1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/driver-api/libata.rst 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/module.h> 39 #include <linux/libata.h> 40 #include <linux/highmem.h> 41 42 #include "libata.h" 43 44 static struct workqueue_struct *ata_sff_wq; 45 46 const struct ata_port_operations ata_sff_port_ops = { 47 .inherits = &ata_base_port_ops, 48 49 .qc_prep = ata_noop_qc_prep, 50 .qc_issue = ata_sff_qc_issue, 51 .qc_fill_rtf = ata_sff_qc_fill_rtf, 52 53 .freeze = ata_sff_freeze, 54 .thaw = ata_sff_thaw, 55 .prereset = ata_sff_prereset, 56 .softreset = ata_sff_softreset, 57 .hardreset = sata_sff_hardreset, 58 .postreset = ata_sff_postreset, 59 .error_handler = ata_sff_error_handler, 60 61 .sff_dev_select = ata_sff_dev_select, 62 .sff_check_status = ata_sff_check_status, 63 .sff_tf_load = ata_sff_tf_load, 64 .sff_tf_read = ata_sff_tf_read, 65 .sff_exec_command = ata_sff_exec_command, 66 .sff_data_xfer = ata_sff_data_xfer, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 }; 71 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73 /** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 u8 ata_sff_check_status(struct ata_port *ap) 85 { 86 return ioread8(ap->ioaddr.status_addr); 87 } 88 EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90 /** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_altstatus(struct ata_port *ap) 104 { 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109 } 110 111 /** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 static u8 ata_sff_irq_status(struct ata_port *ap) 124 { 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136 } 137 138 /** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 static void ata_sff_sync(struct ata_port *ap) 151 { 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156 } 157 158 /** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170 void ata_sff_pause(struct ata_port *ap) 171 { 172 ata_sff_sync(ap); 173 ndelay(400); 174 } 175 EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177 /** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185 void ata_sff_dma_pause(struct ata_port *ap) 186 { 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197 } 198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200 /** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215 int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217 { 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 ata_msleep(ap, 50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_warn(ap, 232 "port is slow to respond, please be patient (Status 0x%x)\n", 233 status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 ata_msleep(ap, 50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_err(ap, 247 "port failed to respond (%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256 static int ata_sff_check_ready(struct ata_link *link) 257 { 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261 } 262 263 /** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278 { 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280 } 281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283 /** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297 { 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302 } 303 304 /** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319 { 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332 /** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350 static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352 { 353 if (ata_msg_probe(ap)) 354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 355 device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 ata_msleep(ap, 150); 365 ata_wait_idle(ap); 366 } 367 } 368 369 /** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382 void ata_sff_irq_on(struct ata_port *ap) 383 { 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 if (ap->ops->sff_irq_clear) 399 ap->ops->sff_irq_clear(ap); 400 } 401 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 402 403 /** 404 * ata_sff_tf_load - send taskfile registers to host controller 405 * @ap: Port to which output is sent 406 * @tf: ATA taskfile register set 407 * 408 * Outputs ATA taskfile to standard ATA host controller. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 414 { 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 417 418 if (tf->ctl != ap->last_ctl) { 419 if (ioaddr->ctl_addr) 420 iowrite8(tf->ctl, ioaddr->ctl_addr); 421 ap->last_ctl = tf->ctl; 422 ata_wait_idle(ap); 423 } 424 425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 426 WARN_ON_ONCE(!ioaddr->ctl_addr); 427 iowrite8(tf->hob_feature, ioaddr->feature_addr); 428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 433 tf->hob_feature, 434 tf->hob_nsect, 435 tf->hob_lbal, 436 tf->hob_lbam, 437 tf->hob_lbah); 438 } 439 440 if (is_addr) { 441 iowrite8(tf->feature, ioaddr->feature_addr); 442 iowrite8(tf->nsect, ioaddr->nsect_addr); 443 iowrite8(tf->lbal, ioaddr->lbal_addr); 444 iowrite8(tf->lbam, ioaddr->lbam_addr); 445 iowrite8(tf->lbah, ioaddr->lbah_addr); 446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 447 tf->feature, 448 tf->nsect, 449 tf->lbal, 450 tf->lbam, 451 tf->lbah); 452 } 453 454 if (tf->flags & ATA_TFLAG_DEVICE) { 455 iowrite8(tf->device, ioaddr->device_addr); 456 VPRINTK("device 0x%X\n", tf->device); 457 } 458 459 ata_wait_idle(ap); 460 } 461 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 462 463 /** 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers 465 * @ap: Port from which input is read 466 * @tf: ATA taskfile register set for storing input 467 * 468 * Reads ATA taskfile registers for currently-selected device 469 * into @tf. Assumes the device has a fully SFF compliant task file 470 * layout and behaviour. If you device does not (eg has a different 471 * status method) then you will need to provide a replacement tf_read 472 * 473 * LOCKING: 474 * Inherited from caller. 475 */ 476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 477 { 478 struct ata_ioports *ioaddr = &ap->ioaddr; 479 480 tf->command = ata_sff_check_status(ap); 481 tf->feature = ioread8(ioaddr->error_addr); 482 tf->nsect = ioread8(ioaddr->nsect_addr); 483 tf->lbal = ioread8(ioaddr->lbal_addr); 484 tf->lbam = ioread8(ioaddr->lbam_addr); 485 tf->lbah = ioread8(ioaddr->lbah_addr); 486 tf->device = ioread8(ioaddr->device_addr); 487 488 if (tf->flags & ATA_TFLAG_LBA48) { 489 if (likely(ioaddr->ctl_addr)) { 490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 491 tf->hob_feature = ioread8(ioaddr->error_addr); 492 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 493 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 494 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 495 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 496 iowrite8(tf->ctl, ioaddr->ctl_addr); 497 ap->last_ctl = tf->ctl; 498 } else 499 WARN_ON_ONCE(1); 500 } 501 } 502 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 503 504 /** 505 * ata_sff_exec_command - issue ATA command to host controller 506 * @ap: port to which command is being issued 507 * @tf: ATA taskfile register set 508 * 509 * Issues ATA command, with proper synchronization with interrupt 510 * handler / other threads. 511 * 512 * LOCKING: 513 * spin_lock_irqsave(host lock) 514 */ 515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 516 { 517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 518 519 iowrite8(tf->command, ap->ioaddr.command_addr); 520 ata_sff_pause(ap); 521 } 522 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 523 524 /** 525 * ata_tf_to_host - issue ATA taskfile to host controller 526 * @ap: port to which command is being issued 527 * @tf: ATA taskfile register set 528 * 529 * Issues ATA taskfile register set to ATA host controller, 530 * with proper synchronization with interrupt handler and 531 * other threads. 532 * 533 * LOCKING: 534 * spin_lock_irqsave(host lock) 535 */ 536 static inline void ata_tf_to_host(struct ata_port *ap, 537 const struct ata_taskfile *tf) 538 { 539 ap->ops->sff_tf_load(ap, tf); 540 ap->ops->sff_exec_command(ap, tf); 541 } 542 543 /** 544 * ata_sff_data_xfer - Transfer data by PIO 545 * @qc: queued command 546 * @buf: data buffer 547 * @buflen: buffer length 548 * @rw: read/write 549 * 550 * Transfer data from/to the device data register by PIO. 551 * 552 * LOCKING: 553 * Inherited from caller. 554 * 555 * RETURNS: 556 * Bytes consumed. 557 */ 558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 559 unsigned int buflen, int rw) 560 { 561 struct ata_port *ap = qc->dev->link->ap; 562 void __iomem *data_addr = ap->ioaddr.data_addr; 563 unsigned int words = buflen >> 1; 564 565 /* Transfer multiple of 2 bytes */ 566 if (rw == READ) 567 ioread16_rep(data_addr, buf, words); 568 else 569 iowrite16_rep(data_addr, buf, words); 570 571 /* Transfer trailing byte, if any. */ 572 if (unlikely(buflen & 0x01)) { 573 unsigned char pad[2] = { }; 574 575 /* Point buf to the tail of buffer */ 576 buf += buflen - 1; 577 578 /* 579 * Use io*16_rep() accessors here as well to avoid pointlessly 580 * swapping bytes to and from on the big endian machines... 581 */ 582 if (rw == READ) { 583 ioread16_rep(data_addr, pad, 1); 584 *buf = pad[0]; 585 } else { 586 pad[0] = *buf; 587 iowrite16_rep(data_addr, pad, 1); 588 } 589 words++; 590 } 591 592 return words << 1; 593 } 594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 595 596 /** 597 * ata_sff_data_xfer32 - Transfer data by PIO 598 * @qc: queued command 599 * @buf: data buffer 600 * @buflen: buffer length 601 * @rw: read/write 602 * 603 * Transfer data from/to the device data register by PIO using 32bit 604 * I/O operations. 605 * 606 * LOCKING: 607 * Inherited from caller. 608 * 609 * RETURNS: 610 * Bytes consumed. 611 */ 612 613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 614 unsigned int buflen, int rw) 615 { 616 struct ata_device *dev = qc->dev; 617 struct ata_port *ap = dev->link->ap; 618 void __iomem *data_addr = ap->ioaddr.data_addr; 619 unsigned int words = buflen >> 2; 620 int slop = buflen & 3; 621 622 if (!(ap->pflags & ATA_PFLAG_PIO32)) 623 return ata_sff_data_xfer(qc, buf, buflen, rw); 624 625 /* Transfer multiple of 4 bytes */ 626 if (rw == READ) 627 ioread32_rep(data_addr, buf, words); 628 else 629 iowrite32_rep(data_addr, buf, words); 630 631 /* Transfer trailing bytes, if any */ 632 if (unlikely(slop)) { 633 unsigned char pad[4] = { }; 634 635 /* Point buf to the tail of buffer */ 636 buf += buflen - slop; 637 638 /* 639 * Use io*_rep() accessors here as well to avoid pointlessly 640 * swapping bytes to and from on the big endian machines... 641 */ 642 if (rw == READ) { 643 if (slop < 3) 644 ioread16_rep(data_addr, pad, 1); 645 else 646 ioread32_rep(data_addr, pad, 1); 647 memcpy(buf, pad, slop); 648 } else { 649 memcpy(pad, buf, slop); 650 if (slop < 3) 651 iowrite16_rep(data_addr, pad, 1); 652 else 653 iowrite32_rep(data_addr, pad, 1); 654 } 655 } 656 return (buflen + 1) & ~1; 657 } 658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 659 660 /** 661 * ata_pio_sector - Transfer a sector of data. 662 * @qc: Command on going 663 * 664 * Transfer qc->sect_size bytes of data from/to the ATA device. 