1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/libata.h> 39 #include <linux/highmem.h> 40 41 #include "libata.h" 42 43 static struct workqueue_struct *ata_sff_wq; 44 45 const struct ata_port_operations ata_sff_port_ops = { 46 .inherits = &ata_base_port_ops, 47 48 .qc_prep = ata_noop_qc_prep, 49 .qc_issue = ata_sff_qc_issue, 50 .qc_fill_rtf = ata_sff_qc_fill_rtf, 51 52 .freeze = ata_sff_freeze, 53 .thaw = ata_sff_thaw, 54 .prereset = ata_sff_prereset, 55 .softreset = ata_sff_softreset, 56 .hardreset = sata_sff_hardreset, 57 .postreset = ata_sff_postreset, 58 .error_handler = ata_sff_error_handler, 59 60 .sff_dev_select = ata_sff_dev_select, 61 .sff_check_status = ata_sff_check_status, 62 .sff_tf_load = ata_sff_tf_load, 63 .sff_tf_read = ata_sff_tf_read, 64 .sff_exec_command = ata_sff_exec_command, 65 .sff_data_xfer = ata_sff_data_xfer, 66 .sff_drain_fifo = ata_sff_drain_fifo, 67 68 .lost_interrupt = ata_sff_lost_interrupt, 69 }; 70 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 71 72 /** 73 * ata_sff_check_status - Read device status reg & clear interrupt 74 * @ap: port where the device is 75 * 76 * Reads ATA taskfile status register for currently-selected device 77 * and return its value. This also clears pending interrupts 78 * from this device 79 * 80 * LOCKING: 81 * Inherited from caller. 82 */ 83 u8 ata_sff_check_status(struct ata_port *ap) 84 { 85 return ioread8(ap->ioaddr.status_addr); 86 } 87 EXPORT_SYMBOL_GPL(ata_sff_check_status); 88 89 /** 90 * ata_sff_altstatus - Read device alternate status reg 91 * @ap: port where the device is 92 * 93 * Reads ATA taskfile alternate status register for 94 * currently-selected device and return its value. 95 * 96 * Note: may NOT be used as the check_altstatus() entry in 97 * ata_port_operations. 98 * 99 * LOCKING: 100 * Inherited from caller. 101 */ 102 static u8 ata_sff_altstatus(struct ata_port *ap) 103 { 104 if (ap->ops->sff_check_altstatus) 105 return ap->ops->sff_check_altstatus(ap); 106 107 return ioread8(ap->ioaddr.altstatus_addr); 108 } 109 110 /** 111 * ata_sff_irq_status - Check if the device is busy 112 * @ap: port where the device is 113 * 114 * Determine if the port is currently busy. Uses altstatus 115 * if available in order to avoid clearing shared IRQ status 116 * when finding an IRQ source. Non ctl capable devices don't 117 * share interrupt lines fortunately for us. 118 * 119 * LOCKING: 120 * Inherited from caller. 121 */ 122 static u8 ata_sff_irq_status(struct ata_port *ap) 123 { 124 u8 status; 125 126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 127 status = ata_sff_altstatus(ap); 128 /* Not us: We are busy */ 129 if (status & ATA_BUSY) 130 return status; 131 } 132 /* Clear INTRQ latch */ 133 status = ap->ops->sff_check_status(ap); 134 return status; 135 } 136 137 /** 138 * ata_sff_sync - Flush writes 139 * @ap: Port to wait for. 140 * 141 * CAUTION: 142 * If we have an mmio device with no ctl and no altstatus 143 * method this will fail. No such devices are known to exist. 144 * 145 * LOCKING: 146 * Inherited from caller. 147 */ 148 149 static void ata_sff_sync(struct ata_port *ap) 150 { 151 if (ap->ops->sff_check_altstatus) 152 ap->ops->sff_check_altstatus(ap); 153 else if (ap->ioaddr.altstatus_addr) 154 ioread8(ap->ioaddr.altstatus_addr); 155 } 156 157 /** 158 * ata_sff_pause - Flush writes and wait 400nS 159 * @ap: Port to pause for. 160 * 161 * CAUTION: 162 * If we have an mmio device with no ctl and no altstatus 163 * method this will fail. No such devices are known to exist. 164 * 165 * LOCKING: 166 * Inherited from caller. 167 */ 168 169 void ata_sff_pause(struct ata_port *ap) 170 { 171 ata_sff_sync(ap); 172 ndelay(400); 173 } 174 EXPORT_SYMBOL_GPL(ata_sff_pause); 175 176 /** 177 * ata_sff_dma_pause - Pause before commencing DMA 178 * @ap: Port to pause for. 179 * 180 * Perform I/O fencing and ensure sufficient cycle delays occur 181 * for the HDMA1:0 transition 182 */ 183 184 void ata_sff_dma_pause(struct ata_port *ap) 185 { 186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 187 /* An altstatus read will cause the needed delay without 188 messing up the IRQ status */ 189 ata_sff_altstatus(ap); 190 return; 191 } 192 /* There are no DMA controllers without ctl. BUG here to ensure 193 we never violate the HDMA1:0 transition timing and risk 194 corruption. */ 195 BUG(); 196 } 197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 198 199 /** 200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 201 * @ap: port containing status register to be polled 202 * @tmout_pat: impatience timeout in msecs 203 * @tmout: overall timeout in msecs 204 * 205 * Sleep until ATA Status register bit BSY clears, 206 * or a timeout occurs. 207 * 208 * LOCKING: 209 * Kernel thread context (may sleep). 210 * 211 * RETURNS: 212 * 0 on success, -errno otherwise. 213 */ 214 int ata_sff_busy_sleep(struct ata_port *ap, 215 unsigned long tmout_pat, unsigned long tmout) 216 { 217 unsigned long timer_start, timeout; 218 u8 status; 219 220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 221 timer_start = jiffies; 222 timeout = ata_deadline(timer_start, tmout_pat); 223 while (status != 0xff && (status & ATA_BUSY) && 224 time_before(jiffies, timeout)) { 225 msleep(50); 226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 227 } 228 229 if (status != 0xff && (status & ATA_BUSY)) 230 ata_port_printk(ap, KERN_WARNING, 231 "port is slow to respond, please be patient " 232 "(Status 0x%x)\n", status); 233 234 timeout = ata_deadline(timer_start, tmout); 235 while (status != 0xff && (status & ATA_BUSY) && 236 time_before(jiffies, timeout)) { 237 msleep(50); 238 status = ap->ops->sff_check_status(ap); 239 } 240 241 if (status == 0xff) 242 return -ENODEV; 243 244 if (status & ATA_BUSY) { 245 ata_port_printk(ap, KERN_ERR, "port failed to respond " 246 "(%lu secs, Status 0x%x)\n", 247 DIV_ROUND_UP(tmout, 1000), status); 248 return -EBUSY; 249 } 250 251 return 0; 252 } 253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 254 255 static int ata_sff_check_ready(struct ata_link *link) 256 { 257 u8 status = link->ap->ops->sff_check_status(link->ap); 258 259 return ata_check_ready(status); 260 } 261 262 /** 263 * ata_sff_wait_ready - sleep until BSY clears, or timeout 264 * @link: SFF link to wait ready status for 265 * @deadline: deadline jiffies for the operation 266 * 267 * Sleep until ATA Status register bit BSY clears, or timeout 268 * occurs. 269 * 270 * LOCKING: 271 * Kernel thread context (may sleep). 272 * 273 * RETURNS: 274 * 0 on success, -errno otherwise. 275 */ 276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 277 { 278 return ata_wait_ready(link, deadline, ata_sff_check_ready); 279 } 280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 281 282 /** 283 * ata_sff_set_devctl - Write device control reg 284 * @ap: port where the device is 285 * @ctl: value to write 286 * 287 * Writes ATA taskfile device control register. 288 * 289 * Note: may NOT be used as the sff_set_devctl() entry in 290 * ata_port_operations. 291 * 292 * LOCKING: 293 * Inherited from caller. 294 */ 295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 296 { 297 if (ap->ops->sff_set_devctl) 298 ap->ops->sff_set_devctl(ap, ctl); 299 else 300 iowrite8(ctl, ap->ioaddr.ctl_addr); 301 } 302 303 /** 304 * ata_sff_dev_select - Select device 0/1 on ATA bus 305 * @ap: ATA channel to manipulate 306 * @device: ATA device (numbered from zero) to select 307 * 308 * Use the method defined in the ATA specification to 309 * make either device 0, or device 1, active on the 310 * ATA channel. Works with both PIO and MMIO. 311 * 312 * May be used as the dev_select() entry in ata_port_operations. 313 * 314 * LOCKING: 315 * caller. 316 */ 317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 318 { 319 u8 tmp; 320 321 if (device == 0) 322 tmp = ATA_DEVICE_OBS; 323 else 324 tmp = ATA_DEVICE_OBS | ATA_DEV1; 325 326 iowrite8(tmp, ap->ioaddr.device_addr); 327 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 328 } 329 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 330 331 /** 332 * ata_dev_select - Select device 0/1 on ATA bus 333 * @ap: ATA channel to manipulate 334 * @device: ATA device (numbered from zero) to select 335 * @wait: non-zero to wait for Status register BSY bit to clear 336 * @can_sleep: non-zero if context allows sleeping 337 * 338 * Use the method defined in the ATA specification to 339 * make either device 0, or device 1, active on the 340 * ATA channel. 341 * 342 * This is a high-level version of ata_sff_dev_select(), which 343 * additionally provides the services of inserting the proper 344 * pauses and status polling, where needed. 345 * 346 * LOCKING: 347 * caller. 348 */ 349 static void ata_dev_select(struct ata_port *ap, unsigned int device, 350 unsigned int wait, unsigned int can_sleep) 351 { 352 if (ata_msg_probe(ap)) 353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 354 "device %u, wait %u\n", device, wait); 355 356 if (wait) 357 ata_wait_idle(ap); 358 359 ap->ops->sff_dev_select(ap, device); 360 361 if (wait) { 362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 363 msleep(150); 364 ata_wait_idle(ap); 365 } 366 } 367 368 /** 369 * ata_sff_irq_on - Enable interrupts on a port. 370 * @ap: Port on which interrupts are enabled. 371 * 372 * Enable interrupts on a legacy IDE device using MMIO or PIO, 373 * wait for idle, clear any pending interrupts. 374 * 375 * Note: may NOT be used as the sff_irq_on() entry in 376 * ata_port_operations. 377 * 378 * LOCKING: 379 * Inherited from caller. 380 */ 381 void ata_sff_irq_on(struct ata_port *ap) 382 { 383 struct ata_ioports *ioaddr = &ap->ioaddr; 384 385 if (ap->ops->sff_irq_on) { 386 ap->ops->sff_irq_on(ap); 387 return; 388 } 389 390 ap->ctl &= ~ATA_NIEN; 391 ap->last_ctl = ap->ctl; 392 393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 394 ata_sff_set_devctl(ap, ap->ctl); 395 ata_wait_idle(ap); 396 397 if (ap->ops->sff_irq_clear) 398 ap->ops->sff_irq_clear(ap); 399 } 400 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 401 402 /** 403 * ata_sff_tf_load - send taskfile registers to host controller 404 * @ap: Port to which output is sent 405 * @tf: ATA taskfile register set 406 * 407 * Outputs ATA taskfile to standard ATA host controller. 408 * 409 * LOCKING: 410 * Inherited from caller. 411 */ 412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 413 { 414 struct ata_ioports *ioaddr = &ap->ioaddr; 415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 416 417 if (tf->ctl != ap->last_ctl) { 418 if (ioaddr->ctl_addr) 419 iowrite8(tf->ctl, ioaddr->ctl_addr); 420 ap->last_ctl = tf->ctl; 421 } 422 423 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 424 WARN_ON_ONCE(!ioaddr->ctl_addr); 425 iowrite8(tf->hob_feature, ioaddr->feature_addr); 426 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 427 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 428 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 429 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 430 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 431 tf->hob_feature, 432 tf->hob_nsect, 433 tf->hob_lbal, 434 tf->hob_lbam, 435 tf->hob_lbah); 436 } 437 438 if (is_addr) { 439 iowrite8(tf->feature, ioaddr->feature_addr); 440 iowrite8(tf->nsect, ioaddr->nsect_addr); 441 iowrite8(tf->lbal, ioaddr->lbal_addr); 442 iowrite8(tf->lbam, ioaddr->lbam_addr); 443 iowrite8(tf->lbah, ioaddr->lbah_addr); 444 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 445 tf->feature, 446 tf->nsect, 447 tf->lbal, 448 tf->lbam, 449 tf->lbah); 450 } 451 452 if (tf->flags & ATA_TFLAG_DEVICE) { 453 iowrite8(tf->device, ioaddr->device_addr); 454 VPRINTK("device 0x%X\n", tf->device); 455 } 456 } 457 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 458 459 /** 460 * ata_sff_tf_read - input device's ATA taskfile shadow registers 461 * @ap: Port from which input is read 462 * @tf: ATA taskfile register set for storing input 463 * 464 * Reads ATA taskfile registers for currently-selected device 465 * into @tf. Assumes the device has a fully SFF compliant task file 466 * layout and behaviour. If you device does not (eg has a different 467 * status method) then you will need to provide a replacement tf_read 468 * 469 * LOCKING: 470 * Inherited from caller. 