xref: /linux/drivers/ata/libata-sff.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41 
42 #include "libata.h"
43 
44 static struct workqueue_struct *ata_sff_wq;
45 
46 const struct ata_port_operations ata_sff_port_ops = {
47 	.inherits		= &ata_base_port_ops,
48 
49 	.qc_prep		= ata_noop_qc_prep,
50 	.qc_issue		= ata_sff_qc_issue,
51 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52 
53 	.freeze			= ata_sff_freeze,
54 	.thaw			= ata_sff_thaw,
55 	.prereset		= ata_sff_prereset,
56 	.softreset		= ata_sff_softreset,
57 	.hardreset		= sata_sff_hardreset,
58 	.postreset		= ata_sff_postreset,
59 	.error_handler		= ata_sff_error_handler,
60 
61 	.sff_dev_select		= ata_sff_dev_select,
62 	.sff_check_status	= ata_sff_check_status,
63 	.sff_tf_load		= ata_sff_tf_load,
64 	.sff_tf_read		= ata_sff_tf_read,
65 	.sff_exec_command	= ata_sff_exec_command,
66 	.sff_data_xfer		= ata_sff_data_xfer,
67 	.sff_drain_fifo		= ata_sff_drain_fifo,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 
73 /**
74  *	ata_sff_check_status - Read device status reg & clear interrupt
75  *	@ap: port where the device is
76  *
77  *	Reads ATA taskfile status register for currently-selected device
78  *	and return its value. This also clears pending interrupts
79  *      from this device
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 	return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 
90 /**
91  *	ata_sff_altstatus - Read device alternate status reg
92  *	@ap: port where the device is
93  *
94  *	Reads ATA taskfile alternate status register for
95  *	currently-selected device and return its value.
96  *
97  *	Note: may NOT be used as the check_altstatus() entry in
98  *	ata_port_operations.
99  *
100  *	LOCKING:
101  *	Inherited from caller.
102  */
103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 	if (ap->ops->sff_check_altstatus)
106 		return ap->ops->sff_check_altstatus(ap);
107 
108 	return ioread8(ap->ioaddr.altstatus_addr);
109 }
110 
111 /**
112  *	ata_sff_irq_status - Check if the device is busy
113  *	@ap: port where the device is
114  *
115  *	Determine if the port is currently busy. Uses altstatus
116  *	if available in order to avoid clearing shared IRQ status
117  *	when finding an IRQ source. Non ctl capable devices don't
118  *	share interrupt lines fortunately for us.
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 	u8 status;
126 
127 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 		status = ata_sff_altstatus(ap);
129 		/* Not us: We are busy */
130 		if (status & ATA_BUSY)
131 			return status;
132 	}
133 	/* Clear INTRQ latch */
134 	status = ap->ops->sff_check_status(ap);
135 	return status;
136 }
137 
138 /**
139  *	ata_sff_sync - Flush writes
140  *	@ap: Port to wait for.
141  *
142  *	CAUTION:
143  *	If we have an mmio device with no ctl and no altstatus
144  *	method this will fail. No such devices are known to exist.
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
149 
150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 	if (ap->ops->sff_check_altstatus)
153 		ap->ops->sff_check_altstatus(ap);
154 	else if (ap->ioaddr.altstatus_addr)
155 		ioread8(ap->ioaddr.altstatus_addr);
156 }
157 
158 /**
159  *	ata_sff_pause		-	Flush writes and wait 400nS
160  *	@ap: Port to pause for.
161  *
162  *	CAUTION:
163  *	If we have an mmio device with no ctl and no altstatus
164  *	method this will fail. No such devices are known to exist.
165  *
166  *	LOCKING:
167  *	Inherited from caller.
168  */
169 
170 void ata_sff_pause(struct ata_port *ap)
171 {
172 	ata_sff_sync(ap);
173 	ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176 
177 /**
178  *	ata_sff_dma_pause	-	Pause before commencing DMA
179  *	@ap: Port to pause for.
180  *
181  *	Perform I/O fencing and ensure sufficient cycle delays occur
182  *	for the HDMA1:0 transition
183  */
184 
185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 		/* An altstatus read will cause the needed delay without
189 		   messing up the IRQ status */
190 		ata_sff_altstatus(ap);
191 		return;
192 	}
193 	/* There are no DMA controllers without ctl. BUG here to ensure
194 	   we never violate the HDMA1:0 transition timing and risk
195 	   corruption. */
196 	BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199 
200 /**
201  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202  *	@ap: port containing status register to be polled
203  *	@tmout_pat: impatience timeout in msecs
204  *	@tmout: overall timeout in msecs
205  *
206  *	Sleep until ATA Status register bit BSY clears,
207  *	or a timeout occurs.
208  *
209  *	LOCKING:
210  *	Kernel thread context (may sleep).
211  *
212  *	RETURNS:
213  *	0 on success, -errno otherwise.
214  */
215 int ata_sff_busy_sleep(struct ata_port *ap,
216 		       unsigned long tmout_pat, unsigned long tmout)
217 {
218 	unsigned long timer_start, timeout;
219 	u8 status;
220 
221 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 	timer_start = jiffies;
223 	timeout = ata_deadline(timer_start, tmout_pat);
224 	while (status != 0xff && (status & ATA_BUSY) &&
225 	       time_before(jiffies, timeout)) {
226 		ata_msleep(ap, 50);
227 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 	}
229 
230 	if (status != 0xff && (status & ATA_BUSY))
231 		ata_port_warn(ap,
232 			      "port is slow to respond, please be patient (Status 0x%x)\n",
233 			      status);
234 
235 	timeout = ata_deadline(timer_start, tmout);
236 	while (status != 0xff && (status & ATA_BUSY) &&
237 	       time_before(jiffies, timeout)) {
238 		ata_msleep(ap, 50);
239 		status = ap->ops->sff_check_status(ap);
240 	}
241 
242 	if (status == 0xff)
243 		return -ENODEV;
244 
245 	if (status & ATA_BUSY) {
246 		ata_port_err(ap,
247 			     "port failed to respond (%lu secs, Status 0x%x)\n",
248 			     DIV_ROUND_UP(tmout, 1000), status);
249 		return -EBUSY;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 
256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 	u8 status = link->ap->ops->sff_check_status(link->ap);
259 
260 	return ata_check_ready(status);
261 }
262 
263 /**
264  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265  *	@link: SFF link to wait ready status for
266  *	@deadline: deadline jiffies for the operation
267  *
268  *	Sleep until ATA Status register bit BSY clears, or timeout
269  *	occurs.
270  *
271  *	LOCKING:
272  *	Kernel thread context (may sleep).
273  *
274  *	RETURNS:
275  *	0 on success, -errno otherwise.
276  */
277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282 
283 /**
284  *	ata_sff_set_devctl - Write device control reg
285  *	@ap: port where the device is
286  *	@ctl: value to write
287  *
288  *	Writes ATA taskfile device control register.
289  *
290  *	Note: may NOT be used as the sff_set_devctl() entry in
291  *	ata_port_operations.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 	if (ap->ops->sff_set_devctl)
299 		ap->ops->sff_set_devctl(ap, ctl);
300 	else
301 		iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303 
304 /**
305  *	ata_sff_dev_select - Select device 0/1 on ATA bus
306  *	@ap: ATA channel to manipulate
307  *	@device: ATA device (numbered from zero) to select
308  *
309  *	Use the method defined in the ATA specification to
310  *	make either device 0, or device 1, active on the
311  *	ATA channel.  Works with both PIO and MMIO.
312  *
313  *	May be used as the dev_select() entry in ata_port_operations.
314  *
315  *	LOCKING:
316  *	caller.
317  */
318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 	u8 tmp;
321 
322 	if (device == 0)
323 		tmp = ATA_DEVICE_OBS;
324 	else
325 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 
327 	iowrite8(tmp, ap->ioaddr.device_addr);
328 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331 
332 /**
333  *	ata_dev_select - Select device 0/1 on ATA bus
334  *	@ap: ATA channel to manipulate
335  *	@device: ATA device (numbered from zero) to select
336  *	@wait: non-zero to wait for Status register BSY bit to clear
337  *	@can_sleep: non-zero if context allows sleeping
338  *
339  *	Use the method defined in the ATA specification to
340  *	make either device 0, or device 1, active on the
341  *	ATA channel.
342  *
343  *	This is a high-level version of ata_sff_dev_select(), which
344  *	additionally provides the services of inserting the proper
345  *	pauses and status polling, where needed.
346  *
347  *	LOCKING:
348  *	caller.
349  */
350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 			   unsigned int wait, unsigned int can_sleep)
352 {
353 	if (ata_msg_probe(ap))
354 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 			      device, wait);
356 
357 	if (wait)
358 		ata_wait_idle(ap);
359 
360 	ap->ops->sff_dev_select(ap, device);
361 
362 	if (wait) {
363 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 			ata_msleep(ap, 150);
365 		ata_wait_idle(ap);
366 	}
367 }
368 
369 /**
370  *	ata_sff_irq_on - Enable interrupts on a port.
371  *	@ap: Port on which interrupts are enabled.
372  *
373  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374  *	wait for idle, clear any pending interrupts.
375  *
376  *	Note: may NOT be used as the sff_irq_on() entry in
377  *	ata_port_operations.
378  *
379  *	LOCKING:
380  *	Inherited from caller.
381  */
382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 	struct ata_ioports *ioaddr = &ap->ioaddr;
385 
386 	if (ap->ops->sff_irq_on) {
387 		ap->ops->sff_irq_on(ap);
388 		return;
389 	}
390 
391 	ap->ctl &= ~ATA_NIEN;
392 	ap->last_ctl = ap->ctl;
393 
394 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 		ata_sff_set_devctl(ap, ap->ctl);
396 	ata_wait_idle(ap);
397 
398 	if (ap->ops->sff_irq_clear)
399 		ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402 
403 /**
404  *	ata_sff_tf_load - send taskfile registers to host controller
405  *	@ap: Port to which output is sent
406  *	@tf: ATA taskfile register set
407  *
408  *	Outputs ATA taskfile to standard ATA host controller.
409  *
410  *	LOCKING:
411  *	Inherited from caller.
412  */
413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 	struct ata_ioports *ioaddr = &ap->ioaddr;
416 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 
418 	if (tf->ctl != ap->last_ctl) {
419 		if (ioaddr->ctl_addr)
420 			iowrite8(tf->ctl, ioaddr->ctl_addr);
421 		ap->last_ctl = tf->ctl;
422 		ata_wait_idle(ap);
423 	}
424 
425 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 		WARN_ON_ONCE(!ioaddr->ctl_addr);
427 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 			tf->hob_feature,
434 			tf->hob_nsect,
435 			tf->hob_lbal,
436 			tf->hob_lbam,
437 			tf->hob_lbah);
438 	}
439 
440 	if (is_addr) {
441 		iowrite8(tf->feature, ioaddr->feature_addr);
442 		iowrite8(tf->nsect, ioaddr->nsect_addr);
443 		iowrite8(tf->lbal, ioaddr->lbal_addr);
444 		iowrite8(tf->lbam, ioaddr->lbam_addr);
445 		iowrite8(tf->lbah, ioaddr->lbah_addr);
446 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 			tf->feature,
448 			tf->nsect,
449 			tf->lbal,
450 			tf->lbam,
451 			tf->lbah);
452 	}
453 
454 	if (tf->flags & ATA_TFLAG_DEVICE) {
455 		iowrite8(tf->device, ioaddr->device_addr);
456 		VPRINTK("device 0x%X\n", tf->device);
457 	}
458 
459 	ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462 
463 /**
464  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465  *	@ap: Port from which input is read
466  *	@tf: ATA taskfile register set for storing input
467  *
468  *	Reads ATA taskfile registers for currently-selected device
469  *	into @tf. Assumes the device has a fully SFF compliant task file
470  *	layout and behaviour. If you device does not (eg has a different
471  *	status method) then you will need to provide a replacement tf_read
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  */
476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 	struct ata_ioports *ioaddr = &ap->ioaddr;
479 
480 	tf->command = ata_sff_check_status(ap);
481 	tf->feature = ioread8(ioaddr->error_addr);
482 	tf->nsect = ioread8(ioaddr->nsect_addr);
483 	tf->lbal = ioread8(ioaddr->lbal_addr);
484 	tf->lbam = ioread8(ioaddr->lbam_addr);
485 	tf->lbah = ioread8(ioaddr->lbah_addr);
486 	tf->device = ioread8(ioaddr->device_addr);
487 
488 	if (tf->flags & ATA_TFLAG_LBA48) {
489 		if (likely(ioaddr->ctl_addr)) {
490 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 			tf->hob_feature = ioread8(ioaddr->error_addr);
492 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 			iowrite8(tf->ctl, ioaddr->ctl_addr);
497 			ap->last_ctl = tf->ctl;
498 		} else
499 			WARN_ON_ONCE(1);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503 
504 /**
505  *	ata_sff_exec_command - issue ATA command to host controller
506  *	@ap: port to which command is being issued
507  *	@tf: ATA taskfile register set
508  *
509  *	Issues ATA command, with proper synchronization with interrupt
510  *	handler / other threads.
