
2770 		break;
2771 
2772 	default:
2773 		WARN_ON(1);
2774 		return AC_ERR_SYSTEM;
2775 	}
2776 
2777 	return 0;
2778 }
2779 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2780 
2781 /**
2782  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2783  *	@ap: Port on which interrupt arrived (possibly...)
2784  *	@qc: Taskfile currently active in engine
2785  *
2786  *	Handle port interrupt for given queued command.
2787  *
2788  *	LOCKING:
2789  *	spin_lock_irqsave(host lock)
2790  *
2791  *	RETURNS:
2792  *	One if interrupt was handled, zero if not (shared irq).
2793  */
2794 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2795 {
2796 	struct ata_eh_info *ehi = &ap->link.eh_info;
2797 	u8 host_stat = 0;
2798 	bool bmdma_stopped = false;
2799 	unsigned int handled;
2800 
2801 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2802 		/* check status of DMA engine */
2803 		host_stat = ap->ops->bmdma_status(ap);
2804 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2805 
2806 		/* if it's not our irq... */
2807 		if (!(host_stat & ATA_DMA_INTR))
2808 			return ata_sff_idle_irq(ap);
2809 
2810 		/* before we do anything else, clear DMA-Start bit */
2811 		ap->ops->bmdma_stop(qc);
2812 		bmdma_stopped = true;
2813 
2814 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2815 			/* error when transfering data to/from memory */
2816 			qc->err_mask |= AC_ERR_HOST_BUS;
2817 			ap->hsm_task_state = HSM_ST_ERR;
2818 		}
2819 	}
2820 
2821 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2822 
2823 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2824 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2825 
2826 	return handled;
2827 }
2828 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2829 
2830 /**
2831  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2832  *	@irq: irq line (unused)
2833  *	@dev_instance: pointer to our ata_host information structure
2834  *
2835  *	Default interrupt handler for PCI IDE devices.  Calls
2836  *	ata_bmdma_port_intr() for each port that is not disabled.
2837  *
2838  *	LOCKING:
2839  *	Obtains host lock during operation.
2840  *
2841  *	RETURNS:
2842  *	IRQ_NONE or IRQ_HANDLED.
2843  */
2844 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2845 {
2846 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2847 }
2848 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2849 
2850 /**
2851  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2852  *	@ap: port to handle error for
2853  *
2854  *	Stock error handler for BMDMA controller.  It can handle both
2855  *	PATA and SATA controllers.  Most BMDMA controllers should be
2856  *	able to use this EH as-is or with some added handling before
2857  *	and after.
2858  *
2859  *	LOCKING:
2860  *	Kernel thread context (may sleep)
2861  */
2862 void ata_bmdma_error_handler(struct ata_port *ap)
2863 {
2864 	struct ata_queued_cmd *qc;
2865 	unsigned long flags;
2866 	bool thaw = false;
2867 
2868 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2869 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2870 		qc = NULL;
2871 
2872 	/* reset PIO HSM and stop DMA engine */
2873 	spin_lock_irqsave(ap->lock, flags);
2874 
2875 	if (qc && ata_is_dma(qc->tf.protocol)) {
2876 		u8 host_stat;
2877 
2878 		host_stat = ap->ops->bmdma_status(ap);
2879 
2880 		/* BMDMA controllers indicate host bus error by
2881 		 * setting DMA_ERR bit and timing out.  As it wasn't
2882 		 * really a timeout event, adjust error mask and
2883 		 * cancel frozen state.
2884 		 */
2885 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2886 			qc->err_mask = AC_ERR_HOST_BUS;
2887 			thaw = true;
2888 		}
2889 
2890 		ap->ops->bmdma_stop(qc);
2891 
2892 		/* if we're gonna thaw, make sure IRQ is clear */
2893 		if (thaw) {
2894 			ap->ops->sff_check_status(ap);
2895 			if (ap->ops->sff_irq_clear)
2896 				ap->ops->sff_irq_clear(ap);
2897 		}
2898 	}
2899 
2900 	spin_unlock_irqrestore(ap->lock, flags);
2901 
2902 	if (thaw)
2903 		ata_eh_thaw_port(ap);
2904 
2905 	ata_sff_error_handler(ap);
2906 }
2907 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2908 
2909 /**
2910  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2911  *	@qc: internal command to clean up
2912  *
2913  *	LOCKING:
2914  *	Kernel thread context (may sleep)
2915  */
2916 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2917 {
2918 	struct ata_port *ap = qc->ap;
2919 	unsigned long flags;
2920 
2921 	if (ata_is_dma(qc->tf.protocol)) {
2922 		spin_lock_irqsave(ap->lock, flags);
2923 		ap->ops->bmdma_stop(qc);
2924 		spin_unlock_irqrestore(ap->lock, flags);
2925 	}
2926 }
2927 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2928 
2929 /**
2930  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2931  *	@ap: Port associated with this ATA transaction.