665 * 666 * LOCKING: 667 * Inherited from caller. 668 */ 669 static void ata_pio_sector(struct ata_queued_cmd *qc) 670 { 671 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 672 struct ata_port *ap = qc->ap; 673 struct page *page; 674 unsigned int offset; 675 unsigned char *buf; 676 677 if (qc->curbytes == qc->nbytes - qc->sect_size) 678 ap->hsm_task_state = HSM_ST_LAST; 679 680 page = sg_page(qc->cursg); 681 offset = qc->cursg->offset + qc->cursg_ofs; 682 683 /* get the current page and offset */ 684 page = nth_page(page, (offset >> PAGE_SHIFT)); 685 offset %= PAGE_SIZE; 686 687 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 688 689 /* do the actual data transfer */ 690 buf = kmap_atomic(page); 691 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write); 692 kunmap_atomic(buf); 693 694 if (!do_write && !PageSlab(page)) 695 flush_dcache_page(page); 696 697 qc->curbytes += qc->sect_size; 698 qc->cursg_ofs += qc->sect_size; 699 700 if (qc->cursg_ofs == qc->cursg->length) { 701 qc->cursg = sg_next(qc->cursg); 702 qc->cursg_ofs = 0; 703 } 704 } 705 706 /** 707 * ata_pio_sectors - Transfer one or many sectors. 708 * @qc: Command on going 709 * 710 * Transfer one or many sectors of data from/to the 711 * ATA device for the DRQ request. 712 * 713 * LOCKING: 714 * Inherited from caller. 715 */ 716 static void ata_pio_sectors(struct ata_queued_cmd *qc) 717 { 718 if (is_multi_taskfile(&qc->tf)) { 719 /* READ/WRITE MULTIPLE */ 720 unsigned int nsect; 721 722 WARN_ON_ONCE(qc->dev->multi_count == 0); 723 724 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 725 qc->dev->multi_count); 726 while (nsect--) 727 ata_pio_sector(qc); 728 } else 729 ata_pio_sector(qc); 730 731 ata_sff_sync(qc->ap); /* flush */ 732 } 733 734 /** 735 * atapi_send_cdb - Write CDB bytes to hardware 736 * @ap: Port to which ATAPI device is attached. 737 * @qc: Taskfile currently active 738 * 739 * When device has indicated its readiness to accept 740 * a CDB, this function is called. Send the CDB. 741 * 742 * LOCKING: 743 * caller. 744 */ 745 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 746 { 747 /* send SCSI cdb */ 748 DPRINTK("send cdb\n"); 749 WARN_ON_ONCE(qc->dev->cdb_len < 12); 750 751 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 752 ata_sff_sync(ap); 753 /* FIXME: If the CDB is for DMA do we need to do the transition delay 754 or is bmdma_start guaranteed to do it ? */ 755 switch (qc->tf.protocol) { 756 case ATAPI_PROT_PIO: 757 ap->hsm_task_state = HSM_ST; 758 break; 759 case ATAPI_PROT_NODATA: 760 ap->hsm_task_state = HSM_ST_LAST; 761 break; 762 #ifdef CONFIG_ATA_BMDMA 763 case ATAPI_PROT_DMA: 764 ap->hsm_task_state = HSM_ST_LAST; 765 /* initiate bmdma */ 766 ap->ops->bmdma_start(qc); 767 break; 768 #endif /* CONFIG_ATA_BMDMA */ 769 default: 770 BUG(); 771 } 772 } 773 774 /** 775 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 776 * @qc: Command on going 777 * @bytes: number of bytes 778 * 779 * Transfer Transfer data from/to the ATAPI device. 780 * 781 * LOCKING: 782 * Inherited from caller. 783 * 784 */ 785 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 786 { 787 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 788 struct ata_port *ap = qc->ap; 789 struct ata_device *dev = qc->dev; 790 struct ata_eh_info *ehi = &dev->link->eh_info; 791 struct scatterlist *sg; 792 struct page *page; 793 unsigned char *buf; 794 unsigned int offset, count, consumed; 795 796 next_sg: 797 sg = qc->cursg; 798 if (unlikely(!sg)) { 799 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 800 "buf=%u cur=%u bytes=%u", 801 qc->nbytes, qc->curbytes, bytes); 802 return -1; 803 } 804 805 page = sg_page(sg); 806 offset = sg->offset + qc->cursg_ofs; 807 808 /* get the current page and offset */ 809 page = nth_page(page, (offset >> PAGE_SHIFT)); 810 offset %= PAGE_SIZE; 811 812 /* don't overrun current sg */ 813 count = min(sg->length - qc->cursg_ofs, bytes); 814 815 /* don't cross page boundaries */ 816 count = min(count, (unsigned int)PAGE_SIZE - offset); 817 818 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 819 820 /* do the actual data transfer */ 821 buf = kmap_atomic(page); 822 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 823 kunmap_atomic(buf); 824 825 bytes -= min(bytes, consumed); 826 qc->curbytes += count; 827 qc->cursg_ofs += count; 828 829 if (qc->cursg_ofs == sg->length) { 830 qc->cursg = sg_next(qc->cursg); 831 qc->cursg_ofs = 0; 832 } 833 834 /* 835 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 836 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 837 * check correctly as it doesn't know if it is the last request being 838 * made. Somebody should implement a proper sanity check. 839 */ 840 if (bytes) 841 goto next_sg; 842 return 0; 843 } 844 845 /** 846 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 847 * @qc: Command on going 848 * 849 * Transfer Transfer data from/to the ATAPI device. 850 * 851 * LOCKING: 852 * Inherited from caller. 853 */ 854 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 855 { 856 struct ata_port *ap = qc->ap; 857 struct ata_device *dev = qc->dev; 858 struct ata_eh_info *ehi = &dev->link->eh_info; 859 unsigned int ireason, bc_lo, bc_hi, bytes; 860 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 861 862 /* Abuse qc->result_tf for temp storage of intermediate TF 863 * here to save some kernel stack usage. 864 * For normal completion, qc->result_tf is not relevant. For 865 * error, qc->result_tf is later overwritten by ata_qc_complete(). 866 * So, the correctness of qc->result_tf is not affected. 867 */ 868 ap->ops->sff_tf_read(ap, &qc->result_tf); 869 ireason = qc->result_tf.nsect; 870 bc_lo = qc->result_tf.lbam; 871 bc_hi = qc->result_tf.lbah; 872 bytes = (bc_hi << 8) | bc_lo; 873 874 /* shall be cleared to zero, indicating xfer of data */ 875 if (unlikely(ireason & ATAPI_COD)) 876 goto atapi_check; 877 878 /* make sure transfer direction matches expected */ 879 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 880 if (unlikely(do_write != i_write)) 881 goto atapi_check; 882 883 if (unlikely(!bytes)) 884 goto atapi_check; 885 886 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 887 888 if (unlikely(__atapi_pio_bytes(qc, bytes))) 889 goto err_out; 890 ata_sff_sync(ap); /* flush */ 891 892 return; 893 894 atapi_check: 895 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 896 ireason, bytes); 897 err_out: 898 qc->err_mask |= AC_ERR_HSM; 899 ap->hsm_task_state = HSM_ST_ERR; 900 } 901 902 /** 903 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 904 * @ap: the target ata_port 905 * @qc: qc on going 906 * 907 * RETURNS: 908 * 1 if ok in workqueue, 0 otherwise. 909 */ 910 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 911 struct ata_queued_cmd *qc) 912 { 913 if (qc->tf.flags & ATA_TFLAG_POLLING) 914 return 1; 915 916 if (ap->hsm_task_state == HSM_ST_FIRST) { 917 if (qc->tf.protocol == ATA_PROT_PIO && 918 (qc->tf.flags & ATA_TFLAG_WRITE)) 919 return 1; 920 921 if (ata_is_atapi(qc->tf.protocol) && 922 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 923 return 1; 924 } 925 926 return 0; 927 } 928 929 /** 930 * ata_hsm_qc_complete - finish a qc running on standard HSM 931 * @qc: Command to complete 932 * @in_wq: 1 if called from workqueue, 0 otherwise 933 * 934 * Finish @qc which is running on standard HSM. 935 * 936 * LOCKING: 937 * If @in_wq is zero, spin_lock_irqsave(host lock). 938 * Otherwise, none on entry and grabs host lock. 939 */ 940 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 941 { 942 struct ata_port *ap = qc->ap; 943 944 if (ap->ops->error_handler) { 945 if (in_wq) { 946 /* EH might have kicked in while host lock is 947 * released. 948 */ 949 qc = ata_qc_from_tag(ap, qc->tag); 950 if (qc) { 951 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 952 ata_sff_irq_on(ap); 953 ata_qc_complete(qc); 954 } else 955 ata_port_freeze(ap); 956 } 957 } else { 958 if (likely(!(qc->err_mask & AC_ERR_HSM))) 959 ata_qc_complete(qc); 960 else 961 ata_port_freeze(ap); 962 } 963 } else { 964 if (in_wq) { 965 ata_sff_irq_on(ap); 966 ata_qc_complete(qc); 967 } else 968 ata_qc_complete(qc); 969 } 970 } 971 972 /** 973 * ata_sff_hsm_move - move the HSM to the next state. 974 * @ap: the target ata_port 975 * @qc: qc on going 976 * @status: current device status 977 * @in_wq: 1 if called from workqueue, 0 otherwise 978 * 979 * RETURNS: 980 * 1 when poll next status needed, 0 otherwise. 981 */ 982 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 983 u8 status, int in_wq) 984 { 985 struct ata_link *link = qc->dev->link; 986 struct ata_eh_info *ehi = &link->eh_info; 987 int poll_next; 988 989 lockdep_assert_held(ap->lock); 990 991 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 992 993 /* Make sure ata_sff_qc_issue() does not throw things 994 * like DMA polling into the workqueue. Notice that 995 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 996 */ 997 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 998 999 fsm_start: 1000 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1001 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1002 1003 switch (ap->hsm_task_state) { 1004 case HSM_ST_FIRST: 1005 /* Send first data block or PACKET CDB */ 1006 1007 /* If polling, we will stay in the work queue after 1008 * sending the data. Otherwise, interrupt handler 1009 * takes over after sending the data. 1010 */ 1011 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1012 1013 /* check device status */ 1014 if (unlikely((status & ATA_DRQ) == 0)) { 1015 /* handle BSY=0, DRQ=0 as error */ 1016 if (likely(status & (ATA_ERR | ATA_DF))) 1017 /* device stops HSM for abort/error */ 1018 qc->err_mask |= AC_ERR_DEV; 1019 else { 1020 /* HSM violation. Let EH handle this */ 1021 ata_ehi_push_desc(ehi, 1022 "ST_FIRST: !(DRQ|ERR|DF)"); 1023 qc->err_mask |= AC_ERR_HSM; 1024 } 1025 1026 ap->hsm_task_state = HSM_ST_ERR; 1027 goto fsm_start; 1028 } 1029 1030 /* Device should not ask for data transfer (DRQ=1) 1031 * when it finds something wrong. 1032 * We ignore DRQ here and stop the HSM by 1033 * changing hsm_task_state to HSM_ST_ERR and 1034 * let the EH abort the command or reset the device. 1035 */ 1036 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1037 /* Some ATAPI tape drives forget to clear the ERR bit 1038 * when doing the next command (mostly request sense). 1039 * We ignore ERR here to workaround and proceed sending 1040 * the CDB. 1041 */ 1042 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1043 ata_ehi_push_desc(ehi, "ST_FIRST: " 1044 "DRQ=1 with device error, " 1045 "dev_stat 0x%X", status); 1046 qc->err_mask |= AC_ERR_HSM; 1047 ap->hsm_task_state = HSM_ST_ERR; 1048 goto fsm_start; 1049 } 1050 } 1051 1052 if (qc->tf.protocol == ATA_PROT_PIO) { 1053 /* PIO data out protocol. 