511  *
512  *	LOCKING:
513  *	spin_lock_irqsave(host lock)
514  */
515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 
519 	iowrite8(tf->command, ap->ioaddr.command_addr);
520 	ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523 
524 /**
525  *	ata_tf_to_host - issue ATA taskfile to host controller
526  *	@ap: port to which command is being issued
527  *	@tf: ATA taskfile register set
528  *
529  *	Issues ATA taskfile register set to ATA host controller,
530  *	with proper synchronization with interrupt handler and
531  *	other threads.
532  *
533  *	LOCKING:
534  *	spin_lock_irqsave(host lock)
535  */
536 static inline void ata_tf_to_host(struct ata_port *ap,
537 				  const struct ata_taskfile *tf)
538 {
539 	ap->ops->sff_tf_load(ap, tf);
540 	ap->ops->sff_exec_command(ap, tf);
541 }
542 
543 /**
544  *	ata_sff_data_xfer - Transfer data by PIO
545  *	@dev: device to target
546  *	@buf: data buffer
547  *	@buflen: buffer length
548  *	@rw: read/write
549  *
550  *	Transfer data from/to the device data register by PIO.
551  *
552  *	LOCKING:
553  *	Inherited from caller.
554  *
555  *	RETURNS:
556  *	Bytes consumed.
557  */
558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 			       unsigned int buflen, int rw)
560 {
561 	struct ata_port *ap = dev->link->ap;
562 	void __iomem *data_addr = ap->ioaddr.data_addr;
563 	unsigned int words = buflen >> 1;
564 
565 	/* Transfer multiple of 2 bytes */
566 	if (rw == READ)
567 		ioread16_rep(data_addr, buf, words);
568 	else
569 		iowrite16_rep(data_addr, buf, words);
570 
571 	/* Transfer trailing byte, if any. */
572 	if (unlikely(buflen & 0x01)) {
573 		unsigned char pad[2] = { };
574 
575 		/* Point buf to the tail of buffer */
576 		buf += buflen - 1;
577 
578 		/*
579 		 * Use io*16_rep() accessors here as well to avoid pointlessly
580 		 * swapping bytes to and from on the big endian machines...
581 		 */
582 		if (rw == READ) {
583 			ioread16_rep(data_addr, pad, 1);
584 			*buf = pad[0];
585 		} else {
586 			pad[0] = *buf;
587 			iowrite16_rep(data_addr, pad, 1);
588 		}
589 		words++;
590 	}
591 
592 	return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595 
596 /**
597  *	ata_sff_data_xfer32 - Transfer data by PIO
598  *	@dev: device to target
599  *	@buf: data buffer
600  *	@buflen: buffer length
601  *	@rw: read/write
602  *
603  *	Transfer data from/to the device data register by PIO using 32bit
604  *	I/O operations.
605  *
606  *	LOCKING:
607  *	Inherited from caller.
608  *
609  *	RETURNS:
610  *	Bytes consumed.
611  */
612 
613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 			       unsigned int buflen, int rw)
615 {
616 	struct ata_port *ap = dev->link->ap;
617 	void __iomem *data_addr = ap->ioaddr.data_addr;
618 	unsigned int words = buflen >> 2;
619 	int slop = buflen & 3;
620 
621 	if (!(ap->pflags & ATA_PFLAG_PIO32))
622 		return ata_sff_data_xfer(dev, buf, buflen, rw);
623 
624 	/* Transfer multiple of 4 bytes */
625 	if (rw == READ)
626 		ioread32_rep(data_addr, buf, words);
627 	else
628 		iowrite32_rep(data_addr, buf, words);
629 
630 	/* Transfer trailing bytes, if any */
631 	if (unlikely(slop)) {
632 		unsigned char pad[4] = { };
633 
634 		/* Point buf to the tail of buffer */
635 		buf += buflen - slop;
636 
637 		/*
638 		 * Use io*_rep() accessors here as well to avoid pointlessly
639 		 * swapping bytes to and from on the big endian machines...
640 		 */
641 		if (rw == READ) {
642 			if (slop < 3)
643 				ioread16_rep(data_addr, pad, 1);
644 			else
645 				ioread32_rep(data_addr, pad, 1);
646 			memcpy(buf, pad, slop);
647 		} else {
648 			memcpy(pad, buf, slop);
649 			if (slop < 3)
650 				iowrite16_rep(data_addr, pad, 1);
651 			else
652 				iowrite32_rep(data_addr, pad, 1);
653 		}
654 	}
655 	return (buflen + 1) & ~1;
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658 
659 /**
660  *	ata_sff_data_xfer_noirq - Transfer data by PIO
661  *	@dev: device to target
662  *	@buf: data buffer
663  *	@buflen: buffer length
664  *	@rw: read/write
665  *
666  *	Transfer data from/to the device data register by PIO. Do the
667  *	transfer with interrupts disabled.
668  *
669  *	LOCKING:
670  *	Inherited from caller.
671  *
672  *	RETURNS:
673  *	Bytes consumed.
674  */
675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 				     unsigned int buflen, int rw)
677 {
678 	unsigned long flags;
679 	unsigned int consumed;
680 
681 	local_irq_save(flags);
682 	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 	local_irq_restore(flags);
684 
685 	return consumed;
686 }
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688 
689 /**
690  *	ata_pio_sector - Transfer a sector of data.
691  *	@qc: Command on going
692  *
693  *	Transfer qc->sect_size bytes of data from/to the ATA device.
694  *
695  *	LOCKING:
696  *	Inherited from caller.
697  */
698 static void ata_pio_sector(struct ata_queued_cmd *qc)
699 {
700 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 	struct ata_port *ap = qc->ap;
702 	struct page *page;
703 	unsigned int offset;
704 	unsigned char *buf;
705 
706 	if (qc->curbytes == qc->nbytes - qc->sect_size)
707 		ap->hsm_task_state = HSM_ST_LAST;
708 
709 	page = sg_page(qc->cursg);
710 	offset = qc->cursg->offset + qc->cursg_ofs;
711 
712 	/* get the current page and offset */
713 	page = nth_page(page, (offset >> PAGE_SHIFT));
714 	offset %= PAGE_SIZE;
715 
716 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
717 
718 	if (PageHighMem(page)) {
719 		unsigned long flags;
720 
721 		/* FIXME: use a bounce buffer */
722 		local_irq_save(flags);
723 		buf = kmap_atomic(page);
724 
725 		/* do the actual data transfer */
726 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
727 				       do_write);
728 
729 		kunmap_atomic(buf);
730 		local_irq_restore(flags);
731 	} else {
732 		buf = page_address(page);
733 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
734 				       do_write);
735 	}
736 
737 	if (!do_write && !PageSlab(page))
738 		flush_dcache_page(page);
739 
740 	qc->curbytes += qc->sect_size;
741 	qc->cursg_ofs += qc->sect_size;
742 
743 	if (qc->cursg_ofs == qc->cursg->length) {
744 		qc->cursg = sg_next(qc->cursg);
745 		qc->cursg_ofs = 0;
746 	}
747 }
748 
749 /**
750  *	ata_pio_sectors - Transfer one or many sectors.
751  *	@qc: Command on going
752  *
753  *	Transfer one or many sectors of data from/to the
754  *	ATA device for the DRQ request.
755  *
756  *	LOCKING:
757  *	Inherited from caller.
758  */
759 static void ata_pio_sectors(struct ata_queued_cmd *qc)
760 {
761 	if (is_multi_taskfile(&qc->tf)) {
762 		/* READ/WRITE MULTIPLE */
763 		unsigned int nsect;
764 
765 		WARN_ON_ONCE(qc->dev->multi_count == 0);
766 
767 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
768 			    qc->dev->multi_count);
769 		while (nsect--)
770 			ata_pio_sector(qc);
771 	} else
772 		ata_pio_sector(qc);
773 
774 	ata_sff_sync(qc->ap); /* flush */
775 }
776 
777 /**
778  *	atapi_send_cdb - Write CDB bytes to hardware
779  *	@ap: Port to which ATAPI device is attached.
780  *	@qc: Taskfile currently active
781  *
782  *	When device has indicated its readiness to accept
783  *	a CDB, this function is called.  Send the CDB.
784  *
785  *	LOCKING:
786  *	caller.
787  */
788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
789 {
790 	/* send SCSI cdb */
791 	DPRINTK("send cdb\n");
792 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
793 
794 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
795 	ata_sff_sync(ap);
796 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
797 	   or is bmdma_start guaranteed to do it ? */
798 	switch (qc->tf.protocol) {
799 	case ATAPI_PROT_PIO:
800 		ap->hsm_task_state = HSM_ST;
801 		break;
802 	case ATAPI_PROT_NODATA:
803 		ap->hsm_task_state = HSM_ST_LAST;
804 		break;
805 #ifdef CONFIG_ATA_BMDMA
806 	case ATAPI_PROT_DMA:
807 		ap->hsm_task_state = HSM_ST_LAST;
808 		/* initiate bmdma */
809 		ap->ops->bmdma_start(qc);
810 		break;
811 #endif /* CONFIG_ATA_BMDMA */
812 	default:
813 		BUG();
814 	}
815 }
816 
817 /**
818  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
819  *	@qc: Command on going
820  *	@bytes: number of bytes
821  *
822  *	Transfer Transfer data from/to the ATAPI device.
823  *
824  *	LOCKING:
825  *	Inherited from caller.
826  *
827  */
828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
829 {
830 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
831 	struct ata_port *ap = qc->ap;
832 	struct ata_device *dev = qc->dev;
833 	struct ata_eh_info *ehi = &dev->link->eh_info;
834 	struct scatterlist *sg;
835 	struct page *page;
836 	unsigned char *buf;
837 	unsigned int offset, count, consumed;
838 
839 next_sg:
840 	sg = qc->cursg;
841 	if (unlikely(!sg)) {
842 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
843 				  "buf=%u cur=%u bytes=%u",
844 				  qc->nbytes, qc->curbytes, bytes);
845 		return -1;
846 	}
847 
848 	page = sg_page(sg);
849 	offset = sg->offset + qc->cursg_ofs;
850 
851 	/* get the current page and offset */
852 	page = nth_page(page, (offset >> PAGE_SHIFT));
853 	offset %= PAGE_SIZE;
854 
855 	/* don't overrun current sg */
856 	count = min(sg->length - qc->cursg_ofs, bytes);
857 
858 	/* don't cross page boundaries */
859 	count = min(count, (unsigned int)PAGE_SIZE - offset);
860 
861 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
862 
863 	if (PageHighMem(page)) {
864 		unsigned long flags;
865 
866 		/* FIXME: use bounce buffer */
867 		local_irq_save(flags);
868 		buf = kmap_atomic(page);
869 
870 		/* do the actual data transfer */
871 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
872 								count, rw);
873 
874 		kunmap_atomic(buf);
875 		local_irq_restore(flags);
876 	} else {
877 		buf = page_address(page);
878 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
879 								count, rw);
880 	}
881 
882 	bytes -= min(bytes, consumed);
883 	qc->curbytes += count;
884 	qc->cursg_ofs += count;
885 
886 	if (qc->cursg_ofs == sg->length) {
887 		qc->cursg = sg_next(qc->cursg);
888 		qc->cursg_ofs = 0;
889 	}
890 
891 	/*
892 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
893 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894 	 * check correctly as it doesn't know if it is the last request being
895 	 * made. Somebody should implement a proper sanity check.
896 	 */
897 	if (bytes)
898 		goto next_sg;
899 	return 0;
900 }
901 
902 /**
903  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
904  *	@qc: Command on going
905  *
906  *	Transfer Transfer data from/to the ATAPI device.
907  *
908  *	LOCKING:
909  *	Inherited from caller.
910  */
911 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
912 {
913 	struct ata_port *ap = qc->ap;
914 	struct ata_device *dev = qc->dev;
915 	struct ata_eh_info *ehi = &dev->link->eh_info;
916 	unsigned int ireason, bc_lo, bc_hi, bytes;
917 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
918 
919 	/* Abuse qc->result_tf for temp storage of intermediate TF
920 	 * here to save some kernel stack usage.