2932  *
2933  *	Clear interrupt and error flags in DMA status register.
2934  *
2935  *	May be used as the irq_clear() entry in ata_port_operations.
2936  *
2937  *	LOCKING:
2938  *	spin_lock_irqsave(host lock)
2939  */
2940 void ata_bmdma_irq_clear(struct ata_port *ap)
2941 {
2942 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2943 
2944 	if (!mmio)
2945 		return;
2946 
2947 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2948 }
2949 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2950 
2951 /**
2952  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2953  *	@qc: Info associated with this ATA transaction.
2954  *
2955  *	LOCKING:
2956  *	spin_lock_irqsave(host lock)
2957  */
2958 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2959 {
2960 	struct ata_port *ap = qc->ap;
2961 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2962 	u8 dmactl;
2963 
2964 	/* load PRD table addr. */
2965 	mb();	/* make sure PRD table writes are visible to controller */
2966 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2967 
2968 	/* specify data direction, triple-check start bit is clear */
2969 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2970 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2971 	if (!rw)
2972 		dmactl |= ATA_DMA_WR;
2973 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2974 
2975 	/* issue r/w command */
2976 	ap->ops->sff_exec_command(ap, &qc->tf);
2977 }
2978 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2979 
2980 /**
2981  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2982  *	@qc: Info associated with this ATA transaction.
2983  *
2984  *	LOCKING:
2985  *	spin_lock_irqsave(host lock)
2986  */
2987 void ata_bmdma_start(struct ata_queued_cmd *qc)
2988 {
2989 	struct ata_port *ap = qc->ap;
2990 	u8 dmactl;
2991 
2992 	/* start host DMA transaction */
2993 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2994 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2995 
2996 	/* Strictly, one may wish to issue an ioread8() here, to
2997 	 * flush the mmio write.  However, control also passes
2998 	 * to the hardware at this point, and it will interrupt
2999 	 * us when we are to resume control.  So, in effect,
3000 	 * we don't care when the mmio write flushes.
3001 	 * Further, a read of the DMA status register _immediately_
3002 	 * following the write may not be what certain flaky hardware
3003 	 * is expected, so I think it is best to not add a readb()
3004 	 * without first all the MMIO ATA cards/mobos.
3005 	 * Or maybe I'm just being paranoid.
3006 	 *
3007 	 * FIXME: The posting of this write means I/O starts are
3008 	 * unneccessarily delayed for MMIO
3009 	 */
3010 }
3011 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3012 
3013 /**
3014  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3015  *	@qc: Command we are ending DMA for
3016  *
3017  *	Clears the ATA_DMA_START flag in the dma control register
3018  *
3019  *	May be used as the bmdma_stop() entry in ata_port_operations.
3020  *
3021  *	LOCKING:
3022  *	spin_lock_irqsave(host lock)
3023  */
3024 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3025 {
3026 	struct ata_port *ap = qc->ap;
3027 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3028 
3029 	/* clear start/stop bit */
3030 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3031 		 mmio + ATA_DMA_CMD);
3032 
3033 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3034 	ata_sff_dma_pause(ap);
3035 }
3036 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3037 
3038 /**
3039  *	ata_bmdma_status - Read PCI IDE BMDMA status
3040  *	@ap: Port associated with this ATA transaction.
3041  *
3042  *	Read and return BMDMA status register.
3043  *
3044  *	May be used as the bmdma_status() entry in ata_port_operations.
3045  *
3046  *	LOCKING:
3047  *	spin_lock_irqsave(host lock)
3048  */
3049 u8 ata_bmdma_status(struct ata_port *ap)
3050 {
3051 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3052 }
3053 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3054 
3055 
3056 /**
3057  *	ata_bmdma_port_start - Set port up for bmdma.