1054 * send first data block. 1055 */ 1056 1057 /* ata_pio_sectors() might change the state 1058 * to HSM_ST_LAST. so, the state is changed here 1059 * before ata_pio_sectors(). 1060 */ 1061 ap->hsm_task_state = HSM_ST; 1062 ata_pio_sectors(qc); 1063 } else 1064 /* send CDB */ 1065 atapi_send_cdb(ap, qc); 1066 1067 /* if polling, ata_sff_pio_task() handles the rest. 1068 * otherwise, interrupt handler takes over from here. 1069 */ 1070 break; 1071 1072 case HSM_ST: 1073 /* complete command or read/write the data register */ 1074 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1075 /* ATAPI PIO protocol */ 1076 if ((status & ATA_DRQ) == 0) { 1077 /* No more data to transfer or device error. 1078 * Device error will be tagged in HSM_ST_LAST. 1079 */ 1080 ap->hsm_task_state = HSM_ST_LAST; 1081 goto fsm_start; 1082 } 1083 1084 /* Device should not ask for data transfer (DRQ=1) 1085 * when it finds something wrong. 1086 * We ignore DRQ here and stop the HSM by 1087 * changing hsm_task_state to HSM_ST_ERR and 1088 * let the EH abort the command or reset the device. 1089 */ 1090 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1091 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1092 "DRQ=1 with device error, " 1093 "dev_stat 0x%X", status); 1094 qc->err_mask |= AC_ERR_HSM; 1095 ap->hsm_task_state = HSM_ST_ERR; 1096 goto fsm_start; 1097 } 1098 1099 atapi_pio_bytes(qc); 1100 1101 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1102 /* bad ireason reported by device */ 1103 goto fsm_start; 1104 1105 } else { 1106 /* ATA PIO protocol */ 1107 if (unlikely((status & ATA_DRQ) == 0)) { 1108 /* handle BSY=0, DRQ=0 as error */ 1109 if (likely(status & (ATA_ERR | ATA_DF))) { 1110 /* device stops HSM for abort/error */ 1111 qc->err_mask |= AC_ERR_DEV; 1112 1113 /* If diagnostic failed and this is 1114 * IDENTIFY, it's likely a phantom 1115 * device. Mark hint. 1116 */ 1117 if (qc->dev->horkage & 1118 ATA_HORKAGE_DIAGNOSTIC) 1119 qc->err_mask |= 1120 AC_ERR_NODEV_HINT; 1121 } else { 1122 /* HSM violation. Let EH handle this. 1123 * Phantom devices also trigger this 1124 * condition. Mark hint. 1125 */ 1126 ata_ehi_push_desc(ehi, "ST-ATA: " 1127 "DRQ=0 without device error, " 1128 "dev_stat 0x%X", status); 1129 qc->err_mask |= AC_ERR_HSM | 1130 AC_ERR_NODEV_HINT; 1131 } 1132 1133 ap->hsm_task_state = HSM_ST_ERR; 1134 goto fsm_start; 1135 } 1136 1137 /* For PIO reads, some devices may ask for 1138 * data transfer (DRQ=1) alone with ERR=1. 1139 * We respect DRQ here and transfer one 1140 * block of junk data before changing the 1141 * hsm_task_state to HSM_ST_ERR. 1142 * 1143 * For PIO writes, ERR=1 DRQ=1 doesn't make 1144 * sense since the data block has been 1145 * transferred to the device. 1146 */ 1147 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1148 /* data might be corrputed */ 1149 qc->err_mask |= AC_ERR_DEV; 1150 1151 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1152 ata_pio_sectors(qc); 1153 status = ata_wait_idle(ap); 1154 } 1155 1156 if (status & (ATA_BUSY | ATA_DRQ)) { 1157 ata_ehi_push_desc(ehi, "ST-ATA: " 1158 "BUSY|DRQ persists on ERR|DF, " 1159 "dev_stat 0x%X", status); 1160 qc->err_mask |= AC_ERR_HSM; 1161 } 1162 1163 /* There are oddball controllers with 1164 * status register stuck at 0x7f and 1165 * lbal/m/h at zero which makes it 1166 * pass all other presence detection 1167 * mechanisms we have. Set NODEV_HINT 1168 * for it. Kernel bz#7241. 1169 */ 1170 if (status == 0x7f) 1171 qc->err_mask |= AC_ERR_NODEV_HINT; 1172 1173 /* ata_pio_sectors() might change the 1174 * state to HSM_ST_LAST. so, the state 1175 * is changed after ata_pio_sectors(). 1176 */ 1177 ap->hsm_task_state = HSM_ST_ERR; 1178 goto fsm_start; 1179 } 1180 1181 ata_pio_sectors(qc); 1182 1183 if (ap->hsm_task_state == HSM_ST_LAST && 1184 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1185 /* all data read */ 1186 status = ata_wait_idle(ap); 1187 goto fsm_start; 1188 } 1189 } 1190 1191 poll_next = 1; 1192 break; 1193 1194 case HSM_ST_LAST: 1195 if (unlikely(!ata_ok(status))) { 1196 qc->err_mask |= __ac_err_mask(status); 1197 ap->hsm_task_state = HSM_ST_ERR; 1198 goto fsm_start; 1199 } 1200 1201 /* no more data to transfer */ 1202 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1203 ap->print_id, qc->dev->devno, status); 1204 1205 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1206 1207 ap->hsm_task_state = HSM_ST_IDLE; 1208 1209 /* complete taskfile transaction */ 1210 ata_hsm_qc_complete(qc, in_wq); 1211 1212 poll_next = 0; 1213 break; 1214 1215 case HSM_ST_ERR: 1216 ap->hsm_task_state = HSM_ST_IDLE; 1217 1218 /* complete taskfile transaction */ 1219 ata_hsm_qc_complete(qc, in_wq); 1220 1221 poll_next = 0; 1222 break; 1223 default: 1224 poll_next = 0; 1225 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1226 ap->print_id, ap->hsm_task_state); 1227 } 1228 1229 return poll_next; 1230 } 1231 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1232 1233 void ata_sff_queue_work(struct work_struct *work) 1234 { 1235 queue_work(ata_sff_wq, work); 1236 } 1237 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1238 1239 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1240 { 1241 queue_delayed_work(ata_sff_wq, dwork, delay); 1242 } 1243 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1244 1245 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1246 { 1247 struct ata_port *ap = link->ap; 1248 1249 WARN_ON((ap->sff_pio_task_link != NULL) && 1250 (ap->sff_pio_task_link != link)); 1251 ap->sff_pio_task_link = link; 1252 1253 /* may fail if ata_sff_flush_pio_task() in progress */ 1254 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1255 } 1256 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1257 1258 void ata_sff_flush_pio_task(struct ata_port *ap) 1259 { 1260 DPRINTK("ENTER\n"); 1261 1262 cancel_delayed_work_sync(&ap->sff_pio_task); 1263 1264 /* 1265 * We wanna reset the HSM state to IDLE. If we do so without 1266 * grabbing the port lock, critical sections protected by it which 1267 * expect the HSM state to stay stable may get surprised. For 1268 * example, we may set IDLE in between the time 1269 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1270 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1271 */ 1272 spin_lock_irq(ap->lock); 1273 ap->hsm_task_state = HSM_ST_IDLE; 1274 spin_unlock_irq(ap->lock); 1275 1276 ap->sff_pio_task_link = NULL; 1277 1278 if (ata_msg_ctl(ap)) 1279 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1280 } 1281 1282 static void ata_sff_pio_task(struct work_struct *work) 1283 { 1284 struct ata_port *ap = 1285 container_of(work, struct ata_port, sff_pio_task.work); 1286 struct ata_link *link = ap->sff_pio_task_link; 1287 struct ata_queued_cmd *qc; 1288 u8 status; 1289 int poll_next; 1290 1291 spin_lock_irq(ap->lock); 1292 1293 BUG_ON(ap->sff_pio_task_link == NULL); 1294 /* qc can be NULL if timeout occurred */ 1295 qc = ata_qc_from_tag(ap, link->active_tag); 1296 if (!qc) { 1297 ap->sff_pio_task_link = NULL; 1298 goto out_unlock; 1299 } 1300 1301 fsm_start: 1302 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1303 1304 /* 1305 * This is purely heuristic. This is a fast path. 1306 * Sometimes when we enter, BSY will be cleared in 1307 * a chk-status or two. If not, the drive is probably seeking 1308 * or something. Snooze for a couple msecs, then 1309 * chk-status again. If still busy, queue delayed work. 1310 */ 1311 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1312 if (status & ATA_BUSY) { 1313 spin_unlock_irq(ap->lock); 1314 ata_msleep(ap, 2); 1315 spin_lock_irq(ap->lock); 1316 1317 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1318 if (status & ATA_BUSY) { 1319 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1320 goto out_unlock; 1321 } 1322 } 1323 1324 /* 1325 * hsm_move() may trigger another command to be processed. 1326 * clean the link beforehand. 1327 */ 1328 ap->sff_pio_task_link = NULL; 1329 /* move the HSM */ 1330 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1331 1332 /* another command or interrupt handler 1333 * may be running at this point. 1334 */ 1335 if (poll_next) 1336 goto fsm_start; 1337 out_unlock: 1338 spin_unlock_irq(ap->lock); 1339 } 1340 1341 /** 1342 * ata_sff_qc_issue - issue taskfile to a SFF controller 1343 * @qc: command to issue to device 1344 * 1345 * This function issues a PIO or NODATA command to a SFF 1346 * controller. 1347 * 1348 * LOCKING: 1349 * spin_lock_irqsave(host lock) 1350 * 1351 * RETURNS: 1352 * Zero on success, AC_ERR_* mask on failure 1353 */ 1354 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1355 { 1356 struct ata_port *ap = qc->ap; 1357 struct ata_link *link = qc->dev->link; 1358 1359 /* Use polling pio if the LLD doesn't handle 1360 * interrupt driven pio and atapi CDB interrupt. 1361 */ 1362 if (ap->flags & ATA_FLAG_PIO_POLLING) 1363 qc->tf.flags |= ATA_TFLAG_POLLING; 1364 1365 /* select the device */ 1366 ata_dev_select(ap, qc->dev->devno, 1, 0); 1367 1368 /* start the command */ 1369 switch (qc->tf.protocol) { 1370 case ATA_PROT_NODATA: 1371 if (qc->tf.flags & ATA_TFLAG_POLLING) 1372 ata_qc_set_polling(qc); 1373 1374 ata_tf_to_host(ap, &qc->tf); 1375 ap->hsm_task_state = HSM_ST_LAST; 1376 1377 if (qc->tf.flags & ATA_TFLAG_POLLING) 1378 ata_sff_queue_pio_task(link, 0); 1379 1380 break; 1381 1382 case ATA_PROT_PIO: 1383 if (qc->tf.flags & ATA_TFLAG_POLLING) 1384 ata_qc_set_polling(qc); 1385 1386 ata_tf_to_host(ap, &qc->tf); 1387 1388 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1389 /* PIO data out protocol */ 1390 ap->hsm_task_state = HSM_ST_FIRST; 1391 ata_sff_queue_pio_task(link, 0); 1392 1393 /* always send first data block using the 1394 * ata_sff_pio_task() codepath. 1395 */ 1396 } else { 1397 /* PIO data in protocol */ 1398 ap->hsm_task_state = HSM_ST; 1399 1400 if (qc->tf.flags & ATA_TFLAG_POLLING) 1401 ata_sff_queue_pio_task(link, 0); 1402 1403 /* if polling, ata_sff_pio_task() handles the 1404 * rest. otherwise, interrupt handler takes 1405 * over from here. 1406 */ 1407 } 1408 1409 break; 1410 1411 case ATAPI_PROT_PIO: 1412 case ATAPI_PROT_NODATA: 1413 if (qc->tf.flags & ATA_TFLAG_POLLING) 1414 ata_qc_set_polling(qc); 1415 1416 ata_tf_to_host(ap, &qc->tf); 1417 1418 ap->hsm_task_state = HSM_ST_FIRST; 1419 1420 /* send cdb by polling if no cdb interrupt */ 1421 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1422 (qc->tf.flags & ATA_TFLAG_POLLING)) 1423 ata_sff_queue_pio_task(link, 0); 1424 break; 1425 1426 default: 1427 return AC_ERR_SYSTEM; 1428 } 1429 1430 return 0; 1431 } 1432 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1433 1434 /** 1435 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1436 * @qc: qc to fill result TF for 1437 * 1438 * @qc is finished and result TF needs to be filled. Fill it 1439 * using ->sff_tf_read. 1440 * 1441 * LOCKING: 1442 * spin_lock_irqsave(host lock) 1443 * 1444 * RETURNS: 1445 * true indicating that result TF is successfully filled. 