921 	 * For normal completion, qc->result_tf is not relevant. For
922 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
923 	 * So, the correctness of qc->result_tf is not affected.
924 	 */
925 	ap->ops->sff_tf_read(ap, &qc->result_tf);
926 	ireason = qc->result_tf.nsect;
927 	bc_lo = qc->result_tf.lbam;
928 	bc_hi = qc->result_tf.lbah;
929 	bytes = (bc_hi << 8) | bc_lo;
930 
931 	/* shall be cleared to zero, indicating xfer of data */
932 	if (unlikely(ireason & ATAPI_COD))
933 		goto atapi_check;
934 
935 	/* make sure transfer direction matches expected */
936 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
937 	if (unlikely(do_write != i_write))
938 		goto atapi_check;
939 
940 	if (unlikely(!bytes))
941 		goto atapi_check;
942 
943 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
944 
945 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
946 		goto err_out;
947 	ata_sff_sync(ap); /* flush */
948 
949 	return;
950 
951  atapi_check:
952 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
953 			  ireason, bytes);
954  err_out:
955 	qc->err_mask |= AC_ERR_HSM;
956 	ap->hsm_task_state = HSM_ST_ERR;
957 }
958 
959 /**
960  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961  *	@ap: the target ata_port
962  *	@qc: qc on going
963  *
964  *	RETURNS:
965  *	1 if ok in workqueue, 0 otherwise.
966  */
967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
968 						struct ata_queued_cmd *qc)
969 {
970 	if (qc->tf.flags & ATA_TFLAG_POLLING)
971 		return 1;
972 
973 	if (ap->hsm_task_state == HSM_ST_FIRST) {
974 		if (qc->tf.protocol == ATA_PROT_PIO &&
975 		   (qc->tf.flags & ATA_TFLAG_WRITE))
976 		    return 1;
977 
978 		if (ata_is_atapi(qc->tf.protocol) &&
979 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
980 			return 1;
981 	}
982 
983 	return 0;
984 }
985 
986 /**
987  *	ata_hsm_qc_complete - finish a qc running on standard HSM
988  *	@qc: Command to complete
989  *	@in_wq: 1 if called from workqueue, 0 otherwise
990  *
991  *	Finish @qc which is running on standard HSM.
992  *
993  *	LOCKING:
994  *	If @in_wq is zero, spin_lock_irqsave(host lock).
995  *	Otherwise, none on entry and grabs host lock.
996  */
997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
998 {
999 	struct ata_port *ap = qc->ap;
1000 	unsigned long flags;
1001 
1002 	if (ap->ops->error_handler) {
1003 		if (in_wq) {
1004 			spin_lock_irqsave(ap->lock, flags);
1005 
1006 			/* EH might have kicked in while host lock is
1007 			 * released.
1008 			 */
1009 			qc = ata_qc_from_tag(ap, qc->tag);
1010 			if (qc) {
1011 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1012 					ata_sff_irq_on(ap);
1013 					ata_qc_complete(qc);
1014 				} else
1015 					ata_port_freeze(ap);
1016 			}
1017 
1018 			spin_unlock_irqrestore(ap->lock, flags);
1019 		} else {
1020 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1021 				ata_qc_complete(qc);
1022 			else
1023 				ata_port_freeze(ap);
1024 		}
1025 	} else {
1026 		if (in_wq) {
1027 			spin_lock_irqsave(ap->lock, flags);
1028 			ata_sff_irq_on(ap);
1029 			ata_qc_complete(qc);
1030 			spin_unlock_irqrestore(ap->lock, flags);
1031 		} else
1032 			ata_qc_complete(qc);
1033 	}
1034 }
1035 
1036 /**
1037  *	ata_sff_hsm_move - move the HSM to the next state.
1038  *	@ap: the target ata_port
1039  *	@qc: qc on going
1040  *	@status: current device status
1041  *	@in_wq: 1 if called from workqueue, 0 otherwise
1042  *
1043  *	RETURNS:
1044  *	1 when poll next status needed, 0 otherwise.
1045  */
1046 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1047 		     u8 status, int in_wq)
1048 {
1049 	struct ata_link *link = qc->dev->link;
1050 	struct ata_eh_info *ehi = &link->eh_info;
1051 	unsigned long flags = 0;
1052 	int poll_next;
1053 
1054 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1055 
1056 	/* Make sure ata_sff_qc_issue() does not throw things
1057 	 * like DMA polling into the workqueue. Notice that
1058 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1059 	 */
1060 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1061 
1062 fsm_start:
1063 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1064 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1065 
1066 	switch (ap->hsm_task_state) {
1067 	case HSM_ST_FIRST:
1068 		/* Send first data block or PACKET CDB */
1069 
1070 		/* If polling, we will stay in the work queue after
1071 		 * sending the data. Otherwise, interrupt handler
1072 		 * takes over after sending the data.
1073 		 */
1074 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1075 
1076 		/* check device status */
1077 		if (unlikely((status & ATA_DRQ) == 0)) {
1078 			/* handle BSY=0, DRQ=0 as error */
1079 			if (likely(status & (ATA_ERR | ATA_DF)))
1080 				/* device stops HSM for abort/error */
1081 				qc->err_mask |= AC_ERR_DEV;
1082 			else {
1083 				/* HSM violation. Let EH handle this */
1084 				ata_ehi_push_desc(ehi,
1085 					"ST_FIRST: !(DRQ|ERR|DF)");
1086 				qc->err_mask |= AC_ERR_HSM;
1087 			}
1088 
1089 			ap->hsm_task_state = HSM_ST_ERR;
1090 			goto fsm_start;
1091 		}
1092 
1093 		/* Device should not ask for data transfer (DRQ=1)
1094 		 * when it finds something wrong.
1095 		 * We ignore DRQ here and stop the HSM by
1096 		 * changing hsm_task_state to HSM_ST_ERR and
1097 		 * let the EH abort the command or reset the device.
1098 		 */
1099 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1100 			/* Some ATAPI tape drives forget to clear the ERR bit
1101 			 * when doing the next command (mostly request sense).
1102 			 * We ignore ERR here to workaround and proceed sending
1103 			 * the CDB.
1104 			 */
1105 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1106 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1107 					"DRQ=1 with device error, "
1108 					"dev_stat 0x%X", status);
1109 				qc->err_mask |= AC_ERR_HSM;
1110 				ap->hsm_task_state = HSM_ST_ERR;
1111 				goto fsm_start;
1112 			}
1113 		}
1114 
1115 		/* Send the CDB (atapi) or the first data block (ata pio out).
1116 		 * During the state transition, interrupt handler shouldn't
1117 		 * be invoked before the data transfer is complete and
1118 		 * hsm_task_state is changed. Hence, the following locking.
1119 		 */
1120 		if (in_wq)
1121 			spin_lock_irqsave(ap->lock, flags);
1122 
1123 		if (qc->tf.protocol == ATA_PROT_PIO) {
1124 			/* PIO data out protocol.
1125 			 * send first data block.
1126 			 */
1127 
1128 			/* ata_pio_sectors() might change the state
1129 			 * to HSM_ST_LAST. so, the state is changed here
1130 			 * before ata_pio_sectors().
1131 			 */
1132 			ap->hsm_task_state = HSM_ST;
1133 			ata_pio_sectors(qc);
1134 		} else
1135 			/* send CDB */
1136 			atapi_send_cdb(ap, qc);
1137 
1138 		if (in_wq)
1139 			spin_unlock_irqrestore(ap->lock, flags);
1140 
1141 		/* if polling, ata_sff_pio_task() handles the rest.
1142 		 * otherwise, interrupt handler takes over from here.
1143 		 */
1144 		break;
1145 
1146 	case HSM_ST:
1147 		/* complete command or read/write the data register */
1148 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1149 			/* ATAPI PIO protocol */
1150 			if ((status & ATA_DRQ) == 0) {
1151 				/* No more data to transfer or device error.
1152 				 * Device error will be tagged in HSM_ST_LAST.
1153 				 */
1154 				ap->hsm_task_state = HSM_ST_LAST;
1155 				goto fsm_start;
1156 			}
1157 
1158 			/* Device should not ask for data transfer (DRQ=1)
1159 			 * when it finds something wrong.
1160 			 * We ignore DRQ here and stop the HSM by
1161 			 * changing hsm_task_state to HSM_ST_ERR and
1162 			 * let the EH abort the command or reset the device.
1163 			 */
1164 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1165 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1166 					"DRQ=1 with device error, "
1167 					"dev_stat 0x%X", status);
1168 				qc->err_mask |= AC_ERR_HSM;
1169 				ap->hsm_task_state = HSM_ST_ERR;
1170 				goto fsm_start;
1171 			}
1172 
1173 			atapi_pio_bytes(qc);
1174 
1175 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1176 				/* bad ireason reported by device */
1177 				goto fsm_start;
1178 
1179 		} else {
1180 			/* ATA PIO protocol */
1181 			if (unlikely((status & ATA_DRQ) == 0)) {
1182 				/* handle BSY=0, DRQ=0 as error */
1183 				if (likely(status & (ATA_ERR | ATA_DF))) {
1184 					/* device stops HSM for abort/error */
1185 					qc->err_mask |= AC_ERR_DEV;
1186 
1187 					/* If diagnostic failed and this is
1188 					 * IDENTIFY, it's likely a phantom
1189 					 * device.  Mark hint.
1190 					 */
1191 					if (qc->dev->horkage &
1192 					    ATA_HORKAGE_DIAGNOSTIC)
1193 						qc->err_mask |=
1194 							AC_ERR_NODEV_HINT;
1195 				} else {
1196 					/* HSM violation. Let EH handle this.
1197 					 * Phantom devices also trigger this
1198 					 * condition.  Mark hint.
1199 					 */
1200 					ata_ehi_push_desc(ehi, "ST-ATA: "
1201 						"DRQ=0 without device error, "
1202 						"dev_stat 0x%X", status);
1203 					qc->err_mask |= AC_ERR_HSM |
1204 							AC_ERR_NODEV_HINT;
1205 				}
1206 
1207 				ap->hsm_task_state = HSM_ST_ERR;
1208 				goto fsm_start;
1209 			}
1210 
1211 			/* For PIO reads, some devices may ask for
1212 			 * data transfer (DRQ=1) alone with ERR=1.
1213 			 * We respect DRQ here and transfer one
1214 			 * block of junk data before changing the
1215 			 * hsm_task_state to HSM_ST_ERR.
1216 			 *
1217 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1218 			 * sense since the data block has been
1219 			 * transferred to the device.
1220 			 */
1221 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1222 				/* data might be corrputed */
1223 				qc->err_mask |= AC_ERR_DEV;
1224 
1225 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1226 					ata_pio_sectors(qc);
1227 					status = ata_wait_idle(ap);
1228 				}
1229 
1230 				if (status & (ATA_BUSY | ATA_DRQ)) {
1231 					ata_ehi_push_desc(ehi, "ST-ATA: "
1232 						"BUSY|DRQ persists on ERR|DF, "
1233 						"dev_stat 0x%X", status);
1234 					qc->err_mask |= AC_ERR_HSM;
1235 				}
1236 
1237 				/* There are oddball controllers with
1238 				 * status register stuck at 0x7f and
1239 				 * lbal/m/h at zero which makes it
1240 				 * pass all other presence detection
1241 				 * mechanisms we have.  Set NODEV_HINT
1242 				 * for it.  Kernel bz#7241.
1243 				 */
1244 				if (status == 0x7f)
1245 					qc->err_mask |= AC_ERR_NODEV_HINT;
1246 
1247 				/* ata_pio_sectors() might change the
1248 				 * state to HSM_ST_LAST. so, the state
1249 				 * is changed after ata_pio_sectors().