3058  *	@ap: Port to initialize
3059  *
3060  *	Called just after data structures for each port are
3061  *	initialized.  Allocates space for PRD table.
3062  *
3063  *	May be used as the port_start() entry in ata_port_operations.
3064  *
3065  *	LOCKING:
3066  *	Inherited from caller.
3067  */
3068 int ata_bmdma_port_start(struct ata_port *ap)
3069 {
3070 	if (ap->mwdma_mask || ap->udma_mask) {
3071 		ap->bmdma_prd =
3072 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3073 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3074 		if (!ap->bmdma_prd)
3075 			return -ENOMEM;
3076 	}
3077 
3078 	return 0;
3079 }
3080 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3081 
3082 /**
3083  *	ata_bmdma_port_start32 - Set port up for dma.
3084  *	@ap: Port to initialize
3085  *
3086  *	Called just after data structures for each port are
3087  *	initialized.  Enables 32bit PIO and allocates space for PRD
3088  *	table.
3089  *
3090  *	May be used as the port_start() entry in ata_port_operations for
3091  *	devices that are capable of 32bit PIO.
3092  *
3093  *	LOCKING:
3094  *	Inherited from caller.
3095  */
3096 int ata_bmdma_port_start32(struct ata_port *ap)
3097 {
3098 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3099 	return ata_bmdma_port_start(ap);
3100 }
3101 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3102 
3103 #ifdef CONFIG_PCI
3104 
3105 /**
3106  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3107  *	@pdev: PCI device
3108  *
3109  *	Some PCI ATA devices report simplex mode but in fact can be told to
3110  *	enter non simplex mode. This implements the necessary logic to
3111  *	perform the task on such devices. Calling it on other devices will
3112  *	have -undefined- behaviour.
3113  */
3114 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3115 {
3116 	unsigned long bmdma = pci_resource_start(pdev, 4);
3117 	u8 simplex;
3118 
3119 	if (bmdma == 0)
3120 		return -ENOENT;
3121 
3122 	simplex = inb(bmdma + 0x02);
3123 	outb(simplex & 0x60, bmdma + 0x02);
3124 	simplex = inb(bmdma + 0x02);
3125 	if (simplex & 0x80)
3126 		return -EOPNOTSUPP;
3127 	return 0;
3128 }
3129 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3130 
3131 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3132 {
3133 	int i;
3134 
3135 	dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3136 		   reason);
3137 
3138 	for (i = 0; i < 2; i++) {
3139 		host->ports[i]->mwdma_mask = 0;
3140 		host->ports[i]->udma_mask = 0;
3141 	}
3142 }
3143 
3144 /**
3145  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3146  *	@host: target ATA host
3147  *
3148  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3149  *
3150  *	LOCKING:
3151  *	Inherited from calling layer (may sleep).
3152  */
3153 void ata_pci_bmdma_init(struct ata_host *host)
3154 {
3155 	struct device *gdev = host->dev;
3156 	struct pci_dev *pdev = to_pci_dev(gdev);
3157 	int i, rc;
3158 
3159 	/* No BAR4 allocation: No DMA */
3160 	if (pci_resource_start(pdev, 4) == 0) {
3161 		ata_bmdma_nodma(host, "BAR4 is zero");
3162 		return;
3163 	}
3164 
3165 	/*
3166 	 * Some controllers require BMDMA region to be initialized
3167 	 * even if DMA is not in use to clear IRQ status via
3168 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3169 	 * regardless of dma masks.
3170 	 */
3171 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3172 	if (rc)
3173 		ata_bmdma_nodma(host, "failed to set dma mask");
3174 	if (!rc) {
3175 		rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3176 		if (rc)
3177 			ata_bmdma_nodma(host,
3178 					"failed to set consistent dma mask");
3179 	}
3180 
3181 	/* request and iomap DMA region */
3182 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3183 	if (rc) {
3184 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3185 		return;
3186 	}
3187 	host->iomap = pcim_iomap_table(pdev);
3188 
3189 	for (i = 0; i < 2; i++) {
3190 		struct ata_port *ap = host->ports[i];
3191 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3192 
3193 		if (ata_port_is_dummy(ap))
3194 			continue;
3195 
3196 		ap->ioaddr.bmdma_addr = bmdma;
3197 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3198 		    (ioread8(bmdma + 2) & 0x80))
3199 			host->flags |= ATA_HOST_SIMPLEX;
3200 
3201 		ata_port_desc(ap, "bmdma 0x%llx",
3202 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3203 	}
3204 }
3205 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3206 
3207 /**
3208  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3209  *	@pdev: target PCI device
3210  *	@ppi: array of port_info, must be enough for two ports
3211  *	@r_host: out argument for the initialized ATA host
3212  *
3213  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3214  *	resources and initialize it accordingly in one go.