1446 */ 1447 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1448 { 1449 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1450 return true; 1451 } 1452 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1453 1454 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1455 { 1456 ap->stats.idle_irq++; 1457 1458 #ifdef ATA_IRQ_TRAP 1459 if ((ap->stats.idle_irq % 1000) == 0) { 1460 ap->ops->sff_check_status(ap); 1461 if (ap->ops->sff_irq_clear) 1462 ap->ops->sff_irq_clear(ap); 1463 ata_port_warn(ap, "irq trap\n"); 1464 return 1; 1465 } 1466 #endif 1467 return 0; /* irq not handled */ 1468 } 1469 1470 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1471 struct ata_queued_cmd *qc, 1472 bool hsmv_on_idle) 1473 { 1474 u8 status; 1475 1476 VPRINTK("ata%u: protocol %d task_state %d\n", 1477 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1478 1479 /* Check whether we are expecting interrupt in this state */ 1480 switch (ap->hsm_task_state) { 1481 case HSM_ST_FIRST: 1482 /* Some pre-ATAPI-4 devices assert INTRQ 1483 * at this state when ready to receive CDB. 1484 */ 1485 1486 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1487 * The flag was turned on only for atapi devices. No 1488 * need to check ata_is_atapi(qc->tf.protocol) again. 1489 */ 1490 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1491 return ata_sff_idle_irq(ap); 1492 break; 1493 case HSM_ST_IDLE: 1494 return ata_sff_idle_irq(ap); 1495 default: 1496 break; 1497 } 1498 1499 /* check main status, clearing INTRQ if needed */ 1500 status = ata_sff_irq_status(ap); 1501 if (status & ATA_BUSY) { 1502 if (hsmv_on_idle) { 1503 /* BMDMA engine is already stopped, we're screwed */ 1504 qc->err_mask |= AC_ERR_HSM; 1505 ap->hsm_task_state = HSM_ST_ERR; 1506 } else 1507 return ata_sff_idle_irq(ap); 1508 } 1509 1510 /* clear irq events */ 1511 if (ap->ops->sff_irq_clear) 1512 ap->ops->sff_irq_clear(ap); 1513 1514 ata_sff_hsm_move(ap, qc, status, 0); 1515 1516 return 1; /* irq handled */ 1517 } 1518 1519 /** 1520 * ata_sff_port_intr - Handle SFF port interrupt 1521 * @ap: Port on which interrupt arrived (possibly...) 1522 * @qc: Taskfile currently active in engine 1523 * 1524 * Handle port interrupt for given queued command. 1525 * 1526 * LOCKING: 1527 * spin_lock_irqsave(host lock) 1528 * 1529 * RETURNS: 1530 * One if interrupt was handled, zero if not (shared irq). 1531 */ 1532 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1533 { 1534 return __ata_sff_port_intr(ap, qc, false); 1535 } 1536 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1537 1538 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1539 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1540 { 1541 struct ata_host *host = dev_instance; 1542 bool retried = false; 1543 unsigned int i; 1544 unsigned int handled, idle, polling; 1545 unsigned long flags; 1546 1547 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1548 spin_lock_irqsave(&host->lock, flags); 1549 1550 retry: 1551 handled = idle = polling = 0; 1552 for (i = 0; i < host->n_ports; i++) { 1553 struct ata_port *ap = host->ports[i]; 1554 struct ata_queued_cmd *qc; 1555 1556 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1557 if (qc) { 1558 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1559 handled |= port_intr(ap, qc); 1560 else 1561 polling |= 1 << i; 1562 } else 1563 idle |= 1 << i; 1564 } 1565 1566 /* 1567 * If no port was expecting IRQ but the controller is actually 1568 * asserting IRQ line, nobody cared will ensue. Check IRQ 1569 * pending status if available and clear spurious IRQ. 1570 */ 1571 if (!handled && !retried) { 1572 bool retry = false; 1573 1574 for (i = 0; i < host->n_ports; i++) { 1575 struct ata_port *ap = host->ports[i]; 1576 1577 if (polling & (1 << i)) 1578 continue; 1579 1580 if (!ap->ops->sff_irq_check || 1581 !ap->ops->sff_irq_check(ap)) 1582 continue; 1583 1584 if (idle & (1 << i)) { 1585 ap->ops->sff_check_status(ap); 1586 if (ap->ops->sff_irq_clear) 1587 ap->ops->sff_irq_clear(ap); 1588 } else { 1589 /* clear INTRQ and check if BUSY cleared */ 1590 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1591 retry |= true; 1592 /* 1593 * With command in flight, we can't do 1594 * sff_irq_clear() w/o racing with completion. 1595 */ 1596 } 1597 } 1598 1599 if (retry) { 1600 retried = true; 1601 goto retry; 1602 } 1603 } 1604 1605 spin_unlock_irqrestore(&host->lock, flags); 1606 1607 return IRQ_RETVAL(handled); 1608 } 1609 1610 /** 1611 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1612 * @irq: irq line (unused) 1613 * @dev_instance: pointer to our ata_host information structure 1614 * 1615 * Default interrupt handler for PCI IDE devices. Calls 1616 * ata_sff_port_intr() for each port that is not disabled. 1617 * 1618 * LOCKING: 1619 * Obtains host lock during operation. 1620 * 1621 * RETURNS: 1622 * IRQ_NONE or IRQ_HANDLED. 1623 */ 1624 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1625 { 1626 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1627 } 1628 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1629 1630 /** 1631 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1632 * @ap: port that appears to have timed out 1633 * 1634 * Called from the libata error handlers when the core code suspects 1635 * an interrupt has been lost. If it has complete anything we can and 1636 * then return. Interface must support altstatus for this faster 1637 * recovery to occur. 1638 * 1639 * Locking: 1640 * Caller holds host lock 1641 */ 1642 1643 void ata_sff_lost_interrupt(struct ata_port *ap) 1644 { 1645 u8 status; 1646 struct ata_queued_cmd *qc; 1647 1648 /* Only one outstanding command per SFF channel */ 1649 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1650 /* We cannot lose an interrupt on a non-existent or polled command */ 1651 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1652 return; 1653 /* See if the controller thinks it is still busy - if so the command 1654 isn't a lost IRQ but is still in progress */ 1655 status = ata_sff_altstatus(ap); 1656 if (status & ATA_BUSY) 1657 return; 1658 1659 /* There was a command running, we are no longer busy and we have 1660 no interrupt. */ 1661 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1662 status); 1663 /* Run the host interrupt logic as if the interrupt had not been 1664 lost */ 1665 ata_sff_port_intr(ap, qc); 1666 } 1667 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1668 1669 /** 1670 * ata_sff_freeze - Freeze SFF controller port 1671 * @ap: port to freeze 1672 * 1673 * Freeze SFF controller port. 1674 * 1675 * LOCKING: 1676 * Inherited from caller. 1677 */ 1678 void ata_sff_freeze(struct ata_port *ap) 1679 { 1680 ap->ctl |= ATA_NIEN; 1681 ap->last_ctl = ap->ctl; 1682 1683 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1684 ata_sff_set_devctl(ap, ap->ctl); 1685 1686 /* Under certain circumstances, some controllers raise IRQ on 1687 * ATA_NIEN manipulation. Also, many controllers fail to mask 1688 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1689 */ 1690 ap->ops->sff_check_status(ap); 1691 1692 if (ap->ops->sff_irq_clear) 1693 ap->ops->sff_irq_clear(ap); 1694 } 1695 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1696 1697 /** 1698 * ata_sff_thaw - Thaw SFF controller port 1699 * @ap: port to thaw 1700 * 1701 * Thaw SFF controller port. 1702 * 1703 * LOCKING: 1704 * Inherited from caller. 1705 */ 1706 void ata_sff_thaw(struct ata_port *ap) 1707 { 1708 /* clear & re-enable interrupts */ 1709 ap->ops->sff_check_status(ap); 1710 if (ap->ops->sff_irq_clear) 1711 ap->ops->sff_irq_clear(ap); 1712 ata_sff_irq_on(ap); 1713 } 1714 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1715 1716 /** 1717 * ata_sff_prereset - prepare SFF link for reset 1718 * @link: SFF link to be reset 1719 * @deadline: deadline jiffies for the operation 1720 * 1721 * SFF link @link is about to be reset. Initialize it. It first 1722 * calls ata_std_prereset() and wait for !BSY if the port is 1723 * being softreset. 1724 * 1725 * LOCKING: 1726 * Kernel thread context (may sleep) 1727 * 1728 * RETURNS: 1729 * 0 on success, -errno otherwise. 1730 */ 1731 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1732 { 1733 struct ata_eh_context *ehc = &link->eh_context; 1734 int rc; 1735 1736 rc = ata_std_prereset(link, deadline); 1737 if (rc) 1738 return rc; 1739 1740 /* if we're about to do hardreset, nothing more to do */ 1741 if (ehc->i.action & ATA_EH_HARDRESET) 1742 return 0; 1743 1744 /* wait for !BSY if we don't know that no device is attached */ 1745 if (!ata_link_offline(link)) { 1746 rc = ata_sff_wait_ready(link, deadline); 1747 if (rc && rc != -ENODEV) { 1748 ata_link_warn(link, 1749 "device not ready (errno=%d), forcing hardreset\n", 1750 rc); 1751 ehc->i.action |= ATA_EH_HARDRESET; 1752 } 1753 } 1754 1755 return 0; 1756 } 1757 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1758 1759 /** 1760 * ata_devchk - PATA device presence detection 1761 * @ap: ATA channel to examine 1762 * @device: Device to examine (starting at zero) 1763 * 1764 * This technique was originally described in 1765 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1766 * later found its way into the ATA/ATAPI spec. 1767 * 1768 * Write a pattern to the ATA shadow registers, 1769 * and if a device is present, it will respond by 1770 * correctly storing and echoing back the 1771 * ATA shadow register contents. 1772 * 1773 * LOCKING: 1774 * caller. 1775 */ 1776 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1777 { 1778 struct ata_ioports *ioaddr = &ap->ioaddr; 1779 u8 nsect, lbal; 1780 1781 ap->ops->sff_dev_select(ap, device); 1782 1783 iowrite8(0x55, ioaddr->nsect_addr); 1784 iowrite8(0xaa, ioaddr->lbal_addr); 1785 1786 iowrite8(0xaa, ioaddr->nsect_addr); 1787 iowrite8(0x55, ioaddr->lbal_addr); 1788 1789 iowrite8(0x55, ioaddr->nsect_addr); 1790 iowrite8(0xaa, ioaddr->lbal_addr); 1791 1792 nsect = ioread8(ioaddr->nsect_addr); 1793 lbal = ioread8(ioaddr->lbal_addr); 1794 1795 if ((nsect == 0x55) && (lbal == 0xaa)) 1796 return 1; /* we found a device */ 1797 1798 return 0; /* nothing found */ 1799 } 1800 1801 /** 1802 * ata_sff_dev_classify - Parse returned ATA device signature 1803 * @dev: ATA device to classify (starting at zero) 1804 * @present: device seems present 1805 * @r_err: Value of error register on completion 1806 * 1807 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1808 * an ATA/ATAPI-defined set of values is placed in the ATA 1809 * shadow registers, indicating the results of device detection 1810 * and diagnostics. 1811 * 1812 * Select the ATA device, and read the values from the ATA shadow 1813 * registers. Then parse according to the Error register value, 1814 * and the spec-defined values examined by ata_dev_classify(). 