471 */ 472 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 473 { 474 struct ata_ioports *ioaddr = &ap->ioaddr; 475 476 tf->command = ata_sff_check_status(ap); 477 tf->feature = ioread8(ioaddr->error_addr); 478 tf->nsect = ioread8(ioaddr->nsect_addr); 479 tf->lbal = ioread8(ioaddr->lbal_addr); 480 tf->lbam = ioread8(ioaddr->lbam_addr); 481 tf->lbah = ioread8(ioaddr->lbah_addr); 482 tf->device = ioread8(ioaddr->device_addr); 483 484 if (tf->flags & ATA_TFLAG_LBA48) { 485 if (likely(ioaddr->ctl_addr)) { 486 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 487 tf->hob_feature = ioread8(ioaddr->error_addr); 488 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 489 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 490 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 491 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 492 iowrite8(tf->ctl, ioaddr->ctl_addr); 493 ap->last_ctl = tf->ctl; 494 } else 495 WARN_ON_ONCE(1); 496 } 497 } 498 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 499 500 /** 501 * ata_sff_exec_command - issue ATA command to host controller 502 * @ap: port to which command is being issued 503 * @tf: ATA taskfile register set 504 * 505 * Issues ATA command, with proper synchronization with interrupt 506 * handler / other threads. 507 * 508 * LOCKING: 509 * spin_lock_irqsave(host lock) 510 */ 511 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 512 { 513 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 514 515 iowrite8(tf->command, ap->ioaddr.command_addr); 516 ata_sff_pause(ap); 517 } 518 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 519 520 /** 521 * ata_tf_to_host - issue ATA taskfile to host controller 522 * @ap: port to which command is being issued 523 * @tf: ATA taskfile register set 524 * 525 * Issues ATA taskfile register set to ATA host controller, 526 * with proper synchronization with interrupt handler and 527 * other threads. 528 * 529 * LOCKING: 530 * spin_lock_irqsave(host lock) 531 */ 532 static inline void ata_tf_to_host(struct ata_port *ap, 533 const struct ata_taskfile *tf) 534 { 535 ap->ops->sff_tf_load(ap, tf); 536 ap->ops->sff_exec_command(ap, tf); 537 } 538 539 /** 540 * ata_sff_data_xfer - Transfer data by PIO 541 * @dev: device to target 542 * @buf: data buffer 543 * @buflen: buffer length 544 * @rw: read/write 545 * 546 * Transfer data from/to the device data register by PIO. 547 * 548 * LOCKING: 549 * Inherited from caller. 550 * 551 * RETURNS: 552 * Bytes consumed. 553 */ 554 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 555 unsigned int buflen, int rw) 556 { 557 struct ata_port *ap = dev->link->ap; 558 void __iomem *data_addr = ap->ioaddr.data_addr; 559 unsigned int words = buflen >> 1; 560 561 /* Transfer multiple of 2 bytes */ 562 if (rw == READ) 563 ioread16_rep(data_addr, buf, words); 564 else 565 iowrite16_rep(data_addr, buf, words); 566 567 /* Transfer trailing byte, if any. */ 568 if (unlikely(buflen & 0x01)) { 569 unsigned char pad[2]; 570 571 /* Point buf to the tail of buffer */ 572 buf += buflen - 1; 573 574 /* 575 * Use io*16_rep() accessors here as well to avoid pointlessly 576 * swapping bytes to and from on the big endian machines... 577 */ 578 if (rw == READ) { 579 ioread16_rep(data_addr, pad, 1); 580 *buf = pad[0]; 581 } else { 582 pad[0] = *buf; 583 iowrite16_rep(data_addr, pad, 1); 584 } 585 words++; 586 } 587 588 return words << 1; 589 } 590 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 591 592 /** 593 * ata_sff_data_xfer32 - Transfer data by PIO 594 * @dev: device to target 595 * @buf: data buffer 596 * @buflen: buffer length 597 * @rw: read/write 598 * 599 * Transfer data from/to the device data register by PIO using 32bit 600 * I/O operations. 601 * 602 * LOCKING: 603 * Inherited from caller. 604 * 605 * RETURNS: 606 * Bytes consumed. 607 */ 608 609 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 610 unsigned int buflen, int rw) 611 { 612 struct ata_port *ap = dev->link->ap; 613 void __iomem *data_addr = ap->ioaddr.data_addr; 614 unsigned int words = buflen >> 2; 615 int slop = buflen & 3; 616 617 if (!(ap->pflags & ATA_PFLAG_PIO32)) 618 return ata_sff_data_xfer(dev, buf, buflen, rw); 619 620 /* Transfer multiple of 4 bytes */ 621 if (rw == READ) 622 ioread32_rep(data_addr, buf, words); 623 else 624 iowrite32_rep(data_addr, buf, words); 625 626 /* Transfer trailing bytes, if any */ 627 if (unlikely(slop)) { 628 unsigned char pad[4]; 629 630 /* Point buf to the tail of buffer */ 631 buf += buflen - slop; 632 633 /* 634 * Use io*_rep() accessors here as well to avoid pointlessly 635 * swapping bytes to and from on the big endian machines... 636 */ 637 if (rw == READ) { 638 if (slop < 3) 639 ioread16_rep(data_addr, pad, 1); 640 else 641 ioread32_rep(data_addr, pad, 1); 642 memcpy(buf, pad, slop); 643 } else { 644 memcpy(pad, buf, slop); 645 if (slop < 3) 646 iowrite16_rep(data_addr, pad, 1); 647 else 648 iowrite32_rep(data_addr, pad, 1); 649 } 650 } 651 return (buflen + 1) & ~1; 652 } 653 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 654 655 /** 656 * ata_sff_data_xfer_noirq - Transfer data by PIO 657 * @dev: device to target 658 * @buf: data buffer 659 * @buflen: buffer length 660 * @rw: read/write 661 * 662 * Transfer data from/to the device data register by PIO. Do the 663 * transfer with interrupts disabled. 664 * 665 * LOCKING: 666 * Inherited from caller. 667 * 668 * RETURNS: 669 * Bytes consumed. 670 */ 671 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 672 unsigned int buflen, int rw) 673 { 674 unsigned long flags; 675 unsigned int consumed; 676 677 local_irq_save(flags); 678 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 679 local_irq_restore(flags); 680 681 return consumed; 682 } 683 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 684 685 /** 686 * ata_pio_sector - Transfer a sector of data. 687 * @qc: Command on going 688 * 689 * Transfer qc->sect_size bytes of data from/to the ATA device. 690 * 691 * LOCKING: 692 * Inherited from caller. 693 */ 694 static void ata_pio_sector(struct ata_queued_cmd *qc) 695 { 696 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 697 struct ata_port *ap = qc->ap; 698 struct page *page; 699 unsigned int offset; 700 unsigned char *buf; 701 702 if (qc->curbytes == qc->nbytes - qc->sect_size) 703 ap->hsm_task_state = HSM_ST_LAST; 704 705 page = sg_page(qc->cursg); 706 offset = qc->cursg->offset + qc->cursg_ofs; 707 708 /* get the current page and offset */ 709 page = nth_page(page, (offset >> PAGE_SHIFT)); 710 offset %= PAGE_SIZE; 711 712 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 713 714 if (PageHighMem(page)) { 715 unsigned long flags; 716 717 /* FIXME: use a bounce buffer */ 718 local_irq_save(flags); 719 buf = kmap_atomic(page, KM_IRQ0); 720 721 /* do the actual data transfer */ 722 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 723 do_write); 724 725 kunmap_atomic(buf, KM_IRQ0); 726 local_irq_restore(flags); 727 } else { 728 buf = page_address(page); 729 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 730 do_write); 731 } 732 733 if (!do_write && !PageSlab(page)) 734 flush_dcache_page(page); 735 736 qc->curbytes += qc->sect_size; 737 qc->cursg_ofs += qc->sect_size; 738 739 if (qc->cursg_ofs == qc->cursg->length) { 740 qc->cursg = sg_next(qc->cursg); 741 qc->cursg_ofs = 0; 742 } 743 } 744 745 /** 746 * ata_pio_sectors - Transfer one or many sectors. 747 * @qc: Command on going 748 * 749 * Transfer one or many sectors of data from/to the 750 * ATA device for the DRQ request. 751 * 752 * LOCKING: 753 * Inherited from caller. 754 */ 755 static void ata_pio_sectors(struct ata_queued_cmd *qc) 756 { 757 if (is_multi_taskfile(&qc->tf)) { 758 /* READ/WRITE MULTIPLE */ 759 unsigned int nsect; 760 761 WARN_ON_ONCE(qc->dev->multi_count == 0); 762 763 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 764 qc->dev->multi_count); 765 while (nsect--) 766 ata_pio_sector(qc); 767 } else 768 ata_pio_sector(qc); 769 770 ata_sff_sync(qc->ap); /* flush */ 771 } 772 773 /** 774 * atapi_send_cdb - Write CDB bytes to hardware 775 * @ap: Port to which ATAPI device is attached. 776 * @qc: Taskfile currently active 777 * 778 * When device has indicated its readiness to accept 779 * a CDB, this function is called. Send the CDB. 780 * 781 * LOCKING: 782 * caller. 783 */ 784 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 785 { 786 /* send SCSI cdb */ 787 DPRINTK("send cdb\n"); 788 WARN_ON_ONCE(qc->dev->cdb_len < 12); 789 790 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 791 ata_sff_sync(ap); 792 /* FIXME: If the CDB is for DMA do we need to do the transition delay 793 or is bmdma_start guaranteed to do it ? */ 794 switch (qc->tf.protocol) { 795 case ATAPI_PROT_PIO: 796 ap->hsm_task_state = HSM_ST; 797 break; 798 case ATAPI_PROT_NODATA: 799 ap->hsm_task_state = HSM_ST_LAST; 800 break; 801 #ifdef CONFIG_ATA_BMDMA 802 case ATAPI_PROT_DMA: 803 ap->hsm_task_state = HSM_ST_LAST; 804 /* initiate bmdma */ 805 ap->ops->bmdma_start(qc); 806 break; 807 #endif /* CONFIG_ATA_BMDMA */ 808 default: 809 BUG(); 810 } 811 } 812 813 /** 814 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 815 * @qc: Command on going 816 * @bytes: number of bytes 817 * 818 * Transfer Transfer data from/to the ATAPI device. 819 * 820 * LOCKING: 821 * Inherited from caller. 822 * 823 */ 824 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 825 { 826 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 827 struct ata_port *ap = qc->ap; 828 struct ata_device *dev = qc->dev; 829 struct ata_eh_info *ehi = &dev->link->eh_info; 830 struct scatterlist *sg; 831 struct page *page; 832 unsigned char *buf; 833 unsigned int offset, count, consumed; 834 835 next_sg: 836 sg = qc->cursg; 837 if (unlikely(!sg)) { 838 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 839 "buf=%u cur=%u bytes=%u", 840 qc->nbytes, qc->curbytes, bytes); 841 return -1; 842 } 843 844 page = sg_page(sg); 845 offset = sg->offset + qc->cursg_ofs; 846 847 /* get the current page and offset */ 848 page = nth_page(page, (offset >> PAGE_SHIFT)); 849 offset %= PAGE_SIZE; 850 851 /* don't overrun current sg */ 852 count = min(sg->length - qc->cursg_ofs, bytes); 853 854 /* don't cross page boundaries */ 855 count = min(count, (unsigned int)PAGE_SIZE - offset); 856 857 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 858 859 if (PageHighMem(page)) { 860 unsigned long flags; 861 862 /* FIXME: use bounce buffer */ 863 local_irq_save(flags); 864 buf = kmap_atomic(page, KM_IRQ0); 865 866 /* do the actual data transfer */ 867 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 868 count, rw); 869 870 kunmap_atomic(buf, KM_IRQ0); 871 local_irq_restore(flags); 872 } else { 873 buf = page_address(page); 874 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 875 count, rw); 876 } 877 878 bytes -= min(bytes, consumed); 879 qc->curbytes += count; 880 qc->cursg_ofs += count; 881 882 if (qc->cursg_ofs == sg->length) { 883 qc->cursg = sg_next(qc->cursg); 884 qc->cursg_ofs = 0; 885 } 886 887 /* 888 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 889 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 890 * check correctly as it doesn't know if it is the last request being 891 * made. Somebody should implement a proper sanity check. 892 */ 893 if (bytes) 894 goto next_sg; 895 return 0; 896 } 897 898 /** 899 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 900 * @qc: Command on going 901 * 902 * Transfer Transfer data from/to the ATAPI device. 