1250 				 */
1251 				ap->hsm_task_state = HSM_ST_ERR;
1252 				goto fsm_start;
1253 			}
1254 
1255 			ata_pio_sectors(qc);
1256 
1257 			if (ap->hsm_task_state == HSM_ST_LAST &&
1258 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1259 				/* all data read */
1260 				status = ata_wait_idle(ap);
1261 				goto fsm_start;
1262 			}
1263 		}
1264 
1265 		poll_next = 1;
1266 		break;
1267 
1268 	case HSM_ST_LAST:
1269 		if (unlikely(!ata_ok(status))) {
1270 			qc->err_mask |= __ac_err_mask(status);
1271 			ap->hsm_task_state = HSM_ST_ERR;
1272 			goto fsm_start;
1273 		}
1274 
1275 		/* no more data to transfer */
1276 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1277 			ap->print_id, qc->dev->devno, status);
1278 
1279 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1280 
1281 		ap->hsm_task_state = HSM_ST_IDLE;
1282 
1283 		/* complete taskfile transaction */
1284 		ata_hsm_qc_complete(qc, in_wq);
1285 
1286 		poll_next = 0;
1287 		break;
1288 
1289 	case HSM_ST_ERR:
1290 		ap->hsm_task_state = HSM_ST_IDLE;
1291 
1292 		/* complete taskfile transaction */
1293 		ata_hsm_qc_complete(qc, in_wq);
1294 
1295 		poll_next = 0;
1296 		break;
1297 	default:
1298 		poll_next = 0;
1299 		BUG();
1300 	}
1301 
1302 	return poll_next;
1303 }
1304 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1305 
1306 void ata_sff_queue_work(struct work_struct *work)
1307 {
1308 	queue_work(ata_sff_wq, work);
1309 }
1310 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1311 
1312 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1313 {
1314 	queue_delayed_work(ata_sff_wq, dwork, delay);
1315 }
1316 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1317 
1318 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1319 {
1320 	struct ata_port *ap = link->ap;
1321 
1322 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1323 		(ap->sff_pio_task_link != link));
1324 	ap->sff_pio_task_link = link;
1325 
1326 	/* may fail if ata_sff_flush_pio_task() in progress */
1327 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1328 }
1329 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1330 
1331 void ata_sff_flush_pio_task(struct ata_port *ap)
1332 {
1333 	DPRINTK("ENTER\n");
1334 
1335 	cancel_delayed_work_sync(&ap->sff_pio_task);
1336 	ap->hsm_task_state = HSM_ST_IDLE;
1337 	ap->sff_pio_task_link = NULL;
1338 
1339 	if (ata_msg_ctl(ap))
1340 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1341 }
1342 
1343 static void ata_sff_pio_task(struct work_struct *work)
1344 {
1345 	struct ata_port *ap =
1346 		container_of(work, struct ata_port, sff_pio_task.work);
1347 	struct ata_link *link = ap->sff_pio_task_link;
1348 	struct ata_queued_cmd *qc;
1349 	u8 status;
1350 	int poll_next;
1351 
1352 	BUG_ON(ap->sff_pio_task_link == NULL);
1353 	/* qc can be NULL if timeout occurred */
1354 	qc = ata_qc_from_tag(ap, link->active_tag);
1355 	if (!qc) {
1356 		ap->sff_pio_task_link = NULL;
1357 		return;
1358 	}
1359 
1360 fsm_start:
1361 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1362 
1363 	/*
1364 	 * This is purely heuristic.  This is a fast path.
1365 	 * Sometimes when we enter, BSY will be cleared in
1366 	 * a chk-status or two.  If not, the drive is probably seeking
1367 	 * or something.  Snooze for a couple msecs, then
1368 	 * chk-status again.  If still busy, queue delayed work.
1369 	 */
1370 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1371 	if (status & ATA_BUSY) {
1372 		ata_msleep(ap, 2);
1373 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1374 		if (status & ATA_BUSY) {
1375 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1376 			return;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * hsm_move() may trigger another command to be processed.
1382 	 * clean the link beforehand.
1383 	 */
1384 	ap->sff_pio_task_link = NULL;
1385 	/* move the HSM */
1386 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1387 
1388 	/* another command or interrupt handler
1389 	 * may be running at this point.
1390 	 */
1391 	if (poll_next)
1392 		goto fsm_start;
1393 }
1394 
1395 /**
1396  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1397  *	@qc: command to issue to device
1398  *
1399  *	This function issues a PIO or NODATA command to a SFF
1400  *	controller.
1401  *
1402  *	LOCKING:
1403  *	spin_lock_irqsave(host lock)
1404  *
1405  *	RETURNS:
1406  *	Zero on success, AC_ERR_* mask on failure
1407  */
1408 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1409 {
1410 	struct ata_port *ap = qc->ap;
1411 	struct ata_link *link = qc->dev->link;
1412 
1413 	/* Use polling pio if the LLD doesn't handle
1414 	 * interrupt driven pio and atapi CDB interrupt.
1415 	 */
1416 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1417 		qc->tf.flags |= ATA_TFLAG_POLLING;
1418 
1419 	/* select the device */
1420 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1421 
1422 	/* start the command */
1423 	switch (qc->tf.protocol) {
1424 	case ATA_PROT_NODATA:
1425 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1426 			ata_qc_set_polling(qc);
1427 
1428 		ata_tf_to_host(ap, &qc->tf);
1429 		ap->hsm_task_state = HSM_ST_LAST;
1430 
1431 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1432 			ata_sff_queue_pio_task(link, 0);
1433 
1434 		break;
1435 
1436 	case ATA_PROT_PIO:
1437 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1438 			ata_qc_set_polling(qc);
1439 
1440 		ata_tf_to_host(ap, &qc->tf);
1441 
1442 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1443 			/* PIO data out protocol */
1444 			ap->hsm_task_state = HSM_ST_FIRST;
1445 			ata_sff_queue_pio_task(link, 0);
1446 
1447 			/* always send first data block using the
1448 			 * ata_sff_pio_task() codepath.
1449 			 */
1450 		} else {
1451 			/* PIO data in protocol */
1452 			ap->hsm_task_state = HSM_ST;
1453 
1454 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1455 				ata_sff_queue_pio_task(link, 0);
1456 
1457 			/* if polling, ata_sff_pio_task() handles the
1458 			 * rest.  otherwise, interrupt handler takes
1459 			 * over from here.
1460 			 */
1461 		}
1462 
1463 		break;
1464 
1465 	case ATAPI_PROT_PIO:
1466 	case ATAPI_PROT_NODATA:
1467 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1468 			ata_qc_set_polling(qc);
1469 
1470 		ata_tf_to_host(ap, &qc->tf);
1471 
1472 		ap->hsm_task_state = HSM_ST_FIRST;
1473 
1474 		/* send cdb by polling if no cdb interrupt */
1475 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1476 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1477 			ata_sff_queue_pio_task(link, 0);
1478 		break;
1479 
1480 	default:
1481 		WARN_ON_ONCE(1);
1482 		return AC_ERR_SYSTEM;
1483 	}
1484 
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1488 
1489 /**
1490  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1491  *	@qc: qc to fill result TF for
1492  *
1493  *	@qc is finished and result TF needs to be filled.  Fill it
1494  *	using ->sff_tf_read.
1495  *
1496  *	LOCKING:
1497  *	spin_lock_irqsave(host lock)
1498  *
1499  *	RETURNS:
1500  *	true indicating that result TF is successfully filled.
1501  */
1502 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1503 {
1504 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1505 	return true;
1506 }
1507 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1508 
1509 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1510 {
1511 	ap->stats.idle_irq++;
1512 
1513 #ifdef ATA_IRQ_TRAP
1514 	if ((ap->stats.idle_irq % 1000) == 0) {
1515 		ap->ops->sff_check_status(ap);
1516 		if (ap->ops->sff_irq_clear)
1517 			ap->ops->sff_irq_clear(ap);
1518 		ata_port_warn(ap, "irq trap\n");
1519 		return 1;
1520 	}
1521 #endif
1522 	return 0;	/* irq not handled */
1523 }
1524 
1525 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1526 					struct ata_queued_cmd *qc,
1527 					bool hsmv_on_idle)
1528 {
1529 	u8 status;
1530 
1531 	VPRINTK("ata%u: protocol %d task_state %d\n",
1532 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1533 
1534 	/* Check whether we are expecting interrupt in this state */
1535 	switch (ap->hsm_task_state) {
1536 	case HSM_ST_FIRST:
1537 		/* Some pre-ATAPI-4 devices assert INTRQ
1538 		 * at this state when ready to receive CDB.
1539 		 */
1540 
1541 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1542 		 * The flag was turned on only for atapi devices.  No
1543 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1544 		 */
1545 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1546 			return ata_sff_idle_irq(ap);
1547 		break;
1548 	case HSM_ST_IDLE:
1549 		return ata_sff_idle_irq(ap);
1550 	default:
1551 		break;
1552 	}
1553 
1554 	/* check main status, clearing INTRQ if needed */
1555 	status = ata_sff_irq_status(ap);
1556 	if (status & ATA_BUSY) {
1557 		if (hsmv_on_idle) {
1558 			/* BMDMA engine is already stopped, we're screwed */
1559 			qc->err_mask |= AC_ERR_HSM;
1560 			ap->hsm_task_state = HSM_ST_ERR;
1561 		} else
1562 			return ata_sff_idle_irq(ap);
1563 	}
1564 
1565 	/* clear irq events */
1566 	if (ap->ops->sff_irq_clear)
1567 		ap->ops->sff_irq_clear(ap);
1568 
1569 	ata_sff_hsm_move(ap, qc, status, 0);
1570 
1571 	return 1;	/* irq handled */
1572 }
1573 
1574 /**
1575  *	ata_sff_port_intr - Handle SFF port interrupt
1576  *	@ap: Port on which interrupt arrived (possibly...)
1577  *	@qc: Taskfile currently active in engine
1578  *
1579  *	Handle port interrupt for given queued command.
1580  *
1581  *	LOCKING:
1582  *	spin_lock_irqsave(host lock)
1583  *
1584  *	RETURNS:
1585  *	One if interrupt was handled, zero if not (shared irq).
1586  */
1587 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1588 {
1589 	return __ata_sff_port_intr(ap, qc, false);
1590 }
1591 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1592 
1593 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1594 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1595 {
1596 	struct ata_host *host = dev_instance;
1597 	bool retried = false;
1598 	unsigned int i;
1599 	unsigned int handled, idle, polling;
1600 	unsigned long flags;
1601 
1602 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1603 	spin_lock_irqsave(&host->lock, flags);
1604 
1605 retry:
1606 	handled = idle = polling = 0;
1607 	for (i = 0; i < host->n_ports; i++) {
1608 		struct ata_port *ap = host->ports[i];
1609 		struct ata_queued_cmd *qc;
1610 
1611 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1612 		if (qc) {
1613 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1614 				handled |= port_intr(ap, qc);
1615 			else
1616 				polling |= 1 << i;
1617 		} else
1618 			idle |= 1 << i;
1619 	}
1620 
1621 	/*
1622 	 * If no port was expecting IRQ but the controller is actually
1623 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1624 	 * pending status if available and clear spurious IRQ.
1625 	 */
1626 	if (!handled && !retried) {
1627 		bool retry = false;
1628 
1629 		for (i = 0; i < host->n_ports; i++) {
1630 			struct ata_port *ap = host->ports[i];
1631 
1632 			if (polling & (1 << i))
1633 				continue;
1634 
1635 			if (!ap->ops->sff_irq_check ||
1636 			    !ap->ops->sff_irq_check(ap))
1637 				continue;
1638 
1639 			if (idle & (1 << i)) {
1640 				ap->ops->sff_check_status(ap);
1641 				if (ap->ops->sff_irq_clear)
1642 					ap->ops->sff_irq_clear(ap);
1643 			} else {
1644 				/* clear INTRQ and check if BUSY cleared */
1645 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1646 					retry |= true;
1647 				/*
1648 				 * With command in flight, we can't do
1649 				 * sff_irq_clear() w/o racing with completion.
1650 				 */
1651 			}
1652 		}
1653 
1654 		if (retry) {
1655 			retried = true;
1656 			goto retry;
1657 		}
1658 	}
1659 
1660 	spin_unlock_irqrestore(&host->lock, flags);
1661 
1662 	return IRQ_RETVAL(handled);
1663 }
1664 
1665 /**
1666  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1667  *	@irq: irq line (unused)
1668  *	@dev_instance: pointer to our ata_host information structure
1669  *
1670  *	Default interrupt handler for PCI IDE devices.  Calls
1671  *	ata_sff_port_intr() for each port that is not disabled.
1672  *
1673  *	LOCKING:
1674  *	Obtains host lock during operation.
1675  *
1676  *	RETURNS:
1677  *	IRQ_NONE or IRQ_HANDLED.
1678  */
1679 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1680 {
1681 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1682 }
1683 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1684 
1685 /**
1686  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1687  *	@ap: port that appears to have timed out
1688  *
1689  *	Called from the libata error handlers when the core code suspects
1690  *	an interrupt has been lost. If it has complete anything we can and
1691  *	then return. Interface must support altstatus for this faster
1692  *	recovery to occur.