1815 * 1816 * LOCKING: 1817 * caller. 1818 * 1819 * RETURNS: 1820 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1821 */ 1822 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1823 u8 *r_err) 1824 { 1825 struct ata_port *ap = dev->link->ap; 1826 struct ata_taskfile tf; 1827 unsigned int class; 1828 u8 err; 1829 1830 ap->ops->sff_dev_select(ap, dev->devno); 1831 1832 memset(&tf, 0, sizeof(tf)); 1833 1834 ap->ops->sff_tf_read(ap, &tf); 1835 err = tf.feature; 1836 if (r_err) 1837 *r_err = err; 1838 1839 /* see if device passed diags: continue and warn later */ 1840 if (err == 0) 1841 /* diagnostic fail : do nothing _YET_ */ 1842 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1843 else if (err == 1) 1844 /* do nothing */ ; 1845 else if ((dev->devno == 0) && (err == 0x81)) 1846 /* do nothing */ ; 1847 else 1848 return ATA_DEV_NONE; 1849 1850 /* determine if device is ATA or ATAPI */ 1851 class = ata_dev_classify(&tf); 1852 1853 if (class == ATA_DEV_UNKNOWN) { 1854 /* If the device failed diagnostic, it's likely to 1855 * have reported incorrect device signature too. 1856 * Assume ATA device if the device seems present but 1857 * device signature is invalid with diagnostic 1858 * failure. 1859 */ 1860 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1861 class = ATA_DEV_ATA; 1862 else 1863 class = ATA_DEV_NONE; 1864 } else if ((class == ATA_DEV_ATA) && 1865 (ap->ops->sff_check_status(ap) == 0)) 1866 class = ATA_DEV_NONE; 1867 1868 return class; 1869 } 1870 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1871 1872 /** 1873 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1874 * @link: SFF link which is just reset 1875 * @devmask: mask of present devices 1876 * @deadline: deadline jiffies for the operation 1877 * 1878 * Wait devices attached to SFF @link to become ready after 1879 * reset. It contains preceding 150ms wait to avoid accessing TF 1880 * status register too early. 1881 * 1882 * LOCKING: 1883 * Kernel thread context (may sleep). 1884 * 1885 * RETURNS: 1886 * 0 on success, -ENODEV if some or all of devices in @devmask 1887 * don't seem to exist. -errno on other errors. 1888 */ 1889 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1890 unsigned long deadline) 1891 { 1892 struct ata_port *ap = link->ap; 1893 struct ata_ioports *ioaddr = &ap->ioaddr; 1894 unsigned int dev0 = devmask & (1 << 0); 1895 unsigned int dev1 = devmask & (1 << 1); 1896 int rc, ret = 0; 1897 1898 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1899 1900 /* always check readiness of the master device */ 1901 rc = ata_sff_wait_ready(link, deadline); 1902 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1903 * and TF status is 0xff, bail out on it too. 1904 */ 1905 if (rc) 1906 return rc; 1907 1908 /* if device 1 was found in ata_devchk, wait for register 1909 * access briefly, then wait for BSY to clear. 1910 */ 1911 if (dev1) { 1912 int i; 1913 1914 ap->ops->sff_dev_select(ap, 1); 1915 1916 /* Wait for register access. Some ATAPI devices fail 1917 * to set nsect/lbal after reset, so don't waste too 1918 * much time on it. We're gonna wait for !BSY anyway. 1919 */ 1920 for (i = 0; i < 2; i++) { 1921 u8 nsect, lbal; 1922 1923 nsect = ioread8(ioaddr->nsect_addr); 1924 lbal = ioread8(ioaddr->lbal_addr); 1925 if ((nsect == 1) && (lbal == 1)) 1926 break; 1927 ata_msleep(ap, 50); /* give drive a breather */ 1928 } 1929 1930 rc = ata_sff_wait_ready(link, deadline); 1931 if (rc) { 1932 if (rc != -ENODEV) 1933 return rc; 1934 ret = rc; 1935 } 1936 } 1937 1938 /* is all this really necessary? */ 1939 ap->ops->sff_dev_select(ap, 0); 1940 if (dev1) 1941 ap->ops->sff_dev_select(ap, 1); 1942 if (dev0) 1943 ap->ops->sff_dev_select(ap, 0); 1944 1945 return ret; 1946 } 1947 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1948 1949 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1950 unsigned long deadline) 1951 { 1952 struct ata_ioports *ioaddr = &ap->ioaddr; 1953 1954 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1955 1956 if (ap->ioaddr.ctl_addr) { 1957 /* software reset. causes dev0 to be selected */ 1958 iowrite8(ap->ctl, ioaddr->ctl_addr); 1959 udelay(20); /* FIXME: flush */ 1960 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1961 udelay(20); /* FIXME: flush */ 1962 iowrite8(ap->ctl, ioaddr->ctl_addr); 1963 ap->last_ctl = ap->ctl; 1964 } 1965 1966 /* wait the port to become ready */ 1967 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1968 } 1969 1970 /** 1971 * ata_sff_softreset - reset host port via ATA SRST 1972 * @link: ATA link to reset 1973 * @classes: resulting classes of attached devices 1974 * @deadline: deadline jiffies for the operation 1975 * 1976 * Reset host port using ATA SRST. 1977 * 1978 * LOCKING: 1979 * Kernel thread context (may sleep) 1980 * 1981 * RETURNS: 1982 * 0 on success, -errno otherwise. 1983 */ 1984 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1985 unsigned long deadline) 1986 { 1987 struct ata_port *ap = link->ap; 1988 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1989 unsigned int devmask = 0; 1990 int rc; 1991 u8 err; 1992 1993 DPRINTK("ENTER\n"); 1994 1995 /* determine if device 0/1 are present */ 1996 if (ata_devchk(ap, 0)) 1997 devmask |= (1 << 0); 1998 if (slave_possible && ata_devchk(ap, 1)) 1999 devmask |= (1 << 1); 2000 2001 /* select device 0 again */ 2002 ap->ops->sff_dev_select(ap, 0); 2003 2004 /* issue bus reset */ 2005 DPRINTK("about to softreset, devmask=%x\n", devmask); 2006 rc = ata_bus_softreset(ap, devmask, deadline); 2007 /* if link is occupied, -ENODEV too is an error */ 2008 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2009 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2010 return rc; 2011 } 2012 2013 /* determine by signature whether we have ATA or ATAPI devices */ 2014 classes[0] = ata_sff_dev_classify(&link->device[0], 2015 devmask & (1 << 0), &err); 2016 if (slave_possible && err != 0x81) 2017 classes[1] = ata_sff_dev_classify(&link->device[1], 2018 devmask & (1 << 1), &err); 2019 2020 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2021 return 0; 2022 } 2023 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2024 2025 /** 2026 * sata_sff_hardreset - reset host port via SATA phy reset 2027 * @link: link to reset 2028 * @class: resulting class of attached device 2029 * @deadline: deadline jiffies for the operation 2030 * 2031 * SATA phy-reset host port using DET bits of SControl register, 2032 * wait for !BSY and classify the attached device. 2033 * 2034 * LOCKING: 2035 * Kernel thread context (may sleep) 2036 * 2037 * RETURNS: 2038 * 0 on success, -errno otherwise. 2039 */ 2040 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2041 unsigned long deadline) 2042 { 2043 struct ata_eh_context *ehc = &link->eh_context; 2044 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2045 bool online; 2046 int rc; 2047 2048 rc = sata_link_hardreset(link, timing, deadline, &online, 2049 ata_sff_check_ready); 2050 if (online) 2051 *class = ata_sff_dev_classify(link->device, 1, NULL); 2052 2053 DPRINTK("EXIT, class=%u\n", *class); 2054 return rc; 2055 } 2056 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2057 2058 /** 2059 * ata_sff_postreset - SFF postreset callback 2060 * @link: the target SFF ata_link 2061 * @classes: classes of attached devices 2062 * 2063 * This function is invoked after a successful reset. It first 2064 * calls ata_std_postreset() and performs SFF specific postreset 2065 * processing. 2066 * 2067 * LOCKING: 2068 * Kernel thread context (may sleep) 2069 */ 2070 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2071 { 2072 struct ata_port *ap = link->ap; 2073 2074 ata_std_postreset(link, classes); 2075 2076 /* is double-select really necessary? */ 2077 if (classes[0] != ATA_DEV_NONE) 2078 ap->ops->sff_dev_select(ap, 1); 2079 if (classes[1] != ATA_DEV_NONE) 2080 ap->ops->sff_dev_select(ap, 0); 2081 2082 /* bail out if no device is present */ 2083 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2084 DPRINTK("EXIT, no device\n"); 2085 return; 2086 } 2087 2088 /* set up device control */ 2089 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2090 ata_sff_set_devctl(ap, ap->ctl); 2091 ap->last_ctl = ap->ctl; 2092 } 2093 } 2094 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2095 2096 /** 2097 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2098 * @qc: command 2099 * 2100 * Drain the FIFO and device of any stuck data following a command 2101 * failing to complete. In some cases this is necessary before a 2102 * reset will recover the device. 2103 * 2104 */ 2105 2106 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2107 { 2108 int count; 2109 struct ata_port *ap; 2110 2111 /* We only need to flush incoming data when a command was running */ 2112 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2113 return; 2114 2115 ap = qc->ap; 2116 /* Drain up to 64K of data before we give up this recovery method */ 2117 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2118 && count < 65536; count += 2) 2119 ioread16(ap->ioaddr.data_addr); 2120 2121 /* Can become DEBUG later */ 2122 if (count) 2123 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2124 2125 } 2126 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2127 2128 /** 2129 * ata_sff_error_handler - Stock error handler for SFF controller 2130 * @ap: port to handle error for 2131 * 2132 * Stock error handler for SFF controller. It can handle both 2133 * PATA and SATA controllers. Many controllers should be able to 2134 * use this EH as-is or with some added handling before and 2135 * after. 