903 * 904 * LOCKING: 905 * Inherited from caller. 906 */ 907 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 908 { 909 struct ata_port *ap = qc->ap; 910 struct ata_device *dev = qc->dev; 911 struct ata_eh_info *ehi = &dev->link->eh_info; 912 unsigned int ireason, bc_lo, bc_hi, bytes; 913 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 914 915 /* Abuse qc->result_tf for temp storage of intermediate TF 916 * here to save some kernel stack usage. 917 * For normal completion, qc->result_tf is not relevant. For 918 * error, qc->result_tf is later overwritten by ata_qc_complete(). 919 * So, the correctness of qc->result_tf is not affected. 920 */ 921 ap->ops->sff_tf_read(ap, &qc->result_tf); 922 ireason = qc->result_tf.nsect; 923 bc_lo = qc->result_tf.lbam; 924 bc_hi = qc->result_tf.lbah; 925 bytes = (bc_hi << 8) | bc_lo; 926 927 /* shall be cleared to zero, indicating xfer of data */ 928 if (unlikely(ireason & (1 << 0))) 929 goto atapi_check; 930 931 /* make sure transfer direction matches expected */ 932 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 933 if (unlikely(do_write != i_write)) 934 goto atapi_check; 935 936 if (unlikely(!bytes)) 937 goto atapi_check; 938 939 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 940 941 if (unlikely(__atapi_pio_bytes(qc, bytes))) 942 goto err_out; 943 ata_sff_sync(ap); /* flush */ 944 945 return; 946 947 atapi_check: 948 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 949 ireason, bytes); 950 err_out: 951 qc->err_mask |= AC_ERR_HSM; 952 ap->hsm_task_state = HSM_ST_ERR; 953 } 954 955 /** 956 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 957 * @ap: the target ata_port 958 * @qc: qc on going 959 * 960 * RETURNS: 961 * 1 if ok in workqueue, 0 otherwise. 962 */ 963 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 964 struct ata_queued_cmd *qc) 965 { 966 if (qc->tf.flags & ATA_TFLAG_POLLING) 967 return 1; 968 969 if (ap->hsm_task_state == HSM_ST_FIRST) { 970 if (qc->tf.protocol == ATA_PROT_PIO && 971 (qc->tf.flags & ATA_TFLAG_WRITE)) 972 return 1; 973 974 if (ata_is_atapi(qc->tf.protocol) && 975 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 976 return 1; 977 } 978 979 return 0; 980 } 981 982 /** 983 * ata_hsm_qc_complete - finish a qc running on standard HSM 984 * @qc: Command to complete 985 * @in_wq: 1 if called from workqueue, 0 otherwise 986 * 987 * Finish @qc which is running on standard HSM. 988 * 989 * LOCKING: 990 * If @in_wq is zero, spin_lock_irqsave(host lock). 991 * Otherwise, none on entry and grabs host lock. 992 */ 993 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 994 { 995 struct ata_port *ap = qc->ap; 996 unsigned long flags; 997 998 if (ap->ops->error_handler) { 999 if (in_wq) { 1000 spin_lock_irqsave(ap->lock, flags); 1001 1002 /* EH might have kicked in while host lock is 1003 * released. 1004 */ 1005 qc = ata_qc_from_tag(ap, qc->tag); 1006 if (qc) { 1007 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1008 ata_sff_irq_on(ap); 1009 ata_qc_complete(qc); 1010 } else 1011 ata_port_freeze(ap); 1012 } 1013 1014 spin_unlock_irqrestore(ap->lock, flags); 1015 } else { 1016 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1017 ata_qc_complete(qc); 1018 else 1019 ata_port_freeze(ap); 1020 } 1021 } else { 1022 if (in_wq) { 1023 spin_lock_irqsave(ap->lock, flags); 1024 ata_sff_irq_on(ap); 1025 ata_qc_complete(qc); 1026 spin_unlock_irqrestore(ap->lock, flags); 1027 } else 1028 ata_qc_complete(qc); 1029 } 1030 } 1031 1032 /** 1033 * ata_sff_hsm_move - move the HSM to the next state. 1034 * @ap: the target ata_port 1035 * @qc: qc on going 1036 * @status: current device status 1037 * @in_wq: 1 if called from workqueue, 0 otherwise 1038 * 1039 * RETURNS: 1040 * 1 when poll next status needed, 0 otherwise. 1041 */ 1042 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1043 u8 status, int in_wq) 1044 { 1045 struct ata_eh_info *ehi = &ap->link.eh_info; 1046 unsigned long flags = 0; 1047 int poll_next; 1048 1049 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1050 1051 /* Make sure ata_sff_qc_issue() does not throw things 1052 * like DMA polling into the workqueue. Notice that 1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1054 */ 1055 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1056 1057 fsm_start: 1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1059 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1060 1061 switch (ap->hsm_task_state) { 1062 case HSM_ST_FIRST: 1063 /* Send first data block or PACKET CDB */ 1064 1065 /* If polling, we will stay in the work queue after 1066 * sending the data. Otherwise, interrupt handler 1067 * takes over after sending the data. 1068 */ 1069 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1070 1071 /* check device status */ 1072 if (unlikely((status & ATA_DRQ) == 0)) { 1073 /* handle BSY=0, DRQ=0 as error */ 1074 if (likely(status & (ATA_ERR | ATA_DF))) 1075 /* device stops HSM for abort/error */ 1076 qc->err_mask |= AC_ERR_DEV; 1077 else { 1078 /* HSM violation. Let EH handle this */ 1079 ata_ehi_push_desc(ehi, 1080 "ST_FIRST: !(DRQ|ERR|DF)"); 1081 qc->err_mask |= AC_ERR_HSM; 1082 } 1083 1084 ap->hsm_task_state = HSM_ST_ERR; 1085 goto fsm_start; 1086 } 1087 1088 /* Device should not ask for data transfer (DRQ=1) 1089 * when it finds something wrong. 1090 * We ignore DRQ here and stop the HSM by 1091 * changing hsm_task_state to HSM_ST_ERR and 1092 * let the EH abort the command or reset the device. 1093 */ 1094 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1095 /* Some ATAPI tape drives forget to clear the ERR bit 1096 * when doing the next command (mostly request sense). 1097 * We ignore ERR here to workaround and proceed sending 1098 * the CDB. 1099 */ 1100 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1101 ata_ehi_push_desc(ehi, "ST_FIRST: " 1102 "DRQ=1 with device error, " 1103 "dev_stat 0x%X", status); 1104 qc->err_mask |= AC_ERR_HSM; 1105 ap->hsm_task_state = HSM_ST_ERR; 1106 goto fsm_start; 1107 } 1108 } 1109 1110 /* Send the CDB (atapi) or the first data block (ata pio out). 1111 * During the state transition, interrupt handler shouldn't 1112 * be invoked before the data transfer is complete and 1113 * hsm_task_state is changed. Hence, the following locking. 1114 */ 1115 if (in_wq) 1116 spin_lock_irqsave(ap->lock, flags); 1117 1118 if (qc->tf.protocol == ATA_PROT_PIO) { 1119 /* PIO data out protocol. 1120 * send first data block. 1121 */ 1122 1123 /* ata_pio_sectors() might change the state 1124 * to HSM_ST_LAST. so, the state is changed here 1125 * before ata_pio_sectors(). 1126 */ 1127 ap->hsm_task_state = HSM_ST; 1128 ata_pio_sectors(qc); 1129 } else 1130 /* send CDB */ 1131 atapi_send_cdb(ap, qc); 1132 1133 if (in_wq) 1134 spin_unlock_irqrestore(ap->lock, flags); 1135 1136 /* if polling, ata_sff_pio_task() handles the rest. 1137 * otherwise, interrupt handler takes over from here. 1138 */ 1139 break; 1140 1141 case HSM_ST: 1142 /* complete command or read/write the data register */ 1143 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1144 /* ATAPI PIO protocol */ 1145 if ((status & ATA_DRQ) == 0) { 1146 /* No more data to transfer or device error. 1147 * Device error will be tagged in HSM_ST_LAST. 1148 */ 1149 ap->hsm_task_state = HSM_ST_LAST; 1150 goto fsm_start; 1151 } 1152 1153 /* Device should not ask for data transfer (DRQ=1) 1154 * when it finds something wrong. 1155 * We ignore DRQ here and stop the HSM by 1156 * changing hsm_task_state to HSM_ST_ERR and 1157 * let the EH abort the command or reset the device. 1158 */ 1159 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1160 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1161 "DRQ=1 with device error, " 1162 "dev_stat 0x%X", status); 1163 qc->err_mask |= AC_ERR_HSM; 1164 ap->hsm_task_state = HSM_ST_ERR; 1165 goto fsm_start; 1166 } 1167 1168 atapi_pio_bytes(qc); 1169 1170 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1171 /* bad ireason reported by device */ 1172 goto fsm_start; 1173 1174 } else { 1175 /* ATA PIO protocol */ 1176 if (unlikely((status & ATA_DRQ) == 0)) { 1177 /* handle BSY=0, DRQ=0 as error */ 1178 if (likely(status & (ATA_ERR | ATA_DF))) { 1179 /* device stops HSM for abort/error */ 1180 qc->err_mask |= AC_ERR_DEV; 1181 1182 /* If diagnostic failed and this is 1183 * IDENTIFY, it's likely a phantom 1184 * device. Mark hint. 1185 */ 1186 if (qc->dev->horkage & 1187 ATA_HORKAGE_DIAGNOSTIC) 1188 qc->err_mask |= 1189 AC_ERR_NODEV_HINT; 1190 } else { 1191 /* HSM violation. Let EH handle this. 1192 * Phantom devices also trigger this 1193 * condition. Mark hint. 1194 */ 1195 ata_ehi_push_desc(ehi, "ST-ATA: " 1196 "DRQ=0 without device error, " 1197 "dev_stat 0x%X", status); 1198 qc->err_mask |= AC_ERR_HSM | 1199 AC_ERR_NODEV_HINT; 1200 } 1201 1202 ap->hsm_task_state = HSM_ST_ERR; 1203 goto fsm_start; 1204 } 1205 1206 /* For PIO reads, some devices may ask for 1207 * data transfer (DRQ=1) alone with ERR=1. 1208 * We respect DRQ here and transfer one 1209 * block of junk data before changing the 1210 * hsm_task_state to HSM_ST_ERR. 1211 * 1212 * For PIO writes, ERR=1 DRQ=1 doesn't make 1213 * sense since the data block has been 1214 * transferred to the device. 1215 */ 1216 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1217 /* data might be corrputed */ 1218 qc->err_mask |= AC_ERR_DEV; 1219 1220 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1221 ata_pio_sectors(qc); 1222 status = ata_wait_idle(ap); 1223 } 1224 1225 if (status & (ATA_BUSY | ATA_DRQ)) { 1226 ata_ehi_push_desc(ehi, "ST-ATA: " 1227 "BUSY|DRQ persists on ERR|DF, " 1228 "dev_stat 0x%X", status); 1229 qc->err_mask |= AC_ERR_HSM; 1230 } 1231 1232 /* There are oddball controllers with 1233 * status register stuck at 0x7f and 1234 * lbal/m/h at zero which makes it 1235 * pass all other presence detection 1236 * mechanisms we have. Set NODEV_HINT 1237 * for it. Kernel bz#7241. 1238 */ 1239 if (status == 0x7f) 1240 qc->err_mask |= AC_ERR_NODEV_HINT; 1241 1242 /* ata_pio_sectors() might change the 1243 * state to HSM_ST_LAST. so, the state 1244 * is changed after ata_pio_sectors(). 1245 */ 1246 ap->hsm_task_state = HSM_ST_ERR; 1247 goto fsm_start; 1248 } 1249 1250 ata_pio_sectors(qc); 1251 1252 if (ap->hsm_task_state == HSM_ST_LAST && 1253 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1254 /* all data read */ 1255 status = ata_wait_idle(ap); 1256 goto fsm_start; 1257 } 1258 } 1259 1260 poll_next = 1; 1261 break; 1262 1263 case HSM_ST_LAST: 1264 if (unlikely(!ata_ok(status))) { 1265 qc->err_mask |= __ac_err_mask(status); 1266 ap->hsm_task_state = HSM_ST_ERR; 1267 goto fsm_start; 1268 } 1269 1270 /* no more data to transfer */ 1271 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1272 ap->print_id, qc->dev->devno, status); 1273 1274 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1275 1276 ap->hsm_task_state = HSM_ST_IDLE; 1277 1278 /* complete taskfile transaction */ 1279 ata_hsm_qc_complete(qc, in_wq); 1280 1281 poll_next = 0; 1282 break; 1283 1284 case HSM_ST_ERR: 1285 ap->hsm_task_state = HSM_ST_IDLE; 1286 1287 /* complete taskfile transaction */ 1288 ata_hsm_qc_complete(qc, in_wq); 1289 1290 poll_next = 0; 1291 break; 1292 default: 1293 poll_next = 0; 1294 BUG(); 1295 } 1296 1297 return poll_next; 1298 } 1299 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1300 1301 void ata_sff_queue_pio_task(struct ata_port *ap, unsigned long delay) 1302 { 1303 /* may fail if ata_sff_flush_pio_task() in progress */ 1304 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task, 1305 msecs_to_jiffies(delay)); 1306 } 1307 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1308 1309 void ata_sff_flush_pio_task(struct ata_port *ap) 1310 { 1311 DPRINTK("ENTER\n"); 1312 1313 cancel_rearming_delayed_work(&ap->sff_pio_task); 1314 ap->hsm_task_state = HSM_ST_IDLE; 1315 1316 if (ata_msg_ctl(ap)) 1317 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1318 } 1319 1320 static void ata_sff_pio_task(struct work_struct *work) 1321 { 1322 struct ata_port *ap = 1323 container_of(work, struct ata_port, sff_pio_task.work); 1324 struct ata_queued_cmd *qc; 1325 u8 status; 1326 int poll_next; 1327 1328 /* qc can be NULL if timeout occurred */ 1329 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1330 if (!qc) 1331 return; 1332 1333 fsm_start: 1334 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1335 1336 /* 1337 * This is purely heuristic. This is a fast path. 1338 * Sometimes when we enter, BSY will be cleared in 1339 * a chk-status or two. If not, the drive is probably seeking 1340 * or something. Snooze for a couple msecs, then 1341 * chk-status again. If still busy, queue delayed work. 1342 */ 1343 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1344 if (status & ATA_BUSY) { 1345 msleep(2); 1346 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1347 if (status & ATA_BUSY) { 1348 ata_sff_queue_pio_task(ap, ATA_SHORT_PAUSE); 1349 return; 1350 } 1351 } 1352 1353 /* move the HSM */ 1354 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1355 1356 /* another command or interrupt handler 1357 * may be running at this point. 