1693  *
1694  *	Locking:
1695  *	Caller holds host lock
1696  */
1697 
1698 void ata_sff_lost_interrupt(struct ata_port *ap)
1699 {
1700 	u8 status;
1701 	struct ata_queued_cmd *qc;
1702 
1703 	/* Only one outstanding command per SFF channel */
1704 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1705 	/* We cannot lose an interrupt on a non-existent or polled command */
1706 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1707 		return;
1708 	/* See if the controller thinks it is still busy - if so the command
1709 	   isn't a lost IRQ but is still in progress */
1710 	status = ata_sff_altstatus(ap);
1711 	if (status & ATA_BUSY)
1712 		return;
1713 
1714 	/* There was a command running, we are no longer busy and we have
1715 	   no interrupt. */
1716 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1717 								status);
1718 	/* Run the host interrupt logic as if the interrupt had not been
1719 	   lost */
1720 	ata_sff_port_intr(ap, qc);
1721 }
1722 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1723 
1724 /**
1725  *	ata_sff_freeze - Freeze SFF controller port
1726  *	@ap: port to freeze
1727  *
1728  *	Freeze SFF controller port.
1729  *
1730  *	LOCKING:
1731  *	Inherited from caller.
1732  */
1733 void ata_sff_freeze(struct ata_port *ap)
1734 {
1735 	ap->ctl |= ATA_NIEN;
1736 	ap->last_ctl = ap->ctl;
1737 
1738 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1739 		ata_sff_set_devctl(ap, ap->ctl);
1740 
1741 	/* Under certain circumstances, some controllers raise IRQ on
1742 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1743 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1744 	 */
1745 	ap->ops->sff_check_status(ap);
1746 
1747 	if (ap->ops->sff_irq_clear)
1748 		ap->ops->sff_irq_clear(ap);
1749 }
1750 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1751 
1752 /**
1753  *	ata_sff_thaw - Thaw SFF controller port
1754  *	@ap: port to thaw
1755  *
1756  *	Thaw SFF controller port.
1757  *
1758  *	LOCKING:
1759  *	Inherited from caller.
1760  */
1761 void ata_sff_thaw(struct ata_port *ap)
1762 {
1763 	/* clear & re-enable interrupts */
1764 	ap->ops->sff_check_status(ap);
1765 	if (ap->ops->sff_irq_clear)
1766 		ap->ops->sff_irq_clear(ap);
1767 	ata_sff_irq_on(ap);
1768 }
1769 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1770 
1771 /**
1772  *	ata_sff_prereset - prepare SFF link for reset
1773  *	@link: SFF link to be reset
1774  *	@deadline: deadline jiffies for the operation
1775  *
1776  *	SFF link @link is about to be reset.  Initialize it.  It first
1777  *	calls ata_std_prereset() and wait for !BSY if the port is
1778  *	being softreset.
1779  *
1780  *	LOCKING:
1781  *	Kernel thread context (may sleep)
1782  *
1783  *	RETURNS:
1784  *	0 on success, -errno otherwise.
1785  */
1786 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1787 {
1788 	struct ata_eh_context *ehc = &link->eh_context;
1789 	int rc;
1790 
1791 	rc = ata_std_prereset(link, deadline);
1792 	if (rc)
1793 		return rc;
1794 
1795 	/* if we're about to do hardreset, nothing more to do */
1796 	if (ehc->i.action & ATA_EH_HARDRESET)
1797 		return 0;
1798 
1799 	/* wait for !BSY if we don't know that no device is attached */
1800 	if (!ata_link_offline(link)) {
1801 		rc = ata_sff_wait_ready(link, deadline);
1802 		if (rc && rc != -ENODEV) {
1803 			ata_link_warn(link,
1804 				      "device not ready (errno=%d), forcing hardreset\n",
1805 				      rc);
1806 			ehc->i.action |= ATA_EH_HARDRESET;
1807 		}
1808 	}
1809 
1810 	return 0;
1811 }
1812 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1813 
1814 /**
1815  *	ata_devchk - PATA device presence detection
1816  *	@ap: ATA channel to examine
1817  *	@device: Device to examine (starting at zero)
1818  *
1819  *	This technique was originally described in
1820  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1821  *	later found its way into the ATA/ATAPI spec.
1822  *
1823  *	Write a pattern to the ATA shadow registers,
1824  *	and if a device is present, it will respond by
1825  *	correctly storing and echoing back the
1826  *	ATA shadow register contents.
1827  *
1828  *	LOCKING:
1829  *	caller.
1830  */
1831 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1832 {
1833 	struct ata_ioports *ioaddr = &ap->ioaddr;
1834 	u8 nsect, lbal;
1835 
1836 	ap->ops->sff_dev_select(ap, device);
1837 
1838 	iowrite8(0x55, ioaddr->nsect_addr);
1839 	iowrite8(0xaa, ioaddr->lbal_addr);
1840 
1841 	iowrite8(0xaa, ioaddr->nsect_addr);
1842 	iowrite8(0x55, ioaddr->lbal_addr);
1843 
1844 	iowrite8(0x55, ioaddr->nsect_addr);
1845 	iowrite8(0xaa, ioaddr->lbal_addr);
1846 
1847 	nsect = ioread8(ioaddr->nsect_addr);
1848 	lbal = ioread8(ioaddr->lbal_addr);
1849 
1850 	if ((nsect == 0x55) && (lbal == 0xaa))
1851 		return 1;	/* we found a device */
1852 
1853 	return 0;		/* nothing found */
1854 }
1855 
1856 /**
1857  *	ata_sff_dev_classify - Parse returned ATA device signature
1858  *	@dev: ATA device to classify (starting at zero)
1859  *	@present: device seems present
1860  *	@r_err: Value of error register on completion
1861  *
1862  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1863  *	an ATA/ATAPI-defined set of values is placed in the ATA
1864  *	shadow registers, indicating the results of device detection
1865  *	and diagnostics.
1866  *
1867  *	Select the ATA device, and read the values from the ATA shadow
1868  *	registers.  Then parse according to the Error register value,
1869  *	and the spec-defined values examined by ata_dev_classify().
1870  *
1871  *	LOCKING:
1872  *	caller.
1873  *
1874  *	RETURNS:
1875  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1876  */
1877 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1878 				  u8 *r_err)
1879 {
1880 	struct ata_port *ap = dev->link->ap;
1881 	struct ata_taskfile tf;
1882 	unsigned int class;
1883 	u8 err;
1884 
1885 	ap->ops->sff_dev_select(ap, dev->devno);
1886 
1887 	memset(&tf, 0, sizeof(tf));
1888 
1889 	ap->ops->sff_tf_read(ap, &tf);
1890 	err = tf.feature;
1891 	if (r_err)
1892 		*r_err = err;
1893 
1894 	/* see if device passed diags: continue and warn later */
1895 	if (err == 0)
1896 		/* diagnostic fail : do nothing _YET_ */
1897 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1898 	else if (err == 1)
1899 		/* do nothing */ ;
1900 	else if ((dev->devno == 0) && (err == 0x81))
1901 		/* do nothing */ ;
1902 	else
1903 		return ATA_DEV_NONE;
1904 
1905 	/* determine if device is ATA or ATAPI */
1906 	class = ata_dev_classify(&tf);
1907 
1908 	if (class == ATA_DEV_UNKNOWN) {
1909 		/* If the device failed diagnostic, it's likely to
1910 		 * have reported incorrect device signature too.
1911 		 * Assume ATA device if the device seems present but
1912 		 * device signature is invalid with diagnostic
1913 		 * failure.
1914 		 */
1915 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1916 			class = ATA_DEV_ATA;
1917 		else
1918 			class = ATA_DEV_NONE;
1919 	} else if ((class == ATA_DEV_ATA) &&
1920 		   (ap->ops->sff_check_status(ap) == 0))
1921 		class = ATA_DEV_NONE;
1922 
1923 	return class;
1924 }
1925 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1926 
1927 /**
1928  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1929  *	@link: SFF link which is just reset
1930  *	@devmask: mask of present devices
1931  *	@deadline: deadline jiffies for the operation
1932  *
1933  *	Wait devices attached to SFF @link to become ready after
1934  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1935  *	status register too early.
1936  *
1937  *	LOCKING:
1938  *	Kernel thread context (may sleep).
1939  *
1940  *	RETURNS:
1941  *	0 on success, -ENODEV if some or all of devices in @devmask
1942  *	don't seem to exist.  -errno on other errors.
1943  */
1944 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1945 			     unsigned long deadline)
1946 {
1947 	struct ata_port *ap = link->ap;
1948 	struct ata_ioports *ioaddr = &ap->ioaddr;
1949 	unsigned int dev0 = devmask & (1 << 0);
1950 	unsigned int dev1 = devmask & (1 << 1);
1951 	int rc, ret = 0;
1952 
1953 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1954 
1955 	/* always check readiness of the master device */
1956 	rc = ata_sff_wait_ready(link, deadline);
1957 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1958 	 * and TF status is 0xff, bail out on it too.
1959 	 */
1960 	if (rc)
1961 		return rc;
1962 
1963 	/* if device 1 was found in ata_devchk, wait for register
1964 	 * access briefly, then wait for BSY to clear.
1965 	 */
1966 	if (dev1) {
1967 		int i;
1968 
1969 		ap->ops->sff_dev_select(ap, 1);
1970 
1971 		/* Wait for register access.  Some ATAPI devices fail
1972 		 * to set nsect/lbal after reset, so don't waste too
1973 		 * much time on it.  We're gonna wait for !BSY anyway.
1974 		 */
1975 		for (i = 0; i < 2; i++) {
1976 			u8 nsect, lbal;
1977 
1978 			nsect = ioread8(ioaddr->nsect_addr);
1979 			lbal = ioread8(ioaddr->lbal_addr);
1980 			if ((nsect == 1) && (lbal == 1))
1981 				break;
1982 			ata_msleep(ap, 50);	/* give drive a breather */
1983 		}
1984 
1985 		rc = ata_sff_wait_ready(link, deadline);
1986 		if (rc) {
1987 			if (rc != -ENODEV)
1988 				return rc;
1989 			ret = rc;
1990 		}
1991 	}
1992 
1993 	/* is all this really necessary? */
1994 	ap->ops->sff_dev_select(ap, 0);
1995 	if (dev1)
1996 		ap->ops->sff_dev_select(ap, 1);
1997 	if (dev0)
1998 		ap->ops->sff_dev_select(ap, 0);
1999 
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2003 
2004 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2005 			     unsigned long deadline)
2006 {
2007 	struct ata_ioports *ioaddr = &ap->ioaddr;
2008 
2009 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2010 
2011 	/* software reset.  causes dev0 to be selected */
2012 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2013 	udelay(20);	/* FIXME: flush */
2014 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2015 	udelay(20);	/* FIXME: flush */
2016 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2017 	ap->last_ctl = ap->ctl;
2018 
2019 	/* wait the port to become ready */
2020 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2021 }
2022 
2023 /**
2024  *	ata_sff_softreset - reset host port via ATA SRST
2025  *	@link: ATA link to reset
2026  *	@classes: resulting classes of attached devices
2027  *	@deadline: deadline jiffies for the operation
2028  *
2029  *	Reset host port using ATA SRST.
2030  *
2031  *	LOCKING:
2032  *	Kernel thread context (may sleep)
2033  *
2034  *	RETURNS:
2035  *	0 on success, -errno otherwise.
2036  */
2037 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2038 		      unsigned long deadline)
2039 {
2040 	struct ata_port *ap = link->ap;
2041 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2042 	unsigned int devmask = 0;
2043 	int rc;
2044 	u8 err;
2045 
2046 	DPRINTK("ENTER\n");
2047 
2048 	/* determine if device 0/1 are present */
2049 	if (ata_devchk(ap, 0))
2050 		devmask |= (1 << 0);
2051 	if (slave_possible && ata_devchk(ap, 1))
2052 		devmask |= (1 << 1);
2053 
2054 	/* select device 0 again */
2055 	ap->ops->sff_dev_select(ap, 0);
2056 
2057 	/* issue bus reset */
2058 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2059 	rc = ata_bus_softreset(ap, devmask, deadline);
2060 	/* if link is occupied, -ENODEV too is an error */
2061 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2062 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2063 		return rc;
2064 	}
2065 
2066 	/* determine by signature whether we have ATA or ATAPI devices */
2067 	classes[0] = ata_sff_dev_classify(&link->device[0],
2068 					  devmask & (1 << 0), &err);
2069 	if (slave_possible && err != 0x81)
2070 		classes[1] = ata_sff_dev_classify(&link->device[1],
2071 						  devmask & (1 << 1), &err);
2072 
2073 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2077 
2078 /**
2079  *	sata_sff_hardreset - reset host port via SATA phy reset
2080  *	@link: link to reset
2081  *	@class: resulting class of attached device
2082  *	@deadline: deadline jiffies for the operation
2083  *
2084  *	SATA phy-reset host port using DET bits of SControl register,
2085  *	wait for !BSY and classify the attached device.