2136 * 2137 * LOCKING: 2138 * Kernel thread context (may sleep) 2139 */ 2140 void ata_sff_error_handler(struct ata_port *ap) 2141 { 2142 ata_reset_fn_t softreset = ap->ops->softreset; 2143 ata_reset_fn_t hardreset = ap->ops->hardreset; 2144 struct ata_queued_cmd *qc; 2145 unsigned long flags; 2146 2147 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2148 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2149 qc = NULL; 2150 2151 spin_lock_irqsave(ap->lock, flags); 2152 2153 /* 2154 * We *MUST* do FIFO draining before we issue a reset as 2155 * several devices helpfully clear their internal state and 2156 * will lock solid if we touch the data port post reset. Pass 2157 * qc in case anyone wants to do different PIO/DMA recovery or 2158 * has per command fixups 2159 */ 2160 if (ap->ops->sff_drain_fifo) 2161 ap->ops->sff_drain_fifo(qc); 2162 2163 spin_unlock_irqrestore(ap->lock, flags); 2164 2165 /* ignore built-in hardresets if SCR access is not available */ 2166 if ((hardreset == sata_std_hardreset || 2167 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2168 hardreset = NULL; 2169 2170 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2171 ap->ops->postreset); 2172 } 2173 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2174 2175 /** 2176 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2177 * @ioaddr: IO address structure to be initialized 2178 * 2179 * Utility function which initializes data_addr, error_addr, 2180 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2181 * device_addr, status_addr, and command_addr to standard offsets 2182 * relative to cmd_addr. 2183 * 2184 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2185 */ 2186 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2187 { 2188 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2189 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2190 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2191 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2192 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2193 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2194 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2195 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2196 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2197 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2198 } 2199 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2200 2201 #ifdef CONFIG_PCI 2202 2203 static int ata_resources_present(struct pci_dev *pdev, int port) 2204 { 2205 int i; 2206 2207 /* Check the PCI resources for this channel are enabled */ 2208 port = port * 2; 2209 for (i = 0; i < 2; i++) { 2210 if (pci_resource_start(pdev, port + i) == 0 || 2211 pci_resource_len(pdev, port + i) == 0) 2212 return 0; 2213 } 2214 return 1; 2215 } 2216 2217 /** 2218 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2219 * @host: target ATA host 2220 * 2221 * Acquire native PCI ATA resources for @host and initialize the 2222 * first two ports of @host accordingly. Ports marked dummy are 2223 * skipped and allocation failure makes the port dummy. 2224 * 2225 * Note that native PCI resources are valid even for legacy hosts 2226 * as we fix up pdev resources array early in boot, so this 2227 * function can be used for both native and legacy SFF hosts. 2228 * 2229 * LOCKING: 2230 * Inherited from calling layer (may sleep). 2231 * 2232 * RETURNS: 2233 * 0 if at least one port is initialized, -ENODEV if no port is 2234 * available. 2235 */ 2236 int ata_pci_sff_init_host(struct ata_host *host) 2237 { 2238 struct device *gdev = host->dev; 2239 struct pci_dev *pdev = to_pci_dev(gdev); 2240 unsigned int mask = 0; 2241 int i, rc; 2242 2243 /* request, iomap BARs and init port addresses accordingly */ 2244 for (i = 0; i < 2; i++) { 2245 struct ata_port *ap = host->ports[i]; 2246 int base = i * 2; 2247 void __iomem * const *iomap; 2248 2249 if (ata_port_is_dummy(ap)) 2250 continue; 2251 2252 /* Discard disabled ports. Some controllers show 2253 * their unused channels this way. Disabled ports are 2254 * made dummy. 2255 */ 2256 if (!ata_resources_present(pdev, i)) { 2257 ap->ops = &ata_dummy_port_ops; 2258 continue; 2259 } 2260 2261 rc = pcim_iomap_regions(pdev, 0x3 << base, 2262 dev_driver_string(gdev)); 2263 if (rc) { 2264 dev_warn(gdev, 2265 "failed to request/iomap BARs for port %d (errno=%d)\n", 2266 i, rc); 2267 if (rc == -EBUSY) 2268 pcim_pin_device(pdev); 2269 ap->ops = &ata_dummy_port_ops; 2270 continue; 2271 } 2272 host->iomap = iomap = pcim_iomap_table(pdev); 2273 2274 ap->ioaddr.cmd_addr = iomap[base]; 2275 ap->ioaddr.altstatus_addr = 2276 ap->ioaddr.ctl_addr = (void __iomem *) 2277 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2278 ata_sff_std_ports(&ap->ioaddr); 2279 2280 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2281 (unsigned long long)pci_resource_start(pdev, base), 2282 (unsigned long long)pci_resource_start(pdev, base + 1)); 2283 2284 mask |= 1 << i; 2285 } 2286 2287 if (!mask) { 2288 dev_err(gdev, "no available native port\n"); 2289 return -ENODEV; 2290 } 2291 2292 return 0; 2293 } 2294 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2295 2296 /** 2297 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2298 * @pdev: target PCI device 2299 * @ppi: array of port_info, must be enough for two ports 2300 * @r_host: out argument for the initialized ATA host 2301 * 2302 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2303 * all PCI resources and initialize it accordingly in one go. 2304 * 2305 * LOCKING: 2306 * Inherited from calling layer (may sleep). 2307 * 2308 * RETURNS: 2309 * 0 on success, -errno otherwise. 2310 */ 2311 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2312 const struct ata_port_info * const *ppi, 2313 struct ata_host **r_host) 2314 { 2315 struct ata_host *host; 2316 int rc; 2317 2318 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2319 return -ENOMEM; 2320 2321 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2322 if (!host) { 2323 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2324 rc = -ENOMEM; 2325 goto err_out; 2326 } 2327 2328 rc = ata_pci_sff_init_host(host); 2329 if (rc) 2330 goto err_out; 2331 2332 devres_remove_group(&pdev->dev, NULL); 2333 *r_host = host; 2334 return 0; 2335 2336 err_out: 2337 devres_release_group(&pdev->dev, NULL); 2338 return rc; 2339 } 2340 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2341 2342 /** 2343 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2344 * @host: target SFF ATA host 2345 * @irq_handler: irq_handler used when requesting IRQ(s) 2346 * @sht: scsi_host_template to use when registering the host 2347 * 2348 * This is the counterpart of ata_host_activate() for SFF ATA 2349 * hosts. This separate helper is necessary because SFF hosts 2350 * use two separate interrupts in legacy mode. 2351 * 2352 * LOCKING: 2353 * Inherited from calling layer (may sleep). 2354 * 2355 * RETURNS: 2356 * 0 on success, -errno otherwise. 2357 */ 2358 int ata_pci_sff_activate_host(struct ata_host *host, 2359 irq_handler_t irq_handler, 2360 struct scsi_host_template *sht) 2361 { 2362 struct device *dev = host->dev; 2363 struct pci_dev *pdev = to_pci_dev(dev); 2364 const char *drv_name = dev_driver_string(host->dev); 2365 int legacy_mode = 0, rc; 2366 2367 rc = ata_host_start(host); 2368 if (rc) 2369 return rc; 2370 2371 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2372 u8 tmp8, mask = 0; 2373 2374 /* 2375 * ATA spec says we should use legacy mode when one 2376 * port is in legacy mode, but disabled ports on some 2377 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2378 * on which the secondary port is not wired, so 2379 * ignore ports that are marked as 'dummy' during 2380 * this check 2381 */ 2382 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2383 if (!ata_port_is_dummy(host->ports[0])) 2384 mask |= (1 << 0); 2385 if (!ata_port_is_dummy(host->ports[1])) 2386 mask |= (1 << 2); 2387 if ((tmp8 & mask) != mask) 2388 legacy_mode = 1; 2389 } 2390 2391 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2392 return -ENOMEM; 2393 2394 if (!legacy_mode && pdev->irq) { 2395 int i; 2396 2397 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2398 IRQF_SHARED, drv_name, host); 2399 if (rc) 2400 goto out; 2401 2402 for (i = 0; i < 2; i++) { 2403 if (ata_port_is_dummy(host->ports[i])) 2404 continue; 2405 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2406 } 2407 } else if (legacy_mode) { 2408 if (!ata_port_is_dummy(host->ports[0])) { 2409 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2410 irq_handler, IRQF_SHARED, 2411 drv_name, host); 2412 if (rc) 2413 goto out; 2414 2415 ata_port_desc(host->ports[0], "irq %d", 2416 ATA_PRIMARY_IRQ(pdev)); 2417 } 2418 2419 if (!ata_port_is_dummy(host->ports[1])) { 2420 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2421 irq_handler, IRQF_SHARED, 2422 drv_name, host); 2423 if (rc) 2424 goto out; 2425 2426 ata_port_desc(host->ports[1], "irq %d", 2427 ATA_SECONDARY_IRQ(pdev)); 2428 } 2429 } 2430 2431 rc = ata_host_register(host, sht); 2432 out: 2433 if (rc == 0) 2434 devres_remove_group(dev, NULL); 2435 else 2436 devres_release_group(dev, NULL); 2437 2438 return rc; 2439 } 2440 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2441 2442 static const struct ata_port_info *ata_sff_find_valid_pi( 2443 const struct ata_port_info * const *ppi) 2444 { 2445 int i; 2446 2447 /* look up the first valid port_info */ 2448 for (i = 0; i < 2 && ppi[i]; i++) 2449 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2450 return ppi[i]; 2451 2452 return NULL; 2453 } 2454 2455 static int ata_pci_init_one(struct pci_dev *pdev, 2456 const struct ata_port_info * const *ppi, 2457 struct scsi_host_template *sht, void *host_priv, 2458 int hflags, bool bmdma) 2459 { 2460 struct device *dev = &pdev->dev; 2461 const struct ata_port_info *pi; 2462 struct ata_host *host = NULL; 2463 int rc; 2464 2465 DPRINTK("ENTER\n"); 2466 2467 pi = ata_sff_find_valid_pi(ppi); 2468 if (!pi) { 2469 dev_err(&pdev->dev, "no valid port_info specified\n"); 2470 return -EINVAL; 2471 } 2472 2473 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2474 return -ENOMEM; 2475 2476 rc = pcim_enable_device(pdev); 2477 if (rc) 2478 goto out; 2479 2480 #ifdef CONFIG_ATA_BMDMA 2481 if (bmdma) 2482 /* prepare and activate BMDMA host */ 2483 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2484 else 2485 #endif 2486 /* prepare and activate SFF host */ 2487 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2488 if (rc) 2489 goto out; 2490 host->private_data = host_priv; 2491 host->flags |= hflags; 2492 2493 #ifdef CONFIG_ATA_BMDMA 2494 if (bmdma) { 2495 pci_set_master(pdev); 2496 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2497 } else 2498 #endif 2499 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2500 out: 2501 if (rc == 0) 2502 devres_remove_group(&pdev->dev, NULL); 2503 else 2504 devres_release_group(&pdev->dev, NULL); 2505 2506 return rc; 2507 } 2508 2509 /** 2510 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2511 * @pdev: Controller to be initialized 2512 * @ppi: array of port_info, must be enough for two ports 2513 * @sht: scsi_host_template to use when registering the host 2514 * @host_priv: host private_data 2515 * @hflag: host flags 2516 * 2517 * This is a helper function which can be called from a driver's 2518 * xxx_init_one() probe function if the hardware uses traditional 2519 * IDE taskfile registers and is PIO only. 2520 * 2521 * ASSUMPTION: 2522 * Nobody makes a single channel controller that appears solely as 2523 * the secondary legacy port on PCI. 2524 * 2525 * LOCKING: 2526 * Inherited from PCI layer (may sleep). 2527 * 2528 * RETURNS: 2529 * Zero on success, negative on errno-based value on error. 