1358 */ 1359 if (poll_next) 1360 goto fsm_start; 1361 } 1362 1363 /** 1364 * ata_sff_qc_issue - issue taskfile to a SFF controller 1365 * @qc: command to issue to device 1366 * 1367 * This function issues a PIO or NODATA command to a SFF 1368 * controller. 1369 * 1370 * LOCKING: 1371 * spin_lock_irqsave(host lock) 1372 * 1373 * RETURNS: 1374 * Zero on success, AC_ERR_* mask on failure 1375 */ 1376 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1377 { 1378 struct ata_port *ap = qc->ap; 1379 1380 /* Use polling pio if the LLD doesn't handle 1381 * interrupt driven pio and atapi CDB interrupt. 1382 */ 1383 if (ap->flags & ATA_FLAG_PIO_POLLING) 1384 qc->tf.flags |= ATA_TFLAG_POLLING; 1385 1386 /* select the device */ 1387 ata_dev_select(ap, qc->dev->devno, 1, 0); 1388 1389 /* start the command */ 1390 switch (qc->tf.protocol) { 1391 case ATA_PROT_NODATA: 1392 if (qc->tf.flags & ATA_TFLAG_POLLING) 1393 ata_qc_set_polling(qc); 1394 1395 ata_tf_to_host(ap, &qc->tf); 1396 ap->hsm_task_state = HSM_ST_LAST; 1397 1398 if (qc->tf.flags & ATA_TFLAG_POLLING) 1399 ata_sff_queue_pio_task(ap, 0); 1400 1401 break; 1402 1403 case ATA_PROT_PIO: 1404 if (qc->tf.flags & ATA_TFLAG_POLLING) 1405 ata_qc_set_polling(qc); 1406 1407 ata_tf_to_host(ap, &qc->tf); 1408 1409 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1410 /* PIO data out protocol */ 1411 ap->hsm_task_state = HSM_ST_FIRST; 1412 ata_sff_queue_pio_task(ap, 0); 1413 1414 /* always send first data block using the 1415 * ata_sff_pio_task() codepath. 1416 */ 1417 } else { 1418 /* PIO data in protocol */ 1419 ap->hsm_task_state = HSM_ST; 1420 1421 if (qc->tf.flags & ATA_TFLAG_POLLING) 1422 ata_sff_queue_pio_task(ap, 0); 1423 1424 /* if polling, ata_sff_pio_task() handles the 1425 * rest. otherwise, interrupt handler takes 1426 * over from here. 1427 */ 1428 } 1429 1430 break; 1431 1432 case ATAPI_PROT_PIO: 1433 case ATAPI_PROT_NODATA: 1434 if (qc->tf.flags & ATA_TFLAG_POLLING) 1435 ata_qc_set_polling(qc); 1436 1437 ata_tf_to_host(ap, &qc->tf); 1438 1439 ap->hsm_task_state = HSM_ST_FIRST; 1440 1441 /* send cdb by polling if no cdb interrupt */ 1442 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1443 (qc->tf.flags & ATA_TFLAG_POLLING)) 1444 ata_sff_queue_pio_task(ap, 0); 1445 break; 1446 1447 default: 1448 WARN_ON_ONCE(1); 1449 return AC_ERR_SYSTEM; 1450 } 1451 1452 return 0; 1453 } 1454 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1455 1456 /** 1457 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1458 * @qc: qc to fill result TF for 1459 * 1460 * @qc is finished and result TF needs to be filled. Fill it 1461 * using ->sff_tf_read. 1462 * 1463 * LOCKING: 1464 * spin_lock_irqsave(host lock) 1465 * 1466 * RETURNS: 1467 * true indicating that result TF is successfully filled. 1468 */ 1469 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1470 { 1471 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1472 return true; 1473 } 1474 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1475 1476 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1477 { 1478 ap->stats.idle_irq++; 1479 1480 #ifdef ATA_IRQ_TRAP 1481 if ((ap->stats.idle_irq % 1000) == 0) { 1482 ap->ops->sff_check_status(ap); 1483 if (ap->ops->sff_irq_clear) 1484 ap->ops->sff_irq_clear(ap); 1485 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1486 return 1; 1487 } 1488 #endif 1489 return 0; /* irq not handled */ 1490 } 1491 1492 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1493 struct ata_queued_cmd *qc, 1494 bool hsmv_on_idle) 1495 { 1496 u8 status; 1497 1498 VPRINTK("ata%u: protocol %d task_state %d\n", 1499 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1500 1501 /* Check whether we are expecting interrupt in this state */ 1502 switch (ap->hsm_task_state) { 1503 case HSM_ST_FIRST: 1504 /* Some pre-ATAPI-4 devices assert INTRQ 1505 * at this state when ready to receive CDB. 1506 */ 1507 1508 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1509 * The flag was turned on only for atapi devices. No 1510 * need to check ata_is_atapi(qc->tf.protocol) again. 1511 */ 1512 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1513 return ata_sff_idle_irq(ap); 1514 break; 1515 case HSM_ST: 1516 case HSM_ST_LAST: 1517 break; 1518 default: 1519 return ata_sff_idle_irq(ap); 1520 } 1521 1522 /* check main status, clearing INTRQ if needed */ 1523 status = ata_sff_irq_status(ap); 1524 if (status & ATA_BUSY) { 1525 if (hsmv_on_idle) { 1526 /* BMDMA engine is already stopped, we're screwed */ 1527 qc->err_mask |= AC_ERR_HSM; 1528 ap->hsm_task_state = HSM_ST_ERR; 1529 } else 1530 return ata_sff_idle_irq(ap); 1531 } 1532 1533 /* clear irq events */ 1534 if (ap->ops->sff_irq_clear) 1535 ap->ops->sff_irq_clear(ap); 1536 1537 ata_sff_hsm_move(ap, qc, status, 0); 1538 1539 return 1; /* irq handled */ 1540 } 1541 1542 /** 1543 * ata_sff_port_intr - Handle SFF port interrupt 1544 * @ap: Port on which interrupt arrived (possibly...) 1545 * @qc: Taskfile currently active in engine 1546 * 1547 * Handle port interrupt for given queued command. 1548 * 1549 * LOCKING: 1550 * spin_lock_irqsave(host lock) 1551 * 1552 * RETURNS: 1553 * One if interrupt was handled, zero if not (shared irq). 1554 */ 1555 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1556 { 1557 return __ata_sff_port_intr(ap, qc, false); 1558 } 1559 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1560 1561 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1562 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1563 { 1564 struct ata_host *host = dev_instance; 1565 bool retried = false; 1566 unsigned int i; 1567 unsigned int handled, idle, polling; 1568 unsigned long flags; 1569 1570 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1571 spin_lock_irqsave(&host->lock, flags); 1572 1573 retry: 1574 handled = idle = polling = 0; 1575 for (i = 0; i < host->n_ports; i++) { 1576 struct ata_port *ap = host->ports[i]; 1577 struct ata_queued_cmd *qc; 1578 1579 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1580 if (qc) { 1581 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1582 handled |= port_intr(ap, qc); 1583 else 1584 polling |= 1 << i; 1585 } else 1586 idle |= 1 << i; 1587 } 1588 1589 /* 1590 * If no port was expecting IRQ but the controller is actually 1591 * asserting IRQ line, nobody cared will ensue. Check IRQ 1592 * pending status if available and clear spurious IRQ. 1593 */ 1594 if (!handled && !retried) { 1595 bool retry = false; 1596 1597 for (i = 0; i < host->n_ports; i++) { 1598 struct ata_port *ap = host->ports[i]; 1599 1600 if (polling & (1 << i)) 1601 continue; 1602 1603 if (!ap->ops->sff_irq_check || 1604 !ap->ops->sff_irq_check(ap)) 1605 continue; 1606 1607 if (idle & (1 << i)) { 1608 ap->ops->sff_check_status(ap); 1609 if (ap->ops->sff_irq_clear) 1610 ap->ops->sff_irq_clear(ap); 1611 } else { 1612 /* clear INTRQ and check if BUSY cleared */ 1613 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1614 retry |= true; 1615 /* 1616 * With command in flight, we can't do 1617 * sff_irq_clear() w/o racing with completion. 1618 */ 1619 } 1620 } 1621 1622 if (retry) { 1623 retried = true; 1624 goto retry; 1625 } 1626 } 1627 1628 spin_unlock_irqrestore(&host->lock, flags); 1629 1630 return IRQ_RETVAL(handled); 1631 } 1632 1633 /** 1634 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1635 * @irq: irq line (unused) 1636 * @dev_instance: pointer to our ata_host information structure 1637 * 1638 * Default interrupt handler for PCI IDE devices. Calls 1639 * ata_sff_port_intr() for each port that is not disabled. 1640 * 1641 * LOCKING: 1642 * Obtains host lock during operation. 1643 * 1644 * RETURNS: 1645 * IRQ_NONE or IRQ_HANDLED. 1646 */ 1647 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1648 { 1649 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1650 } 1651 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1652 1653 /** 1654 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1655 * @ap: port that appears to have timed out 1656 * 1657 * Called from the libata error handlers when the core code suspects 1658 * an interrupt has been lost. If it has complete anything we can and 1659 * then return. Interface must support altstatus for this faster 1660 * recovery to occur. 1661 * 1662 * Locking: 1663 * Caller holds host lock 1664 */ 1665 1666 void ata_sff_lost_interrupt(struct ata_port *ap) 1667 { 1668 u8 status; 1669 struct ata_queued_cmd *qc; 1670 1671 /* Only one outstanding command per SFF channel */ 1672 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1673 /* We cannot lose an interrupt on a non-existent or polled command */ 1674 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1675 return; 1676 /* See if the controller thinks it is still busy - if so the command 1677 isn't a lost IRQ but is still in progress */ 1678 status = ata_sff_altstatus(ap); 1679 if (status & ATA_BUSY) 1680 return; 1681 1682 /* There was a command running, we are no longer busy and we have 1683 no interrupt. */ 1684 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n", 1685 status); 1686 /* Run the host interrupt logic as if the interrupt had not been 1687 lost */ 1688 ata_sff_port_intr(ap, qc); 1689 } 1690 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1691 1692 /** 1693 * ata_sff_freeze - Freeze SFF controller port 1694 * @ap: port to freeze 1695 * 1696 * Freeze SFF controller port. 1697 * 1698 * LOCKING: 1699 * Inherited from caller. 1700 */ 1701 void ata_sff_freeze(struct ata_port *ap) 1702 { 1703 ap->ctl |= ATA_NIEN; 1704 ap->last_ctl = ap->ctl; 1705 1706 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1707 ata_sff_set_devctl(ap, ap->ctl); 1708 1709 /* Under certain circumstances, some controllers raise IRQ on 1710 * ATA_NIEN manipulation. Also, many controllers fail to mask 1711 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1712 */ 1713 ap->ops->sff_check_status(ap); 1714 1715 if (ap->ops->sff_irq_clear) 1716 ap->ops->sff_irq_clear(ap); 1717 } 1718 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1719 1720 /** 1721 * ata_sff_thaw - Thaw SFF controller port 1722 * @ap: port to thaw 1723 * 1724 * Thaw SFF controller port. 1725 * 1726 * LOCKING: 1727 * Inherited from caller. 1728 */ 1729 void ata_sff_thaw(struct ata_port *ap) 1730 { 1731 /* clear & re-enable interrupts */ 1732 ap->ops->sff_check_status(ap); 1733 if (ap->ops->sff_irq_clear) 1734 ap->ops->sff_irq_clear(ap); 1735 ata_sff_irq_on(ap); 1736 } 1737 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1738 1739 /** 1740 * ata_sff_prereset - prepare SFF link for reset 1741 * @link: SFF link to be reset 1742 * @deadline: deadline jiffies for the operation 1743 * 1744 * SFF link @link is about to be reset. Initialize it. It first 1745 * calls ata_std_prereset() and wait for !BSY if the port is 1746 * being softreset. 