2086  *
2087  *	LOCKING:
2088  *	Kernel thread context (may sleep)
2089  *
2090  *	RETURNS:
2091  *	0 on success, -errno otherwise.
2092  */
2093 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2094 		       unsigned long deadline)
2095 {
2096 	struct ata_eh_context *ehc = &link->eh_context;
2097 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2098 	bool online;
2099 	int rc;
2100 
2101 	rc = sata_link_hardreset(link, timing, deadline, &online,
2102 				 ata_sff_check_ready);
2103 	if (online)
2104 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2105 
2106 	DPRINTK("EXIT, class=%u\n", *class);
2107 	return rc;
2108 }
2109 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2110 
2111 /**
2112  *	ata_sff_postreset - SFF postreset callback
2113  *	@link: the target SFF ata_link
2114  *	@classes: classes of attached devices
2115  *
2116  *	This function is invoked after a successful reset.  It first
2117  *	calls ata_std_postreset() and performs SFF specific postreset
2118  *	processing.
2119  *
2120  *	LOCKING:
2121  *	Kernel thread context (may sleep)
2122  */
2123 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2124 {
2125 	struct ata_port *ap = link->ap;
2126 
2127 	ata_std_postreset(link, classes);
2128 
2129 	/* is double-select really necessary? */
2130 	if (classes[0] != ATA_DEV_NONE)
2131 		ap->ops->sff_dev_select(ap, 1);
2132 	if (classes[1] != ATA_DEV_NONE)
2133 		ap->ops->sff_dev_select(ap, 0);
2134 
2135 	/* bail out if no device is present */
2136 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2137 		DPRINTK("EXIT, no device\n");
2138 		return;
2139 	}
2140 
2141 	/* set up device control */
2142 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2143 		ata_sff_set_devctl(ap, ap->ctl);
2144 		ap->last_ctl = ap->ctl;
2145 	}
2146 }
2147 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2148 
2149 /**
2150  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2151  *	@qc: command
2152  *
2153  *	Drain the FIFO and device of any stuck data following a command
2154  *	failing to complete. In some cases this is necessary before a
2155  *	reset will recover the device.
2156  *
2157  */
2158 
2159 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2160 {
2161 	int count;
2162 	struct ata_port *ap;
2163 
2164 	/* We only need to flush incoming data when a command was running */
2165 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2166 		return;
2167 
2168 	ap = qc->ap;
2169 	/* Drain up to 64K of data before we give up this recovery method */
2170 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2171 						&& count < 65536; count += 2)
2172 		ioread16(ap->ioaddr.data_addr);
2173 
2174 	/* Can become DEBUG later */
2175 	if (count)
2176 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2177 
2178 }
2179 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2180 
2181 /**
2182  *	ata_sff_error_handler - Stock error handler for SFF controller
2183  *	@ap: port to handle error for
2184  *
2185  *	Stock error handler for SFF controller.  It can handle both
2186  *	PATA and SATA controllers.  Many controllers should be able to
2187  *	use this EH as-is or with some added handling before and
2188  *	after.
2189  *
2190  *	LOCKING:
2191  *	Kernel thread context (may sleep)
2192  */
2193 void ata_sff_error_handler(struct ata_port *ap)
2194 {
2195 	ata_reset_fn_t softreset = ap->ops->softreset;
2196 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2197 	struct ata_queued_cmd *qc;
2198 	unsigned long flags;
2199 
2200 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2201 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2202 		qc = NULL;
2203 
2204 	spin_lock_irqsave(ap->lock, flags);
2205 
2206 	/*
2207 	 * We *MUST* do FIFO draining before we issue a reset as
2208 	 * several devices helpfully clear their internal state and
2209 	 * will lock solid if we touch the data port post reset. Pass
2210 	 * qc in case anyone wants to do different PIO/DMA recovery or
2211 	 * has per command fixups
2212 	 */
2213 	if (ap->ops->sff_drain_fifo)
2214 		ap->ops->sff_drain_fifo(qc);
2215 
2216 	spin_unlock_irqrestore(ap->lock, flags);
2217 
2218 	/* ignore ata_sff_softreset if ctl isn't accessible */
2219 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2220 		softreset = NULL;
2221 
2222 	/* ignore built-in hardresets if SCR access is not available */
2223 	if ((hardreset == sata_std_hardreset ||
2224 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2225 		hardreset = NULL;
2226 
2227 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2228 		  ap->ops->postreset);
2229 }
2230 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2231 
2232 /**
2233  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2234  *	@ioaddr: IO address structure to be initialized
2235  *
2236  *	Utility function which initializes data_addr, error_addr,
2237  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2238  *	device_addr, status_addr, and command_addr to standard offsets
2239  *	relative to cmd_addr.
2240  *
2241  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2242  */
2243 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2244 {
2245 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2246 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2247 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2248 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2249 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2250 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2251 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2252 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2253 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2254 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2255 }
2256 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2257 
2258 #ifdef CONFIG_PCI
2259 
2260 static int ata_resources_present(struct pci_dev *pdev, int port)
2261 {
2262 	int i;
2263 
2264 	/* Check the PCI resources for this channel are enabled */
2265 	port = port * 2;
2266 	for (i = 0; i < 2; i++) {
2267 		if (pci_resource_start(pdev, port + i) == 0 ||
2268 		    pci_resource_len(pdev, port + i) == 0)
2269 			return 0;
2270 	}
2271 	return 1;
2272 }
2273 
2274 /**
2275  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2276  *	@host: target ATA host
2277  *
2278  *	Acquire native PCI ATA resources for @host and initialize the
2279  *	first two ports of @host accordingly.  Ports marked dummy are
2280  *	skipped and allocation failure makes the port dummy.
2281  *
2282  *	Note that native PCI resources are valid even for legacy hosts
2283  *	as we fix up pdev resources array early in boot, so this
2284  *	function can be used for both native and legacy SFF hosts.
2285  *
2286  *	LOCKING:
2287  *	Inherited from calling layer (may sleep).
2288  *
2289  *	RETURNS:
2290  *	0 if at least one port is initialized, -ENODEV if no port is
2291  *	available.
2292  */
2293 int ata_pci_sff_init_host(struct ata_host *host)
2294 {
2295 	struct device *gdev = host->dev;
2296 	struct pci_dev *pdev = to_pci_dev(gdev);
2297 	unsigned int mask = 0;
2298 	int i, rc;
2299 
2300 	/* request, iomap BARs and init port addresses accordingly */
2301 	for (i = 0; i < 2; i++) {
2302 		struct ata_port *ap = host->ports[i];
2303 		int base = i * 2;
2304 		void __iomem * const *iomap;
2305 
2306 		if (ata_port_is_dummy(ap))
2307 			continue;
2308 
2309 		/* Discard disabled ports.  Some controllers show
2310 		 * their unused channels this way.  Disabled ports are
2311 		 * made dummy.
2312 		 */
2313 		if (!ata_resources_present(pdev, i)) {
2314 			ap->ops = &ata_dummy_port_ops;
2315 			continue;
2316 		}
2317 
2318 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2319 					dev_driver_string(gdev));
2320 		if (rc) {
2321 			dev_warn(gdev,
2322 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2323 				 i, rc);
2324 			if (rc == -EBUSY)
2325 				pcim_pin_device(pdev);
2326 			ap->ops = &ata_dummy_port_ops;
2327 			continue;
2328 		}
2329 		host->iomap = iomap = pcim_iomap_table(pdev);
2330 
2331 		ap->ioaddr.cmd_addr = iomap[base];
2332 		ap->ioaddr.altstatus_addr =
2333 		ap->ioaddr.ctl_addr = (void __iomem *)
2334 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2335 		ata_sff_std_ports(&ap->ioaddr);
2336 
2337 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2338 			(unsigned long long)pci_resource_start(pdev, base),
2339 			(unsigned long long)pci_resource_start(pdev, base + 1));
2340 
2341 		mask |= 1 << i;
2342 	}
2343 
2344 	if (!mask) {
2345 		dev_err(gdev, "no available native port\n");
2346 		return -ENODEV;
2347 	}
2348 
2349 	return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2352 
2353 /**
2354  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2355  *	@pdev: target PCI device
2356  *	@ppi: array of port_info, must be enough for two ports
2357  *	@r_host: out argument for the initialized ATA host
2358  *
2359  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2360  *	all PCI resources and initialize it accordingly in one go.
2361  *
2362  *	LOCKING:
2363  *	Inherited from calling layer (may sleep).
2364  *
2365  *	RETURNS:
2366  *	0 on success, -errno otherwise.
2367  */
2368 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2369 			     const struct ata_port_info * const *ppi,
2370 			     struct ata_host **r_host)
2371 {
2372 	struct ata_host *host;
2373 	int rc;
2374 
2375 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2376 		return -ENOMEM;
2377 
2378 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2379 	if (!host) {
2380 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2381 		rc = -ENOMEM;
2382 		goto err_out;
2383 	}
2384 
2385 	rc = ata_pci_sff_init_host(host);
2386 	if (rc)
2387 		goto err_out;
2388 
2389 	devres_remove_group(&pdev->dev, NULL);
2390 	*r_host = host;
2391 	return 0;
2392 
2393 err_out:
2394 	devres_release_group(&pdev->dev, NULL);
2395 	return rc;
2396 }
2397 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2398 
2399 /**
2400  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2401  *	@host: target SFF ATA host
2402  *	@irq_handler: irq_handler used when requesting IRQ(s)
2403  *	@sht: scsi_host_template to use when registering the host
2404  *
2405  *	This is the counterpart of ata_host_activate() for SFF ATA
2406  *	hosts.  This separate helper is necessary because SFF hosts
2407  *	use two separate interrupts in legacy mode.
2408  *
2409  *	LOCKING:
2410  *	Inherited from calling layer (may sleep).
2411  *
2412  *	RETURNS:
2413  *	0 on success, -errno otherwise.