2530 */ 2531 int ata_pci_sff_init_one(struct pci_dev *pdev, 2532 const struct ata_port_info * const *ppi, 2533 struct scsi_host_template *sht, void *host_priv, int hflag) 2534 { 2535 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2536 } 2537 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2538 2539 #endif /* CONFIG_PCI */ 2540 2541 /* 2542 * BMDMA support 2543 */ 2544 2545 #ifdef CONFIG_ATA_BMDMA 2546 2547 const struct ata_port_operations ata_bmdma_port_ops = { 2548 .inherits = &ata_sff_port_ops, 2549 2550 .error_handler = ata_bmdma_error_handler, 2551 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2552 2553 .qc_prep = ata_bmdma_qc_prep, 2554 .qc_issue = ata_bmdma_qc_issue, 2555 2556 .sff_irq_clear = ata_bmdma_irq_clear, 2557 .bmdma_setup = ata_bmdma_setup, 2558 .bmdma_start = ata_bmdma_start, 2559 .bmdma_stop = ata_bmdma_stop, 2560 .bmdma_status = ata_bmdma_status, 2561 2562 .port_start = ata_bmdma_port_start, 2563 }; 2564 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2565 2566 const struct ata_port_operations ata_bmdma32_port_ops = { 2567 .inherits = &ata_bmdma_port_ops, 2568 2569 .sff_data_xfer = ata_sff_data_xfer32, 2570 .port_start = ata_bmdma_port_start32, 2571 }; 2572 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2573 2574 /** 2575 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2576 * @qc: Metadata associated with taskfile to be transferred 2577 * 2578 * Fill PCI IDE PRD (scatter-gather) table with segments 2579 * associated with the current disk command. 2580 * 2581 * LOCKING: 2582 * spin_lock_irqsave(host lock) 2583 * 2584 */ 2585 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2586 { 2587 struct ata_port *ap = qc->ap; 2588 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2589 struct scatterlist *sg; 2590 unsigned int si, pi; 2591 2592 pi = 0; 2593 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2594 u32 addr, offset; 2595 u32 sg_len, len; 2596 2597 /* determine if physical DMA addr spans 64K boundary. 2598 * Note h/w doesn't support 64-bit, so we unconditionally 2599 * truncate dma_addr_t to u32. 2600 */ 2601 addr = (u32) sg_dma_address(sg); 2602 sg_len = sg_dma_len(sg); 2603 2604 while (sg_len) { 2605 offset = addr & 0xffff; 2606 len = sg_len; 2607 if ((offset + sg_len) > 0x10000) 2608 len = 0x10000 - offset; 2609 2610 prd[pi].addr = cpu_to_le32(addr); 2611 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2612 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2613 2614 pi++; 2615 sg_len -= len; 2616 addr += len; 2617 } 2618 } 2619 2620 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2621 } 2622 2623 /** 2624 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2625 * @qc: Metadata associated with taskfile to be transferred 2626 * 2627 * Fill PCI IDE PRD (scatter-gather) table with segments 2628 * associated with the current disk command. Perform the fill 2629 * so that we avoid writing any length 64K records for 2630 * controllers that don't follow the spec. 2631 * 2632 * LOCKING: 2633 * spin_lock_irqsave(host lock) 2634 * 2635 */ 2636 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2637 { 2638 struct ata_port *ap = qc->ap; 2639 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2640 struct scatterlist *sg; 2641 unsigned int si, pi; 2642 2643 pi = 0; 2644 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2645 u32 addr, offset; 2646 u32 sg_len, len, blen; 2647 2648 /* determine if physical DMA addr spans 64K boundary. 2649 * Note h/w doesn't support 64-bit, so we unconditionally 2650 * truncate dma_addr_t to u32. 2651 */ 2652 addr = (u32) sg_dma_address(sg); 2653 sg_len = sg_dma_len(sg); 2654 2655 while (sg_len) { 2656 offset = addr & 0xffff; 2657 len = sg_len; 2658 if ((offset + sg_len) > 0x10000) 2659 len = 0x10000 - offset; 2660 2661 blen = len & 0xffff; 2662 prd[pi].addr = cpu_to_le32(addr); 2663 if (blen == 0) { 2664 /* Some PATA chipsets like the CS5530 can't 2665 cope with 0x0000 meaning 64K as the spec 2666 says */ 2667 prd[pi].flags_len = cpu_to_le32(0x8000); 2668 blen = 0x8000; 2669 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2670 } 2671 prd[pi].flags_len = cpu_to_le32(blen); 2672 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2673 2674 pi++; 2675 sg_len -= len; 2676 addr += len; 2677 } 2678 } 2679 2680 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2681 } 2682 2683 /** 2684 * ata_bmdma_qc_prep - Prepare taskfile for submission 2685 * @qc: Metadata associated with taskfile to be prepared 2686 * 2687 * Prepare ATA taskfile for submission. 2688 * 2689 * LOCKING: 2690 * spin_lock_irqsave(host lock) 2691 */ 2692 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2693 { 2694 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2695 return; 2696 2697 ata_bmdma_fill_sg(qc); 2698 } 2699 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2700 2701 /** 2702 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2703 * @qc: Metadata associated with taskfile to be prepared 2704 * 2705 * Prepare ATA taskfile for submission. 2706 * 2707 * LOCKING: 2708 * spin_lock_irqsave(host lock) 2709 */ 2710 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2711 { 2712 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2713 return; 2714 2715 ata_bmdma_fill_sg_dumb(qc); 2716 } 2717 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2718 2719 /** 2720 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2721 * @qc: command to issue to device 2722 * 2723 * This function issues a PIO, NODATA or DMA command to a 2724 * SFF/BMDMA controller. PIO and NODATA are handled by 2725 * ata_sff_qc_issue(). 2726 * 2727 * LOCKING: 2728 * spin_lock_irqsave(host lock) 2729 * 2730 * RETURNS: 2731 * Zero on success, AC_ERR_* mask on failure 2732 */ 2733 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2734 { 2735 struct ata_port *ap = qc->ap; 2736 struct ata_link *link = qc->dev->link; 2737 2738 /* defer PIO handling to sff_qc_issue */ 2739 if (!ata_is_dma(qc->tf.protocol)) 2740 return ata_sff_qc_issue(qc); 2741 2742 /* select the device */ 2743 ata_dev_select(ap, qc->dev->devno, 1, 0); 2744 2745 /* start the command */ 2746 switch (qc->tf.protocol) { 2747 case ATA_PROT_DMA: 2748 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2749 2750 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2751 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2752 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2753 ap->hsm_task_state = HSM_ST_LAST; 2754 break; 2755 2756 case ATAPI_PROT_DMA: 2757 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2758 2759 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2760 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2761 ap->hsm_task_state = HSM_ST_FIRST; 2762 2763 /* send cdb by polling if no cdb interrupt */ 2764 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2765 ata_sff_queue_pio_task(link, 0); 2766 break; 2767 2768 default: 2769 WARN_ON(1); 2770 return AC_ERR_SYSTEM; 2771 } 2772 2773 return 0; 2774 } 2775 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2776 2777 /** 2778 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2779 * @ap: Port on which interrupt arrived (possibly...) 2780 * @qc: Taskfile currently active in engine 2781 * 2782 * Handle port interrupt for given queued command. 2783 * 2784 * LOCKING: 2785 * spin_lock_irqsave(host lock) 2786 * 2787 * RETURNS: 2788 * One if interrupt was handled, zero if not (shared irq). 2789 */ 2790 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2791 { 2792 struct ata_eh_info *ehi = &ap->link.eh_info; 2793 u8 host_stat = 0; 2794 bool bmdma_stopped = false; 2795 unsigned int handled; 2796 2797 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2798 /* check status of DMA engine */ 2799 host_stat = ap->ops->bmdma_status(ap); 2800 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2801 2802 /* if it's not our irq... */ 2803 if (!(host_stat & ATA_DMA_INTR)) 2804 return ata_sff_idle_irq(ap); 2805 2806 /* before we do anything else, clear DMA-Start bit */ 2807 ap->ops->bmdma_stop(qc); 2808 bmdma_stopped = true; 2809 2810 if (unlikely(host_stat & ATA_DMA_ERR)) { 2811 /* error when transferring data to/from memory */ 2812 qc->err_mask |= AC_ERR_HOST_BUS; 2813 ap->hsm_task_state = HSM_ST_ERR; 2814 } 2815 } 2816 2817 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2818 2819 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2820 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2821 2822 return handled; 2823 } 2824 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2825 2826 /** 2827 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2828 * @irq: irq line (unused) 2829 * @dev_instance: pointer to our ata_host information structure 2830 * 2831 * Default interrupt handler for PCI IDE devices. Calls 2832 * ata_bmdma_port_intr() for each port that is not disabled. 2833 * 2834 * LOCKING: 2835 * Obtains host lock during operation. 2836 * 2837 * RETURNS: 2838 * IRQ_NONE or IRQ_HANDLED. 2839 */ 2840 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2841 { 2842 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2843 } 2844 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2845 2846 /** 2847 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2848 * @ap: port to handle error for 2849 * 2850 * Stock error handler for BMDMA controller. It can handle both 2851 * PATA and SATA controllers. Most BMDMA controllers should be 2852 * able to use this EH as-is or with some added handling before 2853 * and after. 2854 * 2855 * LOCKING: 2856 * Kernel thread context (may sleep) 2857 */ 2858 void ata_bmdma_error_handler(struct ata_port *ap) 2859 { 2860 struct ata_queued_cmd *qc; 2861 unsigned long flags; 2862 bool thaw = false; 2863 2864 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2865 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2866 qc = NULL; 2867 2868 /* reset PIO HSM and stop DMA engine */ 2869 spin_lock_irqsave(ap->lock, flags); 2870 2871 if (qc && ata_is_dma(qc->tf.protocol)) { 2872 u8 host_stat; 2873 2874 host_stat = ap->ops->bmdma_status(ap); 2875 2876 /* BMDMA controllers indicate host bus error by 2877 * setting DMA_ERR bit and timing out. As it wasn't 2878 * really a timeout event, adjust error mask and 2879 * cancel frozen state. 2880 */ 2881 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2882 qc->err_mask = AC_ERR_HOST_BUS; 2883 thaw = true; 2884 } 2885 2886 ap->ops->bmdma_stop(qc); 2887 2888 /* if we're gonna thaw, make sure IRQ is clear */ 2889 if (thaw) { 2890 ap->ops->sff_check_status(ap); 2891 if (ap->ops->sff_irq_clear) 2892 ap->ops->sff_irq_clear(ap); 2893 } 2894 } 2895 2896 spin_unlock_irqrestore(ap->lock, flags); 2897 2898 if (thaw) 2899 ata_eh_thaw_port(ap); 2900 2901 ata_sff_error_handler(ap); 2902 } 2903 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2904 2905 /** 2906 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2907 * @qc: internal command to clean up 2908 * 2909 * LOCKING: 2910 * Kernel thread context (may sleep) 2911 */ 2912 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2913 { 2914 struct ata_port *ap = qc->ap; 2915 unsigned long flags; 2916 2917 if (ata_is_dma(qc->tf.protocol)) { 2918 spin_lock_irqsave(ap->lock, flags); 2919 ap->ops->bmdma_stop(qc); 2920 spin_unlock_irqrestore(ap->lock, flags); 2921 } 2922 } 2923 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2924 2925 /** 2926 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2927 * @ap: Port associated with this ATA transaction. 