3215  *
3216  *	LOCKING:
3217  *	Inherited from calling layer (may sleep).
3218  *
3219  *	RETURNS:
3220  *	0 on success, -errno otherwise.
3221  */
3222 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3223 			       const struct ata_port_info * const * ppi,
3224 			       struct ata_host **r_host)
3225 {
3226 	int rc;
3227 
3228 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3229 	if (rc)
3230 		return rc;
3231 
3232 	ata_pci_bmdma_init(*r_host);
3233 	return 0;
3234 }
3235 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3236 
3237 /**
3238  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3239  *	@pdev: Controller to be initialized
3240  *	@ppi: array of port_info, must be enough for two ports
3241  *	@sht: scsi_host_template to use when registering the host
3242  *	@host_priv: host private_data
3243  *	@hflags: host flags
3244  *
3245  *	This function is similar to ata_pci_sff_init_one() but also
3246  *	takes care of BMDMA initialization.
3247  *
3248  *	LOCKING:
3249  *	Inherited from PCI layer (may sleep).
3250  *
3251  *	RETURNS:
3252  *	Zero on success, negative on errno-based value on error.
3253  */
3254 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3255 			   const struct ata_port_info * const * ppi,
3256 			   struct scsi_host_template *sht, void *host_priv,
3257 			   int hflags)
3258 {
3259 	struct device *dev = &pdev->dev;
3260 	const struct ata_port_info *pi;
3261 	struct ata_host *host = NULL;
3262 	int rc;
3263 
3264 	DPRINTK("ENTER\n");
3265 
3266 	pi = ata_sff_find_valid_pi(ppi);
3267 	if (!pi) {
3268 		dev_printk(KERN_ERR, &pdev->dev,
3269 			   "no valid port_info specified\n");
3270 		return -EINVAL;
3271 	}
3272 
3273 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
3274 		return -ENOMEM;
3275 
3276 	rc = pcim_enable_device(pdev);
3277 	if (rc)
3278 		goto out;
3279 
3280 	/* prepare and activate BMDMA host */
3281 	rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
3282 	if (rc)
3283 		goto out;
3284 	host->private_data = host_priv;
3285 	host->flags |= hflags;
3286 
3287 	pci_set_master(pdev);
3288 	rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
3289  out:
3290 	if (rc == 0)
3291 		devres_remove_group(&pdev->dev, NULL);
3292 	else
3293 		devres_release_group(&pdev->dev, NULL);
3294 
3295 	return rc;
3296 }
3297 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3298 
3299 #endif /* CONFIG_PCI */
3300 #endif /* CONFIG_ATA_BMDMA */
3301 
3302 /**
3303  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3304  *	@ap: Port to initialize
3305  *
3306  *	Called on port allocation to initialize SFF/BMDMA specific
3307  *	fields.
3308  *
3309  *	LOCKING:
3310  *	None.
3311  */
3312 void ata_sff_port_init(struct ata_port *ap)
3313 {
3314 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3315 	ap->ctl = ATA_DEVCTL_OBS;
3316 	ap->last_ctl = 0xFF;
3317 }
3318 
3319 int __init ata_sff_init(void)
3320 {
3321 	/*
3322 	 * FIXME: In UP case, there is only one workqueue thread and if you
3323 	 * have more than one PIO device, latency is bloody awful, with
3324 	 * occasional multi-second "hiccups" as one PIO device waits for
3325 	 * another.  It's an ugly wart that users DO occasionally complain
3326 	 * about; luckily most users have at most one PIO polled device.
3327 	 */
3328 	ata_sff_wq = create_workqueue("ata_sff");
3329 	if (!ata_sff_wq)
3330 		return -ENOMEM;
3331 
3332 	return 0;
3333 }
3334 
3335 void __exit ata_sff_exit(void)
3336 {
3337 	destroy_workqueue(ata_sff_wq);
3338 }
3339