2414  */
2415 int ata_pci_sff_activate_host(struct ata_host *host,
2416 			      irq_handler_t irq_handler,
2417 			      struct scsi_host_template *sht)
2418 {
2419 	struct device *dev = host->dev;
2420 	struct pci_dev *pdev = to_pci_dev(dev);
2421 	const char *drv_name = dev_driver_string(host->dev);
2422 	int legacy_mode = 0, rc;
2423 
2424 	rc = ata_host_start(host);
2425 	if (rc)
2426 		return rc;
2427 
2428 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2429 		u8 tmp8, mask;
2430 
2431 		/* TODO: What if one channel is in native mode ... */
2432 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2433 		mask = (1 << 2) | (1 << 0);
2434 		if ((tmp8 & mask) != mask)
2435 			legacy_mode = 1;
2436 #if defined(CONFIG_NO_ATA_LEGACY)
2437 		/* Some platforms with PCI limits cannot address compat
2438 		   port space. In that case we punt if their firmware has
2439 		   left a device in compatibility mode */
2440 		if (legacy_mode) {
2441 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2442 			return -EOPNOTSUPP;
2443 		}
2444 #endif
2445 	}
2446 
2447 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2448 		return -ENOMEM;
2449 
2450 	if (!legacy_mode && pdev->irq) {
2451 		int i;
2452 
2453 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2454 				      IRQF_SHARED, drv_name, host);
2455 		if (rc)
2456 			goto out;
2457 
2458 		for (i = 0; i < 2; i++) {
2459 			if (ata_port_is_dummy(host->ports[i]))
2460 				continue;
2461 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2462 		}
2463 	} else if (legacy_mode) {
2464 		if (!ata_port_is_dummy(host->ports[0])) {
2465 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2466 					      irq_handler, IRQF_SHARED,
2467 					      drv_name, host);
2468 			if (rc)
2469 				goto out;
2470 
2471 			ata_port_desc(host->ports[0], "irq %d",
2472 				      ATA_PRIMARY_IRQ(pdev));
2473 		}
2474 
2475 		if (!ata_port_is_dummy(host->ports[1])) {
2476 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2477 					      irq_handler, IRQF_SHARED,
2478 					      drv_name, host);
2479 			if (rc)
2480 				goto out;
2481 
2482 			ata_port_desc(host->ports[1], "irq %d",
2483 				      ATA_SECONDARY_IRQ(pdev));
2484 		}
2485 	}
2486 
2487 	rc = ata_host_register(host, sht);
2488 out:
2489 	if (rc == 0)
2490 		devres_remove_group(dev, NULL);
2491 	else
2492 		devres_release_group(dev, NULL);
2493 
2494 	return rc;
2495 }
2496 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2497 
2498 static const struct ata_port_info *ata_sff_find_valid_pi(
2499 					const struct ata_port_info * const *ppi)
2500 {
2501 	int i;
2502 
2503 	/* look up the first valid port_info */
2504 	for (i = 0; i < 2 && ppi[i]; i++)
2505 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2506 			return ppi[i];
2507 
2508 	return NULL;
2509 }
2510 
2511 static int ata_pci_init_one(struct pci_dev *pdev,
2512 		const struct ata_port_info * const *ppi,
2513 		struct scsi_host_template *sht, void *host_priv,
2514 		int hflags, bool bmdma)
2515 {
2516 	struct device *dev = &pdev->dev;
2517 	const struct ata_port_info *pi;
2518 	struct ata_host *host = NULL;
2519 	int rc;
2520 
2521 	DPRINTK("ENTER\n");
2522 
2523 	pi = ata_sff_find_valid_pi(ppi);
2524 	if (!pi) {
2525 		dev_err(&pdev->dev, "no valid port_info specified\n");
2526 		return -EINVAL;
2527 	}
2528 
2529 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2530 		return -ENOMEM;
2531 
2532 	rc = pcim_enable_device(pdev);
2533 	if (rc)
2534 		goto out;
2535 
2536 #ifdef CONFIG_ATA_BMDMA
2537 	if (bmdma)
2538 		/* prepare and activate BMDMA host */
2539 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2540 	else
2541 #endif
2542 		/* prepare and activate SFF host */
2543 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2544 	if (rc)
2545 		goto out;
2546 	host->private_data = host_priv;
2547 	host->flags |= hflags;
2548 
2549 #ifdef CONFIG_ATA_BMDMA
2550 	if (bmdma) {
2551 		pci_set_master(pdev);
2552 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2553 	} else
2554 #endif
2555 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2556 out:
2557 	if (rc == 0)
2558 		devres_remove_group(&pdev->dev, NULL);
2559 	else
2560 		devres_release_group(&pdev->dev, NULL);
2561 
2562 	return rc;
2563 }
2564 
2565 /**
2566  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2567  *	@pdev: Controller to be initialized
2568  *	@ppi: array of port_info, must be enough for two ports
2569  *	@sht: scsi_host_template to use when registering the host
2570  *	@host_priv: host private_data
2571  *	@hflag: host flags
2572  *
2573  *	This is a helper function which can be called from a driver's
2574  *	xxx_init_one() probe function if the hardware uses traditional
2575  *	IDE taskfile registers and is PIO only.
2576  *
2577  *	ASSUMPTION:
2578  *	Nobody makes a single channel controller that appears solely as
2579  *	the secondary legacy port on PCI.
2580  *
2581  *	LOCKING:
2582  *	Inherited from PCI layer (may sleep).
2583  *
2584  *	RETURNS:
2585  *	Zero on success, negative on errno-based value on error.
2586  */
2587 int ata_pci_sff_init_one(struct pci_dev *pdev,
2588 		 const struct ata_port_info * const *ppi,
2589 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2590 {
2591 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2592 }
2593 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2594 
2595 #endif /* CONFIG_PCI */
2596 
2597 /*
2598  *	BMDMA support
2599  */
2600 
2601 #ifdef CONFIG_ATA_BMDMA
2602 
2603 const struct ata_port_operations ata_bmdma_port_ops = {
2604 	.inherits		= &ata_sff_port_ops,
2605 
2606 	.error_handler		= ata_bmdma_error_handler,
2607 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2608 
2609 	.qc_prep		= ata_bmdma_qc_prep,
2610 	.qc_issue		= ata_bmdma_qc_issue,
2611 
2612 	.sff_irq_clear		= ata_bmdma_irq_clear,
2613 	.bmdma_setup		= ata_bmdma_setup,
2614 	.bmdma_start		= ata_bmdma_start,
2615 	.bmdma_stop		= ata_bmdma_stop,
2616 	.bmdma_status		= ata_bmdma_status,
2617 
2618 	.port_start		= ata_bmdma_port_start,
2619 };
2620 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2621 
2622 const struct ata_port_operations ata_bmdma32_port_ops = {
2623 	.inherits		= &ata_bmdma_port_ops,
2624 
2625 	.sff_data_xfer		= ata_sff_data_xfer32,
2626 	.port_start		= ata_bmdma_port_start32,
2627 };
2628 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2629 
2630 /**
2631  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2632  *	@qc: Metadata associated with taskfile to be transferred
2633  *
2634  *	Fill PCI IDE PRD (scatter-gather) table with segments
2635  *	associated with the current disk command.
2636  *
2637  *	LOCKING:
2638  *	spin_lock_irqsave(host lock)
2639  *
2640  */
2641 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2642 {
2643 	struct ata_port *ap = qc->ap;
2644 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2645 	struct scatterlist *sg;
2646 	unsigned int si, pi;
2647 
2648 	pi = 0;
2649 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2650 		u32 addr, offset;
2651 		u32 sg_len, len;
2652 
2653 		/* determine if physical DMA addr spans 64K boundary.
2654 		 * Note h/w doesn't support 64-bit, so we unconditionally
2655 		 * truncate dma_addr_t to u32.
2656 		 */
2657 		addr = (u32) sg_dma_address(sg);
2658 		sg_len = sg_dma_len(sg);
2659 
2660 		while (sg_len) {
2661 			offset = addr & 0xffff;
2662 			len = sg_len;
2663 			if ((offset + sg_len) > 0x10000)
2664 				len = 0x10000 - offset;
2665 
2666 			prd[pi].addr = cpu_to_le32(addr);
2667 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2668 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2669 
2670 			pi++;
2671 			sg_len -= len;
2672 			addr += len;
2673 		}
2674 	}
2675 
2676 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2677 }
2678 
2679 /**
2680  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2681  *	@qc: Metadata associated with taskfile to be transferred
2682  *
2683  *	Fill PCI IDE PRD (scatter-gather) table with segments
2684  *	associated with the current disk command. Perform the fill
2685  *	so that we avoid writing any length 64K records for
2686  *	controllers that don't follow the spec.
2687  *
2688  *	LOCKING:
2689  *	spin_lock_irqsave(host lock)
2690  *
2691  */
2692 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2693 {
2694 	struct ata_port *ap = qc->ap;
2695 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2696 	struct scatterlist *sg;
2697 	unsigned int si, pi;
2698 
2699 	pi = 0;
2700 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2701 		u32 addr, offset;
2702 		u32 sg_len, len, blen;
2703 
2704 		/* determine if physical DMA addr spans 64K boundary.
2705 		 * Note h/w doesn't support 64-bit, so we unconditionally
2706 		 * truncate dma_addr_t to u32.
2707 		 */
2708 		addr = (u32) sg_dma_address(sg);
2709 		sg_len = sg_dma_len(sg);
2710 
2711 		while (sg_len) {
2712 			offset = addr & 0xffff;
2713 			len = sg_len;
2714 			if ((offset + sg_len) > 0x10000)
2715 				len = 0x10000 - offset;
2716 
2717 			blen = len & 0xffff;
2718 			prd[pi].addr = cpu_to_le32(addr);
2719 			if (blen == 0) {
2720 				/* Some PATA chipsets like the CS5530 can't
2721 				   cope with 0x0000 meaning 64K as the spec
2722 				   says */
2723 				prd[pi].flags_len = cpu_to_le32(0x8000);
2724 				blen = 0x8000;
2725 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2726 			}
2727 			prd[pi].flags_len = cpu_to_le32(blen);
2728 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2729 
2730 			pi++;
2731 			sg_len -= len;
2732 			addr += len;
2733 		}
2734 	}
2735 
2736 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2737 }
2738 
2739 /**
2740  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2741  *	@qc: Metadata associated with taskfile to be prepared
2742  *
2743  *	Prepare ATA taskfile for submission.
2744  *
2745  *	LOCKING:
2746  *	spin_lock_irqsave(host lock)
2747  */
2748 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2749 {
2750 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2751 		return;
2752 
2753 	ata_bmdma_fill_sg(qc);
2754 }
2755 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2756 
2757 /**
2758  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2759  *	@qc: Metadata associated with taskfile to be prepared
2760  *
2761  *	Prepare ATA taskfile for submission.
2762  *
2763  *	LOCKING:
2764  *	spin_lock_irqsave(host lock)
2765  */
2766 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2767 {
2768 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2769 		return;
2770 
2771 	ata_bmdma_fill_sg_dumb(qc);
2772 }
2773 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2774 
2775 /**
2776  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2777  *	@qc: command to issue to device
2778  *
2779  *	This function issues a PIO, NODATA or DMA command to a
2780  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2781  *	ata_sff_qc_issue().
2782  *
2783  *	LOCKING:
2784  *	spin_lock_irqsave(host lock)
2785  *
2786  *	RETURNS:
2787  *	Zero on success, AC_ERR_* mask on failure
2788  */
2789 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2790 {
2791 	struct ata_port *ap = qc->ap;
2792 	struct ata_link *link = qc->dev->link;
2793 
2794 	/* defer PIO handling to sff_qc_issue */
2795 	if (!ata_is_dma(qc->tf.protocol))
2796 		return ata_sff_qc_issue(qc);
2797 
2798 	/* select the device */
2799 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2800 
2801 	/* start the command */
2802 	switch (qc->tf.protocol) {
2803 	case ATA_PROT_DMA:
2804 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2805 
2806 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2807 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2808 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2809 		ap->hsm_task_state = HSM_ST_LAST;
2810 		break;
2811 
2812 	case ATAPI_PROT_DMA:
2813 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2814 
2815 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2816 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2817 		ap->hsm_task_state = HSM_ST_FIRST;
2818 
2819 		/* send cdb by polling if no cdb interrupt */
2820 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2821 			ata_sff_queue_pio_task(link, 0);
2822 		break;
2823 
2824 	default:
2825 		WARN_ON(1);
2826 		return AC_ERR_SYSTEM;
2827 	}
2828 
2829 	return 0;
2830 }
2831 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2832 
2833 /**
2834  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2835  *	@ap: Port on which interrupt arrived (possibly...)
2836  *	@qc: Taskfile currently active in engine
2837  *
2838  *	Handle port interrupt for given queued command.
2839  *
2840  *	LOCKING:
2841  *	spin_lock_irqsave(host lock)
2842  *
2843  *	RETURNS:
2844  *	One if interrupt was handled, zero if not (shared irq).
2845  */
2846 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2847 {
2848 	struct ata_eh_info *ehi = &ap->link.eh_info;
2849 	u8 host_stat = 0;
2850 	bool bmdma_stopped = false;
2851 	unsigned int handled;
2852 
2853 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2854 		/* check status of DMA engine */
2855 		host_stat = ap->ops->bmdma_status(ap);
2856 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2857 
2858 		/* if it's not our irq... */
2859 		if (!(host_stat & ATA_DMA_INTR))
2860 			return ata_sff_idle_irq(ap);
2861 
2862 		/* before we do anything else, clear DMA-Start bit */
2863 		ap->ops->bmdma_stop(qc);
2864 		bmdma_stopped = true;
2865 
2866 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2867 			/* error when transferring data to/from memory */
2868 			qc->err_mask |= AC_ERR_HOST_BUS;
2869 			ap->hsm_task_state = HSM_ST_ERR;
2870 		}
2871 	}
2872 
2873 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2874 
2875 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2876 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2877 
2878 	return handled;
2879 }
2880 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2881 
2882 /**
2883  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2884  *	@irq: irq line (unused)
2885  *	@dev_instance: pointer to our ata_host information structure
2886  *
2887  *	Default interrupt handler for PCI IDE devices.  Calls
2888  *	ata_bmdma_port_intr() for each port that is not disabled.
2889  *
2890  *	LOCKING:
2891  *	Obtains host lock during operation.
2892  *
2893  *	RETURNS:
2894  *	IRQ_NONE or IRQ_HANDLED.
2895  */
2896 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2897 {
2898 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2899 }
2900 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2901 
2902 /**
2903  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2904  *	@ap: port to handle error for
2905  *
2906  *	Stock error handler for BMDMA controller.  It can handle both
2907  *	PATA and SATA controllers.  Most BMDMA controllers should be
2908  *	able to use this EH as-is or with some added handling before
2909  *	and after.