2928 * 2929 * Clear interrupt and error flags in DMA status register. 2930 * 2931 * May be used as the irq_clear() entry in ata_port_operations. 2932 * 2933 * LOCKING: 2934 * spin_lock_irqsave(host lock) 2935 */ 2936 void ata_bmdma_irq_clear(struct ata_port *ap) 2937 { 2938 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2939 2940 if (!mmio) 2941 return; 2942 2943 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2944 } 2945 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2946 2947 /** 2948 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2949 * @qc: Info associated with this ATA transaction. 2950 * 2951 * LOCKING: 2952 * spin_lock_irqsave(host lock) 2953 */ 2954 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2955 { 2956 struct ata_port *ap = qc->ap; 2957 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2958 u8 dmactl; 2959 2960 /* load PRD table addr. */ 2961 mb(); /* make sure PRD table writes are visible to controller */ 2962 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2963 2964 /* specify data direction, triple-check start bit is clear */ 2965 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2966 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2967 if (!rw) 2968 dmactl |= ATA_DMA_WR; 2969 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2970 2971 /* issue r/w command */ 2972 ap->ops->sff_exec_command(ap, &qc->tf); 2973 } 2974 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2975 2976 /** 2977 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2978 * @qc: Info associated with this ATA transaction. 2979 * 2980 * LOCKING: 2981 * spin_lock_irqsave(host lock) 2982 */ 2983 void ata_bmdma_start(struct ata_queued_cmd *qc) 2984 { 2985 struct ata_port *ap = qc->ap; 2986 u8 dmactl; 2987 2988 /* start host DMA transaction */ 2989 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2990 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2991 2992 /* Strictly, one may wish to issue an ioread8() here, to 2993 * flush the mmio write. However, control also passes 2994 * to the hardware at this point, and it will interrupt 2995 * us when we are to resume control. So, in effect, 2996 * we don't care when the mmio write flushes. 2997 * Further, a read of the DMA status register _immediately_ 2998 * following the write may not be what certain flaky hardware 2999 * is expected, so I think it is best to not add a readb() 3000 * without first all the MMIO ATA cards/mobos. 3001 * Or maybe I'm just being paranoid. 3002 * 3003 * FIXME: The posting of this write means I/O starts are 3004 * unnecessarily delayed for MMIO 3005 */ 3006 } 3007 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3008 3009 /** 3010 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3011 * @qc: Command we are ending DMA for 3012 * 3013 * Clears the ATA_DMA_START flag in the dma control register 3014 * 3015 * May be used as the bmdma_stop() entry in ata_port_operations. 3016 * 3017 * LOCKING: 3018 * spin_lock_irqsave(host lock) 3019 */ 3020 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3021 { 3022 struct ata_port *ap = qc->ap; 3023 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3024 3025 /* clear start/stop bit */ 3026 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3027 mmio + ATA_DMA_CMD); 3028 3029 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3030 ata_sff_dma_pause(ap); 3031 } 3032 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3033 3034 /** 3035 * ata_bmdma_status - Read PCI IDE BMDMA status 3036 * @ap: Port associated with this ATA transaction. 3037 * 3038 * Read and return BMDMA status register. 3039 * 3040 * May be used as the bmdma_status() entry in ata_port_operations. 3041 * 3042 * LOCKING: 3043 * spin_lock_irqsave(host lock) 3044 */ 3045 u8 ata_bmdma_status(struct ata_port *ap) 3046 { 3047 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3048 } 3049 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3050 3051 3052 /** 3053 * ata_bmdma_port_start - Set port up for bmdma. 3054 * @ap: Port to initialize 3055 * 3056 * Called just after data structures for each port are 3057 * initialized. Allocates space for PRD table. 3058 * 3059 * May be used as the port_start() entry in ata_port_operations. 3060 * 3061 * LOCKING: 3062 * Inherited from caller. 3063 */ 3064 int ata_bmdma_port_start(struct ata_port *ap) 3065 { 3066 if (ap->mwdma_mask || ap->udma_mask) { 3067 ap->bmdma_prd = 3068 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3069 &ap->bmdma_prd_dma, GFP_KERNEL); 3070 if (!ap->bmdma_prd) 3071 return -ENOMEM; 3072 } 3073 3074 return 0; 3075 } 3076 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3077 3078 /** 3079 * ata_bmdma_port_start32 - Set port up for dma. 3080 * @ap: Port to initialize 3081 * 3082 * Called just after data structures for each port are 3083 * initialized. Enables 32bit PIO and allocates space for PRD 3084 * table. 3085 * 3086 * May be used as the port_start() entry in ata_port_operations for 3087 * devices that are capable of 32bit PIO. 3088 * 3089 * LOCKING: 3090 * Inherited from caller. 3091 */ 3092 int ata_bmdma_port_start32(struct ata_port *ap) 3093 { 3094 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3095 return ata_bmdma_port_start(ap); 3096 } 3097 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3098 3099 #ifdef CONFIG_PCI 3100 3101 /** 3102 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3103 * @pdev: PCI device 3104 * 3105 * Some PCI ATA devices report simplex mode but in fact can be told to 3106 * enter non simplex mode. This implements the necessary logic to 3107 * perform the task on such devices. Calling it on other devices will 3108 * have -undefined- behaviour. 3109 */ 3110 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3111 { 3112 unsigned long bmdma = pci_resource_start(pdev, 4); 3113 u8 simplex; 3114 3115 if (bmdma == 0) 3116 return -ENOENT; 3117 3118 simplex = inb(bmdma + 0x02); 3119 outb(simplex & 0x60, bmdma + 0x02); 3120 simplex = inb(bmdma + 0x02); 3121 if (simplex & 0x80) 3122 return -EOPNOTSUPP; 3123 return 0; 3124 } 3125 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3126 3127 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3128 { 3129 int i; 3130 3131 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3132 3133 for (i = 0; i < 2; i++) { 3134 host->ports[i]->mwdma_mask = 0; 3135 host->ports[i]->udma_mask = 0; 3136 } 3137 } 3138 3139 /** 3140 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3141 * @host: target ATA host 3142 * 3143 * Acquire PCI BMDMA resources and initialize @host accordingly. 3144 * 3145 * LOCKING: 3146 * Inherited from calling layer (may sleep). 3147 */ 3148 void ata_pci_bmdma_init(struct ata_host *host) 3149 { 3150 struct device *gdev = host->dev; 3151 struct pci_dev *pdev = to_pci_dev(gdev); 3152 int i, rc; 3153 3154 /* No BAR4 allocation: No DMA */ 3155 if (pci_resource_start(pdev, 4) == 0) { 3156 ata_bmdma_nodma(host, "BAR4 is zero"); 3157 return; 3158 } 3159 3160 /* 3161 * Some controllers require BMDMA region to be initialized 3162 * even if DMA is not in use to clear IRQ status via 3163 * ->sff_irq_clear method. Try to initialize bmdma_addr 3164 * regardless of dma masks. 3165 */ 3166 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK); 3167 if (rc) 3168 ata_bmdma_nodma(host, "failed to set dma mask"); 3169 if (!rc) { 3170 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK); 3171 if (rc) 3172 ata_bmdma_nodma(host, 3173 "failed to set consistent dma mask"); 3174 } 3175 3176 /* request and iomap DMA region */ 3177 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3178 if (rc) { 3179 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3180 return; 3181 } 3182 host->iomap = pcim_iomap_table(pdev); 3183 3184 for (i = 0; i < 2; i++) { 3185 struct ata_port *ap = host->ports[i]; 3186 void __iomem *bmdma = host->iomap[4] + 8 * i; 3187 3188 if (ata_port_is_dummy(ap)) 3189 continue; 3190 3191 ap->ioaddr.bmdma_addr = bmdma; 3192 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3193 (ioread8(bmdma + 2) & 0x80)) 3194 host->flags |= ATA_HOST_SIMPLEX; 3195 3196 ata_port_desc(ap, "bmdma 0x%llx", 3197 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3198 } 3199 } 3200 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3201 3202 /** 3203 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3204 * @pdev: target PCI device 3205 * @ppi: array of port_info, must be enough for two ports 3206 * @r_host: out argument for the initialized ATA host 3207 * 3208 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3209 * resources and initialize it accordingly in one go. 3210 * 3211 * LOCKING: 3212 * Inherited from calling layer (may sleep). 3213 * 3214 * RETURNS: 3215 * 0 on success, -errno otherwise. 3216 */ 3217 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3218 const struct ata_port_info * const * ppi, 3219 struct ata_host **r_host) 3220 { 3221 int rc; 3222 3223 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3224 if (rc) 3225 return rc; 3226 3227 ata_pci_bmdma_init(*r_host); 3228 return 0; 3229 } 3230 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3231 3232 /** 3233 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3234 * @pdev: Controller to be initialized 3235 * @ppi: array of port_info, must be enough for two ports 3236 * @sht: scsi_host_template to use when registering the host 3237 * @host_priv: host private_data 3238 * @hflags: host flags 3239 * 3240 * This function is similar to ata_pci_sff_init_one() but also 3241 * takes care of BMDMA initialization. 3242 * 3243 * LOCKING: 3244 * Inherited from PCI layer (may sleep). 3245 * 3246 * RETURNS: 3247 * Zero on success, negative on errno-based value on error. 3248 */ 3249 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3250 const struct ata_port_info * const * ppi, 3251 struct scsi_host_template *sht, void *host_priv, 3252 int hflags) 3253 { 3254 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3255 } 3256 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3257 3258 #endif /* CONFIG_PCI */ 3259 #endif /* CONFIG_ATA_BMDMA */ 3260 3261 /** 3262 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3263 * @ap: Port to initialize 3264 * 3265 * Called on port allocation to initialize SFF/BMDMA specific 3266 * fields. 3267 * 3268 * LOCKING: 3269 * None. 3270 */ 3271 void ata_sff_port_init(struct ata_port *ap) 3272 { 3273 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3274 ap->ctl = ATA_DEVCTL_OBS; 3275 ap->last_ctl = 0xFF; 3276 } 3277 3278 int __init ata_sff_init(void) 3279 { 3280 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3281 if (!ata_sff_wq) 3282 return -ENOMEM; 3283 3284 return 0; 3285 } 3286 3287 void ata_sff_exit(void) 3288 { 3289 destroy_workqueue(ata_sff_wq); 3290 } 3291