1747 * 1748 * LOCKING: 1749 * Kernel thread context (may sleep) 1750 * 1751 * RETURNS: 1752 * 0 on success, -errno otherwise. 1753 */ 1754 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1755 { 1756 struct ata_eh_context *ehc = &link->eh_context; 1757 int rc; 1758 1759 rc = ata_std_prereset(link, deadline); 1760 if (rc) 1761 return rc; 1762 1763 /* if we're about to do hardreset, nothing more to do */ 1764 if (ehc->i.action & ATA_EH_HARDRESET) 1765 return 0; 1766 1767 /* wait for !BSY if we don't know that no device is attached */ 1768 if (!ata_link_offline(link)) { 1769 rc = ata_sff_wait_ready(link, deadline); 1770 if (rc && rc != -ENODEV) { 1771 ata_link_printk(link, KERN_WARNING, "device not ready " 1772 "(errno=%d), forcing hardreset\n", rc); 1773 ehc->i.action |= ATA_EH_HARDRESET; 1774 } 1775 } 1776 1777 return 0; 1778 } 1779 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1780 1781 /** 1782 * ata_devchk - PATA device presence detection 1783 * @ap: ATA channel to examine 1784 * @device: Device to examine (starting at zero) 1785 * 1786 * This technique was originally described in 1787 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1788 * later found its way into the ATA/ATAPI spec. 1789 * 1790 * Write a pattern to the ATA shadow registers, 1791 * and if a device is present, it will respond by 1792 * correctly storing and echoing back the 1793 * ATA shadow register contents. 1794 * 1795 * LOCKING: 1796 * caller. 1797 */ 1798 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1799 { 1800 struct ata_ioports *ioaddr = &ap->ioaddr; 1801 u8 nsect, lbal; 1802 1803 ap->ops->sff_dev_select(ap, device); 1804 1805 iowrite8(0x55, ioaddr->nsect_addr); 1806 iowrite8(0xaa, ioaddr->lbal_addr); 1807 1808 iowrite8(0xaa, ioaddr->nsect_addr); 1809 iowrite8(0x55, ioaddr->lbal_addr); 1810 1811 iowrite8(0x55, ioaddr->nsect_addr); 1812 iowrite8(0xaa, ioaddr->lbal_addr); 1813 1814 nsect = ioread8(ioaddr->nsect_addr); 1815 lbal = ioread8(ioaddr->lbal_addr); 1816 1817 if ((nsect == 0x55) && (lbal == 0xaa)) 1818 return 1; /* we found a device */ 1819 1820 return 0; /* nothing found */ 1821 } 1822 1823 /** 1824 * ata_sff_dev_classify - Parse returned ATA device signature 1825 * @dev: ATA device to classify (starting at zero) 1826 * @present: device seems present 1827 * @r_err: Value of error register on completion 1828 * 1829 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1830 * an ATA/ATAPI-defined set of values is placed in the ATA 1831 * shadow registers, indicating the results of device detection 1832 * and diagnostics. 1833 * 1834 * Select the ATA device, and read the values from the ATA shadow 1835 * registers. Then parse according to the Error register value, 1836 * and the spec-defined values examined by ata_dev_classify(). 1837 * 1838 * LOCKING: 1839 * caller. 1840 * 1841 * RETURNS: 1842 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1843 */ 1844 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1845 u8 *r_err) 1846 { 1847 struct ata_port *ap = dev->link->ap; 1848 struct ata_taskfile tf; 1849 unsigned int class; 1850 u8 err; 1851 1852 ap->ops->sff_dev_select(ap, dev->devno); 1853 1854 memset(&tf, 0, sizeof(tf)); 1855 1856 ap->ops->sff_tf_read(ap, &tf); 1857 err = tf.feature; 1858 if (r_err) 1859 *r_err = err; 1860 1861 /* see if device passed diags: continue and warn later */ 1862 if (err == 0) 1863 /* diagnostic fail : do nothing _YET_ */ 1864 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1865 else if (err == 1) 1866 /* do nothing */ ; 1867 else if ((dev->devno == 0) && (err == 0x81)) 1868 /* do nothing */ ; 1869 else 1870 return ATA_DEV_NONE; 1871 1872 /* determine if device is ATA or ATAPI */ 1873 class = ata_dev_classify(&tf); 1874 1875 if (class == ATA_DEV_UNKNOWN) { 1876 /* If the device failed diagnostic, it's likely to 1877 * have reported incorrect device signature too. 1878 * Assume ATA device if the device seems present but 1879 * device signature is invalid with diagnostic 1880 * failure. 1881 */ 1882 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1883 class = ATA_DEV_ATA; 1884 else 1885 class = ATA_DEV_NONE; 1886 } else if ((class == ATA_DEV_ATA) && 1887 (ap->ops->sff_check_status(ap) == 0)) 1888 class = ATA_DEV_NONE; 1889 1890 return class; 1891 } 1892 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1893 1894 /** 1895 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1896 * @link: SFF link which is just reset 1897 * @devmask: mask of present devices 1898 * @deadline: deadline jiffies for the operation 1899 * 1900 * Wait devices attached to SFF @link to become ready after 1901 * reset. It contains preceding 150ms wait to avoid accessing TF 1902 * status register too early. 1903 * 1904 * LOCKING: 1905 * Kernel thread context (may sleep). 1906 * 1907 * RETURNS: 1908 * 0 on success, -ENODEV if some or all of devices in @devmask 1909 * don't seem to exist. -errno on other errors. 1910 */ 1911 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1912 unsigned long deadline) 1913 { 1914 struct ata_port *ap = link->ap; 1915 struct ata_ioports *ioaddr = &ap->ioaddr; 1916 unsigned int dev0 = devmask & (1 << 0); 1917 unsigned int dev1 = devmask & (1 << 1); 1918 int rc, ret = 0; 1919 1920 msleep(ATA_WAIT_AFTER_RESET); 1921 1922 /* always check readiness of the master device */ 1923 rc = ata_sff_wait_ready(link, deadline); 1924 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1925 * and TF status is 0xff, bail out on it too. 1926 */ 1927 if (rc) 1928 return rc; 1929 1930 /* if device 1 was found in ata_devchk, wait for register 1931 * access briefly, then wait for BSY to clear. 1932 */ 1933 if (dev1) { 1934 int i; 1935 1936 ap->ops->sff_dev_select(ap, 1); 1937 1938 /* Wait for register access. Some ATAPI devices fail 1939 * to set nsect/lbal after reset, so don't waste too 1940 * much time on it. We're gonna wait for !BSY anyway. 1941 */ 1942 for (i = 0; i < 2; i++) { 1943 u8 nsect, lbal; 1944 1945 nsect = ioread8(ioaddr->nsect_addr); 1946 lbal = ioread8(ioaddr->lbal_addr); 1947 if ((nsect == 1) && (lbal == 1)) 1948 break; 1949 msleep(50); /* give drive a breather */ 1950 } 1951 1952 rc = ata_sff_wait_ready(link, deadline); 1953 if (rc) { 1954 if (rc != -ENODEV) 1955 return rc; 1956 ret = rc; 1957 } 1958 } 1959 1960 /* is all this really necessary? */ 1961 ap->ops->sff_dev_select(ap, 0); 1962 if (dev1) 1963 ap->ops->sff_dev_select(ap, 1); 1964 if (dev0) 1965 ap->ops->sff_dev_select(ap, 0); 1966 1967 return ret; 1968 } 1969 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1970 1971 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1972 unsigned long deadline) 1973 { 1974 struct ata_ioports *ioaddr = &ap->ioaddr; 1975 1976 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1977 1978 /* software reset. causes dev0 to be selected */ 1979 iowrite8(ap->ctl, ioaddr->ctl_addr); 1980 udelay(20); /* FIXME: flush */ 1981 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1982 udelay(20); /* FIXME: flush */ 1983 iowrite8(ap->ctl, ioaddr->ctl_addr); 1984 ap->last_ctl = ap->ctl; 1985 1986 /* wait the port to become ready */ 1987 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1988 } 1989 1990 /** 1991 * ata_sff_softreset - reset host port via ATA SRST 1992 * @link: ATA link to reset 1993 * @classes: resulting classes of attached devices 1994 * @deadline: deadline jiffies for the operation 1995 * 1996 * Reset host port using ATA SRST. 1997 * 1998 * LOCKING: 1999 * Kernel thread context (may sleep) 2000 * 2001 * RETURNS: 2002 * 0 on success, -errno otherwise. 2003 */ 2004 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2005 unsigned long deadline) 2006 { 2007 struct ata_port *ap = link->ap; 2008 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2009 unsigned int devmask = 0; 2010 int rc; 2011 u8 err; 2012 2013 DPRINTK("ENTER\n"); 2014 2015 /* determine if device 0/1 are present */ 2016 if (ata_devchk(ap, 0)) 2017 devmask |= (1 << 0); 2018 if (slave_possible && ata_devchk(ap, 1)) 2019 devmask |= (1 << 1); 2020 2021 /* select device 0 again */ 2022 ap->ops->sff_dev_select(ap, 0); 2023 2024 /* issue bus reset */ 2025 DPRINTK("about to softreset, devmask=%x\n", devmask); 2026 rc = ata_bus_softreset(ap, devmask, deadline); 2027 /* if link is occupied, -ENODEV too is an error */ 2028 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2029 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2030 return rc; 2031 } 2032 2033 /* determine by signature whether we have ATA or ATAPI devices */ 2034 classes[0] = ata_sff_dev_classify(&link->device[0], 2035 devmask & (1 << 0), &err); 2036 if (slave_possible && err != 0x81) 2037 classes[1] = ata_sff_dev_classify(&link->device[1], 2038 devmask & (1 << 1), &err); 2039 2040 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2041 return 0; 2042 } 2043 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2044 2045 /** 2046 * sata_sff_hardreset - reset host port via SATA phy reset 2047 * @link: link to reset 2048 * @class: resulting class of attached device 2049 * @deadline: deadline jiffies for the operation 2050 * 2051 * SATA phy-reset host port using DET bits of SControl register, 2052 * wait for !BSY and classify the attached device. 2053 * 2054 * LOCKING: 2055 * Kernel thread context (may sleep) 2056 * 2057 * RETURNS: 2058 * 0 on success, -errno otherwise. 2059 */ 2060 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2061 unsigned long deadline) 2062 { 2063 struct ata_eh_context *ehc = &link->eh_context; 2064 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2065 bool online; 2066 int rc; 2067 2068 rc = sata_link_hardreset(link, timing, deadline, &online, 2069 ata_sff_check_ready); 2070 if (online) 2071 *class = ata_sff_dev_classify(link->device, 1, NULL); 2072 2073 DPRINTK("EXIT, class=%u\n", *class); 2074 return rc; 2075 } 2076 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2077 2078 /** 2079 * ata_sff_postreset - SFF postreset callback 2080 * @link: the target SFF ata_link 2081 * @classes: classes of attached devices 2082 * 2083 * This function is invoked after a successful reset. It first 2084 * calls ata_std_postreset() and performs SFF specific postreset 2085 * processing. 2086 * 2087 * LOCKING: 2088 * Kernel thread context (may sleep) 2089 */ 2090 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2091 { 2092 struct ata_port *ap = link->ap; 2093 2094 ata_std_postreset(link, classes); 2095 2096 /* is double-select really necessary? */ 2097 if (classes[0] != ATA_DEV_NONE) 2098 ap->ops->sff_dev_select(ap, 1); 2099 if (classes[1] != ATA_DEV_NONE) 2100 ap->ops->sff_dev_select(ap, 0); 2101 2102 /* bail out if no device is present */ 2103 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2104 DPRINTK("EXIT, no device\n"); 2105 return; 2106 } 2107 2108 /* set up device control */ 2109 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2110 ata_sff_set_devctl(ap, ap->ctl); 2111 ap->last_ctl = ap->ctl; 2112 } 2113 } 2114 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2115 2116 /** 2117 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2118 * @qc: command 2119 * 2120 * Drain the FIFO and device of any stuck data following a command 2121 * failing to complete. In some cases this is necessary before a 2122 * reset will recover the device. 