2910  *
2911  *	LOCKING:
2912  *	Kernel thread context (may sleep)
2913  */
2914 void ata_bmdma_error_handler(struct ata_port *ap)
2915 {
2916 	struct ata_queued_cmd *qc;
2917 	unsigned long flags;
2918 	bool thaw = false;
2919 
2920 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2921 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2922 		qc = NULL;
2923 
2924 	/* reset PIO HSM and stop DMA engine */
2925 	spin_lock_irqsave(ap->lock, flags);
2926 
2927 	if (qc && ata_is_dma(qc->tf.protocol)) {
2928 		u8 host_stat;
2929 
2930 		host_stat = ap->ops->bmdma_status(ap);
2931 
2932 		/* BMDMA controllers indicate host bus error by
2933 		 * setting DMA_ERR bit and timing out.  As it wasn't
2934 		 * really a timeout event, adjust error mask and
2935 		 * cancel frozen state.
2936 		 */
2937 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2938 			qc->err_mask = AC_ERR_HOST_BUS;
2939 			thaw = true;
2940 		}
2941 
2942 		ap->ops->bmdma_stop(qc);
2943 
2944 		/* if we're gonna thaw, make sure IRQ is clear */
2945 		if (thaw) {
2946 			ap->ops->sff_check_status(ap);
2947 			if (ap->ops->sff_irq_clear)
2948 				ap->ops->sff_irq_clear(ap);
2949 		}
2950 	}
2951 
2952 	spin_unlock_irqrestore(ap->lock, flags);
2953 
2954 	if (thaw)
2955 		ata_eh_thaw_port(ap);
2956 
2957 	ata_sff_error_handler(ap);
2958 }
2959 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2960 
2961 /**
2962  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2963  *	@qc: internal command to clean up
2964  *
2965  *	LOCKING:
2966  *	Kernel thread context (may sleep)
2967  */
2968 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2969 {
2970 	struct ata_port *ap = qc->ap;
2971 	unsigned long flags;
2972 
2973 	if (ata_is_dma(qc->tf.protocol)) {
2974 		spin_lock_irqsave(ap->lock, flags);
2975 		ap->ops->bmdma_stop(qc);
2976 		spin_unlock_irqrestore(ap->lock, flags);
2977 	}
2978 }
2979 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2980 
2981 /**
2982  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2983  *	@ap: Port associated with this ATA transaction.
2984  *
2985  *	Clear interrupt and error flags in DMA status register.
2986  *
2987  *	May be used as the irq_clear() entry in ata_port_operations.
2988  *
2989  *	LOCKING:
2990  *	spin_lock_irqsave(host lock)
2991  */
2992 void ata_bmdma_irq_clear(struct ata_port *ap)
2993 {
2994 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2995 
2996 	if (!mmio)
2997 		return;
2998 
2999 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3000 }
3001 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3002 
3003 /**
3004  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3005  *	@qc: Info associated with this ATA transaction.
3006  *
3007  *	LOCKING:
3008  *	spin_lock_irqsave(host lock)
3009  */
3010 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3011 {
3012 	struct ata_port *ap = qc->ap;
3013 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3014 	u8 dmactl;
3015 
3016 	/* load PRD table addr. */
3017 	mb();	/* make sure PRD table writes are visible to controller */
3018 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3019 
3020 	/* specify data direction, triple-check start bit is clear */
3021 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3022 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3023 	if (!rw)
3024 		dmactl |= ATA_DMA_WR;
3025 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3026 
3027 	/* issue r/w command */
3028 	ap->ops->sff_exec_command(ap, &qc->tf);
3029 }
3030 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3031 
3032 /**
3033  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3034  *	@qc: Info associated with this ATA transaction.
3035  *
3036  *	LOCKING:
3037  *	spin_lock_irqsave(host lock)
3038  */
3039 void ata_bmdma_start(struct ata_queued_cmd *qc)
3040 {
3041 	struct ata_port *ap = qc->ap;
3042 	u8 dmactl;
3043 
3044 	/* start host DMA transaction */
3045 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3046 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3047 
3048 	/* Strictly, one may wish to issue an ioread8() here, to
3049 	 * flush the mmio write.  However, control also passes
3050 	 * to the hardware at this point, and it will interrupt
3051 	 * us when we are to resume control.  So, in effect,
3052 	 * we don't care when the mmio write flushes.
3053 	 * Further, a read of the DMA status register _immediately_
3054 	 * following the write may not be what certain flaky hardware
3055 	 * is expected, so I think it is best to not add a readb()
3056 	 * without first all the MMIO ATA cards/mobos.
3057 	 * Or maybe I'm just being paranoid.
3058 	 *
3059 	 * FIXME: The posting of this write means I/O starts are
3060 	 * unnecessarily delayed for MMIO
3061 	 */
3062 }
3063 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3064 
3065 /**
3066  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3067  *	@qc: Command we are ending DMA for
3068  *
3069  *	Clears the ATA_DMA_START flag in the dma control register
3070  *
3071  *	May be used as the bmdma_stop() entry in ata_port_operations.
3072  *
3073  *	LOCKING:
3074  *	spin_lock_irqsave(host lock)
3075  */
3076 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3077 {
3078 	struct ata_port *ap = qc->ap;
3079 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3080 
3081 	/* clear start/stop bit */
3082 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3083 		 mmio + ATA_DMA_CMD);
3084 
3085 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3086 	ata_sff_dma_pause(ap);
3087 }
3088 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3089 
3090 /**
3091  *	ata_bmdma_status - Read PCI IDE BMDMA status
3092  *	@ap: Port associated with this ATA transaction.
3093  *
3094  *	Read and return BMDMA status register.
3095  *
3096  *	May be used as the bmdma_status() entry in ata_port_operations.
3097  *
3098  *	LOCKING:
3099  *	spin_lock_irqsave(host lock)
3100  */
3101 u8 ata_bmdma_status(struct ata_port *ap)
3102 {
3103 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3104 }
3105 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3106 
3107 
3108 /**
3109  *	ata_bmdma_port_start - Set port up for bmdma.
3110  *	@ap: Port to initialize
3111  *
3112  *	Called just after data structures for each port are
3113  *	initialized.  Allocates space for PRD table.
3114  *
3115  *	May be used as the port_start() entry in ata_port_operations.
3116  *
3117  *	LOCKING:
3118  *	Inherited from caller.
3119  */
3120 int ata_bmdma_port_start(struct ata_port *ap)
3121 {
3122 	if (ap->mwdma_mask || ap->udma_mask) {
3123 		ap->bmdma_prd =
3124 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3125 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3126 		if (!ap->bmdma_prd)
3127 			return -ENOMEM;
3128 	}
3129 
3130 	return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3133 
3134 /**
3135  *	ata_bmdma_port_start32 - Set port up for dma.
3136  *	@ap: Port to initialize
3137  *
3138  *	Called just after data structures for each port are
3139  *	initialized.  Enables 32bit PIO and allocates space for PRD
3140  *	table.
3141  *
3142  *	May be used as the port_start() entry in ata_port_operations for
3143  *	devices that are capable of 32bit PIO.
3144  *
3145  *	LOCKING:
3146  *	Inherited from caller.
3147  */
3148 int ata_bmdma_port_start32(struct ata_port *ap)
3149 {
3150 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3151 	return ata_bmdma_port_start(ap);
3152 }
3153 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3154 
3155 #ifdef CONFIG_PCI
3156 
3157 /**
3158  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3159  *	@pdev: PCI device
3160  *
3161  *	Some PCI ATA devices report simplex mode but in fact can be told to
3162  *	enter non simplex mode. This implements the necessary logic to
3163  *	perform the task on such devices. Calling it on other devices will
3164  *	have -undefined- behaviour.
3165  */
3166 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3167 {
3168 	unsigned long bmdma = pci_resource_start(pdev, 4);
3169 	u8 simplex;
3170 
3171 	if (bmdma == 0)
3172 		return -ENOENT;
3173 
3174 	simplex = inb(bmdma + 0x02);
3175 	outb(simplex & 0x60, bmdma + 0x02);
3176 	simplex = inb(bmdma + 0x02);
3177 	if (simplex & 0x80)
3178 		return -EOPNOTSUPP;
3179 	return 0;
3180 }
3181 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3182 
3183 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3184 {
3185 	int i;
3186 
3187 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3188 
3189 	for (i = 0; i < 2; i++) {
3190 		host->ports[i]->mwdma_mask = 0;
3191 		host->ports[i]->udma_mask = 0;
3192 	}
3193 }
3194 
3195 /**
3196  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3197  *	@host: target ATA host
3198  *
3199  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3200  *
3201  *	LOCKING:
3202  *	Inherited from calling layer (may sleep).
3203  */
3204 void ata_pci_bmdma_init(struct ata_host *host)
3205 {
3206 	struct device *gdev = host->dev;
3207 	struct pci_dev *pdev = to_pci_dev(gdev);
3208 	int i, rc;
3209 
3210 	/* No BAR4 allocation: No DMA */
3211 	if (pci_resource_start(pdev, 4) == 0) {
3212 		ata_bmdma_nodma(host, "BAR4 is zero");
3213 		return;
3214 	}
3215 
3216 	/*
3217 	 * Some controllers require BMDMA region to be initialized
3218 	 * even if DMA is not in use to clear IRQ status via
3219 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3220 	 * regardless of dma masks.
3221 	 */
3222 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3223 	if (rc)
3224 		ata_bmdma_nodma(host, "failed to set dma mask");
3225 	if (!rc) {
3226 		rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3227 		if (rc)
3228 			ata_bmdma_nodma(host,
3229 					"failed to set consistent dma mask");
3230 	}
3231 
3232 	/* request and iomap DMA region */
3233 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3234 	if (rc) {
3235 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3236 		return;
3237 	}
3238 	host->iomap = pcim_iomap_table(pdev);
3239 
3240 	for (i = 0; i < 2; i++) {
3241 		struct ata_port *ap = host->ports[i];
3242 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3243 
3244 		if (ata_port_is_dummy(ap))
3245 			continue;
3246 
3247 		ap->ioaddr.bmdma_addr = bmdma;
3248 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3249 		    (ioread8(bmdma + 2) & 0x80))
3250 			host->flags |= ATA_HOST_SIMPLEX;
3251 
3252 		ata_port_desc(ap, "bmdma 0x%llx",
3253 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3254 	}
3255 }
3256 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3257 
3258 /**
3259  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3260  *	@pdev: target PCI device
3261  *	@ppi: array of port_info, must be enough for two ports
3262  *	@r_host: out argument for the initialized ATA host
3263  *
3264  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3265  *	resources and initialize it accordingly in one go.
3266  *
3267  *	LOCKING:
3268  *	Inherited from calling layer (may sleep).
3269  *
3270  *	RETURNS:
3271  *	0 on success, -errno otherwise.
3272  */
3273 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3274 			       const struct ata_port_info * const * ppi,
3275 			       struct ata_host **r_host)
3276 {
3277 	int rc;
3278 
3279 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3280 	if (rc)
3281 		return rc;
3282 
3283 	ata_pci_bmdma_init(*r_host);
3284 	return 0;
3285 }
3286 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3287 
3288 /**
3289  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3290  *	@pdev: Controller to be initialized
3291  *	@ppi: array of port_info, must be enough for two ports
3292  *	@sht: scsi_host_template to use when registering the host
3293  *	@host_priv: host private_data
3294  *	@hflags: host flags
3295  *
3296  *	This function is similar to ata_pci_sff_init_one() but also
3297  *	takes care of BMDMA initialization.
3298  *
3299  *	LOCKING:
3300  *	Inherited from PCI layer (may sleep).
3301  *
3302  *	RETURNS:
3303  *	Zero on success, negative on errno-based value on error.
3304  */
3305 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3306 			   const struct ata_port_info * const * ppi,
3307 			   struct scsi_host_template *sht, void *host_priv,
3308 			   int hflags)
3309 {
3310 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3311 }
3312 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3313 
3314 #endif /* CONFIG_PCI */
3315 #endif /* CONFIG_ATA_BMDMA */
3316 
3317 /**
3318  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3319  *	@ap: Port to initialize
3320  *
3321  *	Called on port allocation to initialize SFF/BMDMA specific
3322  *	fields.
3323  *
3324  *	LOCKING:
3325  *	None.
3326  */
3327 void ata_sff_port_init(struct ata_port *ap)
3328 {
3329 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3330 	ap->ctl = ATA_DEVCTL_OBS;
3331 	ap->last_ctl = 0xFF;
3332 }
3333 
3334 int __init ata_sff_init(void)
3335 {
3336 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3337 	if (!ata_sff_wq)
3338 		return -ENOMEM;
3339 
3340 	return 0;
3341 }
3342 
3343 void ata_sff_exit(void)
3344 {
3345 	destroy_workqueue(ata_sff_wq);
3346 }
3347