2123 * 2124 */ 2125 2126 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2127 { 2128 int count; 2129 struct ata_port *ap; 2130 2131 /* We only need to flush incoming data when a command was running */ 2132 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2133 return; 2134 2135 ap = qc->ap; 2136 /* Drain up to 64K of data before we give up this recovery method */ 2137 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2138 && count < 65536; count += 2) 2139 ioread16(ap->ioaddr.data_addr); 2140 2141 /* Can become DEBUG later */ 2142 if (count) 2143 ata_port_printk(ap, KERN_DEBUG, 2144 "drained %d bytes to clear DRQ.\n", count); 2145 2146 } 2147 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2148 2149 /** 2150 * ata_sff_error_handler - Stock error handler for SFF controller 2151 * @ap: port to handle error for 2152 * 2153 * Stock error handler for SFF controller. It can handle both 2154 * PATA and SATA controllers. Many controllers should be able to 2155 * use this EH as-is or with some added handling before and 2156 * after. 2157 * 2158 * LOCKING: 2159 * Kernel thread context (may sleep) 2160 */ 2161 void ata_sff_error_handler(struct ata_port *ap) 2162 { 2163 ata_reset_fn_t softreset = ap->ops->softreset; 2164 ata_reset_fn_t hardreset = ap->ops->hardreset; 2165 struct ata_queued_cmd *qc; 2166 unsigned long flags; 2167 2168 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2169 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2170 qc = NULL; 2171 2172 spin_lock_irqsave(ap->lock, flags); 2173 2174 /* 2175 * We *MUST* do FIFO draining before we issue a reset as 2176 * several devices helpfully clear their internal state and 2177 * will lock solid if we touch the data port post reset. Pass 2178 * qc in case anyone wants to do different PIO/DMA recovery or 2179 * has per command fixups 2180 */ 2181 if (ap->ops->sff_drain_fifo) 2182 ap->ops->sff_drain_fifo(qc); 2183 2184 spin_unlock_irqrestore(ap->lock, flags); 2185 2186 /* ignore ata_sff_softreset if ctl isn't accessible */ 2187 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2188 softreset = NULL; 2189 2190 /* ignore built-in hardresets if SCR access is not available */ 2191 if ((hardreset == sata_std_hardreset || 2192 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2193 hardreset = NULL; 2194 2195 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2196 ap->ops->postreset); 2197 } 2198 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2199 2200 /** 2201 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2202 * @ioaddr: IO address structure to be initialized 2203 * 2204 * Utility function which initializes data_addr, error_addr, 2205 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2206 * device_addr, status_addr, and command_addr to standard offsets 2207 * relative to cmd_addr. 2208 * 2209 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2210 */ 2211 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2212 { 2213 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2214 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2215 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2216 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2217 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2218 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2219 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2220 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2221 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2222 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2223 } 2224 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2225 2226 #ifdef CONFIG_PCI 2227 2228 static int ata_resources_present(struct pci_dev *pdev, int port) 2229 { 2230 int i; 2231 2232 /* Check the PCI resources for this channel are enabled */ 2233 port = port * 2; 2234 for (i = 0; i < 2; i++) { 2235 if (pci_resource_start(pdev, port + i) == 0 || 2236 pci_resource_len(pdev, port + i) == 0) 2237 return 0; 2238 } 2239 return 1; 2240 } 2241 2242 /** 2243 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2244 * @host: target ATA host 2245 * 2246 * Acquire native PCI ATA resources for @host and initialize the 2247 * first two ports of @host accordingly. Ports marked dummy are 2248 * skipped and allocation failure makes the port dummy. 2249 * 2250 * Note that native PCI resources are valid even for legacy hosts 2251 * as we fix up pdev resources array early in boot, so this 2252 * function can be used for both native and legacy SFF hosts. 2253 * 2254 * LOCKING: 2255 * Inherited from calling layer (may sleep). 2256 * 2257 * RETURNS: 2258 * 0 if at least one port is initialized, -ENODEV if no port is 2259 * available. 2260 */ 2261 int ata_pci_sff_init_host(struct ata_host *host) 2262 { 2263 struct device *gdev = host->dev; 2264 struct pci_dev *pdev = to_pci_dev(gdev); 2265 unsigned int mask = 0; 2266 int i, rc; 2267 2268 /* request, iomap BARs and init port addresses accordingly */ 2269 for (i = 0; i < 2; i++) { 2270 struct ata_port *ap = host->ports[i]; 2271 int base = i * 2; 2272 void __iomem * const *iomap; 2273 2274 if (ata_port_is_dummy(ap)) 2275 continue; 2276 2277 /* Discard disabled ports. Some controllers show 2278 * their unused channels this way. Disabled ports are 2279 * made dummy. 2280 */ 2281 if (!ata_resources_present(pdev, i)) { 2282 ap->ops = &ata_dummy_port_ops; 2283 continue; 2284 } 2285 2286 rc = pcim_iomap_regions(pdev, 0x3 << base, 2287 dev_driver_string(gdev)); 2288 if (rc) { 2289 dev_printk(KERN_WARNING, gdev, 2290 "failed to request/iomap BARs for port %d " 2291 "(errno=%d)\n", i, rc); 2292 if (rc == -EBUSY) 2293 pcim_pin_device(pdev); 2294 ap->ops = &ata_dummy_port_ops; 2295 continue; 2296 } 2297 host->iomap = iomap = pcim_iomap_table(pdev); 2298 2299 ap->ioaddr.cmd_addr = iomap[base]; 2300 ap->ioaddr.altstatus_addr = 2301 ap->ioaddr.ctl_addr = (void __iomem *) 2302 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2303 ata_sff_std_ports(&ap->ioaddr); 2304 2305 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2306 (unsigned long long)pci_resource_start(pdev, base), 2307 (unsigned long long)pci_resource_start(pdev, base + 1)); 2308 2309 mask |= 1 << i; 2310 } 2311 2312 if (!mask) { 2313 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2314 return -ENODEV; 2315 } 2316 2317 return 0; 2318 } 2319 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2320 2321 /** 2322 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2323 * @pdev: target PCI device 2324 * @ppi: array of port_info, must be enough for two ports 2325 * @r_host: out argument for the initialized ATA host 2326 * 2327 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2328 * all PCI resources and initialize it accordingly in one go. 2329 * 2330 * LOCKING: 2331 * Inherited from calling layer (may sleep). 2332 * 2333 * RETURNS: 2334 * 0 on success, -errno otherwise. 2335 */ 2336 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2337 const struct ata_port_info * const *ppi, 2338 struct ata_host **r_host) 2339 { 2340 struct ata_host *host; 2341 int rc; 2342 2343 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2344 return -ENOMEM; 2345 2346 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2347 if (!host) { 2348 dev_printk(KERN_ERR, &pdev->dev, 2349 "failed to allocate ATA host\n"); 2350 rc = -ENOMEM; 2351 goto err_out; 2352 } 2353 2354 rc = ata_pci_sff_init_host(host); 2355 if (rc) 2356 goto err_out; 2357 2358 devres_remove_group(&pdev->dev, NULL); 2359 *r_host = host; 2360 return 0; 2361 2362 err_out: 2363 devres_release_group(&pdev->dev, NULL); 2364 return rc; 2365 } 2366 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2367 2368 /** 2369 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2370 * @host: target SFF ATA host 2371 * @irq_handler: irq_handler used when requesting IRQ(s) 2372 * @sht: scsi_host_template to use when registering the host 2373 * 2374 * This is the counterpart of ata_host_activate() for SFF ATA 2375 * hosts. This separate helper is necessary because SFF hosts 2376 * use two separate interrupts in legacy mode. 2377 * 2378 * LOCKING: 2379 * Inherited from calling layer (may sleep). 2380 * 2381 * RETURNS: 2382 * 0 on success, -errno otherwise. 2383 */ 2384 int ata_pci_sff_activate_host(struct ata_host *host, 2385 irq_handler_t irq_handler, 2386 struct scsi_host_template *sht) 2387 { 2388 struct device *dev = host->dev; 2389 struct pci_dev *pdev = to_pci_dev(dev); 2390 const char *drv_name = dev_driver_string(host->dev); 2391 int legacy_mode = 0, rc; 2392 2393 rc = ata_host_start(host); 2394 if (rc) 2395 return rc; 2396 2397 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2398 u8 tmp8, mask; 2399 2400 /* TODO: What if one channel is in native mode ... */ 2401 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2402 mask = (1 << 2) | (1 << 0); 2403 if ((tmp8 & mask) != mask) 2404 legacy_mode = 1; 2405 #if defined(CONFIG_NO_ATA_LEGACY) 2406 /* Some platforms with PCI limits cannot address compat 2407 port space. In that case we punt if their firmware has 2408 left a device in compatibility mode */ 2409 if (legacy_mode) { 2410 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2411 return -EOPNOTSUPP; 2412 } 2413 #endif 2414 } 2415 2416 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2417 return -ENOMEM; 2418 2419 if (!legacy_mode && pdev->irq) { 2420 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2421 IRQF_SHARED, drv_name, host); 2422 if (rc) 2423 goto out; 2424 2425 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2426 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2427 } else if (legacy_mode) { 2428 if (!ata_port_is_dummy(host->ports[0])) { 2429 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2430 irq_handler, IRQF_SHARED, 2431 drv_name, host); 2432 if (rc) 2433 goto out; 2434 2435 ata_port_desc(host->ports[0], "irq %d", 2436 ATA_PRIMARY_IRQ(pdev)); 2437 } 2438 2439 if (!ata_port_is_dummy(host->ports[1])) { 2440 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2441 irq_handler, IRQF_SHARED, 2442 drv_name, host); 2443 if (rc) 2444 goto out; 2445 2446 ata_port_desc(host->ports[1], "irq %d", 2447 ATA_SECONDARY_IRQ(pdev)); 2448 } 2449 } 2450 2451 rc = ata_host_register(host, sht); 2452 out: 2453 if (rc == 0) 2454 devres_remove_group(dev, NULL); 2455 else 2456 devres_release_group(dev, NULL); 2457 2458 return rc; 2459 } 2460 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2461 2462 static const struct ata_port_info *ata_sff_find_valid_pi( 2463 const struct ata_port_info * const *ppi) 2464 { 2465 int i; 2466 2467 /* look up the first valid port_info */ 2468 for (i = 0; i < 2 && ppi[i]; i++) 2469 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2470 return ppi[i]; 2471 2472 return NULL; 2473 } 2474 2475 /** 2476 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2477 * @pdev: Controller to be initialized 2478 * @ppi: array of port_info, must be enough for two ports 2479 * @sht: scsi_host_template to use when registering the host 2480 * @host_priv: host private_data 2481 * @hflag: host flags 2482 * 2483 * This is a helper function which can be called from a driver's 2484 * xxx_init_one() probe function if the hardware uses traditional 2485 * IDE taskfile registers and is PIO only. 2486 * 2487 * ASSUMPTION: 2488 * Nobody makes a single channel controller that appears solely as 2489 * the secondary legacy port on PCI. 2490 * 2491 * LOCKING: 2492 * Inherited from PCI layer (may sleep). 2493 * 2494 * RETURNS: 2495 * Zero on success, negative on errno-based value on error. 2496 */ 2497 int ata_pci_sff_init_one(struct pci_dev *pdev, 2498 const struct ata_port_info * const *ppi, 2499 struct scsi_host_template *sht, void *host_priv, int hflag) 2500 { 2501 struct device *dev = &pdev->dev; 2502 const struct ata_port_info *pi; 2503 struct ata_host *host = NULL; 2504 int rc; 2505 2506 DPRINTK("ENTER\n"); 2507 2508 pi = ata_sff_find_valid_pi(ppi); 2509 if (!pi) { 2510 dev_printk(KERN_ERR, &pdev->dev, 2511 "no valid port_info specified\n"); 2512 return -EINVAL; 2513 } 2514 2515 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2516 return -ENOMEM; 2517 2518 rc = pcim_enable_device(pdev); 2519 if (rc) 2520 goto out; 2521 2522 /* prepare and activate SFF host */ 2523 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2524 if (rc) 2525 goto out; 2526 host->private_data = host_priv; 2527 host->flags |= hflag; 2528 2529 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2530 out: 2531 if (rc == 0) 2532 devres_remove_group(&pdev->dev, NULL); 2533 else 2534 devres_release_group(&pdev->dev, NULL); 2535 2536 return rc; 2537 } 2538 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2539 2540 #endif /* CONFIG_PCI */ 2541 2542 /* 2543 * BMDMA support 2544 */ 2545 2546 #ifdef CONFIG_ATA_BMDMA 2547 2548 const struct ata_port_operations ata_bmdma_port_ops = { 2549 .inherits = &ata_sff_port_ops, 2550 2551 .error_handler = ata_bmdma_error_handler, 2552 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2553 2554 .qc_prep = ata_bmdma_qc_prep, 2555 .qc_issue = ata_bmdma_qc_issue, 2556 2557 .sff_irq_clear = ata_bmdma_irq_clear, 2558 .bmdma_setup = ata_bmdma_setup, 2559 .bmdma_start = ata_bmdma_start, 2560 .bmdma_stop = ata_bmdma_stop, 2561 .bmdma_status = ata_bmdma_status, 2562 2563 .port_start = ata_bmdma_port_start, 2564 }; 2565 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2566 2567 const struct ata_port_operations ata_bmdma32_port_ops = { 2568 .inherits = &ata_bmdma_port_ops, 2569 2570 .sff_data_xfer = ata_sff_data_xfer32, 2571 .port_start = ata_bmdma_port_start32, 2572 }; 2573 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2574 2575 /** 2576 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2577 * @qc: Metadata associated with taskfile to be transferred 2578 * 2579 * Fill PCI IDE PRD (scatter-gather) table with segments 2580 * associated with the current disk command. 2581 * 2582 * LOCKING: 2583 * spin_lock_irqsave(host lock) 2584 * 2585 */ 2586 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2587 { 2588 struct ata_port *ap = qc->ap; 2589 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2590 struct scatterlist *sg; 2591 unsigned int si, pi; 2592 2593 pi = 0; 2594 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2595 u32 addr, offset; 2596 u32 sg_len, len; 2597 2598 /* determine if physical DMA addr spans 64K boundary. 2599 * Note h/w doesn't support 64-bit, so we unconditionally 2600 * truncate dma_addr_t to u32. 2601 */ 2602 addr = (u32) sg_dma_address(sg); 2603 sg_len = sg_dma_len(sg); 2604 2605 while (sg_len) { 2606 offset = addr & 0xffff; 2607 len = sg_len; 2608 if ((offset + sg_len) > 0x10000) 2609 len = 0x10000 - offset; 2610 2611 prd[pi].addr = cpu_to_le32(addr); 2612 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2613 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2614 2615 pi++; 2616 sg_len -= len; 2617 addr += len; 2618 } 2619 } 2620 2621 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2622 } 2623 2624 /** 2625 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2626 * @qc: Metadata associated with taskfile to be transferred 2627 * 2628 * Fill PCI IDE PRD (scatter-gather) table with segments 2629 * associated with the current disk command. Perform the fill 2630 * so that we avoid writing any length 64K records for 2631 * controllers that don't follow the spec. 2632 * 2633 * LOCKING: 2634 * spin_lock_irqsave(host lock) 2635 * 2636 */ 2637 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2638 { 2639 struct ata_port *ap = qc->ap; 2640 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2641 struct scatterlist *sg; 2642 unsigned int si, pi; 2643 2644 pi = 0; 2645 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2646 u32 addr, offset; 2647 u32 sg_len, len, blen; 2648 2649 /* determine if physical DMA addr spans 64K boundary. 2650 * Note h/w doesn't support 64-bit, so we unconditionally 2651 * truncate dma_addr_t to u32. 2652 */ 2653 addr = (u32) sg_dma_address(sg); 2654 sg_len = sg_dma_len(sg); 2655 2656 while (sg_len) { 2657 offset = addr & 0xffff; 2658 len = sg_len; 2659 if ((offset + sg_len) > 0x10000) 2660 len = 0x10000 - offset; 2661 2662 blen = len & 0xffff; 2663 prd[pi].addr = cpu_to_le32(addr); 2664 if (blen == 0) { 2665 /* Some PATA chipsets like the CS5530 can't 2666 cope with 0x0000 meaning 64K as the spec 2667 says */ 2668 prd[pi].flags_len = cpu_to_le32(0x8000); 2669 blen = 0x8000; 2670 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2671 } 2672 prd[pi].flags_len = cpu_to_le32(blen); 2673 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2674 2675 pi++; 2676 sg_len -= len; 2677 addr += len; 2678 } 2679 } 2680 2681 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2682 } 2683 2684 /** 2685 * ata_bmdma_qc_prep - Prepare taskfile for submission 2686 * @qc: Metadata associated with taskfile to be prepared 2687 * 2688 * Prepare ATA taskfile for submission. 2689 * 2690 * LOCKING: 2691 * spin_lock_irqsave(host lock) 2692 */ 2693 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2694 { 2695 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2696 return; 2697 2698 ata_bmdma_fill_sg(qc); 2699 } 2700 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2701 2702 /** 2703 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2704 * @qc: Metadata associated with taskfile to be prepared 2705 * 2706 * Prepare ATA taskfile for submission. 2707 * 2708 * LOCKING: 2709 * spin_lock_irqsave(host lock) 2710 */ 2711 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2712 { 2713 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2714 return; 2715 2716 ata_bmdma_fill_sg_dumb(qc); 2717 } 2718 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2719 2720 /** 2721 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2722 * @qc: command to issue to device 2723 * 2724 * This function issues a PIO, NODATA or DMA command to a 2725 * SFF/BMDMA controller. PIO and NODATA are handled by 2726 * ata_sff_qc_issue(). 2727 * 2728 * LOCKING: 2729 * spin_lock_irqsave(host lock) 2730 * 2731 * RETURNS: 2732 * Zero on success, AC_ERR_* mask on failure 2733 */ 2734 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2735 { 2736 struct ata_port *ap = qc->ap; 2737 2738 /* see ata_dma_blacklisted() */ 2739 BUG_ON((ap->flags & ATA_FLAG_PIO_POLLING) && 2740 qc->tf.protocol == ATAPI_PROT_DMA); 2741 2742 /* defer PIO handling to sff_qc_issue */ 2743 if (!ata_is_dma(qc->tf.protocol)) 2744 return ata_sff_qc_issue(qc); 2745 2746 /* select the device */ 2747 ata_dev_select(ap, qc->dev->devno, 1, 0); 2748 2749 /* start the command */ 2750 switch (qc->tf.protocol) { 2751 case ATA_PROT_DMA: 2752 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2753 2754 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2755 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2756 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2757 ap->hsm_task_state = HSM_ST_LAST; 2758 break; 2759 2760 case ATAPI_PROT_DMA: 2761 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2762 2763 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2764 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2765 ap->hsm_task_state = HSM_ST_FIRST; 2766 2767 /* send cdb by polling if no cdb interrupt */ 2768 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2769 ata_sff_queue_pio_task(ap, 0); 2770 break; 2771 2772 default: 2773 WARN_ON(1); 2774 return AC_ERR_SYSTEM; 2775 } 2776 2777 return 0; 2778 } 2779 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2780 2781 /** 2782 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2783 * @ap: Port on which interrupt arrived (possibly...) 2784 * @qc: Taskfile currently active in engine 2785 * 2786 * Handle port interrupt for given queued command. 2787 * 2788 * LOCKING: 2789 * spin_lock_irqsave(host lock) 2790 * 2791 * RETURNS: 2792 * One if interrupt was handled, zero if not (shared irq). 2793 */ 2794 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2795 { 2796 struct ata_eh_info *ehi = &ap->link.eh_info; 2797 u8 host_stat = 0; 2798 bool bmdma_stopped = false; 2799 unsigned int handled; 2800 2801 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2802 /* check status of DMA engine */ 2803 host_stat = ap->ops->bmdma_status(ap); 2804 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2805 2806 /* if it's not our irq... */ 2807 if (!(host_stat & ATA_DMA_INTR)) 2808 return ata_sff_idle_irq(ap); 2809 2810 /* before we do anything else, clear DMA-Start bit */ 2811 ap->ops->bmdma_stop(qc); 2812 bmdma_stopped = true; 2813 2814 if (unlikely(host_stat & ATA_DMA_ERR)) { 2815 /* error when transfering data to/from memory */ 2816 qc->err_mask |= AC_ERR_HOST_BUS; 2817 ap->hsm_task_state = HSM_ST_ERR; 2818 } 2819 } 2820 2821 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2822 2823 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2824 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2825 2826 return handled; 2827 } 2828 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2829 2830 /** 2831 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2832 * @irq: irq line (unused) 2833 * @dev_instance: pointer to our ata_host information structure 2834 * 2835 * Default interrupt handler for PCI IDE devices. Calls 2836 * ata_bmdma_port_intr() for each port that is not disabled. 2837 * 2838 * LOCKING: 2839 * Obtains host lock during operation. 2840 * 2841 * RETURNS: 2842 * IRQ_NONE or IRQ_HANDLED. 2843 */ 2844 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2845 { 2846 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2847 } 2848 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2849 2850 /** 2851 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2852 * @ap: port to handle error for 2853 * 2854 * Stock error handler for BMDMA controller. It can handle both 2855 * PATA and SATA controllers. Most BMDMA controllers should be 2856 * able to use this EH as-is or with some added handling before 2857 * and after. 2858 * 2859 * LOCKING: 2860 * Kernel thread context (may sleep) 2861 */ 2862 void ata_bmdma_error_handler(struct ata_port *ap) 2863 { 2864 struct ata_queued_cmd *qc; 2865 unsigned long flags; 2866 bool thaw = false; 2867 2868 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2869 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2870 qc = NULL; 2871 2872 /* reset PIO HSM and stop DMA engine */ 2873 spin_lock_irqsave(ap->lock, flags); 2874 2875 if (qc && ata_is_dma(qc->tf.protocol)) { 2876 u8 host_stat; 2877 2878 host_stat = ap->ops->bmdma_status(ap); 2879 2880 /* BMDMA controllers indicate host bus error by 2881 * setting DMA_ERR bit and timing out. As it wasn't 2882 * really a timeout event, adjust error mask and 2883 * cancel frozen state. 2884 */ 2885 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2886 qc->err_mask = AC_ERR_HOST_BUS; 2887 thaw = true; 2888 } 2889 2890 ap->ops->bmdma_stop(qc); 2891 2892 /* if we're gonna thaw, make sure IRQ is clear */ 2893 if (thaw) { 2894 ap->ops->sff_check_status(ap); 2895 if (ap->ops->sff_irq_clear) 2896 ap->ops->sff_irq_clear(ap); 2897 } 2898 } 2899 2900 spin_unlock_irqrestore(ap->lock, flags); 2901 2902 if (thaw) 2903 ata_eh_thaw_port(ap); 2904 2905 ata_sff_error_handler(ap); 2906 } 2907 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2908 2909 /** 2910 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2911 * @qc: internal command to clean up 2912 * 2913 * LOCKING: 2914 * Kernel thread context (may sleep) 2915 */ 2916 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2917 { 2918 struct ata_port *ap = qc->ap; 2919 unsigned long flags; 2920 2921 if (ata_is_dma(qc->tf.protocol)) { 2922 spin_lock_irqsave(ap->lock, flags); 2923 ap->ops->bmdma_stop(qc); 2924 spin_unlock_irqrestore(ap->lock, flags); 2925 } 2926 } 2927 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2928 2929 /** 2930 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2931 * @ap: Port associated with this ATA transaction. 2932 * 2933 * Clear interrupt and error flags in DMA status register. 2934 * 2935 * May be used as the irq_clear() entry in ata_port_operations. 2936 * 2937 * LOCKING: 2938 * spin_lock_irqsave(host lock) 2939 */ 2940 void ata_bmdma_irq_clear(struct ata_port *ap) 2941 { 2942 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2943 2944 if (!mmio) 2945 return; 2946 2947 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2948 } 2949 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2950 2951 /** 2952 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2953 * @qc: Info associated with this ATA transaction. 2954 * 2955 * LOCKING: 2956 * spin_lock_irqsave(host lock) 2957 */ 2958 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2959 { 2960 struct ata_port *ap = qc->ap; 2961 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2962 u8 dmactl; 2963 2964 /* load PRD table addr. */ 2965 mb(); /* make sure PRD table writes are visible to controller */ 2966 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2967 2968 /* specify data direction, triple-check start bit is clear */ 2969 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2970 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2971 if (!rw) 2972 dmactl |= ATA_DMA_WR; 2973 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2974 2975 /* issue r/w command */ 2976 ap->ops->sff_exec_command(ap, &qc->tf); 2977 } 2978 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2979 2980 /** 2981 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2982 * @qc: Info associated with this ATA transaction. 2983 * 2984 * LOCKING: 2985 * spin_lock_irqsave(host lock) 2986 */ 2987 void ata_bmdma_start(struct ata_queued_cmd *qc) 2988 { 2989 struct ata_port *ap = qc->ap; 2990 u8 dmactl; 2991 2992 /* start host DMA transaction */ 2993 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2994 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2995 2996 /* Strictly, one may wish to issue an ioread8() here, to 2997 * flush the mmio write. However, control also passes 2998 * to the hardware at this point, and it will interrupt 2999 * us when we are to resume control. So, in effect, 3000 * we don't care when the mmio write flushes. 3001 * Further, a read of the DMA status register _immediately_ 3002 * following the write may not be what certain flaky hardware 3003 * is expected, so I think it is best to not add a readb() 3004 * without first all the MMIO ATA cards/mobos. 3005 * Or maybe I'm just being paranoid. 3006 * 3007 * FIXME: The posting of this write means I/O starts are 3008 * unneccessarily delayed for MMIO 3009 */ 3010 } 3011 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3012 3013 /** 3014 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3015 * @qc: Command we are ending DMA for 3016 * 3017 * Clears the ATA_DMA_START flag in the dma control register 3018 * 3019 * May be used as the bmdma_stop() entry in ata_port_operations. 3020 * 3021 * LOCKING: 3022 * spin_lock_irqsave(host lock) 3023 */ 3024 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3025 { 3026 struct ata_port *ap = qc->ap; 3027 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3028 3029 /* clear start/stop bit */ 3030 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3031 mmio + ATA_DMA_CMD); 3032 3033 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3034 ata_sff_dma_pause(ap); 3035 } 3036 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3037 3038 /** 3039 * ata_bmdma_status - Read PCI IDE BMDMA status 3040 * @ap: Port associated with this ATA transaction. 3041 * 3042 * Read and return BMDMA status register. 3043 * 3044 * May be used as the bmdma_status() entry in ata_port_operations. 3045 * 3046 * LOCKING: 3047 * spin_lock_irqsave(host lock) 3048 */ 3049 u8 ata_bmdma_status(struct ata_port *ap) 3050 { 3051 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3052 } 3053 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3054 3055 3056 /** 3057 * ata_bmdma_port_start - Set port up for bmdma. 3058 * @ap: Port to initialize 3059 * 3060 * Called just after data structures for each port are 3061 * initialized. Allocates space for PRD table. 3062 * 3063 * May be used as the port_start() entry in ata_port_operations. 3064 * 3065 * LOCKING: 3066 * Inherited from caller. 3067 */ 3068 int ata_bmdma_port_start(struct ata_port *ap) 3069 { 3070 if (ap->mwdma_mask || ap->udma_mask) { 3071 ap->bmdma_prd = 3072 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3073 &ap->bmdma_prd_dma, GFP_KERNEL); 3074 if (!ap->bmdma_prd) 3075 return -ENOMEM; 3076 } 3077 3078 return 0; 3079 } 3080 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3081 3082 /** 3083 * ata_bmdma_port_start32 - Set port up for dma. 3084 * @ap: Port to initialize 3085 * 3086 * Called just after data structures for each port are 3087 * initialized. Enables 32bit PIO and allocates space for PRD 3088 * table. 3089 * 3090 * May be used as the port_start() entry in ata_port_operations for 3091 * devices that are capable of 32bit PIO. 3092 * 3093 * LOCKING: 3094 * Inherited from caller. 3095 */ 3096 int ata_bmdma_port_start32(struct ata_port *ap) 3097 { 3098 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3099 return ata_bmdma_port_start(ap); 3100 } 3101 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3102 3103 #ifdef CONFIG_PCI 3104 3105 /** 3106 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3107 * @pdev: PCI device 3108 * 3109 * Some PCI ATA devices report simplex mode but in fact can be told to 3110 * enter non simplex mode. This implements the necessary logic to 3111 * perform the task on such devices. Calling it on other devices will 3112 * have -undefined- behaviour. 3113 */ 3114 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3115 { 3116 unsigned long bmdma = pci_resource_start(pdev, 4); 3117 u8 simplex; 3118 3119 if (bmdma == 0) 3120 return -ENOENT; 3121 3122 simplex = inb(bmdma + 0x02); 3123 outb(simplex & 0x60, bmdma + 0x02); 3124 simplex = inb(bmdma + 0x02); 3125 if (simplex & 0x80) 3126 return -EOPNOTSUPP; 3127 return 0; 3128 } 3129 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3130 3131 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3132 { 3133 int i; 3134 3135 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n", 3136 reason); 3137 3138 for (i = 0; i < 2; i++) { 3139 host->ports[i]->mwdma_mask = 0; 3140 host->ports[i]->udma_mask = 0; 3141 } 3142 } 3143 3144 /** 3145 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3146 * @host: target ATA host 3147 * 3148 * Acquire PCI BMDMA resources and initialize @host accordingly. 3149 * 3150 * LOCKING: 3151 * Inherited from calling layer (may sleep). 3152 */ 3153 void ata_pci_bmdma_init(struct ata_host *host) 3154 { 3155 struct device *gdev = host->dev; 3156 struct pci_dev *pdev = to_pci_dev(gdev); 3157 int i, rc; 3158 3159 /* No BAR4 allocation: No DMA */ 3160 if (pci_resource_start(pdev, 4) == 0) { 3161 ata_bmdma_nodma(host, "BAR4 is zero"); 3162 return; 3163 } 3164 3165 /* 3166 * Some controllers require BMDMA region to be initialized 3167 * even if DMA is not in use to clear IRQ status via 3168 * ->sff_irq_clear method. Try to initialize bmdma_addr 3169 * regardless of dma masks. 3170 */ 3171 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 3172 if (rc) 3173 ata_bmdma_nodma(host, "failed to set dma mask"); 3174 if (!rc) { 3175 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 3176 if (rc) 3177 ata_bmdma_nodma(host, 3178 "failed to set consistent dma mask"); 3179 } 3180 3181 /* request and iomap DMA region */ 3182 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3183 if (rc) { 3184 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3185 return; 3186 } 3187 host->iomap = pcim_iomap_table(pdev); 3188 3189 for (i = 0; i < 2; i++) { 3190 struct ata_port *ap = host->ports[i]; 3191 void __iomem *bmdma = host->iomap[4] + 8 * i; 3192 3193 if (ata_port_is_dummy(ap)) 3194 continue; 3195 3196 ap->ioaddr.bmdma_addr = bmdma; 3197 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3198 (ioread8(bmdma + 2) & 0x80)) 3199 host->flags |= ATA_HOST_SIMPLEX; 3200 3201 ata_port_desc(ap, "bmdma 0x%llx", 3202 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3203 } 3204 } 3205 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3206 3207 /** 3208 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3209 * @pdev: target PCI device 3210 * @ppi: array of port_info, must be enough for two ports 3211 * @r_host: out argument for the initialized ATA host 3212 * 3213 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3214 * resources and initialize it accordingly in one go. 3215 * 3216 * LOCKING: 3217 * Inherited from calling layer (may sleep). 3218 * 3219 * RETURNS: 3220 * 0 on success, -errno otherwise. 3221 */ 3222 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3223 const struct ata_port_info * const * ppi, 3224 struct ata_host **r_host) 3225 { 3226 int rc; 3227 3228 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3229 if (rc) 3230 return rc; 3231 3232 ata_pci_bmdma_init(*r_host); 3233 return 0; 3234 } 3235 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3236 3237 /** 3238 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3239 * @pdev: Controller to be initialized 3240 * @ppi: array of port_info, must be enough for two ports 3241 * @sht: scsi_host_template to use when registering the host 3242 * @host_priv: host private_data 3243 * @hflags: host flags 3244 * 3245 * This function is similar to ata_pci_sff_init_one() but also 3246 * takes care of BMDMA initialization. 3247 * 3248 * LOCKING: 3249 * Inherited from PCI layer (may sleep). 3250 * 3251 * RETURNS: 3252 * Zero on success, negative on errno-based value on error. 3253 */ 3254 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3255 const struct ata_port_info * const * ppi, 3256 struct scsi_host_template *sht, void *host_priv, 3257 int hflags) 3258 { 3259 struct device *dev = &pdev->dev; 3260 const struct ata_port_info *pi; 3261 struct ata_host *host = NULL; 3262 int rc; 3263 3264 DPRINTK("ENTER\n"); 3265 3266 pi = ata_sff_find_valid_pi(ppi); 3267 if (!pi) { 3268 dev_printk(KERN_ERR, &pdev->dev, 3269 "no valid port_info specified\n"); 3270 return -EINVAL; 3271 } 3272 3273 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 3274 return -ENOMEM; 3275 3276 rc = pcim_enable_device(pdev); 3277 if (rc) 3278 goto out; 3279 3280 /* prepare and activate BMDMA host */ 3281 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 3282 if (rc) 3283 goto out; 3284 host->private_data = host_priv; 3285 host->flags |= hflags; 3286 3287 pci_set_master(pdev); 3288 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 3289 out: 3290 if (rc == 0) 3291 devres_remove_group(&pdev->dev, NULL); 3292 else 3293 devres_release_group(&pdev->dev, NULL); 3294 3295 return rc; 3296 } 3297 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3298 3299 #endif /* CONFIG_PCI */ 3300 #endif /* CONFIG_ATA_BMDMA */ 3301 3302 /** 3303 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3304 * @ap: Port to initialize 3305 * 3306 * Called on port allocation to initialize SFF/BMDMA specific 3307 * fields. 3308 * 3309 * LOCKING: 3310 * None. 3311 */ 3312 void ata_sff_port_init(struct ata_port *ap) 3313 { 3314 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3315 ap->ctl = ATA_DEVCTL_OBS; 3316 ap->last_ctl = 0xFF; 3317 } 3318 3319 int __init ata_sff_init(void) 3320 { 3321 /* 3322 * FIXME: In UP case, there is only one workqueue thread and if you 3323 * have more than one PIO device, latency is bloody awful, with 3324 * occasional multi-second "hiccups" as one PIO device waits for 3325 * another. It's an ugly wart that users DO occasionally complain 3326 * about; luckily most users have at most one PIO polled device. 3327 */ 3328 ata_sff_wq = create_workqueue("ata_sff"); 3329 if (!ata_sff_wq) 3330 return -ENOMEM; 3331 3332 return 0; 3333 } 3334 3335 void __exit ata_sff_exit(void) 3336 { 3337 destroy_workqueue(ata_sff_wq); 3338 } 3339